WO2018225537A1 - アンテナ - Google Patents

アンテナ Download PDF

Info

Publication number
WO2018225537A1
WO2018225537A1 PCT/JP2018/020132 JP2018020132W WO2018225537A1 WO 2018225537 A1 WO2018225537 A1 WO 2018225537A1 JP 2018020132 W JP2018020132 W JP 2018020132W WO 2018225537 A1 WO2018225537 A1 WO 2018225537A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
antenna
dielectric
frequency
frequency signal
Prior art date
Application number
PCT/JP2018/020132
Other languages
English (en)
French (fr)
Inventor
正裕 伊澤
良樹 山田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019523452A priority Critical patent/JP6888674B2/ja
Priority to CN201880037240.5A priority patent/CN110710057A/zh
Publication of WO2018225537A1 publication Critical patent/WO2018225537A1/ja
Priority to US16/704,191 priority patent/US11258171B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to an antenna that transmits and receives a plurality of high-frequency signals having different frequencies.
  • Patent Document 1 and Patent Document 2 describe a patch antenna including a radiating element to which a high-frequency signal is fed by a conductor and a parasitic element using electromagnetic coupling.
  • the parasitic element forms a loop-shaped slot antenna.
  • the frequency of the first high-frequency signal transmitted and received by the radiating element and the frequency of the second high-frequency signal transmitted and received by the parasitic element are set by appropriately setting the shapes of the radiating element and the parasitic element. Are different.
  • the antenna described in Patent Document 1 is a dual-frequency antenna.
  • the antenna described in Patent Document 2 uses a parasitic element as a booster antenna, and is an antenna for one frequency.
  • the antenna described in Patent Document 2 includes a bent reflector conductor on the side opposite to the radiation surface side of the radiation element, and the radiation characteristics are adjusted by the shape of the reflector conductor.
  • the antenna described in Patent Document 1 is a combination of a patch antenna and a loop slot antenna, and the loop slot antenna is disposed between the radiating element and the ground conductor. For this reason, the shape of the entire antenna is complicated, and it is not easy to obtain desired characteristics.
  • the antenna described in Patent Document 2 uses a reflector conductor to adjust the characteristics of the antenna, and requires elements other than a radiating element and a parasitic element that actually transmit and receive a high-frequency signal. Further, in the antenna described in Patent Document 2, when applied to a dual-frequency antenna, a reflector conductor having a shape suitable for two frequencies cannot be easily realized.
  • an object of the present invention is to realize a simple and small antenna capable of obtaining desired characteristics with respect to two frequencies.
  • the antenna of the present invention includes a dielectric substrate, a radiating element, a parasitic element, and a ground conductor.
  • the dielectric substrate has a flat plate shape having a front surface and a back surface facing each other.
  • the radiating element is disposed between the front surface and the back surface of the dielectric substrate, and transmits and receives a high-frequency signal having a first frequency.
  • the parasitic element is disposed on the surface of the dielectric substrate and transmits and receives a high-frequency signal having the second frequency.
  • the ground conductor is disposed on the back surface of the dielectric base material.
  • the second frequency is lower than the first frequency.
  • the dielectric substrate has an electric field interface that reflects a high-frequency signal of the second frequency at a midway position in the thickness direction orthogonal to the front surface and the back surface.
  • the antenna of the present invention preferably has the following configuration.
  • the dielectric substrate includes a first dielectric layer having a first dielectric constant and a second dielectric layer having a second dielectric constant having a dielectric constant lower than the first dielectric constant.
  • the first dielectric layer and the second dielectric layer are laminated, and the surface of the second dielectric layer opposite to the first dielectric layer side is the surface of the dielectric substrate.
  • the interface between the two dielectric layers having different relative dielectric constants becomes the interface of the electric field that causes reflection.
  • the difference in relative dielectric constant between the first relative dielectric constant and the second relative dielectric constant is preferably 3 or more.
  • the first dielectric layer and the second dielectric layer may be made of different materials.
  • an electric field interface that causes reflection is formed by stacking dielectric layers of different materials.
  • the first dielectric layer and the second dielectric layer are made of the same material, and the first dielectric layer or the second dielectric layer is provided with an adjustment member that changes the effective relative dielectric constant. You may have.
  • an electric field interface that causes reflection is formed on a dielectric base material of one kind of material.
  • the second dielectric layer may have an adjustment member that lowers the effective relative permittivity of the second dielectric layer.
  • the dielectric constant of the second dielectric layer is adjusted to form an electric field interface that causes reflection.
  • the first dielectric layer may have an adjusting member that increases the effective relative dielectric constant of the first dielectric layer.
  • the dielectric constant of the first dielectric layer is adjusted to form an electric field interface that causes reflection.
  • the antenna of the present invention may have the following configuration.
  • the antenna includes a plurality of parasitic elements having the same shape as the above-described parasitic elements and a plurality of radiating elements having the same shape as the above-described radiating elements.
  • the plurality of parasitic elements and the plurality of radiating elements are arranged.
  • an array antenna is formed, and the distance between the plurality of parasitic elements and the ground conductor for the high-frequency signal of the second frequency is increased.
  • an antenna capable of obtaining desired characteristics with respect to two frequencies can be realized in a simple and small size.
  • FIG. 1A is a plan view of the antenna 10 according to the first embodiment of the present invention
  • FIG. 1B is a side sectional view of the antenna 10.
  • FIG. 2 is an external perspective view of the antenna 10 according to the first embodiment of the present invention.
  • 3A is a simulation result showing the electric field distribution of the antenna 10 according to the first embodiment of the present invention
  • FIG. 3B is a simulation result showing the electric field distribution of the antenna of the comparative configuration.
  • FIG. 4 shows an R.P. of antenna 10 according to the first embodiment of the present invention.
  • R.P. L. It is a graph which shows the frequency characteristic of (reflection loss).
  • FIG. 5 is a side sectional view of an antenna 10A according to the second embodiment of the present invention.
  • FIG. 6 is a side sectional view of an antenna 10B according to the third embodiment of the present invention.
  • FIG. 7 is a side sectional view of an antenna 10C according to the fourth embodiment of the present invention.
  • FIG. 8 is a side sectional view of an antenna 10D according to the fifth embodiment of the present invention.
  • FIG. 9 is a side sectional view of an antenna 10E according to the sixth embodiment of the present invention.
  • FIG. 10 is a side sectional view of an antenna 10F according to a seventh embodiment of the present invention.
  • FIG. 1A is a plan view of the antenna 10 according to the first embodiment of the present invention
  • FIG. 1B is a side sectional view of the antenna 10.
  • FIG. 2 is an external perspective view of the antenna 10 according to the first embodiment of the present invention.
  • the antenna 10 includes a dielectric substrate 20, a radiating element 30, a parasitic element 40, a ground conductor 50, and a feeding conductor 60. .
  • the dielectric substrate 20 is rectangular in plan view.
  • the dielectric substrate 20 includes a first dielectric layer 21 and a second dielectric layer 22.
  • the first dielectric layer 21 and the second dielectric layer 22 are rectangular flat films in plan view.
  • the first dielectric layer 21 and the second dielectric layer 22 are laminated so that their flat film surfaces face each other.
  • the surface of the first dielectric layer 21 opposite to the surface on the second dielectric layer 22 side is the back surface of the dielectric substrate 20, and the surface of the second dielectric layer 22 on the first dielectric layer 21 side is The opposite surface is the surface of the dielectric substrate 20. That is, the dielectric substrate 20 has a structure in which the first dielectric layer 21 and the second dielectric layer 22 are laminated in a thickness direction perpendicular to the front surface and the back surface. is there.
  • the first dielectric layer 21 is made of a material having a relative dielectric constant ⁇ r1.
  • the relative dielectric constant ⁇ r1 corresponds to the “first relative dielectric constant” of the present invention.
  • the first dielectric layer 21 is made of, for example, LTCC (low temperature fired ceramic).
  • the relative dielectric constant ⁇ r1 is preferably 10 or less.
  • the second dielectric layer 22 is made of a material having a relative dielectric constant ⁇ r2.
  • the relative dielectric constant ⁇ r2 corresponds to the “second relative dielectric constant” of the present invention.
  • the second dielectric layer 22 is made of, for example, polyimide.
  • the relative dielectric constant ⁇ r2 is lower than the relative dielectric constant ⁇ r1. More specifically, the relative dielectric constant ⁇ r2 is preferably 3 or more lower than the relative dielectric constant ⁇ r1.
  • the electric field interface 200 acts to reflect a part of the electric field from the second dielectric layer 22 toward the first dielectric layer 21.
  • the radiating element 30 is rectangular in plan view and is made of a metal such as copper (Cu).
  • the radiating element 30 is formed with a size that enables transmission and reception of a high-frequency signal having a first frequency (first high-frequency signal).
  • first high-frequency signal a high-frequency signal having a first frequency
  • the first frequency is not limited to a single frequency on the frequency axis, but a frequency having a predetermined frequency width (frequency band).
  • the radiating element 30 is disposed in the middle of the dielectric base material 20 in the thickness direction. More specifically, it is disposed on the contact surface between the first dielectric layer 21 and the second dielectric layer 22.
  • the parasitic element 40 is a rectangle having an opening in the center in plan view, and is made of a metal such as copper (Cu).
  • the planar area of the parasitic element 40 is larger than the planar area of the radiating element 30 and is formed to have a dimension that enables transmission and reception of a high-frequency signal having a second frequency (second high-frequency signal).
  • the second frequency here is not limited to a single frequency on the frequency axis, but is a frequency having a predetermined frequency width (frequency band).
  • the first frequency is higher than the second frequency.
  • the second frequency is lower than the first frequency.
  • the first frequency is a 39 GHz band
  • the second frequency is a 26 GHz band.
  • the parasitic element 40 is disposed on the surface of the dielectric base 20, that is, the surface opposite to the contact surface of the second dielectric layer 22 with the first dielectric layer 21.
  • the parasitic element 40 overlaps the radiating element 30 in plan view.
  • the ground conductor 50 is made of a metal such as copper (Cu).
  • the ground conductor 50 is disposed on substantially the entire back surface of the dielectric base material 20, that is, on substantially the entire surface of the first dielectric layer 21 opposite to the contact surface with the second dielectric layer 22.
  • the feeding conductor 60 includes a feeding terminal conductor 61 and a connection conductor 62.
  • the power supply terminal conductor 61 has a rectangular shape and is made of a metal such as copper (Cu).
  • the power supply terminal conductor 61 is disposed on the back surface of the dielectric substrate 20.
  • the power supply terminal conductor 61 is separated from the ground conductor 50 via the conductor non-forming portion 500.
  • the connection conductor 62 is a so-called via conductor using a silver (Ag) paste or the like, and is a conductor that penetrates the first dielectric layer 21 in the thickness direction.
  • the connection conductor 62 connects the power supply terminal conductor 61 and the radiating element 30.
  • the antenna 10 radiates the first high-frequency signal from the radiating element 30 when the power supply conductor 60 supplies power for the first high-frequency signal.
  • the antenna 10 radiates the second high-frequency signal from the parasitic element 40 when the power supply conductor 60 supplies power for the second high-frequency signal.
  • the dielectric substrate 20 has the electric field interface 200 formed in the middle of the thickness direction. As shown in FIG. 3A, a discontinuous surface of the electric field is generated from the radiation surface of the second high-frequency signal toward the ground conductor 50.
  • FIG. 3A is a simulation result showing the electric field distribution of the antenna 10 according to the first embodiment of the present invention
  • FIG. 3B is a simulation result showing the electric field distribution of the antenna 10 of the comparative configuration.
  • FIG. 3A shows a case where the relative dielectric constant ⁇ r1 is 6.3 and the relative dielectric constant ⁇ r2 is 2.3.
  • the comparative configuration shown in FIG. 3B is a configuration that is structurally similar to the configuration according to the first embodiment of the present invention, and has a small difference between the relative permittivity ⁇ r1 and the relative permittivity ⁇ r2.
  • FIG. 3A and FIG. 3B show that the light color has a higher electric field strength and the dark color has a lower electric field strength.
  • the electric field discontinuity at the electric field interface 200 is improved as compared with the comparative configuration. To do.
  • the electric field interface 200 functions as a reflecting surface that reflects the second high-frequency signal from the parasitic element 40 toward the ground conductor 50.
  • the distance between the parasitic element 40 and the ground conductor 50 for the second high-frequency signal becomes longer than the physical distance. Therefore, the frequency band of the second high-frequency signal radiated from the parasitic element 40 is widened. That is, the band characteristic for the second high-frequency signal is improved, and a desired radiation characteristic for the second high-frequency signal can be realized.
  • the first high-frequency signal has a higher frequency than the second high-frequency signal, and the radiating element 30 is disposed at the interface between the first dielectric layer 21 and the second dielectric layer 22. Therefore, the first high-frequency signal is hardly affected by the electric field interface 200, and a desired radiation characteristic for the first high-frequency signal can be realized.
  • FIG. 4 shows the R.D. of the antenna 10 according to the first embodiment of the present invention.
  • f1 indicates the frequency band of the first frequency
  • f2 indicates the frequency band of the second frequency.
  • the antenna of the comparative configuration has a large reflection at the first frequency f1
  • the antenna 10 of the present embodiment has a small reflection at the first frequency f1 and a predetermined reflection.
  • the width of the frequency band in which loss is suppressed can be increased.
  • the width of the frequency band in which reflection is small and reflection loss is suppressed can be increased.
  • a wide frequency band can be realized with respect to two frequencies, and a desired radiation characteristic can be realized.
  • a reflector conductor or the like need not be used, and a wide frequency band with respect to two frequencies is realized with the minimum components that transmit and receive the first high-frequency signal and the second high-frequency signal. it can. That is, a simple and small antenna capable of obtaining desired characteristics with respect to two frequencies can be realized.
  • the simulation result in the case where the difference between the relative permittivity ⁇ r1 and the relative permittivity ⁇ r2 is 3 or more is shown.
  • This difference is appropriately adjusted according to the desired radiation characteristics of the antenna 10. Is possible. However, by setting this difference to 3 or more, the effective distance extending effect due to the reflection of the second high-frequency signal is increased. Therefore, this difference is preferably 3 or more.
  • the relative dielectric constant ⁇ r1 is 10 or less, but may be larger than 10 depending on the specifications of the antenna 10. However, by setting the relative dielectric constant ⁇ r1 to 10 or less, it is possible to suppress the deterioration of the radiation characteristics of the first high-frequency signal. Therefore, the relative dielectric constant ⁇ r1 is preferably 10 or less.
  • FIG. 5 is a side sectional view of an antenna 10A according to the second embodiment of the present invention.
  • the antenna 10A according to the second embodiment differs from the antenna 10 according to the first embodiment in the position of the radiating element 30.
  • the other configuration of the antenna 10A is the same as the configuration of the antenna 10, and the description of the same portion is omitted.
  • the radiating element 30 is disposed inside the second dielectric layer 22 in the dielectric substrate 20. Even with such a configuration, the effect of extending the distance from the parasitic element 40 to the ground conductor 50 with respect to the second high-frequency signal can be obtained as in the first embodiment. Therefore, the antenna 10A can obtain the same effects as the antenna 10. In this configuration, the coupling between the radiating element 30 and the parasitic element 40 can be strengthened. Further, the distance between the radiating element 30 and the ground conductor 50 is increased, and the band of the first high-frequency signal can be increased.
  • FIG. 6 is a side sectional view of an antenna 10B according to the third embodiment of the present invention.
  • the antenna 10 ⁇ / b> B according to the third embodiment differs from the antenna 10 according to the first embodiment in the position of the radiating element 30.
  • the other configuration of the antenna 10B is the same as the configuration of the antenna 10, and the description of the same portion is omitted.
  • the radiating element 30 is disposed inside the first dielectric layer 21 of the dielectric substrate 20. Even with such a configuration, the effect of extending the distance from the parasitic element 40 to the ground conductor 50 with respect to the second high-frequency signal can be obtained as in the first embodiment. Therefore, the antenna 10B can obtain the same effects as the antenna 10. In this configuration, unnecessary coupling between the radiating element 30 and the parasitic element 40 can be suppressed.
  • FIG. 7 is a side sectional view of an antenna 10C according to the fourth embodiment of the present invention.
  • the antenna 10C according to the fourth embodiment differs from the antenna 10 according to the first embodiment in the configuration of the dielectric substrate 20C.
  • the other configuration of the antenna 10C is the same as the configuration of the antenna 10, and the description of the same portion is omitted.
  • the dielectric base 20C includes a first dielectric layer 201 and a second dielectric layer 202 made of the same material. That is, the dielectric base material 20C is made of a single material, and forms the first dielectric layer 201 and the second dielectric layer 202 by the internal structure.
  • the first dielectric layer 201 and the second dielectric layer 202 are made of a material having the same relative dielectric constant as that of the first dielectric layer 21 of the antenna 10 of the first embodiment.
  • the first dielectric layer 201 does not have the bubbles 220.
  • the second dielectric layer 202 has a plurality of bubbles 220. This bubble 220 corresponds to the “adjusting member” of the present invention.
  • the plurality of bubbles 220 are preferably arranged substantially uniformly over the entire second dielectric layer 202.
  • the dielectric base material 20 ⁇ / b> C can be realized by stacking one or a plurality of dielectric sheets that do not have the bubbles 220 and a plurality of dielectric sheets that have the bubbles 220.
  • the effective relative dielectric constant of the second dielectric layer 202 having the plurality of bubbles 220 is the first It becomes lower than the effective relative dielectric constant of the dielectric layer 201.
  • an electric field interface 200C can be formed at the interface between the first dielectric layer 201 and the second dielectric layer 202.
  • the relationship between the first dielectric layer 201 and the second dielectric layer 202 of the antenna 10 ⁇ / b> C is substantially the same as the relationship between the first dielectric layer 201 and the second dielectric layer 202 of the antenna 10. Therefore, the antenna 10 ⁇ / b> C can obtain the same effects as the antenna 10.
  • One dielectric layer 201 may contain bubbles 220.
  • FIG. 8 is a side sectional view of an antenna 10D according to the fifth embodiment of the present invention.
  • the antenna 10D according to the fifth embodiment differs from the antenna 10 according to the first embodiment in the configuration of the dielectric base 20D.
  • the other configuration of the antenna 10D is the same as the configuration of the antenna 10, and the description of the same portion is omitted.
  • the dielectric substrate 20D includes a first dielectric layer 201 and a second dielectric layer 202 made of the same material. That is, the dielectric base material 20D is made of a single material, and forms the first dielectric layer 201 and the second dielectric layer 202 by the internal structure.
  • the first dielectric layer 201 and the second dielectric layer 202 are made of a material having the same relative dielectric constant as that of the second dielectric layer 22 of the antenna 10 of the first embodiment.
  • the first dielectric layer 201 has a plurality of conductor pillars 230.
  • the conductor pillar 230 corresponds to the “adjusting member” of the present invention.
  • the plurality of conductor pillars 230 are not connected to the radiating element 30, the ground conductor 50, and the power feeding conductor 60.
  • the plurality of conductor pillars 230 are preferably disposed substantially uniformly over the entire second dielectric layer 202.
  • the dielectric base material 20D can be realized by laminating a dielectric sheet that does not have the conductor pillars 230 and a dielectric sheet that has a plurality of conductor pillars 230.
  • the conductor pillar 230 can also be realized by stacking a plurality of dielectric sheets each having a via conductor and connecting via conductors arranged in the thickness direction.
  • the effective relative dielectric constant of the first dielectric layer 201 having the plurality of conductive pillars 230 is It becomes higher than the effective relative dielectric constant of the two dielectric layers 202.
  • an electric field interface 200D can be formed at the interface between the first dielectric layer 201 and the second dielectric layer 202.
  • the relationship between the first dielectric layer 201 and the second dielectric layer 202 of the antenna 10 ⁇ / b> D is substantially the same as the relationship between the first dielectric layer 201 and the second dielectric layer 202 of the antenna 10. Therefore, the antenna 10D can obtain the same effects as the antenna 10.
  • the conductor pillar 230 is not included in the second dielectric layer 202 .
  • the relationship between the effective relative permittivity of the first dielectric layer 201 and the effective permittivity of the second dielectric layer 202 is the same as the relationship between the above-described relative permittivity ⁇ r1 and relative permittivity ⁇ r2
  • the two dielectric layers 202 may include the conductor pillars 230.
  • FIG. 9 is a side sectional view of an antenna 10E according to the sixth embodiment of the present invention.
  • the antenna 10E according to the sixth embodiment is different from the antenna 10 according to the first embodiment in that it is an array antenna.
  • the basic configuration of the antenna 10E is the same as the configuration of the antenna 10, and the description of the same portion is omitted.
  • the antenna 10E includes a dielectric substrate 20, a plurality of radiating elements 30, a plurality of parasitic elements 40, a grounding conductor 50, and a plurality of feeding conductors 60.
  • the plurality of power supply conductors 60 are connected to the power supply line 70.
  • the dielectric substrate 20 has a laminated structure of a first dielectric layer 21 and a second dielectric layer 22.
  • the plurality of radiating elements 30 have the same shape.
  • the plurality of radiating elements 30 are arranged and arranged at the interface 200 between the first dielectric layer 21 and the second dielectric layer 22.
  • the plurality of parasitic elements 40 have the same shape.
  • the plurality of parasitic elements 40 are arranged and arranged on the surface of the dielectric substrate 20.
  • the antenna 10E can transmit and receive a two-frequency high-frequency signal to realize an array antenna having a predetermined directivity.
  • the antenna 10E is an array antenna arranged in one direction, but may be an array antenna arranged two-dimensionally along two orthogonal directions.
  • FIG. 10 is a side sectional view of an antenna 10F according to a seventh embodiment of the present invention.
  • the antenna 10F according to the seventh embodiment differs from the antenna 10E according to the sixth embodiment in the positions of the plurality of radiating elements 30.
  • the other configuration of the antenna 10F is the same as that of the antenna 10E, and the description of the same portion is omitted.
  • the plurality of radiating elements 30 conform to the configuration of the antenna 10, the antenna 10A, or the antenna 10B described above, and positions in the thickness direction of the dielectric base material 20 are appropriately set.
  • the first radiating element 30 is disposed at the interface 200 between the first dielectric layer 201 and the second dielectric layer 202, and the second radiating element 30 is the first radiating element 30.
  • the third radiating element 30 is disposed inside the dielectric layer 201, and the third radiating element 30 is disposed inside the second dielectric layer 202.
  • the antenna 10F can transmit and receive a high-frequency signal of two frequencies and realize an array antenna having a predetermined directivity, similarly to the antenna 10E. Moreover, by providing such a configuration, the antenna 10F can adjust the directivity of the first high-frequency signal. Thereby, various radiation characteristics can be realized for the first high-frequency signal.
  • the antenna 10F is an array antenna arranged in one direction, but may be an array antenna arranged two-dimensionally along two orthogonal directions.
  • the example of two frequencies has been designated, but it can also be applied to three or more frequencies.
  • At least the lowest frequency of the high frequency signal uses a radiating element, and the highest frequency of the high frequency signal.
  • a parasitic element may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

アンテナ(10)は、誘電体基材(20)、放射素子(30)、無給電素子(40)、および、接地導体(50)を備える。誘電体基材(20)は、互いに対向する表面と裏面を有する平板状である。放射素子(30)は、誘電体基材(20)における表面と裏面との間に配置され、第1周波数の高周波信号を送受信する。無給電素子(40)は、誘電体基材(20)における表面に配置され、第2周波数の高周波信号を送受信する。接地導体(50)は、誘電体基材(20)における裏面に配置されている。第2周波数は、第1周波数よりも低周波数である。誘電体基材(20)は、表面と裏面とに直交する厚み方向の途中位置に、第2周波数の高周波信号を反射する電界の界面(200)を有する。

Description

アンテナ
 本発明は、周波数の異なる複数の高周波信号を送受信するアンテナに関する。
 従来、携帯通信端末用のアンテナ等として、小型のアンテナ装置が各種実用化されている。例えば、特許文献1、特許文献2には、高周波信号が導体によって給電される放射素子と、電磁界結合を利用した無給電素子とを備えたパッチアンテナが記載されている。
 特許文献1に記載のアンテナでは、無給電素子は、ループ状スロットアンテナを形成している。特許文献1に記載のアンテナは、放射素子と無給電素子との形状を適宜設定することによって、放射素子で送受信する第1高周波信号の周波数と、無給電素子で送受信する第2高周波信号の周波数とを異ならせている。これにより、特許文献1に記載のアンテナは、二周波共用のアンテナである。
 特許文献2に記載のアンテナは、無給電素子をブースタアンテナとして利用しており、一周波用のアンテナである。また、特許文献2に記載のアンテナは、放射素子の放射面側と反対側に、折れ曲がり形状のリフレクタ導体を備えており、当該リフレクタ導体の形状によって、放射特性を調整している。
特開2003-298339号公報 特開2001-326528号公報
 しかしながら、特許文献1に記載のアンテナは、パッチアンテナとループ状スロットアンテナとの組合せであり、ループ状スロットアンテナは、放射素子と接地導体との間に配置されている。このため、アンテナ全体としての形状は、複雑になり、所望の特性を得ることが容易ではない。
 特許文献2に記載のアンテナは、リフレクタ導体を用いて、アンテナの特性を調整しており、高周波信号を実際に送受信する放射素子および無給電素子以外の要素を必要とする。また、特許文献2に記載のアンテナでは、二周波共用アンテナに適用した場合、二つの周波数に対して適する形状のリフレクタ導体を容易に実現できない。
 したがって、本発明の目的は、二周波に対して所望の特性を得られる簡素且つ小型のアンテナを実現することにある。
 この発明のアンテナは、誘電体基材、放射素子、無給電素子、および、接地導体を備える。誘電体基材は、互いに対向する表面と裏面を有する平板状である。放射素子は、誘電体基材における表面と裏面との間に配置され、第1周波数の高周波信号を送受信する。無給電素子は、誘電体基材における表面に配置され、第2周波数の高周波信号を送受信する。接地導体は、誘電体基材における裏面に配置されている。第2周波数は、第1周波数よりも低周波数である。誘電体基材は、表面と裏面とに直交する厚み方向の途中位置に、第2周波数の高周波信号を反射する電界の界面を有する。
 この構成では、第2周波数の高周波信号に対する無給電素子と接地導体との距離が長くなる。
 また、この発明のアンテナでは、次の構成であることが好ましい。誘電体基材は、第1比誘電率を有する第1誘電体層と、第1比誘電率よりも低い誘電率からなる第2比誘電率を有する第2誘電体層と、を備える。第1誘電体層と第2誘電体層とは積層されており、第2誘電体層の第1誘電体層側と反対側の面は、誘電体基材の表面である。
 この構成では、比誘電率の異なる2層の誘電体層の界面が、反射を生じる電界の界面となる。
 また、この発明のアンテナでは、第1比誘電率と第2比誘電率との比誘電率の差は、3以上であることが好ましい。
 この構成では、第2周波数の高周波信号に対する帯域の広がりがより確実になる。
 また、この発明のアンテナでは、第1誘電体層と第2誘電体層とは、異なる材質であるとよい。
 この構成では、材質の異なる誘電体層の積層によって、反射を生じる電界の界面が形成される。
 また、この発明のアンテナでは、第1誘電体層と第2誘電体層とは、同じ材質であり、第1誘電体層または第2誘電体層は、実効比誘電率を変化させる調整部材を有していてもよい。
 これらの構成では、1種類の材質の誘電体基材に対して、反射を生じる電界の界面が形成される。
 また、この発明のアンテナでは、第2誘電体層は、第2誘電体層の実効比誘電率を低くする調整部材を有していてもよい。
 この構成では、第2誘電体層の比誘電率を調整して、反射を生じる電界の界面が形成される。
 また、この発明のアンテナでは、第1誘電体層は、第1誘電体層の実効比誘電率を高くする調整部材を有していてもよい。
 この構成では、第1誘電体層の比誘電率を調整して、反射を生じる電界の界面が形成される。
 また、この発明のアンテナは、次の構成であってもよい。アンテナは、上述の無給電素子と同様の形状の複数の無給電素子と、上述の放射素子と同様の形状の複数の放射素子とを備える。複数の無給電素子と複数の放射素子は、配列されている。
 この構成では、アレイアンテナが形成され、第2周波数の高周波信号に対する複数の無給電素子と接地導体との距離が長くなる。
 この発明によれば、二周波に対して所望の特性を得られるアンテナを簡素且つ小型に実現できる。
図1(A)は、本発明の第1の実施形態に係るアンテナ10の平面図であり、図1(B)は、アンテナ10の側面断面図である。 図2は本発明の第1の実施形態に係るアンテナ10の外観斜視図である。 図3(A)は、本発明の第1の実施形態に係るアンテナ10の電界分布を示すシミュレーション結果であり、図3(B)は、比較構成のアンテナの電界分布を示すシミュレーション結果である。 図4は、本発明の第1の実施形態に係るアンテナ10のR.L.(反射損失)の周波数特性と、比較構成のアンテナのR.L.(反射損失)の周波数特性とを示すグラフである。 図5は本発明の第2の実施形態に係るアンテナ10Aの側面断面図である。 図6は本発明の第3の実施形態に係るアンテナ10Bの側面断面図である。 図7は本発明の第4の実施形態に係るアンテナ10Cの側面断面図である。 図8は本発明の第5の実施形態に係るアンテナ10Dの側面断面図である。 図9は本発明の第6の実施形態に係るアンテナ10Eの側面断面図である。 図10は本発明の第7の実施形態に係るアンテナ10Fの側面断面図である。
 本発明の第1の実施形態に係るアンテナについて、図を参照して説明する。図1(A)は、本発明の第1の実施形態に係るアンテナ10の平面図であり、図1(B)は、アンテナ10の側面断面図である。図2は、本発明の第1の実施形態に係るアンテナ10の外観斜視図である。
 図1(A)、図1(B)、図2に示すように、アンテナ10は、誘電体基材20、放射素子30、無給電素子40、接地導体50、および、給電用導体60を備える。
 誘電体基材20は、平面視して矩形である。誘電体基材20は、第1誘電体層21と第2誘電体層22とを備える。第1誘電体層21と第2誘電体層22とは、平面視して矩形の平膜である。第1誘電体層21と第2誘電体層22とは、互いの平膜面が対向するように、積層されている。第1誘電体層21における第2誘電体層22側の面と反対側の面は、誘電体基材20の裏面であり、第2誘電体層22における第1誘電体層21側の面と反対側の面は、誘電体基材20の表面である。すなわち、誘電体基材20は、互いに対向する表面と裏面とを有し、当該表面および裏面に直交する厚み方向に第1誘電体層21と第2誘電体層22とが積層された構造である。
 第1誘電体層21は、比誘電率εr1の材質からなる。比誘電率εr1が本発明の「第1比誘電率」に対応する。第1誘電体層21は、例えば、LTCC(低温焼成セラミックス)等からなる。比誘電率εr1は、10以下であることが好ましい。
 第2誘電体層22は、比誘電率εr2の材質からなる。比誘電率εr2が本発明の「第2比誘電率」に対応する。第2誘電体層22は、例えば、ポリイミド等からなる。比誘電率εr2は、比誘電率εr1よりも低い。より具体的には、比誘電率εr2は、比誘電率εr1よりも3以上低いことが好ましい。
 第1誘電体層21と第2誘電体層22との比誘電率がこのような関係を有することによって、第1誘電体層21と第2誘電体層22との間には、電界の界面200が形成される。電界の界面200は、第2誘電体層22から第1誘電体層21に向かう電界の一部を反射するように作用する。
 放射素子30は、平面視において矩形であり、銅(Cu)等の金属からなる。放射素子30は、第1周波数の高周波信号(第1高周波信号)を送受信可能にする寸法で形成されている。なお、ここでの第1周波数とは、周波数軸上の1点の周波数に限るものではなく、所定の周波数幅(周波数帯域)を有する周波数である。
 放射素子30は、誘電体基材20の厚み方向の途中位置に配置されている。より具体的には、第1誘電体層21と第2誘電体層22との当接面に配置されている。
 無給電素子40は、平面視において中央に開口を有する矩形であり、銅(Cu)等の金属からなる。無給電素子40の平面面積は、放射素子30の平面面積よりも大きく、第2周波数の高周波信号(第2高周波信号)を送受信可能にする寸法で形成されている。なお、ここでの第2周波数とは、周波数軸上の1点の周波数に限るものではなく、所定の周波数幅(周波数帯域)を有する周波数である。
 第1周波数は、第2周波数よりも高周波である。言い換えれば、第2周波数は、第1周波数よりも低周波である。例えば、第1周波数は、39GHz帯であり、第2周波数は、26GHz帯である。
 無給電素子40は、誘電体基材20の表面、すなわち、第2誘電体層22における第1誘電体層21との当接面と反対側の面に配置されている。平面視において、無給電素子40は、放射素子30に重なっている。
 接地導体50は、銅(Cu)等の金属からなる。接地導体50は、誘電体基材20の裏面の略全面、すなわち、第1誘電体層21における第2誘電体層22との当接面と反対側の面の略全面に配置されている。
 給電用導体60は、給電端子導体61と接続導体62とを備える。給電端子導体61は、矩形であり、銅(Cu)等の金属からなる。給電端子導体61は、誘電体基材20の裏面に配置されている。給電端子導体61は、導体非形成部500を介して、接地導体50と分離されている。接続導体62は、銀(Ag)ペースト等を用いた所謂ビア導体と称されるものであり、第1誘電体層21を厚み方向に貫通する導体である。接続導体62は、給電端子導体61と放射素子30とを接続している。
 このような構成において、アンテナ10は、給電用導体60から第1高周波信号用の給電がされると、第1高周波信号を放射素子30から放射する。また、アンテナ10は、給電用導体60から第2高周波信号用の給電がされると、第2高周波信号を無給電素子40から放射する。
 ここで、上述のように、誘電体基材20には、厚み方向の途中位置に、電界の界面200が形成されている。図3(A)に示すように、第2高周波信号の放射面から接地導体50に向けて、電界の不連続面が生じる。
 図3(A)は、本発明の第1の実施形態に係るアンテナ10の電界分布を示すシミュレーション結果であり、図3(B)は、比較構成のアンテナ10の電界分布を示すシミュレーション結果である。図3(A)は、比誘電率εr1が6.3で比誘電率εr2が2.3の場合を示す。図3(B)に示す比較構成は、本発明の第1の実施形態に係る構成と構造的には同様の構成であり、比誘電率εr1と比誘電率εr2との差が小さい構成である。図3(A)、図3(B)では、淡色ほど電界強度が強く、濃色ほど電界強度が弱いことを示している。
 図3(A)、図3(B)に示すように、本発明の第1の実施形態の構成を用いることによって、比較構成と比べて、電界の界面200での電界の不連続性が向上する。
 特に、比誘電率εr1と比誘電率εr2と差が3以上である場合、図3(A)に示すような電界の界面200における電界の不連続性がより向上する。
 そして、比誘電率εr1が比誘電率εr2よりも高いことによって、電界の界面200は、無給電素子40から接地導体50に向けて、第2高周波信号を反射する反射面として機能する。これにより、第2高周波信号に対する無給電素子40と接地導体50との距離は、物理的な距離よりも長くなる。したがって、無給電素子40から放射される第2高周波信号の周波数帯域は広くなる。すなわち、第2高周波信号に対する帯域特性は改善し、第2高周波信号に対する所望の放射特性を実現できる。
 一方、第1高周波信号は、第2高周波信号と比較して高周波数であり、放射素子30は第1誘電体層21と第2誘電体層22との界面に配置されている。したがって、第1高周波信号は、電界の界面200の影響を殆ど受けず、第1高周波信号に対する所望の放射特性を実現できる。
 図4は、本発明の第1の実施形態に係るアンテナ10のR.L.(反射損失)の周波数特性と、比較構成のアンテナのR.L.(反射損失)の周波数特性とを示すグラフである。
 図4において、f1が第1周波数の周波数帯域を示し、f2が第2周波数の周波数帯域を示す。図4に示すように、比較構成のアンテナでは、第1周波数f1において反射が大きいのに対して、本実施形態のアンテナ10では、第1周波数f1に対して反射が少なく、且つ、所定の反射損失の抑制された周波数帯域の幅を大きく取れる。一方、第2周波数f2に対しても、同様に、反射が少なく、且つ、反射損失の抑制された周波数帯域の幅を大きく取れる。
 このように、本実施形態のアンテナ10では、二周波に対して広い周波数帯域を実現でき、所望の放射特性を実現できる。そして、本実施形態のアンテナ10では、リフレクタ導体等を用いなくてもよく、第1高周波信号と第2高周波信号とを送受信する最小限の構成要素で、二周波に対して広い周波数帯域を実現できる。すなわち、二周波に対して所望の特性を得られる簡素且つ小型のアンテナを実現できる。
 なお、上述の説明では、比誘電率εr1と比誘電率εr2との差が3以上である場合のシミュレーション結果を示したが、この差は、アンテナ10として所望とする放射特性に応じて適宜調整が可能である。しかしながら、この差を3以上とすることによって、上述の第2高周波信号の反射による実効的な距離の延長効果は高くなる。したがって、この差は、3以上であることが好ましい。また、上述の説明では、比誘電率εr1を10以下としたが、アンテナ10としての仕様に応じて、10よりも大きくてもよい。しかしながら、比誘電率εr1を10以下とすることによって、第1高周波信号の放射特性の劣化を抑制できる。したがって、比誘電率εr1を10以下とすることが好ましい。
 次に、本発明の第2の実施形態に係るアンテナについて、図を参照して説明する。図5は、本発明の第2の実施形態に係るアンテナ10Aの側面断面図である。
 図5に示すように、第2の実施形態に係るアンテナ10Aは、第1の実施形態に係るアンテナ10に対して、放射素子30の位置において異なる。アンテナ10Aの他の構成は、アンテナ10の構成と同様であり、同様の箇所の説明は省略する。
 放射素子30は、誘電体基材20における第2誘電体層22の内部に配置されている。このような構成であっても、第1の実施形態と同様に、第2高周波信号に対する無給電素子40から接地導体50までの距離の延長効果を得られる。したがって、アンテナ10Aは、アンテナ10と同様の作用効果を得られる。また、この構成では、放射素子30と無給電素子40との結合を強くできる。また、放射素子30と接地導体50との距離が長くなり、第1高周波信号の帯域も広くできる。
 次に、本発明の第3の実施形態に係るアンテナについて、図を参照して説明する。図6は、本発明の第3の実施形態に係るアンテナ10Bの側面断面図である。
 図6に示すように、第3の実施形態に係るアンテナ10Bは、第1の実施形態に係るアンテナ10に対して、放射素子30の位置において異なる。アンテナ10Bの他の構成は、アンテナ10の構成と同様であり、同様の箇所の説明は省略する。
 放射素子30は、誘電体基材20における第1誘電体層21の内部に配置されている。このような構成であっても、第1の実施形態と同様に、第2高周波信号に対する無給電素子40から接地導体50までの距離の延長効果を得られる。したがって、アンテナ10Bは、アンテナ10と同様の作用効果を得られる。また、この構成では、放射素子30と無給電素子40との不要な結合を抑制できる。
 次に、本発明の第4の実施形態に係るアンテナについて、図を参照して説明する。図7は、本発明の第4の実施形態に係るアンテナ10Cの側面断面図である。
 図7に示すように、第4の実施形態に係るアンテナ10Cは、第1の実施形態に係るアンテナ10に対して、誘電体基材20Cの構成において異なる。アンテナ10Cの他の構成は、アンテナ10の構成と同様であり、同様の箇所の説明は省略する。
 誘電体基材20Cは、同一の材質からなる第1誘電体層201と第2誘電体層202とを備える。すなわち、誘電体基材20Cは、単一の材質からなり、内部構造によって第1誘電体層201と第2誘電体層202とを形成している。
 第1誘電体層201および第2誘電体層202は、第1の実施形態のアンテナ10の第1誘電体層21と同じ比誘電率を有する材質からなる。第1誘電体層201は、気泡220を有さない。第2誘電体層202は、複数の気泡220を有する。この気泡220が本発明の「調整部材」に対応する。複数の気泡220は、第2誘電体層202の全体に亘って、略均一に配置されていることが好ましい。
 誘電体基材20Cは、気泡220を有さない単数または複数の誘電体シートと、気泡220を有する複数の誘電体シートとを積層することで実現可能である。
 このような構成では、第1誘電体層201と第2誘電体層202との材質が同じであっても、複数の気泡220を有する第2誘電体層202の実効比誘電率は、第1誘電体層201の実効比誘電率よりも低くなる。
 この構成により、第1誘電体層201と第2誘電体層202との界面に、電界の界面200Cを形成できる。これにより、アンテナ10Cの第1誘電体層201と第2誘電体層202との関係は、アンテナ10の第1誘電体層201と第2誘電体層202との関係と略同じになる。したがって、アンテナ10Cは、アンテナ10と同様の作用効果を得られる。
 なお、本実施形態では、第1誘電体層201に気泡220が含まれない態様を示した。しかしながら、第1誘電体層201の実効比誘電率と第2誘電体層202の実効誘電率との関係が、上述の比誘電率εr1と比誘電率εr2との関係と同じになれば、第1誘電体層201に気泡220が含まれていてもよい。
 次に、本発明の第5の実施形態に係るアンテナについて、図を参照して説明する。図8は、本発明の第5の実施形態に係るアンテナ10Dの側面断面図である。
 図8に示すように、第5の実施形態に係るアンテナ10Dは、第1の実施形態に係るアンテナ10に対して、誘電体基材20Dの構成において異なる。アンテナ10Dの他の構成は、アンテナ10の構成と同様であり、同様の箇所の説明は省略する。
 誘電体基材20Dは、同一の材質からなる第1誘電体層201と第2誘電体層202とを備える。すなわち、誘電体基材20Dは、単一の材質からなり、内部構造によって第1誘電体層201と第2誘電体層202とを形成している。
 第1誘電体層201および第2誘電体層202は、第1の実施形態のアンテナ10の第2誘電体層22と同じ比誘電率を有する材質からなる。第1誘電体層201は、複数の導体柱230を有する。この導体柱230が本発明の「調整部材」に対応する。複数の導体柱230は、放射素子30、接地導体50、および、給電用導体60に接続されていない。複数の導体柱230は、第2誘電体層202の全体に亘って、略均一に配置されていることが好ましい。
 誘電体基材20Dは、導体柱230を有さない誘電体シートと、複数の導体柱230を有する誘電体シートとを積層することで実現可能である。導体柱230は、それぞれにビア導体を備える複数の誘電体シートを積層し、厚み方向に並ぶビア導体を接続することでも、実現可能である。
 このような構成では、第1誘電体層201と第2誘電体層202との材質が同じであっても、複数の導体柱230を有する第1誘電体層201の実効比誘電率は、第2誘電体層202の実効比誘電率よりも高くなる。
 この構成により、第1誘電体層201と第2誘電体層202との界面に、電界の界面200Dを形成できる。これにより、アンテナ10Dの第1誘電体層201と第2誘電体層202との関係は、アンテナ10の第1誘電体層201と第2誘電体層202との関係と略同じになる。したがって、アンテナ10Dは、アンテナ10と同様の作用効果を得られる。
 なお、本実施形態では、第2誘電体層202に導体柱230が含まれない態様を示した。しかしながら、第1誘電体層201の実効比誘電率と第2誘電体層202の実効誘電率との関係が、上述の比誘電率εr1と比誘電率εr2との関係と同じになれば、第2誘電体層202に導体柱230が含まれていてもよい。
 次に、本発明の第6の実施形態に係るアンテナについて、図を参照して説明する。図9は、本発明の第6の実施形態に係るアンテナ10Eの側面断面図である。
 図9に示すように、第6の実施形態に係るアンテナ10Eは、第1の実施形態に係るアンテナ10に対して、アレイアンテナである点において異なる。アンテナ10Eの基本的な構成は、アンテナ10の構成と同様であり、同様の箇所の説明は省略する。
 アンテナ10Eは、誘電体基材20、複数の放射素子30、複数の無給電素子40、接地導体50、および、複数の給電用導体60を備える。複数の給電用導体60は、給電ライン70に接続されている。
 誘電体基材20は、第1誘電体層21と第2誘電体層22との積層構造である。複数の放射素子30は、同じ形状である。複数の放射素子30は、第1誘電体層21と第2誘電体層22との界面200に、配列して配置されている。複数の無給電素子40は、同じ形状である。複数の無給電素子40は、誘電体基材20の表面に、配列して配置されている。
 このような構成とすることによって、アンテナ10Eは、二周波の高周波信号を送受信し、所定の指向性を有するアレイアンテナを実現できる。
 なお、図9に示す例では、アンテナ10Eは、一方向に配列されたアレイアンテナであるが、直交する二方向に沿って二次元配列されたアレイアンテナであってもよい。
 次に、本発明の第7の実施形態に係るアンテナについて、図を参照して説明する。図10は、本発明の第7の実施形態に係るアンテナ10Fの側面断面図である。
 図10に示すように、第7の実施形態に係るアンテナ10Fは、第6の実施形態に係るアンテナ10Eに対して、複数の放射素子30の位置において異なる。アンテナ10Fの他の構成は、アンテナ10Eと同様であり、同様の箇所の説明は省略する。
 複数の放射素子30は、上述のアンテナ10、アンテナ10A、または、アンテナ10Bの構成にしたがっており、誘電体基材20における厚み方向の位置が適宜設定されている。例えば、図10に示す態様では、第1の放射素子30は、第1誘電体層201と第2誘電体層202との界面200に配置されており、第2の放射素子30は、第1誘電体層201の内部に配置されており、第3の放射素子30は、第2誘電体層202の内部に配置されている。
 このような構成であっても、アンテナ10Fは、アンテナ10Eと同様に、二周波の高周波信号を送受信し、所定の指向性を有するアレイアンテナを実現できる。また、このような構成を備えることによって、アンテナ10Fは、第1高周波信号の指向性を調整することができる。これにより、第1高周波信号に対して、さらに多様な放射特性を実現できる。
 なお、図10に示す例では、アンテナ10Fは、一方向に配列されたアレイアンテナであるが、直交する二方向に沿って二次元配列されたアレイアンテナであってもよい。
 また、上述の各実施形態では、二周波の例を指名したが、三周波以上にも適用は可能であり、少なくとも最も低周波数の高周波信号には、放射素子を用い、最も高い周波数の高周波信号には無給電素子を用いればよい。
10、10A、10B、10C、10D、10E、10F:アンテナ
20、20C、20D:誘電体基材
21:第1誘電体層
22:第2誘電体層
30:放射素子
40:無給電素子
50:接地導体
60:給電用導体
61:給電端子導体
62:接続導体
70:給電ライン
200、200C、200D:界面
201:第1誘電体層
202:第2誘電体層
220:気泡
230:導体柱
500:導体非形成部

Claims (8)

  1.  互いに対向する表面と裏面を有する平板状の誘電体基材と、
     前記誘電体基材における前記表面と前記裏面との間に配置され、第1周波数の高周波信号を送受信する放射素子と、
     前記誘電体基材における前記表面に配置され、前記第2周波数の高周波信号を送受信する無給電素子と、
     前記誘電体基材における前記裏面に配置された接地導体と、
     を備え、
     前記第2周波数は、前記第1周波数よりも低周波数であり、
     前記誘電体基材は、
     前記表面と前記裏面とに直交する厚み方向の途中位置に、前記第2周波数の高周波信号を反射する電界の界面を有する、
     アンテナ。
  2.  前記誘電体基材は、
     第1比誘電率を有する第1誘電体層と、
     前記第1比誘電率よりも低い誘電率からなる第2比誘電率を有する第2誘電体層と、
     を備え、
     前記第1誘電体層と前記第2誘電体層とは積層されており、前記第2誘電体層の前記第1誘電体層側と反対側の面は、前記誘電体基材の表面である、
     請求項1に記載のアンテナ。
  3.  前記第1比誘電率と前記第2比誘電率との比誘電率の差は、3以上である、
     請求項2に記載のアンテナ。
  4.  前記第1誘電体層と前記第2誘電体層とは、異なる材質である、
     請求項2または請求項3に記載のアンテナ。
  5.  前記第1誘電体層と前記第2誘電体層とは、同じ材質であり、
     前記第1誘電体層または前記第2誘電体層は、実効比誘電率を変化させる調整部材を有する、
     請求項2または請求項3に記載のアンテナ。
  6.  前記第2誘電体層は、前記第2誘電体層の実効比誘電率を低くする前記調整部材を有する、
     請求項5に記載のアンテナ。
  7.  前記第1誘電体層は、前記第1誘電体層の実効比誘電率を高くする前記調整部材を有する、
     請求項5または請求項6に記載のアンテナ。
  8.  前記無給電素子を含む複数の無給電素子と、前記放射素子を含む複数の放射素子とを備え、
     前記複数の無給電素子と前記複数の放射素子は、配列されている、
     請求項1乃至請求項7のいずれかに記載のアンテナ。
PCT/JP2018/020132 2017-06-06 2018-05-25 アンテナ WO2018225537A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019523452A JP6888674B2 (ja) 2017-06-06 2018-05-25 アンテナ
CN201880037240.5A CN110710057A (zh) 2017-06-06 2018-05-25 天线
US16/704,191 US11258171B2 (en) 2017-06-06 2019-12-05 Antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111465 2017-06-06
JP2017-111465 2017-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/704,191 Continuation US11258171B2 (en) 2017-06-06 2019-12-05 Antenna

Publications (1)

Publication Number Publication Date
WO2018225537A1 true WO2018225537A1 (ja) 2018-12-13

Family

ID=64567052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020132 WO2018225537A1 (ja) 2017-06-06 2018-05-25 アンテナ

Country Status (4)

Country Link
US (1) US11258171B2 (ja)
JP (1) JP6888674B2 (ja)
CN (1) CN110710057A (ja)
WO (1) WO2018225537A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302795A (zh) * 2019-11-15 2021-08-24 符仙琼 建筑部件增加射频信号穿透率的介电体结构及其设置方法
JPWO2021214959A1 (ja) * 2020-04-24 2021-10-28

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110870137B (zh) * 2018-04-06 2023-04-07 松下知识产权经营株式会社 天线装置以及电器设备
CN113519091B (zh) * 2019-03-04 2022-10-25 株式会社村田制作所 通信装置
CN115004476B (zh) * 2020-01-30 2024-04-02 株式会社村田制作所 天线装置
US11705625B2 (en) 2020-06-04 2023-07-18 Tdk Corporation Antenna device
US20220013915A1 (en) * 2020-07-08 2022-01-13 Samsung Electro-Mechanics Co., Ltd. Multilayer dielectric resonator antenna and antenna module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048294U (ja) * 1984-07-31 1985-04-04 株式会社トキメック 電波吸収板体
US20070126638A1 (en) * 2005-12-02 2007-06-07 M/A-Com, Inc. Compact broadband patch antenna
WO2011118710A1 (ja) * 2010-03-26 2011-09-29 国立大学法人山口大学 不可視包囲体
JP2017092588A (ja) * 2015-11-05 2017-05-25 日本無線株式会社 2周波共用円偏波平面アンテナおよびその軸比調整方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231406A (en) * 1991-04-05 1993-07-27 Ball Corporation Broadband circular polarization satellite antenna
DE4420903C1 (de) * 1994-06-15 1996-01-25 Sekurit Saint Gobain Deutsch Antennenscheibe und Verfahren zu ihrer Herstellung
JP4297309B2 (ja) 2000-05-16 2009-07-15 古河電気工業株式会社 アンテナ装置
US6476771B1 (en) * 2001-06-14 2002-11-05 E-Tenna Corporation Electrically thin multi-layer bandpass radome
JP3735580B2 (ja) 2002-01-30 2006-01-18 京セラ株式会社 積層誘電体アンテナ
US6903687B1 (en) * 2003-05-29 2005-06-07 The United States Of America As Represented By The United States National Aeronautics And Space Administration Feed structure for antennas
KR100706024B1 (ko) * 2005-10-19 2007-04-12 한국전자통신연구원 밀리미터파 대역 광대역 마이크로스트립-도파관 변환 장치
CN1983718B (zh) * 2005-12-14 2011-05-11 中国科学技术大学 宽带宽波束微带天线单元
KR101236313B1 (ko) * 2006-08-25 2013-02-22 레이스팬 코포레이션 메타물질 구조물에 기초된 안테나
US20090058731A1 (en) * 2007-08-30 2009-03-05 Gm Global Technology Operations, Inc. Dual Band Stacked Patch Antenna
US8174450B2 (en) * 2008-04-30 2012-05-08 Topcon Gps, Llc Broadband micropatch antenna system with reduced sensitivity to multipath reception
CN101847768A (zh) * 2009-03-27 2010-09-29 南京理工大学 宽频带阻抗变换器
US8766867B2 (en) * 2010-12-16 2014-07-01 Sony Corporation Compact antenna for multiple input multiple output communications including isolated antenna elements
WO2014080360A2 (en) * 2012-11-21 2014-05-30 Tagsys Miniaturized patch antenna
EP3091608B1 (en) * 2015-05-04 2021-08-04 TE Connectivity Germany GmbH Antenna system and antenna module with a parasitic element for radiation pattern improvements
EP3479439A4 (en) * 2016-06-30 2020-02-26 INTEL Corporation PATCH ANTENNA WITH INSULATED INPUTS
CN109643742A (zh) * 2016-08-26 2019-04-16 英特尔公司 集成电路器件结构和双侧制造技术
US20180294567A1 (en) * 2017-04-06 2018-10-11 The Charles Stark Draper Laboratory, Inc. Patch antenna system with parasitic edge-aligned elements
US10741932B2 (en) * 2017-09-30 2020-08-11 Intel IP Corporation Compact radio frequency (RF) communication modules with endfire and broadside antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048294U (ja) * 1984-07-31 1985-04-04 株式会社トキメック 電波吸収板体
US20070126638A1 (en) * 2005-12-02 2007-06-07 M/A-Com, Inc. Compact broadband patch antenna
WO2011118710A1 (ja) * 2010-03-26 2011-09-29 国立大学法人山口大学 不可視包囲体
JP2017092588A (ja) * 2015-11-05 2017-05-25 日本無線株式会社 2周波共用円偏波平面アンテナおよびその軸比調整方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302795A (zh) * 2019-11-15 2021-08-24 符仙琼 建筑部件增加射频信号穿透率的介电体结构及其设置方法
JPWO2021214959A1 (ja) * 2020-04-24 2021-10-28
WO2021214959A1 (ja) * 2020-04-24 2021-10-28 三菱電機株式会社 アレーアンテナ装置
JP7109704B2 (ja) 2020-04-24 2022-07-29 三菱電機株式会社 アレーアンテナ装置

Also Published As

Publication number Publication date
JP6888674B2 (ja) 2021-06-16
JPWO2018225537A1 (ja) 2019-12-26
US20200106179A1 (en) 2020-04-02
CN110710057A (zh) 2020-01-17
US11258171B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2018225537A1 (ja) アンテナ
US9698487B2 (en) Array antenna
KR100542829B1 (ko) 송/수신용 고이득 광대역 마이크로스트립 패치 안테나 및이를 배열한 배열 안테나
US7352328B2 (en) Flat-plate MIMO array antenna with isolation element
EP2201646B1 (en) Dual polarized low profile antenna
US20090140943A1 (en) Slot antenna for mm-wave signals
US20110227793A1 (en) Multi polarization conformal channel monopole antenna
JP6195080B2 (ja) アンテナ装置
KR102669018B1 (ko) 안테나 유닛, 안테나 유닛 구비 창 유리 및 정합체
KR101557291B1 (ko) 쿼드리필러 헬릭스 안테나
CN110492242A (zh) 一种超薄半壁短路圆极化顶端辐射天线
CN109216907B (zh) 一种双馈天线以及电子设备
WO2020155346A1 (zh) 天线单元、天线系统及电子装置
TW201212387A (en) A multi-loop antenna system and an electronic device having the same
CN112736439A (zh) 天线、天线组件及电子设备
US9929462B2 (en) Multiple layer dielectric panel directional antenna
US11996629B2 (en) Beam steering antenna structure and electronic device comprising said structure
WO2020220175A1 (zh) 封装天线及雷达组件封装体
JP2020174284A (ja) アンテナ装置
TWI451632B (zh) 高增益迴圈陣列天線系統及電子裝置
CN116547864A (zh) 一种双极化基板集成式360°波束转向天线
KR200348650Y1 (ko) 야기 안테나 구조를 이용한 고이득 마이크로스트립 안테나
US20230395998A1 (en) A dual-polarized radiator arrangement for a mobile communication antenna and a mobile communication antenna comprising at least one dual-polarized radiator arrangement
WO2024037124A1 (zh) 天线模组、天线阵列及电子设备
US20230420858A1 (en) End-fire tapered slot antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813048

Country of ref document: EP

Kind code of ref document: A1