WO2018230513A1 - 光学物品用プライマー組成物および積層体 - Google Patents

光学物品用プライマー組成物および積層体 Download PDF

Info

Publication number
WO2018230513A1
WO2018230513A1 PCT/JP2018/022265 JP2018022265W WO2018230513A1 WO 2018230513 A1 WO2018230513 A1 WO 2018230513A1 JP 2018022265 W JP2018022265 W JP 2018022265W WO 2018230513 A1 WO2018230513 A1 WO 2018230513A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
urethane prepolymer
mass
primer
laminate
Prior art date
Application number
PCT/JP2018/022265
Other languages
English (en)
French (fr)
Inventor
百田 潤二
忍 和泉
太一 花崎
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2019525419A priority Critical patent/JP7116727B2/ja
Priority to CN201880038899.2A priority patent/CN110770611B/zh
Priority to EP18818382.6A priority patent/EP3640686A4/en
Priority to BR112019026164-8A priority patent/BR112019026164A2/pt
Priority to KR1020197036617A priority patent/KR102493025B1/ko
Priority to US16/621,388 priority patent/US11807769B2/en
Priority to MX2019015170A priority patent/MX2019015170A/es
Priority to AU2018285172A priority patent/AU2018285172A1/en
Publication of WO2018230513A1 publication Critical patent/WO2018230513A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water
    • C08G18/307Atmospheric humidity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6611Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection

Definitions

  • the present invention relates to a novel primer composition for forming an optical article excellent in ultraviolet absorption performance (including blue light absorption capability) or antiglare property.
  • the spectacle lens has the ability to absorb ultraviolet rays and blue light. Furthermore, the spectacle lens may be required to have antiglare properties.
  • the above conventional methods have room for improvement in the following points.
  • the immersion method of (i) it is necessary to control the amount of the ultraviolet absorber impregnated by the plastic lens substrate to be constant. For this reason, there is room for improvement in that it is limited to a plastic lens substrate made of a material capable of controlling the amount of impregnation. That is, the immersion method has a plastic lens base material in which the amount of the ultraviolet absorber cannot be controlled to be constant, and there is room for improvement in that it is not versatile.
  • the lens base material dispersion method (ii) has room for improvement in that it cannot cope with the difference in thickness of the plastic lens base material.
  • the ultraviolet absorption characteristics vary depending on the thickness of the substrate, for example, a plastic lens substrate.
  • the substrate is a lens for correcting myopia
  • the lens center is thin and the lens end is thick. Therefore, the amount of the ultraviolet absorber present on the optical path differs between the center portion and the end portion of the lens. As a result, the ultraviolet absorption characteristics are different between the center portion and the end portion of the lens.
  • UV absorber it is necessary to use a large amount of UV absorber when matched to the center of the lens, or when there is less UV absorber at the center of the lens than the lens end, the UV absorption characteristics of the center of the lens will not be sufficient. There was room for improvement. Further, when an ultraviolet absorber or a blue light absorber having absorption in the near ultraviolet region is used, it becomes easy to color. For this reason, there is room for improvement in that it is difficult to maintain high transparency of the entire lens surface when a UV absorber is blended in lenses having different thicknesses at the center and at the end.
  • the hard coat layer formed on the substrate since the hard coat layer formed on the substrate usually forms a layer having a uniform film thickness, Such a problem does not occur. Moreover, since it forms on a plastic lens base material, it can apply to a wide material (base material) irrespective of the kind of plastic lens base material like the said immersion method.
  • the hard coat composition for forming the hard coat layer is composed of inorganic particles such as silica particles and a compound such as a hydrolyzable group-containing organosilicon compound (for example, alkoxysilane) that forms a polymer by a condensation reaction. And comprising.
  • the amount of added light absorber is increased or the thickness of the hard coat layer to be formed is increased. I found that I had to make it thicker.
  • an object of the present invention is to provide a material capable of easily producing an optical article excellent in ultraviolet absorption performance, blue light absorption performance, or antiglare property in an optical article such as a plastic lens. More specifically, an object of the present invention is to provide a primer composition for an optical article that can be applied to substrates of various materials and has an absorption performance for light of a predetermined wavelength.
  • the inventors of the present invention made extensive studies to solve the above problems.
  • the lens base material dispersion method in which a large amount of light absorber can be blended and the hard coat layer dispersion method in which the hard coat layer existing on the light incident surface is an ultraviolet absorption layer have been mainstream. Studied a completely different method from these methods, and examined a layer different from the conventional method as a light absorbing layer. Then, paying attention to a so-called primer layer (primer layer for optical article) used for bonding the base material and the other layer, it was studied to add a light absorber to the primer layer.
  • primer layer primer layer for optical article
  • the inventors found that the above problems can be solved by blending a light-absorbing compound into a composition containing a specific organic solvent and a specific urethane prepolymer having a reactive group at the terminal as a main component, and completed the present invention. It came to do. As described above, it is unthinkable to use a primer layer made of such a primer composition for optical articles (a layer in which the reaction product of the urethane prepolymer becomes a matrix (base material)) as a light absorbing layer. there were.
  • the present invention (1) (A) A reaction product of an aromatic polyisocyanate compound and a polyol compound, and a urethane prepolymer having a reactive group selected from an isocyanate group or a hydroxyl group at the terminal, (B) a maximum absorption wavelength of 320 nm to 650 nm And (C) a solubility parameter of 8 [(cal / cm 3 ) 1/2 ] or more, and A primer composition for optical articles, comprising an organic solvent having no active hydrogen.
  • the present invention can take the following aspects.
  • the mass of the reactive group of the (A) urethane prepolymer is 0.02 to 0.2 g (0.02 to 0.2 gram) per 1 g (1 gram) of the (A) urethane prepolymer.
  • the primer composition for optical articles according to (1) which is in the range.
  • the reactive group of the (A) urethane prepolymer is an isocyanate group
  • the (A) urethane prepolymer is a moisture curable polymer that can be cured with moisture in the air (1) to (10) Any one of the primer compositions for optical articles.
  • the reactive group of the (A) urethane prepolymer is a hydroxyl group
  • the reactive group of the (A) urethane prepolymer is an isocyanate group
  • a primer layer made of the primer composition for optical articles of any one of (1) to (13) is formed on the surface of the optical substrate, and the primer layer has a thickness of 0.1 to 20 ⁇ m.
  • One laminate One laminate.
  • the maximum absorption wavelength of each compound was measured in a solvent that does not affect the measurement.
  • a solvent is chloroform.
  • the primer composition for an optical article of the present invention in an optical article such as a plastic lens substrate, it is possible to effectively impart ultraviolet absorption performance, performance to absorb blue light, or antiglare properties, And since all these performances can be exhibited simultaneously, its utility value is high.
  • the primer composition for optical articles of the present invention comprises: (A) a urethane prepolymer that is a reaction product of an aromatic polyisocyanate compound and a polyol compound, and has a reactive group selected from an isocyanate group or a hydroxyl group at the end; (B) a light-absorbing compound having a maximum absorption wavelength in the range from 320 nm to 650 nm, and (C) an organic compound having a solubility parameter of 8 [(cal / cm 3 ) 1/2 ] or more and having no active hydrogen.
  • a composition comprising a solvent.
  • each component will be described.
  • component (A) Urethane prepolymer (hereinafter sometimes referred to as component (A))
  • the component (A) is a resin component (matrix) in which the (B) light absorbing compound is dispersed in the optical article primer layer (layer formed from the primer composition for optical articles of the present invention).
  • the said (A) component plays the role which improves the adhesiveness of an optical base material, such as a plastic lens base material, and a hard-coat layer, for example.
  • the component (A) is a reaction product of an aromatic polyisocyanate compound (hereinafter sometimes referred to as component (A1)) and a polyol compound (hereinafter also referred to as component (A2)). is there. And it synthesize
  • component (A1) aromatic polyisocyanate compound
  • component (A2) hereinafter also referred to as component (A2)
  • the reactive group in the component (A) is an isocyanate group (NCO group) or a hydroxyl group (OH group). That is, the component (A) is a urethane prepolymer having an aromatic ring and having a reactive group selected from an isocyanate group or a hydroxyl group at the molecular end.
  • component (A1) constituting the component (A) include the following compounds.
  • the component (A1) is a compound having an aromatic ring and two or more isocyanate groups in the molecule.
  • the curing reaction rate is faster than other isocyanate compounds, for example, aliphatic polyisocyanate compounds, and the hardness of the resulting coating film (primer layer) is also high. This is because it can be increased.
  • the smoothness of the primer layer to be formed (B) dispersion of the light absorbing compound and other additives in the primer layer, the bondability of the primer layer (hard coat layer, In view of the bonding property to the substrate, etc., it is preferable that 2 to 3 isocyanate groups are contained in the molecule. Further, although not particularly limited, it is preferable to use a compound having a molecular weight of 160 to 500 (g / mol) in order to exert the above effect.
  • component (A1) examples include 4,4′-diphenylmethane diisocyanate, 4,2′-diphenylmethane diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, tolylene-2,3- Diisocyanate, phenylene-1,3-diisocyanate, phenylene-1,4-diisocyanate, 1,3-bis (isocyanatomethyl) benzene, xylylene diisocyanate, tetramethylxylylene diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, 1,3- Diisocyanatomethylbenzene, 4,4′-diisocyanato-3,3′-dimethoxy (1,1′-biphenyl), 4,4′-diisocyanato-3,3′-dimethylbiphenyl, 1,2-di
  • aromatic isocyanate compounds such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, triphenylmethane triisocyanate, and tetramethylxylylene diisocyanate are preferably used.
  • aromatic isocyanate compound has an excellent curing reaction rate compared to the aliphatic isocyanate compound, and the hardness of the resulting coating film can be higher with the aromatic isocyanate compound.
  • tolylene diisocyanate and 4,4′-diphenylmethane diisocyanate are particularly suitable.
  • tolylene diisocyanate When tolylene diisocyanate is used, from the viewpoint of easy availability of raw materials, tolylene-2,4-diisocyanate (50 to 90% by mass) and tolylene-2,6-diisocyanate (10 to 50% by mass) are used. It is preferred to use a mixture.
  • the polyol compound (A2) Next, the polyol compound (A2) will be described.
  • the component (A2) is a compound having two or more hydroxyl groups in the molecule.
  • the polyol compound is composed of the smoothness of the primer layer to be formed, (B) dispersion of the light absorbing compound, and other additives in the primer layer, bondability of the primer layer (hard coat layer, base material)
  • bondability of the primer layer (hard coat layer, base material)
  • this molecular weight is a number average molecular weight calculated
  • the component (A2) includes alkylene glycol, polyalkylene glycol, poly (alkylene adipate), polycaprolactone polyol, polybutadiene glycol, polyester polyol, polyol having three or more hydroxyl groups in the molecule, or silicone polyol. It is done.
  • Alkylene glycols such as ethylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, dipropylene glycol, diethylene glycol;
  • Polyalkylene glycols such as polypropylene glycol, polyethylene glycol, polytetramethylene glycol;
  • Poly (alkylene adipates) such as poly (diethylene adipate), poly (tetramethylene adipate), poly (hexamethylene adipate), poly (neopentylene adipate);
  • Polycaprolactone polyols such as poly- ⁇ -caprolactone, polycaprolactone diol, polycaprolactone triol;
  • Polybutadiene glycols such as poly (1,4-butadiene) glycol and poly (1,2-butadiene) glycol;
  • the polybasic acid includes Succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.) And polyol compounds.
  • polyalkylene glycol, polyols containing three hydroxyl groups, polyalkylene adipate, polycarbonate polyol, polycaprolactone polyol, and polyester polyol can lower the heating temperature when cured. . Therefore, it is suitable at the point which can prevent more reliably the heat deformation and discoloration of a base material.
  • the component (A) can be produced by reacting the component (A1) and the component (A2).
  • a known method can be adopted for the reaction (reaction between an isocyanate group and a hydroxyl group).
  • the (A) component which has a reactive group in the terminal can be manufactured by changing the molar ratio of the isocyanate group of the said (A1) component, and the molar ratio of the hydroxyl group of the said (A2) component. That is, when the molar ratio of the isocyanate group of the component (A1) is larger than the molar ratio of the hydroxyl group of the component (A2), the component (A) having an isocyanate group (reactive group) at the terminal is obtained. be able to.
  • the mass of the reactive group of the component (A) is preferably in the range of 0.02 to 0.2 g per 1 g of the component (A).
  • the coating film has an appropriate curing rate, improves the adhesion to the base material / other layers, and other layers are provided on the resulting laminate, particularly the primer layer. Furthermore, the external appearance of the laminated body can be improved.
  • the mass of the reactive group is more preferably 0.03 to 0.1 g, and 0.04 to 0.1 g per 1 g of the component (A). Further preferred.
  • the molar percentage of the reactive group in the component (A) is preferably 0.01 to 0.7 mol%, more preferably 0.02 to 0.3 mol%, particularly preferably 0.04 to 0.00. 25 mol%.
  • the molar fraction of the reactive group is calculated as follows. First, the number of moles of the reactive group present in the component (A) having a specific mass is obtained by chemical quantification, and the number of moles of the obtained reactive group is contained in the component (A) having the specific mass. By dividing by the number of moles of urethane prepolymer, the number of moles of reactive groups present in one molecule of urethane prepolymer is determined.
  • the value obtained by dividing the obtained number of moles by the number average molecular weight of the urethane prepolymer is expressed in%, and the mole percentage of the reactive group in the component (A) is calculated.
  • the number of moles of the urethane prepolymer is obtained by dividing the mass of the component (A) by the number average molecular weight of the urethane prepolymer.
  • the reaction solution with the acylating agent may be titrated with an alkaline aqueous solution and quantified.
  • acetic anhydride After reacting the hydroxyl group in component (A) with a known amount of acetic anhydride, the remaining acetic anhydride was hydrolyzed with water, and the resulting acetic acid was titrated with a sodium hydroxide standard solution and reacted from there.
  • the hydroxyl value can be quantified by calculating the amount of acetic anhydride.
  • the component (A) is a flat primer layer in which the curing rate of the primer composition for optical articles is relatively fast, and the viscosity of the primer composition for optical articles becomes a viscosity that is easy to coat.
  • the weight average molecular weight of the component (A) is preferably 3,000 to 300,000.
  • the number average molecular weight of the component (A) is preferably 1,000 to 25,000. Since the primer composition for an optical article of the present invention contains (B) a light absorbing compound (component (B)) described in detail below, the component (A) that satisfies the weight average molecular weight within the above range may be used. preferable.
  • the component (B) may cause bleeding in the primer layer or may reduce the adhesion to the substrate and / or the hard coat layer, but satisfies the weight average molecular weight in the above range.
  • the weight average molecular weight of the component (A) is more preferably 5,000 to 300,000, and preferably 10,000 to 200,000. Further preferred. At this time, the number average molecular weight of the component (A) is more preferably 1,500 to 25,000, and further preferably 2,000 to 23,000.
  • the component (A) has a weight average molecular weight of 12,000 to 150,000, more preferably 15,000 to 100,000, and most preferably 15,000 to 80,000. 000.
  • the number average molecular weight of the component (A) is 2,200 to 23,000, more preferably 2,500 to 21,000, and most preferably 6,000 to 20,000. is there.
  • the weight of the component (A) before the molecular weight is increased.
  • the average molecular weight is preferably 3,000 to 300,000.
  • the number average molecular weight of the component (A) is preferably 1,000 to 25,000.
  • another layer for example, a hard coat layer
  • the dissolution resistance to a solvent is increased, and a laminate having a more excellent appearance can be formed.
  • the weight average molecular weight of the said (A) component is the value calculated
  • the component (A) can also be adjusted in weight average molecular weight by adjusting the molecular weight and type of the component (A1) and component (A2) used.
  • the weight average molecular weight of the component (A) is 3,000 to 300,000 and the number average molecular weight of the component (A) to 1,000 to 25,000.
  • the following It is preferable to manufacture by a method. That is, it is preferable to employ a method for producing the component (A) using a chain extender (hereinafter simply referred to as the component (A3)).
  • the chain extender is used as follows. First, in a formulation in which the molar ratio of any one of the reactive groups (isocyanate group or hydroxyl group) is excessive, the component (A1) and the component (A2) are reacted, A first urethane prepolymer is prepared. Next, the first urethane prepolymer and the component (A3) are reacted using the component (A3) having a plurality of reactive groups in the molecule that can react with the reactive group at the terminal of the first urethane prepolymer. To obtain a high molecular weight second urethane prepolymer.
  • the kind and quantity of (A3) component are adjusted so that the reactive group of the terminal of a 2nd urethane prepolymer may become the reactive group of the same kind as a 1st urethane prepolymer. That is, the kind and amount of the chain extender are adjusted so that a part of the reactive group of the first urethane prepolymer remains.
  • Both the first urethane prepolymer and the second urethane prepolymer can be used as the component (A) of the present invention.
  • the mass of the reactive group of the first urethane prepolymer is in the range of 0.02 to 0.2 g per 1 g of the first urethane prepolymer.
  • the mole percentage of reactive groups in the first urethane prepolymer is preferably 0.01 to 0.7 mol%, and the weight average molecular weight of the first urethane prepolymer is 3,000 to 300, 000 is preferred.
  • the mass of the reactive group of the second urethane prepolymer is in the range of 0.02 to 0.2 g per 1 g of the second urethane prepolymer.
  • the mole percentage of reactive groups in the polymer is in the range of 0.01 to 0.7 mol%
  • the weight average molecular weight of the second urethane prepolymer is 3,000 to 300,000
  • the component (A) The type and amount of the component (A3) may be adjusted so that the number average molecular weight of the component becomes 1,000 to 25,000.
  • component (A3) is a group capable of reacting with a plurality of isocyanate groups in the molecule (for example, hydroxyl group and / or amino group). Group) (hereinafter sometimes referred to simply as component (A3 ′)).
  • examples of the compound having a hydroxyl group include the component (A2).
  • the component (A3 ′) may be a single species or a plurality of species.
  • 1,3-butanediol, 1,4-butanediol, propylene glycol, and 1,6-hexanediol are used from the viewpoint of easy control of chain extension reaction (easy control of high molecular weight).
  • polyalkylene glycols such as polypropylene glycol are suitable.
  • a compound having a plurality of amino groups in the molecule can also be used.
  • a diamine compound and a triamine compound can be used.
  • the component (A3 ′) having an amino group may be a single species or a plurality of species.
  • Examples of compounds in detail include 3,3′-dichloro-4,4′-diaminodiphenylmethane, methylenedianiline, sodium chloride complex of methylenedianiline, isophoronediamine, bis- (4-aminocyclohexyl) methane, norbornane Diamine is more preferably used, and among them, 3,3′-dichloro-4,4′-diaminodiphenylmethane and bis- (4-aminocyclohexyl) methane can be mentioned.
  • the component (A3) is a compound having a plurality of isocyanate groups in the molecule (hereinafter referred to as (A3 ′′) May be used as an ingredient).
  • the component (A3 ′′) may be a single species or a plurality of species. Specific examples include the component (A1), an aliphatic isocyanate compound, and a polyisocyanate compound.
  • the polyisocyanate compound include an aliphatic isocyanate compound, a trimethylolpropane adduct of the aromatic isocyanate compound (A1), and an isocyanurate. Among them, the component (A1) or its trimethylolpropane adduct is preferred from the viewpoint that the obtained second urethane prepolymer has high hardness and quick drying.
  • the component (A) (first and second urethane prepolymers) can be classified into the following two groups depending on the difference in the reactive groups at the ends. That is, a urethane prepolymer whose terminal is an isocyanate group (hereinafter, simply referred to as component (A ′) or a terminal isocyanate type urethane prepolymer) and a urethane prepolymer whose terminal is a hydroxyl group ((A ′′)). Component or terminal hydroxyl group urethane prepolymer.).
  • the primer composition for an optical article containing these (A ′) component or (A ′′) component is different in a method for forming a primer layer (a method for curing). The difference between these urethane prepolymers will be described.
  • the primer composition for optical articles containing this component (A ′) has the following two types of methods for forming a primer layer (method for curing).
  • One is a moisture curing primer that cures with moisture (humidity) in the air, and (E ′) a curing agent having a plurality of groups capable of reacting with isocyanate groups in the molecule (hereinafter simply referred to as component (E ′)).
  • component (E ′) a curing agent having a plurality of groups capable of reacting with isocyanate groups in the molecule.
  • the two-component primer is cured.
  • the component (A ′) (terminal isocyanate type urethane prepolymer) is a reaction product of an aromatic polyisocyanate compound (component (A1)) and a polyol compound (component (A2)). If necessary, those having a high molecular weight using the component (A3 ′) can also be used.
  • the terminal isocyanate type urethane prepolymer is prepared by adjusting the terminal in the molecule to be an isocyanate group according to the above method, and the mass of the isocyanate group is in the range of 0.02 to 0.2 g per 1 g of the urethane prepolymer.
  • the molar percentage of isocyanate groups in the urethane prepolymer is preferably 0.01 to 0.7 mol%, and the weight average molecular weight of the urethane prepolymer is 3,000 to 300,000.
  • the number average molecular weight of the component (A) is preferably 1,000 to 25,000.
  • the method for curing the primer composition for optical articles of the present invention (method for forming a primer layer) is as follows. That is, the primer composition for optical articles of the present invention is applied onto a substrate to form a coating film, and a terminal isocyanate type urethane prepolymer is reacted (polymerized) with moisture in the atmosphere to form a primer layer.
  • the primer layer can be formed without increasing the temperature. Therefore, it is suitable when applied to a base material such as a spectacle lens base material having a difference in thickness between the central portion and the end portion.
  • cure cure (form a primer layer) in a comparatively uniform state, the dispersion state of (B) component in a primer layer can be improved.
  • the primer layer is formed by the method as described above, when using the terminal isocyanate type urethane prepolymer, in order to improve the appearance of the obtained laminate and further improve the adhesion, a certain molecular weight is required. It is preferable to use a terminal isocyanate type urethane prepolymer. That is, when a terminal isocyanate type urethane prepolymer is used, the coating film has an appropriate curing rate, and the adhesion to the substrate and other layers is further improved. In order to further improve the appearance of the laminate in which the layers are further laminated, the mass of the isocyanate group and the weight average molecular weight are particularly preferably in the following ranges.
  • the mass of the isocyanate group of the terminal isocyanate type urethane prepolymer is more preferably 0.03 to 0.1 g per 1 g of urethane prepolymer, and 0.04 to 0.00. 1 g is more preferable, and 0.04 to 0.08 g is particularly preferable.
  • the molar percentage of isocyanate groups in the urethane prepolymer is preferably 0.01 to 0.7 mol%, more preferably 0.02 to 0.3 mol%, particularly preferably 0.04 to 0.25 mol%. is there.
  • the weight average molecular weight of the urethane prepolymer is preferably 5,000 to 300,000, more preferably 10,000 to 200,000, and further preferably 15,000 to 100,000.
  • the number average molecular weight of the component (A) is preferably 1,500 to 25,000, more preferably 2,200 to 23,000, and 2,500 to 21,000. More preferably, it is particularly preferably 6,000 to 20,000.
  • the curing characteristics of the terminal isocyanate type urethane prepolymer are particularly suitable for forming the primer layer of the spectacle lens substrate.
  • the mass of isocyanate groups is preferably in the range of 0.02 to 0.2 g per 1 g of urethane prepolymer, and the molar percentage of isocyanate groups in the urethane prepolymer is:
  • the weight average molecular weight of the urethane prepolymer is preferably 3,000 to 300,000, and the number average molecular weight of the urethane prepolymer is 1,000 to 25,000. It is preferable.
  • the primer layer can be more firmly formed in a short time.
  • the mass of the isocyanate group of the terminal isocyanate-type urethane prepolymer is required in order to exert a more excellent effect.
  • the molar percentage of isocyanate groups in the urethane prepolymer is preferably 0.01 to 0.7 mol%, more preferably 0.02 to 0.3 mol%, particularly preferably 0.04 to 0.25 mol%. is there.
  • the weight average molecular weight of the urethane prepolymer is preferably 5,000 to 300,000, more preferably 10,000 to 200,000, still more preferably 15,000 to 100,000, It is particularly preferably 15,000 to 80,000.
  • the number average molecular weight of the urethane prepolymer is preferably 1,500 to 25,000, more preferably 2,200 to 23,000, and 2,500 to 21,000. Is more preferable, and 6,000 to 20,000 is particularly preferable.
  • the (E ′) component may be the same as the (A3 ′) component. Particularly preferred are 1,3-butanediol, 1,4-butanediol, propylene glycol, 1,6-hexanediol, 3,3′-dichloro-4,4′-diaminodiphenylmethane, bis- (4- Specific examples include aminocyclohexyl) methane and the like.
  • the component (E ′) When the component (E ′) is used, it is preferable to use an amount in which the number of isocyanate groups in the terminal isocyanate type urethane prepolymer is equal to the number of reactive groups in the component (E ′). In the case of mixing, it is possible to use a solution diluted with a solvent having a solubility parameter described in detail below of 8 or more.
  • the terminal hydroxyl group-type urethane prepolymer also preferably has a hydroxyl group mass in the range of 0.02 to 0.2 g per gram of urethane prepolymer, and the molar percentage of hydroxyl groups in the urethane prepolymer is 0.01
  • the weight average molecular weight of the urethane prepolymer is preferably 3,000 to 300,000, and the number average molecular weight of the urethane prepolymer is 1,000 to 25,000. It is preferable.
  • the primer layer can be more firmly formed in a short time.
  • the hydroxyl group mass of the terminal hydroxyl group urethane prepolymer is The amount of the hydroxyl group in the urethane prepolymer is preferably 0.03 to 0.1 g, more preferably 0.04 to 0.1 g. 01 to 0.7 mol%, more preferably 0.02 to 0.3 mol%, particularly preferably 0.04 to 0.25 mol%, and the weight average molecular weight of the urethane prepolymer is 5,000 to 300. , Preferably 10,000 to 200,000, more preferably 15,000 to 100,000.
  • the number average molecular weight of the urethane prepolymer is preferably 1,500 to 25,000, more preferably 2,200 to 23,000. Is more preferable, 2,500 to 21,000 is more preferable, and 6,000 to 20,000 is particularly preferable.
  • the component (E) is an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, or a trimethylolpropane adduct of the polyisocyanate compound. Body or isocyanurate body.
  • the component (E) When the component (E) is used, it is preferable to use an amount in which the number of hydroxyl groups in the terminal hydroxyl group urethane prepolymer is equal to the number of isocyanate groups in the component (E).
  • the light-absorbing compound is a light-absorbing compound having a maximum absorption wavelength in the range of 320 nm to 650 nm, and known compounds can be used.
  • the maximum absorption wavelength may be (B2) an ultraviolet absorber (hereinafter sometimes simply referred to as “component (B2)”) in a range of 320 nm to 400 nm, It may be a (B3) dye having a maximum absorption wavelength in the range of 540 to 650 nm (hereinafter sometimes simply referred to as the component (B3)).
  • the component (B3) preferably has a maximum absorption wavelength in the range of 540 to 620 nm.
  • the component (B2) is used when emphasizing the ultraviolet absorption performance
  • the component (B1) is used when emphasizing the blue light absorption performance
  • the component (B3) when emphasizing anti-glare properties. Is used. Therefore, when both the ultraviolet absorption performance and the blue light absorption performance are imparted, both the component (B1) and the component (B2) may be included.
  • the component (B) a light absorption compound having a maximum absorption wavelength of 320 nm to 450 nm is used.
  • the selection and combination of the components (B1) to (B3) may be appropriately determined according to the intended use, the optical substrate used, the hard coat layer, and the like.
  • the blending amount of the (B) light absorbing compound is not particularly limited, and may be appropriately determined according to the intended use.
  • the amount is preferably 0.01 to 20 parts by mass per 100 parts by mass of the component (A).
  • the blending amount of component (B) is more preferably 0.02 to 20 parts by mass per 100 parts by mass of component (A).
  • the compounding quantity of the said (B) component be those total amounts, when using multiple types of the said (B) component.
  • the total amount of each is used as a reference.
  • the mass of the component (E) and the component (E ′) is not included in the mass of the component (A).
  • ⁇ (B1) component a component having a maximum absorption wavelength in the range of more than 400 nm to 450 nm>
  • the component (B1) used in the present invention can be used without particular limitation as long as it has a maximum absorption wavelength in the range of more than 400 nm and not more than 450 nm, and a commercially available compound can be used.
  • a perylene compound, a porphyrin compound examples include carotenoid compounds and cyanine compounds.
  • Carotenes can be used as carotenoid compounds. Specifically, zeta carotene can be used. Zeta carotene can be synthesized by a known method.
  • cyanine compound Commercially available compounds can be used as the cyanine compound.
  • cyanine compounds and merocyanine compounds sold by Tokyo Chemical Industry Co., Ltd. can be used.
  • a trade name of Yamada Chemical Co., Ltd .; FDB-009 can be used.
  • porphyrin compound a porphyrin metal complex containing a metal such as copper, magnesium, zinc, cobalt, titanium, tin, iron, lead, vanadium as a central metal can be used.
  • a commercially available porphyrin metal complex can be used. Specifically, those sold by Tokyo Chemical Industry Co., Ltd., trade names of Yamada Chemical Co., Ltd .; FDB-001, FDB-002, etc. can be used.
  • a porphyrin compound as shown by the following general formula (1) can be used.
  • X 1 to X 8 are each a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, a substituted or unsubstituted ethenyl group, substituted or unsubstituted Ethynyl group, substituted or unsubstituted aryl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted aryloxycarbonyl group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted Substituted aralkyl group, substituted or unsubstituted aralkyloxy group, linear, branched or cyclic halogenoalkyl group, linear, branched or cyclic halogenoalkoxy group, substituted or unsubstit
  • R 1 to R 4 are each a substituted or unsubstituted aryl group
  • M is two hydrogen atoms, two monovalent metal atoms, a divalent metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or a metal oxide.
  • X 1 to X 8 are each a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 10 carbon atoms, or a cyclic alkyl group having 3 to 10 carbon atoms
  • R 1 to R 4 are each preferably a substituted or unsubstituted aryl group
  • M is preferably copper, magnesium, zinc, cobalt, titanium, iron, vanadium, or vanadium oxide.
  • porphyrin compound examples include a copper porphyrin complex, a vanadium porphyrin complex, a magnesium porphyrin complex, and a zinc porphyrin complex.
  • the porphyrin complex having a maximum absorption wavelength in the range of 405 nm to 440 nm, and further, a porphyrin having a maximum absorption wavelength of 410 nm to 435 nm. More preferably, a complex is used.
  • the component (B1) may be appropriately selected according to the intended use. At this time, a mixture of two or more kinds may be used.
  • the molar extinction coefficient of the component (B1) is preferably in the range of 50 to 2000 (L / (g ⁇ cm)) in order to be handled easily and to effectively exhibit the effects of the present invention. By satisfying this range, blue light can be absorbed more efficiently without reducing the strength of the film (primer layer) obtained by curing the primer composition for optical articles.
  • the molar extinction coefficient of the component (B1) is more preferably 100 to 1000 (L / (g ⁇ cm)), and 150 to 1000 (L / (g ⁇ cm)). More preferably, Among the components (B1), the molar extinction coefficient of the porphyrin compound preferably satisfies the above range, that is, the range of 50 to 2000 (L / (g ⁇ cm)).
  • an optimal component may be appropriately selected according to the intended use.
  • a mixture of two or more kinds can also be used.
  • the half value width of the maximum absorption peak of the said (B1) component is 40 nm or less.
  • the half-value width of the maximum absorption peak of the component (B1) is more preferably 35 nm or less, and further preferably 30 nm or less.
  • the narrower half-value width is more preferable because the light absorption characteristics can be controlled more, but is 5 nm or more in consideration of industrial production of the component (B1). Therefore, the full width at half maximum of the maximum absorption peak of the component (B1) is preferably 5 nm to 40 nm, more preferably 5 nm to 35 nm, and still more preferably 5 nm to 30 nm.
  • the blending amount of the component (B1) is not particularly limited, and may be appropriately determined according to the intended use.
  • the amount is preferably 0.01 to 20 parts by mass per 100 parts by mass of the component (A).
  • the blending amount of the component (B1) is more preferably 0.01 to 10 parts by mass per 100 parts by mass of the component (A), particularly when only the component (B1) is used.
  • the amount is more preferably 0.02 to 3 parts by mass, and particularly preferably 0.02 to 2 parts by mass.
  • the compounding quantity of this (B1) component is a compounding quantity only of (B1) component
  • (B) component is another (B) component, specifically, (B2) component, (B3) component, etc. If included, these component amounts are not included. However, when using multiple types of (B1) component, it is set as the total amount.
  • the mass of the component (E) and the component (E ′) (that is, the mass of the curing agent) is not included in the mass of the component (A).
  • the component (B1) is a compound having a maximum absorption wavelength in the range of more than 400 nm and 450 nm or less, blue light can be absorbed in a relatively small amount. Specifically, a laminate having a transmittance of 80% or less at a wavelength of 420 nm can be produced with a relatively small amount.
  • the (B2) ultraviolet absorber (component (B2)) used in the present invention is not particularly limited, but is preferably one that effectively absorbs ultraviolet rays or blue light in the near ultraviolet region and has high durability. And it is preferable that it is (B2) component which has the maximum absorption wavelength in the range of 320 nm or more and 400 nm or less.
  • a benzotriazole-based compound having a structure (skeleton) represented by the following formula is preferable.
  • Such a component (B2) can be a known one.
  • Adeka Corporation's Adeka Stub LA series LA-24, LA-29, LA-31, LA32, LA-36, etc.
  • Seipro Kasei Co., Ltd. SEESORB series (701, 703, 704, 709, L58, L52)
  • Chemipro Kasei Co., Ltd. Chemisorb series (KEMSORB74, KEMSORB79, KEMSORB279, etc.) and the like. These may be a single species or a plurality of species.
  • the blending amount of the component (B2) is not particularly limited, but is preferably 0.01 to 20 parts by mass per 100 parts by mass of the component (A).
  • the following blending amounts are preferable.
  • the blending amount of the component (B2) is more preferably 0.1 to 20 parts by mass per 100 parts by mass of the component (A).
  • it is 0.5 to 20 parts by mass, more preferably 1 to 18 parts by mass.
  • the blending amount of the component (B2) is the blending amount of only the component (B2), and the component (B) is the other component (B), specifically the component (B1), the component (B3), etc. If included, these component amounts are not included. However, when using multiple types of (B2) component, it is set as the total amount. In the case of a two-component primer, the mass of the component (E) and the component (E ′) (that is, the mass of the curing agent) is not included in the mass of the component (A).
  • the component (B2) By using the component (B2), it is possible to effectively absorb ultraviolet light. Specifically, a laminate with a transmittance of 420% or less at a wavelength of 420 nm and a transmittance of 5% or less at a wavelength of 400 nm can be easily produced.
  • the full width at half maximum of the maximum absorption peak of the component (B2) is increased.
  • the full width at half maximum is in the range of 50 to 150 nm. Since the (B2) component having such a half-value width is used, it is preferable to use a component having a narrow half-value width in combination with other components.
  • the extinction coefficient of the component (B2) is preferably in the range of 10 to 200 (L / (g ⁇ cm)).
  • the component (B1) and the component (B2) are used in combination.
  • the component (B1) and the component (B2) are used in combination.
  • the component (B1) and the component (B2) are used in combination, these ratios are not particularly limited, but in order to obtain a primer layer that absorbs ultraviolet light and blue light with a more effective blending amount.
  • the component (B2) is 100 parts by mass
  • the component (B1) is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 15 parts by mass. More preferably, the content is 5 to 10 parts by mass.
  • the total amount of the component (B1) and the component (B2) is the same as the blending amount of the component (B).
  • It is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 20 parts by mass per 100 parts by mass of the component.
  • the component (B1) and the component (B2) ) Component is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 12 parts by weight, per 100 parts by weight of component (A).
  • the obtained laminated body can easily make the transmittance
  • the preferable component (B1) and the preferable component (B2) are those described above. Is the same.
  • the primer composition for optical articles of the present invention contains the component (B1) and the component (B2), it absorbs ultraviolet rays and blue light in the near ultraviolet region. Therefore, it may be colored yellow derived from the component (B1) and the component (B2). In order to reduce this coloring, it is preferable to mix
  • a primer composition for an optical article that contains only the component (B3) as a light absorbing compound may be used.
  • This component (B3) can be divided into the following two components depending on the effect. That is, it can be divided into (B31) component which can adjust a color tone, and (B32) component which can adjust a color tone and can provide anti-glare performance.
  • ⁇ (B31) component Specific examples of the component (B31) include phthalocyanine compounds, anthraquinone compounds, and indigo compounds. These (B31) components can adjust a color tone as a bluing agent.
  • As such (B31) component a well-known commercially available thing can be used. For example, a violet and blue dyes manufactured by Mitsubishi Chemical Corporation (product name: Dialresin) or dyes manufactured by Nippon Kayaku Co., Ltd. (product name: Kaya Set) can be used. Specific examples include trade name: Diamond Resin Blue J, Diamond Resin Violet D, Diamond Resin Violet RR, Diamond Resin Blue K, Kaya Set Blue FR, and the like.
  • the component (B31) may be appropriately selected according to the intended use. At this time, a mixture of two or more kinds may be used. Among them, in order to handle easily and exhibit the effect of the present invention efficiently, the extinction coefficient of the component (B31) is preferably in the range of 10 to 200 (L / (g ⁇ cm)). Further, the full width at half maximum of the maximum absorption peak of the component (B31) is widened. Usually, the full width at half maximum is in the range of 50 to 150 nm.
  • the blending amount of the component (B31) is not particularly limited, but is preferably 0.001 to 1 part by mass, more preferably 0.01 to 100 parts by mass of the component (A). It is preferable that the content be 0.5 parts by mass. And in order to reduce especially coloring of a primer layer and a 1st, 2nd laminated body, when the sum total of the said (B1) component and (B2) component is 100 mass parts, the said (B31) component is 0. It is preferable to add 0.005 to 10 parts by mass, and it is more preferable to add 0.05 to 5 parts by mass. However, when using multiple types of (B31) component, it is set as the total amount. In the case of a two-component primer, the mass of the component (E) and the component (E ′) (that is, the mass of the curing agent) is not included in the mass of the component (A).
  • ⁇ (B32) component Among the dyes having the maximum absorption wavelength in the range of 540 to 650 nm, there are also compounds that impart bluing properties and antiglare performance (component (B32)). By blending this component (B32), it is possible to reduce glare such as sun rays and headlights of automobiles, unpleasant discomfort and blurring of contrast, visual fatigue, and the like. Specific examples of the component (B32) used for the above purpose include tetraazaporphyrin compounds and neodymium compounds.
  • neodymium compounds include neodymium phosphate, neodymium carbonate, neodymium sulfate, neodymium acetate, neodymium nitrate, and neodymium oxide.
  • a tetraazaporphyrin compound it is particularly preferable to use a tetraazaporphyrin compound.
  • a commercially available tetraazaporphyrin compound can be used.
  • porphyrin compounds sold by Tokyo Chemical Industry Co., Ltd. or trade names of Yamada Chemical Co., Ltd .; FDG-005, FDG-006, FDG-007, FDR-001, etc. can be used.
  • a trade name of Yamamoto Kasei Co., Ltd., such as PD-320 can be used.
  • tetraazaporphyrin can use the compound shown by following formula (2).
  • X 11 to X 81 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, an amino group, a carboxyl group, a sulfonic acid group, a straight chain or branched chain having 1 to 20 carbon atoms.
  • An arylthio group may be represented, and a ring excluding an aromatic ring may be formed via a linking group.
  • M represents two hydrogen atoms, a divalent metal atom, a divalent monosubstituted metal atom, a trivalent substituted metal atom, a tetravalent substituted metal atom, or a metal oxide.
  • the component (B32) may be appropriately selected according to the intended use.
  • two or more kinds of mixtures can be used.
  • the extinction coefficient of the component (B32) is preferably in the range of 10 to 1000 (L / (g ⁇ cm)). By satisfying this range, an effect excellent in antiglare performance can be obtained without reducing the strength of a film (primer layer) obtained by curing the primer composition for optical articles.
  • the extinction coefficient of the compound (B32) is more preferably 25 to 800 (L / (g ⁇ cm)), and 50 to 500 (L / (g ⁇ cm)). More preferably.
  • the half width of the maximum absorption peak of the (B32) component is 40 nm or less.
  • the antiglare performance of a film (primer film) obtained by curing the primer composition for an optical article can be exhibited. That is, it is possible to reduce glare such as sun rays and headlights of automobiles, discomfort associated therewith, blurring of contrast, visual fatigue, and the like.
  • the half width of the maximum absorption peak of the component (B32) is more preferably 35 nm or less, and further preferably 30 nm or less.
  • the full width at half maximum of the maximum absorption peak of the component (B32) is preferably 5 nm to 40 nm, more preferably 5 nm to 35 nm, and further preferably 5 nm to 30 nm.
  • the blending amount of the component (B32) is not particularly limited, and may be appropriately determined according to the intended use.
  • the amount is preferably 0.01 to 2 parts by mass per 100 parts by mass of the component (A).
  • the blending amount of the component (B32) is more preferably 0.01 to 1 part by mass, and further preferably 0.02 to 0.8 part by mass per 100 parts by mass of the component (A).
  • it is set as the total amount.
  • the mass of the component (E) and the component (E ′) that is, the mass of the curing agent
  • the organic solvent used in the present invention (hereinafter sometimes simply referred to as component (C)) has a solubility parameter of 8 [(cal / cm 3 ) 1/2 ] or more.
  • the solubility parameter is a value sometimes referred to as a Hildebrand parameter or an SP value.
  • the solubility parameter conforms to the description of “The Three Dimensional Solubility Parameter And Solvent Diffusion Coefficient” by Charles M. Hansen, Copenhagen Danish Technical Press 1967.
  • the organic solvent used in the present invention does not have active hydrogen, and the value of the solubility parameter is 8 or more, preferably 8.5 or more, more preferably 8.9 or more.
  • the solubility parameter is preferably 11 or less, more preferably 10.5 or less, more preferably 10.0 or less.
  • toluene (8.9), ethyl acetate (9.1), xylene (8.8), acetone (9.8), tetrahydrofuran (9.5), dichloromethane (9.9), chloroform ( 9.2), methyl ethyl ketone (9.3), methyl isobutyl ketone (8.6) and the like are suitable organic solvents.
  • the parentheses indicate solubility parameters.
  • the primer composition for optical articles of the present invention includes the component (B), toluene, ethyl acetate, tetrahydrofuran, dichloromethane, and chloroform are particularly preferable in consideration of the solubility of the component (B).
  • the amount of component (C) is not particularly limited, but is preferably 100 to 2000 parts by mass per 100 parts by mass of component (A). By satisfying this range, viscosity adjustment for obtaining a desired film thickness after coating becomes easy.
  • the component (A) and the component (B) are uniformly dispersed, and in order to obtain a smooth film by coating, the amount of the component (C) is based on 100 parts by mass of the component (A). More preferred is 100 to 1000 parts by mass.
  • the mass of the component (E) and the component (E ′) that is, the mass of the curing agent
  • the component (C) used for the dilution is included in the blending amount of the component (C). Shall.
  • the primer composition for optical articles of the present invention comprises the above components (A), (B), and (C) as essential components, and an (E ′) component that is a curing agent as required, (E) Comprising ingredients. Furthermore, the primer composition for optical articles of the present invention further preferably contains the following additive components.
  • the primer composition for optical articles of the present invention preferably contains a leveling agent (hereinafter sometimes referred to simply as component (D)) for the purpose of improving the smoothness of the resulting primer layer.
  • a leveling agent hereinafter sometimes referred to simply as component (D)
  • the component (D) include surfactants.
  • the surfactant known ones can be used without any limitation.
  • a silicone surfactant, a fluorine-containing surfactant, etc. can be mentioned.
  • Specific examples of the silicone surfactant and the fluorine-containing surfactant include “L-7001”, “L-7002”, “L-7604”, “FZ-2123”, “FZ” manufactured by Toray Dow Corning Co., Ltd.
  • the blending amount of the component (D) is not particularly limited, but is preferably 0.001 to 1 part by mass, more preferably 0.01 to 100 parts by mass of the component (A). It is preferable that the content be 0.5 parts by mass.
  • the stabilizer examples include hindered amine light stabilizers, hindered phenol antioxidants, phenol radical scavengers, sulfur antioxidants, and the like.
  • the addition amount of such a stabilizer is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, per 100 parts by mass of the component (A).
  • a yellow pigment or the like can be blended in order to efficiently block blue light having a wavelength longer than that of ultraviolet rays.
  • pigments known pigments can be used.
  • Color Index Generic Name is indicated by Pigment Yellow 12, 13, 14, 17, 65, 81, 83, 93, 120, 128, 155, 180, etc. Things.
  • the amount of such pigments added is preferably 0.001 to 1, more preferably 0.005 to 0.1, per 100 parts by mass of the component (A).
  • the base material will be described.
  • the primer composition for optical articles of the present invention is used by coating the surface of an optical substrate.
  • the substrate include a plastic lens substrate.
  • thermoplastic resin lenses such as (meth) acrylic resin and polycarbonate resin
  • cross-linkable resin lenses such as polyfunctional (meth) acrylic resin, allyl resin, thiourethane resin, urethane resin and thioepoxy resin are currently used as plastic lenses.
  • the well-known thing is mentioned.
  • the thickness of the optical substrate is not particularly limited, but is preferably in the range of 0.5 to 10 mm.
  • the thickness between the end portion and the center portion is in the range of 0.5 to 10 mm, and the ratio of the thickness between the center portion and the end portion (center portion / end portion) is 0.1.
  • the primer composition for optical articles of the present invention can be suitably applied.
  • a primer layer or the like may be formed on a base material thicker than the above range, and finally polished to the above thickness range.
  • ⁇ Plastic lenses usually have different thicknesses at the center and at the ends, so the UV absorption ability varies depending on the thickness. Therefore, when an ultraviolet absorber is blended only in the plastic lens substrate, the ultraviolet absorbing ability differs between the central portion and the end portion. According to the present invention, this problem can be solved.
  • a plastic lens base material for the purpose of preventing the deterioration of the lens base material itself and for the purpose of cutting off ultraviolet rays, a plastic lens base material containing a UV absorber in an amount within a range that does not impair the effects of the present invention should be used. You can also.
  • the optical substrate when a primer layer comprising the primer composition for an optical article of the present invention is formed on the optical substrate, the optical substrate is known for the purpose of improving the adhesion with the primer layer. It is preferable to perform the pretreatment.
  • pretreatment degreasing treatment with an organic solvent, chemical treatment with a basic aqueous solution or an acidic aqueous solution, polishing treatment using an abrasive, plasma treatment using atmospheric pressure plasma and low pressure plasma, corona discharge treatment, flame treatment or Examples include UV ozone treatment.
  • a degreasing treatment with an organic solvent an alkali treatment, a polishing treatment, a plasma treatment, a corona discharge treatment, or a UV ozone treatment, or a combination of these treatments. It is preferable to form a primer layer on the performed optical substrate.
  • ⁇ Method for forming primer layer on optical substrate formation method of first laminate> (A) component, (B) component, (C) component, (D) component mix
  • the method for applying the primer composition for an optical article to an optical substrate is not particularly limited, and dip coating, spin coating, dip spin coating, dip-spin coating, flow coating, etc. The method is mentioned. Among them, it is preferable to employ spin coating because a coating film having a good appearance is easily obtained.
  • the primer composition for optical articles has a viscosity at 23 ° C. of 1 to 100 cP, particularly 2 to It is preferable to adjust to the range of 50 cP. The viscosity can be adjusted by changing the type and amount of the component (C).
  • a primer (coat) layer can be formed by applying a primer composition for an optical article on an optical substrate and curing (drying) the applied primer composition for an optical article.
  • the primer layer reacts with moisture in the atmosphere and is cured. Therefore, after applying the primer composition for optical articles, the component (C) may be simply dried under the atmosphere, but heat treatment is performed in order to speed up drying within a range that does not affect the optical substrate. Also good.
  • heating when removing the component (C) in the coating film composed of the primer composition for optical articles, as described above, heating may be performed within a range that does not affect the optical substrate.
  • the temperature for forming the primer layer is preferably in the range of room temperature (23 ° C.) to 150 ° C. If it is this temperature range, a deformation
  • the heating time is not particularly limited, but is usually in the range of 1 minute to 3 hours, preferably 1 minute to 1 hour.
  • the component (A) is a terminal isocyanate type urethane prepolymer
  • the primer layer can be formed in a temperature range of 23 to 50 ° C. and a humidity of 30 to 90%. In order to further stabilize the formed primer layer, it is possible to carry out a heat treatment at 70 to 120 ° C. for 1 to 5 hours.
  • the method of mixing the terminal isocyanate type urethane prepolymer and the component (E ′) is not particularly limited, but the method of mixing and stirring the two components immediately before use, or the method of mixing the two components with an in-line mixer such as a static mixer. Can be taken.
  • the mixture obtained by mixing the terminal isocyanate type urethane prepolymer and the component (E ′) is applied onto an optical substrate by a known method such as spin coating, spray coating, dip coating, dip-spin coating, flow coating, and the like.
  • a film may be formed. Among these, it is preferable to apply by spin coating or spray coating.
  • a primer layer can be formed by removing the component (C) from the formed coating film. By removing the component (C), the mixture is accelerated by the reaction between the terminal isocyanate type urethane prepolymer and the component (E ′). Heating can also be used to further accelerate the curing reaction.
  • the temperature for forming the primer layer is preferably in the range of room temperature (23 ° C.) to 150 ° C.
  • the heating time is not particularly limited, but is usually in the range of 5 minutes to 3 hours, preferably in the range of 5 minutes to 1 hour.
  • the mixing method, the coating method of the obtained mixture, and the method for forming the primer layer are the same operations as in the case of mixing the terminal isocyanate type urethane prepolymer described above and the component (E ′). Can be adopted.
  • the primer layer formed by the above method is not particularly limited, but is preferably 0.1 to 20 ⁇ m, preferably 1 to 15 ⁇ m, considering light absorption ability and smoothness of the primer layer to be formed. More preferably, the thickness is 2 to 10 ⁇ m.
  • the feature of the present invention is that the primer layer has ultraviolet absorptivity, blue light absorptivity or anti-glare property, and further a combination of these depending on the type of component (B) used.
  • a light absorbing compound is blended in the hard coat layer, or a light absorbing compound is blended in the base material.
  • a primer composition for optical articles that satisfies the configuration of the present invention, it has excellent ultraviolet absorption, blue light absorption or anti-glare properties, and sufficiently fulfills its role as an original primer layer. Layer to be formed.
  • a hard coat layer may be formed on the primer layer (second laminate forming method). Next, the manufacturing method of this 2nd laminated body is demonstrated.
  • a hard coat layer is preferably formed on the first laminate produced by the above method.
  • the hard coat layer preferably contains inorganic particles, particularly inorganic oxide particles.
  • the hard coat layer is preferably a layer obtained by curing a coating composition containing inorganic particles and a hydrolyzable group-containing organosilicon compound (hereinafter also referred to as “hard coat composition”).
  • silica sol, inorganic oxide or composite inorganic oxide fine particles can be used without any limitation. What is necessary is just to determine the compounding quantity of this inorganic particle suitably according to the kind of inorganic particle, the physical property desired for the hard-coat layer finally obtained, and the objective. Generally, the amount of inorganic particles in the finally formed hard coat layer is set to 20 to 80% by mass, particularly 40 to 60% by mass in accordance with the amount of other components used. It is good to do.
  • the hydrolyzable group-containing organosilicon compound has a function as a binder for inorganic particles, and forms a transparent cured body serving as a matrix in the hard coat layer.
  • a polymerizable organosilicon compound is used.
  • the organosilicon compound has an alkoxyl group which is a functional group, and the above-mentioned known hydrolyzable group-containing organosilicon compound can be used without any limitation.
  • the organosilicon compound can be used alone or in combination of two or more.
  • the organosilicon compound can be used in a form in which at least a part thereof is hydrolyzed, or in the form of a partial condensate obtained by condensing the partial hydrolyzate.
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, tetraethoxylane, and partial hydrolysates thereof, in particular, from the viewpoints of adhesion and crosslinkability with plastic lenses Or a partial condensate etc. are used suitably.
  • the hydrolyzable group-containing organosilicon compound is hydrolyzed, and this hydrolyzate is polymerized and cured (polycondensation) in the form of incorporating inorganic particles to form a cured body that becomes a matrix. It is considered that a hard coat layer in which particles are densely dispersed in a matrix is formed. Therefore, water for accelerating the hydrolysis of the hydrolyzable group-containing organosilicon compound is required to form this cured product.
  • the water used for this purpose may be added in the form of an aqueous acid solution.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid
  • organic acids such as acetic acid and propionic acid can be added in the form of an aqueous solution.
  • a curing catalyst for accelerating the curing of the hydrolyzate of the hydrolyzable group-containing organosilicon compound can be blended.
  • this curing catalyst those known per se, for example, acetylacetonate complex, perchlorate, organometallic salt, various Lewis acids are used, and these can be used alone or in combination of two or more. Can also be used together.
  • acetylacetonate complex examples include aluminum acetylacetonate.
  • perchlorates include magnesium perchlorate, aluminum perchlorate, zinc perchlorate, and ammonium perchlorate.
  • an organic solvent can be blended in the hard coat composition.
  • This organic solvent serves as a solvent for the hydrolyzable group-containing organosilicon compound, and serves as a dispersion medium for inorganic particles.
  • a known organic solvent can be used.
  • Specific examples of such an organic solvent include alcohols such as methanol, ethanol, propanol, isopropanol, butanol and diacetone alcohol; lower alcohol esters of lower carboxylic acids such as methyl acetate, ethyl acetate and propyl acetate; cellosolve, dioxane, Ethers such as ethylene glycol monoisopropyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and acetyl acetone; halogenated hydrocarbons such as methylene chloride; aromatic hydrocarbons such as benzene, toluene and xylene. These organic solvents are used alone or in combination
  • the hard coat composition can be produced by mixing the above components by a known method. Among them, the hydrolyzable group-containing organosilicon compound is preferably mixed with other components after being completely hydrolyzed.
  • the thickness of the hard coat layer is preferably 1 to 4 ⁇ m.
  • the 2nd laminated body in which the hard-coat layer was formed can be formed on the primer layer of a 1st laminated body.
  • a light absorbing ability may be imparted by adding a light absorbing agent to the hard coat layer.
  • the hard coat layer is mainly composed of inorganic particles and a hydrolyzable organosilicon compound, and it is considered that the light absorbent was easy to bleed. According to the present invention, such a problem can also be solved.
  • a hard coat layer containing an appropriate amount of light absorber may be formed.
  • the second laminated body may be formed into a thin film by vapor deposition of a metal oxide such as SiO 2 , TiO 2 , or ZrO 2 on the hard coat layer, or an antireflection by a thin film by applying an organic polymer, if necessary. It is also possible to perform post-processing such as processing and antistatic processing.
  • a metal oxide such as SiO 2 , TiO 2 , or ZrO 2
  • post-processing such as processing and antistatic processing.
  • Example 1 Manufacture of primer composition for optical article> 281 g of polytetramethylene ether glycol having a number average molecular weight of 1000 (“PTMG1000” manufactured by Mitsubishi Chemical Corporation) (component (A2)), 23 g of 1,2,6-hexanetriol (component (A2)), 2,4-tri
  • PTMG1000 polytetramethylene ether glycol having a number average molecular weight of 1000
  • component (A2) 23 g of 1,2,6-hexanetriol
  • 2,4-tri A urethane prepolymer having an isocyanate group at the terminal was obtained by reacting 175 g of a mixture of 80% by mass and 20% by mass of diisocyanate and 2,6-tolylene diisocyanate (referred to as TDI80; component (A1)).
  • this urethane prepolymer may be referred to as “urethane prepolymer (1)”.
  • the urethane prepolymer (1) corresponds to the component (A) and contains an isocyanate group, the urethane prepolymer (1) can be cured by moisture in the atmosphere, and can also be cured by a curing agent (E ′).
  • the obtained urethane prepolymer (1) was diluted with ethyl acetate (component (C)). At this time, 233 parts by mass of the component (C) was used with respect to 100 parts by mass of the urethane prepolymer (1). Furthermore, as a leveling agent (component (D)), 0.1 part by mass of a leveling agent “L7001” manufactured by Toray Dow Corning Co., Ltd., which is a silicone-based leveling agent, is added until it becomes uniform under a nitrogen atmosphere. To obtain a urethane prepolymer solution. In this urethane prepolymer solution, the content of isocyanate groups was 0.088 g per 1 g of urethane prepolymer (1). The mole percentage of isocyanate groups in the urethane prepolymer (1) was 0.19 mol%.
  • the weight average molecular weight of the urethane prepolymer (1) was measured by gel permeation chromatography (GPC measurement) under the following conditions.
  • GPC gel permeation chromatography
  • a liquid chromatograph manufactured by Nippon Waters
  • Shodex GPC KD-806M exclusion limit molecular weight: 200,000,000
  • DMF dimethylformamide
  • the weight average molecular weight and the number average molecular weight were determined by comparative conversion.
  • a differential refractometer was used as the detector.
  • the urethane prepolymer (1) was measured after inactivating the isocyanate group by treating with butylamine in advance.
  • the urethane prepolymer (1) component determined by this method had a weight average molecular weight of 12,000 and a number average molecular weight of 7,000.
  • component (B2) component (B2); “ADEKA STAB” manufactured by ADEKA Corporation, which is a benzotriazole ultraviolet absorber LA-36 ”(maximum absorption wavelength 355 nm, absorption coefficient 45 (L / (g ⁇ cm)), half-value width 85 nm) 10 parts by mass, and further component (B31);“ Dia Resin Blue J ”manufactured by Mitsubishi Chemical Corporation ( By adding 0.02 parts by mass of a maximum absorption wavelength of 590 nm, an absorption coefficient of 35 (L / (g ⁇ cm)), and a half-value width of 110 nm), the mixture is stirred and mixed well under a nitrogen atmosphere until it becomes uniform.
  • a primer composition for articles was obtained. Table 1 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component.
  • This optical substrate was sufficiently degreased with acetone, immersed in a 10 mass% sodium hydroxide aqueous solution at 50 ° C. for 10 minutes, sufficiently washed with warm water, and dried with a dryer at 70 ° C. for 30 minutes.
  • This optical base material plastic lens
  • This optical base material is spin-coated with the primer composition for optical articles obtained by the above method using a spin coater 1H-DX2 manufactured by MIKASA, and dried for 1 hour at 25 ° C. and 50% RH.
  • a first laminate in which a primer layer was formed on the plastic lens was manufactured. At this time, the thickness of the primer layer was set to 5 to 7 ⁇ m.
  • the first laminate was evaluated by the following method.
  • sample evaluation method 1) Appearance evaluation of first laminate The appearance evaluation was performed by observing and evaluating the obtained first laminate with an optical microscope. The evaluation criteria are shown below. A: Uniform and no appearance defect is observed B: A very slight appearance defect is observed C: An appearance defect is partially visible D: An appearance defect is entirely visible First produced by the method described above The evaluation of the appearance of the laminate was A.
  • Adhesiveness of the first laminate was measured by a cross-cut tape test according to JISD-0202. That is, using a cutter knife, cuts are made at intervals of 1 mm on the surface of the primer layer of the obtained first laminate to form 100 squares.
  • a cellophane pressure-sensitive adhesive tape (cello tape (registered trademark) manufactured by Nichiban Co., Ltd.) was strongly pasted thereon, and then pulled and peeled away from the surface in a direction of 90 ° at a stretch, and then a grid having a primer layer remaining was evaluated.
  • the adhesion of the first laminate produced by the method described above was 100.
  • a hard coat layer was formed by the following method on the primer layer of the first laminate produced in ⁇ Method for forming primer layer; production of first laminate> (a second laminate was produced).
  • the first laminate was immersed in the hard coat composition and pulled up at a pulling rate of 30 cm / min to apply the hard coat composition to both surfaces of the first laminate. After coating, the coating was dried at 80 ° C. for 20 minutes, and then cured at 120 ° C. for 4 hours to form a hard coat layer.
  • the obtained hard coat layer was a colorless and transparent film having a thickness of about 2 ⁇ m.
  • Adhesiveness of 2nd laminated body Adhesiveness was evaluated in the same way as said 2).
  • the adhesion of the second laminate having the hard coat layer produced by the method described above was 100.
  • Example 2 The urethane prepolymer (1) of Example 1 was diluted with toluene (component (C)). At this time, 100 mass parts of (C) component was used with respect to 100 mass parts of urethane prepolymer (1). To this, propylene glycol (component (A3)) is added in an amount of 1.3 parts by weight of component (A3) to 100 parts by weight of urethane prepolymer (1), and reacted at 80 ° C. for 5 hours to make urethane. A prepolymer (2) was obtained.
  • a leveling agent component (D)
  • a urethane prepolymer solution the content of isocyanate groups is 0.064 g per 1 g of urethane prepolymer (2), and the mole percentage of isocyanate groups in the urethane prepolymer (2) is 0.14 mol%. Yes, the weight average molecular weight was 33,000 and the number average molecular weight was 14,000.
  • the solvent of this urethane prepolymer solution was concentrated under reduced pressure, and the solvent was exchanged with tetrahydrofuran (component (C)).
  • the amount of the solvent used was 300 parts by mass of the component (C) with respect to 100 parts by mass of the urethane prepolymer (2).
  • component (B2) component (B2); benzotriazole-based ultraviolet absorber (maximum absorption wavelength 370 nm, absorption coefficient 60 2 parts by mass of (L / (g ⁇ cm)), half width 70 nm), and (B2) component; benzotriazole ultraviolet absorber (maximum absorption wavelength 355 nm, absorption coefficient 50 (L / (g ⁇ cm)), 15 parts by mass of half width (90 nm), and further component (B31); “Dia Resin BlueJ” manufactured by Mitsubishi Chemical Corporation (maximum absorption wavelength 590 nm, absorption coefficient 35 (L / (g ⁇ cm)), half width 110 nm) 0.04 parts by mass was added and sufficiently stirred and mixed until uniform in a nitrogen atmosphere to obtain a primer composition for an optical article.
  • Table 1 summarizes the weight average molecular weight, the number average molecular weight of
  • a primer laminate and a laminate having a hard coat layer were prepared in the same manner as in Example 1 except that the primer composition was used, and the samples were evaluated. The results are shown in Table 2.
  • Example 3 A primer composition containing a urethane prepolymer (3) was obtained in the same manner as in Example 2 except that 250 g of 4,4′-diphenylmethane diisocyanate was used as the component (A1).
  • the content of isocyanate groups is 0.061 g per 1 g of urethane prepolymer (3), and the mole percentage of isocyanate groups in the urethane prepolymer (3) is 0.16 mol%.
  • the weight average molecular weight was 28,000 and the number average molecular weight was 12,500.
  • the sample was prepared and the sample was evaluated.
  • Table 1 summarizes the weight average molecular weight of component (A) and the blending amount of each component. The evaluation results of each laminate are shown in Table 2.
  • Example 4 28 parts of 3,3′-dichloro-4,4′-diaminodiphenylmethane as a curing agent (component (E ′)) with respect to 333 parts by weight of the primer composition of Example 1 (including 100 parts by weight as component A) Part by mass was added and stirred at room temperature for 15 minutes to obtain a two-component curable primer composition.
  • a curing agent component (E ′)
  • component (E ′) 3′-dichloro-4,4′-diaminodiphenylmethane as a curing agent (component (E ′)) with respect to 333 parts by weight of the primer composition of Example 1 (including 100 parts by weight as component A) Part by mass was added and stirred at room temperature for 15 minutes to obtain a two-component curable primer composition.
  • the primer composition was spin-coated on this plastic lens using a spin coater 1H-DX2 manufactured by MIKASA and dried at 70 ° C. for 30 minutes to obtain a primer laminate.
  • the thickness of the primer layer was adjusted to 5 to 7 ⁇ m.
  • a laminate having a hard coat layer was produced on this primer laminate in the same manner as in Example 1, and the samples were evaluated.
  • Table 1 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results of each laminate are shown in Table 2.
  • Comparative Example 1 For comparison, a primer composition similar to that in Example 1 was prepared except that the ultraviolet absorber (component (B2)) and the dye (component (B31)) were not added, and a laminate having a primer laminate and a hard coat layer. A body was prepared and the sample was evaluated. Table 3 summarizes the weight average molecular weight of component (A) and the blending amount of each component. The evaluation results for each laminate are shown in Table 4. The results are shown in Table 3.
  • Comparative Example 2 281 g of polytetramethylene ether glycol having a number average molecular weight of 1000 (“PTMG1000” manufactured by Mitsubishi Chemical Corporation) (component (A2)), 23 g of 1,2,6-hexanetriol (component (A2)), 2,4-tri A polyurethane compound was obtained by reacting 175 g of a 80 mass%: 20 mass% mixture of diisocyanate and 2,6-tolylene diisocyanate (referred to as TDI80; component (A1)) and further reacting with 32 g of methanol.
  • This polyurethane compound was a terminally terminated polyurethane containing no isocyanate group and no hydroxyl group, and had a weight average molecular weight of 13,000 and a number average molecular weight of 8,000.
  • This end-terminated polyurethane was diluted with tetrahydrofuran (component (C)). At this time, 233 parts by mass of the component (C) was used with respect to 100 parts by mass of the terminally terminated polyurethane. Furthermore, as a leveling agent (component (D)), 0.05 part by mass of a leveling agent “FZ2123” manufactured by Toray Dow Corning Co., Ltd., which is a fluorine-based leveling agent, is added and sufficiently stirred to obtain a polyurethane solution. It was.
  • component (B) For 100 parts by mass of the end-stop polyurethane of this polyurethane solution, as component (B), component (B2); benzotriazole-based ultraviolet absorber (maximum absorption wavelength 370 nm, absorption coefficient 60 (L / (g ⁇ cm)), 2 parts by mass of half-value width 70 nm) and (B2) component; 8 parts by mass of benzotriazole ultraviolet absorber (maximum absorption wavelength 355 nm, absorption coefficient 50 (L / (g ⁇ cm)), half-value width 90 nm) Furthermore, 0.04 parts by mass of (B31) component; “Dia Resin BlueJ” (maximum absorption wavelength 590 nm, absorption coefficient 35 (L / (g ⁇ cm)), half-value width 110 nm) manufactured by Mitsubishi Chemical Corporation, is sufficient. The mixture was stirred and mixed to obtain a polyurethane composition (a composition corresponding to a primer composition for optical articles).
  • Table 3 shows the results of preparing and evaluating a primer laminate and a laminate having a hard coat layer in the same manner as in Example 2 using the polyurethane composition as an optical article primer composition. In the hard coat laminate, a remarkable appearance defect was observed. Table 3 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of the polyurethane component. The evaluation results for each laminate are shown in Table 4.
  • ADEKA STAB LA-36 maximum absorption wavelength 355 nm, absorption coefficient 45 (L / (L) (manufactured by ADEKA Corporation), which is a benzotriazole ultraviolet absorber (component (B2))). g ⁇ cm)) and 3.0 parts by mass of the half width of 85 nm) were added and stirred sufficiently until uniform to obtain a hard coat composition containing an ultraviolet absorber.
  • This optical substrate was sufficiently degreased with acetone, immersed in a 10% by mass sodium hydroxide aqueous solution at 50 ° C. for 10 minutes, sufficiently washed with warm water, and heated and dried at 70 ° C. for 30 minutes.
  • This plastic lens was immersed in the hard coat composition containing the ultraviolet absorber described above, and pulled up at a pulling rate of 30 cm / min to apply the hard coat composition to the surface of the lens. After application, the film was dried at 80 ° C. for 20 minutes, and then cured by holding at 120 ° C. for 4 hours to form a hard coat film.
  • the obtained hard coat film was a colorless and transparent film having a thickness of about 2 ⁇ m.
  • Example 5A The urethane prepolymer (1) of Example 1 was diluted with toluene (component (C)). At this time, 100 mass parts of (C) component was used with respect to 100 mass parts of urethane prepolymer (1). Propylene glycol (component (A3)) is added to 1.2 parts by mass of component (A3) with respect to 100 parts by mass of urethane prepolymer (1), and reacted at 80 ° C. for 5 hours to give urethane. A prepolymer (5A) was obtained.
  • a leveling agent component (D)
  • a urethane prepolymer solution the content of isocyanate groups is 0.075 g per 1 g of urethane prepolymer (5A), and the molar percentage of isocyanate groups in the urethane prepolymer (5A) is 0.17 mol%.
  • the weight average molecular weight was 22,000 and the number average molecular weight was 13,000.
  • This urethane prepolymer solution was further diluted with ethyl acetate (component (C)).
  • the amount of solvent used was 100 parts by mass of ethyl acetate as the component (C) with respect to 100 parts by mass of the urethane prepolymer (5A).
  • the total amount of component (C) was 200 parts by mass with respect to 100 parts by mass of the urethane prepolymer (5A).
  • component (B2) component (B2); benzotriazole-based ultraviolet absorber (maximum absorption wavelength 370 nm, absorption coefficient 60 2 parts by mass (L / (g ⁇ cm)), half-value width 70 nm), and a benzotriazole-based ultraviolet absorber (maximum absorption wavelength 355 nm, absorption coefficient 50 (L / (g ⁇ cm)), half-value width 90 nm)
  • component (B31) component “Diaresin BlueJ” (maximum absorption wavelength 590 nm, absorption coefficient 35 (L / (g ⁇ cm)), half-value width 110 nm) manufactured by Mitsubishi Chemical Corporation
  • a primer composition for an optical article was obtained by adding and mixing well and mixing until uniform in a nitrogen atmosphere.
  • CR-39 allyl resin plastic lens
  • a primer laminate and a laminate having a hard coat layer were prepared in the same manner as in Example 1 except that the primer composition was used, and the samples were evaluated.
  • Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 5B 200 g of polytetramethylene ether glycol (“PTMG1000” manufactured by Mitsubishi Chemical Corporation) having a number average molecular weight of 1000 (component (A2)), 10 g of 1,2,6-hexanetriol (component (A2)), 2,4- 195 g of a mixture of tolylene diisocyanate and 2,6-tolylene diisocyanate 80% by mass: 20% by mass (referred to as TDI80; component (A1)) is reacted to obtain a urethane prepolymer (5B) having an isocyanate group at the terminal. (Including 100 parts by mass of the toluene (C) component).
  • the obtained urethane prepolymer (5B) was diluted with 100 parts by mass of ethyl acetate (component (C)). As a result, the total amount of component (C) was 200 parts by mass with respect to 100 parts by mass of the urethane prepolymer. Furthermore, as a leveling agent (component (D)), 0.05 part by mass of a leveling agent “FZ2123” manufactured by Toray Dow Corning Co., Ltd., which is a fluorine-based leveling agent, is added until it becomes uniform under a nitrogen atmosphere. To obtain a urethane prepolymer solution.
  • component (D) 0.05 part by mass of a leveling agent “FZ2123” manufactured by Toray Dow Corning Co., Ltd., which is a fluorine-based leveling agent
  • the content of isocyanate groups is 0.15 g per 1 g of urethane prepolymer (5B), and the mole percentage of isocyanate groups in the urethane prepolymer (5B) is 0.36 mol%.
  • the weight average molecular weight was 6,000 and the number average molecular weight was 3,500.
  • the same amount of the same component (B) as in Example 5A is blended, and the primer composition is prepared in the same manner as in Example 5A. Obtained.
  • Example 5A a primer laminate and a laminate having a hard coat layer were produced in the same manner as in Example 5A, and the samples were evaluated.
  • Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 5C The urethane prepolymer (5A) of Example 5A was diluted with toluene (component (C)). The amount of the solvent used was 100 parts by mass of the component (C) with respect to 100 parts by mass of the urethane prepolymer (5A). To this, propylene glycol (component (A3)) is added in an amount of 3.5 parts by weight of component (A3) to 100 parts by weight of urethane prepolymer (5A), and reacted at 80 ° C. for 5 hours. A polymer (5C) was obtained.
  • component (C) propylene glycol
  • a leveling agent component (D)
  • a urethane prepolymer solution the content of isocyanate groups is 0.038 g per 1 g of urethane prepolymer (5C), and the molar percentage of isocyanate groups in the urethane prepolymer (5C) is 0.09 mol%.
  • the weight average molecular weight was 122,000 and the number average molecular weight was 19,000.
  • This urethane prepolymer solution was further diluted with ethyl acetate (component (C)).
  • component (C) component ethyl acetate 100 parts by mass of (C) component ethyl acetate was used with respect to 100 parts by mass of the urethane prepolymer (5C).
  • the total amount of component (C) was 200 parts by mass with respect to 100 parts by mass of the urethane prepolymer (5C).
  • the same amount of the same component (B) as Example 5A is blended with 300 parts by mass of this urethane prepolymer solution (100 parts by mass of urethane prepolymer (5C)), and the primer composition is prepared in the same manner as Example 5A. Obtained.
  • Example 5A a primer laminate and a laminate having a hard coat layer were produced in the same manner as in Example 5A, and the samples were evaluated.
  • Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 6A As component (B), instead of component (B2), component (B1); porphyrin compound: “FDB-001” manufactured by Yamada Chemical Co., Ltd. (maximum absorption wavelength 420 nm, extinction coefficient 510 (L / (g ⁇ cm))
  • a primer composition was obtained in the same manner as in Example 5A, except that 0.1 part by mass of the half width (18 nm) was used (the same amount of the same component (B31) as in Example 5A was blended).
  • the sample was prepared and the sample was evaluated. Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 6B Except having used the urethane prepolymer (5B) obtained in Example 5B, the same operation as Example 6A was performed, the primer laminated body and the laminated body which has a hard-coat layer were produced, and the sample was evaluated. .
  • Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 6C Except that the urethane prepolymer (5C) obtained in Example 5C was used, the same operation as in Example 6A was performed to prepare a laminate having a primer laminate and a hard coat layer, and the sample was evaluated. .
  • Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 7A As component (B), component (B1); porphyrin compound: “FDB-002” (maximum absorption wavelength 431 nm, extinction coefficient 380 (L / (g ⁇ cm)), half-width 18 nm) manufactured by Yamada Chemical Co., Ltd.
  • Example 5A except that 15 parts by mass and (B2) component; 9 parts by mass of benzotriazole ultraviolet absorber (maximum absorption wavelength 355 nm, absorption coefficient 50 (L / (g ⁇ cm)), half-value width 90 nm) were used.
  • a primer composition was obtained in the same manner as above (the same amount of the same component (B31) as in Example 5A was blended).
  • the sample was prepared and the sample was evaluated.
  • Table 5 summarizes the weight average molecular weight of component (A) and the blending amount of each component. The evaluation results of each laminate are shown in Table 8.
  • Example 7B Except having used the urethane prepolymer (5B) obtained in Example 5B, the same operation as Example 7A was performed, the primer laminated body and the laminated body which has a hard-coat layer were produced, and the sample was evaluated. .
  • Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 7C Except that the urethane prepolymer (5C) obtained in Example 5C was used, the same operation as in Example 7A was performed to prepare a laminate having a primer laminate and a hard coat layer, and the sample was evaluated. .
  • Table 5 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 8 As component (B), instead of component (B2), component (B1); porphyrin compound: “FDB-001” manufactured by Yamada Chemical Co., Ltd. (maximum absorption wavelength 420 nm, extinction coefficient 510 (L / (g ⁇ cm))
  • a primer composition was obtained in the same manner as in Example 5A, except that 0.03 parts by mass of half width (18 nm) was used (the same amount of component (B31) as in Example 5A was blended).
  • the sample was prepared and the sample was evaluated. Table 6 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 9 As component (B), component (B1); porphyrin compound: “FDB-002” (maximum absorption wavelength 431 nm, extinction coefficient 380 (L / (mol ⁇ cm)), half-value width 18 nm) manufactured by Yamada Chemical Co., Ltd.
  • Example 5A except that 03 parts by mass and (B2) component; 7 parts by mass of benzotriazole ultraviolet absorber (maximum absorption wavelength 355 nm, absorption coefficient 50 (L / (g ⁇ cm)), half-value width 90 nm)
  • a primer composition was obtained in the same manner as above (the same amount of the same component (B31) as in Example 5A was blended).
  • the sample was prepared and the sample was evaluated.
  • Table 6 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 10 As component (B), component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, molar extinction coefficient 510 (L / (g ⁇ cm)), half-value width 18 nm) manufactured by Yamada Chemical Co., Ltd.) is 0. 0.03 parts by mass and component (B2): Examples except that 2 parts by mass of benzotriazole ultraviolet absorber (maximum absorption wavelength 370 nm, absorption coefficient 60 (L / (g ⁇ cm)), half-value width 70 nm) were used A primer composition was obtained in the same manner as in 5A (the same amount of the same component (B31) as in Example 5A was blended).
  • Example 5A the primer laminated body and the laminated body which has a hard-coat layer were produced similarly to Example 5A, and the sample was evaluated.
  • Table 6 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 11 As the component (B), instead of the component (B2), the component (B1); the merocyanine compound: “FDB-009” manufactured by Yamada Chemical Co., Ltd. (maximum absorption wavelength 401 nm, extinction coefficient 135 (L / (g ⁇ cm))
  • the primer composition was obtained in the same manner as in Example 5A, except that 2 parts by mass of the half width (nm) was used (the same amount of (B31) component as in Example 5A was blended).
  • the sample was prepared and the sample was evaluated. Table 6 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 12 As component (B), instead of component (B2), component (B1); merocyanine compound: “FDB-009” manufactured by Yamada Chemical Industries, Ltd. (maximum absorption wavelength 401 nm, extinction coefficient 130 (L / (g ⁇ cm)) , Half-width 40 nm), 0.5 parts by mass, and component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, molar extinction coefficient 510 (L / (g ⁇ cm)) manufactured by Yamada Chemical Co., Ltd.)
  • a primer composition was obtained in the same manner as in Example 5A, except that 0.05 part by mass of half width (18 nm) was used (the same amount of the same component (B31) as Example 5A was blended).
  • the sample was prepared and the sample was evaluated.
  • Table 6 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 13 As component (B), component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, molar extinction coefficient 510 (L / (g ⁇ cm)), half-value width 18 nm) manufactured by Yamada Chemical Co., Ltd.) is 0. .1 part by mass, further dye ((B3) component); “Diaresin Violet RR” (; maximum absorption wavelength 550 nm, absorption coefficient 50 (L / (g ⁇ cm)), half width 105 nm) manufactured by Mitsubishi Chemical Corporation A primer composition was obtained in the same manner as in Example 5A except that 0.03 parts by mass was used and toluene was used instead of ethyl acetate.
  • the sample was prepared and the sample was evaluated.
  • Table 6 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 14 With respect to 200 parts by mass of the urethane prepolymer (5A) solution prepared in Example 5A (100 parts by mass of urethane prepolymer (5A) and 100 parts by mass of toluene as component (C)), a curing agent ((E 28) parts by mass of 3,3′-dichloro-4,4′-diaminodiphenylmethane was added as a component ()) and stirred at room temperature for 15 minutes to obtain a two-component curing primer composition.
  • a curing agent (E 28) parts by mass of 3,3′-dichloro-4,4′-diaminodiphenylmethane was added as a component ()) and stirred at room temperature for 15 minutes to obtain a two-component curing primer composition.
  • component (B) As component (B), component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, extinction coefficient 510 (L / (g ⁇ cm)), half-width 18 nm) manufactured by Yamada Chemical Co., Ltd.
  • a primer composition was obtained in the same manner as in Example 5A except that 1 part by mass was used (the same amount of the same component (B31) as in Example 5A was blended).
  • the sample was prepared and the sample was evaluated.
  • Table 7 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 15 Using the urethane prepolymer (5C) of Example 5C, with respect to 300 parts by mass of this urethane prepolymer solution (100 parts by mass as the urethane prepolymer (5C)), as the component (B), the component (B2); 2 parts by mass of benzotriazole-based ultraviolet absorber (maximum absorption wavelength 370 nm, absorption coefficient 60 (L / (g ⁇ cm)), half-value width 70 nm), and (B2) component; benzotriazole-based ultraviolet absorber (maximum absorption wavelength)
  • a primer composition was obtained in the same manner as in Example 5A except that 10 parts by mass of 355 nm, absorption coefficient 50 (L / (g ⁇ cm)), half width 90 nm) was added (same as Example 5A (B31) The same amount of ingredients were blended.)
  • a primer laminate and a laminate having a hard coat layer were prepared in the same manner as in Example 5A, except that MR-8 (thi
  • Example 16 The urethane prepolymer (5A) of Example 5A was diluted with toluene (component (C)). The amount of solvent used was 100 parts by mass of component (C) toluene with respect to 100 parts by mass of the urethane prepolymer (5A). 1,4-butanediol (component (A3)) is added in an amount of 1.3 parts by weight of component (A3) to 100 parts by weight of urethane prepolymer (5), and the mixture is added at 80 ° C. for 5 hours. A urethane prepolymer (16) was obtained by reaction.
  • component (C) toluene
  • 1,4-butanediol (component (A3)) is added in an amount of 1.3 parts by weight of component (A3) to 100 parts by weight of urethane prepolymer (5), and the mixture is added at 80 ° C. for 5 hours.
  • a urethane prepolymer (16) was obtained by reaction.
  • a leveling agent component (D)
  • a urethane prepolymer solution the content of isocyanate groups is 0.078 g per 1 g of urethane prepolymer (16), and the mole percentage of isocyanate groups in the urethane prepolymer (16) is 0.17 mol%. Yes, the weight average molecular weight was 21,000 and the number average molecular weight was 12,000.
  • This urethane prepolymer solution was further diluted with ethyl acetate (component (C)).
  • 100 parts by mass of the ethyl acetate as the component (C) was used with respect to 100 parts by mass of the urethane prepolymer (16).
  • the total amount of component (C) was 200 parts by mass with respect to 100 parts by mass of the urethane prepolymer (16).
  • component (B) component (B1); porphyrin compound: “FDB-001” manufactured by Yamada Chemical Co., Ltd.
  • Example 18 In Example 5A, as component (B), as component (B1); porphyrin compound: Zinc (II) Tetrahenyl porphyrin (maximum absorption wavelength: 425 nm, extinction coefficient: 800 (L / (g ⁇ cm)), half-value width: 22 nm) 0.05 part by mass, and (B31) component; “Diaresin Violet RR” manufactured by Mitsubishi Chemical Corporation (maximum absorption wavelength 550 nm, absorption coefficient 50 (L / (g ⁇ cm)), half width 105 nm)
  • a primer composition was obtained in the same manner as in Example 5A except that 03 parts by mass was used and toluene was used instead of ethyl acetate.
  • the sample was prepared and the sample was evaluated.
  • Table 7 summarizes the weight average molecular weight, number average molecular weight, and blending amount of each component of component (A). The evaluation results of each laminate are shown in Table 8.
  • Example 19 In Example 5A, as component (B), as component (B1); porphyrin compound: 2,3,7,8,12,13,17,18-Octaethyl-21H, 23H-porphineZinc (II) "(maximum absorption wavelength) 0.15 parts by mass of 411 nm, extinction coefficient 300 (L / (g ⁇ cm)), half width 25 nm), and further component (B31); “Diaresin Violet RR” manufactured by Mitsubishi Chemical Corporation (maximum absorption wavelength 550 nm, absorption A primer composition was obtained in the same manner as in Example 5A except that 0.03 parts by mass of a coefficient 50 (L / (g ⁇ cm)) and a half width of 105 nm) were used, and toluene was used instead of ethyl acetate.
  • porphyrin compound 2,3,7,8,12,13,17,18-Octaethyl-21H, 23H-porphineZinc (
  • the sample was prepared and the sample was evaluated.
  • Table 7 summarizes the weight average molecular weight of component (A) and the blending amount of each component. The evaluation results of each laminate are shown in Table 8.
  • Example 20 In Example 5A, as the component (B), the component (B1); “Kayaset Yellow GN” manufactured by Nippon Kayaku Co., Ltd. (maximum absorption wavelength 408 nm, molar extinction coefficient 60 (L / (g ⁇ cm), half width 90 nm)) 1.5 parts by mass of (B31) component; “Dia Resin BlueJ” manufactured by Mitsubishi Chemical Corporation (maximum absorption wavelength 590 nm, absorption coefficient 35 (L / (g ⁇ cm)), half-value width 110 nm)
  • a primer composition was obtained in the same manner as in Example 5A, except that 0.8 part by mass was used.
  • the sample was prepared and the sample was evaluated.
  • Table 7 summarizes the weight average molecular weight of component (A) and the blending amount of each component. The evaluation results of each laminate are shown in Table 8. When the component (B1) was used, YI was increased, so the amount of the bluing agent to be added was increased, and the resulting laminate was slightly low in transparency (luminous transmittance).
  • the primer compositions for optical articles of Examples 5A to 7C and Examples 8 to 20 were not particularly specified, but as component (D), a fluorine-based primer composition was used.
  • Example 21 In the same manner as in Example 5A, a solution of urethane prepolymer (5A) was prepared. For 300 parts by mass of this urethane prepolymer solution (100 parts by mass as urethane prepolymer (5A)), as component (B2), component (B2); benzotriazole-based ultraviolet absorber (maximum absorption wavelength 365 nm, absorption coefficient 55 2 parts by mass of (L / (g ⁇ cm)), half width of 65 nm), and (B2) component; benzotriazole ultraviolet absorber (maximum absorption wavelength 355 nm, absorption coefficient 50 (L / (g ⁇ cm)), 7 parts by mass of half width (90 nm), and further component (B32); “FDG-005” (maximum absorption wavelength 581 nm, extinction coefficient 140 (L / (g ⁇ cm)), half width 19 nm) manufactured by Yamada Chemical Co., Ltd.) 0.1 parts by mass was added and sufficiently stirred and
  • a primer laminate and a laminate having a hard coat layer were prepared in the same manner as in Example 1 except that the primer composition was used, and the samples were evaluated.
  • Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 10.
  • Example 22 As component (B), component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, extinction coefficient 510 (L / (g ⁇ cm)), half-width 18 nm) manufactured by Yamada Chemical Co., Ltd. 12 parts by mass, further (B32) component; “FDG-007” (maximum absorption wavelength 591 nm, extinction coefficient 145 (L / (g ⁇ cm)), half-value width 19 nm) manufactured by Yamada Chemical Co., Ltd.
  • a primer composition was obtained in the same manner as in Example 21 except that it was used.
  • the sample was prepared and the sample was evaluated.
  • Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 10.
  • Example 23 As component (B), component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, extinction coefficient 510 (L / (g ⁇ cm)), half-width 18 nm) manufactured by Yamada Chemical Co., Ltd.
  • Example 22 05 parts by mass and component (B2); 2 parts by mass of benzotriazole-based ultraviolet absorber (maximum absorption wavelength 365 nm, extinction coefficient 55 (L / (g ⁇ cm)), half-value width 65 nm), and component (B32);
  • Example 22 0.3 parts by mass of “FDG-005” (maximum absorption wavelength 581 nm, extinction coefficient 140 (L / (g ⁇ cm)), half-value width 19 nm) manufactured by Yamada Chemical Industries, Ltd. was used.
  • a laminate having a primer laminate and a hard coat layer was prepared, and samples were evaluated. Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component.
  • Table 10 shows the evaluation results of each laminate.
  • Example 24 As component (B), component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, extinction coefficient 510 (L / (g ⁇ cm)), half-width 18 nm) manufactured by Yamada Chemical Co., Ltd. In addition, 0.5 parts by mass of (B32) component; 0.2 parts by mass of Yamamoto Kasei Co., Ltd. “PD-320” (maximum absorption wavelength 590 nm, extinction coefficient 135 (L / (g ⁇ cm)), half-value width 20 nm) was used.
  • a primer laminate and a laminate having a hard coat layer were prepared in the same manner as in Example 22 except that toluene was used in place of ethyl acetate, and samples were evaluated.
  • Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 10.
  • Example 25 In the same manner as in Example 14, a two-component curable primer composition was obtained.
  • component (B) component (B1); porphyrin compound: “FDB-001” (maximum absorption wavelength 420 nm, extinction coefficient 510 (L / (g ⁇ cm)), half-width 18 nm) manufactured by Yamada Chemical Co., Ltd. 1 part by mass, and further (B32) component: 0.3 part by mass of “FDG-005” (maximum absorption wavelength 581 nm, extinction coefficient 140 (L / (g ⁇ cm)), half-value width 19 nm) manufactured by Yamada Chemical Co., Ltd.)
  • a primer composition was obtained in the same manner as in Example 14 except that it was used.
  • Example 14 the primer laminated body and the laminated body which have a hard-coat layer were produced similarly to Example 14, and the sample was evaluated.
  • Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 10.
  • Example 26 Using the urethane prepolymer (5C) of Example 5C, with respect to 300 parts by mass of this urethane prepolymer solution (100 parts by mass as the urethane prepolymer (5C)), as the component (B), the component (B2); 2 parts by mass of benzotriazole ultraviolet absorber (maximum absorption wavelength 370 nm, extinction coefficient 60 (L / (g ⁇ cm), half width 70 nm), component (B1); porphyrin compound: Zinc (II) Tetrahenylporphyrin ”(maximum absorption) 0.1 part by mass of a wavelength of 425 nm, an extinction coefficient of 800 (L / (g ⁇ cm)), a full width at half maximum of 22 nm), and a component (B32); “FDG-007” (maximum absorption wavelength) manufactured by Yamada Chemical Co., Ltd.
  • benzotriazole ultraviolet absorber maximum absorption wavelength 370 nm,
  • Example 27 As component (B), 0.08 parts by mass of component (B1); porphyrin compound: Zinc (II) Tetraphenylporphyrin (maximum absorption wavelength: 425 nm, extinction coefficient 800 (L / (g ⁇ cm)), half width 22 nm)
  • component (B32); “FDG-006” maximum absorption wavelength 584 nm, extinction coefficient 80 (L / (g ⁇ cm)), half-value width 25 nm) manufactured by Yamada Chemical Co., Ltd. was added in addition to 0.6 part by mass. Obtained a primer composition in the same manner as in Example 21.
  • a primer laminate and a laminate having a hard coat layer were produced in the same manner as in Example 22 except that this primer composition was used, and the samples were evaluated.
  • Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 10.
  • Example 28 As the component (B), instead of the component (B32), the component (B31); “Black B” (maximum absorption wavelength 600 nm, extinction coefficient 40 (L / (g ⁇ cm)), manufactured by Nippon Kayaku Co., Ltd., half width 140 nm) was used in the same manner as in Example 21 except that 0.1 part by mass was used (the same amount of the same component (B2) as in Example 21 was blended).
  • a primer laminate and a laminate having a hard coat layer were produced in the same manner as in Example 22 except that this primer composition was used, and the samples were evaluated.
  • Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 10.
  • Example 29 In Example 21, the component (B2) was not used, and as the component (B), the component (B32); “FDG-006” manufactured by Yamada Chemical Co., Ltd. (maximum absorption wavelength 584 nm, extinction coefficient 80 (L / (g ⁇ cm)), and a half width of 25 nm) was used only at 0.6 parts by mass. Otherwise, a primer composition, a primer laminate, and a laminate having a hard coat layer were prepared in the same manner as in Example 21, and the samples were evaluated. Table 9 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 10.
  • the primer compositions for optical articles of Examples 21 to 29 were not particularly specified, but as a component (D), Toray A leveling agent “FZ2104” manufactured by Dow Corning Co., Ltd. was prepared to be mixed in an amount of 0.05 parts by mass.
  • Example 30 330 g of polytetramethylene ether glycol having a number average molecular weight of 650 ("PTMG650" manufactured by Mitsubishi Chemical Corporation) (component (A2)), 80% by mass of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate: 20
  • a urethane prepolymer (30 ′) having an isocyanate group at the terminal was obtained by reacting 175 g of a mass% mixture (designated as TDI80; component (A1)).
  • the urethane prepolymer (30 ′) was diluted with 100 parts by mass of toluene (component (C)).
  • propylene glycol (component (A3)) is added in an amount of 1.8 parts by mass with respect to 100 parts by mass of the urethane prepolymer (30 ′), and reacted at 80 ° C. for 5 hours to give a urethane prepolymer (30 )
  • a leveling agent component (component (D)
  • the content of isocyanate is 0.061 g per 1 g of urethane prepolymer (30), and the molar percentage of isocyanate groups in the urethane prepolymer (30) is 0.15 mol%.
  • the weight average molecular weight was 30,000, and the number average molecular weight was 14,000.
  • This urethane prepolymer solution was further diluted with ethyl acetate (component (C)).
  • component (C) ethyl acetate
  • the amount of the solvent used 100 parts by mass of the ethyl acetate as the component (C) with respect to 100 parts by mass of the urethane prepolymer (30).
  • the total amount of component (C) was 200 parts by mass with respect to 100 parts by mass of the urethane prepolymer (30).
  • the same amount of the same component (B) as Example 5A is blended with 300 parts by mass of this urethane prepolymer solution (100 parts by mass of urethane prepolymer (30)), and the primer composition is prepared in the same manner as Example 5A.
  • a primer laminate and a laminate having a hard coat layer were produced in the same manner as in Example 5A, and the samples were evaluated.
  • Table 11 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 12.
  • Example 31 Using the urethane prepolymer (30) prepared in Example 30, the same amount of the same component (B) as in Example 6A was blended, and a primer composition was obtained in the same manner as in Example 6A. Moreover, the primer laminated body and the laminated body which has a hard-coat layer were produced like Example 6A, and the sample was evaluated. Table 11 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 12.
  • Example 32 Using the urethane prepolymer (30) prepared in Example 30, the same amount of the same component (B) as in Example 7A was blended, and a primer composition was obtained in the same manner as in Example 7A. In addition, a primer laminate and a laminate having a hard coat layer were prepared in the same manner as in Example 7A, and the samples were evaluated. Table 11 summarizes the weight average molecular weight, the number average molecular weight of the component (A), and the blending amount of each component. The evaluation results for each laminate are shown in Table 12.
  • the primer compositions for optical articles of Examples 30 to 32 have a fluorine leveling agent (Toray) as a component (D) even if there is no particular notice.
  • a leveling agent “FZ2104” manufactured by Dow Corning Co., Ltd. was prepared to be mixed in an amount of 0.05 parts by mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Eyeglasses (AREA)

Abstract

本発明に係る光学物品用プライマー組成物は、 (A)芳香族ポリイソシアネート化合物とポリオール化合物との反応物であり、末端にイソシアネート基または水酸基から選ばれる反応性基を有するウレタンプレポリマー、 (B)極大吸収波長が320nm以上650nm以下の範囲にある光吸収化合物、および(C)溶解度パラメーターが8[(cal/cm3)1/2]以上であり、かつ活性水素を有さない有機溶媒を含んでなることを特徴としている。

Description

光学物品用プライマー組成物および積層体
 本発明は、紫外線吸収性能(青色光の吸収能を含む)または防眩性に優れた光学物品を形成するための新規なプライマー組成物に関する。
 太陽光に含まれる紫外線が眼に悪影響を与えることは知られており、眼を保護するために、眼鏡レンズに紫外線吸収性能を持たせた光学物品が従来から市販されている。さらに近年では、パソコン、テレビ、携帯電話などに使われる液晶ディスプレイのバックライトに含まれる青色光もまた眼に悪影響を与えることがわかってきており、これらの光から眼を保護する機能が眼鏡等の光学物品に求められている。具体的には、眼鏡レンズに紫外線や青色光を吸収する性能を持たせることである。さらに、眼鏡レンズには防眩性が求められることがある。
 現在、加工性、耐久性の良さからプラスチックからなる光学基材を使用した眼鏡レンズが主流となっている。プラスチックレンズからなる光学基材に紫外線吸収性能を付与する方法としては、以下の方法が知られている。
(i)紫外線吸収剤を分散させた溶液にプラスチックレンズ基材を浸漬させる方法(以下、単に「浸漬法」とする場合もある)(特許文献1、2参照)、
(ii)レンズ基材を形成するプラスチックレンズモノマーに紫外線吸収剤を分散させて成型する方法(以下、単に「レンズ基材分散法」とする場合もある)(特許文献3~6参照)、
(iii)耐スリ傷性向上のため、プラスチックレンズ基材の表面に形成されるハードコート層に紫外線吸収剤を分散させる方法(以下、単に「ハードコート層分散法」とする場合もある)(特許文献7、8参照)。
 しかしながら、以上の従来方法では以下の点で改善の余地があった。先ず、(i)の浸漬法においては、プラスチックレンズ基材に含侵される紫外線吸収剤の量を一定に制御する必要がある。このため、含侵量の制御が可能な素材からなるプラスチックレンズ基材に限定されるという点に改善の余地があった。つまり、該浸漬法では、紫外線吸収剤の量を一定に制御できないプラスチックレンズ基材もあり、汎用的ではないという点で改善の余地があった。
 また、(ii)のレンズ基材分散法においては、プラスチックレンズ基材の厚みの違いに対応できないという点で改善の余地があった。紫外線吸収特性は、その基材、例えば、プラスチックレンズ基材の厚みによって異なる。該基材が近視矯正用レンズ場合には、レンズ中心部が薄く、レンズ端部は厚い。そのため、レンズの中心部と端部とでは光路上に存在する紫外線吸収剤の量が異なる。この結果、紫外線吸収特性がレンズの中心部と端部とで異なる。レンズ中心部に合わせると紫外線吸収剤を大過剰に使用する必要があったり、レンズ端部に合わせるとレンズ中心部では紫外線吸収剤が少なく、レンズ中心部の紫外線吸収特性が十分ではなくなるといった点で改善の余地があった。また、近紫外域に吸収を持つ紫外線吸収剤あるいは青色光吸収剤を使用する場合には、着色し易くなる。このため、厚みが中心部と端部とで異なるレンズにおいては、紫外線吸収剤を配合するとレンズ全面の透明性を高く維持することが難しいという点でも改善の余地があった。
 以上の方法に対して、(iii)のハードコート層分散法においては、通常、基材上に形成されるハードコート層は均一な膜厚の層を形成するため、前記レンズ基材分散法のような問題は生じない。また、プラスチックレンズ基材上に形成するため、前記浸漬法のようにプラスチックレンズ基材の種類によらず、幅広い材質(基材)に適用することができる。
特開平01-230003号公報 特開2005-338868号公報 国際公開第2014-133111号 特開2016-157146号公報 国際公開第2015-088015号 国際公開第2016-125736号 特開平9-265059号公報 国際公開第2005-075193号
 しかしながら、本発明者等の検討によれば、前記ハードコート層分散法においても、以下の点で改善の余地があることが分かった。通常、該ハードコート層を形成するハードコート組成物は、シリカ粒子のような無機粒子と、縮合反応により高分子を形成する加水分解性基含有有機ケイ素化合物(例えば、アルコキシシラン)のような化合物とを含んでなる。本発明者等の検討によれば、例えば、紫外線や400nm以上の紫から青色光を十分に遮断するためには、光吸収剤の添加量を増加させたり、形成するハードコート層の厚みをより厚くしなければならないことが分かった。その結果、該ハードコート層分散法では、高度な光吸収性能を維持しつつ、ハードコート層本来の耐擦傷性を向上するという目的を達成することが困難な場合があり、クラック等が発生して外観不良となるものもあり、改善の余地があった。また、近年、スマートフォン等の普及により青色光の吸収能を有するレンズ等の要望が増えており、このような性能を容易に付与することができる光学物品用の材料、およびそれを用いた光学物品が要求されていた。さらに、人間の目には、540~650nm程度の波長の光(黄色~橙色)が最も眩しく感じられることから、この波長領域において光吸収能を有する光学物品が要望されることもある。
 したがって、本発明の目的は、プラスチックレンズのような光学物品において、紫外線吸収性能、青色光の吸収性能、あるいは防眩性に優れた光学物品を簡易に製造しうる材料を提供することにある。より詳細には、様々な材質の基材に対しても適用することができる、所定の波長の光に対する吸収性能を有する光学物品用プライマー組成物を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた。従来、光吸収剤を多く配合できる前記レンズ基材分散法や、光の入射面に存在するハードコート層を紫外線吸収層とする前記ハードコート層分散法が主流であったが、本発明者等は、これら方法とは全く別の方法を検討し、従来法とは異なる層を光吸収層とすることを検討した。そして、基材と他の層とを接合させるために使用する、いわゆるプライマー層(光学物品用プライマー層)に着目し、該プライマー層に光吸収剤を配合することを検討した。その結果、特定の有機溶媒、および末端に反応性基を有する特定のウレタンプレポリマーを主成分として含む組成物に光吸収化合物を配合することにより、上記課題が解決できることを見出し、本発明を完成するに至った。前記の通り、このような光学物品用プライマー組成物からなるプライマー層(該ウレタンプレポリマーの反応物がマトリックス(母材)となる層)を光吸収層とすることは従来では考えられないことであった。
 すなわち、本発明は、
 (1)(A)芳香族ポリイソシアネート化合物とポリオール化合物との反応物であり、末端にイソシアネート基または水酸基から選ばれる反応性基を有するウレタンプレポリマー、(B)極大吸収波長が320nm以上650nm以下の範囲にある光吸収化合物(以下、単に「(B)光吸収化合物」とする場合もある)、及び(C)溶解度パラメーターが8[(cal/cm1/2]以上であり、かつ活性水素を有さない有機溶媒を含んでなる光学物品用プライマー組成物である。
 本発明は、以下の態様をとることができる。
 (2)前記(A)ウレタンプレポリマーの反応性基の質量が、該(A)ウレタンプレポリマー1g(1グラム)当たり、0.02~0.2g(0.02~0.2グラム)の範囲である前記(1)の光学物品用プライマー組成物。
 (3)前記(A)ウレタンプレポリマー100質量部当たり、前記(B)化合物を0.01~20質量部、および前記(C)有機溶媒を100~1000質量部含む前記(1)又は前記(2)の光学物品用プライマー組成物。
 (4)前記(A)ウレタンプレポリマーが、芳香族ポリイソシアネート化合物、ポリオール化合物、および鎖延長剤の反応物である前記(1)~(3)の何れかの光学物品用プライマー組成物。
 (5)前記(A)ウレタンプレポリマーの重量平均分子量が、3,000~300,000である前記(1)~(4)の何れかの光学物品用プライマー組成物。
 (6)前記(B)光吸収化合物が、極大吸収波長が400nmを超え450nm以下の範囲にある(B1)成分を含む前記(1)~(5)の何れかの光学物品用プライマー組成物。
 (7)前記(B1)成分が、ポルフィリン化合物を含む前記(6)の光学物品用プライマー組成物。
 (8)前記(B)光吸収化合物が、極大吸収波長が320nm以上400nm以下の範囲にある(B2)紫外線吸収剤を含む前記(1)~(7)の何れかの光学物品用プライマー組成物。
 (9)前記(B)光吸収化合物が、極大吸収波長が540nm以上650nm以下の範囲にある(B3)染料をさらに含む前記(1)~(8)の何れかの光学物品用プライマー組成物。
 (10)(D)レベリング剤をさらに含む前記(1)~(9)の何れかの光学物品用プライマー組成物。
 (11)前記(A)ウレタンプレポリマーの反応性基がイソシアネート基であり、前記(A)ウレタンプレポリマーが空気中の水分で硬化しうる湿気硬化型ポリマーである前記(1)~(10)の何れかの光学物品用プライマー組成物。
 (12)前記(A)ウレタンプレポリマーの反応性基が水酸基であり、
 さらに、(E)分子中にイソシアネート基を複数有する硬化剤を含む前記(1)~(10)の何れかの光学物品用プライマー組成物。
 (13)前記(A)ウレタンプレポリマーの反応性基がイソシアネート基であり、
 さらに、(E’)分子中にイソシアネート基と反応しうる基を複数有する硬化剤を含む前記(1)~(11)の何れかの光学物品用プライマー組成物。
 (14)光学基材の表面に前記(1)~(13)の何れかの光学物品用プライマー組成物よりなるプライマー層が形成され、該プライマー層の膜厚が0.1~20μmである第一積層体。
 (15)波長420nmにおける透過率が80%以下である前記(14)の第一積層体。
 (16)前記(14)又は(15)の前記第一積層体のプライマー層の上に、無機粒子を含むハードコート層が形成されてなる第二積層体。
 なお、本発明において、各化合物の極大吸収波長等の測定は、該測定に影響を与えない溶媒中で測定した。該溶媒としては、例えば、クロロホルムが挙げられる。
 本発明の光学物品用プライマー組成物を用いることにより、プラスチックレンズ基材等の光学物品において、効果的に紫外線吸収性能、青色光を吸収する性能、あるいは防眩性を付与することができるため、および、これら性能全てを同時に発揮することができるため、その利用価値は高い。
 本発明の光学物品用プライマー組成物は、
(A)芳香族ポリイソシアネート化合物とポリオール化合物との反応物であり、末端にイソシアネート基または水酸基から選ばれる反応性基を有するウレタンプレポリマー、
(B)極大吸収波長が320nm以上650nm以下の範囲にある光吸収化合物、及び
(C)溶解度パラメーターが8[(cal/cm1/2]以上であり、かつ活性水素を有さない有機溶媒を含んでなる組成物である。
 以下、各成分について説明する。
 (A)ウレタンプレポリマー(以下(A)成分とする場合もある。)
 本発明において、(A)成分は、光学物品プライマー層(本発明の光学物品用プライマー組成物から形成される層)において、前記(B)光吸収化合物が分散している樹脂成分(マトリックス)を形成する。そして、前記(A)成分は、例えば、プラスチックレンズ基材のような光学基材とハードコート層との密着性を向上させる役割を果たす。
 本発明において、前記(A)成分は、芳香族ポリイソシアネート化合物(以下、(A1)成分とする場合もある)とポリオール化合物(以下、(A2)成分とする場合もある)との反応物である。そして、末端に反応性基が残るように、(A1)成分と(A2)成分との量比を調整して合成される。
 前記(A)成分における反応性基は、イソシアネート基(NCO基)、または水酸基(OH基)である。すなわち、(A)成分は、芳香族環を有し、分子末端にイソシアネート基または水酸基から選ばれる反応性基を有するウレタンプレポリマーである。
 前記(A)成分を構成する(A1)成分は、具体的には、以下の化合物が挙げられる。
 <構成成分 (A1)成分;芳香族ポリイソシアネート化合物>
 (A1)成分は、分子内に芳香族環と、2つ以上のイソシアネート基を有する化合物である。本発明において、(A1)成分を使用することにより、他のイソシアネート化合物、例えば、脂肪族ポリイソシアネート化合物と比較して、硬化反応の速度が速く、また得られる塗膜(プライマー層)の硬度も高くすることができるためである。
 さらには、芳香族ポリイソシアネート化合物の中でも、形成するプライマー層の平滑さ、(B)光吸収化合物、およびその他の添加剤等のプライマー層中での分散、プライマー層の接合性(ハードコート層、基材との接合性)等を考慮すると、イソシアネート基は、分子内に2~3個含まれることが好ましい。また、特に制限されるものではないが、上記効果を発揮するためには、分子量が160~500(g/mol)である化合物を使用することが好ましい。
 (A1)成分を具体的に例示すれば、4,4’-ジフェニルメタンジイソシアネート、4,2’-ジフェニルメタンジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、トリレン-2,3-ジイソシアネート、フェニレン-1,3-ジイソシアネート、フェニレン-1,4-ジイソシアネート、1,3-ビス(イソシアナトメチル)ベンゼン、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ナフタレンジイソシアネート、ジフェニルエーテルジイソシアネート、1,3-ジイソシアナトメチルベンゼン、4,4’-ジイソシアナト-3,3’-ジメトキシ(1,1’-ビフェニル)、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、1,2-ジイソシアナトベンゼン、1,4-ビス(イソシアナトメチル)-2,3,5,6-テトラクロロベンゼン、2-ドデシル-1,3-ジイソシアナトベンゼン、1-イソシアナト-4-[(2-イソシアナトシクロヘキシル)メチル]2-メチルベンゼン、1-イソシアナト-3-[(4-イソシアナトフェニル)メチル]-2-メチルベンゼン、4-[(2-イソシアナトフェニル)オキシ]フェニルイソシアネート、ジフェニルメタンジイソシアネート、トリジンジイソシアネート、トリフェニルメタントリイソシアネートなどの芳香族ジイソシアネート化合物などを挙げることができる。(A1)成分は、単独種であっても、異性体の混合物であっても、複数種であってもよい。
 その中でも、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、トリフェニルメタントリイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族イソシアネート化合物が好適に用いられる。この理由は、芳香族イソシアネート化合物は脂肪族イソシアネート化合物に比べて硬化反応の速度が優れており、また得られる塗膜の硬度も芳香族イソシアネート化合物のほうが高くすることができる。上記芳香族イソシアネート化合物の中でも、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートが特に好適である。トリレンジイソシアネートを使用する場合には、原料の入手のしやすさの観点からトリレン-2,4-ジイソシアネート(50~90質量%)とトリレン-2,6-ジイソシアネート(10~50質量%)の混合物を使用することが好ましい。
 次に、ポリオール化合物(A2)について説明する。
 <構成成分 (A2)ポリオール化合物>
 本発明において、(A2)成分は、分子中に2個以上の水酸基を有する化合物である。
 本発明におけるポリオール化合物は、形成するプライマー層の平滑さ、(B)光吸収化合物、およびその他の添加剤等のプライマー層中での分散、プライマー層の接合性(ハードコート層、基材との接合性)等を考慮すると、水酸基は、分子内に2~3個含まれることが好ましい。また、特に制限されるものではないが、上記効果を発揮するためには、分子量が90~5000の化合物を使用することが好ましい。なお、該分子量はGPCの測定から求められる数平均分子量である。
 本発明において、(A2)成分は、アルキレングリコール、ポリアルキレングリコール、ポリ(アルキレンアジペート)、ポリカプロラクトンポリオール、ポリブタジエングリコール、ポリエステルポリオール、分子中に3個以上の水酸基を有するポリオール、またはシリコーンポリオールが挙げられる。
 これら(A2)成分を具体的に例示すると、
 エチレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジプロピレングリコール、ジエチレングリコール等のアルキレングリコール;
 ポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール;
 ポリ(ジエチレンアジペート)、ポリ(テトラメチレンアジペート)、ポリ(ヘキサメチレンアジペート)、ポリ(ネオペンチレンアジペート)等のポリ(アルキレンアジペート);
 ポリ-ε-カプロラクトン、ポリカプロラクトンジオール、ポリカプロラクトントリオール等のポリカプロラクトンポリオール;
 ポリ(1,4-ブタジエン)グリコール、ポリ(1,2-ブタジエン)グリコール等のポリブタジエングリコール;
 ポリ(ヘキサメチレンカーボネート)等のポリ(アルキレンカーボネート);ポリエステルポリオール;
 グリセリン、トリメチロールプロパン、ペンタエリスリトール、1,2,4-ブタントリオール、1,2,6-ヘキサントリオール等の3個以上の水酸基を含有するポリオール;
 シリコーンポリオール;
 低分子量ポリオール化合物の1種以上をホスゲン化するか、或いはエチレンカーボネート、ジエチルカーボネート、及びジフェニルカーボネートの低分子量カーボネートとエステル交換させて得られるポリカーボネートポリオール;(上記低分子量ポリオール化合物としては、前記アルキレングリコールが挙げられる)、
 多価アルコール化合物と多塩基酸との縮合反応により得られるポリエステルポリオール;(多価アルコール化合物としては、前記アルキレングリコール、および前記ポリアルキレングリコールなどを挙げることができる。また、前記多塩基酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、オルトフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などが挙げられる。)
 などのポリオール化合物が挙げられる。
 以上の(A2)成分の中でも、ポリアルキレングリコール、3個の水酸基を含有するポリオール、ポリアルキレンアジペート、ポリカーボネートポリオール、ポリカプロラクトンポリオール、ポリエステルポリオールは、硬化させる際の加熱温度をより低くすることができる。そのため、基材の熱変形や変色をより確実に防止できる点で好適である。
 本発明において、前記(A)成分は、前記(A1)成分、および前記(A2)成分を反応させることにより、製造できる。該反応(イソシアネート基と水酸基との反応)は、公知の方法を採用することができる。そして、前記(A1)成分のイソシアネート基のモル割合と、前記(A2)成分の水酸基のモル割合とを変えることにより、末端に反応性基を有する(A)成分を製造できる。すなわち、前記(A1)成分のイソシアネート基のモル比が、前記(A2)成分の水酸基のモル比よりも大きくなる場合には、末端にイソシアネート基(反応性基)を有する(A)成分を得ることができる。一方、前記(A2)成分の水酸基のモル比が、前記(A1)成分のイソシアネート基のモル比よりも大きくなる場合には、末端に水酸基(反応性基)を有する(A)成分を得ることができる。
 <(A)成分の特性>
 本発明においては、前記(A)成分の反応性基の質量が、該(A)成分1g当たり、0.02~0.2gの範囲であることが好ましい。反応性基の質量が前記範囲を満足することにより、塗膜が適度な硬化速度を有し、基材・他層との密着性を向上、得られる積層体、特にプライマー層上に他層をさらに積層した積層体の外観を向上させることができる。この効果をより一層高めるためには、反応性基の質量は、該(A)成分1g当たり、0.03~0.1gであることがより好ましく、0.04~0.1gであることがさらに好ましい。
 また、(A)成分中の反応性基のモル百分率は、好ましくは0.01~0.7モル%、さらに好ましくは0.02~0.3モル%、特に好ましくは0.04~0.25モル%である。ここで、反応性基のモル分率は、以下のように算出される。まず、特定質量の(A)成分中に存在する反応性基のモル数を化学的に定量して求め、得られた反応性基のモル数を、当該特定質量の(A)成分中に含まれるウレタンプレポリマーのモル数で除することによってウレタンプレポリマー1分子中に存在する反応性基のモル数を求める。さらに、得られたモル数を、ウレタンプレポリマーの数平均分子量で除した値を%表記して、(A)成分中の反応性基のモル百分率が算出される。なお、ウレタンプレポリマーのモル数は、(A)成分の質量をウレタンプレポリマーの数平均分子量で除して得られる。
 なお、該反応性基の質量を測定するためには、末端にイソシアネート基を有するものの場合には、アミンによる逆滴定により定量すればよい。すなわち、(A)成分中のイソシアネート基と既知量のアミンとを反応させたのち、残存したアミン量を酸の滴定で定量し、そこから反応したアミン量を算出することによりイソシアネート基量を定量することができる。一方、末端が水酸基の場合には、アシル化剤との反応液をアルカリ水溶液により滴定して定量すればよい。すなわち、(A)成分中の水酸基と既知量の無水酢酸とを反応させたのち、残存した無水酢酸を水によって加水分解し、生成した酢酸を水酸化ナトリウム標準液で滴定し、そこから反応した無水酢酸量を算出することにより水酸基価を定量することができる。
 本発明において、前記(A)成分は、光学物品用プライマー組成物の硬化速度が比較的速く、該光学物品用プライマー組成物の粘度がコーティングし易い粘度となり、平坦なプライマー層であって、層厚みを確保するためには、前記(A)成分の重量平均分子量が3,000~300,000であることが好ましい。この時、前記(A)成分の数平均分子量は、1,000~25,000であることが好ましい。本発明の光学物品用プライマー組成物は、下記に詳述する(B)光吸収化合物((B)成分)を含むため、上記範囲の重量平均分子量を満足する(A)成分を使用することが好ましい。(B)成分は、場合によっては、プライマー層でのブリードが生じるおそれがあったり、基材および/またはハードコート層との密着性が低下させるおそれがあるが、上記範囲の重量平均分子量を満足する(A)成分を使用することにより、以上の問題をも解決し易くなる。プライマー層における上記効果をより一層発揮させるためには、前記(A)成分の重量平均分子量は、5,000~300,000であることがより好ましく、10,000~200,000であることがさらに好ましい。この時、前記(A)成分の数平均分子量は、1,500~25,000であることがより好ましく、2,000~23,000であることがさらに好ましい。特に好ましい態様では、前記(A)成分の重量平均分子量は、12,000~150,000であり、さらに好ましい態様では15,000~100,000であり、最も好ましい態様では15,000~80,000である。この時、前記(A)成分の数平均分子量は、2,200~23,000であり、さらに好ましい態様では2,500~21,000であり、最も好ましい態様では6,000~20,000である。
 また、大気中の湿気、又は下記に詳述する硬化剤で(A)成分をより一層高分子量化してプライマー層を作製する場合であっても、高分子量化する前の(A)成分の重量平均分子量が3,000~300,000であることが好ましい。この時、前記(A)成分の数平均分子量は、1,000~25,000であることが好ましい。特に、該プライマー層上に他層(例えば、ハードコート層)が積層される場合においては、溶剤に対する耐溶解性が高くなり、より外観の優れた積層体を形成できる。なお、前記(A)成分の重量平均分子量は、下記の実施例で記載した方法(ゲル・パーミエーション・クロマトグラフィー(GPC))で求めた値である。
 本発明において、前記(A)成分は、使用する前記(A1)成分、前記(A2)成分の分子量、種類等を調整して、重量平均分子量を調整することもできる。また、より容易に前記(A)成分の重量平均分子量を3,000~300,000であり、前記(A)成分の数平均分子量を1,000~25,000とするためには、以下の方法で製造することが好ましい。すなわち、鎖延長剤(以下、単に(A3)成分)を使用して、前記(A)成分を製造する方法を採用することが好ましい。
 <構成成分 (A3) 鎖延長剤>
 鎖延長剤は、以下のように使用する。先ず、何れか一方の反応性基(イソシアネート基または水酸基)のモル割合が過剰となる配合で、前記(A1)成分、および前記(A2)成分を反応させて、何れか一方の反応性基を有する第一ウレタンプレポリマーを準備する。次いで、第一ウレタンプレポリマーの末端の反応性基と反応しうる反応性基を分子中に複数有する(A3)成分を使用して、第一ウレタンプレポリマーと該(A3)成分とを反応させて、高分子量化した第二ウレタンプレポリマーを得る。なお、第二ウレタンプレポリマーの末端の反応性基は、第一ウレタンプレポリマーと同種の反応性基となるように、(A3)成分の種類、量を調整する。すなわち、第一ウレタンプレポリマーの反応性基の一部が残留するように、鎖延長剤の種類、量を調整する。
 前記第一ウレタンプレポリマー、および前記第二ウレタンプレポリマー共に、本発明の(A)成分として使用できる。第一ウレタンプレポリマーを(A)成分として使用する場合には、該第一ウレタンプレポリマーの反応性基の質量が、第一ウレタンプレポリマー1g当たり、0.02~0.2gの範囲とすることが好ましく、第一ウレタンプレポリマー中の反応性基のモル百分率は、0.01~0.7モル%とすることが好ましく、第一ウレタンプレポリマーの重量平均分子量が3,000~300,000であることが好ましい。一方、第二ウレタンプレポリマーを使用する場合には、第二ウレタンプレポリマーの反応性基の質量が、第二ウレタンプレポリマー1g当たり0.02~0.2gの範囲であり、第ニウレタンプレポリマー中の反応性基のモル百分率が、0.01~0.7モル%の範囲であり、第二ウレタンプレポリマーの重量平均分子量が3,000~300,000であり、前記(A)成分の数平均分子量を1,000~25,000となるように、(A3)成分の種類、使用量を調整すればよい。
 第一ウレタンプレポリマー((A)成分)の反応性基がイソシアネート基の場合には、前記(A3)成分は、分子内に複数のイソシアネート基と反応しうる基(例えば、水酸基および/又はアミノ基)を有する化合物(以下、単に(A3’)成分とする場合もある)を使用する。
 前記(A3’)成分としては、水酸基を有する化合物としては、前記(A2)成分を挙げることができる。前記(A3’)成分は、単独種であっても、複数種であってもよい。この中でも、鎖延長反応の制御のし易さ(高分子量化の制御のし易さ)という観点から、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、1,6-ヘキサンジオール等のアルキレングリコールや、ポリプロピレングリコール等のポリアルキレングリコールが好適である。
 また、前記(A3’)成分としては、アミノ基を分子内に複数有する化合物を使用することもできる。具体的には、ジアミン化合物、およびトリアミン化合物を使用することができる。アミノ基を有する(A3’)成分は、単独種であっても、複数種であってもよい。詳細に化合物を例示すれば、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、メチレンジアニリン、メチレンジアニリンの塩化ナトリウム複合体、イソホロンジアミン、ビス-(4-アミノシクロヘキシル)メタン、ノルボルナンジアミンを用いることがより好ましく、その中でも、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、ビス-(4-アミノシクロヘキシル)メタンを挙げることができる。
 一方、第一ウレタンプレポリマー((A)成分)の末端の反応性基が水酸基である場合には、(A3)成分は、分子中にイソシアネート基を複数有する化合物(以下、(A3’’)成分とする場合もある)を使用する。(A3’’)成分は、単独種であっても、複数種であってもよい。具体的には、前記(A1)成分、脂肪族イソシアネート化合物、ポリイソシアネート化合物等を挙げることができる。ポリイソシアネート化合物としては、脂肪族イソシアネート化合物や前記(A1)成分の芳香族イソシアネート化合物のトリメチロールプロパンアダクト体や、イソシアヌレート体が挙げられる。その中でも、得られる第二ウレタンプレポリマーの硬度が高いことや、乾燥性が速いという点で、前記(A1)成分またはそのトリメチロールプロパンアダクト体が好適である。
 以上の通り、前記(A)成分(第一、第二ウレタンプレポリマー)は、末端の反応性基の違いにより、次の2つに分類することができる。すなわち、末端がイソシアネート基となるウレタンプレポリマー(以下、単に(A’)成分または末端イソシアネート型ウレタンプレポリマーとする場合もある。)と、末端が水酸基となるウレタンプレポリマー((A’’)成分または末端水酸基型ウレタンプレポリマーとする場合もある。)とに分けることができる。これら(A’)成分、または(A’’)成分を含む光学物品用プライマー組成物は、プライマー層を形成する方法(硬化する方法)が異なる。これらウレタンプレポリマーの違いについて説明する。
 <硬化方法(膜形成方法)の違いによる(A)成分の種類>
 <(A’)末端がイソシアネート基であるウレタンプレポリマー>
 この(A’)成分を含む光学物品用プライマー組成物は、プライマー層を形成する方法(硬化させる方法)が次の2種類ある。1つは、空気中の水分(湿気)で硬化させる湿気硬化型プライマーと、(E’)イソシアネート基と反応しうる基を分子中に複数有する硬化剤(以下、単に(E’)成分とする場合もある)により硬化させる2液型プライマーとである。これらについて説明する。
 <(A’)を含む湿気硬化型プライマー>
 (A’)成分(末端イソシアネート型ウレタンプレポリマー)は、芳香族ポリイソシアネート化合物((A1)成分)とポリオール化合物((A2)成分)との反応物である。必要に応じて、前記(A3’)成分を使用して高分子量化したものを使用することもできる。
 末端イソシアネート型ウレタンプレポリマーは、前記方法に従い、分子中の末端がイソシアネート基となるように調整したものであり、イソシアネート基の質量が、ウレタンプレポリマー1g当たり、0.02~0.2gの範囲とすることが好ましく、ウレタンプレポリマー中のイソシアネート基のモル百分率は、0.01~0.7モル%とすることが好ましく、ウレタンプレポリマーの重量平均分子量が3,000~300,000であり、前記(A)成分の数平均分子量が1,000~25,000であることが好ましい。
 末端イソシアネート型ウレタンプレポリマーを使用した場合に、本発明の光学物品用プライマー組成物を硬化させる方法(プライマー層を形成する方法)は、以下の通りである。すなわち、本発明の光学物品用プライマー組成物を、基材上に塗布して塗膜を形成し、大気中の湿気で末端イソシアネート型ウレタンプレポリマーを反応(重合)させて、プライマー層とする。この方法によれば、高い温度にしなくとも、プライマー層を形成することができる。そのため、眼鏡レンズ基材のような中心部と端部とで厚みに違いのある基材に適用する場合に好適である。また、比較的均一な状態で硬化(プライマー層を形成)することができるため、プライマー層における(B)成分の分散状態をよりよくできる。
 以上のような方法でプライマー層が形成されるため、末端イソシアネート型ウレタンプレポリマーを使用する場合において、得られる積層体の外観をより良好とし、さらに密着性を高めるためには、ある程度の分子量を有する末端イソシアネート型ウレタンプレポリマーを使用することが好ましい。すなわち、末端イソシアネート型ウレタンプレポリマーを使用した場合、塗膜が適度な硬化速度を有し、基材や他層との密着性がより一層向上し、得られる積層体、特にプライマー層上に他層をさらに積層した積層体の外観をより一層向上させるためには、イソシアネート基の質量、および重量平均分子量は以下の範囲となることが特に好ましい。前記効果を十分に発揮するためには、末端イソシアネート型ウレタンプレポリマーのイソシアネート基の質量は、ウレタンプレポリマー1g当たり、0.03~0.1gであることがより好ましく、0.04~0.1gであることがさらに好ましく、0.04~0.08gであることが特に好ましい。ウレタンプレポリマー中のイソシアネート基のモル百分率は、好ましくは0.01~0.7モル%、さらに好ましくは0.02~0.3モル%、特に好ましくは0.04~0.25モル%である。また、ウレタンプレポリマーの重量平均分子量は、5,000~300,000であることが好ましく、10,000~200,000であることがより好ましく、15,000~100,000であることがさらに好ましく、15,000~80,000であることが特に好ましい。この時、前記(A)成分の数平均分子量は、1,500~25,000であることが好ましく、2,200~23,000であることがより好ましく、2,500~21,000であることがさらに好ましく、6,000~20,000であることが特に好ましい。本発明においては、末端イソシアネート型ウレタンプレポリマーの硬化特性が眼鏡レンズ基材のプライマー層形成に特に好適である。
 <(A’)および硬化剤(E’)を含む2液型プライマー>
 末端イソシアネート型ウレタンプレポリマーを使用する場合には、基材上に塗膜を形成する直前に、イソシアネート基と反応しうる基を分子中に複数有する硬化剤(以下、単に(E’)成分とする場合もある)を光学物品用プライマー組成物に混合することが好ましい。ただし、この末端イソシアネート型ウレタンプレポリマーも、イソシアネート基の質量が、ウレタンプレポリマー1g当たり、0.02~0.2gの範囲とすることが好ましく、ウレタンプレポリマー中のイソシアネート基のモル百分率は、0.01~0.7モル%とすることが好ましく、ウレタンプレポリマーの重量平均分子量が3,000~300,000であり、ウレタンプレポリマーの数平均分子量が1,000~25,000であることが好ましい。(E’)成分を使用することにより、プライマー層をより強固に短時間で形成することができる。
 中でも、(E’)成分と末端イソシアネート型ウレタンプレポリマーとからなる硬化体がプライマー層を形成する場合において、より優れた効果を発揮するためには、末端イソシアネート型ウレタンプレポリマーのイソシアネート基の質量が、ウレタンプレポリマー1g当たり、0.03~0.1gであることがより好ましく、0.04~0.1gであることがさらに好ましい。ウレタンプレポリマー中のイソシアネート基のモル百分率は、好ましくは0.01~0.7モル%、さらに好ましくは0.02~0.3モル%、特に好ましくは0.04~0.25モル%である。ウレタンプレポリマーの重量平均分子量が、5,000~300,000であることが好ましく、10,000~200,000であることがより好ましく、15,000~100,000であることがさらに好ましく、15,000~80,000であることが特に好ましい。この時、前記ウレタンプレポリマーの数平均分子量が、1,500~25,000であることが好ましく、2,200~23,000であることがより好ましく、2,500~21,000であることがさらに好ましく、6,000~20,000であることが特に好ましい。
 (E’)成分は、前記(A3’)成分と同様のものが挙げられる。特に好適なものとして、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、1,6-ヘキサンジオール、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、ビス-(4-アミノシクロヘキシル)メタン等が具体的に例示される。
 (E’)成分を使用する場合には、末端イソシアネート型ウレタンプレポリマー中のイソシアネート基の数と(E’)成分中の反応基の数が等しくなる量を使用することが好ましい。混合する場合には、下記に詳述する溶解度パラメーターが8以上の溶媒で希釈したものを使用することもできる
 <(A’’)および硬化剤(E)を含む2液型プライマー>
 (A’’)成分(末端水酸基型ウレタンプレポリマー)を使用する場合には、基材上に塗膜を形成する直前に、イソシアネート基を分子中に複数有する硬化剤(以下、単に(E)成分とする場合もある)を光学物品用プライマー組成物に混合することが好ましい。ただし、末端水酸基型ウレタンプレポリマーも、水酸基の質量が、ウレタンプレポリマー1g当たり、0.02~0.2gの範囲とすることが好ましく、ウレタンプレポリマー中の水酸基のモル百分率は、0.01~0.7モル%とすることが好ましく、ウレタンプレポリマーの重量平均分子量が3,000~300,000であることが好ましく、ウレタンプレポリマーの数平均分子量が1,000~25,000であることが好ましい。(E)成分を使用することにより、プライマー層をより強固に短時間で形成することができる。
 中でも、(E)成分と(末端水酸基型ウレタンプレポリマーとからなる硬化体がプライマー層を形成する場合において、より優れた効果を発揮するためには、末端水酸基型ウレタンプレポリマーの水酸基の質量が、ウレタンプレポリマー1g当たり、0.03~0.1gであることがより好ましく、0.04~0.1gであることがさらに好ましい。ウレタンプレポリマー中の水酸基のモル百分率は、好ましくは0.01~0.7モル%、さらに好ましくは0.02~0.3モル%、特に好ましくは0.04~0.25モル%である。ウレタンプレポリマーの重量平均分子量が、5,000~300,000であることが好ましく、10,000~200,000であることがより好ましく、15,000~100,000であることがさらに好ましく、15,000~80,000であることが特に好ましい。この時、前記ウレタンプレポリマーの数平均分子量が、1,500~25,000であることが好ましく、2,200~23,000であることがより好ましく、2,500~21,000であることがさらに好ましく、6,000~20,000であることが特に好ましい。
 (E)成分は、前記(A1)成分として例示した芳香族ポリイソシアネート化合物のほか、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等の脂肪族ポリイソシアネート化合物や、該ポリイソシアネート化合物のトリメチロールプロパンアダクト体、またはイソシアヌレート体等が挙げられる。
 (E)成分を使用する場合には、末端水酸基型ウレタンプレポリマー中の水酸基の数と(E)成分中のイソシアネート基の数が等しくなる量を使用することが好ましい。混合する場合には、下記に詳述する溶解度パラメーターが8以上の溶媒で希釈したものを使用することもできる。
 <(B)光吸収化合物、以下、単に(B)成分とする場合もある。>
 本発明において、光吸収化合物は、極大吸収波長が320nm以上650nm以下の範囲にある光吸収化合物であり、公知の化合物が使用できる。
 例えば、極大吸収波長が400nmを超え450nm以下の範囲にある(B1)成分(以下、単に「(B1)成分」とする場合もある)であってもよいし、
 極大吸収波長が320nm以上400nm以下の範囲にある(B2)紫外線吸収剤(以下、単に「(B2)成分」とする場合もある)であってもよいし、
 極大吸収波長が540~650nmの範囲にある(B3)染料(以下、単に(B3)成分とする場合もある)であってもよい。ここで、(B3)成分は、極大吸収波長が540~620nmの範囲にあることがより好ましい。
 これらの光吸収化合物は、任意に組み合わせて使用できる。たとえば、紫外線吸収性能を重視する場合には(B2)成分を用い、青色光の吸収性能を重視する場合には(B1)成分を用い、また防眩性を重視する場合には(B3)成分を用いる。
 したがって、紫外線吸収性能および青色光吸収性能の両者を付与する場合には、前記(B1)成分、および前記(B2)成分の両方を含んでもよい。この場合、(B)成分として、極大吸収波長が320nm以上450nm以下の光吸収化合物を用いる。
 前記(B1)~(B3)成分の選択および組み合わせは、目的とする用途、および使用する光学基材、ハードコート層等に応じて適宜決定すればよい。
 前記(B)光吸収化合物の配合量は、特に制限されるものではなく、目的とする用途等に応じて適宜決定すればよい。中でも、前記(A)成分100質量部当たり、0.01~20質量部であることが好ましい。この範囲を満足することにより、プライマー組成物を硬化してなる膜の強度を低下させることなく、高い紫外線遮断性能、高い青色光遮断性能あるいは高い防眩性を付与できる。そのため、(B)成分の配合量は、前記(A)成分100質量部当たり、0.02~20質量部であることがより好ましい。なお、前記(B)成分の配合量は、前記(B)成分を複数種類使用する場合にはそれらの合計量とする。例えば、複数の(B1)成分、複数の(B2)成分、複数の(B3)成分、または(B1)成分~(B3)成分の任意の組み合わせで使用する場合には、それぞれの合計量を基準とする。また、2液型プライマーの場合、(E)成分および(E’)成分の質量(すなわち硬化剤の質量)は、前記(A)成分の質量に含まれないもとする。
 次に、前記(B1)成分について説明する。
 <(B1)成分;極大吸収波長が400nmを超え450nm以下の範囲にある成分>
 本発明で使用する(B1)成分は、極大吸収波長が400nmを超え450nm以下の範囲にある化合物であれば、特に制限なく使用でき、市販の化合物を使用できる。中でも、本発明の光学物品用プライマー組成物中に、容易に分散し、さらには、得られるプライマー層の密着性を高度に維持するためには、具体的には、ペリレン系化合物、ポルフィリン化合物、カロテノイド系化合物、シアニン系化合物等が挙げられる。
 カロテノイド系化合物としては、カロテン類を使用することができる。具体的にはゼータカロテンが使用できる。なお、ゼータカロテンについては、公知の方法で合成することができる。
 シアニン系化合物としては、市販のものを使用することができる。例えば、東京化成工業株式会社等から販売されているシアニン化合物、メロシアニン化合物が使用できる。また、山田化学工業株式会社の商品名;FDB-009等を使用できる。
 これらの(B1)成分の中でも、特にポルフィリン化合物を使用することが好ましい。また、ポルフィリン化合物の中でも、銅、マグネシウム、亜鉛、コバルト、チタン、スズ、鉄、鉛、バナジウム等の金属を中心金属として含むポルフィリン金属錯体を使用することができる。該ポルフィリン金属錯体は、市販のものを使用できる。具体的には、東京化成工業株式会社から販売されているものや、山田化学工業株式会社の商品名;FDB-001、FDB-002等が使用できる。また、下記一般式(1)に示されるようなポルフィリン化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000001
 式中、X~Xは、それぞれ、水素原子、ハロゲン原子、直鎖、分岐あるいは環状のアルキル基、直鎖、分岐あるいは環状のアルコキシ基、置換あるいは未置換のエテニル基、置換あるいは未置換のエチニル基、置換あるいは未置換のアリール基、置換あるいは未置換のアリールオキシ基、置換あるいは未置換のアリールオキシカルボニル基、置換あるいは未置換のアルキルチオ基、置換あるいは未置換のアリールチオ基、置換あるいは未置換のアラルキル基、置換あるいは未置換のアラルキルオキシ基、直鎖、分岐あるいは環状のハロゲノアルキル基、直鎖、分岐あるいは環状のハロゲノアルコキシ基、置換あるいは未置換のアシル基、直鎖、分岐あるいは環状のアルコキシアルキル基、直鎖、分岐あるいは環状のアルコキシアルコキシアルキル基、置換あるいは未置換のアリールオキシアルキル基、置換あるいは未置換のアラルキルオキシアルキル基、または直鎖、分岐あるいは環状のハロゲノアルコキシアルキル基から選ばれる置換基であり、
 また、X~Xから選ばれる互いに隣接する基は互いに結合して、置換している炭素原子と共に、置換または未置換の芳香族環を形成していてもよい。
 R~Rは、それぞれ、置換または未置換のアリール基であり、
 Mは、2個の水素原子、2個の1価の金属原子、2価の金属原子、3価の置換金属原子、4価の置換金属原子、または金属酸化物である。
 中でも、本発明において、より高い効果を発揮するためには、
 X~Xは、それぞれ、水素原子、ハロゲン原子、炭素数1~10の直鎖状のアルキル基、炭素数3~10の分岐状のアルキル基、または炭素数3~10の環状のアルキル基であることが好ましく、
 R~Rは、それぞれ、置換または未置換のアリール基であることが好ましく、
 Mは、銅、マグネシウム、亜鉛、コバルト、チタン、鉄、バナジウム、酸化バナジウムであることが好ましい。
 また、ポルフィリン化合物をより具体的に例示すれば、銅ポルフィリン錯体、バナジウムポルフィリン錯体、マグネシウムポルフィリン錯体、亜鉛ポルフィリン錯体が挙げられる。中でも、優れた性能を有するプライマー層を形成するためには、極大吸収波長が405nm以上440nm以下の範囲にある上記ポルフィリン錯体を使用することが好ましく、さらに極大吸収波長が410nm以上435nm以下にあるポルフィリン錯体を使用することがより好ましい。
 本発明において、(B1)成分は、目的とする用途に応じて、適宜選択すればよい。この際、2種類以上の混合物を使用することもできる。中でも、取扱がよく、効率よく本発明の効果を発揮するためには、前記(B1)成分のモル吸光係数は、50~2000(L/(g・cm))の範囲であることが好ましい。この範囲を満足することにより、光学物品用プライマー組成物を硬化して得られる膜(プライマー層)の強度を低下させることなく、青色光をより効率的に吸収できる。かかる効果をより高めるためには、前記(B1)成分のモル吸光係数は、100~1000(L/(g・cm))であることがより好ましく、150~1000(L/(g・cm))であることがさらに好ましい。(B1)成分の中でも、ポルフィリン化合物のモル吸光係数が前記範囲、すなわち、50~2000(L/(g・cm))の範囲を満足することが好ましい。
 また、本発明において、(B1)成分は目的とする用途に応じて、最適なものを適宜選択すればよい。その場合、2種類以上の混合物を使用することもできる。中でも、取り扱いが良く、効率良く本発明の効果を発揮するためには、前記(B1)成分の極大吸収ピークの半値幅は40nm以下であることが好ましい。この範囲を満足することにより、光学物品用プライマー組成物を硬化して得られる膜(プライマー膜)の初期着色(YI)を低く保ちつつ、青色光を効率的に吸収できる。したがって、後述する(B3)成分の添加量を低減することができるため、透明性の高い(視感透過率の高い)プライマー膜を得ることができる。かかる効果をより高めるためには、前記(B1)成分の極大吸収ピークの半値幅は35nm以下であることがより好ましく、30nm以下であることが更に好ましい。該半値幅は狭い方がより光吸収特性の制御が可能となるため好適であるが、(B1)成分の工業的な生産を考慮すると、5nm以上である。そのため、(B1)成分の極大吸収ピークの半値幅は5nm以上40nm以下が好ましく、5nm以上35nm以下がより好ましく、5nm以上30nm以下がさらに好ましい。
 前記(B1)成分の配合量は、特に制限されるものではなく、目的とする用途等に応じて、適宜決定すればよい。中でも、前記(A)成分100質量部当たり、0.01~20質量部であることが好ましい。この範囲を満足することにより、プライマー組成物を硬化してなる膜の強度を低下させることなく、高い青色光遮断性能を付与することができる。そのため、(B1)成分の配合量は、特に前記(B1)成分のみを使用する場合には、前記(A)成分100質量部当たり、0.01~10質量部であることがより好ましく、0.02~3質量部であることがさらに好ましく、0.02~2質量部であることが特に好ましい。なお、この(B1)成分の配合量は、(B1)成分のみの配合量であり、(B)成分が他の(B)成分、具体的には(B2)成分、(B3)成分等を含む場合には、これらの成分の量は含まれないものとする。ただし、複数種類の(B1)成分を使用する場合には、その合計量とする。また、2液型プライマーの場合、(E)成分、および(E’)成分の質量(すなわち硬化剤の質量)は、前記(A)成分の質量に含まれないもとする。
 前記(B1)成分は、極大吸収波長が400nmを超え450nm以下の範囲にある化合物であるため、比較的少量で青色光を吸収することができる。具体的には、420nmの波長における透過率が80%以下となる積層体を、比較的少ない配合量で作製することができる。
 <(B2)成分;紫外線吸収剤>
 本発明に使用する(B2)紫外線吸収剤((B2)成分)は、特に制限はないが、近紫外域の紫外線や青色光を効果的に吸収し、かつ耐久性が高いものが好ましい。そして、極大吸収波長が320nm以上400nm以下の範囲にある(B2)成分であることが好ましい。このような紫外線吸収剤としては、下記式で示される構造(骨格)を有するベンゾトリアゾール系化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
 このような(B2)成分は、公知のものを使用することができる。例えば、株式会社ADEKA社製アデカスタブLAシリーズ(LA-24,LA-29,LA-31,LA32,LA-36など)、シプロ化成株式会社製SEESORBシリーズ(701,703,704,709,L58,L52など)、ケミプロ化成株式会社製ケミソーブシリーズ(KEMSORB74,KEMSORB79,KEMSORB279など)などが挙げられる。これらは、単独種であっても、複数種であってもよい。
 本発明において、前記(B2)成分の配合量は、特に制限されるものではないが、前記(A)成分100質量部当たり、0.01~20質量部であることが好ましい。中でも、プライマー組成物を硬化してなる膜の強度を低下させることなく、より高い紫外線遮断性能を付与するためには、以下の配合量とすることが好ましい。具体的には、特に(B2)成分のみを使用する場合には、前記(B2)成分の配合量は、前記(A)成分100質量部当たり、0.1~20質量部とすることがより好ましく、0.5~20質量部とすることがさらに好ましく、1~18質量部とすることが特に好ましい。なお、この(B2)成分の配合量は、(B2)成分のみの配合量であり、(B)成分が他の(B)成分、具体的には(B1)成分、(B3)成分等を含む場合には、これらの成分の量は含まれないものとする。ただし、複数種類の(B2)成分を使用する場合には、その合計量とする。また、2液型プライマーの場合、(E)成分および(E’)成分の質量(すなわち硬化剤の質量)は、前記(A)成分の質量に含まれないもとする。
 前記(B2)成分を使用することにより、効果的に紫外光を吸収することができる。具体的には、420nmの波長における透過率が80%以下とし、400nmの波長における透過率が5%以下となる積層体を容易に作製することができる。
 一般的に、前記(B2)成分の極大吸収ピークの半値幅は広くなる。通常であれば、該半値幅は50~150nmの範囲である。このような半値幅の(B2)成分を使用するため、他の成分と配合する際、半値幅の狭い成分を併用することが好ましくなる。前記(B2)成分の吸光係数は、10~200(L/(g・cm))の範囲であることが好ましい。
 <(B1)成分と(B2)成分とを併用する場合>
 本発明の特に好ましい態様においては、前記(B1)成分と前記(B2)成分とを併用する。前記(B1)成分と前記(B2)成分とを併用して使用することにより、人間の目に悪影響を与える、紫外線および青色光を効率よく吸収するプライマー層を形成することができる。
 前記(B1)成分と前記(B2)成分とを併用する場合、これらの比は特に制限されるものではないが、より効果的な配合量で紫外線および青色光を吸収するプライマー層とするためには、前記(B2)成分を100質量部としたとき、前記(B1)成分を0.1~20質量部とすることが好ましく、0.2~15質量部とすることがより好ましく、0.5~10質量部とすることがさらに好ましい。
 また、前記(B1)成分と前記(B2)成分とを併用する場合、前記(B1)成分と前記(B2)成分との合計量は、前記の(B)の配合量と同じく、前記(A)成分100質量部当たり、0.01~20質量部であることが好ましく、0.02~20質量部とすることがより好ましい。中でも、光学物品プライマー組成物中の分散性、より効果的な配合量で紫外線および青色光を吸収すること、および得られるプライマー層の密着性等を考慮すると、前記(B1)成分と前記(B2)成分との合計量は、前記(A)成分100質量部当たり、0.1質量部以上15質量部以下であることが好ましく、0.5質量部以上12質量部以下とすることがより好ましく、1質量部以上12質量部以下とすることがさらに好ましい。併用することにより、それぞれを単独で使用する場合よりも、人間の目に悪影響を与える光を効果的に吸収できる。そのため、併用する場合、得られる積層体は、420nmの透過率を容易に80%以下とすることができる。さらには、該積層体は、400nmnmの透過率を容易に5%以下とすることもできる。このことから、前記(B1)成分、および前記(B2)成分を併用する場合、得られる積層体は、紫外線および青色光を効果的に吸収できることが明らかである。
 なお、当然のことではあるが、前記(B1)成分と前記(B2)成分とを併用する場合であっても、好適な(B1)成分、および好適な(B2)成分は、それぞれ前述したものと同じである。
 <(B3)成分;極大吸収波長が540~650nmの範囲にある染料>
 本発明の光学物品用プライマー組成物は、前記(B1)成分、(B2)成分を含む場合には、近紫外域の紫外線および青色光を吸収する。そのため、(B1)成分、(B2)成分に由来して黄色に着色する場合がある。この着色を低減するために、(B3)成分を配合することが好ましい。なお、レンズ基材自体が黄色を呈する場合には、光吸収化合物として(B3)成分のみを含む光学物品用プライマー組成物を用いてもよい。
 この(B3)成分は、作用効果により、次の2つの成分に分けることができる。すなわち、色調を調整できる(B31)成分と、色調を調整でき、かつ防眩性能を付与できる(B32)成分とに分けることができる。
 <(B31)成分>
 前記(B31)成分としては、具体的には、フタロシアニン系化合物、アントラキノン系化合物、インディゴ系化合物等が挙げられる。これら(B31)成分は、ブルーイング剤として色調を調整できる。このような(B31)成分としては、公知の市販のものが使用できる。例えば、三菱化学(株)社製の染料(製品名:ダイアレジン)又は日本化薬(株)社製の染料(製品名:カヤセット)の紫及び青の染料を用いることができる。具体的には、商品名;ダイヤレジン Blue J、ダイヤレジン Violet D、ダイヤレジン VioletRR、ダイヤレジン BlueK、カヤセット Blue FR等が挙げられる。
 本発明において、(B31)成分は、目的とする用途に応じて、適宜選択すればよい。この際、2種類以上の混合物を使用することもできる。中でも、取扱がよく、効率よく本発明の効果を発揮するためには、前記(B31)成分の吸光係数は、10~200(L/(g・cm))の範囲であることが好ましい。また、前記(B31)成分の極大吸収ピークの半値幅は広くなる。通常であれば、該半値幅は50~150nmの範囲である。
 本発明において、前記(B31)成分の配合量は、特に制限されるものではないが、前記(A)成分100質量部当たり、0.001~1質量部とすることが好ましく、さらに0.01~0.5質量部とすることが好ましい。そして、プライマー層、および第一、第二積層体の着色を特に少なくするためには、前記(B1)成分および(B2)成分の合計を100質量部としたとき、前記(B31)成分は0.005~10質量部配合することが好ましく、さらに0.05~5質量部配合することが好ましい。ただし、複数種類の(B31)成分を使用する場合には、その合計量とする。また、2液型プライマーの場合、(E)成分および(E’)成分の質量(すなわち硬化剤の質量)は、前記(A)成分の質量に含まれないもとする。
 <(B32)成分>
 前記極大吸収波長が540~650nmの範囲にある染料の中でも、ブルーイング性、および防眩性能を付与する化合物も存在する((B32)成分)。この(B32)成分を配合することにより、太陽光線や自動車のヘッドライト等の眩しさと、それに関連した不快感やコントラストの不鮮明感、および視覚疲労等とを軽減できる。上記の目的で使用する(B32)成分としては、具体的にはテトラアザポルフィリン化合物、ネオジム化合物等が挙げられる。
 ネオジム化合物としては、リン酸ネオジム、炭酸ネオジム、硫酸ネオジム、酢酸ネオジム、硝酸ネオジム、酸化ネオジム等が挙げられる。
 これらの化合物の中でも、特にテトラアザポルフィリン化合物を使用することが好ましい。テトラアザポルフィリン化合物は、市販のものを使用することができる。例えば、東京化成工業株式会社等から販売されているポルフィリン化合物や、山田化学工業株式会社の商品名;FDG-005、FDG-006、FDG-007、FDR-001等を使用できる。また、山本化成株式会社の商品名;PD-320等を使用できる。そして、テトラアザポルフィリンは、下記式(2)に示される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000003
 式(2)中、X11~X81は各々独立に、水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、アミノ基、カルボキシル基、スルホン酸基、炭素数1~20の直鎖、分岐あるいは環状のアルキル基、炭素数1~20の直鎖、分岐あるいは環状のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数1~20のモノアルキルアミノ基、炭素数2~20のジアルキルアミノ基、炭素数7~20のジアルキルアミノ基、炭素数7~20のアラルキル基、炭素数6~20のアリール基、ヘテロアリール基、炭素数6~20のアルキルチオ基、炭素数6~20のアリールチオ基を表し、連結基を介して芳香族環を除く環を形成しても良い。Mは2個の水素原子、2価の金属原子、2価の1置換金属原子、3価の置換金属原子、4価の置換金属原子、又は金属酸化物を表す。
 中でも、防眩性能が優れた性能を有するプライマー層を形成する為には、極大吸収波長が560nm以上620nm以下の範囲にある上記テトラアザポルフィリン化合物を使用することが好ましく、さらに極大吸収波長が580nm以上610nm以下にあるテトラアザポルフィリン化合物を使用することがより好ましい。
 本発明において、(B32)成分は、目的とする用途に応じて、適宜選択すればよい。この際、2種類以上の混合物を使用することができる。中でも、取り扱いが良く、効率良く効果を発揮するためには、前記(B32)成分の吸光係数は、10~1000(L/(g・cm))の範囲であることが好ましい。この範囲を満足することにより、光学物品用プライマー組成物を硬化して得られる膜(プライマー層)の強度を低下させることなく、防眩性能に優れた効果が得られる。かかる効果をより高めるためには、前記(B32)化合物の吸光係数は、25~800(L/(g・cm))であることがより好ましく、50~500(L/(g・cm))であることがさらに好ましい。
 また、(B32)成分は、防眩性効果をより発揮するためには、前記(B32)成分の極大吸収ピークの半値幅は40nm以下であることが好ましい。この範囲を満足することにより、光学物品用プライマー組成物を硬化して得られる膜(プライマー膜)の防眩性能を発揮できる。すなわち、太陽光線や自動車のヘッドライト等の眩しさとそれに関連した不快感やコントラストの不鮮明感、視覚疲労等を軽減させることができる。かかる効果をより高めるためには、前記(B32)成分の極大吸収ピークの半値幅は35nm以下であることがより好ましく、30nm以下であることが更に好ましい。該半値幅は狭い方がより制御が可能となるため好適であるが、(B32)成分の工業的な生産を考慮すると、5nm以上である。そのため、(B32)成分の極大吸収ピークの半値幅は5nm以上40nm以下が好ましく、5nm以上35nm以下がより好ましく、5nm以上30nm以下がさらに好ましい。
 前記(B32)成分の配合量は、特に制限されるものではなく、目的とする用途等に応じて、適宜決定すればよい。中でも、前記(A)成分100質量部当たり、0.01~2質量部であることが好ましい。この範囲を満足することにより、プライマー組成物を硬化してなる膜の強度を低下させることなく、高い防眩性能を付与することができる。そのため、(B32)成分の配合量は、前記(A)成分100質量部当たり、0.01~1質量部であることがより好ましく、0.02~0.8質量部であることがさらに好ましい。ただし、複数種類の(B32)成分を使用する場合には、その合計量とする。また、2液型プライマーの場合、(E)成分および(E’)成分の質量(すなわち硬化剤の質量)は、前記(A)成分の質量に含まれないもとする。
 <(C)溶解度パラメーターが8[(cal/cm1/2]以上であり、かつ活性水素を有さない有機溶媒>
 本発明で使用する有機溶媒(以下、単に(C)成分とする場合もある)は、溶解度パラメーターが8[(cal/cm1/2]以上である。ここで溶解度パラメーターとは、ヒルデブランドパラメーターまたはSP値などと呼ばれることもある値である。本明細書では、溶解度パラメーターは、”The Three Dimensional Solubility Parameter And Solvent Diffusion Coefficient” by Charles M. Hansen, Copenhagen Danish Technical Press 1967の記載に準拠する。本発明で使用する有機溶媒は活性水素を有さず、溶解度パラメーターの値は8以上、好ましくは8.5以上、さらに好ましくは8.9以上である。溶解度パラメーターは、好ましくは11以下、さらに好ましくは10.5以下、より好ましくは10.0以下である。具体的には、トルエン(8.9)、酢酸エチル(9.1)、キシレン(8.8)、アセトン(9.8)、テトラヒドロフラン(9.5)、ジクロロメタン(9.9)、クロロホルム(9.2)、メチルエチルケトン(9.3)、メチルイソブチルケトン(8.6)などが好適な有機溶媒として挙げられる。なお、括弧内は溶解度パラメーターを示す。これらの有機溶媒は1種単独で使用することもできるし、2種以上を併用することもできる。これらの中でも、本発明の光学物品用プライマー組成物は、前記(B)成分を含むため、前記(B)成分の溶解性を考慮すると、トルエン、酢酸エチル、テトラヒドロフラン、ジクロロメタン、クロロホルムが特に好ましい。
 本発明において、(C)成分の配合量は、特に制限されるものではないが、前記(A)成分100質量部当たり、100~2000質量部であることが好ましい。この範囲を満足することにより、コーティング後に所望の膜厚を得るための粘度調整が容易となる。本発明において前記(A)成分および前記(B)成分が均一に分散し、コーティングにより平滑な膜を得るためには、(C)成分の配合量は、前記(A)成分100質量部当たり、100~1000質量部であることがより好ましい。なお、2液型プライマーの場合、(E)成分および(E’)成分の質量(すなわち硬化剤の質量)は、前記(A)成分の質量に含まれないもとする。ただし、(E’)成分、(E)成分を前記(C)成分で希釈して使用した場合には、この希釈に使用した(C)成分は、前記(C)成分の配合量に含まれるものとする。
 本発明の光学物品用プライマー組成物は、以上の(A)成分、(B)成分、および(C)成分を必須成分とし、必要に応じて硬化剤である(E’)成分、(E)成分を含んでなる。さらに、本発明の光学物品用プライマー組成物は、以下の添加剤成分を含むことがさらに好ましい。
 <(D)レべリング剤>
 本発明の光学物品用プライマー組成物には、得られるプライマー層の平滑性を向上させるという目的から、レべリング剤(以下、単に(D)成分とする場合もある)を配合することが好ましい。該(D)成分としては、界面活性剤を挙げることができる。界面活性剤としては、公知のものが何ら制限なく使用できる。例えば、シリコーン界面活性剤、フッ素含有界面活性剤等を挙げることができる。シリコーン界面活性剤及びフッ素含有界面活性剤を具体的に例示すると、東レ・ダウコーニング株式会社製『L-7001』、『L-7002』、『L-7604』、『FZ-2123』、『FZ-2104』、大日本インキ化学工業株式会社製『メガファックF-470』、『メガファックF-1405』、『メガファックF-479』、住友スリーエム社製『フローラッドFC-430』等を挙げることができる。界面活性剤の使用に当たっては、2種以上を混合して使用してもよい。
 本発明において、前記(D)成分の配合量は、特に制限されるものではないが、前記(A)成分100質量部当たり、0.001~1質量部とすることが好ましく、さらに0.01~0.5質量部とすることが好ましい。
 <その他の添加剤>
 本発明の光学物品用プライマー組成物には、上記配合剤の他、公知の添加剤を本発明の効果を阻害しない範囲で配合することができる。
 例えば、ヒンダードアミン光安定剤、ヒンダードフェノール酸化防止剤、フェノール系ラジカル捕捉剤、イオウ系酸化防止剤等が安定剤として挙げられる。このような安定剤の添加量は、前記(A)成分100質量部当たり、0.01~10質量部とすることが好ましく、さらに0.1~5質量部とすることが好ましい。
 また、紫外線よりも波長の長い青色の光を効率的に遮断するために、黄色の顔料等を配合することができる。
 黄色の顔料等としては、公知のものを使用することができ、例えばColor Index Generic NameがPigmentYellow12、13、14、17、65、81、83、93、120、128、155、180等で示されるものが挙げられる。このような顔料等の添加量は、前記(A)成分100質量部当たり、0.001~1とすることが好ましく、さらに0.005~0.1とすることが好ましい。
 次に、基材について説明する。
 <光学基材>
 本発明の光学物品用プライマー組成物は、光学基材の表面にコーティングして使用する。基材としては、プラスチックレンズ基材が挙げられる。例えば(メタ)アクリル樹脂、ポリカーボネート樹脂等の熱可塑性樹脂レンズ;多官能(メタ)アクリル樹脂、アリル樹脂、チオウレタン樹脂、ウレタン樹脂およびチオエポキシ樹脂等の架橋性樹脂レンズ等、現在プラスチックレンズとして使用されている公知のものが挙げられる。また、光学基材の厚みは、特に制限されるものではないが、0.5~10mmの範囲にあることが好ましい。プラスチックレンズ基材の場合には、端部と中心部との厚み全てが0.5~10mmの範囲にあり、中心部と端部との厚みの比(中心部/端部)が0.1~10なものである場合に、本発明の光学物品用プライマー組成物を好適に適用できる。なお、プラスチックレンズ基材の場合、上記範囲よりも厚い基材上にプライマー層等を形成し、最後に研磨して上記厚みの範囲とすることもできる。
 プラスチックレンズは、通常、中心部と端部との厚みが異なるため、厚みの違いによる紫外線吸収能が異なる。そのため、プラスチックレンズ基材のみに紫外線吸収剤を配合した場合には、中心部と端部との紫外線吸収能が異なってしまう。本発明によれば、この問題を解決できる。ただし、プラスチックレンズ基材としては、該レンズ基材自体の劣化防止の目的、および紫外線をカットする目的で、本発明の効果を阻害しない範囲の量の紫外線吸収剤を配合したものを使用することもできる。
 本発明において、該光学基材上に本発明の光学物品用プライマー組成物からなるプライマー層を形成する場合には、該光学基材は、該プライマー層との密着性を向上させる目的で、公知の前処理を施すことが好ましい。前処理としては、有機溶剤による脱脂処理、塩基性水溶液又は酸性水溶液による化学的処理、研磨剤を用いた研磨処理、大気圧プラズマ及び低圧プラズマ等を用いたプラズマ処理、コロナ放電処理、火炎処理又はUVオゾン処理等を挙げることができる。中でも、光学基材とプライマー層との密着性をより向上させる観点から、有機溶剤による脱脂処理、アルカリ処理、研磨処理、プラズマ処理、コロナ放電処理、又はUVオゾン処理、又はこれらを組み合わせた処理を行った光学基材上に、プライマー層を形成することが好ましい。
 <光学基材上にプライマー層を形成する方法(第一積層体の形成方法)>
 (A)成分、(B)成分、(C)成分、および必要に応じて配合される(D)成分、その他の添加剤を含む本発明の光学物品用プライマー組成物は、各成分を混合することにより形成できる。そして、得られた光学物品用プライマー組成物を、前記光学基材上に塗布して、該光学物品用プライマー組成物からなる塗膜を形成し、該塗膜を硬化することにより、プライマー層を形成する。こうすることにより、光学基材上にプライマー層が形成された第一積層体を製造できる。基本的には、以上の方法でプライマー層を形成できるが、使用する(A)成分の種類によって、硬化方法が異なるため、そのことについて説明する。
 <(A’)成分を含む湿気硬化型プライマーによるプライマー層の形成方法>
 本発明において、光学物品用プライマー組成物を光学基材(プラスチックレンズ)に塗布する方法は、特に制限されるものではなく、ディップコーティング、スピンコーティング、ディップスピンコーティング、ディップ-スピンコーティング、フローコーティング等の方法が挙げられる。中でも、外観の良好な塗膜が得られやすいことからスピンコーティングを採用することが好ましい。スピンコーティング法により、プライマー組成物を塗布する際には、均一な厚さのプライマー層を得易いという理由から、該光学物品用プライマー組成物の23℃における粘度は、1~100cP、特に2~50cPの範囲に調整することが好ましい。粘度は、前記(C)成分の種類や量を変えることにより調整できる。
 本発明においては、光学物品用プライマー組成物を光学基材上に塗布し、塗布した該光学物品用プライマー組成物を硬化(乾燥)させることによって、プライマー(コート)層を形成することができる。前記(A)成分が、末端イソシアネート型ウレタンプレポリマーの場合には、プライマー層は大気中の水分と反応して硬化する。そのため、光学物品用プライマー組成物を塗布した後、その雰囲気下で前記(C)成分を乾燥させるだけでもよいが、光学基材に影響を与えない範囲で乾燥を速めるために加熱処理をしてもよい。
 本発明において、光学物品用プライマー組成物からなる塗膜中の(C)成分を除去する際、前記の通り、光学基材に影響を与えない範囲で加熱してもよい。プライマー層を形成する際の温度は、具体的には、室温(23℃)~150℃の範囲であることが好ましい。この温度範囲であれば、加熱による光学基材の変形や変色を抑制できる。加熱時間は、特に限定されないが、通常1分から3時間、好ましくは1分から1時間の範囲である。前記(A)成分が末端イソシアネート型ウレタンプレポリマーの場合には、23~50℃の温度範囲であって、湿度30~90%の条件でプライマー層を形成することも可能である。なお、形成されたプライマー層をさらに安定化させるために、70~120℃の範囲で1~5時間の加熱処理を行うことも可能である。
 <(A’)および(E’)を含む2液型プライマーによるプライマー層の形成方法>
 末端イソシアネート型ウレタンプレポリマーおよび硬化剤(E’)からなる2液型プライマーを使用する場合には、該イソシアネート基と反応しうる基を分子中に複数有する硬化剤((E’)成分)と末端イソシアネート型ウレタンプレポリマーとを予め混合して使用する。末端イソシアネート型ウレタンプレポリマーと(E’)成分の混合方法は、特に限定されないが、使用する直前に2成分を混合し撹拌する方法や、スタティックミキサーのようなインラインミキサーで2成分を混合する方法を採ることができる。
 末端イソシアネート型ウレタンプレポリマーと(E’)成分とを混合した混合物は、スピンコーティング、スプレーコーティング、ディップコーティング、ディップ-スピンコーティング、フローコーティング等の公知の手段で光学基材上に塗布して塗膜を形成すればよい。これらの中でも、スピンコーティング、スプレーコーティングで塗布することが好ましい。
 形成した塗膜から(C)成分を除去することにより、プライマー層を形成できる。該混合物は、前記(C)成分を除去することにより、末端イソシアネート型ウレタンプレポリマーと(E’)成分との反応が促進されて硬化が進行する。硬化反応をさらに促進するために加熱することもできる。プライマー層を形成する際の温度は、具体的には、室温(23℃)~150℃の範囲であることが好ましい。加熱時間は、特に限定されないが、通常5分~3時間の範囲であり、好ましくは5分から1時間の範囲である。
 <(A’’)および(E’)を含む2液型プライマーによるプライマー層の形成方法>
 前記(A)成分が、末端に水酸基を有するウレタンプレポリマー((A’’)成分)である場合には、(A’’)成分とイソシアネート基を分子中に複数有する硬化剤((E)成分)とを予め混合して使用する。
 なお、混合方法、得られた混合物の塗布方法、およびプライマー層の形成方法(加熱温度等)は、前記で説明した末端イソシアネート型ウレタンプレポリマーと(E’)成分と混合した場合と同様の操作を採用することができる。
 <形成されたプライマー層の特徴>
 上記方法で形成されたプライマー層は、特に制限されるものではないが、光吸収能、および形成するプライマー層の平滑性を考慮すると、0.1~20μmとすることが好ましく、1~15μmとすることがより好ましく、2~10μmとすることがさらに好ましい。
 本発明の特徴は、プライマー層が、用いる(B)成分の種類に応じ、紫外線吸収性、青色光吸収性あるいは防眩性、さらにはこれらを組み合わせた性質を有することである。従来方法では、ハードコート層に光吸収化合物を配合したり、基材に光吸収化合物を配合していた。これに対して、本発明の構成を満足する光学物品用プライマー組成物を用いることにより、紫外線吸収性、青色光吸収性あるいは防眩性に優れ、かつ本来のプライマー層としての役割を十分に発揮する層を形成できる。
 本発明においては、前記方法で基材上にプライマー層を形成した後、該プライマー層上にハードコート層を形成してもよい(第二積層体の形成方法)。次に、この第二積層体の製造方法について説明する。
 <第二積層体の製造方法>
 前記方法で製造した第一積層体には、ハードコート層を形成することが好ましい。このハードコート層は、無機粒子、特に、無機酸化物粒子を含むことが好ましい。さらに、このハードコート層は、無機粒子及び加水分解性基含有有機ケイ素化合物を含むコーティング組成物(以下、「ハードコート組成物」とも言う。)を硬化させて得られる層であることが好ましい。
 ハードコート組成物に使用される無機粒子としては、シリカゾル、無機酸化物又は複合無機酸化物微粒子を何ら制限なく使用できる。該無機粒子の配合量は、無機粒子の種類、最終的に得られるハードコート層に望まれる物性、目的に応じて適宜決定すればよい。一般的には、最終的に形成されるハードコート層に占める無機粒子の割合が20~80質量%、特に40~60質量%となるような量に、他の成分の使用量に合わせて設定するのがよい。
 加水分解性基含有有機ケイ素化合物は、無機粒子のバインダーとしての機能を有し、ハードコート層中でマトリックスとなる透明な硬化体を形成するものであり、重合可能な有機ケイ素化合物が使用される。当該有機ケイ素化合物は、官能基であるアルコキシル基を有するものであり、前述の公知の加水分解性基含有有機ケイ素化合物を何ら制限無く使用できる。当該有機ケイ素化合物は、1種単独でも2種以上を組み合わせて使用することもできる。当該有機ケイ素化合物は、その少なくとも一部が加水分解した形で、或いはその部分加水分解物が縮合した部分縮合物の形で使用に供することもできる。本発明においては、特にプラスチックレンズとの密着性、架橋性の観点から、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、テトラエトキシラン、及びこれらの部分加水分解物又は部分縮合物等が好適に使用される。
 このハードコート組成物では、加水分解性基含有有機ケイ素化合物が加水分解し、この加水分解物が無機粒子を取り込んだ形で重合硬化(重縮合)してマトリックスとなる硬化体を形成し、無機粒子が緻密にマトリックス中に分散したハードコート層を形成するものと考えられる。そのため、この硬化体を形成するために、加水分解性基含有有機ケイ素化合物の加水分解を促進させるための水が必要となる。
 この目的で使用される水は、酸水溶液の形で添加されても良い。例えば、塩酸、硫酸、硝酸、燐酸等の無機酸、酢酸、プロピオン酸等の有機酸を水溶液の形で添加することができる。
 ハードコート組成物には、加水分解性基含有有機ケイ素化合物の加水分解物の硬化を促進させるための硬化触媒を配合することもできる。この硬化触媒は、それ自体公知のもの、例えば、アセチルアセトナート錯体、過塩素酸塩、有機金属塩、各種ルイス酸が使用され、これらは1種単独で使用することもできるし、2種以上を併用することもできる。
 アセチルアセトナート錯体を具体的に例示すれば、アルミニウムアセチルアセトナート等が挙げられる。
 過塩素酸塩を具体的に例示すれば、過塩素酸マグネシウム、過塩素酸アルミニウム、過塩素酸亜鉛、過塩素酸アンモニウム等が挙げられる。
 また、該ハードコート組成物には、有機溶媒を配合することもできる。この有機溶媒は、加水分解性基含有有機ケイ素化合物の溶剤となり、且つ無機粒子の分散媒となるものであるが、このような機能を有していると同時に、揮発性を有するものであれば、公知の有機溶媒が使用できる。このような有機溶媒の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ジアセトンアルコール等のアルコール;酢酸メチル、酢酸エチル、酢酸プロピル等の低級カルボン酸の低級アルコールエステル;セロソルブ、ジオキサン、エチレングリコールモノイソプロピルエーテルなどのエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトンなどのケトン;メチレンクロライド等のハロゲン化炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられる。これら有機溶媒は単独又は2種以上混合して使用される。
 ハードコート組成物は、上記成分を公知の方法により混合することで製造できる。中でも、加水分解性基含有有機ケイ素化合物は、完全に加水分解させた後に、他の成分と混合することが好ましい。該ハードコート層の厚みは、1~4μmであることが好ましい。このようにして、第一積層体のプライマー層上に、ハードコート層が形成された第二積層体を形成できる。
 従来技術においては、ハードコート層に光吸収剤を配合させて光吸収能を付与することがあった。しかしながら、前記の通り、ハードコート層は、主成分が無機粒子、加水分解性有機ケイ素化合物とから形成されており、光吸収剤がブリードし易かったものと考えられる。本発明によれば、このような問題をも解決できる。ただし、本発明においては、適量の光吸収剤を含むハードコート層を形成してもよい。
 <その他の層>
 また、前記第二積層体は、必要に応じて、ハードコート層上にSiO、TiO、ZrO等の金属酸化物の蒸着による薄膜形成、有機高分子を塗布しての薄膜による反射防止処理、帯電防止処理等の後加工を施すことも可能である。
 次に、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。先ず、本発明で使用した測定装置、および各成分の製造方法等について説明する。
 実施例1
 <光学物品用プライマー組成物の製造>
 数平均分子量が1000のポリテトラメチレンエーテルグリコール(三菱ケミカル株式会社製『PTMG1000』)281g((A2)成分)、1,2,6-ヘキサントリオール23g((A2)成分)、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの80質量%:20質量%の混合物(TDI80とする;(A1)成分)175gを反応させ、末端にイソシアネート基を有するウレタンプレポリマーを得た。以下、このウレタンプレポリマーを「ウレタンプレポリマー(1)」と記載することがある。ウレタンプレポリマー(1)は、(A)成分に相当し、イソシアネート基を含むため、大気中の湿気で硬化させることができ、また硬化剤(E’)により硬化することもできる。
 得られたウレタンプレポリマー(1)を酢酸エチル((C)成分)で希釈した。この時、ウレタンプレポリマー(1)100質量部に対して、(C)成分を233質量部使用した。さらにレベリング剤((D)成分)として、シリコーン系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『L7001』を0.1質量部添加し、窒素雰囲気下で均一になるまで十分に撹拌してウレタンプレポリマー溶液を得た。このウレタンプレポリマー溶液において、イソシアネート基の含有量は、ウレタンプレポリマー(1)1g当たり、0.088gであった。ウレタンプレポリマー(1)中のイソシアネート基のモル百分率は、0.19モル%であった。
 <ウレタンプレポリマーの重量平均分子量>
 ウレタンプレポリマー(1)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC測定)により、以下の条件で測定した。GPCの測定は、装置として液体クロマトグラフ装置(日本ウォーターズ社製)を用いた。カラムは、昭和電工株式会社製Shodex GPC KD-806M(排除限界分子量:200,000,000)を使用した。また、展開液としてジメチルホルムアミド(DMF)を用い、流速1ml/min、温度40℃の条件にて測定した。標準試料にポリスチレンを用い、比較換算により重量平均分子量、および数平均分子量を求めた。なお、検出器には示差屈折率計を用いた。なお、ウレタンプレポリマー(1)は、あらかじめブチルアミンで処理することでイソシアネート基を不活性化させた後に測定を行った。この方法で求めたウレタンプレポリマー(1)成分の重量平均分子量は12,000であり、数平均分子量は7,000であった。
 このウレタンプレポリマー溶液333質量部(ウレタンプレポリマー(1)として100質量部)に対して、(B)成分として、(B2)成分;ベンゾトリアゾール系紫外線吸収剤である株式会社ADEKA社製「アデカスタブLA-36」(極大吸収波長355nm、吸収係数45(L/(g・cm))、半値幅85nm)を10質量部、さらに(B31)成分;三菱化学株式会社社製「ダイヤレジンBlueJ」(極大吸収波長590nm、吸収係数35(L/(g・cm))、半値幅110nm)を0.02質量部加えて、窒素雰囲気下で均一になるまで十分に撹拌して混合することにより、光学物品用プライマー組成物を得た。表1に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。
 <プライマー層の形成方法;第一積層体の製造>
 光学基材として厚さ2.0mmのCR-39(アリル樹脂プラスチックレンズ;屈折率=1.50)を用いた。この光学基材をアセトンで十分に脱脂し、50℃の10質量%水酸化ナトリウム水溶液に10分浸漬した後、温水で十分洗浄し、70℃の乾燥機で30分乾燥した。この光学基材(プラスチックレンズ)に、MIKASA製スピンコーター1H-DX2を用いて、上記方法で得られた光学物品用プライマー組成物をスピンコートし、25℃50%RHの条件で1時間乾燥させることで、該プラスチックレンズ上にプライマー層が形成された第一積層体を製造した。この時、プライマー層の膜厚は5~7μmとなるようにした。以下の方法で第一積層体を評価した。
 〔試料評価方法〕
 1)第一積層体の外観評価
 外観評価は、得られた第一積層体を光学顕微鏡にて観察評価した。評価基準を以下に示す。
A:均一であり外観不良は全く見られない
B:ごくわずかに微細な外観不良が見られる
C:部分的に外観不良が見える
D:全体的に外観不良が見える
 上述した方法で作製した第一積層体の外観の評価はAであった。
 2)第一積層体の密着性
 密着性は、JISD-0202に準じてクロスカットテープ試験によって行った。即ち、カッターナイフを使い、得られた第一積層体のプライマー層の表面に1mm間隔に切れ目を入れ、マス目を100個形成させる。その上にセロファン粘着テープ(ニチバン(株)製セロテープ(登録商標))を強く貼り付け、次いで、表面から90°方向へ一気に引っ張り剥離した後、プライマー層が残っているマス目を評価した。
 上述した方法で作製した第一積層体の密着性は100であった。
 3)紫外線吸収特性、青色光吸収特性
 紫外線吸収特性、および青色光吸収特性は、得られた第一積層体のUV-visスペクトルを測定することで評価した。上述した方法で作製した第一積層体の400、420nmにおける透過率(T%)はそれぞれ2%、78%であった。
 (ハードコート層の形成;第二積層体の製造)
 <ハードコート組成物の製造>
 t-ブタノール12.2g、エチレングリコールモノブチルエーテル7.0g、アセチルアセトン3.7g、メチルトリエトキシシラン0.41g、γ-グリシドキシプロピルトリメトキシシラン18.9g、シリコーン界面活性剤(東レ・ダウコーニング株式会社製、商品名L-7001)0.06gを混合し、室温で30分間撹拌した。さらに、0.05N塩酸を9.0g加えさらに1時間撹拌した。
 0.1Nトリメチルアンモニウムクロリドのメタノール溶液3.2gを加え、室温で1時間撹拌した。続いてメタノールシリカゾル(固形分濃度30wt%)44.3g、及びアルミニウムアセチルアセトナート0.51gを添加し、一昼夜熟成させてハードコート組成物を得た。
 <第二積層体の製造>
 前記<プライマー層の形成方法;第一積層体の製造>で製造した第一積層体のプライマー層上に、以下の方法でハードコート層を形成した(第二積層体を製造した。)。
 前記第一積層体を前記ハードコート組成物に浸漬し、引上げ速度30cm/分の速度で引き上げて、第一積層体の両表面にハードコート組成物を塗布した。塗布後80℃で20分乾燥した後、120℃で4時間保持して硬化を行い、ハードコート層を形成した。得られたハードコート層は、厚みは約2μmの無色透明な膜であった。
 4)第二積層体の外観評価
 上記1)と同様の要領で外観評価を行った。上述した方法で作製したハードコート層を有する第二積層体の外観評価はBであった。これは、ハードコート組成物中の有機溶媒により、プライマー層のごく一部が溶解したおそれがあった。
 5)第二積層体の密着性
 上記2)と同様の要領で密着性を評価した。上述した方法で作製したハードコート層を有する第二積層体の密着性は100であった。
 6)第二積層体の紫外線吸収特性、青色光吸収特性
 上記3)と同様の要領で紫外線吸収特性、および青色光吸収特性を評価した。上述した方法で作製した第二積層体の400、420nmにおける透過率(T%)はそれぞれ2%、79%であった。
 7)第二積層体の耐擦傷性評価
 第一積層体のプライマー層上に塗布されたハードコート層の耐擦傷性を以下の方法で評価した。スチールウール(日本スチールウール(株)製ボンスター#0000番)を用い、1kgの荷重を加えながら、10往復レンズ表面(ハードコート層表面)を擦り、傷ついた程度を目視で評価した。評価基準は次の通りである。
A:ほとんど傷が付かない。
B:極わずかに傷が付く。
C:少し傷が付く。
D:はっきりと傷が付く。
E:ハードコート層の剥離が生じている。
 上述した方法で作製したハードコート層を有する第二積層体の耐擦傷性はAであった。
 以上の1)~7)の結果を表2にまとめた。
 実施例2
 実施例1のウレタンプレポリマー(1)をトルエン((C)成分)で希釈した。この時、ウレタンプレポリマー(1)100質量部に対して、(C)成分を100質量部使用した。これにプロピレングリコール((A3)成分)をウレタンプレポリマー(1)100質量部に対して、(A3)成分を1.3質量部となる量を添加し、80℃で5時間反応させてウレタンプレポリマー(2)を得た。さらにレベリング剤((D)成分)として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2123』を0.05質量部添加し、窒素雰囲気下で均一になるまで十分に撹拌してウレタンプレポリマー溶液を得た。このウレタンプレポリマー溶液において、イソシアネート基の含有量は、ウレタンプレポリマー(2)1g当たり、0.064gであり、ウレタンプレポリマー(2)中のイソシアネート基のモル百分率は、0.14モル%であり、重量平均分子量は33,000であり、数平均分子量は14,000であった。このウレタンプレポリマー溶液の溶剤を減圧で濃縮し、テトラヒドロフラン((C)成分)に溶媒交換した。溶媒量は、ウレタンプレポリマー(2)100質量部に対して、(C)成分は300質量部使用した。このウレタンプレポリマー溶液400質量部(ウレタンプレポリマー(2)として100質量部)に対して、(B)成分として、(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長370nm、吸収係数60(L/(g・cm))、半値幅70nm)を2質量部、および(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長355nm、吸収係数50(L/(g・cm))、半値幅90nm)を15質量部加え、さらに(B31)成分;三菱化学株式会社社製「ダイヤレジンBlueJ」(極大吸収波長590nm、吸収係数35(L/(g・cm))、半値幅110nm)を0.04質量部加えて、窒素雰囲気下で均一になるまで十分に撹拌して混合することにより、光学物品用プライマー組成物を得た。表1に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。
 上記プライマー組成物を使用した以外は実施例1と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。結果を表2に示した。
 実施例3
 (A1)成分として、4,4’-ジフェニルメタンジイソシアネートを250g用いた以外は実施例2と同様の方法でウレタンプレポリマー(3)を含むプライマー組成物を得た。このウレタンプレポリマー溶液において、イソシアネート基の含有量は、ウレタンプレポリマー(3)1g当たり、0.061gであり、ウレタンプレポリマー(3)中のイソシアネート基のモル百分率は、0.16モル%であり、重量平均分子量は28,000であり、数平均分子量は12,500であった。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例1と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表1に(A)成分の重量平均分子量、各成分の配合量をまとめた。各積層体の評価結果を表2に示した。
 実施例4
 実施例1のプライマー組成物333質量部(A成分として100質量部を含む)に対して、硬化剤((E’)成分)として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタンを28質量部加え室温で15分撹拌し2液硬化型のプライマー組成物を得た。光学基材として厚さ2.0mmのCR-39(アリル樹脂プラスチックレンズ;屈折率=1.50)を用いた。この光学基材をアセトンで十分に脱脂し、50℃の10質量%水酸化ナトリウム水溶液に10分浸漬した後、温水で十分洗浄し、70℃で30分加熱乾燥した。このプラスチックレンズに、MIKASA製スピンコーター1H-DX2を用いて、上記プライマー組成物をスピンコートし、70℃で30分乾燥させることで、プライマー積層体を得た。また、プライマー層の膜厚は5~7μmとなるように調整した。このプライマー積層体に実施例1と同様にハードコート層を有する積層体を作製し、試料の評価を行った。表1に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表2に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 比較例1
 比較として、紫外線吸収剤((B2)成分)および染料((B31)成分)を添加していない以外は実施例1と同様のプライマー組成物を調合し、プライマー積層体およびハードコート層を有する積層体を作製して、試料の評価を行った。表3に(A)成分の重量平均分子量、各成分の配合量をまとめた。各積層体の評価結果を表4に示した。結果を表3に示した。
 比較例2 
 数平均分子量が1000のポリテトラメチレンエーテルグリコール(三菱ケミカル株式会社製『PTMG1000』)281g((A2)成分)、1,2,6-ヘキサントリオール23g((A2)成分)、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの80質量%:20質量%の混合物(TDI80とする;(A1)成分)175gを反応させ、さらにメタノール32gと反応させてポリウレタン化合物を得た。このポリウレタン化合物はイソシアネート基および水酸基を含有しない末端停止ポリウレタンであり、重量平均分子量は13,000であり、数平均分子量は8,000であった。
 この末端停止ポリウレタンをテトラヒドロフラン((C)成分)で希釈した。この時、末端停止ポリウレタン100質量部に対して、(C)成分を233質量部使用した。さらにレベリング剤((D)成分)として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2123』を0.05質量部添加し、十分に撹拌してポリウレタン溶液を得た。このポリウレタン溶液の末端停止ポリウレタン100質量部に対して、(B)成分として、(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長370nm、吸収係数60(L/(g・cm))、半値幅70nm)を2質量部、および(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長355nm、吸収係数50(L/(g・cm))、半値幅90nm)を8質量部加え、さらに(B31)成分;三菱化学株式会社社製「ダイヤレジンBlueJ」(極大吸収波長590nm、吸収係数35(L/(g・cm))、半値幅110nm)を0.04質量部加えて、十分に撹拌して混合することにより、ポリウレタン組成物(光学物品用プライマー組成物に相当する組成物)を得た。
 該ポリウレタン組成物を光学物品プライマー組成物に使用して、実施例2と同様にプライマー積層体およびハードコート層を有する積層体を作製して評価した結果を表3に示した。ハードコート積層体において、著しい外観不良が見られた。表3にポリウレタン成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表4に示した。
 参考例 比較例3
 (ハードコート組成物の準備)
 t-ブタノール12.2g、エチレングリコールモノブチルエーテル7.0g、アセチルアセトン3.7g、メチルトリエトキシシラン0.41g、γ-グリシドキシプロピルトリメトキシシラン18.9g、シリコーン界面活性剤(東レ・ダウコーニング株式会社製、商品名L-7001)0.06gを混合し、室温で30分間撹拌した。さらに、0.05N塩酸を9.0g加えさらに1時間撹拌した。次いで、0.1Nトリメチルアンモニウムクロリドのメタノール溶液3.2gを加え、室温で1時間撹拌した。続いてメタノールシリカゾル(固形分濃度30wt%)44.3g、及びアルミニウムアセチルアセトナート0.51gを添加し、一昼夜熟成させてハードコート組成物を得た。
 このハードコート組成物100質量部に対して、ベンゾトリアゾール系紫外線吸収剤((B2)成分)である株式会社ADEKA社製「アデカスタブLA-36」(極大吸収波長355nm、吸収係数45(L/(g・cm))、半値幅85nm)を3.0質量部加えて、均一になるまで十分に撹拌して紫外線吸収剤を含むハードコート組成物を得た。
 (ハードコート層の形成方法)
 光学基材として厚さ2.0mmのCR-39(アリル樹脂プラスチックレンズ;屈折率=1.50)を用いた。この光学基材をアセトンで十分に脱脂し、50℃の10質量%水酸化ナトリウム水溶液に10分浸漬した後、温水で十分洗浄し、70℃で30分加熱乾燥した。このプラスチックレンズを、上述した紫外線吸収剤を含むハードコート組成物に浸漬し、引上げ速度30cm/分の速度で引き上げて該レンズの表面にハードコート組成物を塗布した。塗布後80℃で20分乾燥した後、120℃で4時間保持して硬化を行い、ハードコート膜を形成した。得られたハードコート膜は、厚みは約2μmの無色透明な膜であった。
 この積層体の紫外線吸収特性を評価したところ、400、420nmにおける透過率(T%)はそれぞれ35%、88%であり、十分な紫外線吸収特性は得られなかった。表4に評価結果を示した。
 比較例4
 光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は比較例2と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表3に(A)成分の重量平均分子量数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表4に示した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例5A
 実施例1のウレタンプレポリマー(1)をトルエン((C)成分)で希釈した。この時、ウレタンプレポリマー(1)100質量部に対して、(C)成分を100質量部使用した。これにプロピレングリコール((A3)成分)をウレタンプレポリマー(1)100質量部に対して、(A3)成分を1.2質量部となる量を添加し、80℃で5時間反応させてウレタンプレポリマー(5A)を得た。さらにレベリング剤((D)成分)として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2123』を0.05質量部添加し、窒素雰囲気下で均一になるまで十分に撹拌してウレタンプレポリマー溶液を得た。このウレタンプレポリマー溶液において、イソシアネート基の含有量は、ウレタンプレポリマー(5A)1g当たり、0.075gであり、ウレタンプレポリマー(5A)中のイソシアネート基のモル百分率は、0.17モル%であり、重量平均分子量は22,000であり、数平均分子量は13,000であった。このウレタンプレポリマー溶液をさらに、酢酸エチル((C)成分)で希釈した。溶媒量は、ウレタンプレポリマー(5A)100質量部に対して、(C)成分の酢酸エチルは100質量部使用した。その結果、ウレタンプレポリマー(5A)100質量部に対して、(C)成分の合計量は200質量部なった。このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(5A)として100質量部)に対して、(B)成分として、(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長370nm、吸収係数60(L/(g・cm))、半値幅70nm)を2質量部、およびベンゾトリアゾール系紫外線吸収剤(極大吸収波長355nm、吸収係数50(L/(g・cm))、半値幅90nm)を8質量部加え、さらに(B31)成分;三菱化学株式会社社製「ダイヤレジンBlueJ」(極大吸収波長590nm、吸収係数35(L/(g・cm))、半値幅110nm)を0.04質量部加えて、窒素雰囲気下で均一になるまで十分に撹拌して混合することにより、光学物品用プライマー組成物を得た。光学基材として厚さ2.0mmのCR-39(アリル樹脂プラスチックレンズ;屈折率=1.50)を用いた。
 上記プライマー組成物を使用した以外は実施例1と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例5B
 数平均の分子量が1000のポリテトラメチレンエーテルグリコール(三菱ケミカル株式会社製『PTMG1000』)200g((A2)成分)、1,2,6-ヘキサントリオール10g((A2)成分)、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの80質量%:20質量%の混合物(TDI80とする;(A1)成分)195gを反応させ、末端にイソシアネート基を有するウレタンプレポリマー(5B)を得た(トルエン(C)成分100質量部含む)。得られたウレタンプレポリマー(5B)を酢酸エチル((C)成分)100質量部で希釈した。この結果、ウレタンプレポリマー100質量部に対して、(C)成分の合計量は200質量部となった。さらにレベリング剤((D)成分)として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2123』を0.05質量部添加し、窒素雰囲気下で均一になるまで十分に撹拌してウレタンプレポリマー溶液を得た。このウレタンプレポリマー溶液において、イソシアネート基の含有量は、ウレタンプレポリマー(5B)1g当たり、0.15gであり、ウレタンプレポリマー(5B)中のイソシアネート基のモル百分率は、0.36モル%であり、重量平均分子量は6,000であり、数平均分子量は3,500であった。このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(5B)100質量部)に対して、実施例5Aと同じ(B)成分を同量配合し、実施例5Aと同様の方法でプライマー組成物を得た。また、実施例5Aと同様にしてプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例5C
 実施例5Aのウレタンプレポリマー(5A)をトルエン((C)成分)で希釈した。溶媒量は、ウレタンプレポリマー(5A)100質量部に対して、(C)成分は100質量部使用した。これにプロピレングリコール((A3)成分)をウレタンプレポリマー(5A)100質量部に対して、(A3)成分を3.5質量部となる量を添加し、80℃で5時間反応させウレタンプレポリマー(5C)を得た。さらにレベリング剤((D)成分)として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2123』を0.05質量部添加し、窒素雰囲気下で均一になるまで十分に撹拌してウレタンプレポリマー溶液を得た。このウレタンプレポリマー溶液において、イソシアネート基の含有量は、ウレタンプレポリマー(5C)1g当たり、0.038gであり、ウレタンプレポリマー(5C)中のイソシアネート基のモル百分率は、0.09モル%であり、重量平均分子量は122,000であり、数平均分子量は19,000あった。このウレタンプレポリマー溶液をさらに酢酸エチル((C)成分)で希釈した。ウレタンプレポリマー(5C)100質量部に対して、(C)成分の酢酸エチルは100質量部使用した。この結果、ウレタンプレポリマー(5C)100質量部に対して、(C)成分の合計量としては200質量部となった。このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(5C)100質量部)に対して、実施例5Aと同じ(B)成分を同量配合し、実施例5Aと同様の方法でプライマー組成物を得た。また、実施例5Aと同様にしてプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例6A
 (B)成分として、(B2)成分の代わりに、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.1質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例6B
 実施例5Bで得られたウレタンプレポリマー(5B)を使用した以外は、実施例6Aと同様の操作を行い、プライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例6C
 実施例5Cで得られたウレタンプレポリマー(5C)を使用した以外は、実施例6Aと同様の操作を行い、プライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例7A
 (B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-002」(極大吸収波長431nm、吸光係数380(L/(g・cm))、半値幅18nm)を0.15質量部、及び(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長355nm、吸収係数50(L/(g・cm))、半値幅90nm)を9質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例7B
 実施例5Bで得られたウレタンプレポリマー(5B)を使用した以外は、実施例7Aと同様の操作を行い、プライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例7C
 実施例5Cで得られたウレタンプレポリマー(5C)を使用した以外は、実施例7Aと同様の操作を行い、プライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表5に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例8
 (B)成分として、(B2)成分の代わりに、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.03質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表6に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例9
 (B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-002」(極大吸収波長431nm、吸光係数380(L/(mol・cm))、半値幅18nm)を0.03質量部、及び(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長355nm、吸収係数50(L/(g・cm))、半値幅90nm)を7質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表6に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例10
 (B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、モル吸光係数510(L/(g・cm))、半値幅18nm)を0.03質量部、及び(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長370nm、吸収係数60(L/(g・cm))、半値幅70nm)を2質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。それ以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表6に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例11
 (B)成分として、(B2)成分の代わりに、(B1)成分;メロシアニン化合物:山田化学工業社製「FDB-009」(極大吸収波長401nm、吸光係数135(L/(g・cm))、半値幅nm)を2質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表6に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例12
 (B)成分として、(B2)成分の代わりに、(B1)成分;メロシアニン化合物:山田化学工業社製「FDB-009」(極大吸収波長401nm、吸光係数130(L/(g・cm))、半値幅40nm)を0.5質量部、及び(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、モル吸光係数510(L/(g・cm))、半値幅18nm)を0.05質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表6に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例13
 (B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、モル吸光係数510(L/(g・cm))、半値幅18nm)を0.1質量部用い、さらに染料((B3)成分);三菱化学株式会社製「ダイヤレジンVioletRR」(;極大吸収波長550nm、吸収係数50(L/(g・cm))、半値幅105nm)を0.03質量部用い、また、酢酸エチルに代えてはトルエンを用いた以外は実施例5Aと同様の方法でプライマー組成物を得た。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表6に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例14
 実施例5Aで調製したウレタンプレポリマー(5A)の溶液200質量部(ウレタンプレポリマー(5A)を100質量部、(C)成分としてトルエンを100質量部含む)に対して、硬化剤((E’)成分)として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタンを28質量部加え室温で15分撹拌し2液硬化型のプライマー組成物を得た。(B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.1質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表7に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例15
 実施例5Cのウレタンプレポリマー(5C)を使用して、このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(5C)として100質量部)に対して、(B)成分として、(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長370nm、吸収係数60(L/(g・cm))、半値幅70nm)を2質量部、および(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長355nm、吸収係数50(L/(g・cm))、半値幅90nm)を10質量部加えた以外は実施例5Aと同様の方法でプライマー組成物を得た(実施例5Aと同じ(B31)成分を同量配合した。)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表7に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例16
 実施例5Aのウレタンプレポリマー(5A)をトルエン((C)成分)で希釈した。溶媒量は、ウレタンプレポリマー(5A)100質量部に対して、(C)成分トルエンは100質量部使用した。これに1,4-ブタンジオール((A3)成分)をウレタンプレポリマー(5)100質量部に対して、(A3)成分を1.3質量部となる量を添加し、80℃で5時間反応させウレタンプレポリマー(16)を得た。さらにレベリング剤((D)成分)として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2104』を0.05質量部添加し、窒素雰囲気下で均一になるまで十分に撹拌してウレタンプレポリマー溶液を得た。このウレタンプレポリマー溶液において、イソシアネート基の含有量は、ウレタンプレポリマー(16)1g当たり、0.078gであり、ウレタンプレポリマー(16)中のイソシアネート基のモル百分率は、0.17モル%であり、重量平均分子量は21,000であり、数平均分子量は12,000あった。このウレタンプレポリマー溶液をさらに酢酸エチル((C)成分)で希釈した。ウレタンプレポリマー(16)100質量部に対して、(C)成分の酢酸エチルは100質量部使用した。その結果、ウレタンプレポリマー(16)100質量部に対して、(C)成分の合計量は200質量部となった。このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(16)として100質量部)に対して、(B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.05質量部、さらに(B31)成分;三菱化学株式会社社製「ダイヤレジンBlueJ」(極大吸収波長590nm、吸収係数35(L/(g・cm)、半値幅110nm)を0.04質量部加えて、窒素雰囲気下で均一になるまで十分に撹拌して混合することにより、光学物品用プライマー組成物を得た。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表7に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例17
 実施例5Aにおいて、(B)成分として、(B1)成分;ポルフィリン化合物:東京化成工業株式会社製「Cobalt(II) Tetraphenylporphyrin」(極大吸収波長410nm、吸光係数650(L/(g・cm)、半値幅20nm))を0.1質量部用い、(B31)成分;三菱化学株式会社製「ダイヤレジンVioletRR」(極大吸収波長550nm、吸収係数50(L/(g・cm)、半値幅105nm)を0.03質量部用い、また、酢酸エチルに代えてトルエンを用いた以外は実施例5Aと同様の方法でプライマー組成物を得た。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表7に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例18
 実施例5Aにおいて、(B)成分として、(B1)成分;ポルフィリン化合物:Zinc(II) Tetraphenylporphyrin」(極大吸収波長が425nm、吸光係数が800(L/(g・cm))、半値幅22nm)を0.05質量部用い、さらに(B31)成分;三菱化学株式会社製「ダイヤレジンVioletRR」(極大吸収波長550nm、吸収係数50(L/(g・cm))、半値幅105nm)を0.03質量部用い、また、酢酸エチルに代えてトルエンを用いた以外は実施例5Aと同様の方法でプライマー組成物を得た。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表7に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例19
 実施例5Aにおいて、(B)成分として、(B1)成分;ポルフィリン化合物:2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphineZinc(II)」(極大吸収波長411nm、吸光係数300(L/(g・cm))、半値幅25nm)を0.15質量部用い、さらに(B31)成分;三菱化学株式会社製「ダイヤレジンVioletRR」(極大吸収波長550nm、吸収係数50(L/(g・cm))、半値幅105nm)を0.03質量部用い、また、酢酸エチルに代えてトルエンを用いた以外は実施例5Aと同様の方法でプライマー組成物を得た)。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表7に(A)成分の重量平均分子量、各成分の配合量をまとめた。各積層体の評価結果を表8に示した。
 実施例20
 実施例5Aにおいて、(B)成分として、(B1)成分;日本化薬株式会社製「Kayaset Yellow GN」(極大吸収波長408nm、モル吸光係数60(L/(g・cm)、半値幅90nm))を1.5質量部用い、さらに(B31)成分;三菱化学株式会社社製「ダイヤレジンBlueJ」(極大吸収波長590nm、吸収係数35(L/(g・cm))、半値幅110nm)を0.8質量部用いた以外は実施例5Aと同様の方法でプライマー組成物を得た。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例5Aと同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表7に(A)成分の重量平均分子量、各成分の配合量をまとめた。各積層体の評価結果を表8に示した。上記(B1)成分を用いると、YIが大きくなる為、添加するブルーイング剤量が増大し、得られた積層体は透明性(視感透過率)のやや低いものとなった。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 なお、表5~表7にある通り、実施例5A~7C、実施例8~20の光学物品用プライマー組成物には、特に断りがないものであっても、(D)成分として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2104』が0.05質量部配合されるように調製した。
 実施例21
 実施例5Aと同様にして、ウレタンプレポリマー(5A)の溶液を調製した。このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(5A)として100質量部)に対して、(B)成分として、(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長365nm、吸収係数55(L/(g・cm))、半値幅65nm)を2質量部、および(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長355nm、吸収係数50(L/(g・cm))、半値幅90nm)を7質量部加え、さらに(B32)成分;山田化学工業株式会社製「FDG-005」(極大吸収波長581nm、吸光係数140(L/(g・cm))、半値幅19nm)を0.1質量部加えて、窒素雰囲気下で均一になるまで十分に撹拌して混合することにより、光学物品用プライマー組成物を得た。光学基材として厚さ2.0mmのCR-39(アリル樹脂プラスチックレンズ;屈折率=1.50)を用いた。
 上記プライマー組成物を使用した以外は実施例1と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
 実施例22
 (B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.12質量部、さらに(B32)成分;山田化学工業株式会社製「FDG-007」(極大吸収波長591nm、吸光係数145(L/(g・cm))、半値幅19nm)を0.1質量部用いた以外は実施例21と同様の方法でプライマー組成物を得た。光学基材として厚さ2.0mmのMR-8(チオウレタン樹脂プラスチックレンズ;屈折率=1.60)を用いた以外は実施例21と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
 実施例23
 (B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.05質量部、及び(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長365nm、吸光係数55(L/(g・cm))、半値幅65nm)を2質量部、さらに(B32)成分;山田化学工業株式会社製「FDG-005」(極大吸収波長581nm、吸光係数140(L/(g・cm))、半値幅19nm)を0.3質量部用いた以外は実施例22と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
 実施例24
 (B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.05質量部用い、さらに(B32)成分;山本化成株式会社「PD-320」(極大吸収波長590nm、吸光係数135(L/(g・cm))、半値幅20nm)を0.2質量部用い、また、酢酸エチルに代えてトルエンを用いた以外は実施例22と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
 実施例25
 実施例14と同様にして2液硬化型のプライマー組成物を得た。(B)成分として、(B1)成分;ポルフィリン化合物:山田化学工業社製「FDB-001」(極大吸収波長420nm、吸光係数510(L/(g・cm))、半値幅18nm)を0.1質量部、さらに(B32)成分;山田化学工業株式会社製「FDG-005」(極大吸収波長581nm、吸光係数140(L/(g・cm))、半値幅19nm)を0.3質量部用いた以外は、実施例14と同様の方法でプライマー組成物を得た。また、実施例14と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
 実施例26
 実施例5Cのウレタンプレポリマー(5C)を使用して、このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(5C)として100質量部)に対して、(B)成分として、(B2)成分;ベンゾトリアゾール系紫外線吸収剤(極大吸収波長370nm、吸光係数60(L/(g・cm)、半値幅70nm)を2質量部、(B1)成分;ポルフィリン化合物:Zinc(II) Tetraphenylporphyrin」(極大吸収波長が425nm、吸光係数が800(L/(g・cm))、半値幅22nm)を0.1質量部、さらに(B32)成分;山田化学工業株式会社製「FDG-007」(極大吸収波長591nm、吸光係数145(L/(g・cm))、半値幅19nm)を0.1質量部加え、窒素雰囲気下で均一になるまで十分に撹拌して混合することにより、光学物品用プライマー組成物を得た。この組成物を用いて実施例21と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
 実施例27
 (B)成分として、(B1)成分;ポルフィリン化合物:Zinc(II) Tetraphenylporphyrin」(極大吸収波長が425nm、吸光係数800(L/(g・cm))、半値幅22nm)を0.08質量部、さらに(B32)成分;山田化学工業株式会社製「FDG-006」(極大吸収波長584nm、吸光係数80(L/(g・cm))、半値幅25nm)を0.6質量部加えた以外は実施例21と同様の方法でプライマー組成物を得た。このプライマー組成物を用いた以外は実施例22と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
 実施例28
 (B)成分として、(B32)成分の代わりに、(B31)成分;日本化薬株式会社製「Black B」(極大吸収波長600nm、吸光係数40(L/(g・cm))、半値幅140nm)を0.1質量部、用いた以外は実施例21と同様の方法でプライマー組成物を得た(実施例21と同じ(B2)成分を同量配合した。)。このプライマー組成物を用いた以外は実施例22と同様にプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用において、多少の眩しさを感じた。更に、樹木の枝の線や赤色、黄色、緑色のコントラスト明瞭化して見えるが、色調が変わった。
 実施例29
 実施例21において、(B2)成分は用いず、(B)成分として、(B32)成分;山田化学工業株式会社製「FDG-006」(極大吸収波長584nm、吸光係数80(L/(g・cm))、半値幅25nm)を0.6質量部のみ用いた。それ以外は実施例21と同様の方法でプライマー組成物、プライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表9に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表10に示した。
 また、前記レンズを装着し、屋内及び屋外で着用した結果、LED照明や屋外晴天下の長時間使用においても眩しさを感じることは少なかった。更に、樹木の枝の線や赤色、黄色、緑色のコントラストが極めて明瞭化して見えた。
Figure JPOXMLDOC01-appb-T000012
 なお、表9にある通り、実施例21~29の光学物品用プライマー組成物には、特に断りがないものであっても、(D)成分として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2104』が0.05質量部配合されるように調製した。
Figure JPOXMLDOC01-appb-T000013
 実施例30
 数平均分子量が650のポリテトラメチレンエーテルグリコール(三菱ケミカル株式会社製『PTMG650』)330g((A2)成分)、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの80質量%:20質量%の混合物(TDI80とする;(A1)成分)175gを反応させ、末端にイソシアネート基を有するウレタンプレポリマー(30’)を得た。ウレタンプレポリマー(30’)をトルエン((C)成分)100質量部で希釈した。これにプロピレングリコール((A3)成分)をウレタンプレポリマー(30’)100質量部に対して、1.8質量部となる量を添加し、80℃で5時間反応させてウレタンプレポリマー(30)を得た。さらにレベリング剤((D)成分)として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2123』を0.05質量部添加し、窒素雰囲気下で均一になるまで十分に撹拌してウレタンプレポリマー溶液を得た。このウレタンプレポリマー溶液において、イソシアネートの含有量は、ウレタンプレポリマー(30)1g当たり、0.061gであり、ウレタンプレポリマー(30)中のイソシアネート基のモル百分率は、0.15モル%であり、重量平均分子量は30,000であり、数平均分子量は14,000であった。このウレタンプレポリマー溶液をさらに、酢酸エチル((C)成分)で希釈した。溶媒量は、ウレタンプレポリマー(30)100質量部に対して、(C)成分の酢酸エチルは100質量部使用した。その結果、ウレタンプレポリマー(30)100質量部に対して、(C)成分の合計量は200質量部なった。このウレタンプレポリマー溶液300質量部(ウレタンプレポリマー(30)100質量部)に対して、実施例5Aと同じ(B)成分を同量の配合し、実施例5Aと同様の方法でプライマー組成物を得た。また、実施例5Aと同様にしてプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表11に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表12に示した。
 実施例31
 実施例30で準備したウレタンプレポリマー(30)を使用して、実施例6Aと同じ(B)成分を同量配合し、実施例6Aと同様の方法でプライマー組成物を得た。また、実施例6Aと同様にしてプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表11に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表12に示した。
 実施例32
 実施例30で準備したウレタンプレポリマー(30)を使用して、実施例7Aと同じ(B)成分を同量配合し、実施例7Aと同様の方法でプライマー組成物を得た。また、実施例7Aと同様にしてプライマー積層体およびハードコート層を有する積層体を作製し、試料の評価を行った。表11に(A)成分の重量平均分子量、数平均分子量、および各成分の配合量をまとめた。各積層体の評価結果を表12に示した。
Figure JPOXMLDOC01-appb-T000014
 なお、表11にある通り、実施例30~32の光学物品用プライマー組成物には、特に断りがないものであっても、(D)成分として、フッ素系のレべリング剤である東レ・ダウコーニング株式会社製レベリング剤『FZ2104』が0.05質量部配合されるように調製した。
Figure JPOXMLDOC01-appb-T000015

Claims (16)

  1.  (A)芳香族ポリイソシアネート化合物とポリオール化合物との反応物であり、末端にイソシアネート基または水酸基から選ばれる反応性基を有するウレタンプレポリマー、
     (B)極大吸収波長が320nm以上650nm以下の範囲にある光吸収化合物、及び
     (C)溶解度パラメーターが8[(cal/cm1/2]以上であり、かつ活性水素を有さない有機溶媒を含んでなる光学物品用プライマー組成物。
  2.  前記(A)ウレタンプレポリマーの反応性基の質量が、該(A)ウレタンプレポリマー1g当たり、0.02~0.2gの範囲である請求項1に記載の光学物品用プライマー組成物。
  3.  前記(A)ウレタンプレポリマー100質量部当たり、前記(B)化合物を0.01~20質量部、および前記(C)有機溶媒を100~1000質量部含む請求項1又は2に記載の光学物品用プライマー組成物。
  4.  前記(A)ウレタンプレポリマーが、芳香族ポリイソシアネート化合物、ポリオール化合物、および鎖延長剤の反応物である請求項1~3の何れか1項に記載の光学物品用プライマー組成物。
  5.  前記(A)ウレタンプレポリマーの重量平均分子量が、3,000~300,000である請求項1~4の何れか1項に記載の光学物品用プライマー組成物。
  6.  前記(B)光吸収化合物が、極大吸収波長が400nmを超え450nm以下の範囲にある(B1)成分を含む請求項1~5の何れか1項に記載の光学物品用プライマー組成物。
  7.  前記(B1)成分が、ポルフィリン化合物を含む請求項6に記載の光学物品用プライマー組成物。
  8.  前記(B)光吸収化合物が、極大吸収波長が320nm以上400nm以下の範囲にある(B2)紫外線吸収剤を含む請求項1~7の何れか1項に記載の光学物品用プライマー組成物。
  9.  前記(B)光吸収化合物が、極大吸収波長が540nm以上650nm以下の範囲にある(B3)染料をさらに含む請求項1~8の何れか1項に記載の光学物品用プライマー組成物。
  10.  (D)レベリング剤をさらに含む請求項1~9の何れか1項に記載の光学物品用プライマー組成物。
  11.  前記(A)ウレタンプレポリマーの反応性基がイソシアネート基であり、前記(A)ウレタンプレポリマーが空気中の水分で硬化しうる湿気硬化型ポリマーである請求項1~10の何れか1項に記載の光学物品用プライマー組成物。
  12.  前記(A)ウレタンプレポリマーの反応性基が水酸基であり、
     さらに、(E)分子中にイソシアネート基を複数有する硬化剤を含む請求項1~10の何れか1項に記載の光学物品用プライマー組成物。
  13.  前記(A)ウレタンプレポリマーの反応性基がイソシアネート基であり、
     さらに、(E’)分子中にイソシアネート基と反応しうる基を複数有する硬化剤を含む請求項1~11の何れか1項に記載の光学物品用プライマー組成物。
  14.  光学基材の表面に請求項1~13の何れか1項に記載の光学物品用プライマー組成物よりなるプライマー層が形成され、該プライマー層の膜厚が0.1~20μmである第一積層体。
  15.  波長420nmにおける透過率が80%以下である請求項14に記載の第一積層体。
  16.  請求項14又は15に記載の前記第一積層体のプライマー層の上に、無機粒子を含むハードコート層が形成されてなる第二積層体。
PCT/JP2018/022265 2017-06-14 2018-06-11 光学物品用プライマー組成物および積層体 WO2018230513A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019525419A JP7116727B2 (ja) 2017-06-14 2018-06-11 光学物品用プライマー組成物および積層体
CN201880038899.2A CN110770611B (zh) 2017-06-14 2018-06-11 光学物品用底漆组合物以及层叠体
EP18818382.6A EP3640686A4 (en) 2017-06-14 2018-06-11 PRIMER COMPOSITION FOR OPTICAL ARTICLES AND LAMINATE
BR112019026164-8A BR112019026164A2 (pt) 2017-06-14 2018-06-11 composição de primer para artigos ópticos e laminados
KR1020197036617A KR102493025B1 (ko) 2017-06-14 2018-06-11 광학 물품용 프라이머 조성물 및 적층체
US16/621,388 US11807769B2 (en) 2017-06-14 2018-06-11 Primer composition for optical articles, and laminate
MX2019015170A MX2019015170A (es) 2017-06-14 2018-06-11 Composicion de imprimador para articulos opticos, y material laminado.
AU2018285172A AU2018285172A1 (en) 2017-06-14 2018-06-11 Primer composition for optical articles, and laminate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-116437 2017-06-14
JP2017116437 2017-06-14
JP2018004934 2018-01-16
JP2018-004934 2018-01-16
JP2018-024719 2018-02-15
JP2018024719 2018-02-15
JP2018075612 2018-04-10
JP2018-075612 2018-04-10

Publications (1)

Publication Number Publication Date
WO2018230513A1 true WO2018230513A1 (ja) 2018-12-20

Family

ID=64659357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022265 WO2018230513A1 (ja) 2017-06-14 2018-06-11 光学物品用プライマー組成物および積層体

Country Status (9)

Country Link
US (1) US11807769B2 (ja)
EP (1) EP3640686A4 (ja)
JP (1) JP7116727B2 (ja)
KR (1) KR102493025B1 (ja)
CN (1) CN110770611B (ja)
AU (1) AU2018285172A1 (ja)
BR (1) BR112019026164A2 (ja)
MX (1) MX2019015170A (ja)
WO (1) WO2018230513A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200231840A1 (en) * 2017-06-14 2020-07-23 Tokuyama Corporation Primer Composition for Optical Articles, and Laminate
JP2020196978A (ja) * 2019-06-05 2020-12-10 王子ホールディングス株式会社 塗工紙とその製造方法
WO2021172404A1 (ja) * 2020-02-27 2021-09-02 株式会社トクヤマ 光学物品用プライマー組成物、および積層体
WO2021172513A1 (ja) 2020-02-28 2021-09-02 株式会社トクヤマ 湿気硬化型ポリウレタン組成物及び積層体
WO2021172570A1 (ja) * 2020-02-27 2021-09-02 三井化学株式会社 光透過性積層体の製造方法、光透過性部材修飾液、光透過性積層体及びレンズ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901185A4 (en) * 2018-12-17 2022-10-19 Tokuyama Corporation CURABLE COMPOSITION FOR OPTICAL MATERIALS, AND OPTICAL MATERIAL
CN112662298A (zh) * 2020-12-22 2021-04-16 海安浩驰科技有限公司 一种防眩目大料的制作工艺及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230003A (ja) 1988-03-10 1989-09-13 Seiko Epson Corp 合成樹脂製レンズ
JPH09265059A (ja) 1996-03-28 1997-10-07 Asahi Optical Co Ltd 眼鏡レンズ
JP2001288406A (ja) * 2000-04-04 2001-10-16 Seiko Epson Corp プライマー組成物およびプライマー付きハードコートレンズおよびハードマルチコートレンズ
WO2005075193A1 (ja) 2004-02-03 2005-08-18 Tokuyama Corporation 積層体及びその製造方法
JP2005338868A (ja) 2005-06-27 2005-12-08 Hoya Corp 紫外線吸収性に優れたプラスチック眼鏡レンズの製造方法
WO2008001875A1 (fr) * 2006-06-30 2008-01-03 Tokuyama Corporation Procédé de production d'un article optique photochromique
JP2009237003A (ja) * 2008-03-26 2009-10-15 Tokuyama Corp プラスチックレンズの製造方法
JP2013238634A (ja) * 2012-05-11 2013-11-28 Ito Kogaku Kogyo Kk 防眩光学要素
WO2014133111A1 (ja) 2013-02-27 2014-09-04 三井化学株式会社 光学材料、光学材料用組成物およびその用途
WO2015088015A1 (ja) 2013-12-13 2015-06-18 三井化学株式会社 光学材料用重合性組成物
WO2016125736A1 (ja) 2015-02-02 2016-08-11 三井化学株式会社 光学材料用重合性組成物、光学材料およびその用途
JP2016157146A (ja) 2013-09-30 2016-09-01 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 透明プラスチック基材及びプラスチックレンズ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918543B1 (ja) * 1998-07-01 1999-07-12 大塚化学株式会社 塗料組成物
JP2001116901A (ja) * 1999-10-22 2001-04-27 Seiko Epson Corp プライマー組成物およびプラスチックレンズ
CA2337955C (en) * 2000-03-15 2006-07-25 Hoya Corporation Plastic lenses for spectacles
JP4805785B2 (ja) 2006-10-24 2011-11-02 Mgcフィルシート株式会社 防眩性積層体、塗膜防眩性積層体、防眩性材料、及び該防眩性材料の製造方法
MX353052B (es) * 2010-09-13 2017-12-19 Tokuyama Corp Composicion de capa de imprimacion para articulos opticos y articulos opticos.
JP2012186305A (ja) 2011-03-04 2012-09-27 Renesas Electronics Corp 光結合素子及び光結合素子の製造方法
CN105637416B (zh) * 2013-10-11 2019-11-12 光学转变公司 使用有机溶剂预处理和光致变色涂层制备光致变色光学制品的方法
KR102493025B1 (ko) * 2017-06-14 2023-01-30 가부시키가이샤 도쿠야마 광학 물품용 프라이머 조성물 및 적층체

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230003A (ja) 1988-03-10 1989-09-13 Seiko Epson Corp 合成樹脂製レンズ
JPH09265059A (ja) 1996-03-28 1997-10-07 Asahi Optical Co Ltd 眼鏡レンズ
JP2001288406A (ja) * 2000-04-04 2001-10-16 Seiko Epson Corp プライマー組成物およびプライマー付きハードコートレンズおよびハードマルチコートレンズ
WO2005075193A1 (ja) 2004-02-03 2005-08-18 Tokuyama Corporation 積層体及びその製造方法
JP2005338868A (ja) 2005-06-27 2005-12-08 Hoya Corp 紫外線吸収性に優れたプラスチック眼鏡レンズの製造方法
WO2008001875A1 (fr) * 2006-06-30 2008-01-03 Tokuyama Corporation Procédé de production d'un article optique photochromique
JP2009237003A (ja) * 2008-03-26 2009-10-15 Tokuyama Corp プラスチックレンズの製造方法
JP2013238634A (ja) * 2012-05-11 2013-11-28 Ito Kogaku Kogyo Kk 防眩光学要素
WO2014133111A1 (ja) 2013-02-27 2014-09-04 三井化学株式会社 光学材料、光学材料用組成物およびその用途
JP2016157146A (ja) 2013-09-30 2016-09-01 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 透明プラスチック基材及びプラスチックレンズ
WO2015088015A1 (ja) 2013-12-13 2015-06-18 三井化学株式会社 光学材料用重合性組成物
WO2016125736A1 (ja) 2015-02-02 2016-08-11 三井化学株式会社 光学材料用重合性組成物、光学材料およびその用途

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200231840A1 (en) * 2017-06-14 2020-07-23 Tokuyama Corporation Primer Composition for Optical Articles, and Laminate
US11807769B2 (en) * 2017-06-14 2023-11-07 Tokuyama Corporation Primer composition for optical articles, and laminate
JP2020196978A (ja) * 2019-06-05 2020-12-10 王子ホールディングス株式会社 塗工紙とその製造方法
JP7124791B2 (ja) 2019-06-05 2022-08-24 王子ホールディングス株式会社 塗工紙とその製造方法
WO2021172404A1 (ja) * 2020-02-27 2021-09-02 株式会社トクヤマ 光学物品用プライマー組成物、および積層体
WO2021172570A1 (ja) * 2020-02-27 2021-09-02 三井化学株式会社 光透過性積層体の製造方法、光透過性部材修飾液、光透過性積層体及びレンズ
WO2021172513A1 (ja) 2020-02-28 2021-09-02 株式会社トクヤマ 湿気硬化型ポリウレタン組成物及び積層体
KR20220150275A (ko) 2020-02-28 2022-11-10 가부시키가이샤 도쿠야마 습기 경화형 폴리우레탄 조성물 및 적층체

Also Published As

Publication number Publication date
EP3640686A1 (en) 2020-04-22
US20200231840A1 (en) 2020-07-23
KR102493025B1 (ko) 2023-01-30
JP7116727B2 (ja) 2022-08-10
JPWO2018230513A1 (ja) 2020-04-16
AU2018285172A1 (en) 2020-01-16
BR112019026164A2 (pt) 2020-06-30
CN110770611A (zh) 2020-02-07
EP3640686A4 (en) 2021-03-17
KR20200018444A (ko) 2020-02-19
EP3640686A9 (en) 2020-07-01
CN110770611B (zh) 2023-11-07
AU2018285172A2 (en) 2020-02-06
US11807769B2 (en) 2023-11-07
MX2019015170A (es) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7116727B2 (ja) 光学物品用プライマー組成物および積層体
EP2617785B1 (en) Primer composition for optical article and optical article
EP2420543B1 (en) Primer composition for optical articles, and optical article
JP4750694B2 (ja) プラスチックレンズ
WO2004046769A1 (ja) プラスチックレンズ及びその製造方法
JP6346183B2 (ja) 光学物品用光硬化性プライマー組成物の硬化体を含むフォトクロミック積層体及び該積層体の製造方法
WO2011096304A1 (ja) 光学物品用プライマー組成物及び光学物品
WO2015072530A1 (ja) 光学物品用プライマー組成物、該光学物品用プライマー組成物の硬化体を含むフォトクロミック積層体
JP5530236B2 (ja) 光学物品用プライマー組成物及び光学物品
JP4698420B2 (ja) 近赤外線遮蔽用塗料、それから得られる近赤外線遮蔽積層体及びその製造方法
WO2021172513A1 (ja) 湿気硬化型ポリウレタン組成物及び積層体
JP2015074199A (ja) フォトクロミック積層体
JP2013014636A (ja) コーティング組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525419

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197036617

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026164

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018285172

Country of ref document: AU

Date of ref document: 20180611

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018818382

Country of ref document: EP

Effective date: 20200114

ENP Entry into the national phase

Ref document number: 112019026164

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191210