WO2018229880A1 - 水溶液系二次電池 - Google Patents

水溶液系二次電池 Download PDF

Info

Publication number
WO2018229880A1
WO2018229880A1 PCT/JP2017/021870 JP2017021870W WO2018229880A1 WO 2018229880 A1 WO2018229880 A1 WO 2018229880A1 JP 2017021870 W JP2017021870 W JP 2017021870W WO 2018229880 A1 WO2018229880 A1 WO 2018229880A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
electrolyte
electrode electrolyte
zinc
Prior art date
Application number
PCT/JP2017/021870
Other languages
English (en)
French (fr)
Inventor
渉太 伊藤
酒井 政則
北川 雅規
明博 織田
修一郎 足立
祐一 利光
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019524608A priority Critical patent/JPWO2018229880A1/ja
Priority to PCT/JP2017/021870 priority patent/WO2018229880A1/ja
Publication of WO2018229880A1 publication Critical patent/WO2018229880A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an aqueous secondary battery.
  • Examples of large-capacity storage devices for power storage include sodium sulfur (NAS) batteries, lead storage batteries, redox flow batteries, and the like. Since NAS batteries have a large capacity and a long life, they are proposed for use in peak shift applications, renewable energy power grid linkage applications, and the like. Lead-acid batteries are highly reliable, backed by more than 100 years of history, and have a low cost per unit of storage capacity, which is advantageous for large-scale use. Proposals have been made for use in a wide range of applications such as leveling. A redox flow battery can be easily increased in capacity by increasing the capacity of a tank, and is therefore suitable for power storage applications. In particular, an aqueous secondary battery using an aqueous solution as an electrolytic solution has a low risk of ignition and is excellent in safety.
  • the NAS battery has an operating temperature as high as 300 ° C., there is a risk of ignition, and there is a risk of generating toxic gases such as sulfurous acid gas when ignited.
  • lead-acid batteries have a low volumetric energy density, they require a large installation area, and lead is subject to global regulation as represented by the RoHS directive. It may be limited.
  • the aqueous secondary battery has high safety, but the volume energy density is low when conventional metal ions such as vanadium are used as the positive and negative electrode active materials.
  • an aqueous secondary battery that is excellent in volume energy density in addition to safety.
  • it is considered to use zinc as a negative electrode active material, which has a high solubility in water and is likely to have a high energy density and has a sufficiently low redox reaction potential. (For example, refer to Patent Document 1).
  • Aqueous secondary batteries that use zinc as the negative electrode active material are associated with the dissolution and precipitation reaction of the zinc active material in the aqueous solution.
  • the Coulomb efficiency decreases, the reaction overvoltage increases, and the output characteristics decrease. Doing so may reduce the energy efficiency.
  • An object of this invention is to provide the aqueous solution type secondary battery excellent in energy density and energy efficiency.
  • Means for solving the above problems include the following embodiments.
  • An aqueous secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein the electrolytic solution contains zinc ions and the negative electrode contains a metal.
  • ⁇ 4> The aqueous solution system according to any one of ⁇ 1> to ⁇ 3>, wherein the metal includes at least one selected from the group consisting of zinc, lead, copper, silver, gold, nickel, and iron.
  • the electrolytic solution further contains an organic compound.
  • the organic compound is a substance that can be adsorbed to zinc deposited from the electrolytic solution.
  • ⁇ 7> The aqueous secondary battery according to ⁇ 5> or ⁇ 6>, wherein the organic compound includes at least one selected from the group consisting of a carbonate ester, a carboxylic acid ester, a ketone compound, and an ether compound.
  • the organic compound includes at least one selected from the group consisting of a carbonate ester, a carboxylic acid ester, a ketone compound, and an ether compound.
  • the electrolyte solution has an anion concentration of 4 mol / L or more.
  • ⁇ 9> The aqueous secondary battery according to any one of ⁇ 1> to ⁇ 8>, wherein the electrolyte is divided into a positive electrode electrolyte and a negative electrode electrolyte.
  • ⁇ 10> The aqueous secondary battery according to ⁇ 9>, wherein the negative electrode electrolyte contains the zinc ions.
  • ⁇ 11> The aqueous secondary battery according to ⁇ 9> or ⁇ 10>, wherein the positive electrode electrolyte contains iodide ions.
  • the pump is configured to circulate the positive electrode electrolyte between the positive electrode electrolyte storage tank and the positive electrode electrolyte reaction tank, and the negative electrode electrolyte pump is connected to the negative electrode electrolyte storage tank.
  • the aqueous secondary battery according to any one of ⁇ 9> to ⁇ 11>, wherein the negative electrolyte solution can be circulated between the negative electrode electrolyte reaction vessel and the negative electrode electrolyte reaction vessel.
  • an aqueous secondary battery excellent in energy density and energy efficiency is provided.
  • each component may contain a plurality of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
  • the term “film” includes a case where the film is formed only on a part of the region in addition to the case where the film is formed on the entire region when the region where the film exists is observed. included.
  • the configuration of the embodiment is not limited to the configuration shown in the drawings.
  • size of the member in each figure is notional, The relative relationship of the magnitude
  • the aqueous solution type secondary battery of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution.
  • the electrolytic solution includes zinc ions
  • the negative electrode includes a metal.
  • the aqueous secondary battery of the present disclosure is excellent in energy density because the electrolytic solution contains zinc ions. Furthermore, as a result of investigations by the present inventors, it was found that the aqueous solution type secondary battery having the above structure is excellent in energy efficiency. The reason is not clear, but because the negative electrode contains a metal, it is possible to take out an amount of electric charge equivalent to the amount of precipitated zinc at the time of dissolution, and further, an effect of suppressing resistance at the time of dissolution and precipitation reaction can be obtained. Conceivable.
  • aqueous solution secondary battery means a secondary battery using an aqueous solution in which necessary components are dissolved in water as an electrolyte.
  • an electricity storage device such as a redox flow battery (flow battery) can be used.
  • the electrolytic solution contains zinc ions.
  • Zinc ions contained in the electrolyte act as a negative electrode active material.
  • Prepare an electrolyte containing zinc ions by, for example, dissolving zinc compounds such as zinc chloride, zinc iodide, zinc bromide, zinc fluoride, zinc nitrate, zinc sulfate, and zinc acetate in a medium such as water. Can do.
  • the concentration of zinc ions in the electrolytic solution is not particularly limited. However, from the viewpoint of ensuring both sufficient energy density and sufficient amount of dissolution of other components, the concentration may be 0.01 mol / L to 20 mol / L. Preferably, the amount is 0.1 mol / L to 10 mol / L.
  • the electrolytic solution preferably further contains an organic compound.
  • an aqueous solution type secondary battery in which the electrolytic solution contains an organic compound has excellent life characteristics. The reason is not clear, but the organic compound molecules contained in the electrolyte exert a smoothing effect by adsorbing on the surface of zinc and the surface of the negative electrode deposited on the surface of the negative electrode due to the reduction reaction of zinc ions. It is presumed that the effect of suppressing the formation is obtained.
  • the organic compound is preferably a substance that can be adsorbed on the zinc deposited from the electrolytic solution.
  • a substance in which interaction energy between zinc or a zinc compound is generated at an intermolecular force level is preferable.
  • the organic compound is preferably in a state dissolved in the electrolytic solution.
  • the organic compound contained in the electrolytic solution include a carbonate ester, a carboxylic acid ester, a ketone compound, and an ether compound.
  • a carbonate ester having a relatively low volatility and a high flash point is preferable.
  • the carbonate ester include ethylene carbonate, propylene carbonate, dimethyl carbonate and the like.
  • the carboxylic acid ester include methyl acetate and ethyl acetate.
  • the ketone compound include methyl ethyl ketone, dimethyl ketone, methyl butyl ketone, and diethyl ketone.
  • ether compound examples include polymers such as polyethylene glycol and polyoxyethylene ether.
  • the ether-based polymer is easily dissolved in water, but is preferably a compound having a molecular weight of about 150 to 3000 from the viewpoint of suppressing an increase in the viscosity of the aqueous solution.
  • the organic compound contained in the electrolytic solution may be only one type or two or more types.
  • the content of the organic compound in the electrolytic solution is preferably 0.1% by volume to 50% by volume at room temperature (25 ° C.) and normal pressure, and more preferably 1% by volume to 40% by volume.
  • the content of the organic compound in the electrolytic solution is 0.1% by volume or more, the effect of suppressing the formation of dendrite due to the precipitation of zinc tends to be sufficiently obtained, and when the content is 50% by volume or less, the electrolytic solution It is in the tendency for the fall of the electrical conductivity of this to be suppressed.
  • the content of the organic compound in the electrolytic solution can be examined, for example, by measuring the retention time corresponding to the concentration of the organic compound and the molecular weight of the monitor ion by gas chromatography.
  • the electrolytic solution contains an organic compound (particularly, a carbonate ester), it is effective to coordinate an anion to the zinc ion from the viewpoint of suppressing a chemical reaction between the organic compound and the zinc ion.
  • the method for coordinating anions to zinc ions is not particularly limited.
  • chloride ions can be coordinated to zinc ions by setting the chloride ion concentration in the electrolyte to 4 mol / L or more.
  • the electrolytic solution preferably further contains a positive electrode active material.
  • the positive electrode active material is not particularly limited as long as the standard redox potential of the reaction system is higher than the standard redox potential of the negative electrode (for example, ⁇ 0.763 V when the negative electrode active material is only zinc ions).
  • halogens such as iodine, bromine and chlorine, vanadium, lead, quinone-based materials, viologen, metal complexes, and the like can be given.
  • the positive electrode active material is preferably halogen, and more preferably iodine (iodide ion).
  • Iodine has a high solubility in water (for example, 30 mol / L or more in the case of zinc iodide), a high standard oxidation-reduction potential of dissolution and precipitation reaction of 0.536 V, chemical stability, and toxicity. Is suitable as a positive electrode active material because of its low content.
  • An electrolytic solution containing iodide ions can be prepared by dissolving an iodine compound in the electrolytic solution.
  • an iodine compound sodium iodide, potassium iodide, zinc iodide, hydrogen iodide, lithium iodide, ammonium iodide, barium iodide, calcium iodide, magnesium iodide, strontium iodide and the like can be used.
  • the concentration of iodide ions in the electrolytic solution is not particularly limited, but is preferably 0.01 mol / L to 20 mol / L, and more preferably 0.1 mol / L to 10 mol / L.
  • the electrolytic solution may further include a substance that acts as a negative electrode active material other than zinc ions.
  • a substance that acts as a negative electrode active material other than zinc ions examples include chromium, titanium, iron, tin, vanadium, lead, manganese, cobalt, nickel, copper, lithium, quinone materials, viologen, and the like.
  • the electrolytic solution may contain a supporting electrolyte.
  • the supporting electrolyte functions as an auxiliary agent for increasing the ionic conductivity of the electrolytic solution.
  • the electrolytic solution contains the supporting electrolyte, the ionic conductivity of the electrolytic solution increases, and the internal resistance of the aqueous secondary battery tends to decrease.
  • the supporting electrolyte is not particularly limited as long as it is a compound that dissociates in the electrolytic solution to form ions.
  • Examples thereof include a lithium salt, an alkyl piperidinium salt, and an alkyl pyrrolidinium salt.
  • the supporting electrolyte may be used alone or in combination of two or more. When an iodine compound is used as the positive electrode active material, this may also serve as a supporting electrolyte.
  • the electrolytic solution may contain a pH buffer.
  • the pH buffer include acetate buffer, phosphate buffer, citrate buffer, borate buffer, tartrate buffer, Tris buffer, and the like.
  • the electrolytic solution may be divided into a positive electrode electrolyte and a negative electrode electrolyte, or may not be divided into a positive electrode electrolyte and a negative electrode electrolyte.
  • the “positive electrode electrolyte” means an electrolyte in contact with the positive electrode
  • the “negative electrode electrolyte” means an electrolyte in contact with the negative electrode.
  • at least the negative electrode electrolyte contains zinc ions.
  • at least the positive electrode electrolyte preferably contains a positive electrode active material, and more preferably contains iodide ions as the positive electrode active material.
  • the negative electrode includes a metal. From the viewpoint of reducing the overvoltage, it is desirable that the metal contained in the negative electrode is a metal that has high conductivity, low contact resistance with zinc, and is chemically stable in order to withstand long-term operation. Note that zinc deposited by the reduction reaction of zinc ions contained in the electrolytic solution is different from the “metal contained in the negative electrode” in the present disclosure.
  • the metal contained in the negative electrode does not generate an oxide film on the surface at the potential of zinc dissolution and precipitation.
  • metals include zinc, lead, copper, silver, gold, nickel, and iron.
  • zinc, lead and copper are more preferable in view of suppression of side reactions such as hydrogen generation and production costs. Only one kind or two or more kinds of metals may be contained in the negative electrode.
  • the negative electrode may include a metal and a material other than the metal.
  • materials other than metals include carbon materials.
  • the shape of the negative electrode is not particularly limited, but is preferably a porous body having a large specific surface area from the viewpoint of securing a contact area with the electrolytic solution. Specific examples of the porous body include felt and paper.
  • the metal contained in the negative electrode is preferably present in at least a part of the surface where the negative electrode comes into contact with the electrolytic solution (and other parts as necessary) from the viewpoint of ensuring a sufficient contact area with the electrolytic solution.
  • the metal may be in the form of a film, for example.
  • Electrodeposition As a method of arranging the metal on the surface where the negative electrode comes into contact with the electrolytic solution, a method of depositing metal by passing a current through the negative electrode (electrodeposition), a method of physically applying vapor-like metal to the negative electrode (deposition) And a method of applying molten metal to the negative electrode (spraying). Electrodeposition is preferable from the viewpoint of ease of process control and freedom of material selection. Moreover, since the metal obtained by electrodeposition has a crystallite size smaller than that of a metal plate or the like, it is preferable from the viewpoint that the bond with precipitated zinc is strong and the overvoltage of the zinc precipitation reaction is further reduced.
  • a carbon material having strong corrosion resistance, titanium, or the like is preferable.
  • Examples of the shape of the positive electrode include a mesh, a porous body, a punching metal, and a flat plate, but are not particularly limited.
  • the positive electrode material may be any material that can be oxidized and reduced, and a carbon material is preferable.
  • Partition wall When the electrolytic solution is divided into a positive electrode electrolyte and a negative electrode electrolyte in the aqueous secondary battery, a partition that separates the positive electrode electrolyte and the negative electrode electrolyte may be provided.
  • the material of the partition is preferably an ion exchange membrane having acid resistance and high ionic conductivity, but is not particularly limited.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an aqueous secondary battery when the electrolyte is divided into a positive electrode electrolyte and a negative electrode electrolyte.
  • the aqueous secondary battery shown in FIG. 1 includes a positive electrode electrolyte reaction tank 1 containing a positive electrode electrolyte, a negative electrode electrolyte reaction tank 2 containing a negative electrode electrolyte, a positive electrode 3, a negative electrode 4, and a partition wall 5.
  • a positive electrode electrolyte reaction tank 1 containing a positive electrode electrolyte
  • a negative electrode electrolyte reaction tank 2 containing a negative electrode electrolyte
  • a positive electrode 3 a negative electrode 4
  • a partition wall 5 a partition wall 5.
  • solid arrows indicate the flow of electrons during charging
  • dotted arrows indicate the reaction of ions during charging.
  • the valence of the positive electrode active material (X) illustrated in FIG. 1 is an exemplification, and the configuration is not limited thereto.
  • the negative electrode 4 zinc is precipitated by the reduction reaction of zinc ions contained in the negative electrode electrolyte.
  • the negative electrode 4 contains a metal (not shown), a charge amount equivalent to the deposited zinc amount can be taken out when dissolved. It is possible to obtain the effect of suppressing the resistance during the dissolution and precipitation reaction.
  • the aqueous secondary battery includes a positive electrode electrolyte reaction tank, a negative electrode electrolyte reaction tank, a positive electrode electrolyte storage tank, a negative electrode electrolyte storage tank, a positive electrode electrolyte pump, and a negative electrode electrolyte pump.
  • the positive electrolyte pump is configured to circulate the positive electrolyte between the positive electrolyte storage tank and the positive electrolyte reaction tank, and the negative electrolyte pump
  • the negative electrode electrolyte solution may be circulated between the electrolyte solution storage tank and the negative electrode electrolyte reaction tank.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example in the case of including a liquid feed pump for flowing an electrolytic solution, which is a configuration example of an aqueous secondary battery.
  • An aqueous secondary battery shown in FIG. 2 includes a positive electrode electrolyte reaction tank 1, a negative electrode electrolyte reaction tank 2, a positive electrode electrolyte storage tank 6, a negative electrode electrolyte storage tank 7, a positive electrode electrolyte pump 8, A negative electrode electrolyte pump 9.
  • the positive electrode electrolyte pump 8 is configured to circulate the positive electrode electrolyte between the positive electrode electrolyte storage tank 6 and the positive electrode electrolyte reaction tank 1, and the negative electrode electrolyte pump 9 is a negative electrode electrolyte.
  • the negative electrode electrolyte can be circulated between the storage tank 7 and the negative electrode electrolyte reaction tank 2.
  • FIG. 2 solid arrows indicate the flow of electrons during charging, and dotted arrows indicate the reaction of ions during charging.
  • the positive electrode electrolyte is supplied from the positive electrode electrolyte storage tank 6 to the positive electrode electrolyte reaction tank 1 by the positive electrode electrolyte pump 8, and the oxidation reaction of the positive electrode active material proceeds.
  • the negative electrode electrolyte is supplied from the negative electrode electrolyte storage tank 7 to the negative electrode electrolyte reaction tank 2 by the negative electrode electrolyte pump 9, and the reduction reaction of the negative electrode active material proceeds.
  • a battery having a configuration for flowing an electrolyte as shown in FIG. 2 is also referred to as a redox flow battery.
  • the redox flow battery has an advantage that the capacity can be easily increased by increasing the capacity of the electrolyte storage tank because the battery capacity depends on the amount of the electrolyte.
  • Example 1 The Coulomb efficiency and reaction resistance for dissolution and precipitation reaction of zinc in various electrode materials were compared. Specifically, an aqueous solution containing zinc ions was prepared as an electrolyte solution, and in this electrolyte solution, zinc was deposited on various electrode materials at a current density of 100 mA / cm 2 for a certain period of time, and immediately after that. Zinc was dissolved at a current density of 100 mA / cm 2 . Table 1 shows the coulomb efficiency (%) and reaction resistance ( ⁇ ) measured in this process. Coulomb efficiency represents the ratio of the time required for dissolution to the time during which zinc is deposited.
  • the Coulomb efficiency (%) was superior to the glassy carbon electrode (GC) or the graphite electrode. Furthermore, the electrode (electrodeposited Zn or electrodeposited Cu) obtained by electrodepositing zinc or copper on the GC electrode had a smaller reaction resistance ( ⁇ ) than the copper electrode (Cu) or the rolled zinc plate electrode (rolled Zn). .
  • Example 2 When using a GC electrode, a rolled zinc plate (rolled Zn plate electrode), and a GC electrode (deposited Zn electrode) electrodeposited with zinc, the zinc precipitation overvoltage was measured by constant current measurement with varying current density. Measured. The results are shown in FIG.
  • the overvoltage is almost the same in the low current density region, but the difference in overvoltage increases with the increase of the current density. . Further, it can be seen that the electrodeposited Zn electrode has a smaller overvoltage at each current density than the GC electrode, and has a large reaction resistance reducing effect.
  • Example 3 The stability of zinc dissolution and precipitation reaction in various electrode materials was investigated. Specifically, using a glassy carbon electrode (GC electrode), a gold electrode (Au electrode), and a glassy carbon electrode (deposited Cu electrode) electrodeposited with copper, zinc is supplied at a constant current for a certain time (30 minutes). An experiment for dissolving after precipitation was conducted. It can be evaluated that an electrode exhibiting stable precipitation dissolution behavior of zinc is excellent in cycle characteristics and Coulomb efficiency. The measurement results of the potential from the precipitation process to the dissolution process are shown in FIG.
  • GC electrode glassy carbon electrode
  • Au electrode gold electrode
  • Cu electrode deposited Cu electrode
  • the GC electrode on which copper is electrodeposited in both the precipitation process and the dissolution process has the lowest resistance, and the overvoltage is high even if the metal type is changed to Au.
  • the dissolution time is 30 minutes, which is equal to the deposition time, and the potential at the time of dissolution is stable. The potential began to rise at about the same level, and after 800 seconds, the dissolution behavior became unstable and the dissolution end time was less than 30 minutes.
  • the electrode preferably contains a metal from the viewpoint of Coulomb efficiency and reaction stability, and more preferably that the electrode contains a metal deposited by electrode from the viewpoint of reaction resistance.
  • FIG. 5 shows divalent zinc ion (Zn 2+ ), monovalent zinc ion (ZnCl + ), zinc compound (ZnCl 2 ), water molecule (H 2 O), chloride ion (Cl ⁇ ), and carbonate ester.
  • PC propylene carbonate
  • ZnCl 2 is generated when chloride ions are present in an excess amount of 4 mol / L or more, when adding PC to the electrolyte, it should be used under the condition that 4 mol / L or more of anions are present in the electrolyte. Is considered effective.
  • Example 5 The surface structure when zinc was deposited on the surface of the GC electrode was examined using an electrolyte prepared by adding 2 mol / L of zinc chloride and 4 mol / L of sodium chloride as a supporting electrolyte to water. Specifically, the surface structure after zinc deposition was observed when methyl ethyl ketone (MEK) was added to the electrolyte (MEK content: 20% by volume) and when MEK was not added. The results are shown in FIG.
  • MEK methyl ethyl ketone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)

Abstract

正極と、負極と、電解液と、を備え、前記電解液が亜鉛イオンを含み、前記負極が金属を含む、水溶液系二次電池。

Description

水溶液系二次電池
 本発明は、水溶液系二次電池に関する。
 近年、地球環境問題は深刻さを増しており、化石燃料に依存しない持続可能な社会の実現が強く求められている。特に大気中の二酸化炭素増加による地球温暖化は、地球規模での大きな課題となっている。そのため、発電時に二酸化炭素を排出しない風力、太陽光等の再生可能エネルギーの普及が、今後も世界的に促進されることが予想される。しかし、再生可能エネルギーは天候等の環境変化によって大きく出力が変動するので、そのままでは安定的な利用が困難である。そこでこの変動を平準化するため、安全かつ安価で大型化に適する電力貯蔵用蓄電デバイスへの需要が高まっている。
 電力貯蔵用の大容量蓄電デバイスとしては、ナトリウム硫黄(NAS)電池、鉛蓄電池、レドックスフロー電池等が挙げられる。NAS電池は大容量で長寿命であるため、ピークシフト用途、再生可能エネルギー電力の系統連携用途等への利用が提案されている。鉛蓄電池は、100年以上の歴史に裏打ちされた高い信頼性があり、単位蓄電容量当たりのコストが低く大型化に有利であるため、家庭又は事業所用の夜間電力利用、再生可能エネルギー発電所の平準化等の幅広い用途への利用が提案されている。レドックスフロー電池は、タンクの容量を増やすことで大容量化も容易に行えるため、電力貯蔵用途に適している。特に、電解液として水溶液を用いる水溶液系二次電池は発火の危険が小さく、安全性に優れている。
 一方で、各種蓄電デバイスには短所も存在する。NAS電池は動作温度が300℃と高温であるため、発火の危険がある上に、発火すると亜硫酸ガスなどの有毒ガスを発生する危険がある。鉛蓄電池は、体積エネルギー密度が低いため、広大な設置面積を必要とする上に、RoHS指令に代表されるように鉛が世界的に規制の対象となっていることから、将来的に利用が制限されることも考えられる。
 これに対して水溶液系二次電池は、安全性が高いものの、従来のバナジウム等の金属イオンを正負極活物質とした場合は体積エネルギー密度が低いことが課題である。
 そこで、安全性に加えて体積エネルギー密度にも優れる水溶液系二次電池の提供が待たれている。水溶液系二次電池の体積エネルギー密度を高める試みとしては、例えば、水への溶解度が高いために高エネルギー密度化しやすく、かつ酸化還元反応電位が充分に低い亜鉛を負極活物質として用いることが検討されている(例えば、特許文献1参照)。
米国特許第4109065号公報
 亜鉛を負極活物質として用いた水溶液系二次電池は、水溶液中の亜鉛活物質の溶解及び析出反応に伴い、電極の種類によってはクーロン効率が低下する、反応過電圧が増加して出力特性が低下する等により、エネルギー効率が低下するおそれがある。
 本発明は、エネルギー密度及びエネルギー効率に優れる水溶液系二次電池を提供することを目的とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>正極と、負極と、電解液と、を備え、前記電解液が亜鉛イオンを含み、前記負極が金属を含む、水溶液系二次電池。
<2>前記金属は前記負極が前記電解液と接触する面の少なくとも一部に存在する、<1>に記載の水溶液系二次電池。
<3>前記金属は膜の状態である、<1>又は<2>に記載の水溶液系二次電池。
<4>前記金属は亜鉛、鉛、銅、銀、金、ニッケル及び鉄からなる群より選択される少なくとも1種を含む、<1>~<3>のいずれか1項に記載の水溶液系二次電池。
<5>前記電解液が有機化合物をさらに含む、<1>~<4>のいずれか1項に記載の水溶液系二次電池。
<6>前記有機化合物は前記電解液から析出した亜鉛に吸着可能な物質である、<5>に記載の水溶液系二次電池。
<7>前記有機化合物は炭酸エステル、カルボン酸エステル、ケトン化合物及びエーテル化合物からなる群より選択される少なくとも1種を含む、<5>又は<6>に記載の水溶液系二次電池。
<8>前記電解液のアニオン濃度が4mol/L以上である、<1>~<7>のいずれか1項に記載の水溶液系二次電池。
<9>前記電解液が正極電解液と負極電解液とに分かれている、<1>~<8>のいずれか1項に記載の水溶液系二次電池。
<10>前記負極電解液が前記亜鉛イオンを含む、<9>に記載の水溶液系二次電池。
<11>前記正極電解液がヨウ化物イオンを含む、<9>又は<10>に記載の水溶液系二次電池。
<12>正極電解液反応槽と、負極電解液反応槽と、正極電解液貯蔵タンクと、負極電解液貯蔵タンクと、正極電解液ポンプと、負極電解液ポンプと、を備え、前記正極電解液ポンプは、前記正極電解液貯蔵タンクと前記正極電解液反応槽との間で前記正極電解液を循環することができるように構成されており、前記負極電解液ポンプは、前記負極電解液貯蔵タンクと前記負極電解液反応槽との間で前記負極電解液を循環することができるように構成されている、<9>~<11>のいずれか1項に記載の水溶液系二次電池。
 本発明によれば、エネルギー密度及びエネルギー効率に優れる水溶液系二次電池が提供される。
水溶液系二次電池の一構成例の模式断面図である。 水溶液系二次電池の一構成例の模式断面図である。 各種電極を用いて行った亜鉛の析出反応における反応抵抗低減効果を示す実験結果である。 各種電極を用いて行った亜鉛の溶解析出反応の安定性を示す実験結果である。 亜鉛イオン又は亜鉛化合物と有機化合物との相互作用エネルギーを比較する図である。 電解液に有機化合物を添加することによる亜鉛の析出構造の平滑化効果を示す図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「膜」との語には、当該膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
<水溶液系二次電池>
 本開示の水溶液系二次電池は、正極と、負極と、電解液と、を備え、前記電解液が亜鉛イオンを含み、前記負極が金属を含む。
 本開示の水溶液系二次電池は、電解液が亜鉛イオンを含むことで、エネルギー密度に優れている。さらに、本発明者らが検討を行った結果、上記構成を有する水溶液系二次電池はエネルギー効率に優れていることがわかった。その理由は明らかではないが、負極が金属を含むことで、析出した亜鉛量と同等の電荷量を溶解時に取り出すことを可能とし、さらに溶解析出反応時の抵抗を抑制する効果が得られるためと考えられる。
 本開示において「水溶液系二次電池」とは、必要な成分を水に溶解した水溶液を電解液として用いる二次電池を意味する。具体的には、レドックスフロー電池(フロー電池)等の蓄電デバイスなどが挙げられる。
(電解液)
 電解液は、亜鉛イオンを含む。電解液に含まれる亜鉛イオンは、負極活物質として作用する。亜鉛イオンを含む電解液は、例えば、塩化亜鉛、ヨウ化亜鉛、臭化亜鉛、フッ化亜鉛、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛等の亜鉛化合物を水等の媒体に溶解することで調製することができる。電解液中の亜鉛イオンの濃度は特に限定されないが、充分なエネルギー密度の確保と他成分の充分な溶解量の確保を両立する観点からは、0.01mol/L~20mol/Lとすることが好ましく、0.1mol/L~10mol/Lとすることがより好ましい。
 電解液は、有機化合物をさらに含むことが好ましい。本発明者らの検討の結果、電解液が有機化合物を含む水溶液系二次電池は寿命特性に優れていることがわかった。その理由は明らかではないが、電解液に含まれる有機化合物の分子が、亜鉛イオンの還元反応により負極表面に析出した亜鉛の表面と負極の表面に吸着することで平滑化効果を及ぼし、デンドライトの形成を抑制する効果が得られると推測される。
 析出した亜鉛によるデンドライトの形成を効果的に抑制する観点からは、有機化合物は、電解液から析出した亜鉛に吸着可能な物質であることが好ましい。具体的には、例えば、亜鉛又は亜鉛化合物との間の相互作用エネルギーが分子間力レベルで生じる物質が好ましい。また、有機化合物によるデンドライト形成の抑制効果を充分に得る観点からは、有機化合物は電解液に溶解した状態であることが好ましい。
 電解液に含まれる有機化合物の好ましい例としては、例えば、炭酸エステル、カルボン酸エステル、ケトン化合物及びエーテル化合物が挙げられる。中でも安全性の観点からは、比較的揮発性が低く引火点が高い炭酸エステルが好ましい。
 炭酸エステルとしては、炭酸エチレン、炭酸プロピレン、炭酸ジメチル等が挙げられる。
 カルボン酸エステルとしては、酢酸メチル、酢酸エチル等が挙げられる。
 ケトン化合物としては、メチルエチルケトン、ジメチルケトン、メチルブチルケトン、ジエチルケトン等が挙げられる。
 エーテル化合物としては、ポリエチレングリコール、ポリオキシエチレンエーテル等のポリマーが挙げられる。エーテル系のポリマーは容易に水に溶解するが、水溶液の粘度上昇を抑制する観点からは分子量が150~3000程度の化合物であることが好ましい。
 電解液に含まれる有機化合物は1種のみであってもよく、2種以上であってもよい。また、有機化合物の電解液中の含有率は、常温(25℃)常圧で0.1体積%~50体積%であることが好ましく、1体積%~40体積%であることがより好ましい。有機化合物の電解液中の含有率が0.1体積%以上であると、亜鉛の析出によるデンドライトの形成を抑制する効果が充分に得られる傾向にあり、50体積%以下であると、電解液の導電率の低下が抑制される傾向にある。
 有機化合物の電解液中の含有率は、例えば、ガスクロマトグラフィーにより、有機化合物の濃度に対応する保持時間と、モニターイオンの分子量を測定することで調べることができる。
 電解液が有機化合物(特に、炭酸エステル)を含む場合、有機化合物と亜鉛イオンとの化学反応を抑制する観点からは、亜鉛イオンにアニオンを配位させることが有効である。亜鉛イオンにアニオンを配位させる方法は特に制限されない。例えば、アニオンとして塩化物イオンを用いる場合、電解液中の塩化物イオン濃度を4mol/L以上とすることで亜鉛イオンに塩化物イオンを配位させることができる。
 電解液は、正極活物質をさらに含むことが好ましい。正極活物質は、反応系の標準酸化還元電位が、負極の標準酸化還元電位(例えば、負極活物質が亜鉛イオンのみである場合は-0.763V)よりも高い物質であれば特に制限されない。例えば、ヨウ素、臭素、塩素等のハロゲン、バナジウム、鉛、キノン系材料、ビオロゲン、金属錯体などが挙げられる。
 反応の可逆性及び容易性の観点からは、正極活物質はハロゲンであることが好ましく、ヨウ素(ヨウ化物イオン)であることがより好ましい。ヨウ素は、水への溶解度が高い(例えば、ヨウ化亜鉛の場合は30mol/L以上)こと、溶解析出反応の標準酸化還元電位が0.536Vと高いこと、化学的に安定であること、毒性が低いこと等から正極活物質として好適である。
 ヨウ化物イオンを含む電解液は、電解液にヨウ素化合物を溶解することで調製することができる。ヨウ素化合物としては、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化亜鉛、ヨウ化水素、ヨウ化リチウム、ヨウ化アンモニウム、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化マグネシウム、ヨウ化ストロンチウム等を使用できる。ヨウ化物イオンの電解液中の濃度は特に限定されないが、0.01mol/L~20mol/Lであることが好ましく、0.1mol/L~10mol/Lであることがより好ましい。
 電解液は、亜鉛イオン以外の負極活物質として作用する物質をさらに含んでもよい。このような物質としては、クロム、チタン、鉄、スズ、バナジウム、鉛、マンガン、コバルト、ニッケル、銅、リチウム、キノン系材料、ビオロゲン等が挙げられる。
 電解液は、支持電解質を含有していてもよい。支持電解質は、電解液のイオン伝導率を高めるための助剤として機能する。電解液が支持電解質を含有することで、電解液のイオン伝導率が高まり、水溶液系二次電池の内部抵抗が低減する傾向にある。
 支持電解質は、電解液中で解離してイオンを形成する化合物であれば特に制限されない。具体的には、HCl、HNO、HSO、HClO、NaCl、NaSO、NaClO、KCl、KSO、KClO、NaOH、LiOH、KOH、アルキルアンモニウム塩、アルキルイミダゾリウム塩、アルキルピペリジニウム塩、アルキルピロリジニウム塩等が挙げられる。支持電解質は1種を単独で用いてもよく、2種以上を併用してもよい。ヨウ素化合物を正極活物質として用いる場合、これが支持電解質としての機能を兼ねてもよい。
 電解液は、pH緩衝剤を含有していてもよい。pH緩衝剤としては、酢酸緩衝液、リン酸緩衝液、クエン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、トリス緩衝液等が挙げられる。
 電解液は、正極電解液と負極電解液とに分かれていても、正極電解液と負極電解液とに分かれていなくてもよい。本開示において「正極電解液」とは正極と接触している電解液を意味し、「負極電解液」とは負極と接触している電解液を意味する。電解液が正極電解液と負極電解液とに分かれている場合、少なくとも負極電解液が亜鉛イオンを含むことが好ましい。また、少なくとも正極電解液が正極活物質を含むことが好ましく、正極活物質としてヨウ化物イオンを含むことがより好ましい。
(負極)
 負極は、金属を含む。過電圧低減の観点からは、負極に含まれる金属は導電性が高く、亜鉛との接触抵抗が低く、また長期間の稼動に耐えるために化学的に安定な金属であることが望ましい。なお、電解液に含まれる亜鉛イオンの還元反応により析出する亜鉛は、本開示において「負極に含まれる金属」とは異なるものとする。
 析出した亜鉛に対する密着性及び導電性の観点からは、負極に含まれる金属は、亜鉛の溶解析出の電位で表面に酸化膜が生じないものが好ましい。このような金属としては、亜鉛、鉛、銅、銀、金、ニッケル、鉄等が挙げられる。これらの金属の中でも、水素発生等の副反応の抑制、生産コストなどを考慮すると、亜鉛、鉛及び銅がより好ましい。負極に含まれる金属は、1種のみでも2種以上であってもよい。
 負極は、金属と、金属以外の材料とを含むものであってもよい。金属以外の材料としては、炭素材料が挙げられる。負極の形状は特に制限されないが、電解液との接触面積を確保する観点からは、比表面積の大きい多孔体であることが好ましい。多孔体として具体的にはフェルト、ペーパー等が挙げられる。
 負極に含まれる金属は、電解液との接触面積を充分に確保する観点から、負極が電解液と接触する面の少なくとも一部(及び必要に応じてその他の部位)に存在することが好ましい。金属は、例えば、膜の状態であってもよい。
 負極が電解液と接触する面に金属を配置する方法としては、負極に電流を通電して金属を析出させる方法(電析)、負極に蒸気状の金属を物理的に付与する方法(蒸着)、負極に溶融金属を付与する方法(溶射)等が挙げられる。工程の管理の容易さと材料選択の自由度の観点からは、電析が好ましい。また、電析により得られる金属は金属板等に比べて結晶子サイズが小さくなるため、析出する亜鉛との結合が強く、亜鉛析出反応の過電圧がより低くなるという観点からも好ましい。
(正極)
 正極の材料としては、耐食性の強い炭素材料、チタン等が好ましい。正極の形状としては、メッシュ、多孔体、パンチングメタル、平板等が挙げられるが、特に限定はされない。電解液が正極活物質としてヨウ素を含む場合、正極の材料はヨウ素が酸化還元しうるものであればよく、炭素材料が好ましい。
(隔壁)
 水溶液系二次電池において電解液が正極電解液と負極電解液とに分かれている場合、正極電解液と負極電解液とを分ける隔壁を備えていてもよい。隔壁の材質としては、耐酸性と高いイオン伝導率を有するイオン交換膜が好ましいが、特に限定されない。
 図1は、電解液が正極電解液と負極電解液とに分かれている場合の水溶液系二次電池の構成例を示す概略断面図である。
 図1に示す水溶液系二次電池は、正極電解液を含む正極電解液反応槽1と、負極電解液を含む負極電解液反応槽2と、正極3と、負極4と、隔壁5と、を備える。図1において、実線の矢印は充電時における電子の流れを、点線の矢印は充電時におけるイオンの反応を示している。なお、図1に記載の正極活物質(X)の価数は例示であり、本構成はこれに限定されない。
 負極4では、負極電解液に含まれる亜鉛イオンの還元反応により亜鉛が析出するが、負極4が金属(図示せず)を含むため、析出した亜鉛量と同等の電荷量を溶解時に取り出すことができ、溶解析出反応時の抵抗を抑制する効果が得られる。
 水溶液系二次電池は、正極電解液反応槽と、負極電解液反応槽と、正極電解液貯蔵タンクと、負極電解液貯蔵タンクと、正極電解液ポンプと、負極電解液ポンプと、を備え、前記正極電解液ポンプは、前記正極電解液貯蔵タンクと前記正極電解液反応槽との間で前記正極電解液を循環することができるように構成されており、前記負極電解液ポンプは、前記負極電解液貯蔵タンクと前記負極電解液反応槽との間で前記負極電解液を循環することができるように構成されているものであってもよい。
 図2は、水溶液系二次電池の一構成例であって、電解液を流動させるための送液ポンプを備える場合の構成を示す概略断面図である。図2に示す水溶液系二次電池は、正極電解液反応槽1と、負極電解液反応槽2と、正極電解液貯蔵タンク6と、負極電解液貯蔵タンク7と、正極電解液ポンプ8と、負極電解液ポンプ9と、を備える。正極電解液ポンプ8は、正極電解液貯蔵タンク6と正極電解液反応槽1との間で正極電解液を循環することができるように構成されており、負極電解液ポンプ9は、負極電解液貯蔵タンク7と負極電解液反応槽2との間で負極電解液を循環することができるように構成されている。
 図2において、実線の矢印は充電時における電子の流れを、点線の矢印は充電時におけるイオンの反応を示している。正極電解液は、正極電解液貯蔵タンク6から正極電解液ポンプ8により正極電解液反応槽1へ供給され、正極活物質の酸化反応が進行する。負極電解液は、負極電解液貯蔵タンク7から負極電解液ポンプ9により負極電解液反応槽2へ供給され、負極活物質の還元反応が進行する。
 図2に示すような、電解液を流動(フロー)させる構成を備える電池をレドックスフロー電池ともいう。レドックスフロー電池は電池容量が電解液の量に依存するため、電解液貯蔵タンクの容量を増やすことで大容量化が容易に行えるという利点がある。
<実施例1>
 各種の電極材料における亜鉛の溶解析出反応に対するクーロン効率と反応抵抗を比較した。具体的には、亜鉛イオンを含有する水溶液を電解液として準備し、この電解液中において、各種の電極材料上に電流密度100mA/cmで亜鉛を一定時間析出させ、その直後に析出させた亜鉛を電流密度100mA/cmで溶解させた。この過程において測定されたクーロン効率(%)と反応抵抗(Ω)を表1に示す。クーロン効率は、亜鉛を析出させた時間に対する溶解に要した時間の比を表す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、電極材料として金属を用いた場合はグラッシーカーボン電極(GC)又はグラファイト電極に比べてクーロン効率(%)が優れていた。さらに、GC電極に亜鉛又は銅を電析させた電極(電析Zn又は電析Cu)は、銅電極(Cu)又は圧延亜鉛板電極(圧延Zn)に比べて反応抵抗(Ω)が小さかった。
<実施例2>
 GC電極、圧延亜鉛板(圧延Zn板電極)、及び亜鉛を電析させたGC電極(電析Zn電極)をそれぞれ使用した場合の亜鉛の析出過電圧を、電流密度を変化させて定電流計測により計測した。結果を図3に示す。
 図3に示すように、圧延Zn板電極と電析Zn電極を比較すると低電流密度領域ではほぼ同等の過電圧であるのに対し、電流密度の増加に伴って過電圧の差が拡大することがわかる。また、電析Zn電極はGC電極よりも各電流密度における過電圧が小さく、反応抵抗低減効果が大きいことがわかる。
<実施例3>
 各種の電極材料における、亜鉛の溶解析出反応の安定性を調べた。具体的には、グラッシーカーボン電極(GC電極)、金電極(Au電極)及び銅を電析させたグラッシーカーボン電極(電析Cu電極)を用いて、定電流で亜鉛を一定時間(30分)析出させた後に溶解させる実験を行った。亜鉛が安定した析出溶解挙動を示す電極ほど、サイクル特性及びクーロン効率に優れると評価できる。析出過程から溶解過程までの電位の測定結果を図4に示す。
 図4に示すように、過電圧では析出過程と溶解過程の双方で銅を電析させたGC電極が最も低抵抗であること、及び金属の種類をAuに変えても過電圧が高いことがわかる。また銅を電析させたGC電極とAu電極とを比較すると、溶解時間が析出時間と同等の30分となり、溶解時の電位も安定しているのに対し、GC電極では溶解開始から300秒程度で電位が上昇し始め、800秒後には不安定な溶解挙動となり、溶解終了時間も30分に満たなかった。以上より、クーロン効率と反応安定性の観点からは電極が金属を含むことが好ましく、反応抵抗の観点からは電極が電析させた金属を含むことがより好ましいことがわかる。
<実施例4>
 図5に2価の亜鉛イオン(Zn2+)、1価の亜鉛イオン(ZnCl)及び亜鉛化合物(ZnCl)と、水分子(HO)、塩化物イオン(Cl)及び炭酸エステルの一種である炭酸プロピレン(PC)との相互作用エネルギーのシミュレーション結果を示す。
 図5に示すように、Zn2+との関係では、PCは水分子より相互作用エネルギーが大きく、共有結合に近い相互作用を示すため、PCはZn2+と化学反応することがわかる。一方、Zn2+に塩化物イオンが1つ配位した状態のZnCl及び2つ配位した状態のZnClとの関係では、PCの相互作用エネルギーが小さくなり、水分子と同程度の分子間力に近い相互作用を示すことがわかる。このことから、PCとZn2+との化学反応を抑制するためには、Zn2+にアニオンを配位させることが有効であると考えられる。ZnClは塩化物イオンが4mol/L以上の過剰量で存在すると生成することから、PCを電解液に添加する場合は、電解液中に4mol/L以上のアニオンが存在する条件で利用することが有効であると考えられる。
<実施例5>
 2mol/Lの塩化亜鉛と、支持電解質として4mol/Lの塩化ナトリウムを水に加えて調製した電解液を用いてGC電極の表面に亜鉛を析出させたときの表面構造を調べた。具体的には、メチルエチルケトン(MEK)を電解液に添加した場合(MEK含有率:20体積%)と、MEKを添加しなかった場合とで、亜鉛析出後の表面構造を観察した。結果を図6に示す。
 図6に示すように、電解液にMEKを添加しなかった場合は、GC電極の表面に粒子状の亜鉛がまばらに析出し、乱雑な表面構造を形成していた。これに対し、電解液にMEKを添加した場合のGC電極の表面には均一性に優れ、平滑な亜鉛の析出構造が形成していた。以上から、電解液に有機化合物を添加することで亜鉛の析出構造を平滑化でき、デンドライトの形成の抑制に有効であることがわかった。
 1:正極電解液反応槽、2:負極電解液反応槽、3:正極、4:負極、5:隔壁、6:正極電解液貯蔵タンク、7:負極電解液貯蔵タンク、8:正極電解液送液ポンプ、9:負極電解液送液ポンプ

Claims (12)

  1.  正極と、負極と、電解液と、を備え、前記電解液が亜鉛イオンを含み、前記負極が金属を含む、水溶液系二次電池。
  2.  前記金属は前記負極が前記電解液と接触する面の少なくとも一部に存在する、請求項1に記載の水溶液系二次電池。
  3.  前記金属は膜の状態である、請求項1又は請求項2に記載の水溶液系二次電池。
  4.  前記金属は亜鉛、鉛、銅、銀、金、ニッケル及び鉄からなる群より選択される少なくとも1種を含む、請求項1~請求項3のいずれか1項に記載の水溶液系二次電池。
  5.  前記電解液が有機化合物をさらに含む、請求項1~請求項4のいずれか1項に記載の水溶液系二次電池。
  6.  前記有機化合物は前記電解液から析出した亜鉛に吸着可能な物質である、請求項5に記載の水溶液系二次電池。
  7.  前記有機化合物は炭酸エステル、カルボン酸エステル、ケトン化合物及びエーテル化合物からなる群より選択される少なくとも1種を含む、請求項5又は請求項6に記載の水溶液系二次電池。
  8.  前記電解液のアニオン濃度が4mol/L以上である、請求項1~請求項7のいずれか1項に記載の水溶液系二次電池。
  9.  前記電解液が正極電解液と負極電解液とに分かれている、請求項1~請求項8のいずれか1項に記載の水溶液系二次電池。
  10.  前記負極電解液が前記亜鉛イオンを含む、請求項9に記載の水溶液系二次電池。
  11.  前記正極電解液がヨウ化物イオンを含む、請求項9又は請求項10に記載の水溶液系二次電池。
  12.  正極電解液反応槽と、負極電解液反応槽と、正極電解液貯蔵タンクと、負極電解液貯蔵タンクと、正極電解液ポンプと、負極電解液ポンプと、を備え、前記正極電解液ポンプは、前記正極電解液貯蔵タンクと前記正極電解液反応槽との間で前記正極電解液を循環することができるように構成されており、前記負極電解液ポンプは、前記負極電解液貯蔵タンクと前記負極電解液反応槽との間で前記負極電解液を循環することができるように構成されている、請求項9~請求項11のいずれか1項に記載の水溶液系二次電池。
PCT/JP2017/021870 2017-06-13 2017-06-13 水溶液系二次電池 WO2018229880A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019524608A JPWO2018229880A1 (ja) 2017-06-13 2017-06-13 水溶液系二次電池
PCT/JP2017/021870 WO2018229880A1 (ja) 2017-06-13 2017-06-13 水溶液系二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021870 WO2018229880A1 (ja) 2017-06-13 2017-06-13 水溶液系二次電池

Publications (1)

Publication Number Publication Date
WO2018229880A1 true WO2018229880A1 (ja) 2018-12-20

Family

ID=64659146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021870 WO2018229880A1 (ja) 2017-06-13 2017-06-13 水溶液系二次電池

Country Status (2)

Country Link
JP (1) JPWO2018229880A1 (ja)
WO (1) WO2018229880A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210120554A (ko) * 2020-03-27 2021-10-07 한국과학기술원 전착유도층이 도입된 아연 금속 전극 및 아연 금속 전지
WO2021243774A1 (zh) * 2020-05-30 2021-12-09 苏州沃泰丰能电池科技有限公司 一种高比能量的一负多正锌镍液流电池
WO2022102024A1 (ja) * 2020-11-11 2022-05-19 日本電信電話株式会社 鉄亜鉛電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117703B1 (ja) * 1970-10-16 1976-06-04
JPS57119466A (en) * 1981-01-19 1982-07-24 Meidensha Electric Mfg Co Ltd Dendrite inhibitor for zinc-bromine battery
JPS5840782A (ja) * 1981-08-13 1983-03-09 ロツキ−ド・ミサイルズ・アンド・スペ−ス・コンパニ−・インコ−ポレ−テツド 再充電可能バツテリ−
JPS62211875A (ja) * 1986-03-07 1987-09-17 エクソン リサ−チ アンド エンヂニアリング コムパニ− 固体臭素錯化装置
JPH02223161A (ja) * 1989-02-22 1990-09-05 Meidensha Corp 臭化亜鉛電池用微細多孔質膜の製造方法
JP2016213034A (ja) * 2015-05-08 2016-12-15 株式会社日立製作所 蓄電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117703B1 (ja) * 1970-10-16 1976-06-04
JPS57119466A (en) * 1981-01-19 1982-07-24 Meidensha Electric Mfg Co Ltd Dendrite inhibitor for zinc-bromine battery
JPS5840782A (ja) * 1981-08-13 1983-03-09 ロツキ−ド・ミサイルズ・アンド・スペ−ス・コンパニ−・インコ−ポレ−テツド 再充電可能バツテリ−
JPS62211875A (ja) * 1986-03-07 1987-09-17 エクソン リサ−チ アンド エンヂニアリング コムパニ− 固体臭素錯化装置
JPH02223161A (ja) * 1989-02-22 1990-09-05 Meidensha Corp 臭化亜鉛電池用微細多孔質膜の製造方法
JP2016213034A (ja) * 2015-05-08 2016-12-15 株式会社日立製作所 蓄電装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210120554A (ko) * 2020-03-27 2021-10-07 한국과학기술원 전착유도층이 도입된 아연 금속 전극 및 아연 금속 전지
KR102325856B1 (ko) * 2020-03-27 2021-11-12 한국과학기술원 전착유도층이 도입된 아연 금속 전극 및 아연 금속 전지
WO2021243774A1 (zh) * 2020-05-30 2021-12-09 苏州沃泰丰能电池科技有限公司 一种高比能量的一负多正锌镍液流电池
WO2022102024A1 (ja) * 2020-11-11 2022-05-19 日本電信電話株式会社 鉄亜鉛電池

Also Published As

Publication number Publication date
JPWO2018229880A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
Li et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc‐ion batteries
Hosseini et al. The influence of dimethyl sulfoxide as electrolyte additive on anodic dissolution of alkaline zinc-air flow battery
JP6357511B2 (ja) 性能促進添加剤が添加された金属空気電池
JP6013463B2 (ja) 鉄基流動電池
JP6935816B2 (ja) 水溶液系二次電池、水溶液系二次電池の充放電方法、水溶液系二次電池用電解液、フロー電池システム及び発電システム
WO2021047085A1 (zh) 一种中性锌锰二次电池及电解液
Wang et al. Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite-free Zn anodes
JP5712688B2 (ja) レドックスフロー電池
CN105576325B (zh) 用于金属-空气蓄电池的两相电解质
WO2018229880A1 (ja) 水溶液系二次電池
JP2018195571A (ja) 電解液、二次電池、二次電池システム及び発電システム
JP2019071193A (ja) 水系二次電池及び発電システム
JP2017532735A (ja) 銅フロー電池
Lu et al. Highly durable aqueous Zn ion batteries based on a Zn anode coated by three-dimensional cross-linked and branch-liked bismuth-PVDF layer
JP2019053868A (ja) 二次電池及び発電システム
JP2020198289A (ja) 三層系電解液を含む電気化学デバイス
JP7258350B2 (ja) 規則構造を有する高水溶性、高エネルギー密度化有機系活物質を用いた電気化学デバイス
Park et al. Synergistic effect of electrolyte additives on the suppression of dendrite growth in a flowless membraneless Zn–Br2 battery
JP2014170715A (ja) 電池
JP2019153467A (ja) フロー電池及びフロー電池システム
KR102489785B1 (ko) 흐름 전지 및 이를 포함하는 발전 시스템
JP2018206639A (ja) 電池、電池システム及び発電システム
CA3201816A1 (en) Rechargeable flow battery
JP2020161475A (ja) 多価金属二次電池用アノライト及び多価金属二次電池
WO2018016590A1 (ja) 水溶液系二次電池、電解液、二次電池システム及び発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913595

Country of ref document: EP

Kind code of ref document: A1