WO2018230580A1 - 光又は熱硬化方法、及び硬化性樹脂組成物 - Google Patents

光又は熱硬化方法、及び硬化性樹脂組成物 Download PDF

Info

Publication number
WO2018230580A1
WO2018230580A1 PCT/JP2018/022484 JP2018022484W WO2018230580A1 WO 2018230580 A1 WO2018230580 A1 WO 2018230580A1 JP 2018022484 W JP2018022484 W JP 2018022484W WO 2018230580 A1 WO2018230580 A1 WO 2018230580A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
general formula
silane coupling
Prior art date
Application number
PCT/JP2018/022484
Other languages
English (en)
French (fr)
Inventor
正 中野
信彦 酒井
康佑 簗場
重明 今關
Original Assignee
富士フイルム和光純薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム和光純薬株式会社 filed Critical 富士フイルム和光純薬株式会社
Priority to JP2019525466A priority Critical patent/JP7504348B2/ja
Priority to CN201880035268.5A priority patent/CN110678500B/zh
Priority to US16/622,132 priority patent/US11548984B2/en
Priority to KR1020197034157A priority patent/KR102551976B1/ko
Publication of WO2018230580A1 publication Critical patent/WO2018230580A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/10Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone

Definitions

  • the present invention relates to a light or thermosetting method for obtaining a cured product (crosslinked product / resin) containing a filler, a curable resin composition used in the curing method, and the like.
  • High power LED devices which are in increasing demand for lighting, electronic devices such as PCs and tablet terminals that handle high-speed and large-capacity information, and power semiconductors that control electric motors for electric and hybrid vehicles
  • electronic devices such as PCs and tablet terminals that handle high-speed and large-capacity information
  • power semiconductors that control electric motors for electric and hybrid vehicles
  • the generated heat has problems such as having a great influence on the performance and life of the product.
  • the problem is how to efficiently dissipate the generated heat without sacrificing product performance such as downsizing, weight reduction, and thickness reduction.
  • metals and ceramics are examples of materials having high thermal conductivity. Since many metals exhibit electrical conductivity, it is difficult to use them as they are in electronic circuits that require insulation. On the other hand, ceramics have high electrical insulating properties and a wide variety of types, so that various performances can be expected. However, workability is poor, high-temperature heating is required during molding processing, and productivity is low.
  • a resin as a heat dissipation material for an electronic circuit, but the resin has low thermal conductivity compared to metals and ceramics, and it is difficult to escape the generated heat. As it is, it cannot be used as a heat dissipation material. For this reason, attempts have been made to produce a thermally conductive resin composition in which a thermally conductive filler such as ceramics having a high thermal conductivity is filled in a resin.
  • a resin composition having 70% or more filler added to the entire resin composition to improve the thermal conductivity has been studied (for example, Patent Documents 1, 2, 3, etc.).
  • Patent Documents 1, 2, 3, etc. since these resin compositions have a complicated molecular structure, a multi-step synthesis process is required, or long-time high-temperature heating is required when the resin composition is cured, resulting in low productivity. is there.
  • resin compositions for photocuring as a resin composition that generates radicals by light irradiation, for example, a resin composition in which a (meth) acrylic acid polymer is filled with a thermally conductive filler such as alumina is known.
  • a resin composition in which a (meth) acrylic acid polymer is filled with a thermally conductive filler such as alumina is known.
  • Patent Document 4 since most of the polymer component of the resin obtained from such a resin composition is a (meth) acrylic acid polymer, the shrinkage of curing is large and the anchor effect of hydroxyl groups and the like is poor. Adhesion to is poor and peeling is likely to occur.
  • resin compositions for photocuring resin compositions that generate a strong acid upon irradiation with light can realize curing of the composition using an epoxy-based monomer that cannot be cured by radicals as a resin raw material.
  • a strong acid is generated by light irradiation, corrosion easily occurs at a portion in contact with a metal, so that it is difficult to apply to a heat conductive resin composition that is supposed to be applied to a copper plate or the like.
  • Patent Document 5 A method for producing a silicone-containing resin (crosslinked product) by simultaneously performing gelation and thiol-ene reaction has been proposed (for example, Patent Document 5). Since this method can prepare a composition from a low molecular weight monomer by a build-up method, it can be prepared while adding an additive such as a filler before polycondensation of silicon alkoxide to increase the molecular weight. The adhesion to the material can be improved.
  • a cured product (cross-linked product / cross-linked product) having a desired performance can be quickly and efficiently obtained in a system containing a large amount of filler without preparing a polymer having a complicated structure in advance or performing complicated operations.
  • Development of a curing method capable of producing (resin) is desired.
  • JP 2012-149191 A JP2013-127002A JP 2012-251100 A JP 2000-044640 A International Publication No. 2017/131047
  • the present invention has been made in view of the above-described circumstances, and can produce a cured product (crosslinked product / resin) having excellent alkali developability, adhesion to a substrate, organic solvent resistance, and the like, and having high strength.
  • the object is to provide a light or heat curing method and a resin composition used in the curing method.
  • a cured product (cross-linked product / resin) that can achieve a thermal conductivity of 1.0 W / m ⁇ K or more, preferably 3.0 W / m ⁇ K or more by using a thermally conductive (heat radiating) filler as a filler. )
  • a resin composition used in the curing method a thermally conductive substrate for forming an electronic circuit having a cured product obtained from the resin composition, and the like.
  • the inventors of the present invention combined the aluminum alkoxide and the silane coupling agent having a mercapto group as a binder component, and thereby the hardness of the obtained cured product (crosslinked product / resin), It has been found that various physical properties such as adhesion and thermal conductivity are improved.
  • aluminum alkoxide is easily hydrolyzed and easily whitened in air. Therefore, the gelation of aluminum alkoxide rapidly proceeds, and uniform mixing with the filler becomes difficult and the quality becomes unstable.
  • a compound (base and radical generator) comprising a salt of a carboxylic acid and an amine and having a carboxylate group that generates a base by decarboxylation with a carbonyl group that generates radicals by light irradiation or heating is an aluminum alkoxide.
  • High compatibility with silane coupling agents and aluminum alkoxides and silane coupling agents can be dissolved without solvent. Therefore, the present inventors have found that the compound has a function of suppressing the rapid gelation described above because the compound can uniformly mix the filler and has a chelating ability.
  • Many of the conventional base generators are oil-soluble, have low affinity for aluminum alkoxide, water, alcohol and the like, and have almost no chelating ability.
  • the present inventors have combined a base and a radical generator, an aluminum alkoxide, a silane coupling agent having a mercapto group, and a compound having two or more polymerizable unsaturated groups in a curing system containing a filler.
  • a sol-gelation and a thiol-ene reaction or a thiol-in reaction can be efficiently performed and a cured product (crosslinked product / resin) having a desired performance can be produced. It came.
  • the above-described compound (base and radical generator) has three functions: a base generator, a radical generator, and a catalyst (a reaction accelerator between an aluminum alkoxide and a silane coupling agent). Therefore, it is possible to increase the amount of filler relative to the organic matter, and thus, for example, a cured product (cross-linked product / resin) having various characteristics such as a heat conductive resin and an electrically conductive resin. A light or thermosetting method that can be obtained.
  • the present invention has the following configuration. (1) (A) a compound comprising a salt of a carboxylic acid and an amine and having a carboxylate group that generates a base by decarboxylation with a carbonyl group that generates radicals by light irradiation or heating, (B) an aluminum alkoxide, Si-O-Al obtained from (C) a silane coupling agent having a mercapto group, and (D) water and (E) an aluminum derived from an aluminum alkoxide and a silane derived from a silane coupling agent having a mercapto group And a step 1 of obtaining a condensate having a structural unit of Si—O—Si; Step 2 of reacting the condensate (E), (H) a compound having two or more polymerizable unsaturated groups, and (I) filler in the presence of the compound (A) under light irradiation or heating conditions. including, Light or thermosetting method.
  • the step 1 is derived from the compound (A), the aluminum alkoxide (B), the silane coupling agent (C), the water (D), and the (F) chelating agent (E) derived from the aluminum alkoxide.
  • step 1 the compound (A), the aluminum alkoxide (B), the silane coupling agent (C), the water (D), and the (F) chelating agent are reacted, and (E) The curing method according to (2), which is a step of obtaining a sol.
  • step 2 the condensate (E), (H) a compound having two or more polymerizable unsaturated groups, (I) a filler, and (J) 2 in the presence of the compound (A)
  • the curing method according to (1) or (3) which is a step of reacting a compound having two or more epoxy groups under light irradiation or heating conditions.
  • R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, carbon Represents an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a nitro group or a group represented by the general formula [2], wherein R 9 and R 10 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, carbon Represents an aryl group having 6 to 14 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom or a nitro group, or R 9 and R 10 are an oxygen atom, a sulfur atom or It represents that
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, and Z 1 + represents amidinium Represents a cation, a guanidinium cation or a biguanidinium cation.
  • the silane coupling agent (C) is selected from (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane, and 3-mercaptopropyl (dimethoxy) methylsilane, (1) The curing method according to any one of (9).
  • the molar ratio of the aluminum alkoxide (B) and the silane coupling agent (C) is 1:10 to 9: 1, according to any one of the above (1) to (11) Curing method.
  • the chelating agent (F) is selected from methyl acetoacetate, ethyl acetoacetate, dimethyl malonate, diethyl malonate, 2- (2-thioxanthenyl) diethylmalonic acid, acetylacetone, diacetone alcohol, and ethyl lactate.
  • a curable resin composition (first resin composition of the present invention) comprising (C) a silane coupling agent having a mercapto group, (H) a compound having two or more polymerizable unsaturated groups, and (I) a filler.
  • a curable resin composition comprising a group-containing compound and (I) filler (sometimes abbreviated as a second resin composition of the present invention).
  • the coating film is irradiated with light or heated.
  • water was added to perform partial condensation (solification) between the aluminum alkoxide (B) and the silane coupling agent (C) or the silane coupling agent (C). Thereafter, both of the base and radical are generated from the compound (A) by irradiation with light (active energy rays) or heating, whereby the Si—O—Al and / or Si—O—Si obtained by the sol formation are produced.
  • the compound (A) comprises three base generators, radical generators and catalysts (reaction accelerators of aluminum alkoxide (B) and silane coupling agent (C)). Because of its function, the amount of filler can be increased relative to the organic matter, and as a result, cured products (cross-linked products / resins) having various properties such as, for example, heat conductive resins and electrically conductive resins. Is a light or thermosetting method.
  • the first resin composition of the present invention has high storage stability.
  • the aluminum alkoxide (B) and the silane coupling agent are used.
  • C) or polycondensation (gelation) between silane coupling agents (C) and thiol-ene reaction or thiol-in reaction can be efficiently performed in the same system, as well as alkali developability, substrate It is a useful resin composition from which a cured product (cross-linked product / resin) having excellent adhesion to organic solvents and resistance to organic solvents can be obtained.
  • the second resin composition of the present invention is a resin composition obtained after going through Step 1 in the light or thermosetting method of the present invention, that is, the resin composition before being subjected to Step 2, and the composition is irradiated with light.
  • the composition is irradiated with light.
  • active energy rays both a base and a radical are generated in the composition, so that it is a useful composition capable of efficiently obtaining a cured product (crosslinked product / resin).
  • the thermally conductive substrate for forming an electronic circuit of the present invention is characterized by having a cured product (crosslinked product / resin) obtained from the first or second resin composition of the present invention, and a filler (I ) Can be a substrate having excellent thermal conductivity by using a thermally conductive filler.
  • the method for producing a heat conductive substrate for forming an electronic circuit of the present invention is characterized by using the first or second resin composition of the present invention, and a heat conductive filler is used as the filler (I).
  • a heat conductive filler is used as the filler (I).
  • light means not only electromagnetic waves having a wavelength in the visible region (visible light) but also, for example, electromagnetic waves having a wavelength in the ultraviolet region (ultraviolet rays), infrared region, unless the wavelength is specified. Electromagnetic waves (infrared rays) having a wavelength of ⁇ , and electromagnetic waves having wavelengths in a non-visible region such as X-rays.
  • a base generator that is sensitive to light (active energy rays) (a base generator that generates a base upon irradiation with active energy rays) is used as a photobase generator and light (active energy rays).
  • a radical generator that exhibits sensitivity (a radical generator that generates radicals upon irradiation with active energy rays) may be referred to as a photo radical generator.
  • light (active energy rays) having wavelengths of 365 nm, 405 nm, and 436 nm may be referred to as i-line, h-line, and g-line, respectively.
  • the light or thermosetting method of the present invention comprises: (A) A compound comprising a salt of a carboxylic acid and an amine, and having a carboxylate group that generates a base by decarboxylation with a carbonyl group that generates radicals by light irradiation or heating, (B) an aluminum alkoxide, (C) Si-O-Al or / and Si-, obtained from (D) water and (E) aluminum derived from aluminum alkoxide and silane derived from a silane coupling agent having a mercapto group.
  • step 1 of the light or thermosetting method of the present invention the compound (A) comprising a salt of a carboxylic acid and an amine acts as a catalyst (reaction accelerator), so that the aluminum alkoxide (B) and the silane coupling are processed.
  • the agent (C) and water (D) are reacted to obtain a condensate (E) having a structural unit of Si—O—Al or / and Si—O—Si.
  • Step 2 in the light or thermosetting method of the present invention comprises irradiating the compound (A) with light (active energy rays) or heating the compound (A), so that both the base and the radical are converted from the compound (A).
  • the condensate (E) By reacting the condensate (E), the compound (H) and the filler (I) having the structural unit of Si—O—Al or / and Si—O—Si obtained in step 1 by generating It is. That is, in the step 2, the hydroxyl group in the condensate (E) or the hydroxyl group and the alkoxy group in the condensate (E) and / or the condensate (E) is caused by the base generated from the compound (A).
  • the mercapto group in the condensate (E) and the polymerizable unsaturated group in the compound (H) are reacted with the hydroxyl group and the filler (I) (polycondensation / gelation) by radicals generated from the compound (A). Is a reaction (thiol-ene reaction or thiol-in reaction) to obtain a cured product (crosslinked product / resin).
  • the cured product (crosslinked product / resin) referred to here is a cured product (crosslinked product / resin) obtained by reacting only the three components of the condensate (E), the compound (H) and the filler (I). However, it is not excluded that the cured product (crosslinked product / resin) contains a structural unit other than the condensate (E), the compound (H) and the filler (I).
  • the light or thermosetting method of the present invention (A) A compound comprising a salt of a carboxylic acid and an amine, and having a carboxylate group that generates a base by decarboxylation with a carbonyl group that generates radicals by light irradiation or heating, (B) an aluminum alkoxide, (C) A step 1 in which a silane coupling agent having a mercapto group and (D) water are reacted to obtain (E) a sol; Step 2 of obtaining a cured product from the sol (E), (H) a compound having two or more polymerizable unsaturated groups, and (I) a filler by light irradiation or heating in the presence of the compound (A). Including a method.
  • the compound (A) comprising a salt of a carboxylic acid and an amine acts as a catalyst (reaction accelerator), so that the aluminum alkoxide (B), the silane coupling agent (C) and water (D And (E) to form a sol.
  • the step 1 is a step of obtaining the (E) sol comprising at least the reactants (B) to (D) by reacting the above (A) to (D).
  • the compound (A) is irradiated with light (active energy ray) or the compound (A) is heated to generate both a base and a radical from the compound (A).
  • the sol (E), the compound (H), and the filler (I) obtained in (1) are reacted.
  • the filler (I) are reacted (polycondensation / gelation), and the radical generated from the compound (A) reacts the mercapto group in the sol (E) with the polymerizable unsaturated group in the compound (H) (
  • the cured product (crosslinked product / resin) referred to here is a cured product (crosslinked product / resin) obtained by reacting only the three components of the sol (E), the compound (H) and the filler (I). It is not limited, and it does not exclude including a structural unit other than the sol (E), the compound (H), and the filler (I) in the cured product (crosslinked product / resin).
  • the reaction system of Step 1 contains at least compound (A), aluminum alkoxide (B), silane coupling agent (C), and water (D), but the reaction system of Step 1 includes Further, compound (H) or filler (I) may be contained.
  • compound (A) unless the light (active energy ray) is irradiated or heated, the base and the radical are latent, so that the step 1 is hardly adversely affected.
  • compound (H) and filler (I) are contained beforehand, the process of adding compound (H) and filler (I) between the said process 1 and process 2 will not be required, but workability
  • the reaction system of the step 2 contains the condensate (E), the compound (A), the compound (H) and the filler (I) obtained in the step 1, and these mixtures are used as a curable resin. Sometimes referred to as a composition.
  • the reaction system of Step 1 may contain components other than the above-mentioned (A) to (D) and, if necessary, other than the compound (H) and the filler (I). Examples thereof include various other additives such as organic solvents and (F) chelating agents. Further, the reaction system of Step 2 (in the curable resin composition) contains components other than the condensate (E), the compound (A), the compound (H) and the filler (I) described above. Examples of such components include (J) compounds having two or more epoxy groups, various other additives such as organic solvents, and the like.
  • the organic solvent improves the workability by improving the compatibility of (A) to (F) and (H) to (I), and improving the coating property to a solid surface (base material) such as a metal substrate.
  • the step 2 may contain water (D), unreacted aluminum alkoxide (B) and / or silane coupling agent (C) used in the step 1.
  • the pH in the reaction system of Step 1 is preferably in the range of 4 to 8, and in the range of 6 to 7 in order to smoothly advance the reactions (A) to (D) (solification). It is more preferable.
  • step 1 is carried out at such a preferred pH, it is desirable not to use a compound that exhibits strong acidity or basicity.
  • the step 2 is a step in which polycondensation (gelation) and thiol-ene reaction or thiol-in reaction proceed in parallel, wherein the polycondensation (gelation) is performed under alkaline conditions. And Before irradiation with light (active energy rays) or heating in the step 2, it is in the vicinity of neutrality, but irradiation with light (active energy rays) or heating results in decarboxylation of the carboxylate group of compound (A). As a result of the generation of the base, the pH in the reaction system shifts to alkalinity and becomes alkaline.
  • Alkalinity usually refers to a pH of more than 7 and not more than 14, and among them, a pH in the range of 8 to 14 is preferable, and a pH in the range of 10 to 14 is more preferable.
  • the compound (A) capable of generating a base having a pH of 10 to 14 may be used, and the polycondensation (gelation) in the step 2 proceeds smoothly, A cured product (crosslinked product / resin) having a desired crosslink density, hardness, adhesion to a substrate, organic solvent resistance and the like is easily obtained.
  • step 1 the reaction is terminated so that a hydroxyl group or an alkoxy group remains in the condensate (E) having a structural unit of Si—O—Al or / and Si—O—Si as a reaction product.
  • the condensate (E) is obtained by the reaction (polycondensation) of the hydroxyl groups in (B) and (C) produced by hydrolysis of the aluminum alkoxide (B) and the silane coupling agent (C). However, if the hydroxyl group in (B) or (C) reacts excessively (polycondensation), gelation may occur.
  • the step 1 is a step of obtaining a sol by reacting (A) to (D) (hydrolyzing and condensing), the hydroxyl group or alkoxy group in the condensate (E) is allowed to remain to some extent to form a gel. It is desirable not to make it.
  • the sol formation of the said process 1 can be controlled with the equivalent number of water with respect to aluminum alkoxide (B) and a silane coupling agent (C), reaction time, etc. “To some extent hydroxyl groups or alkoxy groups in the condensate (E) remain” corresponds to all alkoxy groups in the aluminum alkoxide (B) and all alkoxy groups in the silane coupling agent (C). This means that the hydroxyl group or alkoxy group in the condensate (E) usually remains 10 to 90%, preferably 30 to 70%.
  • the compound (A) in the light or thermosetting method of the present invention is a compound showing sensitivity to light (active energy rays) or heat. More specifically, the compound (A) usually decomposes by absorbing light (active energy rays) having a wavelength of 100 to 780 nm, preferably 200 to 450 nm, more preferably 250 to 450 nm, or usually 80 By absorbing and decomposing heat energy of ⁇ 250 ° C., preferably 100 to 200 ° C., more preferably 120 to 180 ° C., radicals are generated from the carbonyl group in the compound (A), and the carboxylate group A compound that generates a base upon decarboxylation.
  • Radical generation from the carbonyl group and decarboxylation of the carboxylate group in the compound (A) do not necessarily have to be caused by light in the same wavelength region (active energy ray) or thermal energy at the same temperature.
  • step 2 is a step in which polycondensation (gelation) and thiol-ene reaction or thiol-in reaction proceed in parallel, radical generation from the carbonyl group in the compound (A) and carboxylate
  • the decarboxylation of the group is preferably caused by light (active energy ray) in the same wavelength region or thermal energy at the same temperature.
  • the compound (A) is a photosensitive group in which radical generation from a carbonyl group and decarboxylation of a carboxylate group proceed with light (active energy rays) in the same wavelength region or thermal energy at the same temperature. Those having a thermally decomposable group are preferred. From the viewpoint of versatility, the compound (A) exhibits absorption with respect to at least one light (active energy ray) of i-line, h-line, and g-line in the wavelength range described above. preferable.
  • the content of the compound (A) in Step 1 is based on the sum of the molar amount of the aluminum alkoxide (B) and the molar amount of the silane coupling agent (C) (the total molar amount of (B) and (C)).
  • the amount may be determined, and is usually 0.001 to 1 equivalent, preferably 0.005 to 0.5 equivalent, and more preferably 0.8 to the total molar amount of the aluminum alkoxide (B) and the silane coupling agent (C). 005 to 0.1 equivalent.
  • compound (A) acts as a catalyst (reaction accelerator) for aluminum alkoxide (B), it may be contained in an amount of catalyst (0.001 equivalent) or more.
  • the compound (A) is preferably contained in an amount of 0.005 equivalents or more. .
  • 0.005 equivalents or more of compound (A) it is not necessary to add compound (A) from step 1 to step 2, and not only the workability is improved, but also step 1 is advanced more smoothly. Can do.
  • the content of the compound (A) in step 2 is based on the sum of the molar amount of the aluminum alkoxide (B) and the molar amount of the silane coupling agent (C) (the total molar amount of (B) and (C)).
  • the amount may be determined, and is usually 0.001 to 1 equivalent, preferably 0.005 to 0.5 equivalent, and more preferably 0.8 to the total molar amount of the aluminum alkoxide (B) and the silane coupling agent (C). 005 to 0.1 equivalent.
  • the step 2 can proceed more smoothly.
  • the content of the aluminum alkoxide (B) in the step 1 may be determined based on the molar amount of the silane coupling agent (C), and is usually 0.1% relative to the molar amount of the silane coupling agent (C). -9 equivalents, preferably 0.2-4 equivalents, more preferably 0.4-2 equivalents.
  • the aluminum alkoxide (B) having an equivalent number in the preferred range or an equivalent number in the more preferred range the dispersion stability of the filler (I) described later is enhanced, and the hardness and heat of the cured product (crosslinked product / resin) are increased.
  • Various physical properties such as conductivity can be further improved.
  • the content of the aluminum alkoxide (B) in the step 1 is such that the molar ratio of the aluminum alkoxide (B) to the silane coupling agent (C) is usually 1:10 to 9: 1, preferably 1: 5. It is desirable to set it to ⁇ 4: 1, more preferably 1: 2.5 to 2: 1.
  • the content of water (D) in Step 1 is based on the sum of the molar amount of aluminum alkoxide (B) and the molar amount of silane coupling agent (C) (total molar amount of (B) and (C)). And usually 0.01 to 3 equivalents, preferably 0.1 to 2 equivalents, more preferably 0.3 to the total molar amount of the aluminum alkoxide (B) and the silane coupling agent (C). ⁇ 2 equivalents.
  • the content of the condensate (E) in Step 1 depends on the amounts of aluminum alkoxide (B) and silane coupling agent (C) used. That is, in Step 1, if the total amount of the silane coupling agent (C) used reacts with the aluminum alkoxide (B) or water (D), the condensate (E) contains the silane coupling agent (C). There is the same amount of silyl group as the amount of mol.
  • the condensate (E) Contains a silyl group having a mol amount smaller than the mol amount of the silane coupling agent (C) used.
  • the content of the compound (H) in the step 2 is such that the equivalent number of polymerizable unsaturated groups in the compound (H) is in the following range with respect to the molar amount of the mercapto group in the silane coupling agent (C). What is necessary is just to determine so that it may become. That is, the number of equivalents of polymerizable unsaturated groups in the compound (H) is usually 0.1 to 2 equivalents, preferably 0.2 to 0.2 mols per mol of mercapto groups in the silane coupling agent (C). What is necessary is just to determine content of a compound (H) so that it may be 1.5 equivalent, More preferably, it is 0.4-1.2 equivalent.
  • the hardness of the resulting cured product (crosslinked product / resin), adhesion to the substrate, organic solvent resistance Various physical properties such as properties can be further improved.
  • the filler (I) content in the step 2 is determined based on the sum of the mass of the aluminum alkoxide (B) and the mass of the silane coupling agent (C) (the total mass of (B) and (C)).
  • the amount is usually 1 to 20 times, preferably 3 to 17 times, more preferably 5 to 15 times the total mass of the aluminum alkoxide (B) and the silane coupling agent (C).
  • the content of the chelating agent (F) may be determined based on the molar amount of the aluminum alkoxide (B), and relative to the molar amount of the aluminum alkoxide (B).
  • the amount is usually 0.01 to 20 equivalents, preferably 0.05 to 10 equivalents, more preferably 0.1 to 8 equivalents.
  • content of this compound (J) is the mol amount of the mercapto group in a silane coupling agent (C), and the compound (H).
  • the equivalent number of the epoxy group in a compound (J) may be in the following range on the basis of the mol amount of the polymerizable unsaturated group. That is, the mol amount obtained by subtracting the mol amount of the polymerizable unsaturated group in the compound (H) from the mol amount of the mercapto group in the silane coupling agent (C) (mol of the mercapto group in the silane coupling agent (C)).
  • Amount—mol amount of polymerizable unsaturated groups in compound (H)), the number of equivalents of epoxy groups in compound (J) is usually 0.2 to 2 equivalents, preferably 0.5 to 1.
  • the content of the compound (J) may be determined so as to be 5 equivalents, more preferably 0.8 to 1.2 equivalents.
  • the light (active energy ray) according to Step 2 is not particularly limited as long as it is light (active energy ray) having a wavelength capable of generating both a base and a radical when the compound (A) is exposed to light.
  • Light (active energy ray) in which the main wavelength of (active energy ray) is in the range of 100 to 780 nm is preferable, and light (active energy ray) in which the main wavelength of light (active energy ray) is in the range of 200 to 450 nm Is more preferable, and light (active energy ray) having a main wavelength of light (active energy ray) in the range of 250 to 450 nm is more preferable.
  • the irradiation amount of light (active energy rays) is such that in the reaction of Step 2, polycondensation (gelation) and thiol-ene reaction or thiol-in reaction proceed, and a cured product (crosslinked product / resin) is produced. If obtained, the irradiation amount (integrated exposure amount) is not particularly limited, but the irradiation amount (integrated exposure amount) of light (active energy ray) is preferably 0.1 J or more, more preferably 0.5 J or more, and 1 J The above is more preferable.
  • the irradiation amount (integrated exposure amount) of light (active energy ray) is 1 J or more, a cured product (crosslinked product / resin) having a high crosslinking density can be obtained, and thus has better solvent resistance, In addition, a cured product (crosslinked product / resin) having a higher hardness tends to be obtained.
  • the light (active energy ray) irradiation according to the step 2 is performed by appropriately selecting light (active energy ray) having a main wavelength in the above-described range, and the irradiation amount (integrated exposure amount) of light (active energy ray) is What is necessary is just to take time so that it may become more than the irradiation amount (integrated exposure amount) mentioned above.
  • Irradiation of light (active energy rays) may be performed using a general exposure apparatus that can irradiate light (active energy rays) having the above-described wavelength.
  • the heat in Step 2 is not particularly limited as long as the compound (A) can be thermally decomposed to generate both a base and a radical.
  • the heat energy when the heat energy is converted into temperature, the heat is usually 80 to 250. ° C, preferably 100 to 200 ° C, more preferably 120 to 180 ° C.
  • the heating time if the polycondensation (gelation) and the thiol-ene reaction or thiol-in reaction proceed in the reaction of Step 2 above and a cured product (crosslinked product / resin) is obtained, the heating time is although not particularly limited, the heating time is usually 0.1 to 180 minutes, preferably 0.5 to 120 minutes, and more preferably 1 to 90 minutes. As the heating time becomes longer, a cured product (crosslinked product / resin) having a higher crosslinking density is obtained, and as a result, a cured product (crosslinked product / resin) having excellent solvent resistance and high hardness tends to be obtained. Since the productivity tends to decrease, the heating time is preferably within the above-mentioned range.
  • the application (heating) of the thermal energy according to the step 2 may be performed by appropriately selecting the temperature in the above range and taking the heating time in the above range. Moreover, when performing the said process 2 only by provision of a thermal energy (heating), it is desirable to perform the process 2 on light-shielding conditions. In addition, what is necessary is just to perform provision of a thermal energy using the heating apparatus used in this field
  • the step 1 is usually performed in a temperature range of ⁇ 20 to 60 ° C., preferably 0 to 50 ° C., more preferably 10 ° C. to 40 ° C.
  • the said process 1 can be implemented on mild conditions, it is the outstanding light or thermosetting method.
  • the step 1 and the step 2 may be performed in a pressure range in which a series of steps can be performed without delay, and are not particularly limited, but may be generally performed at normal pressure.
  • Step 1 and Step 2 are carried out in order to obtain a cured product (crosslinked product / resin) having a desired crosslinking density, hardness, adhesion to a substrate, organic solvent resistance, etc. What is necessary is just to set the implementation time of the process 2.
  • the reaction time varies depending on the contents of the compound (A), the aluminum alkoxide (B) and water (D), the presence or absence of the chelating agent (F), the reaction temperature, the pressure, etc. 2 is different depending on the wavelength of light (active energy ray) and / or the irradiation amount (integrated exposure amount), the content of the compound (A), the compound (H) and the filler (I), the heating temperature, the pressure, etc.
  • the reaction time of the step 1 (the execution time of the step 1) is usually 1 minute to 24 hours, preferably 1 minute to 12 hours, more preferably 1 minute to 6 hours.
  • the reaction time of Step 2 (the time for performing Step 2) is usually 0.1 to 180 minutes, preferably 0.5 to 120 minutes, more preferably 0.5 to 90 minutes.
  • a specific method for obtaining a cured product (crosslinked product / resin) using the light or thermosetting method of the present invention will be described below.
  • A a compound comprising a salt of a carboxylic acid and an amine and having a carboxylate group that generates a base by decarboxylation with a carbonyl group that generates a radical by light irradiation or heating,
  • B an aluminum alkoxide
  • C A silane coupling agent having a mercapto group
  • D water
  • F a chelating agent and / or an organic solvent are added to the reaction vessel, and the aluminum alkoxide (B) and the silane cup are added.
  • a condensate ((E) sol) having a structural unit of Si—O—Si is obtained (step 1).
  • water (D) is added to a reaction vessel containing compound (A), aluminum alkoxide (B), and silane coupling agent (C), and if necessary, chelating agent (F) and / or organic solvent.
  • the aluminum alkoxide (B), the silane coupling agent (C), and water (D) are reacted for a predetermined time to obtain a condensate (E) (sol (E)) (step 1).
  • a condensate (E) (sol (E)) obtained in the step 1 and the compound (A)
  • the composition (curable resin composition) is irradiated with light having a predetermined wavelength (active energy ray).
  • Irradiation is performed for a time that is a predetermined irradiation amount (integrated exposure amount) or more, or heating is performed at a predetermined temperature for a predetermined time to generate both a base and a radical from the compound (A).
  • a cured product (crosslinked product / resin) can be obtained by generating a base and a radical, and performing a gel reaction and a thiol-ene reaction or a thiol-in reaction of the condensate (E) (sol (E)).
  • the composition (curable resin composition) may be formed into various shapes. For example, the composition (curable resin composition) is applied to an appropriate solid surface (base material) such as a metal substrate.
  • the coating film is irradiated with light (active energy rays) having a predetermined wavelength for a time that exceeds a predetermined irradiation amount (integrated exposure amount) or heated at a predetermined temperature for a predetermined time. Then, a cured product (crosslinked product / resin) may be obtained.
  • light (active energy ray) irradiation in the step 2 is performed through an appropriate pattern mask, and then an appropriate developer.
  • a cured product (cross-linked product / resin) having an appropriate pattern can be obtained by performing development processing using.
  • step 1 and the step 2 according to the light or thermosetting method of the present invention do not necessarily need to be performed continuously.
  • the step 1 and the step 2 for example, the application step as described above, A baking process, a drying process, etc. may be performed and the said process 1 and the process 2 may be performed continuously.
  • the baking method in the baking step As the coating method in the coating step, the baking method in the baking step, the drying method in the drying step, the development processing method in the developing step, etc., known methods may be appropriately employed.
  • the baking temperature when the baking step is a drying step of an organic solvent or the like and is distinguished from the heating (thermosetting) in the step 2 is usually 50 to 250 ° C., preferably 70 to 200 ° C.
  • the baking time is preferably 80 to 160 ° C., and the baking time is usually 0.1 to 60 minutes, preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
  • the baking temperature for heating is usually 80 to 250 ° C., preferably 100 to 200 ° C., more preferably 120 to 180 ° C., and the baking time is usually 0.1 to 180 minutes. , Preferably 0.5 to 120 minutes, more preferably 1 to 90 minutes.
  • a development processing method in the development step for example, a cured product (crosslinked product / resin) obtained by using the light or thermal curing method of the present invention is placed in an organic solvent such as acetone or methyl ethyl ketone for 10 seconds to 5 minutes.
  • Examples thereof include a dipping method and a method of dipping the cured product (crosslinked product / resin) in an alkaline aqueous solution containing potassium hydroxide, tetramethylammonium hydroxide (TMAH) or the like for 10 seconds to 5 minutes.
  • TMAH tetramethylammonium hydroxide
  • the light or thermosetting method of the present invention comprises (A) a salt of a carboxylic acid and an amine, and has a carboxylate group that generates a base by decarboxylation with a carbonyl group that generates radicals by light irradiation or heating.
  • a compound is a compound that is sensitive to light (active energy rays) or heat.
  • the compound (A) has a group (photosensitive group) that is sensitive to light (active energy rays) or a group (thermally decomposable group) that is sensitive to thermal energy,
  • the photosensitive group absorbs light or the thermally decomposable group absorbs heat, so that it has a carbonyl group capable of generating a radical and a carboxylate group decarboxylating to generate a base.
  • Specific examples of such a compound (A) include a compound represented by the general formula [1].
  • R 1 to R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, carbon Represents an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a nitro group or a group represented by the general formula [2], wherein R 9 and R 10 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, carbon Represents an aryl group having 6 to 14 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom or a nitro group, or R 9 and R 10 are an oxygen atom, a sulfur atom or It represents that they are bonded to each other through a carbonyl group, provided that at least one of the groups represented by R
  • R 11 and R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms, and Z 1 + represents amidinium Represents a cation, a guanidinium cation or a biguanidinium cation.
  • the alkyl group having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1] is preferably an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. Of these, an alkyl group having 1 carbon atom is more preferable.
  • the alkyl group may be linear, branched or cyclic. Specific examples of such an alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl.
  • n-pentyl group isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, Isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, n-heptyl group , Isoheptyl group, sec-heptyl group, tert-heptyl group, neoheptyl group, cycloheptyl group, n-octyl group, isooctyl group, sec-octyl group
  • a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms is preferable, and among them, a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms is preferable.
  • a methyl group is particularly preferable among them.
  • the aryl group having 6 to 14 carbon atoms represented by R 1 to R 10 in the general formula [1] may be monocyclic or condensed polycyclic, and in particular, an aryl group having 6 carbon atoms. Is preferred. Specific examples of such an aryl group include a phenyl group, a naphthyl group, and an anthracenyl group. Of these aryl groups, a phenyl group is preferable.
  • the arylalkyl group having 7 to 15 carbon atoms represented by R 1 to R 10 in the general formula [1] may be monocyclic or condensed polycyclic, and in particular, aryl having 7 carbon atoms. Alkyl groups are preferred.
  • arylalkyl groups include, for example, benzyl group, phenethyl group, methylbenzyl group, phenylpropyl group, 1-methylphenylethyl group, phenylbutyl group, 2-methylphenylpropyl group, tetrahydronaphthyl group, Examples include naphthylmethyl group, naphthylethyl group, indenyl group, fluorenyl group, anthracenylmethyl group (anthrylmethyl group), phenanthrenylmethyl group (phenanthrylmethyl group) and the like. Of these arylalkyl groups, a benzyl group is preferred.
  • the alkoxy group having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1] is preferably an alkoxy group having 1 to 6 carbon atoms, and more preferably an alkoxy group having 1 to 4 carbon atoms. Of these, an alkoxy group having 1 carbon atom is more preferred.
  • the alkoxy group may be linear, branched or cyclic.
  • alkoxy group examples include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, Cyclobutoxy group, n-pentyloxy group, isopentyloxy group, sec-pentyloxy group, tert-pentyloxy group, neopentyloxy group, 2-methylbutoxy group, 1,2-dimethylpropoxy group, 1-ethylpropoxy group Group, cyclopentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, neohexyloxy group, 2-methylpentyloxy group, 1,2-dimethylbutoxy group, 2 , 3-dimethylbutoxy group, 1-ethylbutoxy group, cyclohexyl
  • alkoxy groups a linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms is preferred, and among these, a linear, branched or cyclic alkoxy group having 1 to 4 carbon atoms is preferable.
  • a methoxy group is particularly preferable among them.
  • Examples of the halogen atom represented by R 1 to R 10 in the general formula [1] include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom and a chlorine atom are preferable.
  • the alkyl group having 1 to 6 carbon atoms represented by R 11 to R 12 in the general formula [2] is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably an alkyl group having 1 carbon atom.
  • the alkyl group may be linear, branched or cyclic. Specific examples of such an alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl.
  • n-pentyl group isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group
  • examples include isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group and the like.
  • alkyl groups a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms is preferable, and among them, a methyl group is more preferable.
  • the hydroxyalkyl group having 1 to 6 carbon atoms represented by R 11 to R 12 in the general formula [2] is preferably a hydroxyalkyl group having 1 to 3 carbon atoms, and more preferably a hydroxyalkyl group having 1 carbon atom. preferable.
  • the hydroxyalkyl group may be linear, branched or cyclic, and the hydroxyl group bonded to the alkyl group is not only one but also a plurality of 2-4, etc. There may be present.
  • hydroxyalkyl groups include, for example, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1,2-dihydroxyethyl group, 1-hydroxy-n-propyl group, 2-hydroxy -n-propyl group, 3-hydroxy-n-propyl group, 1-hydroxy-1-methylethyl group, 1-hydroxymethylethyl group, 4-hydroxy-n-butyl group, 5-hydroxy-n-pentyl group, A 6-hydroxy-n-hexyl group and the like can be mentioned.
  • hydroxyalkyl groups a linear, branched or cyclic hydroxyalkyl group having 1 to 3 carbon atoms is preferable, and among them, a hydroxymethyl group is more preferable.
  • R 9 and R 10 in the general formula [1] are bonded to each other via an oxygen atom, a sulfur atom or a carbonyl group when R 9 and R 10 are —O—, —S— or —C It means that a group represented by ( ⁇ O) — is formed.
  • R 9 and R 10 in the general formula [1] are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, carbon
  • R 9 and R 10 are bonded to each other via an oxygen atom or a sulfur atom, it is represented by the general formula [2]. It is desirable that the group to be bonded to any of R 2 , R 4 , R 5 and R 7 .
  • the group represented by the general formula [2] may be bonded to any one of R 1 to R 8.
  • R 9 and R 10 are other groups, the group represented by the general formula [2] is preferably bonded to any one of R 2 , R 4 , R 5 and R 7. .
  • R 1 , R 2 , R 4 , R 5 and R 8 in the general formula [1] are preferably a hydrogen atom and a group represented by the general formula [2].
  • R 7 in the general formula [1] is preferably a hydrogen atom or a group represented by the general formula [2], and more preferably a hydrogen atom.
  • R 9 and R 10 in the general formula [1] are preferably a hydrogen atom, or R 9 and R 10 are bonded to each other via an oxygen atom or a sulfur atom. Among them, a hydrogen atom or R 9 And R 10 are more preferably bonded to each other via a sulfur atom.
  • R 11 in the general formula [2] is preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • R 12 in the general formula [2] is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and more preferably a hydrogen atom.
  • Preferable specific examples of the compound (A) represented by the general formula [1] include, for example, compounds represented by the general formulas [1-A] to [1-C].
  • R 1a , R 3a , R 6a , R 8a , R 9a and R 10a is independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, an arylalkyl group having 7 to 15 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom Or a nitro group, provided that at least one of the groups represented by R 2a , R 4a , R 5a and R 7a represents a group represented by the general formula [2].
  • R 2b , R 4b , R 5b and R 7b are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 7 carbon atoms.
  • R 1c to R 8c are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, or an arylalkyl group having 7 to 15 carbon atoms. Represents an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a nitro group, or a group represented by the general formula [2], provided that at least one of the groups represented by R 1c to R 8c is the above-mentioned general formula Represents a group represented by the formula [2].)
  • Specific examples of the alkyl group include those similar to the alkyl group having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1], and preferable specific examples include the same.
  • Specific examples of the aryl group include those similar to the aryl group having 6 to 14 carbon atoms represented by R 1 to R 10 in the general formula [1], and preferable specific examples include the same.
  • Specific examples of the arylalkyl group include those similar to the arylalkyl group having 7 to 15 carbon atoms represented by R 1 to R 10 in the general formula [1], and preferable specific examples include the same. .
  • Specific examples of the alkoxy group include those similar to the alkoxy group having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1], and preferable specific examples include the same.
  • halogen atom represented by R 1a to R 10a in the general formula [1-A], R 1b to R 8b in the general formula [1-B], and R 1c to R 8c in the general formula [1-C] are the same as the halogen atoms represented by R 1 to R 10 in the general formula [1], and preferred specific examples are also the same.
  • R 4a in the general formula [1-A] is preferably a hydrogen atom or a group represented by the general formula [2].
  • R 5a and R 7a in the general formula [1-A] a hydrogen atom and a group represented by the general formula [2] are preferable, and a hydrogen atom is more preferable.
  • Preferable combinations of R 1a to R 10a in the general formula [1-A] include combinations represented by ⁇ 1> to ⁇ 5> in Table 1.
  • R 2b in the general formula [1-B] is preferably a group represented by the general formula [2].
  • R 4b in the general formula [1-B] is preferably a hydrogen atom or a group represented by the general formula [2].
  • R 5b and R 7b in the general formula [1-B] are preferably a hydrogen atom and a group represented by the general formula [2], and more preferably a hydrogen atom.
  • Y 1 in the general formula [1-B] is preferably a sulfur atom.
  • Preferable combinations of Y 1 and R 1b to R 8b in the general formula [1-B] include combinations represented by ⁇ 1> to ⁇ 10> in Table 2.
  • R 1c , R 2c , R 4c , R 5c and R 8c in the general formula [1-C] are preferably a hydrogen atom and a group represented by the general formula [2].
  • R 3c and R 6c in the general formula [1-C] a hydrogen atom is preferable.
  • R 7c in the general formula [1-C] is preferably a hydrogen atom or a group represented by the general formula [2], and more preferably a hydrogen atom.
  • R 1c to R 8c in the general formula [1-C] include combinations represented by ⁇ 1> to ⁇ 11> in Table 3.
  • the compound (A) is represented by the compound represented by the general formula [1-A] and the general formula [1-B] from the viewpoint of availability of raw materials when the compound (A) is produced and economical efficiency. Compounds are preferred.
  • a weathering assistant when used, among the compounds (A), a compound in which Y 1 in the general formula [1-B] is a sulfur atom may be preferable.
  • Such a compound is sensitive to light (active energy ray) having a dominant wavelength in the range of 350 to 450 nm, so that polycondensation (gel) is performed without interfering with absorption of light (active energy ray) by the weathering aid. And the thiol-ene reaction or thiol-in reaction can proceed smoothly.
  • the cation represented by Z 1 + in the general formula [2] in the general formula [1] represents any cation of “amidinium cation, guanidinium cation or biguanidinium cation”, A cation having an active proton is preferred. Specific examples of such cations include, for example, “amidinium cation” represented by general formula [3], “guanidinium cation” represented by general formula [4], and general formula [5]. “Biguanidinium cation”.
  • R 13 to R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, or R 13 and R 17 or / and R 15 and R 16 are carbon atoms.
  • R 18 to R 23 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, or R 18 and R 23 or / and R 19 and R 20 are carbon atoms.
  • R 24 to R 28 and R 31 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • R 29 and R 30 each independently represents a hydrogen atom
  • alkyl group having 1 to 12 carbon atoms represented by R 13 to R 17 in the general formula [3] examples include alkyl groups having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1].
  • R 13 to R 17 in the general formula [3] examples include alkyl groups having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1].
  • R 1 to R 10 in the general formula [1] examples include alkyl groups having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1].
  • a preferable specific example is also the same.
  • alkylene group having 2 to 8 carbon atoms in the case of “R 13 and R 17 or / and R 15 and R 16 are bonded to each other via an alkylene group having 2 to 8 carbon atoms” in the general formula [3] Is preferably an alkylene group having 3 to 5 carbon atoms.
  • the alkylene group may be linear or branched, and is preferably a linear one. Specific examples of such an alkylene group include, for example, dimethylene group (ethylene group), trimethylene group, propylene group, tetramethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, 1,2-dimethyldimethyl group.
  • Methylene group (1,2-dimethylethylene group), 1,1-dimethyldimethylene group (1,1-dimethylethylene group), ethyldimethylene group (ethylethylene group), pentamethylene group, hexamethylene group, heptamethylene Group, octamethylene group and the like.
  • alkylene groups a trimethylene group, a tetramethylene group, and a pentamethylene group, which are linear alkylene groups having 3 to 5 carbon atoms, are preferable.
  • cyclic structure examples include, for example, pyrrolidine ring (tetramethyleneimine ring), 2-methylpyrrolidine ring, 3-methylpyrrolidine ring, piperidine ring (pentamethyleneimine ring), 2-methylpiperidine ring, 3-methyl Examples include a piperidine ring, a 4-methylpiperidine ring, a hexamethyleneimine ring, a heptamethyleneimine ring, an octamethyleneimine ring, a nonamethyleneimine ring, and a decamethyleneimine ring.
  • a pyrrolidine ring (tetramethyleneimine ring) and a hexamethyleneimine ring are preferable.
  • cyclic structure examples include, for example, an imidazoline ring, 1,4,5,6-tetrahydropyrimidine ring, 4-methylimidazoline ring, 5-methylimidazoline ring, 1,3-diaza-2-cycloheptene ring, 1 , 4,5,6-tetrahydro-4-methylpyrimidine ring, 1,4,5,6-tetrahydro-5-methylpyrimidine ring, 1,4,5,6-tetrahydro-6-methylpyrimidine ring, 4-ethyl Examples include imidazoline ring, 5-ethylimidazoline ring, 4,4-dimethylimidazoline ring, 4,5-dimethylimidazoline ring, and 5,5-dimethylimidazoline ring. Among these cyclic structures, an imidazoline ring is preferable.
  • R 13 and R 17 in the general formula [3] it is preferable that an alkyl group having 1 to 12 carbon atoms, or R 13 and R 17 are bonded to each other via an alkylene group having 2 to 8 carbon atoms, Among these, it is more preferable that R 13 and R 17 are bonded to each other via an alkylene group having 2 to 8 carbon atoms.
  • R 14 in the general formula [3] is preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and more preferably a hydrogen atom.
  • R 15 and R 16 in the general formula [3] are preferably an alkyl group having 1 to 12 carbon atoms, or R 15 and R 16 are bonded to each other via an alkylene group having 2 to 8 carbon atoms. In particular, R 15 and R 16 are more preferably bonded to each other via an alkylene group having 2 to 8 carbon atoms.
  • R 13 and R 17 and R 15 and R 16 are both bonded via an alkylene group having 2 to 8 carbon atoms. That is, the amidinium cation represented by the general formula [3] is preferably a cation forming a condensed ring.
  • alkyl group having 1 to 12 carbon atoms represented by R 18 to R 23 in the general formula [4] include alkyl groups having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1].
  • R 18 to R 23 in the general formula [4] include alkyl groups having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1].
  • R 1 to R 10 in the general formula [1] The same thing is mentioned, A preferable specific example is also the same.
  • alkylene group having 2 to 4 carbon atoms in the case where “R 18 and R 23 or / and R 19 and R 20 are bonded to each other via an alkylene group having 2 to 4 carbon atoms” in the general formula [4]
  • the alkylene group may be linear or branched, and is preferably a linear one. Specific examples of such an alkylene group include, for example, dimethylene group (ethylene group), trimethylene group, propylene group, tetramethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, 1,2-dimethyldimethyl group.
  • Examples include methylene group (1,2-dimethylethylene group), 1,1-dimethyldimethylene group (1,1-dimethylethylene group), ethyldimethylene group (ethylethylene group), and the like. Of these alkylene groups, a trimethylene group is preferred.
  • cyclic structure examples include, for example, imidazolidine ring, hexahydropyrimidine ring, 4-methylimidazolidine ring, 1,3-diazacycloheptane ring, hexahydro-4-methylpyrimidine ring, hexahydro-5-methyl.
  • examples include a pyrimidine ring, 4-ethylimidazolidine ring, 4,4-dimethylimidazolidine ring, 4,5-dimethylimidazolidine ring, and the like.
  • a hexahydropyrimidine ring is preferable.
  • cyclic structure examples include, for example, an imidazoline ring, 1,4,5,6-tetrahydropyrimidine ring, 4-methylimidazoline ring, 5-methylimidazoline ring, 1,3-diaza-2-cycloheptene ring, 1 , 4,5,6-tetrahydro-4-methylpyrimidine ring, 1,4,5,6-tetrahydro-5-methylpyrimidine ring, 1,4,5,6-tetrahydro-6-methylpyrimidine ring, 4-ethyl Examples include imidazoline ring, 5-ethylimidazoline ring, 4,4-dimethylimidazoline ring, 4,5-dimethylimidazoline ring, 5,5-dimethylimidazoline ring and the like. Among these cyclic structures, a 1,4,5,6-tetrahydropyrimidine ring is preferable.
  • R 18 and R 23 in the general formula [4] are preferably bonded to each other via an alkyl group having 1 to 12 carbon atoms, or R 18 and R 23 via an alkylene group having 2 to 4 carbon atoms.
  • R 19 and R 20 in the general formula [4] are preferably bonded to each other via an alkyl group having 1 to 12 carbon atoms or R 19 and R 20 having an alkylene group having 2 to 4 carbon atoms.
  • R 18 and R 23 are bonded to each other via an alkylene group having 2 to 4 carbon atoms
  • R 19 and R 20 are bonded via an alkylene group having 2 to 4 carbon atoms. It is preferable that they are bonded to each other. That is, as the guanidinium cation represented by the general formula [4], when R 18 and R 23 are bonded to each other to form a cyclic structure, R 19 and R 20 are also bonded to each other to form a cyclic structure. And a cation forming a condensed ring is preferred.
  • R 21 in the general formula [4] is preferably a hydrogen atom and an alkyl group having 1 to 12 carbon atoms, and more preferably a hydrogen atom.
  • R 22 in the general formula [4] is preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • alkyl group having 1 to 12 carbon atoms represented by R 24 to R 31 in the general formula [5] include an alkyl group having 1 to 12 carbon atoms represented by R 1 to R 10 in the general formula [1]. The same thing is mentioned.
  • the alkyl groups represented by R 24 to R 28 and R 31 are preferably linear, branched or cyclic alkyl groups having 1 to 6 carbon atoms. 4 to 4 linear, branched or cyclic alkyl groups are more preferred, and a methyl group is particularly preferred. Specific examples of these preferable examples include the same alkyl groups as those represented by R 1 to R 10 in the general formula [1].
  • the alkyl group represented by R 29 and R 30 is preferably a linear, branched or cyclic alkyl group having 2 to 8 carbon atoms, and in particular, a linear or branched alkyl group having 3 to 6 carbon atoms.
  • a branched or cyclic alkyl group is more preferable, and a branched or cyclic alkyl group having 3 to 6 carbon atoms is particularly preferable.
  • R 24 to R 27 in the general formula [5] an alkyl group having 1 to 12 carbon atoms is preferable, and it is more preferable that all of R 24 to R 27 are alkyl groups having 1 to 12 carbon atoms. preferable.
  • R 28 and R 31 in the general formula [5] is preferably a hydrogen atom, inter alia, both R 28 and R 31 is more preferably a hydrogen atom.
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the term "" means that both an aryl group having 6 to 14 carbon atoms having no substituent and an aryl group having 6 to 14 carbon atoms having a substituent are included.
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” may be monocyclic or condensed polycyclic Any of the formulas may be used, and among them, an aryl group having 6 carbon atoms is preferable.
  • aryl group examples include a phenyl group, a naphthyl group, and an anthracenyl group. Of these aryl groups, a phenyl group is preferable.
  • the number of carbon atoms of the aryl group shown here means the number of carbon atoms constituting the aryl group, and the number of carbon atoms constituting the substituent is “the number of carbon atoms of 6 to 14” in the “aryl group of 6 to 14 carbon atoms”. It is not included in the carbon number indicated by “14”.
  • an alkyl group having 1 to 6 carbon atoms Represented by R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” is alkyl having 1 to 3 carbon atoms. Groups are preferred.
  • the alkyl group may be linear, branched or cyclic.
  • alkyl group examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl.
  • n-pentyl group isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group
  • examples include isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group and the like.
  • alkyl groups a linear, branched or cyclic alkyl group having 1 to 3 carbon atoms is preferable.
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the alkoxy group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” is an alkoxy group having 1 to 3 carbon atoms. Groups are preferred.
  • the alkoxy group may be linear, branched or cyclic.
  • alkoxy group examples include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, Cyclobutoxy group, n-pentyloxy group, isopentyloxy group, sec-pentyloxy group, tert-pentyloxy group, neopentyloxy group, 2-methylbutoxy group, 1,2-dimethylpropoxy group, 1-ethylpropoxy group Group, cyclopentyloxy group, n-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, neohexyloxy group, 2-methylpentyloxy group, 1,2-dimethylbutoxy group, 2 , 3-dimethylbutoxy group, 1-ethylbutoxy group, cyclohexyl
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the alkylthio group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” is an alkylthio group having 1 to 3 carbon atoms. Groups are preferred.
  • the alkylthio group may be linear, branched or cyclic.
  • alkylthio group examples include, for example, methylthio group, ethylthio group, n-propylthio group, isopropylthio group, cyclopropylthio group, n-butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group.
  • cyclobutylthio group, n-pentylthio group, isopentylthio group, sec-pentylthio group, tert-pentylthio group, neopentylthio group, 2-methylbutylthio group, 1,2-dimethylpropylthio group, 1- Ethylpropylthio group, cyclopentylthio group, n-hexylthio group, isohexylthio group, sec-hexylthio group, tert-hexylthio group, neohexylthio group, 2-methylpentylthio group, 1,2-dimethylbutylthio group, 2,3-dimethylbutylthio group, 1-ethylbutylthio group, cyclohexylthio group and the like can be mentioned.
  • alkylthio groups a linear, branched or cyclic alkylthio group having
  • an alkyl group having 1 to 6 carbon atoms an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the dialkylamino group having 2 to 12 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” includes 2 to 6 carbon atoms.
  • a dialkylamino group is preferred. Further, the dialkylamino group may be linear, branched or cyclic.
  • dialkylamino groups include, for example, N, N-dimethylamino group, N, N-diethylamino group, N, N-di-n-propylamino group, N, N-diisopropylamino group, N , N-dicyclopropylamino group, N, N-di-n-butylamino group, N, N-diisobutylamino group, N, N-di-sec-butylamino group, N, N-di-tert-butyl Amino group, N, N-dicyclobutylamino group, N, N-di-n-pentylamino group, N, N-diisopentylamino group, N, N-di-sec-pentylamino group, N, N -Di-tert-pentylamino group, N, N-dineopentylamino group, N, N-di (2-methyl
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the halogen atom in the “aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable.
  • an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms As the substituent selected from the group consisting of a group, a halogen atom and a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom and a nitro group are preferable. An alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms are more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the number of substituents on the aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally having a substituent selected from the group consisting of a group, a halogen atom and a nitro group” is 0.
  • An integer of (unsubstituted) to 9 can be mentioned, and an integer of 0 (unsubstituted) to 5 is preferable, and an integer of 0 (unsubstituted) to 2 is more preferable.
  • R 29 and R 30 Represented by R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” is a phenyl group
  • the substitution position of these substituents may be any of the 2nd to 6th positions, preferably the 2nd, 4th or 6th position, and more preferably the 2nd or 6th position.
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • the aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally having a substituent selected from the group consisting of a group, a halogen atom and a nitro group” is a naphthyl group, R 29 or
  • the bonding position of the nitrogen atom bonded to R 30 on the naphthyl group may be either the 1-position or the 2-position.
  • the substitution position of the substituent on the naphthyl group may be any of the 1-position to the 8-position, and the 1-position to 4-position is particularly preferred. However, it does not overlap with the bonding position with the nitrogen atom bonded to R 29 or R 30 .
  • R 29 and R 30 Represented by R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally having a substituent selected from the group consisting of a group, a halogen atom and a nitro group” is an anthracenyl group, R 29 or
  • the bonding position of the nitrogen atom bonded to R 30 on the anthracenyl group may be either the 1-position, 2-position or 9-position, and the 9-position is preferred.
  • the substitution position of the substituent on the anthracenyl group may be any of 1-position to 10-position Of these, the 1st to 4th positions are preferred. However, it does not overlap with the bonding position with the nitrogen atom bonded to R 29 or R 30 .
  • the substitution position of the substituent on the anthracenyl group is any of 1-position to 8-position or 10-position However, 10th is preferable.
  • R 29 and R 30 in the general formula [5] “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and a dialkylamino group having 2 to 12 carbon atoms.
  • aryl group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of a group, a halogen atom and a nitro group” include, for example, a phenyl group, a naphthyl group, an anthracenyl group, etc.
  • a non-substituted (unsubstituted) aryl group having 6 to 14 carbon atoms for example, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,4-dimethylphenyl group, 2,6 -Dimethylphenyl group, 2,4,6-trimethylphenyl group, 2,6-diethylphenyl group, 2,6-di-n-propylphenyl group, 2,6-diisopropylphenyl group, 1- (2-methyl) Naphthyl group
  • an alkyl group having 1 to 6 carbon atoms such as 2- (1-methyl) naphthyl group and 9- (10-methyl) anthracenyl group (having an alkyl group having 1 to 6 carbon atoms) 14 aryl groups; for example, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 2,6
  • the aryl group having 6 to 14 carbon atoms is substituted with “an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and 2 carbon atoms.
  • the alkyl group, alkoxy group, alkylthio group, and dialkylamino group in “ ⁇ 12 dialkylamino groups” are not limited to normal-forms, but are branched or cyclo-forms such as sec-forms, tert-forms, iso-forms, and neo-forms. Annular shapes such as bodies are also included in the specific examples described above.
  • the carbon number which comprises the substituent mentioned above means the carbon number for every substituent, and does not mean the total carbon number in case two or more substituents exist.
  • the alkylene group having 2 to 4 carbon atoms in the case where “R 29 and R 30 are bonded to each other via an alkylene group having 2 to 4 carbon atoms” in the general formula [5] is an alkylene group having 2 carbon atoms. Is preferred.
  • the alkylene group may be linear or branched. Specific examples of such an alkylene group include, for example, dimethylene group (ethylene group), trimethylene group, propylene group, tetramethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, 1,2-dimethyldimethyl group.
  • Examples include methylene group (1,2-dimethylethylene group), 1,1-dimethyldimethylene group (1,1-dimethylethylene group), ethyldimethylene group (ethylethylene group), and the like. Of these alkylene groups, a dimethylene group (ethylene group) is preferable.
  • cyclic structure examples include, for example, an imidazoline ring, 1,4,5,6-tetrahydropyrimidine ring, 4-methylimidazoline ring, 5-methylimidazoline ring, 1,3-diaza-2-cycloheptene ring, 1 , 4,5,6-tetrahydro-4-methylpyrimidine ring, 1,4,5,6-tetrahydro-5-methylpyrimidine ring, 1,4,5,6-tetrahydro-6-methylpyrimidine ring, 4-ethyl Examples include imidazoline ring, 5-ethylimidazoline ring, 4,4-dimethylimidazoline ring, 4,5-dimethylimidazoline ring, and 5,5-dimethylimidazoline ring. Among these cyclic structures, an imidazoline ring is preferable.
  • amidinium cation represented by the general formula [3] described above include cations represented by the formulas [3-1] to [3-2].
  • a biguanidinium cation capable of generating a strong base is preferable. Since the compound (A) having such a biguanidinium cation can generate a biguanide which is a strong base, in the light or thermosetting method of the present invention, a desired crosslinking density, hardness, adhesion to a substrate, A cured product (cross-linked product / resin) having resistance to organic solvents and the like is easily obtained.
  • R 24 ′ to R 28 ′ and R 31 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 29 ′ and R 30 ′ each independently An alkyl group having 2 to 8 carbon atoms; or a substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a halogen atom, and a nitro group.
  • alkyl group having 1 to 6 carbon atoms represented by R 24 ′ to R 28 ′ and R 31 ′ in the general formula [5 ′] include R 24 to R 28 and R 31 in the general formula [5]. Examples thereof are the same as those of the alkyl group having 1 to 6 carbon atoms shown, and preferred specific examples are also the same.
  • R 24 ′ to R 27 ′ are preferably an alkyl group having 1 to 6 carbon atoms.
  • R 28 ′ and R 31 ′ in the general formula [5 ′] are preferably hydrogen atoms, and it is more preferable that both R 28 ′ and R 31 ′ are hydrogen atoms.
  • alkyl group having 2 to 8 carbon atoms represented by R 29 ′ and R 30 ′ in the general formula [5 ′] include 2 to 8 carbon atoms represented by R 29 and R 30 in the general formula [5].
  • the “phenyl group which may have a substituent” in the “phenyl group which may have” means that both a phenyl group having no substituent and a phenyl group having a substituent are included.
  • Specific examples of the alkyl group having 1 to 3 carbon atoms in the “optionally substituted phenyl group” include “an alkyl group having 1 to 6 carbon atoms and a carbon number represented by R 29 and R 30 in the general formula [5]”.
  • a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group.
  • substituents selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group.
  • substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group.
  • substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon
  • Specific examples of the alkoxy group having 1 to 3 carbon atoms in the “phenyl group that may be contained” include “an alkyl group having 1 to 6 carbon atoms and a carbon number represented by R 29 and R 30 in the general formula [5]”.
  • a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group.
  • substituents selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group.
  • substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group.
  • Examples thereof include those similar to the alkoxy group having 1 to 3 carbon atoms, which is a preferred specific example of the alkoxy group having 1
  • Specific examples of the halogen atom in the “phenyl group which may be contained” include “an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms” represented by R 29 and R 30 in the general formula [5].
  • An arylthio group having 6 to 14 carbon atoms which may have a substituent selected from the group consisting of an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group.
  • a halogen atom is mentioned, A preferable specific example is also the same.
  • a substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a halogen atom and a nitro group represented by R 29 ′ and R 30 ′ in the general formula [5 ′] are preferably an alkyl group having 1 to 3 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the number of substituents on the phenyl group in the “optionally substituted phenyl group” include integers of 0 (unsubstituted) to 5, and an integer of 0 (unsubstituted) to 2 is particularly preferable.
  • the “alkyl group having 1 to 6 carbon atoms” represented by R 29 and R 30 in the general formula [5] Carbon number which may have a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group
  • a substituent selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a dialkylamino group having 2 to 12 carbon atoms, a halogen atom and a nitro group
  • a phenyl group having no substituent such as a phenyl group (unsubstituted); for example, 2-methylphenyl group, 3-methylphenyl group, 4 -Methylphenyl group, 2,4-dimethylphenyl group, 2,6-dimethylphenyl group, 2,4,6-trimethylphenyl group, 2,6-diethylphenyl group, 2,6-di-n-propylphenyl group
  • the carbon number which comprises the substituent mentioned above means the carbon number for every substituent, and does not mean the total carbon number in case two or more substituents exist.
  • substituents for example, taking a 2,6-diisopropylphenyl group and a 2,6-diisopropoxyphenyl group as an example, these are substituted with an alkyl group having 3 carbon atoms or an alkoxy group (an alkyl group having 3 carbon atoms or It corresponds to a phenyl group (having an alkoxy group), but has two isopropyl groups or isopropoxy groups, so that the total carbon number of the substituent is 6.
  • R 29 ′ and R 30 ′ in the general formula [5 ′] are preferably alkyl groups having 1 to 6 carbon atoms.
  • the compound (A) having a biguanidinium cation represented by the general formula [5 ′] is irradiated with light (active energy rays) in the light of the present invention or the thermal curing method.
  • the contrast ratio between the exposed portion (the portion irradiated with light) and the unexposed portion (the portion not irradiated with light) can be further increased.
  • the compound (A) according to the light or heat curing method of the present invention is commercially available, for example, International Publication No. 2014/208632, Macromolecules 2012, 45, 2219-2224., J. Am. Chem. Soc., What is necessary is just to use what was synthesize
  • Specific examples of the production method of these compounds (A) include, for example, reacting a thiosalicylic acid derivative and an m-phenylenediacetic acid derivative in sulfuric acid to form a sulfide, and subsequently reacting under heating conditions to produce Friedel- The Crafts acylation-type dehydration ring closure reaction proceeds to synthesize a compound having two acetic acid units on the thioxanthone ring.
  • a malonic acid ester for a compound having one or more halides on a carbon atom constituting an aromatic ring on a benzophenone ring, xanthone ring, thioxanthone ring or anthraquinone ring, a malonic acid ester, a palladium catalyst, a phosphine ligand And a base (for example, tripotassium phosphate, etc.) are added and reacted in toluene under heating conditions to synthesize a compound in which a malonic acid unit is selectively introduced at the halide position of the aromatic ring.
  • a base for example, tripotassium phosphate, etc.
  • the malonic ester is hydrolyzed.
  • these compounds can be synthesized by reacting a base selected from amidine, guanidine or biguanide, which is the source of Z 1 + in general formula [2], to form a salt.
  • the compound (A) according to the light or thermosetting method of the present invention not only acts as a base generator or a radical generator, but also has a catalyst (aluminum alkoxide (B) and silane coupling agent (C) in Step 1). It also acts as a reaction accelerator.
  • a catalyst aluminum alkoxide (B) and silane coupling agent (C) in Step 1.
  • An example of the presumed structure of the activated body in the case where the compound (A) acts as a catalyst in Step 1 is shown below.
  • the aluminum alkoxide (B) according to the light or thermosetting method of the present invention is obtained from (E) aluminum derived from aluminum alkoxide and silane derived from a silane coupling agent having a mercapto group in the light or thermosetting method of the present invention.
  • D It is an aluminum compound having at least one alkoxy group that causes a condensation reaction (solification) with (C).
  • an aluminum alkoxide (B) examples include an aluminum alkoxide represented by the general formula [6].
  • alkyl group having 1 to 4 carbon atoms represented by R 32 in the general formula [6] an alkyl group having 2 to 4 carbon atoms is preferable, and an alkyl group having 3 to 4 carbon atoms is more preferable. However, an alkyl group having 4 carbon atoms is particularly preferable.
  • the alkyl group may be linear, branched or cyclic, and is preferably branched. Specific examples of such an alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl.
  • alkyl groups a linear, branched or cyclic alkyl group having 2 to 4 carbon atoms is preferable, and among them, a branched alkyl group having 3 to 4 carbon atoms is more preferable, and sec A -butyl group is particularly preferred.
  • R 32 in the general formula [6] it is preferable that at least two R 32 out of the three R 32 are alkyl groups having 1 to 4 carbon atoms, and in particular, all three R 32 are More preferred is an alkyl group having 1 to 4 carbon atoms.
  • aluminum alkoxide (B) represented by the general formula [6] include, for example, aluminum trimethoxide, aluminum triethoxide, aluminum tri-n-propoxide, aluminum triisopropoxide, aluminum tricyclopropoxide.
  • aluminum tri-sec-butoxide is preferable in that it is difficult to hydrolyze in the atmosphere and is easy to handle in liquid form.
  • one type of aluminum alkoxide may be used alone, or two or more types of aluminum alkoxides may be used in combination.
  • the silane coupling agent (C) is derived from (E) an aluminum alkoxide-derived aluminum and a silane coupling agent having a mercapto group in the light or thermosetting method of the present invention.
  • a raw material for a condensate ((E) sol) obtained from silane and having a structural unit of Si—O—Al and / or Si—O—Si, in the presence of water (D),
  • silane coupling agent (C) examples include a silane coupling agent represented by the general formula [7].
  • an alkyl group having 1 carbon atom is preferable.
  • the alkyl group may be linear, branched or cyclic. Specific examples of such an alkyl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl. Groups and the like. Of these alkyl groups, a methyl group is preferred.
  • the alkoxy group having 1 to 4 carbon atoms represented by R 33 in the general formula [7] is preferably an alkoxy group having 1 to 2 carbon atoms.
  • the alkoxy group may be linear, branched or cyclic. Specific examples of such alkoxy groups include, for example, methoxy, ethoxy, n-propoxy, isopropoxy, cyclopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, Examples include a cyclobutoxy group. Of these alkoxy groups, a methoxy group and an ethoxy group are preferable.
  • the R 33 in the general formula [7], of the three R 33 at least two R 33 are preferably an alkoxy group having 1 to 4 carbon atoms, among others, all three R 33 is, More preferably, it is an alkoxy group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms in the “alkyl group having 1 to 8 carbon atoms having at least one mercapto group” represented by R 34 in the general formula [7] is preferably an alkyl group having 1 to 6 carbon atoms. Of these, an alkyl group having 1 to 4 carbon atoms is more preferable. In addition, the alkyl group may be linear, branched or cyclic.
  • alkyl group examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl.
  • n-pentyl group isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, Isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, cyclohexyl group, n-heptyl group , Isoheptyl group, sec-heptyl group, tert-heptyl group, neoheptyl group, cycloheptyl group, n-octyl group, isooctyl group, sec-octyl group
  • alkyl groups a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms is preferable, and among them, a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms is preferable. Groups are more preferred.
  • the mercapto group (thiol group) in the “alkyl group having 1 to 8 carbon atoms having at least one mercapto group” represented by R 34 in the general formula [7] is bonded to the chain or / and the terminal of the alkyl group.
  • the bonding position is not limited. Further, it is sufficient that at least one mercapto group (thiol group) is bonded. For example, a plurality of mercapto groups (thiol groups) such as 2 to 4 may be bonded to an alkyl group.
  • silane coupling agent (C) represented by the general formula [7] include, for example, (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane, (3-mercaptopropyl) tri Propoxysilane, (3-mercaptopropyl) tributoxysilane, 1,4-dimercapto-2- (trimethoxysilyl) butane, 1,4-dimercapto-2- (triethoxysilyl) butane, 1,4-dimercapto-2 -(Tripropoxysilyl) butane, 1,4-dimercapto-2- (tributoxysilyl) butane, 2-mercaptomethyl-3-mercaptopropyltrimethoxysilane, 2-mercaptomethyl-3-mercaptopropyltriethoxysilane, 2, -Mercaptomethyl-3-mercaptopropyltripropoxysilane, 2-mercaptomethy
  • silane coupling agents (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane and 3-mercaptopropyl (dimethoxy) methylsilane are excellent in reactivity of hydrolysis and polycondensation. This is preferable.
  • silane coupling agents (C) 1 type of silane coupling agents may be used independently, and 2 or more types of silane coupling agents may be used in combination.
  • the water (D) according to the light or thermosetting method of the present invention means that the aluminum alkoxide (B) is hydrolyzed in step 1 or the alkoxysilyl group in the silane coupling agent (C) is hydrolyzed. Used for purposes.
  • Such water (D) is not particularly limited as long as it is usually used in this field, and specific examples thereof include purified water such as distilled water and deionized water.
  • the water (D) may be derived from water in the atmosphere or water contained in the filler (I).
  • water (D) necessary for proceeding with the step 1 can be covered by moisture in the atmosphere or water contained in the filler (I), so-called liquid water may not be required.
  • Structural unit of Si—O—Al and / or Si—O—Si obtained from (E) aluminum derived from aluminum alkoxide and silane derived from a silane coupling agent having a mercapto group according to the light or thermosetting method of the present invention Is a condensate obtained from aluminum alkoxide (B) and silane coupling agent (C) by the action of water (D) in the presence of compound (A) in step 1,
  • the structure includes a Si—O—Al structural unit or Si—O—Si structural unit as a main skeleton.
  • the condensate (E) can react with the compound (H) and the filler (I) in the second step, and is in a fluid sol state. Therefore, the hydroxyl group or alkoxy group in the condensate (E) corresponding to all alkoxy groups in the aluminum alkoxide (B) and all alkoxy groups in the silane coupling agent (C) is usually 10 to 90%. It is desirable that 30 to 70% remain.
  • the structural unit derived from the aluminum alkoxide (B) and the structural unit derived from the silane coupling agent (C) are usually in a molar ratio of 1:10 to 9: 1, preferably 1: 5 to It is desirable that the ratio is 4: 1, more preferably 1: 2.5 to 2: 1.
  • the condensate (E) has a mercapto group derived from the silane coupling agent (C) in its structure, and the mercapto group reacts with a polymerizable unsaturated group in the compound (H). Further, the mol amount of the mercapto group in the condensate (E) depends on the number of moles of the mercapto group in the silane coupling agent (C). For example, one mercapto group is added to the silane coupling agent (C). In the case where it has, assuming that the total amount of the silane coupling agent (C) is converted into the condensate (E), the condensate (E) contains the number of moles of the silane coupling agent (C) used.
  • the silane coupling agent (C) has two mercapto groups, assuming that the entire amount of the silane coupling agent (C) is converted into the condensate (E), the condensate ( In E), there are twice as many mercapto groups as the number of moles of the silane coupling agent (C) used.
  • the condensate (E) has a hydroxyl group or an alkoxy group derived from the aluminum alkoxide (B) and the silane coupling agent (C) in its structure, and the hydroxyl group or the alkoxy group is a filler (I ) And hydroxyl groups present in trace amounts on the surface of the metal substrate.
  • the compound (H) having two or more polymerizable unsaturated groups according to the light or thermosetting method of the present invention reacts with the mercapto group in the condensate (E) obtained in the step 1 to obtain a cured product ( It is a compound having two or more polymerizable unsaturated groups that cause a thiol-ene reaction or a thiol-in reaction.
  • Examples of such a compound (H) include compounds generally used in this field.
  • Compounds having two allyl groups such as diallylhexahydrophthalate, diallylchlorendate, diallyldiphenylsilane; for example, triallyl cyanurate (2,4,6-tris (allyloxy) -1,3,5-triazine), Compounds having 3 allyl groups such as triallyl trimelliate and triallyl isocyanurate; for example, polyfunctional allyl compounds such as compounds having 4 or more allyl groups such as pyromellitic acid tetraallyl; for example, 1,3-butylene glycol di (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, -Hexanediol di (meth) acrylate, 1,9-nonanedi
  • allyl groups such as triallyl cyanurate (2,4,6-tris (allyloxy) -1,3,5-triazine), triallyl trimellitic acid, triallyl isocyanurate, etc.
  • a compound having three or more functional groups such as a compound having four or more allyl groups such as pyromellitic acid tetraallyl; and, for example, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meta ) Acrylate, glycerin EO-modified tri (meth) acrylate, isocyanuric acid EO-modified tri (meth) acrylate, ⁇ -caprolactone-modified tris (2- (meth) acryloxyethyl) isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylol Propane tetra (me 3) -6 (meth) acrylic groups such as acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol EO modified tetra (meth) acrylate, dipentaerythritol pen
  • (Meth) acrylic compounds having three or more functional groups such as trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meth) acrylate, and glycerin EO-modified tri (meth).
  • a (meth) acrylic compound having 3 to 6 groups is more preferable in that a crosslinked product having a high crosslinking density can be obtained, and dipentaerythritol hexa (meth) acrylate is particularly preferable.
  • these compounds (H) one type of compound (H) may be used independently, and 2 or more types of compounds (H) may be used in combination.
  • the (I) filler according to the light or thermosetting method of the present invention is a cured product (crosslinked product / resin) obtained by reacting with a hydroxyl group or an alkoxy group in the condensate (E) obtained in Step 1. It becomes a raw material for imparting various characteristics to the material.
  • filler (I) examples include, for example, metals such as aluminum, iron, and silver; for example, magnesium oxide, aluminum oxide (alumina), silicon oxide, beryllium oxide, iron oxide, ferrite, copper oxide, Metal oxides such as copper oxide and zinc oxide; for example, metal nitrides such as boron nitride, aluminum nitride and silicon nitride; inorganic fillers such as metal hydroxides such as magnesium hydroxide, aluminum hydroxide and boehmite; Examples thereof include metal carbides such as silicon; metal carbonates such as magnesium carbonate; and organic fillers such as insulating carbon materials such as graphite, carbon, carbon black, and diamond.
  • metals such as aluminum, iron, and silver
  • magnesium oxide aluminum oxide (alumina), silicon oxide, beryllium oxide, iron oxide, ferrite, copper oxide
  • Metal oxides such as copper oxide and zinc oxide
  • metal nitrides such as boron nitride, aluminum nitride and silicon nitrid
  • fillers (I) for example, metal oxides such as magnesium oxide and aluminum oxide (alumina), and heat conductive fillers such as metal nitrides such as boron nitride, aluminum nitride, and silicon nitride are electrically insulated. It is preferable in that a cured product (cross-linked product / resin) having high heat conductivity and high thermal conductivity can be obtained, and aluminum nitride is more preferable.
  • These fillers (I) may be any shape such as spherical, powder, glass, fiber (fiber), flake, foil, balloon, diatom. As these fillers (I), one type of filler (I) may be used alone, or two or more types of fillers (I) may be used in combination.
  • the thermally conductive substrate for forming an electronic circuit of the present invention is characterized by having a cured product (crosslinked product / resin) obtained from the first or second resin composition of the present invention, and a filler (I ) Can be used as a substrate having excellent thermal conductivity.
  • the particle size of the filler (I) can be used without particular limitation as long as it is a particle size generally used in this field.
  • the average particle diameter (median diameter) of the filler (I) is usually 0.1 to 50 ⁇ m, preferably 0.2 to 30 ⁇ m, more preferably 0.5 to 20 ⁇ m.
  • the resulting cured product (crosslinked product / resin) tends to have high thermal conductivity.
  • the average particle diameter (median diameter) of one kind of filler (IA) is usually 5 to 50 ⁇ m, preferably 7 to 30 ⁇ m, more preferably 10 to 20 ⁇ m.
  • the average particle diameter (median diameter) of the other filler (IB) is usually 0.1 to 3 ⁇ m, preferably 0.2 to 2 ⁇ m, more preferably 0.5 to 1.8 ⁇ m.
  • filler (IA) and filler (IB) are usually in the range of 1:10 to 10: 1, preferably on a mass basis. It may be desirable to use in a ratio of 1: 5 to 5: 1, more preferably 1: 3 to 3: 1.
  • the filler (I) may be subjected to a surface treatment for suppressing hydrolysis on the surface thereof.
  • the (F) chelating agent used as necessary forms a complex with the aluminum alkoxide (B) in Step 1 and reacts between the silane coupling agents (C). Or a compound that promotes the reaction between the aluminum alkoxide (B) (complex thereof) and the silane coupling agent (C).
  • chelating agent (F) examples include, for example, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate, diethyl malonate, 2- (2-thioxanthenyl) diethylmalonic acid, acetylacetone, diacetone alcohol, lactic acid And ethyl.
  • these chelating agents (F) may use one type of chelating agent (F) independently, and may use it in combination of 2 or more types of chelating agents (F).
  • (J) a compound having two or more epoxy groups, which is used as necessary, refers to a base generated from the compound (A) directly or indirectly in Step 2.
  • a compound having two or more epoxy groups refers to a base generated from the compound (A) directly or indirectly in Step 2.
  • the reaction with the mercapto group of the silane coupling agent (C), or the reaction between the compounds (J) (chain polymerization) and the hardness of the resulting cured product (crosslinked product / resin) to the substrate It is a raw material for improving adhesion, and is a compound having at least two epoxy groups in the structure.
  • Such compound (J) include, for example, diglycidyl ether, spiroglycol diglycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, 1,3-propylene glycol diglycidyl ether, propylene glycol diglycidyl.
  • Ether tri-1,3-propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, glycerin diglycidyl ether, glycerol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol AD diglycidyl ether, biphenyl diglycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, polyethylene glycol diglycidyl ether, poly-1,3-propylene glycol diglycidyl ether, polypropylene glycol Diglycidyl ether, glycidyl (meth) acrylate, trimethylol
  • These compounds (J) may be halogenated or hydrogenated. These compounds (J) also include the derivatives of the specific examples described above. In addition, as for these compounds (J), 1 type of compounds (J) may be used independently, and 2 or more types of compounds (J) may be used in combination.
  • the organic solvent used as necessary is not particularly limited as long as it is an organic solvent generally used in this field.
  • organic solvents include saturated or unsaturated aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, tetrahydronaphthalene, menthane, squalane; for example, benzene, toluene, ethylbenzene, Aromatic hydrocarbon solvents such as diethylbenzene, trimethylbenzene, styrene, xylene; for example, halogen solvents such as dichloromethane, trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride); for example, diethyl ether, di-n- Ether systems such as propyl ether, diisopropyl ether, methyl-tert
  • step 1 or / and step 2 when the organic solvent is contained, the content (amount used) of the organic solvent is, for example, increased the compatibility of (A) to (F), (H) and (I). Or the condensate (E) (sol (E)) obtained in step 1 may be appropriately set depending on the purpose such as improving the coating property to the substrate, and is not particularly limited.
  • the content (usage amount) of the organic solvent is usually 0.01 to 10 g with respect to 1 g of filler (I), for example.
  • additives used as necessary include, for example, a polymerization inhibitor, a sensitizer, Dispersant, dispersion aid, silane monomer, weathering aid, pigment, dye, curing accelerator / chain transfer catalyst, oxygen scavenger / reducing agent, antioxidant, leveling agent, surface modifier, foaming agent, antifoaming Agent, pH adjuster, antifoggant, surfactant, colorant, fading inhibitor, fluorescent whitening agent, antihalation agent, extender, plasticizer, plasticizer, flame retardant, UV absorber, antifungal agent , Antistatic agents, sagging agents, magnetic materials and the like. Further, these additives can be used without particular limitation as long as they are generally used in this field.
  • polymerization inhibitor examples include, for example, p-methoxyphenol, hydroquinone, alkyl-substituted hydroquinone, catechol, tert-butylcatechol, phenothiazine, cuperone, ammonium N-nitrosophenylhydroxylamine, triphenylphosphonate, pyrogallol and the like. It is done.
  • the sensitizer include, for example, benzophenone, p, p′-tetramethyldiaminobenzophenone, p, p′-tetraethyldiaminobenzophenone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 2-trifluoromethylthioxanthone, Examples include 2,4-diethylthioxanthone, anthrone, benzanthrone, anthracene, 9-ethoxyanthracene, 9,10-diphenylanthracene, acenaphthene, anthraquinone, 1-chloroanthraquinone, 2-ethylanthraquinone, and benzoquinone.
  • dispersant examples include, for example, polyvinyl pyrrolidone, polycarboxylic acid, sodium polycarboxylate, sodium polysulfonate, polyether such as polyethylene glycol, polymer dispersant such as polyalkylene polyamine, polyalkylene sulfonic acid, etc. Is mentioned.
  • silane monomer examples include, for example, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, and butyltriethoxysilane.
  • cured material crosslinked material and resin
  • the content (amount of use) of the dispersant for example, the sum of the mass of the aluminum alkoxide (B) and the mass of the silane coupling agent (C) (total mass of (B) and (C)) is 1 g.
  • it is usually 0.001 to 0.1 g, preferably 0.005 to 0.05 g.
  • one type of additive may be used alone, or two or more types of additives may be used in combination.
  • Compound (J), organic solvent, additive and the like may be commercially available or those appropriately synthesized by known methods.
  • the curable resin composition (first resin composition) of the present invention comprises (A) a salt of a carboxylic acid and an amine, and decarboxylates a carbonyl group that generates radicals by light irradiation or heating to form a base. Contains a generated carboxylate group-containing compound, (B) aluminum alkoxide, (C) a silane coupling agent having a mercapto group, (H) a compound having two or more polymerizable unsaturated groups, and (I) a filler And (J) a curable resin composition which may further contain a compound having two or more epoxy groups.
  • the curable resin composition (second resin composition) of the present invention comprises (A) a salt of a carboxylic acid and an amine, and decarboxylates a carbonyl group that generates radicals by light irradiation or heating to form a base. (E) a structural unit of Si—O—Al and / or Si—O—Si obtained from (E) aluminum derived from aluminum alkoxide and silane derived from a silane coupling agent having a mercapto group. A condensate having (H) a compound having two or more polymerizable unsaturated groups, and (I) a filler, and (J) a compound having two or more epoxy groups, It is a curable resin composition.
  • the curable resin composition of the present invention may contain, for example, (F) a chelating agent, an organic solvent, an additive, and the like. Good.
  • the first resin composition of the present invention can be prepared, for example, by the following method. If necessary, the chelating agent (F) is added to the aluminum alkoxide (B), and then the compound (A) and the silane coupling agent (C) are added, followed by stirring with a magnetic stirrer or the like. The obtained mixture is added to the mixture containing the filler (I) and, if necessary, an organic solvent and an additive, and kneaded with a rotating / revolving mixer or the like. Next, the first resin composition of the present invention can be prepared by adding the compound (H) and, if necessary, the compound (J) to the obtained slurry and kneading the mixture with a revolving mixer.
  • the first resin composition of the present invention comprises a mixture containing compound (A), aluminum alkoxide (B), silane coupling agent (C) and chelating agent (F), compound (H), filler ( It can also be prepared by adding to a mixture containing I), the compound (J), an organic solvent and an additive and kneading with a revolving mixer. In addition, you may perform kneading
  • the first resin composition of the present invention is a resin composition containing (A) to (C) and (H) to (I) according to the light or thermosetting method of the present invention. It is one form of the composition before attaching
  • the composition has a feature of good storage stability. When water is added to the composition to irradiate light (active energy rays) or heat energy is applied, aluminum alkoxide ( B) and silane coupling agent (C) or polycondensation (gelation) between silane coupling agents (C) and thiol-ene reaction or thiol-in reaction can be efficiently performed in the same system. The desired cured product (cross-linked product / resin) can be obtained.
  • water (D) is added to the first resin composition of the present invention to condense (solify) the aluminum alkoxide (B) and the silane coupling agent (C). It is a resin composition obtained by this. That is, in the second resin composition of the present invention, water (D) is added to the first resin composition of the present invention, and the first resin composition of the present invention is subjected to the light or thermosetting of the present invention. It is one form of the composition obtained after attaching
  • the curable resin composition of the present invention is, for example, a paint, an ink material, a coating material, an adhesive material, a dental material, a resist, a color filter, a film for flexible display, an electronic component, an interlayer insulating film, a heat conduction film, and a heat conductivity. It can be used as a resin raw material in optical members or electronic members such as insulating films, wiring coating films, optical circuits, optical circuit components, antireflection films, and holograms.
  • the thermally conductive substrate for forming an electronic circuit of the present invention is characterized by having a cured product (crosslinked product / resin) obtained from the curable resin composition of the present invention. That is, the heat conductive substrate for forming an electronic circuit of the present invention is a substrate having a cured product (crosslinked product / resin) obtained from the curable resin composition of the present invention on a metal substrate such as an aluminum plate, for example. is there.
  • the metal constituting the metal substrate it is preferable to use aluminum that is lightweight and exhibits good thermal conductivity and copper having a high heat capacity. Further, examples of the thickness of the metal substrate include 0.1 to 5 mm.
  • the cured product (crosslinked product / resin) is usually 0.5 W / m ⁇ K or more, preferably 0.8 W / m ⁇ K or more, more preferably 1.0 W / m ⁇ K or more, and further preferably 2.0 W. It is desirable to have a thermal conductivity of at least 3.0 W / m ⁇ K, most preferably at least 6.0 W / m ⁇ K.
  • the cured product (cross-linked product / resin) has an electrical resistivity of usually 1 ⁇ ⁇ cm or more, preferably 10 ⁇ ⁇ cm or more, more preferably 10 5 ⁇ ⁇ cm or more, and even more preferably 10 10 ⁇ ⁇ cm or more. It is desirable to have an electrical insulation property of preferably 10 13 ⁇ ⁇ cm or more.
  • the heat conductive substrate for forming an electronic circuit of the present invention has a metal foil for forming an electronic circuit such as a copper foil on the cured product (crosslinked product / resin) obtained from the curable resin composition of the present invention. You may have.
  • the method for producing a heat conductive substrate for forming an electronic circuit of the present invention is a composition obtained by adding water (D) to the first resin composition of the present invention to form a sol (in the light or thermosetting method of the present invention).
  • the composition obtained after subjecting to step 1) or the second resin composition of the present invention is applied to a metal substrate such as an aluminum plate to obtain a coating film, and then the coating film is irradiated or heated. Thus, the coating film is cured, and a heat conductive insulating film is formed on the surface of the metal substrate.
  • the above-mentioned process is performed by the action of water derived from moisture in the atmosphere. 1 may be advanced.
  • the curable resin composition of the present invention prepared to have a suitable viscosity by adding an organic solvent, for example, a dip coating method, a flow coating method,
  • a tack-free coating film can be formed by heating (pre-baking) the coating film coated on the metal substrate to a temperature of about 60 to 150 ° C. and evaporating and drying the organic solvent contained in the composition.
  • the thermally conductive insulating film irradiates the obtained coating film with light (active energy rays) having the above-described wavelength for a time that is equal to or greater than the above-described irradiation amount (integrated exposure amount).
  • the film can be formed by heating at the above temperature for the time described above.
  • light (active energy ray) irradiation is performed through an appropriate pattern mask, and then development processing is performed using the above-described developer or the like. Can be done. That is, a thermally conductive insulating film can be obtained by proceeding Step 2 in the light or thermosetting method of the present invention on the coating film.
  • the heat conductive substrate for forming an electronic circuit of the present invention thus obtained has high heat conductivity and electric insulation, it can be used as a heat dissipation substrate or an electric insulation substrate for high-brightness LEDs or power semiconductors. It is useful.
  • Example 1 Preparation of cured film using resin composition by irradiation of light (active energy ray) and evaluation of physical properties of obtained cured film 1,2-diisopropyl-4,4,5,5-tetramethylbiguani Of 2- (3-benzoylphenyl) propionate [compound (A)], aluminum tri-sec-butoxide [aluminum alkoxide (B)] and (3-mercaptopropyl) trimethoxysilane [silane coupling agent (C)]
  • a solution prepared by mixing ion-exchanged water [water (D)] and carbitol acetate [organic solvent] was added to the mixture, and the mixture was stirred for 30 minutes to prepare a sol solution.
  • the sol solution prepared above was added to a mixture of triallyl cyanurate [compound (H)], aluminum nitride [filler (I)], CF-180 [dispersant] and carbitol acetate [organic solvent]. Then, using a planetary stirrer (Shinky Corporation “Awatori Netaro AR-250”), the mixture was kneaded at a rotational speed of 2000 rpm for 3 minutes to prepare a resin composition. The obtained resin composition was applied onto an aluminum plate to prepare a coating film, prebaked at 150 ° C., and then the coating film was subjected to light (“HLR-100-2” manufactured by Sen Special Light Source).
  • HLR-100-2 manufactured by Sen Special Light Source
  • -(A) A compound comprising a salt of a carboxylic acid and an amine, and having a carboxylate group that generates a base by decarboxylation with a carbonyl group that generates radicals by light irradiation or heating- 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate; compound represented by formula [1-2] (synthesized according to WO2014 / 208632) I used something.)
  • an adhesive tape was affixed to the cured film cut in a grid pattern so as to adhere about 50 mm, and the tape was adhered to the cured film by rubbing from the top of the adhesive tape with an eraser.
  • the tape was peeled off instantaneously while holding the tape at a right angle to the cured film surface, and the cured film was peeled off.
  • the case where the cured film was not peeled off was evaluated as “adhesiveness: ⁇ ”, and the case where the cured film was partially peeled was evaluated as “adhesiveness: x”.
  • thermophysical property measuring device “LFA502” manufactured by Kyoto Electronics Industry Co., Ltd.
  • the thermal diffusivity and specific heat were determined (JIS R16111-2010 “Fine ceramics thermal diffusivity / specific heat capacity by flash method, Thermal diffusivity / specific heat capacity test method of “Measurement method of thermal conductivity, JIS 7810-2005“ Measurement of thermal diffusivity by metal laser flash method ”).
  • the thermal conductivity was calculated by multiplying all of the obtained thermal diffusivity, specific gravity and specific heat.
  • Comparative Examples 1 to 3 Preparation of cured film using resin composition by irradiation of light (active energy rays) and evaluation of physical properties of the obtained cured film 1,2-diisopropyl-4, 4, used in Example 1
  • a cured film was prepared in the same manner as in Example 1 except that 5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate and aluminum tri-sec-butoxide were changed to the conditions shown in Table 4. It was fabricated and its physical properties were evaluated.
  • Table 4 shows the amount used (mol amount) of each component and the evaluation results.
  • the names and sources of the components not used in Example 1 are shown below.
  • Example 1 As apparent from the results in Table 4, it was found that when the resin composition of Example 1 containing aluminum alkoxide was used, a cured product having high hardness and good thermal conductivity was obtained.
  • aluminum alkoxide is easily gelled because of its high reactivity with water, but when hydrolysis is carried out with the compound (A) according to the present invention added together with a silane coupling agent having a mercapto group, It was found that an organosol can be obtained without gelation.
  • aluminum tri-sec-butoxide is liquid, highly compatible with silane coupling agents having a mercapto group, and can dissolve the compound (A) according to the present invention without using an organic solvent. It was.
  • an aluminosiloxane bond (Al—Si—O) is added at room temperature. ) was confirmed by FT-IR (around 600 cm ⁇ 1 ). From this, it was found that the sol-gelation can be performed under mild conditions according to the light or thermosetting method of the present invention.
  • the compound (A) according to the present invention can efficiently generate radicals by irradiation with light (active energy rays) even in the presence of a filler that hardly transmits light such as aluminum nitride.
  • the light or thermosetting method of the present invention is suitable for hardness, adhesion to a substrate, thermal conductivity, etc. It turned out that it is the hardening method which can obtain the hardened
  • Examples 2 to 5 Preparation of cured film using resin composition added with compound having two or more epoxy groups and evaluation of physical properties of the obtained cured film
  • Two or more epoxy groups in the curing system of Example 1 A cured film was prepared in accordance with the same method as in Example 1 except that a compound having s was added and the kind of aluminum nitride used in Example 1 was changed, and various physical properties were evaluated.
  • Table 5 shows the amount used (mol amount) of each component and the evaluation results. Of the components used in Examples 2 to 5, the names and sources of the components not used in Example 1 and Comparative Examples 1 to 3 are shown below.
  • Examples 6 to 7 Preparation of cured film using resin composition added with chelating agent and evaluation of physical properties of obtained cured film
  • 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate [compound (A)] and (3-mercaptopropyl) trimethoxysilane [silane coupling Agent (C)] was added, and a solution in which ion-exchanged water [water (D)] and carbitol acetate [organic solvent] were mixed was added and stirred for 30 minutes to prepare a sol solution.
  • sol solution prepared above was added to a mixture of triallyl cyanurate [compound (H)], aluminum nitride [filler (I)] and carbitol acetate [organic solvent], and a planetary stirrer (Sinky Corporation) was added.
  • “Awatori Netaro AR-250”) was kneaded at a rotational speed of 2000 rpm for 3 minutes to prepare a resin composition.
  • the obtained resin composition was applied onto an aluminum plate to prepare a coating film, prebaked at 150 ° C., and then the coating film was subjected to light (“HLR-100-2” manufactured by Sen Special Light Source).
  • Comparative Example 4 Preparation of cured film using resin composition without addition of chelating agent 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate [compound ( A)], aluminum tri-sec-butoxide [aluminum alkoxide (B)] and (3-mercaptopropyl) trimethoxysilane [silane coupling agent (C)] in a mixture of ion-exchanged water [water (D)].
  • a solution mixed with carbitol acetate [organic solvent] was added and stirred, a solid gel was precipitated, and a uniform sol solution could not be prepared, and a resin composition could not be prepared.
  • Table 6 shows the amount used (mol amount) of each component.
  • Examples 8 to 9 Preparation of cured film by post-addition of water and evaluation of physical properties of the obtained cured film 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) ) Mixture of propionate [compound (A)], aluminum tri-sec-butoxide [aluminum alkoxide (B)] and (3-mercaptopropyl) trimethoxysilane [silane coupling agent (C)] (Example (8)) 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate [compound (A)], aluminum tri-sec-butoxide [aluminum alkoxide (B) ], (3-mercaptopropyl) trimethoxysilane [silane coupling agent (C)] and 2- (2-thioxanthenyl) diethyl In a mixture of ronic
  • the dispersibility of the filler is improved by adding water at the end, and a resin composition (sol solution) can be obtained without adding a dispersant.
  • cured material is obtained by irradiating light (active energy ray) to this composition.
  • cured material had high hardness. That is, it was found that by adding water last, a resin composition having high curing performance can be obtained without adding a compound having two or more epoxy groups.
  • aluminum nitride is said to be easily hydrolyzed, but in the main curing system, no significant decrease in thermal conductivity is observed, and heating is not performed after irradiation with light (active energy rays).
  • a cured product having sufficient performance that is, a cured product having high hardness and adhesion, and good alkali developability and organic solvent resistance.
  • a compound having chelating ability such as 2- (2-thioxanthenyl) diethylmalonic acid and absorbing long wavelength light (active energy ray)
  • long wavelength light (active energy ray) Irradiation was performed so that the surface illuminance was 405 nm and the integrated exposure amount was 1.0 J / cm 2.
  • Example 10 Preparation of cured film using polyfunctional (meth) acrylic compound and evaluation of physical properties of obtained cured film
  • ethyl lactate [chelating agent (F) and organic solvent] After adding ethyl lactate [chelating agent (F) and organic solvent] to the mixture of [silane coupling agent (C)] and allowing to stand at room temperature for 12 hours, 1,2-diisopropyl-4, 4, 5,
  • a sol solution was prepared by adding 5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate [compound (A)] and ion-exchanged water [water (D)].
  • the sol solution prepared above was added to aluminum nitride [Filler (I)], and kneaded for 1 minute at a rotational speed of 2000 rpm using a planetary stirrer (“Shinky Corporation“ Awatori Netaro AR-250 ”). Thereafter, dipentaerythritol hexaacrylate [compound (H)] was further added and kneaded at a rotation speed of 500 rpm for 1 minute to prepare a resin composition.
  • the obtained resin composition was applied onto an aluminum plate to prepare a coating film, prebaked at 150 ° C., and then the coating film was subjected to light (“HLR-100-2” manufactured by Sen Special Light Source).
  • Examples 11 to 13 Production of cured film using polyfunctional (meth) acrylic compound and evaluation of physical properties of the obtained cured film Example 10 except that the type of filler (I) used in Example 10 was changed. A cured film was prepared according to the same method as in Example 1, and its physical properties were evaluated. Table 8 shows the amount used (mol amount) of each component and the evaluation results. Of the components used in Examples 11 to 13, the names and sources of the components not used in Examples 1 to 10 and Comparative Examples 1 to 4 are shown below.
  • Magnesium oxide (magnesia) (Ako Kasei Co., Ltd .; MgO6K; average particle size 6 ⁇ m)
  • Aluminum oxide (alumina) (Denka Co., Ltd .; DAW-03; average particle size 3.7 ⁇ m)
  • Aluminum nitride (AlN) (manufactured by Toyo Aluminum Co., Ltd .; TFZ-A10P; average particle size 9.9 ⁇ m)
  • the sol solution can be stably prepared by using ethyl lactate as a chelating agent and an organic solvent. It was also found that by using a polyfunctional (meth) acrylic compound, a thiol-ene reaction by radicals and a Michael addition reaction by base proceed simultaneously, and a cured product can be produced at a high density. Furthermore, the filling rate of the filler could be increased, and the thermal conductivity of the cured product was also improved.
  • the resulting cured film was evaluated for alkali developability, adhesion, pencil hardness and thermal conductivity.
  • Table 9 shows the evaluation results.
  • alkali developability a 5% potassium hydroxide aqueous solution was used instead of the 3% potassium hydroxide aqueous solution of Example 1, and for pencil hardness, a load instead of the load of 750 g of Example 1 was used.
  • Various physical properties of the cured film were evaluated according to the same evaluation method as in Example 1 except that the evaluation was performed at 1000 ⁇ 10 g.
  • the cured product obtained from the commercially available heat-dissipating resin composition has poor developability even when a 5% aqueous potassium hydroxide solution is used, and the cured product obtained from the resin composition in the main curing system. As a result, the alkali development was slower than the product.
  • the cured product obtained from the commercially available heat-dissipating resin composition was found to be about half peeled in the cross-cut test, so that the cured product obtained from the resin composition in the main curing system was transferred to the substrate. The result was low adhesion.
  • Comparative Example 6 Production of cured film using thiol-ene reaction using resin composition containing no mercapto group-containing silane coupling agent 1,2-diisopropyl-4,4,5,5-tetramethylbiguani 2- (3-benzoylphenyl) propionate [compound (A)], triallyl cyanurate [compound (H)], aluminum nitride [filler (I)], pentaerythritol tetrakis (3-mercaptopropionate), polyvinylpyrrolidone A mixture containing [dispersing agent] and ethyl lactate [chelating agent (F) / organic solvent] was kneaded for 3 minutes at a rotational speed of 2000 rpm using a planetary ball mill P-6 (manufactured by Fritsch Japan).
  • a composition was prepared.
  • the obtained resin composition was applied onto an aluminum plate to prepare a coating film, prebaked at 150 ° C., and then “HLR-100-2” manufactured by Sen Special Light Source was applied to the coating film under a nitrogen stream.
  • “HLR-100-2” manufactured by Sen Special Light Source was applied to the coating film under a nitrogen stream.
  • Table 10 shows the amount of each component used (mol amount).
  • the names and sources of the components not used in Examples 1 to 13 and Comparative Examples 1 to 5 are shown below.
  • Comparative Example 7 Preparation of cured film using radical polymerization reaction of acrylate using resin composition not containing silane coupling agent having mercapto group 1,2-diisopropyl-4,4,5,5-tetramethylbig Anidium 2- (3-benzoylphenyl) propionate [compound (A)], dipentaerythritol hexaacrylate, aluminum nitride [filler (I)], polyvinylpyrrolidone [dispersing agent] and ethyl lactate [chelating agent (F) / organic
  • the mixture containing the solvent] was kneaded for 3 minutes at a rotational speed of 2000 rpm using a planetary ball mill P-6 (manufactured by Fritsch Japan Co., Ltd.) to prepare a resin composition.
  • Comparative Example 8 Preparation of cured film using sol-gel reaction and acrylate radical polymerization reaction using resin composition containing silane coupling agent having (meth) acrylic group 1,2-diisopropyl-4,4 , 5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate [compound (A)], in a mixture of 3- (methacryloyloxy) propyltrimethoxysilane and ketoprofen, ion-exchanged water [water (D )] was added and stirred for 30 minutes to prepare a sol solution.
  • silane coupling agent having (meth) acrylic group 1,2-diisopropyl-4,4 , 5,5-tetramethylbiguanidinium 2- (3-benzoylphenyl) propionate [compound (A)]
  • water (D ) ion-exchanged water
  • the sol solution prepared above is added to a mixture of aluminum nitride [filler (I)], polyvinylpyrrolidone [dispersing agent] and ethyl lactate [chelating agent (F) and organic solvent], and planetary ball mill P- 6 (manufactured by Fritsch Japan Co., Ltd.) was kneaded for 120 minutes at a rotational speed of 300 rpm to prepare a resin composition.
  • the obtained resin composition was applied onto an aluminum plate to prepare a coating film, prebaked at 150 ° C., and then “HLR-100-2” manufactured by Sen Special Light Source was applied to the coating film under a nitrogen stream.
  • a compound having a mercapto group generally has a high affinity with various metals and is easily bonded to a metal substrate such as aluminum or copper, so that it becomes one of the factors for improving the adhesion of a cured product. It is thought that there is.
  • a cured product with high hardness and adhesion can be obtained for the first time in a curing system with a high filler filling rate. I understood.
  • Comparative Example 9 Preparation of cured film using resin composition directly added with metal hydroxide and evaluation of physical properties of obtained cured film 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium
  • 2- (3-benzoylphenyl) propionate [compound (A)], aluminum hydroxide and (3-mercaptopropyl) trimethoxysilane [silane coupling agent (C)], triallyl cyanurate [compound (H )], Aluminum nitride [filler (I)], CF-180 [dispersant] and carbitol acetate [organic solvent], and ion-exchanged water [water (D)] and carbitol acetate [organic solvent].
  • the mixed solution was added dropwise.
  • the mixture was kneaded at a rotational speed of 2000 rpm for 3 minutes using a planetary stirrer (“Shinky Co., Ltd.“ Awatori Nertaro AR-250 ”) to prepare a resin composition.
  • Table 11 shows the amount of each component used (mol amount).
  • the names and sources of the components not used in Examples 1 to 13 and Comparative Examples 1 to 8 are shown below.
  • the light or thermosetting method of the present invention can efficiently perform both sol-gelation and thiol-ene reaction or thiol-in reaction in a curing system containing (I) filler, and has desired physical properties. It is a method by which a cured product (cross-linked product / resin) having s is easily obtained.
  • a salt of a carboxylic acid and an amine is formed by light irradiation or heating.
  • a compound having a carbonyl group that generates radicals and a carboxylate group that decarboxylates to generate a base (B) aluminum alkoxide, (C) a silane coupling agent having a mercapto group, (D) water, (H)
  • a compound having two or more polymerizable unsaturated groups and (I) a filler are used in combination, and both a base and a radical are generated from the compound (A) by light irradiation or heating and reacted. I found it important.
  • water was added to perform partial condensation (solification) between the aluminum alkoxide (B) and the silane coupling agent (C) or the silane coupling agent (C). Subsequently, a condensate having a structural unit of Si—O—Al or / and Si—O—Si obtained by sol formation by generating both a base and a radical by irradiation with light (active energy rays) or heating.
  • the curable resin composition of the present invention can be filled with a large amount of filler in the composition, and has alkali developability, organic solvent resistance, hardness and adhesion. It is a useful composition capable of producing an excellent cured product (crosslinked product / resin).
  • the curable resin composition of the present invention can easily produce a cured product (crosslinked product / resin) having desired performance by irradiation with light (active energy ray) or heating, greatly increasing the productivity of the cured product. It is a useful composition that can be improved.
  • the curable resin composition of the present invention includes, for example, paints, ink materials, coating materials, adhesive materials, dental materials, resists, color filters, interlayer insulating films, thermal conductive films, thermal conductive insulating films, wiring coatings, and the like. It is useful as a resin raw material in an optical member such as a covering film or an electronic member.
  • the heat conductive substrate for forming an electronic circuit of the present invention has high heat conductivity and electrical insulation, it is useful, for example, as a heat dissipation substrate or an electrical insulation substrate for high-brightness LEDs and power semiconductors. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明は、フィラーを大量に含んでいても簡便に硬化物(架橋物・樹脂)を得ることができる光又は熱硬化方法、該硬化方法に用いられる硬化性樹脂組成物等を提供することを目的とする。 本発明は、(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水から、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物を得る工程1と、前記化合物(A)の存在下、前記縮合物(E)、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを、光照射又は加熱条件下で反応させる工程2を含む、光又は熱硬化方法;ならびに該硬化方法に用いられる硬化性樹脂組成物等に関する。

Description

光又は熱硬化方法、及び硬化性樹脂組成物
 本発明は、フィラーを含有する硬化物(架橋物・樹脂)を得るための光又は熱硬化方法、及び該硬化方法に用いられる硬化性樹脂組成物等に関する。
 照明用に需要が拡大しているハイパワーLEDデバイス、高速大容量の情報を扱うPCやタブレット端末に代表されるエレクトロニクスデバイス、また、電気自動車やハイブリッド自動車の電気モーターを司るパワー半導体等は、機器の小型化、高性能化、高密度化に伴って、素子から発生する熱が問題視されている。発生する熱は、製品のパフォーマンスや寿命に大きな影響を与えるなどの問題がある。小型化・軽量化・薄型化等の製品性能を犠牲にせず、如何にして発生する熱を効率良く放熱するかが課題となっている。
 一般的に、熱伝導率の高い材料として、金属やセラミックスが挙げられる。金属の多くは導電性を示すため、絶縁性が必要とされる電子回路にそのまま使用することは難しい。一方で、セラミックスは、電気絶縁性が高く種類が豊富なため、様々な性能の付与を期待できるが、加工性が悪く、成型処理時に高温加熱が必要であり、生産性が低い。
 また、加工性が良好という観点では、樹脂を電子回路の放熱材として使用することが考えられるが、樹脂は、金属やセラミックスと比較して熱伝導性が低く、発生する熱を逃がし難いため、そのままでは放熱材としては使用できない。このため、セラミックスのような熱伝導率の高い熱伝導性フィラーを樹脂中に充填した熱伝導性樹脂組成物を作製する試みがなされている。
 例えば、樹脂組成物全体に対してフィラーを70%以上含有させて、熱伝導率を向上させた樹脂組成物が検討されている(例えば、特許文献1、2、3等)。しかしながら、これらの樹脂組成物は、分子構造が複雑であるため多段階の合成工程が必要であったり、樹脂組成物の硬化時に長時間の高温加熱が必要であり、生産性が低いという問題がある。
 このため、樹脂組成物の硬化を加熱ではなく、光(活性エネルギー線)で硬化させる硬化方法が検討されている。光硬化は、樹脂組成物中に光開始剤を共存させておき、該樹脂組成物に光(活性エネルギー線)を照射することにより、光開始剤から、ラジカル、酸、塩基等の様々な活性種を発生させ、その活性種を利用して反応性モノマーを迅速に硬化させる手法である。
 光硬化用の樹脂組成物のうち、光照射によってラジカルを発生する樹脂組成物としては、例えば、アルミナ等の熱伝導性フィラーを(メタ)アクリル酸系高分子中に充填した樹脂組成物が知られている(例えば、特許文献4)。しかしながら、このような樹脂組成物から得られる樹脂のポリマー成分は、その大部分が(メタ)アクリル酸系ポリマーであるが故に、硬化収縮が大きく、ヒドロキシル基等のアンカー効果が乏しいため、基材への密着性が悪く、剥離が起こり易い。特に、光を散乱するフィラーが樹脂組成物中に大量に存在する場合には、光が深部まで届きにくいため、硬化性能を失って硬化が不十分となり、脆い膜となり易い。従って、このような樹脂組成物から得られる樹脂は、金属基板上の熱伝導膜としての性能を満たしているとは言い難い。
 光硬化用の樹脂組成物のうち、光照射によって強酸を発生する樹脂組成物は、ラジカルでは硬化できないエポキシ系モノマー等を樹脂原料とした組成物の硬化を実現できる。しかしながら、光照射によって強酸を発生するため、金属と接触する部分では腐食が起こり易いため、銅板等に塗布して使用することが想定される熱伝導性樹脂組成物に適用することが難しい。
 光硬化用の樹脂組成物のうち、光照射によって塩基を発生する樹脂組成物は、種々のものが知られているが、最近では、光照射によって塩基を発生させるとともにラジカルを発生させて、ゾル-ゲル化とチオール-エン反応を同時に行うことで、シリコーン含有樹脂(架橋物)を作製する方法が提案されている(例えば、特許文献5)。本方法は、低分子モノマーからビルドアップ方式で組成物を調製できるため、シリコンアルコキシドが重縮合して高分子量化する前に、フィラー等の添加剤を加えながら調製することが可能であり、基材への密着性等を上げることができる。しかしながら、本方法は、有機系の樹脂原料を一定量添加する必要があるため、組成物全体に対するフィラーの充填率の上限が限られており、得られる樹脂(架橋物)の熱伝導率が十分と言えない場合がある。
 このような状況から、複雑な構造のポリマーをあらかじめ調製したり、煩雑な操作を行うことなく、フィラーを大量に含む系においても、迅速且つ効率的に所望の性能を有する硬化物(架橋物・樹脂)を作製できる硬化方法の開発が望まれている。
特開2012-149191号公報 特開2013-127022号公報 特開2012-251100号公報 特開2000-044640号公報 国際公開第2017/131047号
 本発明は、上述した状況に鑑み成されたものであり、アルカリ現像性、基材への密着性、耐有機溶剤性等に優れ、高い強度を有する硬化物(架橋物・樹脂)を作製できる光又は熱硬化方法、並びに該硬化方法に用いられる樹脂組成物を提供することにある。
 特に、フィラーとして熱伝導性(放熱性)フィラーを用いることで、1.0W/m・K以上、好ましくは3.0W/m・K以上の熱伝導率を達成できる硬化物(架橋物・樹脂)を作製できる光又は熱硬化方法、該硬化方法に用いられる樹脂組成物、並びに該樹脂組成物から得られる硬化物を有する電子回路形成用熱伝導性基板等を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、バインダー成分として、アルミニウムアルコキシドとメルカプト基を有するシランカップリング剤を組み合わせることで、得られる硬化物(架橋物・樹脂)の硬度、基材への密着性、熱伝導率等の種々の物性が向上することを見出した。また、一般的に、アルミニウムアルコキシドは加水分解が起こり易く、空気中で容易に白化する。そのため、アルミニウムアルコキシドは、急激にゲル化が進行してしまい、フィラーとの均一混合が困難となり品質が不安定となる。しかしながら、カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物(塩基及びラジカル発生剤)は、アルミニウムアルコキシドやシランカップリング剤との相溶性が高く、無溶剤でアルミニウムアルコキシドやシランカップリング剤を溶解させることができる。そのため、該化合物は、フィラーを均一に混合でき、且つキレート能をも有しているため、上述した急激なゲル化を抑える働きがあることを本発明者らは見出した。従来の塩基発生剤の多くは油溶性であり、アルミニウムアルコキシド、水、アルコール等に対する親和性が低く、キレート能をほとんど有していない。故に、本発明者らは、フィラーを含む硬化系において、塩基及びラジカル発生剤とアルミニウムアルコキシドとメルカプト基を有するシランカップリング剤と2つ以上の重合性不飽和基を有する化合物とを組み合わせることにより、ゾル-ゲル化とチオール-エン反応又はチオール-イン反応を効率的に行うことができ、且つ所望の性能を有する硬化物(架橋物・樹脂)を作製できることを見出し、本発明を完成させるに至った。
 また、本発明の光又は熱硬化方法は、上記化合物(塩基及びラジカル発生剤)が、塩基発生剤、ラジカル発生剤及び触媒(アルミニウムアルコキシドとシランカップリング剤との反応促進剤)の3つの機能を有しているため、有機物に対して相対的にフィラーの量を多くでき、ひいては、例えば、熱伝導性樹脂、電気伝導性樹脂等の種々の特性を有する硬化物(架橋物・樹脂)を得ることができる光又は熱硬化方法である。
 本発明は、以下の構成よりなる。
 (1)(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水から、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物を得る工程1と、
前記化合物(A)の存在下、前記縮合物(E)、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを、光照射又は加熱条件下で反応させる工程2を含む、
光又は熱硬化方法。
 (2)(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水を反応させて、(E)ゾルを得る工程1と、
前記化合物(A)の存在下、光照射又は加熱により、前記ゾル(E)、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーから、硬化物を得る工程2を含む、
光又は熱硬化方法。
 (3)前記工程1が、前記化合物(A)、前記アルミニウムアルコキシド(B)、前記シランカップリング剤(C)、前記水(D)、及び(F)キレート剤から、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物を得る工程である、前記(1)に記載の硬化方法。
 (4)前記工程1が、前記化合物(A)、前記アルミニウムアルコキシド(B)、前記シランカップリング剤(C)、前記水(D)、及び(F)キレート剤を反応させて、(E)ゾルを得る工程である、前記(2)に記載の硬化方法。
 (5)前記工程2が、前記化合物(A)の存在下、前記縮合物(E)、(H)2つ以上の重合性不飽和基を有する化合物、(I)フィラー、及び(J)2つ以上のエポキシ基を有する化合物を、光照射又は加熱条件下で反応させる工程である、前記(1)又は(3)に記載の硬化方法。
 (6)前記工程2が、前記化合物(A)の存在下、光照射又は加熱により、前記ゾル(E)、(H)2つ以上の重合性不飽和基を有する化合物、(I)フィラー、及び(J)2つ以上のエポキシ基を有する化合物から、硬化物を得る工程である、前記(2)又は(4)に記載の硬化方法。
 (7)前記化合物(A)が、一般式[1]で示されるものである、前記(1)~(6)のいずれか1つに記載の硬化方法。
Figure JPOXMLDOC01-appb-I000005
(式[1]中、R~Rはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、ニトロ基又は一般式[2]で示される基を表し、R及びR10はそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子又はニトロ基を表すか、あるいはR及びR10が、酸素原子、硫黄原子又はカルボニル基を介して互いに結合していることを表す。ただし、R~Rで示される基のうちの少なくとも1つは、一般式[2]で示される基を表す。)
一般式[2]:
Figure JPOXMLDOC01-appb-I000006
(式[2]中、R11及びR12はそれぞれ独立して、水素原子、炭素数1~6のアルキル基又は炭素数1~6のヒドロキシアルキル基を表し、Z は、アミジニウムカチオン、グアニジニウムカチオン又はビグアニジニウムカチオンを表す。)
 (8)前記アルミニウムアルコキシド(B)が、一般式[6]で示されるものである、前記(1)~(7)のいずれか1つに記載の硬化方法。
Figure JPOXMLDOC01-appb-I000007
(式[6]中、3つのR32はそれぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。ただし、R32で示される基のうちの少なくとも1つは、炭素数1~4のアルキル基を表す。)
 (9)前記アルミニウムアルコキシド(B)が、アルミニウムトリ-sec-ブトキシドである、前記(1)~(7)のいずれか1つに記載の硬化方法。
 (10)前記シランカップリング剤(C)が、一般式[7]で示されるものである、前記(1)~(9)のいずれか1つに記載の硬化方法。
Figure JPOXMLDOC01-appb-I000008
(式[7]中、3つのR33はそれぞれ独立して、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、R34は、少なくとも1つのメルカプト基を有する炭素数1~8のアルキル基を表す。ただし、R33で示される基のうちの少なくとも1つは、炭素数1~4のアルコキシ基を表す。)
 (11)前記シランカップリング剤(C)が、(3-メルカプトプロピル)トリメトキシシラン、(3-メルカプトプロピル)トリエトキシシラン、及び3-メルカプトプロピル(ジメトキシ)メチルシランから選ばれるものである、前記(1)~(9)のいずれか1つに記載の硬化方法。
 (12)前記アルミニウムアルコキシド(B)と前記シランカップリング剤(C)のmol比の割合が、1:10~9:1である、前記(1)~(11)のいずれか1つに記載の硬化方法。
 (13)前記キレート剤(F)が、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジメチル、マロン酸ジエチル、2-(2-チオキサンテニル)ジエチルマロン酸、アセチルアセトン、ジアセトンアルコール、及び乳酸エチルから選ばれるものである、前記(3)~(12)のいずれか1つに記載の硬化方法。
 (14)前記フィラー(I)が、熱伝導性フィラーである、前記(1)~(13)のいずれか1つに記載の硬化方法。
 (15)前記熱伝導性フィラーが、窒化アルミニウムである、前記(14)に記載の硬化方法。
 (16)(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを含む、硬化性樹脂組成物(本発明の第1の樹脂組成物と略記する場合がある。)。
 (17)(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを含む、硬化性樹脂組成物(本発明の第2の樹脂組成物と略記する場合がある。)。
 (18)さらに、(J)2つ以上のエポキシ基を有する化合物を含む、前記(16)又は(17)に記載の樹脂組成物。
 (19)前記(16)~(18)のいずれか1つに記載の硬化性樹脂組成物から得られる硬化物を有する電子回路形成用熱伝導性基板。
 (20)前記(16)~(18)のいずれか1つに記載の硬化性樹脂組成物を、金属基板に塗布して塗布膜を得た後、該塗布膜を光照射又は加熱することにより、前記塗布膜を硬化させ、金属基板の表面に熱伝導性絶縁膜を形成することを特徴とする、電子回路形成用熱伝導性基板の作製方法。
 本発明の光又は熱硬化方法は、水を添加して、アルミニウムアルコキシド(B)とシランカップリング剤(C)又はシランカップリング剤(C)同士の部分的な縮合(ゾル化)を行った後、光(活性エネルギー線)の照射又は加熱によって、化合物(A)から塩基とラジカルの両方を発生させることにより、ゾル化で得られたSi-O-Al又は/及びSi-O-Siの構成単位を有する縮合物(E)同士の重縮合(ゲル化)と、縮合物(E)中のメルカプト基と化合物(H)中の重合性不飽和基とのチオール-エン反応又はチオール-イン反応とを同一系内で行う方法であり、ゾル-ゲル化とチオール-エン反応又はチオール-イン反応を効率的に行えるばかりでなく、フィラーを大量に含んでいても、簡便に硬化物(架橋物・樹脂)を得ることができる光又は熱硬化方法である。
 また、本発明の光又は熱硬化方法は、化合物(A)が、塩基発生剤、ラジカル発生剤及び触媒(アルミニウムアルコキシド(B)とシランカップリング剤(C)との反応促進剤)の3つの機能を有しているため、有機物に対して相対的にフィラーの量を多くでき、ひいては、例えば、熱伝導性樹脂、電気伝導性樹脂等の種々の特性を有する硬化物(架橋物・樹脂)を得ることができる光又は熱硬化方法である。
 本発明の第1の樹脂組成物は、保存安定性が高く、該組成物に水を添加して、光(活性エネルギー線)照射又は加熱することにより、アルミニウムアルコキシド(B)とシランカップリング剤(C)又はシランカップリング剤(C)同士の重縮合(ゲル化)と、チオール-エン反応又はチオール-イン反応とを同一系内で効率的に行えるばかりでなく、アルカリ現像性、基材への密着性、耐有機溶剤性等に優れる硬化物(架橋物・樹脂)が得られる有用な樹脂組成物である。
 本発明の第2の樹脂組成物は、本発明の光又は熱硬化方法における工程1を経た後に得られる樹脂組成物、すなわち、工程2に付す前の樹脂組成物であり、該組成物に光(活性エネルギー線)を照射又は加熱することにより、該組成物中で塩基とラジカルの両方が発生するため、効率的に硬化物(架橋物・樹脂)を得ることができる有用な組成物である。
 本発明の電子回路形成用熱伝導性基板は、本発明の第1又は第2の樹脂組成物から得られる硬化物(架橋物・樹脂)を有することを特徴とするものであり、フィラー(I)として熱伝導性フィラーを用いることで、熱伝導性に優れる基板となり得るものである。
 本発明の電子回路形成用熱伝導性基板の作製方法は、本発明の第1又は第2の樹脂組成物を用いることを特徴とするものであり、フィラー(I)として熱伝導性フィラーを用いることで、熱伝導性に優れるばかりでなく、アルカリ現像性、基材への密着性、耐有機溶剤性等に優れる硬化物(架橋物・樹脂)を有する基板を得ることができる有用な方法である。
 本発明において、光(活性エネルギー線)とは、波長を特定した場合を除き、可視領域の波長の電磁波(可視光線)のみならず、例えば、紫外領域の波長の電磁波(紫外線)、赤外領域の波長の電磁波(赤外線)、X線等の非可視領域の波長の電磁波が含まれる。本発明においては、光(活性エネルギー線)に対して感受性を示す塩基発生剤(活性エネルギー線の照射によって塩基を発生する塩基発生剤)を光塩基発生剤、光(活性エネルギー線)に対して感受性を示すラジカル発生剤(活性エネルギー線の照射によってラジカルを発生するラジカル発生剤)を光ラジカル発生剤と表記する場合がある。また、波長365nm、405nm、436nmの光(活性エネルギー線)をそれぞれ、i線、h線、g線と表記する場合がある。
-本発明の光又は熱硬化方法-
 本発明の光又は熱硬化方法は、
(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水から、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物を得る工程1と、
前記化合物(A)の存在下、前記縮合物(E)、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを、光照射又は加熱条件下で反応させる工程2を含む、方法である。
 すなわち、本発明の光又は熱硬化方法における工程1は、カルボン酸とアミンとの塩からなる化合物(A)が触媒(反応促進剤)として作用することで、アルミニウムアルコキシド(B)とシランカップリング剤(C)と水(D)とを反応させ、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物(E)を得る工程である。
 本発明の光又は熱硬化方法における工程2は、化合物(A)に対して光(活性エネルギー線)を照射する又は化合物(A)を加熱することで、化合物(A)から塩基とラジカルの両方を発生させることにより、工程1で得られたSi-O-Al又は/及びSi-O-Siの構成単位を有する縮合物(E)と化合物(H)とフィラー(I)とを反応させる工程である。すなわち、前記工程2は、化合物(A)から生じた塩基により、縮合物(E)中のヒドロキシル基同士もしくは縮合物(E)中のヒドロキシル基とアルコキシ基又は/及び縮合物(E)中のヒドロキシル基とフィラー(I)を反応(重縮合・ゲル化)させつつ、化合物(A)から生じたラジカルにより、縮合物(E)中のメルカプト基と化合物(H)中の重合性不飽和基を反応(チオール-エン反応又はチオール-イン反応)させて、硬化物(架橋物・樹脂)を得る工程である。なお、ここでいう硬化物(架橋物・樹脂)とは、上記縮合物(E)と化合物(H)とフィラー(I)の3成分のみを反応させて得られる硬化物(架橋物・樹脂)に限定されず、硬化物(架橋物・樹脂)中に、縮合物(E)、化合物(H)及びフィラー(I)以外の構成単位を含むことを排除しない。
 換言すれば、本発明の光又は熱硬化方法は、
(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水を反応させて、(E)ゾルを得る工程1と、
前記化合物(A)の存在下、光照射又は加熱により、前記ゾル(E)、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーから、硬化物を得る工程2を含む、方法である。
 すなわち、前記工程1は、カルボン酸とアミンとの塩からなる化合物(A)が触媒(反応促進剤)として作用することで、アルミニウムアルコキシド(B)とシランカップリング剤(C)と水(D)とが反応し、(E)ゾルを生じさせる工程である。言い換えれば、前記工程1は、上記(A)~(D)を反応させて、少なくとも上記(B)~(D)の反応物からなる(E)ゾルを得る工程である。
 前記工程2は、化合物(A)に対して光(活性エネルギー線)を照射する又は化合物(A)を加熱することで、化合物(A)から塩基とラジカルの両方を発生させることにより、工程1で得られたゾル(E)と化合物(H)とフィラー(I)とを反応させる工程である。言い換えれば、前記工程2は、化合物(A)から生じた塩基により、ゾル(E)中のヒドロキシル基同士もしくはゾル(E)中のヒドロキシル基とアルコキシ基又は/及びゾル(E)中のヒドロキシル基とフィラー(I)を反応(重縮合・ゲル化)させつつ、化合物(A)から生じたラジカルにより、ゾル(E)中のメルカプト基と化合物(H)中の重合性不飽和基を反応(チオール-エン反応又はチオール-イン反応)させて、硬化物(架橋物・樹脂)を得る工程である。なお、ここでいう硬化物(架橋物・樹脂)とは、上記ゾル(E)と化合物(H)とフィラー(I)の3成分のみを反応させて得られる硬化物(架橋物・樹脂)に限定されず、硬化物(架橋物・樹脂)中に、ゾル(E)、化合物(H)及びフィラー(I)以外の構成単位を含むことを排除しない。
 前記工程1の反応系内には、少なくとも化合物(A)、アルミニウムアルコキシド(B)、シランカップリング剤(C)及び水(D)が含まれているが、前記工程1の反応系内には、さらに化合物(H)やフィラー(I)が含まれていてもよい。化合物(A)は、光(活性エネルギー線)を照射又は加熱しない限り、塩基及びラジカルが潜在化されているため、工程1に悪影響を及ぼすことがほとんどない。また、あらかじめ化合物(H)やフィラー(I)を含有させれば、前記工程1と工程2の間で化合物(H)やフィラー(I)を添加する工程を必要とせず作業性が向上する。
 前記工程2の反応系内には、前記工程1で得られた縮合物(E)、化合物(A)、化合物(H)及びフィラー(I)が含まれており、これらの混合物を硬化性樹脂組成物と称する場合がある。
 前記工程1の反応系内には、上述した(A)~(D)及び要すれば化合物(H)やフィラー(I)以外の成分が含まれていてもよく、このような成分としては、例えば、有機溶剤、(F)キレート剤等のその他種々の添加剤等が挙げられる。また、前記工程2の反応系内には(硬化性樹脂組成物には)、上述した縮合物(E)、化合物(A)、化合物(H)及びフィラー(I)以外の成分が含まれていてもよく、このような成分としては、例えば、(J)2つ以上のエポキシ基を有する化合物、有機溶剤等のその他種々の添加剤等が挙げられる。有機溶剤は、(A)~(F)及び(H)~(I)の相溶性を向上させたり、金属基板等の固体表面(基材)への塗布性を高めて作業性を向上させることができる。なお、前記工程2には、前記工程1で使用した水(D)や未反応のアルミニウムアルコキシド(B)又は/及びシランカップリング剤(C)が含まれていてもよいことは言うまでもない。
 前記工程1の反応系内のpHは、(A)~(D)の反応(ゾル化)を円滑に進行させるために、4~8の範囲であることが好ましく、6~7の範囲であることがより好ましい。このような好ましいpHで前記工程1を実施する場合には、強酸性又は強塩基性を示す化合物を使用しないことが望ましい。
 前記工程2は、重縮合(ゲル化)と、チオール-エン反応又はチオール-イン反応を並行して進行させる工程であるが、そのうちの重縮合(ゲル化)をアルカリ条件下で行うことを特徴とする。前記工程2の光(活性エネルギー線)の照射又は加熱前は中性付近であるが、光(活性エネルギー線)を照射する又は加熱することにより、化合物(A)のカルボキシレート基が脱炭酸して塩基が発生することで、反応系内のpHがアルカリ性にシフトしてアルカリ条件となる。アルカリ性とは、通常7を越え14以下のpHを指すが、そのなかでも、pH8~14の範囲であることが好ましく、pH10~14の範囲であることがより好ましい。このような好ましいpHで前記工程2を実施する場合には、pH10~14である塩基を発生できる化合物(A)を用いればよく、前記工程2における重縮合(ゲル化)が円滑に進行し、所望の架橋密度、硬度、基材への密着性、耐有機溶剤性等を有する硬化物(架橋物・樹脂)が得られ易い。
 前記工程1は、反応生成物であるSi-O-Al又は/及びSi-O-Siの構成単位を有する縮合物(E)中にヒドロキシル基又はアルコキシ基が残存するように反応を終了させることが望ましい。縮合物(E)は、アルミニウムアルコキシド(B)やシランカップリング剤(C)の加水分解によって生成した、(B)や(C)中のヒドロキシル基が反応(重縮合)することによって得られるものであるが、(B)や(C)中のヒドロキシル基が過剰に反応(重縮合)してしまうとゲル化するおそれがある。すなわち、前記工程1は、(A)~(D)を反応(加水分解及び縮合)させてゾルを得る工程であるから、縮合物(E)中におけるヒドロキシル基又はアルコキシ基をある程度残存させてゲル化させないことが望ましい。なお、前記工程1のゾル化は、アルミニウムアルコキシド(B)とシランカップリング剤(C)に対する水の当量数、反応時間等でコントロールすることができる。なお、「縮合物(E)中におけるヒドロキシル基又はアルコキシ基をある程度残存させる」とは、アルミニウムアルコキシド(B)中の全てのアルコキシ基とシランカップリング剤(C)中の全てのアルコキシ基に対応する、縮合物(E)中のヒドロキシル基又はアルコキシ基が、通常10~90%、好ましくは30~70%残存することを意味する。
 本発明の光又は熱硬化方法における化合物(A)は、光(活性エネルギー線)又は熱に対して感受性を示す化合物である。より具体的には、化合物(A)は、通常波長100~780nm、好ましくは波長200~450nm、より好ましくは波長250~450nmの光(活性エネルギー線)を吸収して分解するか、あるいは通常80~250℃、好ましくは100~200℃、より好ましくは120~180℃の熱エネルギーを吸収して分解することによって、該化合物(A)中のカルボニル基からラジカルが発生するとともに、カルボキシレート基が脱炭酸して塩基が発生する化合物である。該化合物(A)中のカルボニル基からのラジカル発生とカルボキシレート基の脱炭酸は、必ずしも同一の波長領域の光(活性エネルギー線)又は同一温度の熱エネルギーに起因する必要はない。しかしながら、工程2は、重縮合(ゲル化)と、チオール-エン反応又はチオール-イン反応を並行して進行させる工程であるため、該化合物(A)中のカルボニル基からのラジカル発生とカルボキシレート基の脱炭酸は、同一波長領域の光(活性エネルギー線)又は同一温度の熱エネルギーに起因することが好ましい。言い換えれば、化合物(A)は、カルボニル基からのラジカル発生とカルボキシレート基の脱炭酸とが、同一の波長領域の光(活性エネルギー線)又は同一温度の熱エネルギーで進行するような感光基又は熱分解性基を有するものが好ましい。なお、化合物(A)は、上述した波長領域のなかでも、i線、h線、g線の少なくとも1つ以上の光(活性エネルギー線)に対して吸収を示すものが、汎用性の観点から好ましい。
 工程1における化合物(A)の含有量は、アルミニウムアルコキシド(B)のmol量とシランカップリング剤(C)のmol量との和((B)と(C)の総mol量)を基準に決定すればよく、アルミニウムアルコキシド(B)とシランカップリング剤(C)の総mol量に対して、通常0.001~1当量、好ましくは0.005~0.5当量、より好ましくは0.005~0.1当量である。工程1において、化合物(A)は、アルミニウムアルコキシド(B)に対する触媒(反応促進剤)として作用するため、触媒量(0.001当量)以上含んでいればよいが、工程2は、化合物(A)から塩基とラジカルを発生させて、重縮合(ゲル化)とチオール-エン反応又はチオール-イン反応を生じさせる工程であるから、化合物(A)を0.005当量以上含んでいることが好ましい。化合物(A)を0.005当量以上含有させることで、工程1から工程2にかけて化合物(A)を添加する必要がなくなり、作業性が向上するばかりでなく、工程1をより円滑に進行させることができる。
 工程2における化合物(A)の含有量は、アルミニウムアルコキシド(B)のmol量とシランカップリング剤(C)のmol量との和((B)と(C)の総mol量)を基準に決定すればよく、アルミニウムアルコキシド(B)とシランカップリング剤(C)の総mol量に対して、通常0.001~1当量、好ましくは0.005~0.5当量、より好ましくは0.005~0.1当量である。化合物(A)を0.005当量以上含有させることで、前記工程2をより円滑に進行させることができる。
 前記工程1におけるアルミニウムアルコキシド(B)の含有量は、シランカップリング剤(C)のmol量を基準に決定すればよく、シランカップリング剤(C)のmol量に対して、通常0.1~9当量、好ましくは0.2~4当量、より好ましくは0.4~2当量である。好ましい範囲の当量数、あるいはより好ましい範囲の当量数のアルミニウムアルコキシド(B)を使用することで、後述する(I)フィラーの分散安定性が高まり、硬化物(架橋物・樹脂)の硬度や熱伝導率等の諸物性をさらに向上させることができる。
 すなわち、前記工程1におけるアルミニウムアルコキシド(B)の含有量は、アルミニウムアルコキシド(B)とシランカップリング剤(C)のmol比の割合が、通常1:10~9:1、好ましくは1:5~4:1、より好ましくは1:2.5~2:1となるように設定することが望ましい。
 前記工程1における水(D)の含有量は、アルミニウムアルコキシド(B)のmol量とシランカップリング剤(C)のmol量との和((B)と(C)の総mol量)を基準に決定すればよく、アルミニウムアルコキシド(B)とシランカップリング剤(C)の総mol量に対して、通常0.01~3当量、好ましくは0.1~2当量、より好ましくは0.3~2当量である。好ましい範囲の当量数、あるいはより好ましい範囲の当量数の水(D)を使用することで、(B)や(C)中のヒドロキシル基の重縮合によるゲル化を抑制でき、ゾル化した状態で、反応をより容易に終了させ易くなる。
 前記工程1における縮合物(E)の含有量は、アルミニウムアルコキシド(B)とシランカップリング剤(C)の使用量に依存する。すなわち、工程1において、使用したシランカップリング剤(C)の全量がアルミニウムアルコキシド(B)や水(D)と反応すれば、縮合物(E)中には、シランカップリング剤(C)のmol量と同じmol量のシリル基が存在する。一方で、使用したシランカップリング剤(C)が反応しきれずに、工程1を終了した後の反応系内にシランカップリング剤(C)が残存した場合等には、縮合物(E)中には、使用したシランカップリング剤(C)のmol量よりも少ないmol量のシリル基が存在する。
 前記工程2における化合物(H)の含有量は、シランカップリング剤(C)中のメルカプト基のmol量に対して、化合物(H)中の重合性不飽和基の当量数が下記の範囲となるように決定すればよい。すなわち、シランカップリング剤(C)中のメルカプト基のmol量に対して、化合物(H)中の重合性不飽和基の当量数が、通常0.1~2当量、好ましくは0.2~1.5当量、より好ましくは0.4~1.2当量となるように、化合物(H)の含有量を決定すればよい。好ましい範囲の当量数、あるいはより好ましい範囲の当量数から算出される化合物(H)を使用することで、得られる硬化物(架橋物・樹脂)の硬度、基材への密着性、耐有機溶剤性等の諸物性をさらに向上させることができる。
 前記工程2におけるフィラー(I)の含有量は、アルミニウムアルコキシド(B)の質量とシランカップリング剤(C)の質量との和((B)と(C)の総質量)を基準に決定すればよく、アルミニウムアルコキシド(B)とシランカップリング剤(C)の総質量に対して、通常1~20倍量、好ましくは3~17倍量、より好ましくは5~15倍量である。好ましい範囲の量、あるいはより好ましい範囲の量のフィラー(I)を使用することで、得られる硬化物(架橋物・樹脂)の硬度や熱伝導率等の諸物性をさらに向上させることができる。
 前記工程1で(F)キレート剤を用いる場合、該キレート剤(F)の含有量は、アルミニウムアルコキシド(B)のmol量を基準に決定すればよく、アルミニウムアルコキシド(B)のmol量に対して、通常0.01~20当量、好ましくは0.05~10当量、より好ましくは0.1~8当量である。好ましい範囲の当量数、あるいはより好ましい範囲の当量数のキレート剤(F)を使用することで、前記工程1におけるゲル化を抑制できるため、操作性の改善とより効率的なゾル化促進が期待できる。
 前記工程2で(J)2つ以上のエポキシ基を有する化合物を用いる場合、該化合物(J)の含有量は、シランカップリング剤(C)中のメルカプト基のmol量と化合物(H)中の重合性不飽和基のmol量を基準に、化合物(J)中のエポキシ基の当量数が下記の範囲となるように決定すればよい。すなわち、シランカップリング剤(C)中のメルカプト基のmol量から化合物(H)中の重合性不飽和基のmol量を差し引いたmol量(シランカップリング剤(C)中のメルカプト基のmol量-化合物(H)中の重合性不飽和基のmol量)に対して、化合物(J)中のエポキシ基の当量数が、通常0.2~2当量、好ましくは0.5~1.5当量、より好ましくは0.8~1.2当量となるように、化合物(J)の含有量を決定すればよい。好ましい範囲の当量数、あるいはより好ましい範囲の当量数から算出される化合物(J)を使用することで、得られる硬化物(架橋物・樹脂)の硬度、基材への密着性等の諸物性をさらに向上させることができる。
 前記工程2に係る光(活性エネルギー線)は、化合物(A)が感光して、塩基とラジカルの両方を発生できる波長の光(活性エネルギー線)であれば特に制限されないが、なかでも、光(活性エネルギー線)の主波長が100~780nmの範囲内にある光(活性エネルギー線)が好ましく、光(活性エネルギー線)の主波長が200~450nmの範囲内にある光(活性エネルギー線)がより好ましく、光(活性エネルギー線)の主波長が250~450nmの範囲内にある光(活性エネルギー線)がさらに好ましい。
 また、光(活性エネルギー線)の照射量としては、前記工程2の反応において、重縮合(ゲル化)とチオール-エン反応又はチオール-イン反応が進行し、硬化物(架橋物・樹脂)が得られれば、その照射量(積算露光量)は特に制限されないが、光(活性エネルギー線)の照射量(積算露光量)は、0.1J以上が好ましく、0.5J以上がより好ましく、1J以上がさらに好ましい。光(活性エネルギー線)の照射量(積算露光量)が、1J以上であれば、架橋密度の高い硬化物(架橋物・樹脂)が得られ、ひいては、より優れた耐溶剤性を有し、且つより高い硬度を有する硬化物(架橋物・樹脂)が得られる傾向にある。
 前記工程2に係る光(活性エネルギー線)の照射は、上述した範囲に主波長を有する光(活性エネルギー線)を適宜選択し、光(活性エネルギー線)の照射量(積算露光量)が、上述した照射量(積算露光量)以上となるような時間をかけて行えばよい。なお、光(活性エネルギー線)の照射は、上述した波長の光(活性エネルギー線)を照射できる一般的な露光装置を用いて行えばよい。
 前記工程2に係る熱は、化合物(A)が熱分解して、塩基とラジカルの両方を発生できる熱エネルギーであれば特に制限されないが、例えば、熱エネルギーを温度に換算すると、通常80~250℃、好ましくは100~200℃、より好ましくは120~180℃である。
 また、加熱時間としては、前記工程2の反応において、重縮合(ゲル化)とチオール-エン反応又はチオール-イン反応が進行し、硬化物(架橋物・樹脂)が得られれば、加熱時間は特に制限されないが、加熱時間は、通常0.1~180分、好ましくは0.5~120分、より好ましくは1~90分である。加熱時間が長くなるほど、架橋密度の高い硬化物(架橋物・樹脂)が得られ、ひいては、耐溶剤性に優れ、且つ高い硬度を有する硬化物(架橋物・樹脂)が得られる傾向にあるが、生産性が低下する傾向にあるため、加熱時間は上述の範囲内で行うことが望ましい。
 前記工程2に係る熱エネルギーの付与(加熱)は、上述した範囲の温度を適宜選択し、上述した範囲の加熱時間をかけて行えばよい。また、前記工程2を熱エネルギーの付与(加熱)のみで行う場合には、工程2を遮光条件で行うことが望ましい。なお、熱エネルギーの付与は、この分野で用いられる加熱装置を用いて行えばよい。
 前記工程1は、通常-20~60℃、好ましくは0~50℃、より好ましくは10℃~40℃の温度範囲で実施すればよい。このように、前記工程1は、穏和な条件で実施することができるので、優れた光又は熱硬化方法である。
 前記工程1及び工程2は、一連の工程が滞りなく行えるような圧力範囲で実施すればよく、特に制限されないが、一般的には常圧で実施すればよい。
 前記工程1及び工程2は、所望の架橋密度、硬度、基材への密着性、耐有機溶剤性等を有する硬化物(架橋物・樹脂)が得られるように、反応時間(前記工程1及び工程2の実施時間)を設定すればよい。反応時間は、前記工程1にあっては、化合物(A)、アルミニウムアルコキシド(B)及び水(D)の含有量、キレート剤(F)の有無、反応温度、ならびに圧力等により異なり、前記工程2にあっては、光(活性エネルギー線)の波長又は/及び照射量(積算露光量)、化合物(A)、化合物(H)及びフィラー(I)の含有量、加熱温度、圧力等により異なるため一概には言えないが、例えば、前記工程1の反応時間(前記工程1の実施時間)は、通常1分~24時間、好ましくは1分~12時間、より好ましくは1分~6時間であり、例えば、前記工程2の反応時間(前記工程2の実施時間)は、通常0.1~180分、好ましくは0.5~120分、より好ましくは0.5~90分である。
 本発明の光又は熱硬化方法を利用して硬化物(架橋物・樹脂)を得る方法の具体的手法を以下に説明する。まず、(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水、ならびに必要に応じて(F)キレート剤及び/又は有機溶剤を反応容器に添加して、該アルミニウムアルコキシド(B)と該シランカップリング剤(C)と水(D)とを所定時間反応させて、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物((E)ゾル)を得る(工程1)。好ましくは、化合物(A)、アルミニウムアルコキシド(B)、及びシランカップリング剤(C)、ならびに必要に応じてキレート剤(F)及び/又は有機溶剤を含有する反応容器に水(D)を添加して、該アルミニウムアルコキシド(B)と該シランカップリング剤(C)と水(D)とを所定時間反応させて、縮合物(E)(ゾル(E))を得る(工程1)。次に、前記工程1で得られた縮合物(E)(ゾル(E))と化合物(A)を含有する組成物に、(H)2つ以上の重合性不飽和基を有する化合物及び(I)フィラーを添加し、必要に応じて(J)2つ以上のエポキシ基を有する化合物を添加した後、該組成物(硬化性樹脂組成物)に所定の波長の光(活性エネルギー線)を、所定の照射量(積算露光量)以上となるような時間で照射するか、あるいは所定の温度で所定の時間加熱して、化合物(A)から塩基とラジカルの両方を発生させる。塩基とラジカルを発生させて、縮合物(E)(ゾル(E))のゲル反応とチオール-エン反応又はチオール-イン反応を行うことで、硬化物(架橋物・樹脂)を得ることができる(工程2)。なお、上記組成物(硬化性樹脂組成物)は、種々の形状に成形させてもよく、例えば、該組成物(硬化性樹脂組成物)を金属基板等の適当な固体表面(基材)に塗布し、要すればベーク等の乾燥操作を行って塗布膜としてもよい。また、当該塗布膜に対して、所定の波長の光(活性エネルギー線)を、所定の照射量(積算露光量)以上となるような時間で照射するか、あるいは所定の温度で所定の時間加熱して、硬化物(架橋物・樹脂)を得てもよい。なお、本発明の光又は熱硬化方法を使用してパターンを形成する場合には、前記工程2における光(活性エネルギー線)照射を、適当なパターンマスクを介して行った後、適当な現像液を用いて現像処理を行うことで、適当なパターンを有する硬化物(架橋物・樹脂)を得ることができる。なお、前記工程1の段階で、(H)2つ以上の重合性不飽和基を有する化合物及び(I)フィラーを添加しても差し支えない。以上のように、本発明の光又は熱硬化方法に係る工程1と工程2は、必ずしも連続して行う必要はなく、前記工程1と工程2の間で、例えば、上述したような塗布工程、ベーク工程、乾燥工程等を行ってもよいし、前記工程1と工程2を連続して行ってもよい。
 上述した塗布工程における塗布方法、ベーク工程におけるベーク方法、乾燥工程における乾燥方法、現像工程における現像処理方法等は、公知の方法を適宜採用すればよい。例えば、上記ベーク工程が有機溶剤等の乾燥工程であって、前記工程2の加熱(熱硬化)と区別される場合のベーク温度としては、通常50~250℃、好ましくは70~200℃、より好ましくは80~160℃であり、ベーク時間としては、通常0.1~60分、好ましくは0.5~30分、より好ましくは1~10分であり、例えば、上記ベーク工程が前記工程2の加熱(熱硬化)を兼ねる場合のベーク温度としては、通常80~250℃、好ましくは100~200℃、より好ましくは120~180℃であり、ベーク時間としては、通常0.1~180分、好ましくは0.5~120分、より好ましくは1~90分である。例えば、現像工程における現像処理方法としては、例えば、本発明の光又は熱硬化方法を利用して得られた硬化物(架橋物・樹脂)をアセトンやメチルエチルケトン等の有機溶媒に10秒~5分間浸漬する方法や、該硬化物(架橋物・樹脂)を水酸化カリウムやテトラメチルアンモニウムヒドロキシド(TMAH)等を含むアルカリ水溶液に10秒~5分間浸漬する方法等が挙げられる。
 本発明の光又は熱硬化方法に係る、(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物とは、光(活性エネルギー線)又は熱に対して感受性を示す化合物である。より具体的には、化合物(A)は、光(活性エネルギー線)に対して感受性を示す基(感光基)又は熱エネルギーに対して感受性を示す基(熱分解性基)を有し、該感光基が光を吸収するか、該熱分解性基が熱を吸収することに起因して、ラジカルを発生できるカルボニル基と脱炭酸して塩基を発生するカルボキシレート基とを有するものである。このような化合物(A)の具体例としては、例えば、一般式[1]で示される化合物が挙げられる。
一般式[1]:
Figure JPOXMLDOC01-appb-I000009
(式[1]中、R~Rはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、ニトロ基又は一般式[2]で示される基を表し、R及びR10はそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子又はニトロ基を表すか、あるいはR及びR10が、酸素原子、硫黄原子又はカルボニル基を介して互いに結合していることを表す。ただし、R~Rで示される基のうちの少なくとも1つは、一般式[2]で示される基を表す。)
一般式[2]:
Figure JPOXMLDOC01-appb-I000010
(式[2]中、R11及びR12はそれぞれ独立して、水素原子、炭素数1~6のアルキル基又は炭素数1~6のヒドロキシアルキル基を表し、Z は、アミジニウムカチオン、グアニジニウムカチオン又はビグアニジニウムカチオンを表す。)
 一般式[1]におけるR~R10で示される炭素数1~12のアルキル基としては、炭素数1~6のアルキル基が好ましく、なかでも、炭素数1~4のアルキル基がより好ましく、そのなかでも、炭素数1のアルキル基がさらに好ましい。また、該アルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、sec-ノニル基、tert-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、sec-デシル基、tert-デシル基、ネオデシル基、シクロデシル基、n-ウンデシル基、シクロウンデシル基、n-ドデシル基、シクロドデシル基、ノルボルニル基(ノルボルナン-χ-イル基)、ボルニル基(ボルナン-χ-イル基)、メンチル基(メンタ-χ-イル基)、アダマンチル基、デカヒドロナフチル基等が挙げられる。これらのアルキル基のなかでも、炭素数1~6の直鎖状、分枝状もしくは環状のアルキル基が好ましく、なかでも、炭素数1~4の直鎖状、分枝状もしくは環状のアルキル基がより好ましく、そのなかでも、メチル基が特に好ましい。
 一般式[1]におけるR~R10で示される炭素数6~14のアリール基としては、単環式もしくは縮合多環式のいずれであってもよく、なかでも、炭素数6のアリール基が好ましい。このようなアリール基の具体例としては、例えば、フェニル基、ナフチル基、アントラセニル基等が挙げられる。これらのアリール基のなかでも、フェニル基が好ましい。
 一般式[1]におけるR~R10で示される炭素数7~15のアリールアルキル基としては、単環式もしくは縮合多環式のいずれであってもよく、なかでも、炭素数7のアリールアルキル基が好ましい。このようなアリールアルキル基の具体例としては、例えば、ベンジル基、フェネチル基、メチルベンジル基、フェニルプロピル基、1-メチルフェニルエチル基、フェニルブチル基、2-メチルフェニルプロピル基、テトラヒドロナフチル基、ナフチルメチル基、ナフチルエチル基、インデニル基、フルオレニル基、アントラセニルメチル基(アントリルメチル基)、フェナントレニルメチル基(フェナントリルメチル基)等が挙げられる。これらのアリールアルキル基のなかでも、ベンジル基が好ましい。
 一般式[1]におけるR~R10で示される炭素数1~12のアルコキシ基としては、炭素数1~6のアルコキシ基が好ましく、なかでも、炭素数1~4のアルコキシ基がより好ましく、そのなかでも、炭素数1のアルコキシ基がさらに好ましい。また、該アルコキシ基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、sec-ペンチルオキシ基、tert-ペンチルオキシ基、ネオペンチルオキシ基、2-メチルブトキシ基、1,2-ジメチルプロポキシ基、1-エチルプロポキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、sec-ヘキシルオキシ基、tert-ヘキシルオキシ基、ネオヘキシルオキシ基、2-メチルペンチルオキシ基、1,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチルブトキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、イソヘプチルオキシ基、sec-ヘプチルオキシ基、tert-ヘプチルオキシ基、ネオヘプチルオキシ基、シクロヘプチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、sec-オクチルオキシ基、tert-オクチルオキシ基、ネオオクチルオキシ基、2-エチルヘキシルオキシ基、シクロオクチルオキシ基、n-ノニルオキシ基、イソノニルオキシ基、sec-ノニルオキシ基、tert-ノニルオキシ基、ネオノニルオキシ基、シクロノニルオキシ基、n-デシルオキシ基、イソデシルオキシ基、sec-デシルオキシ基、tert-デシルオキシ基、ネオデシルオキシ基、シクロデシルオキシ基、n-ウンデシルオキシ基、シクロウンデシルオキシ基、n-ドデシルオキシ基、シクロドデシルオキシ基、ノルボルニルオキシ基(ノルボルナン-χ-イルオキシ基)、ボルニルオキシ基(ボルナン-χ-イルオキシ基)、メンチルオキシ基(メンタ-χ-イルオキシ基)、アダマンチルオキシ基、デカヒドロナフチルオキシ基等が挙げられる。これらのアルコキシ基のなかでも、炭素数1~6の直鎖状、分枝状もしくは環状のアルコキシ基が好ましく、なかでも、炭素数1~4の直鎖状、分枝状もしくは環状のアルコキシ基がより好ましく、そのなかでも、メトキシ基が特に好ましい。
 一般式[1]におけるR~R10で示されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、なかでも、フッ素原子及び塩素原子が好ましい。
 一般式[2]におけるR11~R12で示される炭素数1~6のアルキル基としては、炭素数1~3のアルキル基が好ましく、なかでも、炭素数1のアルキル基がより好ましい。また、該アルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基等が挙げられる。これらのアルキル基のなかでも、炭素数1~3の直鎖状、分枝状もしくは環状のアルキル基が好ましく、そのなかでも、メチル基がより好ましい。
 一般式[2]におけるR11~R12で示される炭素数1~6のヒドロキシアルキル基としては、炭素数1~3のヒドロキシアルキル基が好ましく、なかでも、炭素数1のヒドロキシアルキル基がより好ましい。また、該ヒドロキシアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、アルキル基に結合しているヒドロキシル基は、1個のみならず、2~4個等の複数個存在していてもよい。このようなヒドロキシアルキル基の具体例としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1,2-ジヒドロキシエチル基、1-ヒドロキシ-n-プロピル基、2-ヒドロキシ-n-プロピル基、3-ヒドロキシ-n-プロピル基、1-ヒドロキシ-1-メチルエチル基、1-ヒドロキシメチルエチル基、4-ヒドロキシ-n-ブチル基、5-ヒドロキシ-n-ペンチル基、6-ヒドロキシ-n-ヘキシル基等が挙げられる。これらのヒドロキシアルキル基のなかでも、炭素数1~3の直鎖状、分枝状もしくは環状のヒドロキシアルキル基が好ましく、そのなかでも、ヒドロキシメチル基がより好ましい。
 一般式[1]におけるR及びR10が、酸素原子、硫黄原子又はカルボニル基を介して互いに結合しているとは、R及びR10とで、-O-、-S-又は-C(=O)-で示される基を形成していることを意味する。
 一般式[1]におけるR及びR10が、それぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子又はニトロ基である場合、あるいは、R及びR10が、酸素原子又は硫黄原子を介して互いに結合している場合には、一般式[2]で示される基は、R、R、R及びRのいずれかに結合していることが望ましい。すなわち、R及びR10が、カルボニル基を介して互いに結合している場合には、一般式[2]で示される基は、R~Rのいずれかに結合していればよいが、R及びR10が、それ以外の基の場合には、一般式[2]で示される基は、R、R、R及びRのいずれかに結合していることが望ましい。
 一般式[1]におけるR、R、R、R及びRとしては、水素原子及び一般式[2]で示される基が好ましい。
 一般式[1]におけるR及びRとしては、水素原子が好ましい。
 一般式[1]におけるRとしては、水素原子及び一般式[2]で示される基が好ましく、なかでも、水素原子がより好ましい。
 一般式[1]におけるR及びR10としては、水素原子、あるいはR及びR10が酸素原子又は硫黄原子を介して互いに結合していることが好ましく、なかでも、水素原子、あるいはR及びR10が硫黄原子を介して互いに結合していることがより好ましい。
 一般式[2]におけるR11としては、水素原子及び炭素数1~6のアルキル基が好ましく、なかでも、炭素数1~6のアルキル基がより好ましい。
 一般式[2]におけるR12としては、水素原子及び炭素数1~6のアルキル基が好ましく、なかでも、水素原子がより好ましい。
 一般式[1]で示される化合物(A)の好ましい具体例としては、例えば、一般式[1-A]~[1-C]で示される化合物が挙げられる。
一般式[1-A]:
Figure JPOXMLDOC01-appb-I000011
(式[1-A]中、R2a、R4a、R5a及びR7aはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、ニトロ基又は前記一般式[2]で示される基を表し、R1a、R3a、R6a、R8a、R9a及びR10aはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子又はニトロ基を表す。ただし、R2a、R4a、R5a及びR7aで示される基のうちの少なくとも1つは、前記一般式[2]で示される基を表す。)
一般式[1-B]:
Figure JPOXMLDOC01-appb-I000012
(式[1-B]中、R2b、R4b、R5b及びR7bはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、ニトロ基又は前記一般式[2]で示される基を表し、R1b、R3b、R6b及びR8bはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子又はニトロ基を表し、Yは、酸素原子又は硫黄原子を表す。ただし、R2b、R4b、R5b及びR7bで示される基のうちの少なくとも1つは、前記一般式[2]で示される基を表す。)
一般式[1-C]:
Figure JPOXMLDOC01-appb-I000013
(式[1-C]中、R1c~R8cはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、ニトロ基又は前記一般式[2]で示される基を表す。ただし、R1c~R8cで示される基のうちの少なくとも1つは、前記一般式[2]で示される基を表す。)
 一般式[1-A]におけるR1a~R10a、一般式[1-B]におけるR1b~R8b及び一般式[1-C]におけるR1c~R8cで示される炭素数1~12のアルキル基の具体例としては、一般式[1]におけるR~R10で示される炭素数1~12のアルキル基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[1-A]におけるR1a~R10a、一般式[1-B]におけるR1b~R8b及び一般式[1-C]におけるR1c~R8cで示される炭素数6~14のアリール基の具体例としては、一般式[1]におけるR~R10で示される炭素数6~14のアリール基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[1-A]におけるR1a~R10a、一般式[1-B]におけるR1b~R8b及び一般式[1-C]におけるR1c~R8cで示される炭素数7~15のアリールアルキル基の具体例としては、一般式[1]におけるR~R10で示される炭素数7~15のアリールアルキル基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[1-A]におけるR1a~R10a、一般式[1-B]におけるR1b~R8b及び一般式[1-C]におけるR1c~R8cで示される炭素数1~12のアルコキシ基の具体例としては、一般式[1]におけるR~R10で示される炭素数1~12のアルコキシ基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[1-A]におけるR1a~R10a、一般式[1-B]におけるR1b~R8b及び一般式[1-C]におけるR1c~R8cで示されるハロゲン原子の具体例としては、一般式[1]におけるR~R10で示されるハロゲン原子と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[1-A]におけるR1a、R3a、R6a、R8a、R9a及びR10aとしては、水素原子が好ましい。
 一般式[1-A]におけるR2aとしては、一般式[2]で示される基が好ましい。
 一般式[1-A]におけるR4aとしては、水素原子及び一般式[2]で示される基が好ましい。
 一般式[1-A]におけるR5a及びR7aとしては、水素原子及び一般式[2]で示される基が好ましく、なかでも、水素原子がより好ましい。
 一般式[1-A]におけるR1a~R10aの好ましい組み合わせとしては、表1の<1>~<5>で示される組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-T000014
 一般式[1-B]におけるR1b、R3b、R6b及びR8bとしては、水素原子が好ましい。
 一般式[1-B]におけるR2bとしては、一般式[2]で示される基が好ましい。
 一般式[1-B]におけるR4bとしては、水素原子及び一般式[2]で示される基が好ましい。
 一般式[1-B]におけるR5b及びR7bとしては、水素原子及び一般式[2]で示される基が好ましく、なかでも、水素原子がより好ましい。
 一般式[1-B]におけるYとしては、硫黄原子が好ましい。
 一般式[1-B]におけるY及びR1b~R8bの好ましい組み合わせとしては、表2の<1>~<10>で示される組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-T000015
 一般式[1-C]におけるR1c、R2c、R4c、R5c及びR8cとしては、水素原子及び一般式[2]で示される基が好ましい。
 一般式[1-C]におけるR3c及びR6cとしては、水素原子が好ましい。
 一般式[1-C]におけるR7cとしては、水素原子及び一般式[2]で示される基が好ましく、なかでも、水素原子がより好ましい。
 一般式[1-C]におけるR1c~R8cの好ましい組み合わせとしては、表3の<1>~<11>で示される組み合わせが挙げられる。
Figure JPOXMLDOC01-appb-T000016
 一般式[1-A]で示される化合物(A)の具体例としては、例えば、式[1-A1]~[1-A10]で示される化合物が挙げられる。
式[1-A1]~[1-A10]:
Figure JPOXMLDOC01-appb-I000017
 一般式[1-B]で示される化合物(A)の具体例としては、例えば、式[1-B1]~[1-B12]で示される化合物が挙げられる。
式[1-B1]~[1-B12]:
Figure JPOXMLDOC01-appb-I000018
 一般式[1-C]で示される化合物(A)の具体例としては、例えば、式[1-C1]~[1-C14]で示される化合物が挙げられる。
式[1-C1]~[1-C14]:
Figure JPOXMLDOC01-appb-I000019
 化合物(A)としては、化合物(A)を製造する際の原料の入手容易性及び経済性の観点から、一般式[1-A]で示される化合物及び一般式[1-B]で示される化合物が好ましい。また、本発明の光又は熱硬化方法において、耐候助剤を用いる場合には、化合物(A)のなかでも、一般式[1-B]におけるYが硫黄原子である化合物が好ましい場合がある。このような化合物は、350~450nmに主波長を有する光(活性エネルギー線)に対して感受性を示すため、光(活性エネルギー線)の吸収を耐候助剤に妨害されずに、重縮合(ゲル化)とチオール-エン反応又はチオール-イン反応を円滑に進行させることができる。
 一般式[1]における、一般式[2]中のZ で示されるカチオンは、「アミジニウムカチオン、グアニジニウムカチオン又はビグアニジニウムカチオン」のいずれかのカチオンを表し、なかでも、活性プロトンを有するカチオンが好ましい。このようなカチオンの具体例としては、例えば、一般式[3]で示される「アミジニウムカチオン」、一般式[4]で示される「グアニジニウムカチオン」、一般式[5]で示される「ビグアニジニウムカチオン」が挙げられる。
一般式[3]:
Figure JPOXMLDOC01-appb-I000020
(式[3]中、R13~R17はそれぞれ独立して、水素原子又は炭素数1~12のアルキル基を表すか、あるいはR13とR17又は/及びR15とR16が、炭素数2~8のアルキレン基を介して互いに結合していることを表す。ただし、R13~R17で示される基のうちの少なくとも1つは、水素原子を表す。)
一般式[4]:
Figure JPOXMLDOC01-appb-I000021
(式[4]中、R18~R23はそれぞれ独立して、水素原子又は炭素数1~12のアルキル基を表すか、あるいはR18とR23又は/及びR19とR20が、炭素数2~4のアルキレン基を介して互いに結合していることを表す。ただし、R18~R23で示される基のうちの少なくとも1つは、水素原子を表す。)
一般式[5]:
Figure JPOXMLDOC01-appb-I000022
(式[5]中、R24~R28及びR31はそれぞれ独立して、水素原子又は炭素数1~12のアルキル基を表し、R29及びR30はそれぞれ独立して、水素原子;炭素数1~12のアルキル基;又は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基を表すか、あるいはR29とR30が、炭素数2~4のアルキレン基を介して互いに結合していることを表す。ただし、R24~R31で示される基のうちの少なくとも1つは、水素原子を表す。)
 一般式[3]におけるR13~R17で示される炭素数1~12のアルキル基の具体例としては、一般式[1]におけるR~R10で示される炭素数1~12のアルキル基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[3]における「R13とR17又は/及びR15とR16が、炭素数2~8のアルキレン基を介して互いに結合している」場合の炭素数2~8のアルキレン基としては、炭素数3~5のアルキレン基が好ましい。また、該アルキレン基としては、直鎖状もしくは分枝状のいずれであってもよく、なかでも、直鎖状のものが好ましい。このようなアルキレン基の具体例としては、例えば、ジメチレン基(エチレン基)、トリメチレン基、プロピレン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1,2-ジメチルジメチレン基(1,2-ジメチルエチレン基)、1,1-ジメチルジメチレン基(1,1-ジメチルエチレン基)、エチルジメチレン基(エチルエチレン基)、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等が挙げられる。これらのアルキレン基のなかでも、炭素数3~5の直鎖状のアルキレン基である、トリメチレン基、テトラメチレン基及びペンタメチレン基が好ましい。
 一般式[3]において、「R13とR17が、炭素数2~8のアルキレン基を介して互いに結合している」場合には、該アルキレン基と、該アルキレン基に結合する-C-N-基とで、4~10員環の環状構造を形成する。
 上記環状構造の具体例としては、例えば、ピロリジン環(テトラメチレンイミン環)、2-メチルピロリジン環、3-メチルピロリジン環、ピペリジン環(ペンタメチレンイミン環)、2-メチルピペリジン環、3-メチルピペリジン環、4-メチルピペリジン環、ヘキサメチレンイミン環、ヘプタメチレンイミン環、オクタメチレンイミン環、ノナメチレンイミン環、デカメチレンイミン環等が挙げられる。これらの環状構造のなかでも、ピロリジン環(テトラメチレンイミン環)及びヘキサメチレンイミン環が好ましい。
 一般式[3]において、「R15とR16が、炭素数2~8のアルキレン基を介して互いに結合している」場合には、該アルキレン基と、該アルキレン基に結合する-N=C-N-基とで、5~11員環の環状構造を形成する。
 上記環状構造の具体例としては、例えば、イミダゾリン環、1,4,5,6-テトラヒドロピリミジン環、4-メチルイミダゾリン環、5-メチルイミダゾリン環、1,3-ジアザ-2-シクロヘプテン環、1,4,5,6-テトラヒドロ-4-メチルピリミジン環、1,4,5,6-テトラヒドロ-5-メチルピリミジン環、1,4,5,6-テトラヒドロ-6-メチルピリミジン環、4-エチルイミダゾリン環、5-エチルイミダゾリン環、4,4-ジメチルイミダゾリン環、4,5-ジメチルイミダゾリン環、5,5-ジメチルイミダゾリン環が挙げられる。これらの環状構造のなかでも、イミダゾリン環が好ましい。
 一般式[3]におけるR13及びR17としては、炭素数1~12のアルキル基、あるいはR13とR17が炭素数2~8のアルキレン基を介して互いに結合していることが好ましく、なかでも、R13とR17が炭素数2~8のアルキレン基を介して互いに結合していることがより好ましい。
 一般式[3]におけるR14としては、水素原子及び炭素数1~12のアルキル基が好ましく、なかでも、水素原子がより好ましい。
 一般式[3]におけるR15及びR16としては、炭素数1~12のアルキル基、あるいはR15とR16が炭素数2~8のアルキレン基を介して互いに結合していることが好ましく、なかでも、R15とR16が炭素数2~8のアルキレン基を介して互いに結合していることがより好ましい。
 一般式[3]においては、R13とR17及びR15とR16とが、ともに炭素数2~8のアルキレン基を介して結合していることが好ましい。すなわち、一般式[3]で示されるアミジニウムカチオンとしては、縮合環を形成しているカチオンが好ましい。
 一般式[4]におけるR18~R23で示される炭素数1~12のアルキル基の具体例としては、一般式[1]におけるR~R10で示される炭素数1~12のアルキル基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[4]における「R18とR23又は/及びR19とR20が、炭素数2~4のアルキレン基を介して互いに結合している」場合の炭素数2~4のアルキレン基としては、炭素数3のアルキレン基が好ましい。また、該アルキレン基としては、直鎖状もしくは分枝状のいずれであってもよく、なかでも、直鎖状のものが好ましい。このようなアルキレン基の具体例としては、例えば、ジメチレン基(エチレン基)、トリメチレン基、プロピレン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1,2-ジメチルジメチレン基(1,2-ジメチルエチレン基)、1,1-ジメチルジメチレン基(1,1-ジメチルエチレン基)、エチルジメチレン基(エチルエチレン基)等が挙げられる。これらのアルキレン基のなかでも、トリメチレン基が好ましい。
 一般式[4]において、「R18とR23が、炭素数2~4のアルキレン基を介して互いに結合している」場合には、該アルキレン基と、該アルキレン基に結合する-N-C-N-基とで、5~7員環の環状構造を形成する。
 上記環状構造の具体例としては、例えば、イミダゾリジン環、ヘキサヒドロピリミジン環、4-メチルイミダゾリジン環、1,3-ジアザシクロヘプタン環、ヘキサヒドロ-4-メチルピリミジン環、ヘキサヒドロ-5-メチルピリミジン環、4-エチルイミダゾリジン環、4,4-ジメチルイミダゾリジン環、4,5-ジメチルイミダゾリジン環等が挙げられる。これらの環状構造のなかでも、ヘキサヒドロピリミジン環が好ましい。
 一般式[4]において、「R19とR20が、炭素数2~4のアルキレン基を介して互いに結合している」場合には、該アルキレン基と、該アルキレン基に結合する-N-C=N-基とで、5~7員環の環状構造を形成する。
 上記環状構造の具体例としては、例えば、イミダゾリン環、1,4,5,6-テトラヒドロピリミジン環、4-メチルイミダゾリン環、5-メチルイミダゾリン環、1,3-ジアザ-2-シクロヘプテン環、1,4,5,6-テトラヒドロ-4-メチルピリミジン環、1,4,5,6-テトラヒドロ-5-メチルピリミジン環、1,4,5,6-テトラヒドロ-6-メチルピリミジン環、4-エチルイミダゾリン環、5-エチルイミダゾリン環、4,4-ジメチルイミダゾリン環、4,5-ジメチルイミダゾリン環、5,5-ジメチルイミダゾリン環等が挙げられる。これらの環状構造のなかでも、1,4,5,6-テトラヒドロピリミジン環が好ましい。
 一般式[4]におけるR18及びR23としては、炭素数1~12のアルキル基、あるいはR18とR23が炭素数2~4のアルキレン基を介して互いに結合していることが好ましい。
 一般式[4]におけるR19及びR20としては、炭素数1~12のアルキル基、あるいはR19とR20が炭素数2~4のアルキレン基を介して互いに結合していることが好ましい。
 一般式[4]において、R18とR23が炭素数2~4のアルキレン基を介して互いに結合している場合には、R19とR20は炭素数2~4のアルキレン基を介して互いに結合していることが好ましい。すなわち、一般式[4]で示されるグアニジニウムカチオンとしては、R18とR23が互いに結合して環状構造を形成している場合には、R19とR20も互いに結合して環状構造を形成し、縮合環を形成しているカチオンが好ましい。
 一般式[4]におけるR21としては、水素原子及び炭素数1~12のアルキル基が好ましく、なかでも、水素原子がより好ましい。
 一般式[4]におけるR22としては、水素原子及び炭素数1~12のアルキル基が好ましい。
 一般式[5]におけるR24~R31で示される炭素数1~12のアルキル基の具体例としては、一般式[1]におけるR~R10で示される炭素数1~12のアルキル基と同様のものが挙げられる。
 これらのアルキル基のうち、R24~R28及びR31で示されるアルキル基については、炭素数1~6の直鎖状、分枝状もしくは環状のアルキル基が好ましく、なかでも、炭素数1~4の直鎖状、分枝状もしくは環状のアルキル基がより好ましく、そのなかでも、メチル基が特に好ましい。これらの好ましい具体例としては、一般式[1]におけるR~R10で示される好ましいアルキル基と同様のものが挙げられる。
 また、R29及びR30で示されるアルキル基については、炭素数2~8の直鎖状、分枝状もしくは環状のアルキル基が好ましく、なかでも、炭素数3~6の直鎖状、分枝状もしくは環状のアルキル基がより好ましく、そのなかでも、炭素数3~6の分枝状もしくは環状のアルキル基が特に好ましい。
 一般式[5]におけるR24~R27としては、炭素数1~12のアルキル基が好ましく、なかでも、R24~R27のすべてが、炭素数1~12のアルキル基であることがより好ましい。
 一般式[5]におけるR28及びR31としては、水素原子が好ましく、なかでも、R28及びR31の両方が、水素原子であることがより好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における「置換基を有していてもよい炭素数6~14のアリール基」とは、置換基を有さない炭素数6~14のアリール基と置換基を有する炭素数6~14のアリール基の両方を含むことを意味する。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基としては、単環式もしくは縮合多環式のいずれであってもよく、なかでも、炭素数6のアリール基が好ましい。このようなアリール基の具体例としては、例えば、フェニル基、ナフチル基、アントラセニル基等が挙げられる。これらのアリール基のなかでも、フェニル基が好ましい。なお、ここで示されるアリール基の炭素数は、該アリール基を構成する炭素数を意味し、置換基を構成する炭素数は、「炭素数6~14のアリール基」における「炭素数6~14」で示される炭素数には含まない。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数1~6のアルキル基としては、炭素数1~3のアルキル基が好ましい。また、該アルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基等が挙げられる。これらのアルキル基のなかでも、炭素数1~3の直鎖状、分枝状もしくは環状のアルキル基が好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数1~6のアルコキシ基としては、炭素数1~3のアルコキシ基が好ましい。また、該アルコキシ基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、sec-ペンチルオキシ基、tert-ペンチルオキシ基、ネオペンチルオキシ基、2-メチルブトキシ基、1,2-ジメチルプロポキシ基、1-エチルプロポキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、sec-ヘキシルオキシ基、tert-ヘキシルオキシ基、ネオヘキシルオキシ基、2-メチルペンチルオキシ基、1,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチルブトキシ基、シクロヘキシルオキシ基等が挙げられる。これらのアルコキシ基のなかでも、炭素数1~3の直鎖状、分枝状もしくは環状のアルコキシ基が好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数1~6のアルキルチオ基としては、炭素数1~3のアルキルチオ基が好ましい。また、該アルキルチオ基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルキルチオ基の具体例としては、例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、シクロプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、シクロブチルチオ基、n-ペンチルチオ基、イソペンチルチオ基、sec-ペンチルチオ基、tert-ペンチルチオ基、ネオペンチルチオ基、2-メチルブチルチオ基、1,2-ジメチルプロピルチオ基、1-エチルプロピルチオ基、シクロペンチルチオ基、n-ヘキシルチオ基、イソヘキシルチオ基、sec-ヘキシルチオ基、tert-ヘキシルチオ基、ネオヘキシルチオ基、2-メチルペンチルチオ基、1,2-ジメチルブチルチオ基、2,3-ジメチルブチルチオ基、1-エチルブチルチオ基、シクロヘキシルチオ基等が挙げられる。これらのアルキルチオ基のなかでも、炭素数1~3の直鎖状、分枝状もしくは環状のアルキルチオ基が好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数2~12のジアルキルアミノ基としては、炭素数2~6のジアルキルアミノ基が好ましい。また、該ジアルキルアミノ基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなジアルキルアミノ基の具体例としては、例えば、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジ-n-プロピルアミノ基、N,N-ジイソプロピルアミノ基、N,N-ジシクロプロピルアミノ基、N,N-ジ-n-ブチルアミノ基、N,N-ジイソブチルアミノ基、N,N-ジ-sec-ブチルアミノ基、N,N-ジ-tert-ブチルアミノ基、N,N-ジシクロブチルアミノ基、N,N-ジ-n-ペンチルアミノ基、N,N-ジイソペンチルアミノ基、N,N-ジ-sec-ペンチルアミノ基、N,N-ジ-tert-ペンチルアミノ基、N,N-ジネオペンチルアミノ基、N,N-ジ(2-メチルブチル)アミノ基、N,N-ビス(1,2-ジメチルプロピル)アミノ基、N,N-ジ(1-エチルプロピル)アミノ基、N,N-ジシクロペンチルアミノ基、N,N-ジ-n-ヘキシルアミノ基、N,N-ジイソヘキシルアミノ基、N,N-ジ-sec-ヘキシルアミノ基、N,N-ジ-tert-ヘキシルアミノ基、N,N-ジネオヘキシルアミノ基、N,N-ジ(2-メチルペンチル)アミノ基、N,N-ビス(1,2-ジメチルブチル)アミノ基、N,N-ビス(2,3-ジメチルブチル)アミノ基、N,N-ジ(1-エチルブチル)アミノ基、N,N-ジシクロヘキシルアミノ基、N,N-エチルメチルアミノ基、N,N-メチル-n-プロピルアミノ基、N,N-メチルイソプロピルアミノ基、N,N-メチルシクロプロピルアミノ基、N,N-n-ブチルメチルアミノ基、N,N-イソブチルメチルアミノ基、N,N-sec-ブチルメチルアミノ基、N,N-tert-ブチルメチルアミノ基、N,N-シクロブチルメチルアミノ基、N,N-メチル-n-ペンチルアミノ基、N,N-n-ヘキシルメチルアミノ基、N,N-n-ヘプチルメチルアミノ基、N,N-メチル-n-オクチルアミノ基、N,N-メチル-n-ノニルアミノ基、N,N-n-デシルメチルアミノ基、N,N-メチル-n-ウンデシルアミノ基、N,N-エチル-n-プロピルアミノ基、N,N-エチルイソプロピルアミノ基、N,N-エチルシクロプロピルアミノ基、N,N-n-ブチルエチルアミノ基、N,N-イソブチルエチルアミノ基、N,N-sec-ブチルエチルアミノ基、N,N-tert-ブチルエチルアミノ基、N,N-シクロブチルエチルアミノ基、N,N-エチル-n-ペンチルアミノ基、N,N-エチル-n-ヘキシルアミノ基、N,N-エチル-n-ヘプチルアミノ基、N,N-エチル-n-オクチルアミノ基、N,N-エチル-n-ノニルアミノ基、N,N-エチル-n-デシルアミノ基、N,N-n-プロピルイソプロピルアミノ基、N,N-n-プロピルシクロプロピルアミノ基、N,N-n-ブチル-n-プロピルアミノ基、N,N-イソブチル-n-プロピルアミノ基、N,N-sec-ブチル-n-プロピルアミノ基、N,N-tert-ブチル-n-プロピルアミノ基、N,N-シクロブチル-n-プロピルアミノ基、N,N-n-ペンチル-n-プロピルアミノ基、N,N-n-ヘキシル-n-プロピルアミノ基、N,N-n-ヘプチル-n-プロピルアミノ基、N,N-n-オクチル-n-プロピルアミノ基、N,N-n-ノニル-n-プロピルアミノ基、N,N-イソプロピルシクロプロピルアミノ基、N,N-n-ブチルイソプロピルアミノ基、N,N-イソブチルイソプロピルアミノ基、N,N-sec-ブチルイソプロピルアミノ基、N,N-tert-ブチルイソプロピルアミノ基、N,N-シクロブチルイソプロピルアミノ基、N,N-n-ペンチルイソプロピルアミノ基、N,N-n-ヘキシルイソプロピルアミノ基、N,N-n-ヘプチルイソプロピルアミノ基、N,N-n-オクチルイソプロピルアミノ基、N,N-n-ノニルイソプロピルアミノ基、N,N-n-ブチルシクロプロピルアミノ基、N,N-イソブチルシクロプロピルアミノ基、N,N-sec-ブチルシクロプロピルアミノ基、N,N-tert-ブチルシクロプロピルアミノ基、N,N-シクロブチルシクロプロピルアミノ基、N,N-n-ペンチルシクロプロピルアミノ基、N,N-n-ヘキシルシクロプロピルアミノ基、N,N-n-ヘプチルシクロプロピルアミノ基、N,N-n-オクチルシクロプロピルアミノ基、N,N-n-ノニルシクロプロピルアミノ基、N,N-n-ブチルイソブチルアミノ基、N,N-n-ブチル-sec-ブチルアミノ基、N,N-n-ブチル-tert-ブチルアミノ基、N,N-n-ブチルシクロブチルアミノ基、N,N-n-ブチル-n-ペンチルアミノ基、N,N-n-ブチル-n-ヘキシルアミノ基、N,N-n-ブチル-n-ヘプチルアミノ基、N,N-n-ブチル-n-オクチルアミノ基、N,N-イソブチル-sec-ブチルアミノ基、N,N-イソブチル-tert-ブチルアミノ基、N,N-イソブチルシクロブチルアミノ基、N,N-イソブチル-n-ペンチルアミノ基、N,N-イソブチル-n-ヘキシルアミノ基、N,N-イソブチル-n-ヘプチルアミノ基、N,N-イソブチル-n-オクチルアミノ基、N,N-sec-ブチル-tert-ブチルアミノ基、N,N-sec-ブチルシクロブチルアミノ基、N,N-sec-ブチル-n-ペンチルアミノ基、N,N-sec-ブチル-n-ヘキシルアミノ基、N,N-sec-ブチル-n-ヘプチルアミノ基、N,N-sec-ブチル-n-オクチルアミノ基、N,N-tert-ブチルシクロブチルアミノ基、N,N-tert-ブチル-n-ペンチルアミノ基、N,N-tert-ブチル-n-ヘキシルアミノ基、N,N-tert-ブチル-n-ヘプチルアミノ基、N,N-tert-ブチル-n-オクチルアミノ基、N,N-シクロブチル-n-ペンチルアミノ基、N,N-シクロブチル-n-ヘキシルアミノ基、N,N-シクロブチル-n-ヘプチルアミノ基、N,N-シクロブチル-n-オクチルアミノ基、N,N-n-ヘキシル-n-ペンチルアミノ基、N,N-n-ヘプチル-n-ペンチルアミノ基等が挙げられる。これらのジアルキルアミノ基のなかでも、炭素数2~6の直鎖状、分枝状もしくは環状のジアルキルアミノ基が好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、なかでも、フッ素原子及び塩素原子が好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基」としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ハロゲン原子及びニトロ基が好ましく、なかでも、炭素数1~6のアルキル基及び炭素数1~6のアルコキシ基がより好ましく、そのなかでも、炭素数1~6のアルキル基がさらに好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基上の置換基の数としては、0(無置換)~9の整数が挙げられ、なかでも、0(無置換)~5の整数が好ましく、そのなかでも、0(無置換)~2の整数がより好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基がフェニル基である場合、フェニル基上の置換基の置換位置は、2位~6位のいずれでもよく、なかでも、2位、4位又は6位が好ましく、そのなかでも、2位又は6位がより好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基がナフチル基である場合、R29又はR30に結合する窒素原子のナフチル基上の結合位置は、1位又は2位のいずれでもよい。
 上記ナフチル基において、ナフチル基上の置換基の置換位置は、1位~8位のいずれでもよく、なかでも、1位~4位が好ましい。ただし、R29又はR30に結合する窒素原子との結合位置と重複しない。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基がアントラセニル基である場合、R29又はR30に結合する窒素原子のアントラセニル基上の結合位置は、1位、2位又は9位のいずれでもよく、9位が好ましい。
 上記アントラセニル基において、R29又はR30に結合する窒素原子のアントラセニル基上の結合位置が1位又は2位の場合、アントラセニル基上の置換基の置換位置は、1位~10位のいずれでもよく、なかでも、1位~4位が好ましい。ただし、R29又はR30に結合する窒素原子との結合位置と重複しない。
 上述したアントラセニル基において、R29又はR30に結合する窒素原子のアントラセニル基上の結合位置が9位の場合、アントラセニル基上の置換基の置換位置は、1位~8位又は10位のいずれでもよく、なかでも、10位が好ましい。
 一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」の具体例としては、例えば、フェニル基、ナフチル基、アントラセニル基等の置換基を有さない(無置換の)炭素数6~14のアリール基;例えば、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2,6-ジメチルフェニル基、2,4,6-トリメチルフェニル基、2,6-ジエチルフェニル基、2,6-ジ-n-プロピルフェニル基、2,6-ジイソプロピルフェニル基、1-(2-メチル)ナフチル基、2-(1-メチル)ナフチル基、9-(10-メチル)アントラセニル基等の炭素数1~6のアルキル基で置換されている(炭素数1~6のアルキル基を有する)炭素数6~14のアリール基;例えば、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、2,6-ジメトキシフェニル基、2,4,6-トリメトキシフェニル基、2,6-ジエトキシフェニル基、2,6-ジ-n-プロポキシフェニル基、2,6-ジイソプロポキシフェニル基、1-(2-メトキシ)ナフチル基、2-(1-メトキシ)ナフチル基、9-(10-メトキシ)アントラセニル基等の炭素数1~6のアルコキシ基で置換されている(炭素数1~6のアルコキシ基を有する)炭素数6~14のアリール基;例えば、2-メチルチオフェニル基、3-メチルチオフェニル基、4-メチルチオフェニル基、2,4-ジメチルチオフェニル基、2,6-ジメチルチオフェニル基、2,4,6-トリメチルチオフェニル基、2,6-ジエチルチオフェニル基、2,6-ジ-n-プロピルチオフェニル基、2,6-ジイソプロピルチオフェニル基、1-(2-メチルチオ)ナフチル基、2-(1-メチルチオ)ナフチル基、9-(10-メチルチオ)アントラセニル基等の炭素数1~6のアルキルチオ基で置換されている(炭素数1~6のアルキルチオ基を有する)炭素数6~14のアリール基;例えば、2-(N,N-ジメチルアミノ)フェニル基、3-(N,N-ジメチルアミノ)フェニル基、4-(N,N-ジメチルアミノ)フェニル基、2,4-ビス(N,N-ジメチルアミノ)フェニル基、2,6-ビス(N,N-ジメチルアミノ)フェニル基、2,4,6-トリス(N,N-ジメチルアミノ)フェニル基、2,6-ビス(N,N-ジエチルアミノ)フェニル基、2,6-ビス(N,N-ジ-n-プロピルアミノ)フェニル基、2,6-ビス(N,N-ジイソプロピルアミノ)フェニル基、1-[2-(N,N-ジメチルアミノ)]ナフチル基、2-[1-(N,N-ジメチルアミノ)]ナフチル基、9-[10-(N,N-ジメチルアミノ)]アントラセニル基等の炭素数2~12のジアルキルアミノ基で置換されている(炭素数2~12のジアルキルアミノ基を有する)炭素数6~14のアリール基;例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,6-ジクロロフェニル基、2,6-ジブロモフェニル基、2,6-ジヨードフェニル基、1-(2-フルオロ)ナフチル基、2-(1-フルオロ)ナフチル基、9-(10-フルオロ)アントラセニル基等のハロゲン原子で置換されている(ハロゲン原子を有する)炭素数6~14のアリール基;例えば、2-ニトロフェニル基、3-ニトロフェニル基、4-ニトロフェニル基、2,4-ジニトロフェニル基、2,6-ジニトロフェニル基、2,4,6-トリニトロフェニル基、1-(2-ニトロ)ナフチル基、2-(1-ニトロ)ナフチル基、9-(10-ニトロ)アントラセニル基等のニトロ基で置換されている(ニトロ基を有する)炭素数6~14のアリール基等が挙げられる。これらの炭素数6~14のアリール基のなかでも、置換基を有さない(無置換の)炭素数6~14のアリール基;炭素数1~6のアルキル基で置換されている(炭素数1~6のアルキル基を有する)炭素数6~14のアリール基;炭素数1~6のアルコキシ基で置換されている(炭素数1~6のアルコキシ基を有する)炭素数6~14のアリール基;ハロゲン原子で置換されている(ハロゲン原子を有する)炭素数6~14のアリール基;及び、ニトロ基で置換されている(ニトロ基を有する)炭素数6~14のアリール基が好ましく、なかでも、置換基を有さない(無置換の)炭素数6~14のアリール基;炭素数1~6のアルキル基で置換されている(炭素数1~6のアルキル基を有する)炭素数6~14のアリール基;及び、炭素数1~6のアルコキシ基で置換されている(炭素数1~6のアルコキシ基を有する)炭素数6~14のアリール基がより好ましく、そのなかでも、置換基を有さない(無置換の)炭素数6~14のアリール基;及び、炭素数1~6のアルキル基で置換されている(炭素数1~6のアルキル基を有する)炭素数6~14のアリール基がさらに好ましい。なお、上述の具体例において、炭素数6~14のアリール基に置換する「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基及び炭素数2~12のジアルキルアミノ基」におけるアルキル基、アルコキシ基、アルキルチオ基及びジアルキルアミノ基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体等の環状のものも上述した具体例に含まれる。また、上述した置換基を構成する炭素数は、置換基ごとの炭素数を意味し、置換基が複数個存在する場合の総炭素数を意味しない。
 一般式[5]における「R29とR30が、炭素数2~4のアルキレン基を介して互いに結合している」場合の炭素数2~4のアルキレン基としては、炭素数2のアルキレン基が好ましい。また、該アルキレン基としては、直鎖状もしくは分枝状のいずれであってもよい。このようなアルキレン基の具体例としては、例えば、ジメチレン基(エチレン基)、トリメチレン基、プロピレン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1,2-ジメチルジメチレン基(1,2-ジメチルエチレン基)、1,1-ジメチルジメチレン基(1,1-ジメチルエチレン基)、エチルジメチレン基(エチルエチレン基)等が挙げられる。これらのアルキレン基のなかでも、ジメチレン基(エチレン基)が好ましい。
 一般式[5]において、「R29とR30が、炭素数2~4のアルキレン基を介して互いに結合している」場合には、該アルキレン基と、該アルキレン基に結合する-N-C=N-基とで、5~7員環の環状構造を形成する。
 上記環状構造の具体例としては、例えば、イミダゾリン環、1,4,5,6-テトラヒドロピリミジン環、4-メチルイミダゾリン環、5-メチルイミダゾリン環、1,3-ジアザ-2-シクロヘプテン環、1,4,5,6-テトラヒドロ-4-メチルピリミジン環、1,4,5,6-テトラヒドロ-5-メチルピリミジン環、1,4,5,6-テトラヒドロ-6-メチルピリミジン環、4-エチルイミダゾリン環、5-エチルイミダゾリン環、4,4-ジメチルイミダゾリン環、4,5-ジメチルイミダゾリン環、5,5-ジメチルイミダゾリン環が挙げられる。これらの環状構造のなかでも、イミダゾリン環が好ましい。
 上述した一般式[3]で示されるアミジニウムカチオンの具体例としては、例えば、式[3-1]~[3-2]で示されるカチオンが挙げられる。
式[3-1]~[3-2]:
Figure JPOXMLDOC01-appb-I000023
 上述した一般式[4]で示されるグアニジニウムカチオンの具体例としては、例えば、式[4-1]~[4-3]で示されるカチオンが挙げられる。
式[4-1]~[4-3]:
Figure JPOXMLDOC01-appb-I000024
 上述した一般式[5]で示されるビグアニジニウムカチオンの具体例としては、例えば、式[5-1]~[5-7]で示されるカチオンが挙げられる。
式[5-1]~[5-7]:
Figure JPOXMLDOC01-appb-I000025
 上述したZ で示されるカチオンのなかでも、強塩基を発生できるビグアニジニウムカチオンが好ましい。このようなビグアニジニウムカチオンを有する化合物(A)は、強塩基であるビグアニドを発生できるため、本発明の光又は熱硬化方法において、所望の架橋密度、硬度、基材への密着性、耐有機溶剤性等を有する硬化物(架橋物・樹脂)が得られ易い。
 一般式[5]で示されるビグアニジニウムカチオンのなかでも、一般式[5']で示されるビグアニジニウムカチオンが好ましい。
一般式[5']:
Figure JPOXMLDOC01-appb-I000026
(式[5']中、R24'~R28'及びR31'はそれぞれ独立して、水素原子又は炭素数1~6のアルキル基を表し、R29'及びR30'はそれぞれ独立して、炭素数2~8のアルキル基;又は炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基を表す。ただし、R24'~R28'及びR31'で示される基のうちの少なくとも1つは、水素原子を表す。)
 一般式[5']におけるR24'~R28'及びR31'で示される炭素数1~6のアルキル基の具体例としては、一般式[5]におけるR24~R28及びR31で示される炭素数1~6のアルキル基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[5']におけるR24'~R27'としては、炭素数1~6のアルキル基が好ましい。
 一般式[5']におけるR28'及びR31'としては、水素原子が好ましく、なかでも、R28'及びR31'の両方が、水素原子であることがより好ましい。
 一般式[5']におけるR29'及びR30'で示される炭素数2~8のアルキル基の具体例としては、一般式[5]におけるR29及びR30で示される炭素数2~8のアルキル基と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基」における「置換基を有していてもよいフェニル基」とは、置換基を有さないフェニル基と置換基を有するフェニル基の両方を含むことを意味する。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基」における炭素数1~3のアルキル基の具体例としては、一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数1~6のアルキル基の好ましい具体例である炭素数1~3のアルキル基と同様のものが挙げられる。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基」における炭素数1~3のアルコキシ基の具体例としては、一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数1~6のアルコキシ基の好ましい具体例である炭素数1~3のアルコキシ基と同様のものが挙げられる。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基」におけるハロゲン原子の具体例としては、一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」におけるハロゲン原子と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基」としては、炭素数1~3のアルキル基及び炭素数1~3のアルコキシ基が好ましく、なかでも、炭素数1~3のアルキル基がより好ましい。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基」におけるフェニル基上の置換基の数としては、0(無置換)~5の整数が挙げられ、なかでも、0(無置換)~2の整数が好ましい。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基」におけるフェニル基において、フェニル基上の置換基の置換位置としては、一般式[5]におけるR29及びR30で示される「炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数2~12のジアルキルアミノ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基がフェニル基である場合におけるフェニル基上の置換基の置換位置と同様であり、好ましい置換位置、より好ましい置換位置も同様である。
 一般式[5']におけるR29'及びR30'で示される「炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、ハロゲン原子及びニトロ基からなる群から選ばれる置換基を有していてもよいフェニル基」の具体例としては、例えば、フェニル基等の置換基を有さない(無置換の)フェニル基;例えば、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2,6-ジメチルフェニル基、2,4,6-トリメチルフェニル基、2,6-ジエチルフェニル基、2,6-ジ-n-プロピルフェニル基、2,6-ジイソプロピルフェニル基等の炭素数1~3のアルキル基で置換されている(炭素数1~3のアルキル基を有する)フェニル基;例えば、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、2,6-ジメトキシフェニル基、2,4,6-トリメトキシフェニル基、2,6-ジエトキシフェニル基、2,6-ジ-n-プロポキシフェニル基、2,6-ジイソプロポキシフェニル基等の炭素数1~3のアルコキシ基で置換されている(炭素数1~3のアルコキシ基を有する)フェニル基;例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,6-ジクロロフェニル基、2,6-ジブロモフェニル基、2,6-ジヨードフェニル基等のハロゲン原子で置換されている(ハロゲン原子を有する)フェニル基;例えば、2-ニトロフェニル基、3-ニトロフェニル基、4-ニトロフェニル基、2,4-ジニトロフェニル基、2,6-ジニトロフェニル基、2,4,6-トリニトロフェニル基等のニトロ基で置換されている(ニトロ基を有する)フェニル基等が挙げられる。これらのフェニル基のなかでも、置換基を有さない(無置換の)フェニル基;炭素数1~3のアルキル基で置換されている(炭素数1~3のアルキル基を有する)フェニル基;及び、炭素数1~3のアルコキシ基で置換されている(炭素数1~3のアルコキシ基を有する)フェニル基が好ましく、なかでも、置換基を有さない(無置換の)フェニル基;及び、炭素数1~3のアルキル基で置換されている(炭素数1~3のアルキル基を有する)フェニル基がより好ましい。なお、上述した置換基を構成する炭素数は、置換基ごとの炭素数を意味し、置換基が複数個存在する場合の総炭素数を意味しない。例えば、2,6-ジイソプロピルフェニル基及び2,6-ジイソプロポキシフェニル基を例に挙げると、これらは、炭素数3のアルキル基又はアルコキシ基で置換されている(炭素数3のアルキル基又はアルコキシ基を有する)フェニル基に該当するが、イソプロピル基又はイソプロポキシ基を2つ有しているため、置換基の総炭素数としては6となる。
 一般式[5']におけるR29'及びR30'としては、炭素数1~6のアルキル基が好ましい。
 上述した一般式[5']で示されるビグアニジニウムカチオンの具体例としては、例えば、前記式[5-1]~[5-5]及び式[5-7]で示されるカチオンが挙げられる。
 ビグアニジニウムカチオンのなかでも、一般式[5']で示されるビグアニジニウムカチオンを有する化合物(A)は、本発明の光又は熱硬化方法における光(活性エネルギー線)の照射において、露光部(光を照射した部分)と未露光部(光を照射していない部分)とのコントラスト比をより高くできる。
 上述した一般式[5']で示されるビグアニジニウムカチオンを有する化合物(A)の具体例としては、例えば、式[1-1]~[1-7]で示される化合物が挙げられる。
式[1-1]~[1-7]:
Figure JPOXMLDOC01-appb-I000027
 本発明の光又は熱硬化方法に係る化合物(A)は、市販のものや、例えば、国際公開第2014/208632号、Macromolecules 2012, 45, 2219-2224.、J. Am. Chem. Soc., 2001, 123, 7996-8002.、J. Org. Chem., 2002, 67, 2, 541-555.等に記載の公知の方法によって適宜合成したものを用いればよい。これらの化合物(A)の製造方法の具体例としては、例えば、チオサリチル酸誘導体とm-フェニレンジ酢酸誘導体を硫酸中で反応させてスルフィドとし、引き続き、加熱条件下で反応させることにより、Friedel-Craftsアシル化型の脱水閉環反応が進行し、チオキサントン環上に酢酸ユニットを2つ有する化合物を合成する。また、別法として、ベンゾフェノン環、キサントン環、チオキサントン環又はアントラキノン環上の芳香環を構成する炭素原子上に、1又は複数のハライドを有する化合物に対して、マロン酸エステル、パラジウム触媒、ホスフィンリガンド及び塩基(例えば、リン酸三カリウム等)を加えて、トルエン中、加熱条件下で反応させることにより、芳香環のハライドの位置にマロン酸ユニットを選択的に導入した化合物を合成する。次いで、得られたマロン酸エステル誘導体に、必要に応じて様々な塩基と求電子剤(例えばアルキルハライド、アルデヒド等)を反応させることにより炭素鎖を導入した後、マロン酸エステルを加水分解する。さらに、これらの化合物に対し、一般式[2]におけるZ の元となる、アミジン、グアニジン又はビグアニドから選ばれる塩基を反応させて塩を形成させることにより合成することができる。
 本発明の光又は熱硬化方法に係る化合物(A)は、塩基発生剤やラジカル発生剤として作用するだけでなく、工程1における触媒(アルミニウムアルコキシド(B)とシランカップリング剤(C)との反応促進剤)としても作用する。工程1において、化合物(A)が触媒として作用した場合における活性化体の推定構造の一例を以下に示す。
一般式[G-1]~[G-2]:
Figure JPOXMLDOC01-appb-I000028
(式[G-1]~[G-2]中、R、R~R10及びR24~R30は、前記に同じ。)
 本発明の光又は熱硬化方法に係るアルミニウムアルコキシド(B)とは、本発明の光又は熱硬化方法において、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物((E)ゾル)の原料となるものであって、水(D)の存在下で、シランカップリング剤(C)と縮合反応(ゾル化)を生じさせる少なくとも1つのアルコキシ基を有するアルミニウム化合物である。
 このようなアルミニウムアルコキシド(B)の具体例としては、例えば、一般式[6]で示されるアルミニウムアルコキシドが挙げられる。
一般式[6]:
Figure JPOXMLDOC01-appb-I000029
(式[6]中、3つのR32はそれぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。ただし、R32で示される基のうちの少なくとも1つは、炭素数1~4のアルキル基を表す。)
 一般式[6]におけるR32で示される炭素数1~4のアルキル基としては、炭素数2~4のアルキル基が好ましく、なかでも、炭素数3~4のアルキル基がより好ましく、そのなかでも、炭素数4のアルキル基が特に好ましい。また、該アルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、分枝状のものが好ましい。このようなアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が挙げられる。これらのアルキル基のなかでも、炭素数2~4の直鎖状、分枝状もしくは環状のアルキル基が好ましく、そのなかでも、炭素数3~4の分枝状のアルキル基がより好ましく、sec-ブチル基が特に好ましい。
 一般式[6]におけるR32としては、3つのR32のうち、少なくとも2つのR32が、炭素数1~4のアルキル基であることが好ましく、なかでも、3つのR32のすべてが、炭素数1~4のアルキル基であることがより好ましい。
 一般式[6]で示されるアルミニウムアルコキシド(B)の具体例としては、例えば、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリ-n-プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリシクロプロポキシド、アルミニウムトリ-n-ブトキシド、アルミニウムトリイソブトキシド、アルミニウムトリ-sec-ブトキシド、アルミニウムトリ-tert-ブトキシド、アルミニウムトリシクロブトキシド等が挙げられる。これらのアルミニウムアルコキシドのなかでも、アルミニウムトリ-sec-ブトキシドが、大気中での加水分解が起こりにくく、液状で扱いやすいという点で好ましい。なお、これらのアルミニウムアルコキシド(B)は、1種類のアルミニウムアルコキシドを単独で用いてもよいし、2種以上のアルミニウムアルコキシドを組み合わせて用いてもよい。
 本発明の光又は熱硬化方法に係るシランカップリング剤(C)とは、本発明の光又は熱硬化方法において、(E)アルミニウムアルコキシド由来のアルミニウムと、メルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物((E)ゾル)の原料となるものであって、水(D)の存在下で、シランカップリング剤(C)と縮合反応(ゾル化)を生じさせる少なくとも1つのアルコキシシリル基と、チオール-エン反応又はチオール-イン反応を生じさせる少なくとも1つのメルカプト基を有するシランカップリング剤である。
 このようなシランカップリング剤(C)の具体例としては、例えば、一般式[7]で示されるシランカップリング剤が挙げられる。
一般式[7]:
Figure JPOXMLDOC01-appb-I000030
(式[7]中、3つのR33はそれぞれ独立して、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、R34は、少なくとも1つのメルカプト基を有する炭素数1~8のアルキル基を表す。ただし、R33で示される基のうちの少なくとも1つは、炭素数1~4のアルコキシ基を表す。)
 一般式[7]におけるR33で示される炭素数1~4のアルキル基としては、炭素数1のアルキル基が好ましい。また、該アルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が挙げられる。これらのアルキル基のなかでも、メチル基が好ましい。
 一般式[7]におけるR33で示される炭素数1~4のアルコキシ基としては、炭素数1~2のアルコキシ基が好ましい。また、該アルコキシ基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基等が挙げられる。これらのアルコキシ基のなかでも、メトキシ基及びエトキシ基が好ましい。
 一般式[7]におけるR33としては、3つのR33のうち、少なくとも2つのR33が、炭素数1~4のアルコキシ基であることが好ましく、なかでも、3つのR33のすべてが、炭素数1~4のアルコキシ基であることがより好ましい。
 一般式[7]におけるR34で示される「少なくとも1つのメルカプト基を有する炭素数1~8のアルキル基」における炭素数1~8のアルキル基としては、炭素数1~6のアルキル基が好ましく、なかでも、炭素数1~4のアルキル基がより好ましい。また、該アルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよい。このようなアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、ノルボルニル基(ノルボルナン-χ-イル基)等が挙げられる。これらのアルキル基のなかでも、炭素数1~6の直鎖状、分枝状もしくは環状のアルキル基が好ましく、そのなかでも、炭素数1~4の直鎖状、分枝状もしくは環状のアルキル基がより好ましい。
 一般式[7]におけるR34で示される「少なくとも1つのメルカプト基を有する炭素数1~8のアルキル基」におけるメルカプト基(チオール基)は、アルキル基の鎖中又は/及び末端に結合しており、その結合位置は限定されない。また、該メルカプト基(チオール基)は、少なくとも1つ結合していればよく、例えば、2~4個等の複数個のメルカプト基(チオール基)がアルキル基に結合していてもよい。
 一般式[7]で示されるシランカップリング剤(C)の具体例としては、例えば、(3-メルカプトプロピル)トリメトキシシラン、(3-メルカプトプロピル)トリエトキシシラン、(3-メルカプトプロピル)トリプロポキシシラン、(3-メルカプトプロピル)トリブトキシシラン、1,4-ジメルカプト-2-(トリメトキシシリル)ブタン、1,4-ジメルカプト-2-(トリエトキシシリル)ブタン、1,4-ジメルカプト-2-(トリプロポキシシリル)ブタン、1,4-ジメルカプト-2-(トリブトキシシリル)ブタン、2-メルカプトメチル-3-メルカプトプロピルトリメトキシシラン、2-メルカプトメチル-3-メルカプトプロピルトリエトキシシラン、2-メルカプトメチル-3-メルカプトプロピルトリプロポキシシラン、2-メルカプトメチル-3-メルカプトプロピルトリブトキシシラン、1,2-ジメルカプトエチルトリメトキシシラン、1,2-ジメルカプトエチルトリエトキシシラン、1,2-ジメルカプトエチルトリプロポキシシラン、1,2-ジメルカプトエチルトリブトキシシラン、3-メルカプトプロピル(ジメトキシ)メチルシラン等が挙げられる。これらのシランカップリング剤のなかでも、(3-メルカプトプロピル)トリメトキシシラン、(3-メルカプトプロピル)トリエトキシシラン及び3-メルカプトプロピル(ジメトキシ)メチルシランが、加水分解及び重縮合の反応性に優れるという点で好ましい。なお、これらのシランカップリング剤(C)は、1種類のシランカップリング剤を単独で用いてもよいし、2種以上のシランカップリング剤を組み合わせて用いてもよい。
 本発明の光又は熱硬化方法に係る水(D)とは、工程1において、アルミニウムアルコキシド(B)を加水分解したり、シランカップリング剤(C)中のアルコキシシリル基を加水分解するなどの目的で使用される。このような水(D)としては、通常この分野において使用される水であれば特に限定されず、具体的には、例えば、蒸留水、脱イオン水等の精製水等が挙げられる。
 上記水(D)は、大気中の水分やフィラー(I)に含まれる水に由来するものであってもよい。前記工程1を進行させるために必要な水(D)が、大気中の水分やフィラー(I)に含まれる水から賄える場合には、いわゆる液状の水の添加を要しない場合もある。
 本発明の光又は熱硬化方法に係る(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物とは、工程1において、化合物(A)の存在下、水(D)の作用によって、アルミニウムアルコキシド(B)とシランカップリング剤(C)とから得られる縮合物であり、その構造中に、主骨格として、Si-O-Alの構成単位又Si-O-Siの構成単位を含んでいる。
 また、縮合物(E)は、第2工程において、化合物(H)やフィラー(I)と反応し得るものであり、流動性を持ったゾルの状態である。故に、アルミニウムアルコキシド(B)中の全てのアルコキシ基とシランカップリング剤(C)中の全てのアルコキシ基に対応する、縮合物(E)中のヒドロキシル基又はアルコキシ基が、通常10~90%、好ましくは30~70%残存していることが望ましい。
 縮合物(E)は、アルミニウムアルコキシド(B)由来の構成単位とシランカップリング剤(C)由来の構成単位とが、mol比で、通常1:10~9:1、好ましくは1:5~4:1、より好ましくは1:2.5~2:1の割合で構成されていることが望ましい。
 縮合物(E)は、その構造中に、シランカップリング剤(C)由来のメルカプト基を有しており、該メルカプト基が、化合物(H)中の重合性不飽和基と反応する。また、縮合物(E)中のメルカプト基のmol量は、シランカップリング剤(C)中のメルカプト基のmol数に依存し、例えば、シランカップリング剤(C)中に1つのメルカプト基を有している場合では、シランカップリング剤(C)の全量が縮合物(E)に変換されたと仮定すると、縮合物(E)中には、使用したシランカップリング剤(C)のmol数と同mol数のメルカプト基が存在する。また、例えば、シランカップリング剤(C)中に2つのメルカプト基を有している場合では、シランカップリング剤(C)の全量が縮合物(E)に変換されたと仮定すると、縮合物(E)中には、使用したシランカップリング剤(C)のmol数に対し、2倍のmol数のメルカプト基が存在する。
 縮合物(E)は、その構造中に、アルミニウムアルコキシド(B)及びシランカップリング剤(C)由来のヒドロキシル基又はアルコキシ基を有しており、該ヒドロキシル基又は該アルコキシ基が、フィラー(I)や金属基板の表面に微量に存在するヒドロキシル基と反応する。
 本発明の光又は熱硬化方法に係る(H)2つ以上の重合性不飽和基を有する化合物とは、工程1で得られた縮合物(E)中のメルカプト基と反応して硬化物(架橋物・樹脂)を得るための原料となるものであって、チオール-エン反応又はチオール-イン反応を生じさせる2つ以上の重合性不飽和基を有する化合物である。
 このような化合物(H)としては、通常この分野で一般的に用いられる化合物が挙げられ、例えば、特開2007-291313号公報、特開2014-28938号公報等に記載の化合物の他;例えば、ジアリルヘキサヒドロフタレート、ジアリルクロレンデート、ジアリルジフェニルシラン等のアリル基を2つ有する化合物;例えば、シアヌル酸トリアリル(2,4,6-トリス(アリルオキシ)-1,3,5-トリアジン)、トリメリット酸トリアリル、イソシアヌル酸トリアリル等のアリル基を3つ有する化合物;例えば、ピロメリット酸テトラアリル等のアリル基を4つ以上有する化合物等の多官能アリル化合物;例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ビスフェノールAEO変性ジ(メタ)アクリレート、ビスフェノールFEO変性ジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の(メタ)アクリル基を2つ有する化合物;例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、グリセリンEO変性トリ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、ε-カプロラクトン変性トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールEO変性テトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル基を3~6つ有する化合物等の多官能(メタ)アクリル化合物;例えば、1,3-ブタジエン、1,3-ペンタジエン、1,4-ペンタジエン、イソプレン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,4-ヘキサジエン、2-メチル-1,4-ペンタジエン、ジシクロペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,4-ヘプタジエン、1,5-ヘプタジエン、1,6-ヘプタジエン、2-メチル-1,5-ヘキサジエン、1,7-オクタジエン、2,5-ジメチル-1,5-ヘキサジエン、1,5-シクロオクタジエン、1,8-ノナジエン、1,9-デカジエン、1,10-ウンデカジエン、1,11-ドデカジエン、1,12-トリデカジエン、1,13-テトラデカジエン、テトラアリルオキシエタン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、1,3,5-トリビニルベンゼン、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、3,3'-ジビニルビフェニル、3,4'-ジビニルビフェニル、4,4'-ジビニルビフェニル、4,4'-ジイソプロペニルビフェニル、2,6-ジイソプロペニルナフタレン、1,2-ビス(ビニルフェニル)エタン、2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサン、1,6-ヘキサンジオールビス(5-ノルボルネンカルボキシレート)、ペンタエリスリトールテトラ(5-ノルボルネンカルボキシレート)、1,3-ビス(マレイミド)エタン、1,4-ビス(マレイミド)ブタン、1,6-ビス(マレイミド)ヘキサン、プロピレングリコールビスマレイミドアセテート、ビス[N-(2-エチル)マレイミド]ヘキサメチレンカルバメート、ポリエーテル系ビスマレイミド酢酸エステル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,4-ビス(ビニルオキシメチル)シクロヘキサン、2-ビニルオキシ-5-(ビニルオキシメチル)-7-オキサビシクロ[2.2.1]ヘプタン、3-ビニルオキシ-5-(ビニルオキシメチル)-7-オキサビシクロ[2.2.1]ヘプタン等のアリル化合物及び(メタ)アクリル化合物以外の多官能オレフィン化合物;例えば、1,6-ヘプタジイン、1,7-オクタジイン、1,8-ノナジイン、1,9-デカジイン、ジプロパルギルアミン、ジエチレングリコールビス(2-プロピニル)エーテル、エチレングリコール-1,2-ビス(2-プロピニル)エーテル、1,3-ジエチニルベンゼン、1,4-ジエチニルベンゼン、1,3-ビス(2-プロピニルオキシ)ベンゼン、3,5-ビス(プロパルギルオキシ)ベンジルアルコール、ビスフェノールAジプロパルギルエーテル、ビスフェノールEジプロパルギルエーテル、4,4'-ジエチニルビフェニル、2,6-ジエチニルナフタレン、9,10-ジエチニルアントラセン、3,6-ジエチニルカルバゾール等のアルキニル基を2つ有する化合物;例えば、トリプロパルギルアミン、1,3,5-トリアルキニルベンゼン、2,4,6-トリス(プロピニル-2-オキシ)-1,3,5-トリアジン等のアルキニル基を3つ有する化合物;例えば、テトラキス(4-エチニルフェニル)メタン等のアルキニル基を4つ以上有する化合物等の多官能アルキニル化合物等が挙げられる。これらの化合物(H)のなかでも、例えば、シアヌル酸トリアリル(2,4,6-トリス(アリルオキシ)-1,3,5-トリアジン)、トリメリット酸トリアリル、イソシアヌル酸トリアリル等のアリル基を3つ有する化合物;例えば、ピロメリット酸テトラアリル等のアリル基を4つ以上有する化合物等の3官能以上のアリル化合物;及び、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、グリセリンEO変性トリ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、ε-カプロラクトン変性トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールEO変性テトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル基を3~6つ有する化合物等の3官能以上の(メタ)アクリル化合物が好ましく、そのなかでも、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、グリセリンEO変性トリ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、ε-カプロラクトン変性トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールEO変性テトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル基を3~6つ有する(メタ)アクリル化合物が、架橋密度の高い架橋物を得ることができるという点でより好ましく、ジペンタエリスリトールヘキサ(メタ)アクリレートが特に好ましい。なお、これらの化合物(H)は、1種類の化合物(H)を単独で用いてもよいし、2種以上の化合物(H)を組み合わせて用いてもよい。
 本発明の光又は熱硬化方法に係る(I)フィラーとは、工程1で得られた縮合物(E)中のヒドロキシル基又はアルコキシ基と反応して、得られる硬化物(架橋物・樹脂)に種々の特性を付与するための原料となるものである。
 このようなフィラー(I)の具体例としては、例えば、アルミニウム、鉄、銀等の金属;例えば、酸化マグネシウム、酸化アルミニウム(アルミナ)、酸化ケイ素、酸化ベリリウム、酸化鉄、フェライト、酸化銅、亜酸化銅、酸化亜鉛等の金属酸化物;例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素等の金属窒化物、水酸化マグネシウム、水酸化アルミニウム、ベーマイト等の金属水酸化物等の無機フィラー;例えば、炭化ケイ素等の金属炭化物;例えば、炭酸マグネシウム等の金属炭酸塩;例えば、黒鉛、炭素、カーボンブラック、ダイヤモンド等の絶縁性炭素材料等の有機フィラー等が挙げられる。これらのフィラー(I)のなかでも、例えば、酸化マグネシウム、酸化アルミニウム(アルミナ)等の金属酸化物や、窒化ホウ素、窒化アルミニウム、窒化ケイ素等の金属窒化物等の熱伝導性フィラーが、電気絶縁性が高く、熱伝導性の高い硬化物(架橋物・樹脂)を得ることができるという点で好ましく、なかでも、窒化アルミニウムがより好ましい。これらのフィラー(I)は、球状、粉末状、ガラス状、繊維(ファイバー)状、フレーク状、箔状、バルーン状、毬藻状等のいずれの形状であってもよい。なお、これらのフィラー(I)は、1種類のフィラー(I)を単独で用いてもよいし、2種以上のフィラー(I)を組み合わせて用いてもよい。本発明の電子回路形成用熱伝導性基板は、本発明の第1又は第2の樹脂組成物から得られる硬化物(架橋物・樹脂)を有することを特徴とするものであり、フィラー(I)として熱伝導性フィラーを用いることで、熱伝導性に優れる基板となり得る。
 フィラー(I)の粒子径は、通常この分野で一般的に用いられている粒子径であれば特に制限なく使用することができる。具体的には、フィラー(I)の平均粒子径(メジアン径)は、通常0.1~50μm、好ましくは0.2~30μm、より好ましくは0.5~20μmである。好ましい範囲の平均粒子径を有するフィラー(I)、あるいはより好ましい範囲の平均粒子径を有するフィラー(I)を使用することで、得られる硬化物(架橋物・樹脂)の硬度や熱伝導率等の諸物性をさらに向上させることができる。また、平均粒子径の異なる2種のフィラー(I)を併用すると、得られる硬化物(架橋物・樹脂)の熱伝導性が高くなる傾向がある。2種のフィラー(I)のうち、1種のフィラー(I-A)の平均粒子径(メジアン径)としては、通常5~50μm、好ましくは7~30μm、より好ましくは10~20μmであり、もう1種のフィラー(I-B)の平均粒子径(メジアン径)としては、通常0.1~3μm、好ましくは0.2~2μm、より好ましくは0.5~1.8μmである。熱伝導性の高い硬化物(架橋物・樹脂)が求められる場合には、フィラー(I-A)とフィラー(I-B)を、質量基準で、通常1:10~10:1、好ましくは1:5~5:1、より好ましくは1:3~3:1の割合で併用することが望ましい場合がある。なお、フィラー(I)は、その表面に加水分解を抑制する表面処理が施してあってもよい。
 本発明の光又は熱硬化方法において、必要に応じて用いられる(F)キレート剤とは、工程1において、アルミニウムアルコキシド(B)と錯体を形成して、シランカップリング剤(C)同士の反応を促進、又はアルミニウムアルコキシド(B)(の錯体)とシランカップリング剤(C)との反応を促進させる化合物である。
 このようなキレート剤(F)の具体例としては、例えば、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジメチル、マロン酸ジエチル、2-(2-チオキサンテニル)ジエチルマロン酸、アセチルアセトン、ジアセトンアルコール、乳酸エチル等が挙げられる。なお、これらのキレート剤(F)は、1種類のキレート剤(F)を単独で用いてもよいし、2種以上のキレート剤(F)を組み合わせて用いてもよい。
 本発明の光又は熱硬化方法において、必要に応じて用いられる(J)2つ以上のエポキシ基を有する化合物とは、工程2において、化合物(A)から発生する塩基を直接的又は間接的に介して、シランカップリング剤(C)のメルカプト基と反応するか、又は化合物(J)同士が反応(連鎖重合)して、得られる硬化物(架橋物・樹脂)の硬度や基材への密着性を向上させるための原料となるものであり、構造中に、少なくとも2つのエポキシ基を有する化合物である。
 このような化合物(J)の具体例としては、例えば、ジグリシジルエーテル、スピログリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、1,3-プロピレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリ-1,3-プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセロールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビフェニルジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3',4'-エポキシシクロヘキサンカルボキシレート、ポリエチレングリコールジグリシジルエーテル、ポリ-1,3-プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシジル(メタ)アクリレート、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ソルビトールポリグリシジルエーテル、シアヌル酸トリグリシジル(2,4,6-トリ(グリシジルオキシ)-1,3,5-トリアジン)、イソシアヌル酸トリグリシジル等が挙げられる。これらの化合物(J)は、ハロゲン化されていてもよいし、水素添加されていてもよい。また、これらの化合物(J)は、上述した具体例の誘導体も含まれる。なお、これらの化合物(J)は、1種類の化合物(J)を単独で用いてもよいし、2種以上の化合物(J)を組み合わせて用いてもよい。
 本発明の光又は熱硬化方法おいて、必要に応じて用いられる有機溶剤としては、通常この分野で一般的に用いられる有機溶剤であれば特に制限はない。このような有機溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロナフタレン、メンタン、スクワラン等の飽和又は不飽和の脂肪族炭化水素系溶剤;例えば、ベンゼン、トルエン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、スチレン、キシレン等の芳香族炭化水素系溶剤;例えば、ジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)等のハロゲン系溶剤;例えば、ジエチルエーテル、ジ-n-プロピルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテル、ジ-n-ブチルエーテル、ジ-tert-ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶剤;例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、2-メトキシエタノール等のアルコール系溶剤;例えば、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル等のグリコールエーテル系溶剤;例えば、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(カルビトールアセテート)、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート系溶剤;例えば、2-プロパノン(アセトン)、2-ブタノン(エチルメチルケトン)、ジエチルケトン、4-メチル-2-ペンタノン(メチルイソブチルケトン)、シクロペンタノン、シクロヘキサノン、シクロヘプタノン等のケトン系溶剤;例えば、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸-sec-ブチル、酢酸-tert-ブチル、酪酸エチル、酪酸イソアミル、乳酸エチル(EL)、乳酸-n-プロピル、乳酸イソプロピル、乳酸イソブチル、乳酸-sec-ブチル、乳酸-tert-ブチル、乳酸イソアミル、γ-ブチロラクトン、ステアリン酸ブチル等のエステル系溶剤;例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリジノン(N-メチルピロリドン)、1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)等のアミド系溶剤;例えば、アセトニトリル等のニトリル系溶剤等が挙げられる。なお、これらの有機溶剤は、1種類の有機溶剤を単独で用いてもよいし、2種以上の有機溶剤を組み合わせて用いてもよい。
 工程1又は/及び工程2において、有機溶剤を含有する場合における該有機溶剤の含有量(使用量)は、例えば、(A)~(F)、(H)及び(I)の相溶性を高めたり、工程1で得られる縮合物(E)(ゾル(E))の基材への塗布性を向上させる等の目的に応じて適宜設定すればよく、特に限定されない。例えば、該有機溶剤の含有量(使用量)としては、例えば、フィラー(I)1gに対して、通常0.01~10gである。
 本発明の光又は熱硬化方法おいて、キレート剤(F)や化合物(J)等の添加剤の他に、必要に応じて用いられる添加剤としては、例えば、重合禁止剤、増感剤、分散剤、分散助剤、シランモノマー、耐候助剤、顔料、染料、硬化促進剤・連鎖移動触媒、酸素除去剤・還元剤、酸化防止剤、レベリング剤、表面改質剤、発泡剤、消泡剤、pH調整剤、カブリ防止剤、界面活性剤、着色剤、退色防止剤、蛍光増白剤、ハレーション防止剤、増量剤、可塑剤、可塑促進剤、難燃剤、紫外線吸収剤、防カビ剤、帯電防止剤、タレ防止剤、磁性体等が挙げられる。また、これらの添加剤は、通常この分野で一般的に用いられるものであれば特に制限なく使用することができる。
 重合禁止剤の好ましい具体例としては、例えば、p-メトキシフェノール、ヒドロキノン、アルキル置換ヒドロキノン、カテコール、tert-ブチルカテコール、フェノチアジン、クペロン、アンモニウム N-ニトロソフェニルヒドロキシルアミン、トリフェニルホスホネート、ピロガロール等が挙げられる。
 増感剤の好ましい具体例としては、例えば、ベンゾフェノン、p,p'-テトラメチルジアミノベンゾフェノン、p,p'-テトラエチルジアミノベンゾフェノン、2-クロロチオキサントン、2-イソプロピルチオキサントン、2-トリフルオロメチルチオキサントン、2,4-ジエチルチオキサントン、アントロン、ベンズアントロン、アントラセン、9-エトキシアントラセン、9,10-ジフェニルアントラセン、アセナフテン、アントラキノン、1-クロロアントラキノン、2-エチルアントラキノン、ベンゾキノン等が挙げられる。
 分散剤の好ましい具体例としては、例えば、ポリビニルピロリドン、ポリカルボン酸、ポリカルボン酸ナトリウム、ポリスルホン酸ナトリウム、ポリエチレングリコール等のポリエーテル、ポリアルキレンポリアミン、ポリアルキレンスルホン酸等の高分子系分散剤等が挙げられる。
 シランモノマーの好ましい具体例としては、例えば、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリプロポキシシラン、プロピルトリプロポキシシラン、ブチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリブトキシシラン、プロピルトリブトキシシラン、ブチルトリブトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリプロポキシシラン、アリルトリブトキシシラン等が挙げられる。
 添加剤の含有量については、目的とする硬化物(架橋物・樹脂)が得られるように適宜設定すればよく、特に限定されない。例えば、分散剤の含有量(使用量)としては、例えば、アルミニウムアルコキシド(B)の質量とシランカップリング剤(C)の質量との和((B)と(C)の総質量)1gに対して、通常0.001~0.1g、好ましくは0.005~0.05gである。なお、これらの添加剤は、1種類の添加剤を単独で用いてもよいし、2種以上の添加剤を組み合わせて用いてもよい。
 本発明の光又は熱硬化方法に係るアルミニウムアルコキシド(B)、シランカップリング剤(C)、水(D)、化合物(H)及びフィラー(I)、ならびに任意成分である、キレート剤(F)、化合物(J)、有機溶剤及び添加剤等は、市販のもの、あるいは公知の方法によって適宜合成したものを用いればよい。
-本発明の硬化性樹脂組成物(本発明の第1の樹脂組成物)-
 本発明の硬化性樹脂組成物(第1の樹脂組成物)は、(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを含有し、さらに(J)2つ以上のエポキシ基を有する化合物を含有していてもよい、硬化性樹脂組成物である。
-本発明の硬化性樹脂組成物(本発明の第2の樹脂組成物)-
 本発明の硬化性樹脂組成物(第2の樹脂組成物)は、(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを含有し、さらに(J)2つ以上のエポキシ基を有する化合物を含有していてもよい、硬化性樹脂組成物である。
 本発明の硬化性樹脂組成物(本発明の第1及び第2の樹脂組成物)には、上述した成分以外に、例えば、(F)キレート剤、有機溶剤、添加剤等を含有してもよい。
 本発明の硬化性樹脂組成物(本発明の第1及び第2の樹脂組成物)における、化合物(A)、アルミニウムアルコキシド(B)、シランカップリング剤(C)、キレート剤(F)、化合物(H)、フィラー(I)及び化合物(J)の各成分、ならびに有機溶剤、添加剤等の具体例は、上述したとおりである。
 本発明の硬化性樹脂組成物(本発明の第1及び第2の樹脂組成物)における、化合物(A)、アルミニウムアルコキシド(B)、シランカップリング剤(C)、キレート剤(F)、化合物(H)、フィラー(I)及び化合物(J)の各成分、ならびに有機溶剤、添加剤等の含有量も、上述したとおりである。
 本発明の第1の樹脂組成物は、例えば、以下の方法によって調製することができる。アルミニウムアルコキシド(B)に、要すればキレート剤(F)を添加した後、化合物(A)及びシランカップリング剤(C)を加えてマグネチックスターラー等で攪拌する。得られた混合物を、フィラー(I)並びに要すれば有機溶剤及び添加剤を含む混合物に添加して自転公転ミキサー等で混練する。次いで、得られたスラリーに、化合物(H)及び要すれば化合物(J)を加えて自転公転ミキサー等で混練することによって、本発明の第1の樹脂組成物を調製することができる。また、本発明の第1の樹脂組成物は、化合物(A)、アルミニウムアルコキシド(B)、シランカップリング剤(C)及びキレート剤(F)を含有する混合物を、化合物(H)、フィラー(I)、化合物(J)、有機溶剤及び添加剤を含む混合物に添加して自転公転ミキサー等で混練することでも調製することができる。なお、フィラー(I)を含む混合物の混練は、例えば、ボールミル、ロールミル、ヘンシェルミキサー等を用いて行ってもよい。
 本発明の第1の樹脂組成物は、本発明の光又は熱硬化方法に係る(A)~(C)及び(H)~(I)を含有する樹脂組成物であり、本発明の光又は熱硬化方法に係る工程1に付す前の組成物の1形態である。該組成物は、保存安定性が良好であるという特徴を有し、且つ該組成物に水を添加して、光(活性エネルギー線)を照射したり、熱エネルギーを付与すれば、アルミニウムアルコキシド(B)とシランカップリング剤(C)又はシランカップリング剤(C)同士の重縮合(ゲル化)と、チオール-エン反応又はチオール-イン反応とを同一系内で効率的に行うことができ、目的とする硬化物(架橋物・樹脂)を得ることができる。
 本発明の第2の樹脂組成物は、本発明の第1の樹脂組成物に水(D)を添加して、アルミニウムアルコキシド(B)とシランカップリング剤(C)を縮合(ゾル化)させることによって得られる樹脂組成物である。すなわち、本発明の第2の樹脂組成物は、本発明の第1の樹脂組成物に水(D)を添加して、本発明の第1の樹脂組成物を、本発明の光又は熱硬化方法に係る工程1に付した後に得られる組成物の1形態である。該組成物に光(活性エネルギー線)を照射したり、熱エネルギーを付与すれば、目的とする硬化物(架橋物・樹脂)を得ることができる。故に、本発明の第1及び第2の樹脂組成物は、光(活性エネルギー線)照射又は加熱によって硬化物(架橋物・樹脂)を得ることができる有用な組成物である。
 本発明の硬化性樹脂組成物は、例えば、塗料、インキ材、コーティング材料、接着材料、歯科材料、レジスト、カラーフィルタ、フレキシブルディスプレー用フィルム、電子部品、層間絶縁膜、熱伝導膜、熱伝導性絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム等の光学部材又は電子部材における樹脂原料として使用することができる。
-本発明の電子回路形成用熱伝導性基板-
 本発明の電子回路形成用熱伝導性基板は、本発明の硬化性樹脂組成物から得られる硬化物(架橋物・樹脂)を有することを特徴とするものである。すなわち、本発明の電子回路形成用熱伝導性基板は、例えば、アルミニウム板等の金属基板の上部に、本発明の硬化性樹脂組成物から得られる硬化物(架橋物・樹脂)を有する基板である。
 上記金属基板を構成する金属としては、軽量で良好な熱伝導性を示すアルミニウムや高い熱容量を有する銅を用いることが好ましい。また、金属基板の厚さとしては、例えば、0.1~5mm等が挙げられる。
 上記硬化物(架橋物・樹脂)は、通常0.5W/m・K以上、好ましくは0.8W/m・K以上、より好ましくは1.0W/m・K以上、さらに好ましくは2.0W/m・K以上、特に好ましくは3.0W/m・K以上、最も好ましくは6.0W/m・K以上の熱伝導率を有することが望ましい。
 上記硬化物(架橋物・樹脂)は、電気抵抗率が、通常1Ω・cm以上、好ましくは10Ω・cm以上、より好ましくは10Ω・cm以上、さらに好ましくは1010Ω・cm以上、最も好ましくは1013Ω・cm以上である電気絶縁性を有することが望ましい。
 本発明の電子回路形成用熱伝導性基板は、本発明の硬化性樹脂組成物から得られる硬化物(架橋物・樹脂)の上部に、例えば、銅箔等の電子回路形成用の金属箔を有していてもよい。
-本発明の電子回路形成用熱伝導性基板の作製方法-
 本発明の電子回路形成用熱伝導性基板の作製方法は、本発明の第1の樹脂組成物に水(D)を添加してゾル化させた組成物(本発明の光又は熱硬化方法における工程1に付した後に得られる組成物)又は本発明の第2の樹脂組成物を、例えば、アルミニウム板等の金属基板に塗布して塗布膜を得た後、該塗布膜を光照射又は加熱することにより、前記塗布膜を硬化させ、金属基板の表面に熱伝導性絶縁膜を形成することを特徴とするものである。
 本発明の電子回路形成用熱伝導性基板の作製方法の別法として、本発明の第1の樹脂組成物を金属基板に塗布した後に、大気中の水分に由来する水の作用で、前記工程1を進行させてもよい。
 本発明の硬化性樹脂組成物の金属基板への塗布方法としては、有機溶剤を添加して適した粘度に調製した本発明の硬化性樹脂組成物を、例えば、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法、スピンコート法等の方法により金属基板上に塗布する方法が挙げられる。
 金属基板上に塗布した塗布膜を、例えば、約60~150℃の温度に加熱(プレベーク)して組成物中に含まれる有機溶剤を揮発乾燥させることにより、タックフリーの塗布膜を形成できる。
 熱伝導性絶縁膜は、得られた塗布膜に対して、上述した波長の光(活性エネルギー線)を、上述した照射量(積算露光量)以上となるような時間で照射するか、あるいは上述した温度で上述した時間加熱することにより形成させることができる。また、所定の回路パターンを有する熱伝導性絶縁膜を形成させる場合には、光(活性エネルギー線)照射を、適当なパターンマスクを介して行った後、上述した現像液等を用いて現像処理を行えばよい。すなわち、上記塗布膜上において、本発明の光又は熱硬化方法における工程2を進行させることで熱伝導性絶縁膜を得ることができる。
 このようにして得られる本発明の電子回路形成用熱伝導性基板は、高い熱伝導性と電気絶縁性を有しているため、高輝度LEDやパワー半導体の放熱用基板や電気絶縁性基板として有用なものである。
 以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されない。
 実施例1:光(活性エネルギー線)の照射による樹脂組成物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、アルミニウムトリ-sec-ブトキシド[アルミニウムアルコキシド(B)]及び(3-メルカプトプロピル)トリメトキシシラン[シランカップリング剤(C)]の混合物中に、イオン交換水[水(D)]とカルビトールアセテート[有機溶剤]を混和した溶液を加えて30分間撹拌しゾル液を調製した。次いで、シアヌル酸トリアリル[化合物(H)]、窒化アルミニウム[フィラー(I)]、CF-180[分散剤]及びカルビトールアセテート[有機溶剤]の混合物中に、上記で調製したゾル液を添加し、遊星式撹拌機(シンキー社「あわとり練太郎AR-250」)を用い、回転数2000rpmで3分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、セン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射し、さらに150℃で5分間加熱して、膜厚10~20μmの硬化膜を得た。得られた硬化膜の諸物性を以下の評価方法で評価した。各成分の使用量(mol量)及び評価結果を表4に示す。なお、実施例1で使用した各成分の名称及び入手先を以下に示す。
-(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物-
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート;式[1-2]で示される化合物(国際公開第2014/208632号に従って合成したものを使用した。)
式[1-2]:
Figure JPOXMLDOC01-appb-I000031
-(B)アルミニウムアルコキシド-
 アルミニウムトリ-sec-ブトキシド(富士フイルム和光純薬(株)製)
-(C)メルカプト基を有するシランカップリング剤-
 (3-メルカプトプロピル)トリメトキシシラン(モメンティブパフォーマンスマテリアルズ製;SILQUEST A-189 SILANE)
-(H)2つ以上の重合性不飽和基を有する化合物-
 シアヌル酸トリアリル(富士フイルム和光純薬(株)製)
-(I)フィラー-
 窒化アルミニウム(AlN)(東洋アルミニウム(株)製;Toyalnite JC(登録商標);平均粒子径1.2μm)
-分散剤-
 CF-180(富士フイルム和光純薬(株)製;カルボン酸含有アクリレートポリマーPGMEA溶液(固形分30%))
-硬化膜の諸物性の評価方法-
[アルカリ現像性]
 硬化膜を3%水酸化カリウム水溶液に浸漬した際に、硬化膜の露光部と未露光部との間で硬化膜の溶解速度に差が見られ、シャワーなどの特別な洗浄操作を行わずに浸漬のみで像が現れるまでに要する時間を計測した。1分以内に像が現れた場合を「アルカリ現像性:○」、1分経過しても像が現れなかった場合を「アルカリ現像性:×」と評価した。
[耐有機溶剤性]
 硬化膜をアセトン、メタノール及びメチルエチルケトンの3種類の溶剤にそれぞれ30秒間浸漬して溶解および剥がれを確認した。アセトン、メタノール及びメチルエチルケトンの3種類の溶剤に浸漬した場合において、硬化膜がいずれも溶解しなかった及び剥がれなかった場合を「耐有機溶剤性:○」、硬化が不十分でいずれかの溶剤に溶解した又は剥がれが生じた場合を「耐有機溶剤性:×」と評価した。
[密着性(碁盤目試験)]
 硬化膜に対して、カッターナイフで素地まで到達するように、碁盤目状に1mm間隔で切込みを入れた(100マス)。次いで、碁盤目状にカットした硬化膜に約50mm付着するように粘着テープを貼り付け、粘着テープの上から消しゴムでこすって硬化膜にテープを付着させた。テープを付着させてから1~2分経過後に、テープの端を持って硬化膜面に直角に保ちながら瞬間的にひきはがして、硬化膜の剥がれについて評価した。硬化膜が全く剥がれなかった場合を「密着性:○」、硬化膜が一部剥がれてしまった場合を「密着性:×」と評価した。
[鉛筆硬度]
 B~9Hの鉛筆の芯を先が平らになるように研ぎ、それぞれの鉛筆をひっかき硬度試器「KT-VF2380」に装填し、鉛筆の芯を硬化物に対して約45°の角度で押しつけ、硬化膜が剥がれなかった時の鉛筆の硬さを記録した(JIS K5600に準拠、荷重750g)。
[熱伝導率]
 円柱状のシリコン型を用い、実施例と同一条件で、樹脂組成物から幅5mmφ×厚み1mmの円形硬化膜を作製し、表面を黒鉛処理後、厚さ(小数点第3位)、直径(小数点第3位)、重さ(小数点第4位)を正確に計測して比重を算出した。キセノンレーザーフラッシュ法熱物性測定装置「LFA502」(京都電子工業(株)製)を用い、熱拡散率と比熱を求めた(JIS R1611-2010「ファインセラミックスのフラッシュ法による熱拡散率・比熱容量、熱伝導率の測定方法」の熱拡散率・比熱容量試験方法、JIS 7810-2005「金属レーザーフラッシュ法による熱拡散率測定」に準拠)。熱伝導率は、得られた熱拡散率、比重、比熱を全て乗じることで算出した。
[耐熱性(質量減少率)]
 示差走査熱量計TG-DTA「2000SA」((株)BRUKER AXS製)を用い、アルゴン雰囲気下、硬化膜を昇温速度10℃/分で室温~500℃まで昇温させ、250℃における質量減少率を測定した。なお、表中における「-」は、未測定であることを表す。
 比較例1~3:光(活性エネルギー線)の照射による樹脂組成物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 実施例1で用いた1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート及びアルミニウムトリ-sec-ブトキシドを表4に示す条件に変えた以外は、実施例1と同様の方法に準じて硬化膜を作製し、その諸物性を評価した。各成分の使用量(mol量)及び評価結果を表4に示す。なお、比較例1~3で使用した各成分のうち、実施例1で使用していない成分の名称及び入手先を以下に示す。
-光照射又は加熱によりラジカルを発生するカルボニル基を有する化合物(カルボン酸)-
 ケトプロフェン(富士フイルム和光純薬(株)製)
-アルミニウム化合物-
 (エチルアセトアセテート)アルミニウムジイソプロポキシド(富士フイルム和光純薬(株)製)
Figure JPOXMLDOC01-appb-T000032
 表4の結果から明らかなように、アルミニウムアルコキシドを含有する実施例1の樹脂組成物を用いた場合には、高い硬度と良好な熱伝導率を有する硬化物が得られることがわかった。一般的に、アルミニウムアルコキシドは、水に対する反応性が高いため容易にゲル化し易いが、メルカプト基を有するシランカップリング剤とともに本発明に係る化合物(A)を添加した状態で加水分解を行うと、ゲル化せずにオルガノゾルが得られることがわかった。特に、アルミニウムトリ-sec-ブトキシドは、液状であり、メルカプト基を有するシランカップリング剤と相溶性が高く、有機溶剤を使用しなくても本発明に係る化合物(A)を溶解することができた。
 また、本発明に係る化合物(A)、アルミニウムアルコキシド及びメルカプト基を有するシランカップリング剤の3種類の成分を含有する組成物に水を添加すると、室温下でアルミノシロキサン結合(Al-Si-O)が生じていることがFT-IR(600cm-1付近)にて確認できた。このことから、本発明の光又は熱硬化方法によれば、温和な条件下でゾル-ゲル化を行えることがわかった。また、本発明に係る化合物(A)は、窒化アルミニウムのような光を透過しにくいフィラーの共存下であっても、光(活性エネルギー線)照射によって効率的にラジカルを発生できるため、チオール-エン反応を促進できることがわかった。故に、フィラーを大量に含んでいても、ゾル-ゲル化とチオール-エン反応を効率的に行えるため、本発明の光又は熱硬化方法は、硬度や基材への密着性、熱伝導率等の物性値が高い硬化物を簡便に得ることができる硬化方法であることがわかった。
 その一方で、アルミニウムアルコキシドの代わりに、一部がキレート化しているアルミニウム化合物を用いた硬化系や(比較例1)、アルミニウムアルコキシドを用いない硬化系の場合には(比較例2)、硬化物が得られなかったり、硬化物が得られたとしても、アルカリ現像性や硬度が十分でない硬化物しか得られなかった。すなわち、アルミニウムアルコキシドは、本硬化系において必須であることがわかった。また、本発明に係る化合物(A)の代わりに、光(活性エネルギー線)を照射するとラジカルは発生するが塩基は発生しないカルボン酸を用いた硬化系の場合には(比較例3)、硬化物が得られなかった。このことから、本硬化系においては、塩基とラジカルの両方を発生できる化合物も必須であることがわかった。
 実施例2~5:2つ以上のエポキシ基を有する化合物を添加した樹脂組成物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 実施例1の硬化系に2つ以上のエポキシ基を有する化合物を添加したり、実施例1で用いた窒化アルミニウムの種類を代えた以外は、実施例1と同様の方法に準じて硬化膜を作製し、その諸物性を評価した。各成分の使用量(mol量)及び評価結果を表5に示す。なお、実施例2~5で使用した各成分のうち、実施例1及び比較例1~3で使用していない成分の名称及び入手先を以下に示す。
-(I)フィラー-
 窒化アルミニウム(AlN)(東洋アルミニウム(株)製;TFZ-A02P;平均粒子径1.5μm)
 窒化アルミニウム(AlN)(東洋アルミニウム(株)製;TFZ-A15P;平均粒子径15.0μm)
-(J)2つ以上のエポキシ基を有する化合物-
 ビスフェノールA液状エポキシ樹脂(三菱化学(株)製;jER 828(登録商標))
 シアヌル酸トリグリシジル(2,4,6-トリ(グリシジルオキシ)-1,3,5-トリアジン)(日本カーバイド(株)製;TGC)
 イソシアヌル酸トリグリシジル(日産化学(株)製;TEPIC-S(登録商標))
Figure JPOXMLDOC01-appb-T000033
 表5の結果から明らかなように、本硬化系において、2つ以上のエポキシ基を有する化合物を添加すると、硬度の高い硬化物が得られることがわかった。また、粒子径の異なるフィラーを2種以上併用した場合であっても、簡便に硬化物が得られることがわかった。特に、加水分解を抑制する表面処理が施されたフィラー(TFZ-A02P及びTFZ-A15P)を用いた場合には、得られる硬化物の熱伝導率が向上する傾向が見られた。
 実施例6~7:キレート剤を添加した樹脂組成物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 アルミニウムトリ-sec-ブトキシド[アルミニウムアルコキシド(B)]にアセト酢酸メチル[キレート剤(F)]を添加し、発熱が収まるまで攪拌した。次いで、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]及び(3-メルカプトプロピル)トリメトキシシラン[シランカップリング剤(C)]を添加し、さらにイオン交換水[水(D)]とカルビトールアセテート[有機溶剤]を混和した溶液を加えて30分間撹拌しゾル液を調製した。次いで、シアヌル酸トリアリル[化合物(H)]、窒化アルミニウム[フィラー(I)]及びカルビトールアセテート[有機溶剤]の混合物中に、上記で調製したゾル液を添加し、遊星式撹拌機(シンキー社「あわとり練太郎AR-250」)を用い、回転数2000rpmで3分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、セン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射し、さらに150℃で5分間加熱して、膜厚10~20μmの硬化膜を得た。得られた硬化膜の諸物性を上述した評価方法で評価した。各成分の使用量(mol量)及び評価結果を表6に示す。なお、実施例6~7で使用した各成分のうち、実施例1~5及び比較例1~3で使用していない成分の名称及び入手先を以下に示す。
-(F)キレート剤-
 アセト酢酸メチル(富士フイルム和光純薬(株)製)
 比較例4:キレート剤を添加しない樹脂組成物を用いた硬化膜の作製
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、アルミニウムトリ-sec-ブトキシド[アルミニウムアルコキシド(B)]及び(3-メルカプトプロピル)トリメトキシシラン[シランカップリング剤(C)]の混合物中に、イオン交換水[水(D)]とカルビトールアセテート[有機溶剤]を混和した溶液を加えて撹拌したところ、固体ゲルが析出してしまい、均一なゾル液を調製できず、樹脂組成物を作製できなかった。各成分の使用量(mol量)を表6に示す。
Figure JPOXMLDOC01-appb-T000034
 表6の結果から明らかなように、本硬化系において、アルミニウムアルコキシドの含有量を増やして、アルミニウムアルコキシドとシランカップリング剤のmol比が5:5以上になると、ゾル液を調製しにくい結果となった(比較例4)。しかしながら、本硬化系に、アセト酢酸メチル等のキレート剤を添加すると固体ゲルが析出しなくなり、アルミニウムアルコキシドの含有量を増やしても硬化物が得られ、その物性も良好なものであった。
 実施例8~9:水の後添加による硬化膜の作製及び得られた硬化膜の物性評価
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、アルミニウムトリ-sec-ブトキシド[アルミニウムアルコキシド(B)]及び(3-メルカプトプロピル)トリメトキシシラン[シランカップリング剤(C)]の混合物(実施例(8))中、あるいは1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、アルミニウムトリ-sec-ブトキシド[アルミニウムアルコキシド(B)]、(3-メルカプトプロピル)トリメトキシシラン[シランカップリング剤(C)]及び2-(2-チオキサンテニル)ジエチルマロン酸[キレート剤(F)]の混合物(実施例(9))中に、シアヌル酸トリアリル[化合物(H)]、窒化アルミニウム[フィラー(I)]及びカルビトールアセテート[有機溶剤]を添加し、さらにイオン交換水[水(D)]とカルビトールアセテート[有機溶剤]を混和した溶液を滴下した。該混合物を、遊星式撹拌機(シンキー社「あわとり練太郎AR-250」)を用い、回転数2000rpmで3分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、セン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射し、膜厚10~20μmの硬化膜を得た。得られた硬化膜の諸物性を上述した評価方法で評価した。各成分の使用量(mol量)及び評価結果を表7に示す。なお、実施例8~9で使用した各成分のうち、実施例1~7及び比較例1~4で使用していない成分の名称及び入手先を以下に示す。
-(F)キレート剤-
 2-(2-チオキサンテニル)ジエチルマロン酸(富士フイルム和光純薬(株)製)
Figure JPOXMLDOC01-appb-T000035
 表7の結果から明らかなように、本硬化系において、水を最後に添加することによってフィラーの分散性が向上し、分散剤を添加しなくても樹脂組成物(ゾル液)が得られ、該組成物に光(活性エネルギー線)を照射することで、硬化物が得られることがわかった。また、得られた硬化物は、高い硬度を有するものであった。すなわち、水を最後に添加することで、2つ以上のエポキシ基を有する化合物を添加しなくても、高い硬化性能を有する樹脂組成物が得られることがわかった。一般的に、窒化アルミニウムは加水分解され易いと言われているが、本硬化系においては、熱伝導率の大幅な低下が見られず、光(活性エネルギー線)照射後に加熱を行わなくても、十分な性能を有する硬化物、すなわち、硬度や密着性が高く、アルカリ現像性や耐有機溶剤性が良好な硬化物が得られることがわかった。また、2-(2-チオキサンテニル)ジエチルマロン酸のようなキレート能を有し、且つ長波長の光(活性エネルギー線)を吸収する化合物を添加した場合には、長波長の光(活性エネルギー線:面照度405nm、積算露光量が1.0J/cmとなるように照射、紫外線照射光源装置(朝日分光(株)製):「REX-250」及びバンドパスフィルターを使用)のみを照射した場合であっても、硬化物が得られたことから、長波長での感光性付与が可能であった。
 実施例10:多官能(メタ)アクリル化合物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 アルミニウムトリ-sec-ブトキシド[アルミニウムアルコキシド(B)]及び(3-メルカプトプロピル)トリメトキシシラン[シランカップリング剤(C)]の混合物中に、乳酸エチル[キレート剤(F)兼有機溶剤]を加えて室温で12時間静置した後、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]及びイオン交換水[水(D)]を加えてゾル液を調製した。次いで、窒化アルミニウム[フィラー(I)]に、上記で調製したゾル液を添加し、遊星式撹拌機(シンキー社「あわとり練太郎AR-250」)を用い、回転数2000rpmで1分間混練した後、さらにジペンタエリスリトールヘキサアクリレート[化合物(H)]を加えて、回転数500rpmで1分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、セン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射し、さらに150℃で1時間加熱して、硬化膜を得た。得られた硬化膜の諸物性のうち、アルカリ現像性、耐有機溶剤性、密着性及び鉛筆硬度については上述した評価方法で評価し、熱伝導率については以下の評価方法で評価した。各成分の使用量(mol量)及び評価結果を表8に示す。なお、実施例10で使用した各成分のうち、実施例1~9及び比較例1~4で使用していない成分の名称及び入手先を以下に示す。
-(H)2つ以上の重合性不飽和基を有する化合物-
 ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製;KAYARAD DPHA)
-硬化膜の熱伝導率の評価方法-
 2×2cmのシリコン剥離紙からなる型枠に、実施例と同一条件で、樹脂組成物から幅2×2mm×厚み約100μmの硬化膜を作製した。得られた硬化膜を150℃で1時間加熱した後、該硬化膜を1×1cmに切り出し、表面を黒鉛処理してサンプルとし、厚さ(小数点第3位)、直径(小数点第3位)、重さ(小数点第4位)を正確に計測して比重を算出した。得られたサンプルについて、レーザーフラッシュ法熱物性測定装置「LFA447」(NETZTCH社製)を用い、熱拡散率と比熱を求めた。
 実施例11~13:多官能(メタ)アクリル化合物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 実施例10で用いたフィラー(I)の種類を代えた以外は、実施例10と同様の方法に準じて硬化膜を作製し、その諸物性を評価した。各成分の使用量(mol量)及び評価結果を表8に示す。なお、実施例11~13で使用した各成分のうち、実施例1~10及び比較例1~4で使用していない成分の名称及び入手先を以下に示す。
-(I)フィラー-
 酸化マグネシウム(マグネシア)(赤穂化成(株)製;MgO6K;平均粒子径6μm)
 酸化アルミニウム(アルミナ)(デンカ(株)製;DAW-03;平均粒子径3.7μm)
 窒化アルミニウム(AlN)(東洋アルミニウム(株)製;TFZ-A10P;平均粒子径9.9μm)
Figure JPOXMLDOC01-appb-T000036
 表8の結果から明らかなように、乳酸エチルをキレート剤兼有機溶剤として用いることで、ゾル液を安定して調製できることがわかった。また、多官能(メタ)アクリル化合物を用いることで、ラジカルによるチオール-エン反応と、塩基によるMichael付加反応が同時に進行し、高密度で硬化物を作製できることがわかった。さらに、フィラーの充填率を上げることができ、硬化物の熱伝導率も向上した。マグネシア、アルミナ等の窒化アルミニウム以外の熱伝導性フィラーを用いた場合でも高い熱伝導率を有する硬化膜を作製でき、なかでも、粒子径が異なる3種類の窒化アルミニウムを用いることで、高い熱伝導率を有する硬化膜が得られることがわかった。
 比較例5:市販の放熱性樹脂組成物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 放熱性ソルダ―レジスト(太陽インキ製造(株)製;PSR-4000HS2W/CA-4000HS2W=95:5)をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、セン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射し、膜厚10μmの硬化膜を得た。得られた硬化膜のアルカリ現像性、密着性、鉛筆硬度及び熱伝導率を評価した。評価結果を表9に示す。なお、評価方法のうち、アルカリ現像性については、実施例1の3%水酸化カリウム水溶液の代わりに5%水酸化カリウム水溶液を用い、鉛筆硬度については、実施例1の荷重750gの代わりに荷重1000±10gで評価した以外は、実施例1と同様の評価方法に準じて硬化膜の諸物性を評価した。
Figure JPOXMLDOC01-appb-T000037
 表9の結果から明らかなように、市販の放熱性樹脂組成物から得られる硬化物は、5%水酸化カリウム水溶液を用いても現像性が悪く、本硬化系における樹脂組成物から得られる硬化物よりも、アルカリ現像が遅い結果であった。また、市販の放熱性樹脂組成物から得られる硬化物は、碁盤目試験において、半分程度の剥離が認められたことから、本硬化系における樹脂組成物から得られる硬化物よりも、基材への密着性が低い結果であった。
 比較例6:メルカプト基を有するシランカップリング剤を含まない樹脂組成物を用いたチオール-エン反応を利用した硬化膜の作製
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、シアヌル酸トリアリル[化合物(H)]、窒化アルミニウム[フィラー(I)]、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ポリビニルピロリドン[分散剤]及び乳酸エチル[キレート剤(F)兼有機溶剤]を含有する混合物を、遊星型ボールミルP-6(フリッチュジャパン(株)製)を用い、回転数2000rpmで3分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、窒素気流下でセン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射したが、硬化膜は得られなかった。各成分の使用量(mol量)を表10に示す。なお、比較例6で使用した各成分のうち、実施例1~13及び比較例1~5で使用していない成分の名称及び入手先を以下に示す。
-メルカプト基は有するがシラノール基を有さない化合物-
 ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(富士フイルム和光純薬(株)製;PEMP)
-分散剤-
 ポリビニルピロリドン(富士フイルム和光純薬(株)製;PVP-K25)
 比較例7:メルカプト基を有するシランカップリング剤を含まない樹脂組成物を用いたアクリレートのラジカル重合反応を利用した硬化膜の作製
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、ジペンタエリスリトールヘキサアクリレート、窒化アルミニウム[フィラー(I)]、ポリビニルピロリドン[分散剤]及び乳酸エチル[キレート剤(F)兼有機溶剤]を含有する混合物を、遊星型ボールミルP-6(フリッチュジャパン(株)製)を用い、回転数2000rpmで3分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、窒素気流下でセン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射したが、硬化膜は得られなかった。各成分の使用量(mol量)を表10に示す。
 比較例8:(メタ)アクリル基を有するシランカップリング剤を含有する樹脂組成物を用いたゾル-ゲル反応とアクリレートのラジカル重合反応を利用した硬化膜の作製
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、3-(メタクリロイルオキシ)プロピルトリメトキシシラン及びケトプロフェンの混合物中に、イオン交換水[水(D)]を加えて30分間攪拌しゾル液を調製した。次いで、窒化アルミニウム[フィラー(I)]、ポリビニルピロリドン[分散剤]及び乳酸エチル[キレート剤(F)兼有機溶剤]の混合物中に、上記で調製したゾル液を添加し、遊星型ボールミルP-6(フリッチュジャパン(株)製)を用い、回転数300rpmで120分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、窒素気流下でセン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射し、さらに150℃で5分間加熱したが、硬化膜は得られなかった。各成分の使用量(mol量)を表10に示す。なお、比較例8で使用した各成分のうち、実施例1~13及び比較例1~7で使用していない成分の名称及び入手先を以下に示す。
-(メタ)アクリル基を有するシランカップリング剤-
 3-(メタクリロイルオキシ)プロピルトリメトキシシラン(信越化学工業(株)製)
Figure JPOXMLDOC01-appb-T000038
 表10の結果から明らかなように、メルカプト基を有するシランカップリング剤の代わりに、メルカプト基は有するがシラノール基を有さない化合物を用いた場合には(比較例6)、チオール-エン反応は進行するものの、ゾル-ゲル化が進行しなかった。このため、フィラーの充填率を80%以上に設定しようとすると、光硬化が適切に進行せず、硬化物が得られないことがわかった。また、メルカプト基を有するシランカップリング剤の代わりに、多官能(メタ)アクリル化合物を用いた場合には(比較例7)、(メタ)アクリル基同士のラジカル重合が進行するものの、フィラーの充填率を80%以上に設定しようとすると、光硬化が適切に進行せず、硬化物が得られないことがわかった。比較例8では、(メタ)アクリル基同士のラジカル重合とゾル-ゲル化の両方が進行しているものの、硬化物が得られなかったことから、(メタ)アクリル基同士のラジカル重合では、所望の硬化物が得られないことが示唆された。比較例6や比較例7の硬化系では、フィラーの充填率を70%程度まで低減させると硬化物自体は得られるものの、得られた硬化物は、碁盤目試験において剥離が生じてしまい、硬化物の密着性が不十分で硬化物が脆い結果であった。以上の結果から、ゾル-ゲル化とチオール-エン反応の両方が、本硬化系を成立させる上で重要な反応系であることがわかった。
 メルカプト基を有する化合物は、一般的に、各種金属との親和性が高く、アルミニウムや銅のような金属基板上に結合し易いことから、硬化物の密着性を向上させる要因の1つとなっていると考えられる。また、フィラーを大量に含む系では、アルミニウムアルコキシドとメルカプト基を有するシランカップリング剤を組み合わせることで、初めて、フィラーの充填率が高い硬化系において、硬度や密着性が高い硬化物が得られることがわかった。
 比較例9:金属水酸化物を直接添加した樹脂組成物を用いた硬化膜の作製及び得られた硬化膜の物性評価
 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート[化合物(A)]、水酸化アルミニウム及び(3-メルカプトプロピル)トリメトキシシラン[シランカップリング剤(C)]の混合物中に、シアヌル酸トリアリル[化合物(H)]、窒化アルミニウム[フィラー(I)]、CF-180[分散剤]及びカルビトールアセテート[有機溶剤]を添加し、さらにイオン交換水[水(D)]とカルビトールアセテート[有機溶剤]を混和した溶液を滴下した。該混合物を、遊星式撹拌機(シンキー社「あわとり練太郎AR-250」)を用い、回転数2000rpmで3分間混練し、樹脂組成物を作製した。得られた樹脂組成物をアルミニウム板上に塗布して塗布膜を作製し、150℃でプレベークした後、この塗布膜に対して、窒素気流下でセン特殊光源製「HLR-100-2」を用い、光(活性エネルギー線:面照度254nm=9mJ/cm及び365nm=11mJ/cm)を1分間照射し、さらに150℃で5分間加熱したが、硬化膜は得られなかった。各成分の使用量(mol量)を表11に示す。なお、比較例9で使用した各成分のうち、実施例1~13及び比較例1~8で使用していない成分の名称及び入手先を以下に示す。
-アルミニウム化合物-
 水酸化アルミニウム(富士フイルム和光純薬(株)製)
Figure JPOXMLDOC01-appb-T000039
 比較例9では、直接金属水酸化物を用い、水の添加を要しない硬化系を試みた。表11の結果から明らかなように、加水分解された状態である水酸化アルミニウムを用いた場合には、シランカップリング剤との相溶性が悪いため、水酸化アルミニウムとシランカップリング剤を効率的に反応させることができず、硬化物が得られないことがわかった。故に、水を添加せずに金属水酸化物を直接用いる方法は、本硬化系には適さないことがわかった。
 以上の結果から明らかなように、本発明の光又は熱硬化方法は、ゾル-ゲル化とチオール-エン反応又はチオール-イン反応とが重要であることがわかった。本発明の光又は熱硬化方法は、(I)フィラーを含む硬化系において、ゾル-ゲル化とチオール-エン反応又はチオール-イン反応の両方の反応を効率的に行うことができ、所望の物性を有する硬化物(架橋物・樹脂)が簡便に得られる方法である。上述した実施例及び比較例の結果から、所望の物性を有する硬化物(架橋物・樹脂)を簡便に得るためには、(A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物と、(B)アルミニウムアルコキシドと、(C)メルカプト基を有するシランカップリング剤と、(D)水と、(H)2つ以上の重合性不飽和基を有する化合物と、(I)フィラーを組み合わせて用い、光照射又は加熱によって、化合物(A)から塩基とラジカルの両方を発生させて反応させることが重要であることがわかった。
 本発明の光又は熱硬化方法は、水を添加して、アルミニウムアルコキシド(B)とシランカップリング剤(C)又はシランカップリング剤(C)同士の部分的な縮合(ゾル化)を行った後、光(活性エネルギー線)の照射又は加熱によって塩基とラジカルの両方を発生させることにより、ゾル化で得られたSi-O-Al又は/及びSi-O-Siの構成単位を有する縮合物(E)同士の重縮合(ゲル化)と、縮合物(E)中のメルカプト基と化合物(H)中の重合性不飽和基とのチオール-エン反応又はチオール-イン反応とを同一系内で行う方法であり、ゾル-ゲル化とチオール-エン反応又はチオール-イン反応を効率的に行えるばかりでなく、フィラーを大量に含んでいても、簡便に硬化物(架橋物・樹脂)を得ることができる方法である。故に、本発明の光又は熱硬化方法は、熱伝導性の高い硬化物(架橋物・樹脂)を迅速且つ効率的に作製できる方法として有用なものである。
 本発明の硬化性樹脂組成物は、従来の硬化性樹脂組成物と比較して、組成物中に大量のフィラーを充填させることができ、アルカリ現像性、耐有機溶剤性、硬度及び密着性に優れる硬化物(架橋物・樹脂)を作製できる有用な組成物である。また、本発明の硬化性樹脂組成物は、光(活性エネルギー線)照射又は加熱によって、所望の性能を有する硬化物(架橋物・樹脂)を簡便に作製できるため、硬化物の生産性を大幅に向上させることができる有用な組成物である。このため、本発明の硬化性樹脂組成物は、例えば、塗料、インキ材、コーティング材料、接着材料、歯科材料、レジスト、カラーフィルタ、層間絶縁膜、熱伝導膜、熱伝導性絶縁膜、配線被覆膜等の光学部材又は電子部材における樹脂原料として有用なものである。
 本発明の電子回路形成用熱伝導性基板は、高い熱伝導性と電気絶縁性を有しているため、例えば、高輝度LEDやパワー半導体の放熱用基板や電気絶縁性基板として有用なものである。

Claims (20)

  1. (A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水から、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物を得る工程1と、
    前記化合物(A)の存在下、前記縮合物(E)、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを、光照射又は加熱条件下で反応させる工程2を含む、
    光又は熱硬化方法。
  2. (A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、及び(D)水を反応させて、(E)ゾルを得る工程1と、
    前記化合物(A)の存在下、光照射又は加熱により、前記ゾル(E)、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーから、硬化物を得る工程2を含む、
    光又は熱硬化方法。
  3. 前記工程1が、前記化合物(A)、前記アルミニウムアルコキシド(B)、前記シランカップリング剤(C)、前記水(D)、及び(F)キレート剤から、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物を得る工程である、請求項1に記載の硬化方法。
  4. 前記工程1が、前記化合物(A)、前記アルミニウムアルコキシド(B)、前記シランカップリング剤(C)、前記水(D)、及び(F)キレート剤を反応させて、(E)ゾルを得る工程である、請求項2に記載の硬化方法。
  5. 前記工程2が、前記化合物(A)の存在下、前記縮合物(E)、(H)2つ以上の重合性不飽和基を有する化合物、(I)フィラー、及び(J)2つ以上のエポキシ基を有する化合物を、光照射又は加熱条件下で反応させる工程である、請求項1に記載の硬化方法。
  6. 前記工程2が、前記化合物(A)の存在下、光照射又は加熱により、前記ゾル(E)、(H)2つ以上の重合性不飽和基を有する化合物、(I)フィラー、及び(J)2つ以上のエポキシ基を有する化合物から、硬化物を得る工程である、請求項2に記載の硬化方法。
  7. 前記化合物(A)が、一般式[1]で示されるものである、請求項1又は2に記載の硬化方法。
    Figure JPOXMLDOC01-appb-I000001
    (式[1]中、R~Rはそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、ニトロ基又は一般式[2]で示される基を表し、R及びR10はそれぞれ独立して、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子又はニトロ基を表すか、あるいはR及びR10が、酸素原子、硫黄原子又はカルボニル基を介して互いに結合していることを表す。ただし、R~Rで示される基のうちの少なくとも1つは、一般式[2]で示される基を表す。)
    一般式[2]:
    Figure JPOXMLDOC01-appb-I000002
    (式[2]中、R11及びR12はそれぞれ独立して、水素原子、炭素数1~6のアルキル基又は炭素数1~6のヒドロキシアルキル基を表し、Z は、アミジニウムカチオン、グアニジニウムカチオン又はビグアニジニウムカチオンを表す。)
  8. 前記アルミニウムアルコキシド(B)が、一般式[6]で示されるものである、請求項1又は2に記載の硬化方法。
    Figure JPOXMLDOC01-appb-I000003
    (式[6]中、3つのR32はそれぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。ただし、R32で示される基のうちの少なくとも1つは、炭素数1~4のアルキル基を表す。)
  9. 前記アルミニウムアルコキシド(B)が、アルミニウムトリ-sec-ブトキシドである、請求項1又は2に記載の硬化方法。
  10. 前記シランカップリング剤(C)が、一般式[7]で示されるものである、請求項1又は2に記載の硬化方法。
    Figure JPOXMLDOC01-appb-I000004
    (式[7]中、3つのR33はそれぞれ独立して、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、R34は、少なくとも1つのメルカプト基を有する炭素数1~8のアルキル基を表す。ただし、R33で示される基のうちの少なくとも1つは、炭素数1~4のアルコキシ基を表す。)
  11. 前記シランカップリング剤(C)が、(3-メルカプトプロピル)トリメトキシシラン、(3-メルカプトプロピル)トリエトキシシラン、及び3-メルカプトプロピル(ジメトキシ)メチルシランから選ばれるものである、請求項1又は2に記載の硬化方法。
  12. 前記アルミニウムアルコキシド(B)と前記シランカップリング剤(C)のmol比の割合が、1:10~9:1である、請求項1又は2に記載の硬化方法。
  13. 前記キレート剤(F)が、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジメチル、マロン酸ジエチル、2-(2-チオキサンテニル)ジエチルマロン酸、アセチルアセトン、ジアセトンアルコール、及び乳酸エチルから選ばれるものである、請求項3又は4に記載の硬化方法。
  14. 前記フィラー(I)が、熱伝導性フィラーである、請求項1又は2に記載の硬化方法。
  15. 前記熱伝導性フィラーが、窒化アルミニウムである、請求項14に記載の硬化方法。
  16. (A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(B)アルミニウムアルコキシド、(C)メルカプト基を有するシランカップリング剤、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを含む、硬化性樹脂組成物。
  17. (A)カルボン酸とアミンとの塩からなり、光照射又は加熱により、ラジカルを発生するカルボニル基と脱炭酸して塩基を発生するカルボキシレート基を有する化合物、(E)アルミニウムアルコキシド由来のアルミニウムとメルカプト基を有するシランカップリング剤由来のシランから得られる、Si-O-Al又は/及びSi-O-Siの構成単位を有する縮合物、(H)2つ以上の重合性不飽和基を有する化合物、及び(I)フィラーを含む、硬化性樹脂組成物。
  18. さらに、(J)2つ以上のエポキシ基を有する化合物を含む、請求項16又は17に記載の樹脂組成物。
  19. 請求項16又は17に記載の硬化性樹脂組成物から得られる硬化物を有する電子回路形成用熱伝導性基板。
  20. 請求項16又は17に記載の硬化性樹脂組成物を、金属基板に塗布して塗布膜を得た後、該塗布膜を光照射又は加熱することにより、前記塗布膜を硬化させ、金属基板の表面に熱伝導性絶縁膜を形成することを特徴とする、電子回路形成用熱伝導性基板の作製方法。
PCT/JP2018/022484 2017-06-12 2018-06-12 光又は熱硬化方法、及び硬化性樹脂組成物 WO2018230580A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019525466A JP7504348B2 (ja) 2017-06-12 2018-06-12 光又は熱硬化方法、及び硬化性樹脂組成物
CN201880035268.5A CN110678500B (zh) 2017-06-12 2018-06-12 光或热固化方法及固化性树脂组合物
US16/622,132 US11548984B2 (en) 2017-06-12 2018-06-12 Light- or heat-curing method and curable resin composition
KR1020197034157A KR102551976B1 (ko) 2017-06-12 2018-06-12 광 또는 열경화 방법, 및 경화성 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017115314 2017-06-12
JP2017-115314 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018230580A1 true WO2018230580A1 (ja) 2018-12-20

Family

ID=64659775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022484 WO2018230580A1 (ja) 2017-06-12 2018-06-12 光又は熱硬化方法、及び硬化性樹脂組成物

Country Status (6)

Country Link
US (1) US11548984B2 (ja)
JP (1) JP7504348B2 (ja)
KR (1) KR102551976B1 (ja)
CN (1) CN110678500B (ja)
TW (1) TWI768059B (ja)
WO (1) WO2018230580A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070784A (ja) * 2019-11-01 2021-05-06 古河電気工業株式会社 被膜材、これを用いた樹脂被膜構造及び端子付き電線

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214666B2 (en) * 2020-04-15 2022-01-04 Prc-Desoto International, Inc. Controlling cure rate with wetted filler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076395A1 (ja) * 2013-11-25 2015-05-28 和光純薬工業株式会社 酸およびラジカル発生剤、ならびに酸およびラジカル発生方法
WO2015111640A1 (ja) * 2014-01-24 2015-07-30 和光純薬工業株式会社 ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物
JP2016503829A (ja) * 2013-01-11 2016-02-08 マルチフォトン オプティクス ゲーエムベーハー 一次構造および/または二次構造の異なる2つの領域を有する層または三次元成形品、成形品の製造方法、およびこの方法を実施するための材料
JP2016155896A (ja) * 2015-02-23 2016-09-01 株式会社リコー 活性光線硬化組成物、活性光線硬化型インク、活性光線硬化型インクジェットインク、及び活性光線硬化型接着剤
WO2017131047A1 (ja) * 2016-01-26 2017-08-03 和光純薬工業株式会社 光硬化方法、それに用いられる化合物および組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649337A (en) * 1979-09-29 1981-05-02 Toa Eiyou Kagaku Kogyo Kk Dibenzo a,d cycloheptene derivative and its preparation
JP2000044640A (ja) 1998-07-29 2000-02-15 Takeda Chem Ind Ltd セラミック成形用感光性樹脂組成物
KR20000044640A (ko) 1998-12-30 2000-07-15 김영환 봉착용 테이프를 이용한 플라즈마 디스플레이 패널의 봉착층 형성 방법
KR100958736B1 (ko) * 2009-12-07 2010-05-18 주식회사 삼공사 방화유리용 유기-무기 하이브리드 투명 하이드로겔 복합체 및 이를 사용한 방화유리 조립체 및 그 제조방법
JP5614301B2 (ja) 2011-01-20 2014-10-29 日立化成株式会社 熱硬化性樹脂組成物、並びにその半硬化物及び硬化物
JP2012251100A (ja) 2011-06-06 2012-12-20 Nitto Denko Corp シリコーン樹脂組成物および熱伝導シート
CN102816438A (zh) 2011-06-06 2012-12-12 日东电工株式会社 有机硅树脂组合物以及导热片
KR101356387B1 (ko) * 2011-08-09 2014-01-29 한국과학기술원 광학용 투명 하이브리드 재료
JP5895156B2 (ja) 2011-12-19 2016-03-30 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、封止材およびそれらを用いた電子部品
KR102266013B1 (ko) 2013-06-28 2021-06-18 후지필름 와코 준야꾸 가부시키가이샤 염기 발생제, 이 염기 발생제를 함유하는 염기 반응성 조성물 및 염기 발생 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503829A (ja) * 2013-01-11 2016-02-08 マルチフォトン オプティクス ゲーエムベーハー 一次構造および/または二次構造の異なる2つの領域を有する層または三次元成形品、成形品の製造方法、およびこの方法を実施するための材料
JP2016511706A (ja) * 2013-01-11 2016-04-21 マルチフォトン オプティクス ゲーエムベーハー 異なる一次構造および/または二次構造を備えた2つの領域を有する層または三次元成形体、そしてその製造方法
WO2015076395A1 (ja) * 2013-11-25 2015-05-28 和光純薬工業株式会社 酸およびラジカル発生剤、ならびに酸およびラジカル発生方法
WO2015111640A1 (ja) * 2014-01-24 2015-07-30 和光純薬工業株式会社 ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物
JP2016155896A (ja) * 2015-02-23 2016-09-01 株式会社リコー 活性光線硬化組成物、活性光線硬化型インク、活性光線硬化型インクジェットインク、及び活性光線硬化型接着剤
WO2017131047A1 (ja) * 2016-01-26 2017-08-03 和光純薬工業株式会社 光硬化方法、それに用いられる化合物および組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070784A (ja) * 2019-11-01 2021-05-06 古河電気工業株式会社 被膜材、これを用いた樹脂被膜構造及び端子付き電線
JP7370817B2 (ja) 2019-11-01 2023-10-30 古河電気工業株式会社 被膜材、これを用いた樹脂被膜構造及び端子付き電線

Also Published As

Publication number Publication date
CN110678500A (zh) 2020-01-10
US20200123324A1 (en) 2020-04-23
KR20200018414A (ko) 2020-02-19
JPWO2018230580A1 (ja) 2020-04-16
KR102551976B1 (ko) 2023-07-05
JP7504348B2 (ja) 2024-06-24
US11548984B2 (en) 2023-01-10
CN110678500B (zh) 2022-10-14
TW201905041A (zh) 2019-02-01
TWI768059B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
JP6698147B2 (ja) ケイ素含有樹脂組成物
TW200937123A (en) Resist material and laminate
TWI730037B (zh) 光硬化方法,及用於該光硬化方法之化合物和組成物
JP6637674B2 (ja) プリント配線板、プリント配線板の製造方法、及び半導体装置
EP3098226A1 (en) Borate-based base generator, and base-reactive composition comprising such base generator
JP7421186B2 (ja) 感エネルギー性組成物、硬化物、及びパターン形成方法
KR20160025587A (ko) 염기 발생제, 이 염기 발생제를 함유하는 염기 반응성 조성물 및 염기 발생 방법
JP6885406B2 (ja) エポキシ樹脂組成物及び密着性に優れる低硬化収縮性樹脂硬化膜
JP2019105857A (ja) 感光性樹脂組成物
KR101799361B1 (ko) 감광성 수지 조성물
JP7504348B2 (ja) 光又は熱硬化方法、及び硬化性樹脂組成物
KR20200051490A (ko) 표면 수식 금속 산화물 미립자의 제조 방법, 개질 금속 산화물 미립자의 제조 방법, 표면 수식 금속 산화물 미립자, 및 금속 산화물 미립자 분산액
KR20190091559A (ko) 라디컬 중합성 관능기를 가지는 실세스퀴옥산 유도체, 그 조성물 및 저경화 수축성 경화막
TWI633132B (zh) Method for producing high refractive index transparent film and film produced by the method
KR20150032746A (ko) 에피설파이드 화합물용 경화제, 경화성 조성물 및 에피설파이드 화합물의 경화물 및 에피설파이드 화합물의 경화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525466

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197034157

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818701

Country of ref document: EP

Kind code of ref document: A1