WO2020155346A1 - 天线单元、天线系统及电子装置 - Google Patents

天线单元、天线系统及电子装置 Download PDF

Info

Publication number
WO2020155346A1
WO2020155346A1 PCT/CN2019/079607 CN2019079607W WO2020155346A1 WO 2020155346 A1 WO2020155346 A1 WO 2020155346A1 CN 2019079607 W CN2019079607 W CN 2019079607W WO 2020155346 A1 WO2020155346 A1 WO 2020155346A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
helical
spiral
carrier board
spiral segment
Prior art date
Application number
PCT/CN2019/079607
Other languages
English (en)
French (fr)
Inventor
康锴
郭舒生
赖玠玮
Original Assignee
展讯通信 (上海) 有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信 (上海) 有限公司 filed Critical 展讯通信 (上海) 有限公司
Priority to US16/979,703 priority Critical patent/US11456526B2/en
Publication of WO2020155346A1 publication Critical patent/WO2020155346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to the field of antenna technology, in particular to an antenna unit, an antenna system and an electronic device.
  • the 5G new air interface standard defines multiple millimeter wave frequency bands. For example, the sum of frequency bands N257 and N258 in China, the United States, Japan, Korea, Europe and other regions is 24.25GHz to 29.5GHz, and the bandwidth relative to its center frequency is about 20%. If you want to be compatible with global differences A broadband antenna is required for the specified frequency band in the region. However, it is difficult for the existing antennas to cover a wide frequency band, resulting in the inability of mobile terminals to be used globally, which brings inconvenience to users' travel.
  • microstrip antennas are widely used in various miniaturized devices in the fields of mobile terminals, radars, and aerospace. With the further miniaturization of smart terminals, higher requirements are put forward on the size of the microstrip antenna. The size of the existing microstrip antenna is still difficult to meet the requirements of the miniaturization and slim process design of today's mobile terminals, and it also increases the cost of the integrated antenna array and the volume and area of the packaged chip.
  • an embodiment of the present invention provides an antenna unit including: a helical antenna with a three-dimensional structure, the helical antenna is arranged on a carrier board The edge area of the helical antenna; the helical antenna includes at least one turn of a helical coil, and each turn of the helical coil includes a plurality of helical segments that are not in the same plane, and the plurality of helical segments are respectively disposed in multiple layers of the carrier .
  • the carrier board includes at least two metal layers and a non-conductive dielectric layer between the two metal layers, and each turn of the spiral coil includes: a first spiral segment connected end to end, a second Spiral segment, third spiral segment, and fourth spiral segment; wherein the first spiral segment and the third spiral segment are respectively arranged in the two metal layers along a direction parallel to the plane of the carrier board , The second spiral segment and the fourth spiral segment penetrate the non-conductive dielectric layer along the thickness direction of the carrier board to electrically connect the first spiral segment and the third spiral segment. connection.
  • the carrier board includes a plurality of non-conductive dielectric layers and a plurality of metal layers alternately stacked in a thickness direction thereof
  • the helical antenna includes a multi-turn spiral coil, and a plurality of first spirals of the multi-turn spiral coil The segments are arranged in the same or different metal layers, and the multiple second spiral segments of the multi-turn spiral coil are respectively arranged in the same or different metal layers.
  • the first spiral segment and the third spiral segment both include radiating arms
  • the second spiral segment and the fourth spiral segment include through holes or blind holes filled with conductive materials The two ends of the through hole or the blind hole are respectively electrically connected to the radiation arm of the first spiral segment and the radiation arm of the third spiral segment.
  • the first spiral segment and the third spiral segment further include a solder pad, the solder pad is electrically connected to one end of the radiation arm, and both ends of the through hole or the blind hole are respectively connected to The welding pad of the first spiral segment and the welding pad of the third spiral segment are electrically connected.
  • the first spiral segment and the third spiral segment are curved or linear.
  • the first spiral segment and the third spiral segment are in the shape of a trigonometric function curve or a logarithmic function curve.
  • the projections of the first spiral segment and the third spiral segment on the plane of the carrier have an acute angle.
  • the antenna unit works in an axial radiation mode, or a mixed radiation mode of a normal radiation mode and an axial radiation mode; wherein, in the axial radiation mode, the antenna unit operates in the helical antenna
  • the axial direction of the helical antenna has the largest radiation intensity
  • in the normal radiation mode the antenna unit has the largest radiation intensity in a direction perpendicular to the axial direction of the helical antenna.
  • the helical antenna includes a multi-turn helical coil
  • the parameters of the multi-turn helical coil satisfy: 3/4 ⁇ C/ ⁇ 0 ⁇ 4/3, S ⁇ 0 /4, N ⁇ 3, where C Is the circumference of the projection of each turn of the spiral coil on a plane perpendicular to the axis of the helical antenna, S is the spacing of the multi-turn spiral coil, N is the number of turns of the multi-turn spiral coil, and ⁇ 0 is Describe the working wavelength of the helical antenna.
  • the helical antenna includes a multi-turn spiral coil, and the multi-turn spiral coil has different spiral radii.
  • the change trend of the spiral radius of the multi-turn spiral coil includes: the spiral radius of the spiral coil in the two end regions is smaller than the spiral radius of the spiral coil in the middle region.
  • a first antenna array is provided in the middle area of the carrier board, the first antenna array includes a plurality of patch units, and the maximum value of the spiral radius of the multi-turn spiral coil is less than or equal to one patch unit size of.
  • the axial direction of the helical antenna is parallel to the normal direction of the carrier board boundary of the edge region where it is located.
  • the carrier board further includes one or more ground planes, the one or more ground planes covering the middle area of the carrier board and exposing the edge area of the carrier board, the one or more ground planes
  • the ground plane is electrically connected through a contact hole that penetrates the carrier board along the thickness direction of the carrier board, and the one or more ground planes are formed close to the edge area of the carrier board toward the middle area of the carrier board.
  • a part of the helical antenna is arranged in the carrier board exposed by the gap.
  • the antenna unit further includes: a feeder transmission line arranged in the middle area of the carrier board, the feeder end of the feeder transmission line is electrically connected to the first end of the helical antenna, and the helical antenna The second end of is a free end, suitable for radiating signals.
  • an embodiment of the present invention also provides the antenna system, including: a carrier board, a first antenna array, and a second antenna array; the first antenna array is disposed in the middle area of the carrier board and includes multiple antennas.
  • the plurality of patch units are arranged along a direction parallel to the plane of the carrier board, the radiation maximum gain of the patch unit points to a direction perpendicular to the plane of the carrier board, and the helical antenna of the at least one antenna unit
  • the axis of is arranged along a direction parallel to the plane of the carrier board, and the maximum radiation gain of the antenna unit points to the axial direction of the helical antenna.
  • the second antenna array includes a plurality of antenna elements, and the plurality of antenna elements are arranged in a one-dimensional array on the carrier plate;
  • the radiation beam distribution range of the first antenna array includes A sector between ⁇ 60° on a radiation plane of the carrier plane;
  • the radiation beam distribution range of the second antenna array includes a radiation beam along the plane perpendicular to the carrier plane Sector between 60° and 120°.
  • a transceiver chip the transceiver chip is electrically connected to the first antenna array and the second antenna array, and the transceiver chip is suitable for receiving and transmitting signals in a preset frequency range.
  • the transceiver chip includes: a transceiver peripheral circuit and a radio frequency integrated circuit chip.
  • the transceiver chip is suitable for receiving and sending millimeter wave signals.
  • the carrier board includes a packaging substrate.
  • the antenna system further includes a PCB board, the first surface of the packaging substrate is provided with the first antenna array and the second antenna array, and the second surface of the packaging substrate is provided with the transceiver Chip, the package substrate carrying the first antenna array, the second antenna array and the transceiver chip is integrated on the PCB board.
  • the antenna system further includes a PCB board, the first surface of the packaging substrate is provided with the first antenna array, the second surface of the packaging substrate is provided with the transceiver chip, and the carrier is An antenna array and a package substrate of the transceiver chip are integrated in the first area of the PCB board, and the second antenna array is integrated in the second area of the PCB board.
  • the antenna system further includes a PCB board, the first surface of the packaging substrate is provided with the second antenna array, the second surface of the packaging substrate is provided with the transceiver chip, and the carrier is The two antenna arrays and the package substrate of the transceiver chip are integrated in the first area of the PCB board, and the first antenna array is integrated in the second area of the PCB board.
  • the carrier board includes a PCB board, and the first antenna array, the second antenna array, and the transceiver chip are all integrated on the PCB board.
  • an embodiment of the present invention also provides the electronic device, including: the antenna system of the embodiment of the present invention.
  • the electronic device includes a mobile terminal suitable for the 5G new air interface standard.
  • the antenna unit of the embodiment of the present invention includes a helical antenna with a three-dimensional structure. Since the helical antenna can be arranged in multiple layers of the carrier board instead of being in the same plane, the The horizontal space and the vertical space greatly reduce the volume and area of the antenna unit, which meets the design requirements for miniaturization and slimness of today's mobile terminals.
  • each turn of the spiral coil includes a first spiral segment, a second spiral segment, a third spiral segment, and a fourth spiral segment that are connected end to end, wherein the first spiral segment and the third spiral segment Segments are respectively arranged in the two metal layers along a direction parallel to the plane of the carrier board, and the second spiral segment and the fourth spiral segment penetrate the non-conductive medium along the thickness direction of the carrier board Layer, that is, the first spiral segment and the third spiral segment are two planar spiral antennas, and the second spiral segment extends in the longitudinal direction for electrically connecting the two planar spiral antennas.
  • the planes of the two metal layers are used to a greater extent to set a plane helical segment with a preset length and a preset shape to realize the broadband impedance of the helical antenna match.
  • the carrier board includes a plurality of non-conductive dielectric layers and a plurality of metal layers alternately stacked in a thickness direction thereof
  • the helical antenna includes a multi-turn helical coil, and a plurality of first helical components of the multi-turn helical coil
  • the segments are arranged in the same or different metal layers, and the multiple second spiral segments of the multi-turn spiral coil are respectively arranged in the same or different metal layers. Therefore, the segment design of each spiral coil can have a larger The degree of freedom in order to adjust the performance of the helical antenna.
  • first spiral segment and the third spiral segment may be in the shape of a continuous smooth function curve such as a trigonometric function or a logarithmic function, which is beneficial to achieve impedance matching between the spiral antenna and the transceiver chip.
  • the antenna unit can work in an axial radiation mode as an edge antenna to cover the space outside the maximum working angle of the main antenna array, so that it can work with the main antenna array to cover the entire sector; or the antenna unit can Working in the mixed radiation mode of the normal radiation mode and the axial radiation mode, not only can cover the space outside the maximum working angle of the main antenna array, but also help reduce the structural size of the antenna unit, which can improve the performance of the antenna and reduce the antenna A balance is achieved between structural dimensions.
  • the working mode of the antenna unit is determined by the structural parameters of the helical antenna, which can be set by setting the helical circumference of each turn of the helical coil, the helical pitch of the multi-turn helical coil, and the turns of the helical coil.
  • the working mode of the antenna unit can be adjusted by setting 3/4 ⁇ C/ ⁇ 0 ⁇ 4/3, S ⁇ 0 /4, N ⁇ 3, so that the helical antenna works in the axial radiation mode Or mixed radiation mode.
  • the multi-turn helical coil included in the helical antenna may have different helical radii, and the broadband impedance matching and radiation direction gain of the helical antenna can be adjusted by adjusting the change trend of the helical radius of the multi-turn helical coil.
  • the antenna system of the embodiment of the present invention includes a first antenna array and a second antenna array.
  • the first antenna array is arranged in the middle area of the carrier board as a main antenna.
  • the second antenna array includes the implementation of the present invention.
  • the antenna unit of the example is arranged at the edge area of the carrier board as an edge antenna, and the edge antenna can cover the space outside the maximum working angle of the main antenna, so that it can work together with the main antenna to cover the entire sector.
  • the antenna system also includes a carrier board and a transceiver chip.
  • the carrier board may include a package substrate or a PCB board. In actual applications, a variety of ways can be used to form the antenna packaging structure, and multiple ways can also be used on the PCB.
  • the first antenna array, the second antenna array and the transceiver chip are integrated.
  • FIG. 1a is a schematic structural diagram of an edge antenna 10
  • FIG. 1b is a schematic structural diagram of another edge antenna 20
  • FIG. 2 is a schematic structural diagram of an antenna unit 30 according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an antenna unit 40 according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an antenna system 50 according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a second antenna array according to another embodiment of the present invention.
  • FIG. 6 is an impedance characteristic curve diagram of the second antenna array of the embodiment shown in FIG. 5 of the present invention.
  • FIG. 7 is a schematic diagram of the radiation directions of the second antenna array at 23.8 GHz, 26.8 GHz, and 29.8 GHz on the E plane of the embodiment shown in FIG. 5 of the present invention;
  • FIG. 8 is a schematic diagram of the H-plane radiation directions of the second antenna array of the embodiment shown in FIG. 5 of the present invention at 23.8 GHz, 26.8 GHz, and 29.8 GHz;
  • FIG. 9 is a structural block diagram of an antenna system 70 according to another embodiment of the present invention.
  • FIG. 10 is a structural block diagram of an antenna system 80 according to another embodiment of the present invention.
  • FIG. 11 is a structural block diagram of an antenna system 90 according to another embodiment of the present invention.
  • FIG. 12 is a structural block diagram of an antenna system 100 according to another embodiment of the present invention.
  • the antenna used in the communication system may include a main antenna and an edge antenna.
  • the main antenna may be set in the middle area of the substrate, and the edge antenna may be set in the edge area of the substrate.
  • the main antenna and the edge antenna work together to complete the signal Send and receive.
  • FIG. 1a is a schematic diagram of the structure of an edge antenna 10.
  • the edge antenna 10 may be a Yagi-Uda antenna, including: a substrate 11, a reflector (reflector) 12, a director (director) 13, and a microstrip feed (Microstrip Feed) 14 and so on.
  • Fig. 1b is a schematic structural diagram of another edge antenna 20.
  • the edge antenna 20 may be a broadband Yagi antenna, including: a substrate 21, a ground plane 22, a director 23, and a transmission line type balun (Balun). ) 25.
  • Balun transmission line type balun
  • the reflector, the director, and the Balun structure increase the structural area of the edge antenna, thereby increasing the packaging cost of the antenna and the antenna
  • the volume and area of the package are difficult to meet the industrial design requirements for miniaturization and thinness of today's mobile terminals.
  • an embodiment of the present invention provides an antenna unit.
  • the antenna unit not only greatly reduces the volume and area of the edge antenna, but also achieves broadband matching with the transceiver chip.
  • FIG. 2 is a schematic structural diagram of an antenna unit 30 according to an embodiment of the present invention.
  • the antenna unit 30 may include: a helical antenna 33 having a three-dimensional structure, and the helical antenna 33 is disposed on an edge area of the carrier board 31.
  • the helical antenna 33 may include at least one turn of a helical coil, and each turn of the helical coil includes a plurality of helical segments that are not in the same plane, and the plurality of helical segments are respectively arranged in multiple layers of the carrier board 31.
  • the carrier board 31 includes at least two metal layers 311 and 313, and a non-conductive dielectric layer 312 between the two metal layers, and each turn of the spiral coil includes: A spiral segment 331, a second spiral segment 332, a third spiral segment 333, and a fourth spiral segment 334; wherein the first spiral segment 331 and the third spiral segment 333 are parallel to each other
  • the direction of the plane of the carrier board 31 is set in the two metal layers 311 and 313, and the second spiral segment 332 and the fourth spiral segment 334 penetrate the carrier board 31 in the thickness direction.
  • the non-conductive dielectric layer 312 is used to electrically connect the first spiral segment 331 and the third spiral segment 333.
  • the helical antenna 33 may include one turn of a helical coil.
  • the carrier board 31 includes only two metal layers: a first metal layer 311 and a second metal layer 313.
  • the helical antenna 33 may include a multi-turn spiral coil.
  • the first spiral segments 331 may all be arranged in the first metal layer 311, and the multiple second spiral segments 332 of the multi-turn spiral coil may all be arranged in the second metal layer 313.
  • One or more non-conductive dielectric layers may be included between the first metal layer 311 and the second metal layer 313.
  • the carrier board includes a plurality of non-conductive dielectric layers and a plurality of metal layers alternately stacked along its thickness direction
  • the helical antenna includes a multi-turn spiral coil, and a plurality of the multi-turn spiral coil
  • the first spiral segments may be arranged in the same or different metal layers
  • the multiple second spiral segments of the multi-turn spiral coil may be arranged in the same or different metal layers
  • the second spiral segments and the first The four spiral segments penetrate one or more layers between the first spiral segment and the second spiral segment that are electrically connected thereto.
  • the first spiral section 331 may be disposed in the top metal layer of the carrier board 31, and the second spiral section 332 may be disposed in the bottom metal layer of the carrier board 31; Or the first spiral segment 331 and the second spiral segment 332 may be respectively disposed in different middle metal layers of the carrier board 31.
  • the first spiral segment 331 may include a radiation arm 3311
  • the third spiral segment 333 may include a radiation arm 3331
  • the second spiral segment 332 and the fourth spiral segment 334 may include a through hole or a blind hole (via) filled with conductive material, and two ends of the through hole or blind hole are respectively connected to the radiating arm 3311 of the first spiral segment 331 and the third
  • the radiating arms 3331 of the spiral segment 333 are electrically connected to form a spiral coil.
  • the radiation arm may be a metal trace formed by processes such as deposition or etching.
  • the first spiral segment 331 may further include a bonding pad 3312
  • the bonding pad 3312 is electrically connected to one end of the radiation arm 3311
  • the third spiral segment 333 may also include two Two solder pads 3332, respectively, are electrically connected to the two ends of the radiating arm 3331, and both ends of the second spiral segment 332 are respectively connected to the solder pads 3312 of the first spiral segment 331 and the third spiral segment.
  • One solder pad 3332 of the segment 333 is electrically connected, and both ends of the fourth spiral segment 334 are respectively connected to the other solder pad 3332 of the third spiral segment 333 and the first spiral segment of the next spiral coil
  • One pad 3312 of the 331 is electrically connected.
  • the first spiral segment 331 and the third spiral segment 333 may be curved or linear. Specifically, the first spiral segment 331 and the third spiral segment 333 may be in the shape of a trigonometric function curve or a logarithmic function curve. The use of a continuous and smooth function curve is beneficial to the spiral coil 33 and the transceiver chip. (TRX RFIC) impedance matching.
  • the projections of the first spiral segment 331 and the third spiral segment 333 on the plane of the carrier board 31 may have an acute angle, which is beneficial to reduce the structural area of the spiral antenna 33.
  • the first spiral segment 331 and the third spiral segment 333 with acute angles between the projections are formed on different layers of the carrier board 31, which facilitates process realization and manufacturing.
  • the helical antenna 33 can work in an axial radiation mode, or a mixed radiation mode of a normal radiation mode and an axial radiation mode; wherein, in the axial radiation mode, the helical antenna 33 The helical antenna 33 has the largest radiation intensity in its axial direction, and in the normal radiation mode, the helical antenna 33 has the largest radiation intensity in a direction perpendicular to its axial direction.
  • the working mode of the helical antenna 33 is determined by its structural parameters.
  • the helical radius of the helical antenna 33 is much smaller than the working wavelength ⁇ 0 of the helical antenna 33, the helical antenna 33 is similar to an electric dipole and works In the normal radiation mode.
  • the axis of the helical antenna 33 can be set to point to the normal direction of the carrier board boundary in the edge area where it is located, and the helical antenna 33 can work in axial radiation. mode.
  • the parameters of the multi-turn helical coil of the helical antenna 33 can be set to satisfy: 3/4 ⁇ C/ ⁇ 0 ⁇ 4/3, S ⁇ 0 /4, N ⁇ 3, where C is the perimeter of the projection of each turn of the spiral coil on a plane perpendicular to the axis of the helical antenna 33, S is the spacing of the multi-turn spiral coil, and N is the turn of the multi-turn spiral coil ⁇ 0 is the working wavelength of the helical antenna 33.
  • the center frequency of the working bandwidth of the helical antenna 33 is 26.75 GHz, and ⁇ 0 may be 11.2 mm.
  • the above parameters define the projected circumference C of each turn of the spiral coil.
  • C can also be converted into the radius r of each turn of the spiral coil, and the radius r of each turn of the spiral coil is substituted for the circumference.
  • the long parameter C is used as one of the structural parameters for structural design of the helical antenna 33.
  • the spiral antenna 33 may include a multi-turn spiral coil, and the multi-turn spiral coil may have different spiral radii.
  • the change trend of the spiral radius of the multi-turn spiral coil may include: the spiral radius of the spiral coil in the two end regions is smaller than the spiral radius of the spiral coil in the middle region.
  • the changing trend of the radius of the spiral coil can be used to adjust the broadband impedance matching and radiation direction gain of the spiral antenna 33. It can be understood that, in other embodiments, the spiral radius of the multi-turn spiral coil may have a changing trend different from that shown in FIG. 2.
  • the multi-turn helical coil of the helical antenna 33 can be designed to have a smaller spacing. The change in the radius of each turn of the spiral coil.
  • the middle area of the carrier board 31 is further provided with a first antenna array (not shown in FIG. 2), the first antenna array may include a plurality of patch units, and the multi-turn spiral coil
  • the maximum value of the spiral radius of may be equivalent to the size of a patch unit.
  • the maximum value of the spiral radius of the multi-turn spiral coil may be less than or equal to the size of a patch unit.
  • the helical antenna 33 may be arranged at an edge area on one side of the carrier board 31, or may be arranged at an edge area on multiple sides of the carrier board 31.
  • the carrier board 31 may be In a rectangular shape, the helical antenna 33 may be arranged in an edge area parallel to the three sides of the carrier board 31.
  • a ground plane 32 is provided on one surface of the carrier board 31 along its thickness direction, and the ground plane 32 covers the middle area of the carrier board 31 to expose the carrier board. 31 edge area.
  • the antenna unit 30 may further include a feed transmission line (Microstrip Feed) 34 arranged in the middle area of the carrier board 31, and the feed end of the feed transmission line 34 and the helical antenna 33
  • the first end of the helical antenna 33 is electrically connected, and the second end of the helical antenna 33 is a free end suitable for radiating signals.
  • the antenna unit 30 of the embodiment shown in Fig. 2 saves a director and a reflector, thereby reducing the size of the antenna and the area of the antenna package. And volume; saves the broadband matching balun, easy to connect with the transceiver chip (TRX RFIO), small area and good broadband matching characteristics; has a large working bandwidth, and the maximum radiation gain points to the side of the carrier board, and works with the main antenna array Cover the entire sector.
  • TRX RFIO transceiver chip
  • FIG. 3 is a schematic structural diagram of an antenna unit 40 according to another embodiment of the present invention.
  • the antenna unit 40 includes: a helical antenna 43 with a three-dimensional structure and a feed transmission line 44.
  • the helical antenna 43 is arranged on the edge area of the carrier board 41.
  • the feed end of the feed transmission line 44 and the helical antenna 43 The first end of the helical antenna 43 is electrically connected, and the second end of the helical antenna 43 is a free end suitable for radiating signals.
  • the helical antenna 43 may include at least one turn of a helical coil
  • the carrier 41 includes at least two metal layers 411 and 413, and a non-conductive dielectric layer 412 between the two metal layers 411 and 413
  • each The turn spiral coil includes: a first spiral segment 431, a second spiral segment 432, a third spiral segment 433, and a fourth spiral segment 434 that are connected in series end to end; wherein the first spiral segment 431 and the second spiral segment
  • the three spiral segments 433 are respectively arranged in the two metal layers 411 and 413 along the direction parallel to the plane of the carrier board 41, and the second spiral segment 432 and the fourth spiral segment 434 are arranged along the The thickness direction of the carrier board 41 penetrates the non-conductive dielectric layer 412 to electrically connect the first spiral segment 431 and the third spiral segment 433.
  • the carrier board 41 includes one or more ground planes 42.
  • the one or more ground planes 42 cover the middle area of the carrier board 41 to expose the edge area of the carrier board 41, and the one or more ground planes 42 pass through along the thickness direction of the carrier board 41.
  • the contact holes 46 of the carrier board 41 are electrically connected.
  • the one or more ground planes 42 are formed near the edge area of the carrier board 41 with a notch 42a that retracts toward the middle area of the carrier board 41.
  • a part of the helical antenna 43 is disposed in the carrier board 41 exposed by the notch 42a.
  • the notch 42a may be trapezoidal.
  • a multi-layer connected ground plane can be used and a gap of a certain shape is cut at the edge to retract the helical antenna 43 into the gap, thereby reducing the spiral.
  • the extended length of the antenna 43 at the edge of the carrier board 41 reduces the package size and at the same time can better control the beam direction and gain.
  • FIG. 4 is a schematic structural diagram of an antenna system 50 according to an embodiment of the present invention.
  • the antenna system 50 may include a carrier board 51, a first antenna array, and a second antenna array, wherein the first antenna array is disposed in the middle area of the carrier board 51 and includes a plurality of stickers.
  • the chip unit 58; the second antenna array is disposed on the edge area of the carrier board 51, and includes at least one antenna unit of the foregoing embodiment of the present invention.
  • the antenna unit may include a helical antenna 53 and a feeder transmission line 54, the The helical antenna 53 is arranged at the edge area of the carrier board 51, the feeding transmission line 54 is arranged at the middle area of the carrier board 51, one end of the feeding transmission line 54 is electrically connected to the helical antenna 53, the The other end of the feeding transmission line 54 is electrically connected to the transceiver chip.
  • the second antenna array of the antenna system 50 may include a plurality of antenna elements
  • the carrier board 51 may be rectangular, and the plurality of antenna elements are respectively along directions parallel to the three sides of the rectangle. Set at the edge area of the carrier board 51.
  • the carrier board 51 may be a package substrate or a PCB (Printed Circuit Board) board.
  • the plurality of patch units 58 may be arranged parallel to the plane of the carrier board, the radiation maximum gain of the patch unit 58 points to a direction perpendicular to the plane of the carrier board, and the plurality of antenna units
  • the axis of the helical antenna 53 may be arranged parallel to the plane of the carrier board, and the maximum radiation gain of the multiple antenna elements is directed to the axis of the helical antenna 53.
  • the radiation beam distribution range of the first antenna array includes a sector between ⁇ 60° along a radiation plane perpendicular to the carrier plane, and the radiation beam of the second antenna array
  • the distribution range includes a sector between 60° and 120° along the one radiation plane perpendicular to the plane of the carrier board.
  • the one radiation plane may be a cross section formed by longitudinally cutting the carrier board 51 in a direction parallel to the long side of the rectangular carrier board 51.
  • the first antenna array can be regarded as a main antenna, and the second antenna array is an edge antenna. Because the main antenna and the edge antenna work in different Therefore, the edge antenna can compensate for the technical problem of insufficient coverage of the main antenna's lateral beam.
  • FIG. 5 is a schematic structural diagram of a second antenna array according to another embodiment of the present invention.
  • the second antenna array may include a plurality of helical antennas 63, the plurality of helical antennas 63 are arranged in a one-dimensional array at the edge area of the carrier plate 61, and the plurality of helical antennas 63
  • One feeding transmission line 64 may be shared, and the feeding transmission line 64 may have multiple feeding ends, and the multiple feeding ends may be electrically connected to the multiple helical antennas 63 respectively.
  • Figure 6 is the impedance characteristic curve of the second antenna array of the embodiment shown in Figure 5 of the present invention.
  • the ordinate of Figure 6 is return loss/dB, and the abscissa is frequency/ GHz
  • FIG. 7 is a schematic diagram of the radiation directions of the second antenna array at 23.8 GHz, 26.8 GHz, and 29.8 GHz of the second antenna array of the embodiment shown in FIG. 5 of the present invention
  • FIG. 8 is the second antenna of the embodiment shown in FIG. 5 of the present invention Schematic diagram of the H-plane radiation directions of the array at 23.8 GHz, 26.8 GHz, and 29.8 GHz.
  • the helical antenna 63 in the axial mode generally has a wider working bandwidth
  • the helical antenna 63 can be matched with the feeder transmission line 64 by optimizing the design.
  • the operating frequency band below -10dB is 24GHz to 29.5GHz
  • the impedance bandwidth is 5.5GHz
  • the center frequency is 26.75GHz
  • the bandwidth ratio is 20%. Therefore, without any additional matching circuit, the working bandwidth of the second antenna array can cover the entire N258 and N257 frequency bands.
  • the working frequency band of the helical antenna 63 may also be a millimeter wave frequency band with a predetermined bandwidth between 24 GHz and 300 GHz, for example, it may be 24 GHz to 29.5 GHz, 37 GHz to 42.5 GHz, or 57 GHz to 71 GHz.
  • the second antenna array achieves a gain of 8dB to 10dB in the frequency band of 24GHz to 29.5GHz, that is, each The gain of the antenna unit in this frequency band is better than 3dB to 4dB, and also better than the 2.18dBi of an ideal dipole.
  • the radiation beam distribution range of the second antenna array includes a sector between 60° and 120° in the E plane, and its maximum gain direction is 90°, that is, the axial direction of the helical antenna 63, which meets the expected The coverage of the edge antenna can make up for the direction of the main antenna array outside the maximum working angle.
  • the radiation beam distribution range of the second antenna array includes sectors between 60° and 120°.
  • FIG. 9 is a structural block diagram of an antenna system 70 according to another embodiment of the present invention.
  • the antenna system 70 may include a first antenna array 71, a second antenna array 72, a transceiver chip 73, a packaging substrate 74, and a PCB board.
  • the first antenna array 71 is disposed on the packaging substrate 74.
  • the middle area of the first surface of the antenna includes a plurality of patch elements
  • the second antenna array 72 includes at least one antenna element of the foregoing embodiment of the present invention and a feeder transmission line
  • the helical antenna of the antenna element is arranged in the package In the edge area of the first surface of the substrate 74, the feeding transmission line is arranged in the middle area of the first surface of the packaging substrate 74.
  • the transceiving chip 73 is electrically connected to the first antenna array 71 and the second antenna array 72, respectively, and the transceiving chip 73 is adapted to receive and transmit signals in a preset frequency range.
  • the first antenna array 71, the second antenna array 72, the transceiver chip 73, and the packaging substrate 74 form an AiP (Antenna in Package) structure, and the AiP structure is integrated on the PCB board,
  • the PCB board can be installed in the terminal and connected with many other components.
  • the transceiver chip includes a transceiver peripheral circuit and a radio frequency integrated circuit (RFIC), and the transceiver chip is adapted to receive and transmit millimeter wave signals with a preset bandwidth between 24 GHz and 300 GHz.
  • the transceiver peripheral circuit may include a filter circuit, a coupling circuit, and the like.
  • FIG. 10 is a structural block diagram of an antenna system 80 according to another embodiment of the present invention.
  • the antenna system 80 may include a first antenna array 81, a second antenna array 82, a transceiver chip 83, and a PCB board 84.
  • the first antenna array 81 includes a plurality of patch units
  • the second antenna array 82 includes at least one antenna unit and a feeder transmission line according to the foregoing embodiment of the present invention
  • the transceiver chip 83 is suitable for receiving and transmitting preset frequencies For signals within a range, the transceiver chip 83 is electrically connected to the first antenna array 81 and the second antenna array 82 respectively.
  • the first antenna array 81, the second antenna array 82, and the transceiver chip 83 are all integrated on the PCB board 84.
  • the transceiver chip 83 can be connected to the first antenna array 81, the second antenna array
  • the antenna array 82 is integrated in different areas on the PCB board.
  • the PCB board can be installed in the terminal and connected with many other components.
  • FIG. 11 is a structural block diagram of an antenna system 90 according to another embodiment of the present invention.
  • the antenna system 90 may include a first antenna array 91, a second antenna array 92, a transceiver chip 93, a packaging substrate 94 and a PCB board 95.
  • the first antenna array 91 includes a plurality of patch units
  • the second antenna array 92 includes at least one antenna unit and a feeder transmission line according to the foregoing embodiment of the present invention
  • the transceiver chip 93 is adapted to receive and transmit a preset frequency For signals within a range, the transceiver chip 93 is electrically connected to the first antenna array 91 and the second antenna array 92 respectively.
  • the first surface of the packaging substrate 94 is provided with the first antenna array 91
  • the second surface of the packaging substrate 94 is provided with the transceiver chip 93
  • the first antenna array 91, the transceiver chip 93 It forms an AiP structure with the packaging substrate 94
  • the AiP structure is integrated in the first area on the PCB board 95
  • the second antenna array 92 is integrated in the second area on the PCB board 95.
  • the PCB board can be installed in the terminal and connected with many other components.
  • FIG. 12 is a structural block diagram of an antenna system 100 according to another embodiment of the present invention.
  • the antenna system 100 may include a first antenna array 101, a second antenna array 102, a transceiver chip 103, a packaging substrate 104, and a PCB board 105.
  • the first antenna array 101 includes a plurality of patch elements
  • the second antenna array 102 includes at least one antenna element and a feeder transmission line according to the foregoing embodiment of the present invention
  • the transceiver chip 103 is adapted to receive and transmit a preset frequency For signals within a range, the transceiver chip 103 is electrically connected to the first antenna array 101 and the second antenna array 102, respectively.
  • the first surface of the packaging substrate 104 is provided with the second antenna array 102
  • the second surface of the packaging substrate 104 is provided with the transceiver chip 103
  • the second antenna array 102 is provided with the transceiver chip 103
  • the packaging substrate 104 forms an AiP structure
  • the AiP structure is integrated in a first area on the PCB board 105
  • the first antenna array 101 is integrated in a second area on the PCB board 105.
  • the PCB board can be installed in the terminal and connected with many other components.
  • An embodiment of the present invention further provides an electronic device, and the electronic device may include the antenna system of the foregoing embodiment of the present invention.
  • the electronic device may be a mobile terminal applicable to the 5G New Air Interface (5G NR) standard, and the mobile terminal includes the antenna system of the foregoing embodiment of the present invention, and the antenna system and the mobile terminal Connect the other components.
  • 5G NR 5G New Air Interface
  • the working frequency band of the antenna system may be a millimeter wave frequency band with a preset bandwidth between 24 GHz and 300 GHz, such as 24 GHz to 29.5 GHz, 37 GHz to 42.5 GHz, or 57 GHz to 71 GHz.
  • the antenna unit of the embodiment of the present invention includes a helical antenna with a three-dimensional structure. Since the helical antenna can be arranged in multiple layers of the carrier board instead of being in the same plane, it makes reasonable use of The horizontal space and the vertical space of the carrier plate greatly reduce the volume and area of the antenna unit, which meets the design requirements for miniaturization and slimness of today's mobile terminals.
  • each turn of the spiral coil includes a first spiral segment, a second spiral segment, a third spiral segment, and a fourth spiral segment that are connected end to end, wherein the first spiral segment and the third spiral segment Segments are respectively arranged in the two metal layers along a direction parallel to the plane of the carrier board, and the second spiral segment and the fourth spiral segment penetrate the non-conductive medium along the thickness direction of the carrier board Layer, that is, the first spiral segment and the third spiral segment are two planar spiral antennas, and the second spiral segment extends in the longitudinal direction for electrically connecting the two planar spiral antennas.
  • the planes of the two metal layers are used to a greater extent to set a plane helical segment with a preset length and a preset shape to realize the broadband impedance of the helical antenna match.
  • the carrier board includes a plurality of non-conductive dielectric layers and a plurality of metal layers alternately stacked in a thickness direction thereof
  • the helical antenna includes a multi-turn helical coil, and a plurality of first helical components of the multi-turn helical coil
  • the segments are arranged in the same or different metal layers, and the multiple second spiral segments of the multi-turn spiral coil are respectively arranged in the same or different metal layers. Therefore, the segment design of each spiral coil can have a larger The degree of freedom in order to adjust the performance of the helical antenna.
  • first spiral segment and the third spiral segment may be in the shape of a continuous smooth function curve such as a trigonometric function or a logarithmic function, which is beneficial to achieve impedance matching between the spiral antenna and the transceiver chip.
  • the antenna unit can work in an axial radiation mode as an edge antenna to cover the space outside the maximum working angle of the main antenna array, so that it can work with the main antenna array to cover the entire sector; or the antenna unit can Working in the mixed radiation mode of the normal radiation mode and the axial radiation mode, not only can cover the space outside the maximum working angle of the main antenna array, but also help reduce the structural size of the antenna unit, which can improve the performance of the antenna and reduce the antenna A balance is achieved between structural dimensions.
  • the working mode of the antenna unit is determined by the structural parameters of the helical antenna, which can be set by setting the helical circumference of each turn of the helical coil, the helical pitch of the multi-turn helical coil, and the turns of the helical coil.
  • the working mode of the antenna unit can be adjusted by the number, specifically, the helical antenna can be operated in the axial radiation mode by setting 3/4 ⁇ C/ ⁇ 0 ⁇ 4/3, S ⁇ 0 /4, N ⁇ 3 Or mixed radiation mode.
  • the multi-turn helical coil included in the helical antenna may have different helical radii, and the broadband impedance matching and radiation direction gain of the helical antenna can be adjusted by adjusting the change trend of the helical radius of the multi-turn helical coil.
  • the antenna system of the embodiment of the present invention includes a first antenna array and a second antenna array.
  • the first antenna array is arranged in the middle area of the carrier board as a main antenna.
  • the second antenna array includes the implementation of the present invention.
  • the antenna unit of the example is arranged at the edge area of the carrier board as an edge antenna, and the edge antenna can cover the space outside the maximum working angle of the main antenna, so that it can work together with the main antenna to cover the entire sector.
  • the antenna system also includes a carrier board and a transceiver chip.
  • the carrier board may include a package substrate or a PCB board. In actual applications, a variety of ways can be used to form the antenna packaging structure, and multiple ways can also be used on the PCB.
  • the first antenna array, the second antenna array and the transceiver chip are integrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线单元、天线系统及电子装置,其中所述天线单元包括:具有三维结构的螺旋天线,所述螺旋天线设置于载板的边缘区域;所述螺旋天线包括至少一匝螺旋线圈,每匝螺旋线圈包括不在同一平面内的多个螺旋分段,所述多个螺旋分段分别设置于所述载板的多个层中。所述天线系统包括:载板、第一天线阵列和第二天线阵列;所述第一天线阵列设置于所述载板的中间区域,包括多个贴片单元;所述第二天线阵列包括至少一个本发明实施例的天线单元,所述天线单元的螺旋天线设置于所述载板的边缘区域。所述电子装置包括本发明实施例的天线系统。本发明实施例的天线单元能够减小边缘天线的体积和面积,还能够实现边缘天线的宽带阻抗匹配。

Description

天线单元、天线系统及电子装置
本申请要求于2019年1月31日提交中国专利局、申请号为201910101624.5、发明名称为“天线单元、天线系统及电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,尤其涉及一种天线单元、天线系统及电子装置。
背景技术
5G新空口标准定义了多个毫米波频段,例如频段N257和N258在中美日韩欧洲等地区的总和为24.25GHz至29.5GHz,相对其中心频率的带宽约为20%,如果要兼容全球不同地区的规定频段就需要宽带天线。然而,现有天线难以覆盖较宽的频段,导致移动终端无法在全球范围内通用,给用户的出行带来不便。
另一方面,微带天线作为一种小型化的天线,广泛应用于移动终端、雷达、航空航天等领域的各种小型化设备中。随着智能终端的进一步微型化,对微带天线的尺寸提出了更高的要求。现有的微带天线的尺寸仍然难以满足当今移动终端小型化和纤薄的工艺设计要求,还增加了集成天线阵列的成本和封装芯片的体积和面积。
发明内容
为了提高天线的工作带宽、减小天线的尺寸、减小天线封装结构的体积和面积,本发明实施例提供一种天线单元,包括:具有三维结构的螺旋天线,所述螺旋天线设置于载板的边缘区域;所述螺旋天线包括至少一匝螺旋线圈,每匝螺旋线圈包括不在同一平面内的多个螺旋分段,所述多个螺旋分段分别设置于所述载板的多个层中。
可选地,所述载板包括至少两个金属层、以及介于所述两个金属层之间的非导电介质层,每匝螺旋线圈包括:首尾串接的第一螺旋分段、第二螺旋分段、第三螺旋分段和第四螺旋分段;其中所述第一螺旋分段和所述第三螺旋分段沿平行于载板平面的方向分别设置于所述两个金属层中,所述第二螺旋分段和所述第四螺旋分段沿所述载板的厚度方向贯穿所述非导电介质层,以将所述第一螺旋分段和所述第三螺旋分段电气连接。
可选地,所述载板包括沿其厚度方向交替堆叠的多个非导电介质层和多个金属层,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈的多个第一螺旋分段设置于相同或不同的金属层中,所述多匝螺旋线圈的多个第二螺旋分段分别设置于相同或不同的金属层中。
可选地,所述第一螺旋分段和所述第三螺旋分段均包括辐射臂,所述第二螺旋分段和所述第四螺旋分段包括填充有导电材料的通孔或盲孔,所述通孔或盲孔的两端分别与所述第一螺旋分段的辐射臂和所述第三螺旋分段的辐射臂电气连接。
可选地,所述第一螺旋分段和所述第三螺旋分段还包括焊垫,所述焊垫与所述辐射臂的一端电气连接,所述通孔或盲孔的两端分别与所述第一螺旋分段的焊垫和所述第三螺旋分段的焊垫电气连接。
可选地,所述第一螺旋分段和所述第三螺旋分段呈曲线状或直线状。
可选地,所述第一螺旋分段和所述第三螺旋分段呈三角函数曲线状或对数函数曲线状。
可选地,所述第一螺旋分段和所述第三螺旋分段在所述载板平面上的投影呈锐角。
可选地,所述天线单元工作于轴向辐射模式、或法向辐射模式与轴向辐射模式的混合辐射模式;其中,在所述轴向辐射模式下,所述天线单元在所述螺旋天线的轴向具有最大的辐射强度,在所述法向辐 射模式下,所述天线单元在垂直于所述螺旋天线的轴向的方向具有最大的辐射强度。
可选地,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈的参数满足:3/4<C/λ 0<4/3,S≈λ 0/4,N≥3,其中C为每匝螺旋线圈在垂直于所述螺旋天线的轴线的平面上的投影的周长,S为所述多匝螺旋线圈的间距,N为所述多匝螺旋线圈的匝数,λ 0为所述螺旋天线的工作波长。
可选地,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈具有不同的螺旋半径。
可选地,所述多匝螺旋线圈的螺旋半径的变化趋势包括:两端区域的螺旋线圈的螺旋半径小于中间区域的螺旋线圈的螺旋半径。
可选地,所述载板的中间区域设置有第一天线阵列,所述第一天线阵列包括多个贴片单元,所述多匝螺旋线圈的螺旋半径的最大值小于或等于一个贴片单元的尺寸。
可选地,所述螺旋天线的轴向平行于其所在的边缘区域的载板边界的法向。
可选地,所述载板还包括一个或多个接地平面,所述一个或多个接地平面覆盖所述载板的中间区域而暴露出所述载板的边缘区域,所述一个或多个接地平面通过沿所述载板的厚度方向贯穿所述载板的接触孔电气连接,所述一个或多个接地平面靠近所述载板的边缘区域处形成有向所述载板的中间区域缩进的缺口,所述螺旋天线的一部分设置于所述缺口暴露出的载板中。
可选地,所述天线单元还包括:设置于所述载板的中间区域的馈电传输线,所述馈电传输线的馈电端与所述螺旋天线的第一端电气连接,所述螺旋天线的第二端为自由端,适于辐射信号。
相应地,本发明实施例还提供一种所述天线系统,包括:载板、第一天线阵列和第二天线阵列;所述第一天线阵列,设置于所述载板 的中间区域,包括多个贴片单元;所述第二天线阵列,包括至少一个本发明实施例的天线单元,所述天线单元的螺旋天线设置于所述载板的边缘区域。
可选地,所述多个贴片单元沿平行于载板平面的方向设置,所述贴片单元的辐射最大增益指向垂直于所述载板平面的方向,所述至少一个天线单元的螺旋天线的轴线沿平行于所述载板平面的方向设置,所述天线单元的辐射最大增益指向所述螺旋天线的轴向。
可选地,所述第二天线阵列包括多个天线单元,所述多个天线单元在所述载板上呈一维阵列排布;所述第一天线阵列的辐射波束分布范围包括沿垂直于所述载板平面的一个幅射平面上的±60°之间的扇区;所述第二天线阵列的辐射波束分布范围包括沿垂直于所述载板平面的所述一个幅射平面上的60°至120°之间的扇区。
可选地,收发芯片,所述收发芯片分别与所述第一天线阵列和所述第二天线阵列电气连接,所述收发芯片适于接收和发送预设频率范围的信号。
可选地,所述收发芯片包括:收发外围电路和射频集成电路芯片。
可选地,所述收发芯片适于接收和发送毫米波信号。
可选地,所述载板包括封装基板。
可选地,所述天线系统还包括PCB板,所述封装基板的第一表面设置有所述第一天线阵列和所述第二天线阵列,所述封装基板的第二表面设置有所述收发芯片,所述承载有第一天线阵列、第二天线阵列和收发芯片的封装基板集成于所述PCB板上。
可选地,所述天线系统还包括PCB板,所述封装基板的第一表面设置有所述第一天线阵列,所述封装基板的第二表面设置有所述收发芯片,所述承载有第一天线阵列和收发芯片的封装基板集成于所述PCB板的第一区域,所述第二天线阵列集成于所述PCB板的第二区域。
可选地,所述天线系统还包括PCB板,所述封装基板的第一表面设置有所述第二天线阵列,所述封装基板的第二表面设置有所述收发芯片,所述承载有第二天线阵列和收发芯片的封装基板集成于所述PCB板的第一区域,所述第一天线阵列集成于所述PCB板的第二区域。
可选地,所述载板包括PCB板,所述第一天线阵列、所述第二天线阵列和所述收发芯片均集成于所述PCB板上。
相应地,本发明实施例还提供一种所述电子装置,包括:本发明实施例的天线系统。
可选地,所述电子装置包括适用于5G新空口标准的移动终端。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例的天线单元,包括具有三维结构的螺旋天线,由于所述螺旋天线可以设置于所述载板的多个层中,而非在同一平面内,合理地利用了所述载板的横向空间和纵向空间,极大地减小了所述天线单元的体积和面积,符合当今移动终端小型化和纤薄的工艺设计要求。
进一步地,每匝螺旋线圈包括首尾串接的第一螺旋分段、第二螺旋分段、第三螺旋分段和第四螺旋分段,其中所述第一螺旋分段和所述第三螺旋分段沿平行于载板平面的方向分别设置于所述两个金属层中,所述第二螺旋分段和所述第四螺旋分段沿所述载板的厚度方向贯穿所述非导电介质层,即所述第一螺旋分段和所述第三螺旋分段为两段平面螺旋天线,所述第二螺旋分段沿纵向延伸用于将所述两段平面螺旋天线电气连接,这样能够在实现具有三维结构的螺旋天线的前提下、更大程度地利用所述两个金属层的平面来设置具有预设长度和预设形状的平面螺旋分段,以实现所述螺旋天线的宽带阻抗匹配。
进一步地,所述载板包括沿其厚度方向交替堆叠的多个非导电介质层和多个金属层,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋 线圈的多个第一螺旋分段设置于相同或不同的金属层中,所述多匝螺旋线圈的多个第二螺旋分段分别设置于相同或不同的金属层中,因此,每匝螺旋线圈的分段设计可以具有较大的自由度,以便调节所述螺旋天线的各项性能。
进一步地,所述第一螺旋分段和所述第三螺旋分段可以呈三角函数或对数函数等连续平滑函数曲线的形状,有利于实现所述螺旋天线与收发芯片的阻抗匹配。
进一步地,所述天线单元作为边缘天线可以工作于轴向辐射模式,以覆盖主天线阵列的最大工作角度以外的空间,便于和主天线阵列协同工作覆盖整个扇区;或者,所述天线单元可以工作于法向辐射模式与轴向辐射模式的混合辐射模式,不仅能够覆盖主天线阵列的最大工作角度以外的空间,还有利于缩小所述天线单元的结构尺寸,能够在天线性能与缩小天线的结构尺寸之间达到平衡。
进一步地,所述天线单元的工作模式由所述螺旋天线的结构参数决定,可以通过设置所述螺旋天线的每匝螺旋线圈的螺旋周长、多匝螺旋线圈的螺旋间距、及螺旋线圈的匝数来调节所述天线单元的工作模式,具体可以通过设置3/4<C/λ 0<4/3,S≈λ 0/4,N≥3,使得所述螺旋天线工作于轴向辐射模式或混合辐射模式。
进一步地,所述螺旋天线包括的多匝螺旋线圈可以具有不同的螺旋半径,通过调节所述多匝螺旋线圈的螺旋半径的变化趋势能够调节所述螺旋天线的宽带阻抗匹配和辐射方向增益。
本发明实施例的天线系统,包括第一天线阵列和第二天线阵列,所述第第一天线阵列设置于所述载板的中间区域,作为主天线,所述第二天线阵列包括本发明实施例的天线单元,设置于所述载板的边缘区域,作为边缘天线,所述边缘天线可以覆盖所述主天线的最大工作角度以外的空间,便于和所述主天线协同工作覆盖整个扇区。所述天线系统还包括载板和收发芯片,所述载板可以包括封装基板或PCB板,实际应用中可以采用多种方式形成天线的封装结构,也可以采用 多种方式在所述PCB板上集成所述第一天线阵列、所述第二天线阵列和所述收发芯片。
附图说明
图1a是一种边缘天线10的结构示意图;
图1b是另一种边缘天线20的结构示意图;
图2是本发明一个实施例的天线单元30的结构示意图;
图3是本发明另一个实施例的天线单元40的结构示意图;
图4是本发明一个实施例的天线系统50的结构示意图;
图5是本发明另一实施例的第二天线阵列的结构示意图;
图6是本发明图5所示实施例的第二天线阵列的阻抗特性曲线图;
图7是本发明图5所示实施例的第二天线阵列在23.8GHz、26.8GHz、29.8GHz的E面辐射方向示意图;
图8是本发明图5所示实施例的第二天线阵列在23.8GHz、26.8GHz、29.8GHz的H面辐射方向示意图;
图9是本发明另一个实施例的天线系统70的结构框图;
图10是本发明另一个实施例的天线系统80的结构框图;
图11是本发明另一个实施例的天线系统90的结构框图;
图12是本发明另一个实施例的天线系统100的结构框图。
具体实施方式
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例 的不同之处,各个实施例之间相同或相似部分互相参见即可。
应用于通信系统中的天线可以包括主天线和边缘天线,其中主天线可以设置于基板的中间区域,边缘天线可以设置于基板的边缘区域,所述主天线与所述边缘天线协同工作完成信号的收发。
参考图1a,图1a是一种边缘天线10的结构示意图。在一些实施例中,所述边缘天线10可以是八木宇田(Yagi-Uda)天线,包括:基板11、反射器(reflector)12、引向器(director)13、及微带馈线(Microstrip Feed)14等。图1b是另一种边缘天线20的结构示意图,所述边缘天线20可以是一种宽带Yagi天线,包括:基板21、接地平面22、引向器23、和传输线型平衡不平衡转换器(Balun)25。在图1a和图1b所示的边缘天线10和20中,所述反射器、所述引向器、以及Balun等结构增加了所述边缘天线的结构面积,从而增加了天线的封装成本及天线封装的体积和面积,难以满足当今移动终端小型化纤薄的工业设计要求。
为此,本发明实施例提供一种天线单元,所述天线单元作为一种边缘天线,不仅极大地减小了边缘天线的体积和面积,还能够实现与收发芯片之间的宽带匹配。
参考图2,图2是本发明一个实施例的天线单元30的结构示意图。在一些实施例中,所述天线单元30可以包括:具有三维结构的螺旋天线33,所述螺旋天线33设置于载板31的边缘区域。所述螺旋天线33可以包括至少一匝螺旋线圈,每匝螺旋线圈包括不在同一平面内的多个螺旋分段,所述多个螺旋分段分别设置于所述载板31的多个层中。
在一些实施例中,所述载板31包括至少两个金属层311和313、以及介于所述两个金属层之间的非导电介质层312,每匝螺旋线圈包括:首尾串接的第一螺旋分段331、第二螺旋分段332、第三螺旋分段333和第四螺旋分段334;其中所述第一螺旋分段331和所述第三螺旋分段333分别沿平行于所述载板31的平面的方向设置于所述两个金属层311和313中,所述第二螺旋分段332和所述第四螺旋分段 334沿所述载板31的厚度方向贯穿所述非导电介质层312,以将所述第一螺旋分段331和所述第三螺旋分段333电气连接。
在一些实施例中,所述螺旋天线33可以包括一匝螺旋线圈。
在一些实施例中,所述载板31仅包括两个金属层:第一金属层311和第二金属层313,所述螺旋天线33可以包括多匝螺旋线圈,所述多匝螺旋线圈的多个第一螺旋分段331可以均设置于所述第一金属层311内,所述多匝螺旋线圈的多个第二螺旋分段332可以均设置于所述第二金属层313内,所述第一金属层311和第二金属层313之间可以包括一个或多个非导电介质层。
在另一些实施例中,所述载板包括沿其厚度方向交替堆叠的多个非导电介质层和多个金属层,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈的多个第一螺旋分段可以设置于相同或不同的金属层中,所述多匝螺旋线圈的多个第二螺旋分段可以设置于相同或不同的金属层中,所述第二螺旋分段和第四螺旋分段贯穿与其电气连接的第一螺旋分段和第二螺旋分段之间的一个或多个层。可以理解地是,当所述载板包括多个非导电介质层和多个金属层时,所述螺旋天线的分段式布线可以具有多种设计自由度,这里不一一列举,实际应用时可以根据天线所要达到的性能对所述螺旋天线的分段式结构进行相应的设计。
在一些实施例中,所述第一螺旋分段331可以设置于所述载板31的顶层金属层中,所述第二螺旋分段332可以设置于所述载板31的底层金属层中;或者所述第一螺旋分段331和所述第二螺旋分段332可以分别设置于所述载板31的不同中间金属层中。
在一些实施例中,所述第一螺旋分段331可以包括辐射臂3311,所述第三螺旋分段333可以包括辐射臂3331,所述第二螺旋分段332和所述第四螺旋分段334可以包括填充有导电材料的通孔(through hole)或盲孔(via),所述通孔或盲孔的两端分别与所述第一螺旋分段331的辐射臂3311和所述第三螺旋分段333的辐射臂3331电气连接, 从而形成一匝螺旋线圈。在一些实施例中,所述辐射臂可以是通过沉积或刻蚀等工艺形成的金属导线(trace)。
在一些实施例中,所述第一螺旋分段331还可以包括一个焊垫3312,所述焊垫3312与所述辐射臂3311的一端电气连接,所述第三螺旋分段333还可以包括两个焊垫3332,分别与所述辐射臂3331的两端电气连接,所述第二螺旋分段332的两端分别与所述第一螺旋分段331的焊垫3312和所述第三螺旋分段333的一个焊垫3332电气连接,所述第四螺旋分段334的两端分别与所述第三螺旋分段333的另一个焊垫3332和下一匝的螺旋线圈的第一螺旋分段331的一个焊垫3312电气连接。
在一些实施例中,所述第一螺旋分段331和所述第三螺旋分段333可以呈曲线状或直线状。具体地,所述第一螺旋分段331和所述第三螺旋分段333可以呈三角函数曲线状或对数函数曲线状,采用连续平滑的函数曲线形式有利于所述螺旋线圈33和收发芯片(TRX RFIC)之间的阻抗匹配。
在一些实施例中,所述第一螺旋分段331和所述第三螺旋分段333在所述载板31平面上的投影可以呈锐角,有利于减小所述螺旋天线33的结构面积,在所述载板31的不同层上形成投影之间呈锐角的第一螺旋分段331和第三螺旋分段333,有利于工艺实现和制造。
在一些实施例中,所述螺旋天线33可以工作于轴向辐射模式、或法向辐射模式与轴向辐射模式的混合辐射模式;其中,在所述轴向辐射模式下,所述螺旋天线33在其轴向上具有最大的辐射强度,在所述法向辐射模式下,所述螺旋天线33在垂直于其轴向的方向上具有最大的辐射强度。
所述螺旋天线33的工作模式由其结构参数决定,当所述螺旋天线33的螺旋半径远小于所述螺旋天线33的工作波长λ 0时,所述螺旋天线33类似于电偶极子,工作于法向辐射模式。为了实现辐射信号的侧向覆盖,在一些实施例中,可以设置所述螺旋天线33的轴线指 向其所在的边缘区域的载板边界的法向,同时使所述螺旋天线33工作于轴向辐射模式。为了激励所述螺旋天线33的轴向辐射模式,可以设置所述螺旋天线33的多匝螺旋线圈的参数满足:3/4<C/λ 0<4/3,S≈λ 0/4,N≥3,其中C为每匝螺旋线圈在垂直于所述螺旋天线33的轴线的平面上的投影的周长,S为所述多匝螺旋线圈的间距,N为所述多匝螺旋线圈的匝数,λ 0为所述螺旋天线33的工作波长。例如,所述螺旋天线33的工作带宽的中心频率为26.75GHz,λ 0可以取11.2mm。
需要说明的是,上述参数中限定了每匝螺旋线圈的投影周长C,在其它实施例中,也可将C转化为每匝螺旋线圈的半径r,以每匝螺旋线圈的半径r替代周长参数C作为结构参数之一对所述螺旋天线33进行结构设计。
在一些实施例中,所述螺旋天线33可以包括多匝螺旋线圈,所述多匝螺旋线圈可以具有不同的螺旋半径。具体地,如图2所示,所述多匝螺旋线圈的螺旋半径的变化趋势可以包括:两个端部区域的螺旋线圈的螺旋半径小于中间区域的螺旋线圈的螺旋半径。螺旋线圈的半径变化趋势可以用于调节所述螺旋天线33的宽带阻抗匹配和辐射方向增益。可以理解的是,在其它实施例中,所述多匝螺旋线圈的螺旋半径可以具有不同于图2所示的变化趋势。
考虑到性能与结构尺寸的折中,在一些实施例中,使所述螺旋天线33工作于混合辐射模式更为实用,相应地可以设计所述螺旋天线33的多匝螺旋线圈具有较小间距而每匝螺旋线圈半径变化的形式。
在一些实施例中,所述载板31的中间区域还设置有第一天线阵列(图2中未示出),所述第一天线阵列可以包括多个贴片单元,所述多匝螺旋线圈的螺旋半径的最大值可以和一个贴片单元的尺寸相当,例如所述多匝螺旋线圈的螺旋半径的最大值可以小于或等于一个贴片单元的尺寸。
在一些实施例中,所述螺旋天线33可以设置于所述载板31的一 侧的边缘区域,也可以设置于所述载板31的多侧的边缘区域,例如所述载板31可以是矩形,所述螺旋天线33可以设置于平行于所述载板31的三条边的边缘区域。
在一些实施例中,所述载板31沿其厚度方向的一个表面上设置有接地平面(Ground Plane)32,所述接地平面32覆盖所述载板31的中间区域而暴露出所述载板31的边缘区域。
在一些实施例中,所述天线单元30还可以包括设置于所述载板31的中间区域的馈电传输线(Microstrip Feed)34,所述馈电传输线34的馈电端与所述螺旋天线33的第一端电气连接,所述螺旋天线33的第二端为自由端,适于辐射信号。
图2所示实施例的天线单元30相比于图1a和图1b的边缘天线10和20而言,节省了引向器和反射器,从而减小了天线的尺寸,减小天线封装的面积和体积;节省了宽带匹配balun,易于与收发芯片(TRX RFIO)连接,面积小并且宽带匹配特性好;具有较大的工作带宽,且辐射最大增益指向载板侧向,和主天线阵列协同工作覆盖整个扇区。
参考图3,图3是根据本发明另一实施例的天线单元40的结构示意图。所述天线单元40包括:具有三维结构的螺旋天线43及馈电传输线44,所述螺旋天线43设置于载板41的边缘区域,所述馈电传输线44的馈电端与所述螺旋天线43的第一端电气连接,所述螺旋天线43的第二端为自由端,适于辐射信号。
所述螺旋天线43可以包括至少一匝螺旋线圈,所述载板41包括至少两个金属层411和413、以及介于所述两个金属层411和413之间的非导电介质层412,每匝螺旋线圈包括:首尾串接的第一螺旋分段431、第二螺旋分段432、第三螺旋分段433和第四螺旋分段434;其中所述第一螺旋分段431和所述第三螺旋分段433沿平行于所述载板41的平面的方向分别设置于所述两个金属层411和413中,所述第二螺旋分段432和所述第四螺旋分段434沿所述载板41的厚度方 向贯穿所述非导电介质层412,以将所述第一螺旋分段431和所述第三螺旋分段433电气连接。
所述载板41包括一个或多个接地平面42。所述一个或多个接地平面42覆盖所述载板41的中间区域而暴露出所述载板41的边缘区域,所述一个或多个接地平面42通过沿所述载板41的厚度方向贯穿所述载板41的接触孔46电气连接。
本实施例与图2所示实施例的区别在于:所述一个或多个接地平面42靠近所述载板41的边缘区域处形成有向所述载板41的中间区域缩进的缺口42a,所述螺旋天线43的一部分设置于所述缺口42a暴露出的载板41中。具体地,所述缺口42a可以呈梯形。
在芯片结构面积允许的情况下,如图3所示可以使用多层连接的接地平面并在边缘切割出一定形状的缺口以将所述螺旋天线43缩进所述缺口,减小了所述螺旋天线43在所述载板41边缘延伸出的长度从而减小封装尺寸,同时还能更优地控制波束的指向和增益。
本发明实施例还提供一种天线系统。参考图4,图4是本发明一个实施例的天线系统50的结构示意图。在一些实施例中,所述天线系统50可以包括载板51、第一天线阵列、和第二天线阵列,其中所述第一天线阵列设置于所述载板51的中间区域,包括多个贴片单元58;所述第二天线阵列设置于所述载板51的边缘区域,包括至少一个本发明前述实施例的天线单元,所述天线单元可以包括螺旋天线53和馈电传输线54,所述螺旋天线53设置于所述载板51的边缘区域,所述馈电传输线54设置于所述载板51的中间区域,所述馈电传输线54的一端与所述螺旋天线53电气连接,所述馈电传输线54的另一端与收发芯片电气连接。
在一些实施例中,所述天线系统50的第二天线阵列可以包括多个天线单元,所述载板51可以为矩形,所述多个天线单元分别沿平行于所述矩形的三条边的方向设置于所述载板51的边缘区域。所述载板51可以是封装基板,也可以是PCB(Printed Circuit Board)板。
在一些实施例中,所述多个贴片单元58可以平行于载板平面设置,所述贴片单元58的辐射最大增益指向垂直于所述载板平面的方向,所述多个天线单元的螺旋天线53的轴线可以平行于所述载板平面设置,所述多个天线单元的辐射最大增益指向所述螺旋天线53的轴向。
在一些实施例中,所述第一天线阵列的辐射波束分布范围包括沿垂直于所述载板平面的一个辐射平面上的±60°之间的扇区,所述第二天线阵列的辐射波束分布范围包括沿垂直于所述载板平面的所述一个辐射平面上60°至120°之间的扇区。具体地,所述一个辐射平面可以是沿平行于所述矩形载板51的长边方向纵切所述载板51形成的剖面。
在图4所示实施例的天线系统50中,所述第一天线阵列可以看作是主天线,所述第二天线阵列为边缘天线,由于所述主天线和所述边缘天线分别工作于不同的辐射模式,因此所述边缘天线能够弥补所述主天线侧向波束覆盖不足的技术问题。
参考图5,图5是本发明另一实施例的第二天线阵列的结构示意图。
在一些实施例中,所述第二天线阵列可以包括多个螺旋天线63,所述多个螺旋天线63在所述载板61的边缘区域呈一维阵列排布,所述多个螺旋天线63可以共用一条馈电传输线64,所述馈电传输线64可以具有多个馈电端,所述多个馈电端可以分别与所述多个螺旋天线63电气连接。
结合参考图6、图7和图8,图6是本发明图5所示实施例的第二天线阵列的阻抗特性曲线图,图6的纵坐标是回波损耗/dB,横坐标是频率/GHz,图7是本发明图5所示实施例的第二天线阵列在23.8GHz、26.8GHz、和29.8GHz的E面辐射方向示意图,图8是本发明图5所示实施例的第二天线阵列在23.8GHz、26.8GHz、和29.8GHz的H面辐射方向示意图。
由于轴向模式的螺旋天线63一般具有较宽的工作带宽,通过优化设计所述螺旋天线63可以实现与所述馈电传输线64的宽带匹配。如图6所示,-10dB以下的工作频段为24GHz至29.5GHz,阻抗带宽为5.5GHz,中心频点为26.75GHz,带宽比为20%。因此,在没有附加任何匹配电路的情况下,所述第二天线阵列的工作带宽可以覆盖整个N258和N257频段。
在其他实施例中,所述螺旋天线63的工作频段也可以是24GHz至300GHz之间具有预设带宽的毫米波频段,例如可以是24GHz至29.5GHz,37GHz至42.5GHz,或57GHz至71GHz。
由图7所示的E面辐射方向图可以看出,扣除馈电网络和各种材料损耗后,所述第二天线阵列在24GHz至29.5GHz频段内实现了8dB至10dB的增益,即每个天线单元在该频段内的增益优于3dB至4dB,也优于理想偶极子的2.18dBi。此外,所述第二天线阵列的辐射波束分布范围包括E面内的60°至120°之间的扇区,其最大增益方向为90°,即所述螺旋天线63的轴向,符合预期的边缘天线的覆盖范围,可以弥补主天线阵列在最大工作角度以外的方向。
在图8所示的H面辐射方向图中,所述第二天线阵列的辐射波束分布范围包括60°至120°之间的扇区。
参考图9,图9是本发明另一个实施例的天线系统70的结构框图。
在一些实施例中,所述天线系统70可以包括第一天线阵列71、第二天线阵列72、收发芯片73、封装基板74以及PCB板,所述第一天线阵列71设置于所述封装基板74的第一表面的中间区域,包括多个贴片单元,所述第二天线阵列72包括至少一个本发明前述实施例的天线单元和馈电传输线,所述天线单元的螺旋天线设置于所述封装基板74的第一表面的边缘区域,所述馈电传输线设置于所述封装基板74的第一表面的中间区域。所述收发芯片73分别与所述第一天线阵列71和所述第二天线阵列72电气连接,所述收发芯片73适于 接收和发送预设频率范围的信号。其中所述第一天线阵列71、所述第二天线阵列72、所述收发芯片73和所述封装基板74形成一个AiP(Antenna in Package)结构,所述AiP结构集成于所述PCB板上,所述PCB板可以安装在终端中并和许多其它部件连接。
在一些实施例中,所述收发芯片包括收发外围电路和射频集成电路芯片(Radio Frequency Integrated Circuit,RFIC),所述收发芯片适于接收和发送24GHz至300GHz间具有预设带宽的毫米波信号。所述收发外围电路可以包括滤波电路和耦合电路等。
参考图10,图10是本发明另一个实施例的天线系统80的结构框图。
在一些实施例中,所述天线系统80可以包括第一天线阵列81、第二天线阵列82、收发芯片83、以及PCB板84。所述第一天线阵列81包括多个贴片单元,所述第二天线阵列82包括至少一个本发明前述实施例的天线单元和馈电传输线,所述收发芯片83适于接收和发送预设频率范围的信号,所述收发芯片83分别与所述第一天线阵列81和所述第二天线阵列82电气连接。所述第一天线阵列81、所述第二天线阵列82和所述收发芯片83都集成在所述PCB板84上,所述收发芯片83可以与所述第一天线阵列81、所述第二天线阵列82集成于所述PCB板上的不同区域。所述PCB板可以安装在终端中并和许多其它部件连接。
参考图11,图11是本发明另一个实施例的天线系统90的结构框图。
在一些实施例中,所述天线系统90可以包括第一天线阵列91、第二天线阵列92、收发芯片93、封装基板94以及PCB板95。所述第一天线阵列91包括多个贴片单元,所述第二天线阵列92包括至少一个本发明前述实施例的天线单元和馈电传输线,所述收发芯片93适于接收和发送预设频率范围的信号,所述收发芯片93分别与所述第一天线阵列91和所述第二天线阵列92电气连接。所述封装基板 94的第一表面设置有所述第一天线阵列91,所述封装基板94的第二表面设置有所述收发芯片93,所述第一天线阵列91、所述收发芯片93、和所述封装基板94形成一个AiP结构,所述AiP结构集成于所述PCB板95上的第一区域,所述第二天线阵列92集成在所述PCB板95上的第二区域。所述PCB板可以安装在终端中并和许多其它部件连接。
参考图12,图12是本发明另一个实施例的天线系统100的结构框图。
在一些实施例中,所述天线系统100可以包括第一天线阵列101、第二天线阵列102、收发芯片103、封装基板104以及PCB板105。所述第一天线阵列101包括多个贴片单元,所述第二天线阵列102包括至少一个本发明前述实施例的天线单元和馈电传输线,所述收发芯片103适于接收和发送预设频率范围的信号,所述收发芯片103分别与所述第一天线阵列101和所述第二天线阵列102电气连接。所述封装基板104的第一表面设置有所述第二天线阵列102,所述封装基板104的第二表面设置有所述收发芯片103,所述第二天线阵列102、所述收发芯片103和所述封装基板104形成一个AiP结构,所述AiP结构集成于所述PCB板105上的第一区域,所述第一天线阵列101集成在所述PCB板105上的第二区域。所述PCB板可以安装在终端中并和许多其它部件连接。
本发明实施例还提供一种电子装置,所述电子装置可以包括本发明前述实施例的天线系统。
在一些实施例中,所述电子装置可以是适用于5G新空口(5G NR)标准的移动终端,所述移动终端包括本发明前述实施例的天线系统,所述天线系统与所述移动终端中的其他部件相连接。
在一些实施例中,所述天线系统的工作频段可以为24GHz至300GHz间的具有预设带宽的毫米波频段,例如24GHz至29.5GHz,37GHz至42.5GHz,或57GHz至71GHz等。
综上所述,本发明实施例的天线单元,包括具有三维结构的螺旋天线,由于所述螺旋天线可以设置于所述载板的多个层中,而非在同一平面内,合理地利用了所述载板的横向空间和纵向空间,极大地减小了所述天线单元的体积和面积,符合当今移动终端小型化和纤薄的工艺设计要求。
进一步地,每匝螺旋线圈包括首尾串接的第一螺旋分段、第二螺旋分段、第三螺旋分段和第四螺旋分段,其中所述第一螺旋分段和所述第三螺旋分段沿平行于载板平面的方向分别设置于所述两个金属层中,所述第二螺旋分段和所述第四螺旋分段沿所述载板的厚度方向贯穿所述非导电介质层,即所述第一螺旋分段和所述第三螺旋分段为两段平面螺旋天线,所述第二螺旋分段沿纵向延伸用于将所述两段平面螺旋天线电气连接,这样能够在实现具有三维结构的螺旋天线的前提下、更大程度地利用所述两个金属层的平面来设置具有预设长度和预设形状的平面螺旋分段,以实现所述螺旋天线的宽带阻抗匹配。
进一步地,所述载板包括沿其厚度方向交替堆叠的多个非导电介质层和多个金属层,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈的多个第一螺旋分段设置于相同或不同的金属层中,所述多匝螺旋线圈的多个第二螺旋分段分别设置于相同或不同的金属层中,因此,每匝螺旋线圈的分段设计可以具有较大的自由度,以便调节所述螺旋天线的各项性能。
进一步地,所述第一螺旋分段和所述第三螺旋分段可以呈三角函数或对数函数等连续平滑函数曲线的形状,有利于实现所述螺旋天线与收发芯片的阻抗匹配。
进一步地,所述天线单元作为边缘天线可以工作于轴向辐射模式,以覆盖主天线阵列的最大工作角度以外的空间,便于和主天线阵列协同工作覆盖整个扇区;或者,所述天线单元可以工作于法向辐射模式与轴向辐射模式的混合辐射模式,不仅能够覆盖主天线阵列的最大工作角度以外的空间,还有利于缩小所述天线单元的结构尺寸,能够在 天线性能与缩小天线的结构尺寸之间达到平衡。
进一步地,所述天线单元的工作模式由所述螺旋天线的结构参数决定,可以通过设置所述螺旋天线的每匝螺旋线圈的螺旋周长、多匝螺旋线圈的螺旋间距、及螺旋线圈的匝数来调节所述天线单元的工作模式,具体可以通过设置3/4<C/λ 0<4/3,S≈λ 0/4,N≥3,使得所述螺旋天线工作于轴向辐射模式或混合辐射模式。
进一步地,所述螺旋天线包括的多匝螺旋线圈可以具有不同的螺旋半径,通过调节所述多匝螺旋线圈的螺旋半径的变化趋势能够调节所述螺旋天线的宽带阻抗匹配和辐射方向增益。
本发明实施例的天线系统,包括第一天线阵列和第二天线阵列,所述第第一天线阵列设置于所述载板的中间区域,作为主天线,所述第二天线阵列包括本发明实施例的天线单元,设置于所述载板的边缘区域,作为边缘天线,所述边缘天线可以覆盖所述主天线的最大工作角度以外的空间,便于和所述主天线协同工作覆盖整个扇区。所述天线系统还包括载板和收发芯片,所述载板可以包括封装基板或PCB板,实际应用中可以采用多种方式形成天线的封装结构,也可以采用多种方式在所述PCB板上集成所述第一天线阵列、所述第二天线阵列和所述收发芯片。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (29)

  1. 一种天线单元,其特征在于,包括:具有三维结构的螺旋天线,所述螺旋天线设置于载板的边缘区域;
    所述螺旋天线包括至少一匝螺旋线圈,每匝螺旋线圈包括不在同一平面内的多个螺旋分段,所述多个螺旋分段分别设置于所述载板的多个层中。
  2. 如权利要求1所述的天线单元,其特征在于,所述载板包括至少两个金属层、以及介于所述两个金属层之间的非导电介质层,每匝螺旋线圈包括:首尾串接的第一螺旋分段、第二螺旋分段、第三螺旋分段和第四螺旋分段;
    其中所述第一螺旋分段和所述第三螺旋分段沿平行于载板平面的方向分别设置于所述两个金属层中,所述第二螺旋分段和所述第四螺旋分段沿所述载板的厚度方向贯穿所述非导电介质层,以将所述第一螺旋分段和所述第三螺旋分段电气连接。
  3. 如权利要求2所述的天线单元,其特征在于,所述载板包括沿其厚度方向交替堆叠的多个非导电介质层和多个金属层,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈的多个第一螺旋分段设置于相同或不同的金属层中,所述多匝螺旋线圈的多个第二螺旋分段分别设置于相同或不同的金属层中。
  4. 如权利要求2所述的天线单元,其特征在于,所述第一螺旋分段和所述第三螺旋分段均包括辐射臂,所述第二螺旋分段和所述第四螺旋分段包括填充有导电材料的通孔或盲孔,所述通孔或盲孔的两端分别与所述第一螺旋分段的辐射臂和所述第三螺旋分段的辐射臂电气连接。
  5. 如权利要求4所述的天线单元,其特征在于,所述第一螺旋分段和所述第三螺旋分段还包括焊垫,所述焊垫与所述辐射臂的一端电气连接,所述通孔或盲孔的两端分别与所述第一螺旋分段的焊垫和所述 第三螺旋分段的焊垫电气连接。
  6. 如权利要求2所述的天线单元,其特征在于,所述第一螺旋分段和所述第三螺旋分段呈曲线状或直线状。
  7. 如权利要求6所述的天线单元,其特征在于,所述第一螺旋分段和所述第三螺旋分段呈三角函数曲线状或对数函数曲线状。
  8. 如权利要求6所述的天线单元,其特征在于,所述第一螺旋分段和所述第三螺旋分段在所述载板平面上的投影呈锐角。
  9. 如权利要求1所述的天线单元,其特征在于,所述天线单元工作于轴向辐射模式、或法向辐射模式与轴向辐射模式的混合辐射模式;
    其中,在所述轴向辐射模式下,所述天线单元在所述螺旋天线的轴向具有最大的辐射强度,在所述法向辐射模式下,所述天线单元在垂直于所述螺旋天线的轴向的方向具有最大的辐射强度。
  10. 如权利要求9所述的天线单元,其特征在于,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈的参数满足:3/4<C/λ 0<4/3,S≈λ 0/4,N≥3,其中C为每匝螺旋线圈在垂直于所述螺旋天线的轴线的平面上的投影的周长,S为所述多匝螺旋线圈的间距,N为所述多匝螺旋线圈的匝数,λ 0为所述螺旋天线的工作波长。
  11. 如权利要求1所述的天线单元,其特征在于,所述螺旋天线包括多匝螺旋线圈,所述多匝螺旋线圈具有不同的螺旋半径。
  12. 如权利要求11所述的天线单元,其特征在于,所述多匝螺旋线圈的螺旋半径的变化趋势包括:两端区域的螺旋线圈的螺旋半径小于中间区域的螺旋线圈的螺旋半径。
  13. 如权利要求11所述的天线单元,其特征在于,所述载板的中间区域设置有第一天线阵列,所述第一天线阵列包括多个贴片单元,所述多匝螺旋线圈的螺旋半径的最大值小于或等于一个贴片单元的尺寸。
  14. 如权利要求1所述的天线单元,其特征在于,所述螺旋天线的轴 向平行于其所在的边缘区域的载板边界的法向。
  15. 如权利要求1所述的天线单元,其特征在于,所述载板还包括一个或多个接地平面,所述一个或多个接地平面覆盖所述载板的中间区域而暴露出所述载板的边缘区域,所述一个或多个接地平面通过沿所述载板的厚度方向贯穿所述载板的接触孔电气连接,所述一个或多个接地平面靠近所述载板的边缘区域处形成有向所述载板的中间区域缩进的缺口,所述螺旋天线的一部分设置于所述缺口暴露出的载板中。
  16. 如权利要求1所述的天线单元,其特征在于,还包括:设置于所述载板的中间区域的馈电传输线,所述馈电传输线的馈电端与所述螺旋天线的第一端电气连接,所述螺旋天线的第二端为自由端,适于辐射信号。
  17. 一种天线系统,其特征在于,包括:载板、第一天线阵列和第二天线阵列;
    所述第一天线阵列,设置于所述载板的中间区域,包括多个贴片单元;
    所述第二天线阵列,包括至少一个如权利要求1至16任一项所述的天线单元,所述天线单元的螺旋天线设置于所述载板的边缘区域。
  18. 如权利要求17所述的天线系统,其特征在于,所述多个贴片单元沿平行于载板平面的方向设置,所述贴片单元的辐射最大增益指向垂直于所述载板平面的方向,所述至少一个天线单元的螺旋天线的轴线沿平行于所述载板平面的方向设置,所述天线单元的辐射最大增益指向所述螺旋天线的轴向。
  19. 如权利要求18所述的天线系统,其特征在于,所述第二天线阵列包括多个天线单元,所述多个天线单元在所述载板上呈一维阵列排布;所述第一天线阵列的辐射波束分布范围包括沿垂直于所述载板平面的一个幅射平面上的±60°之间的扇区;所述第二天线阵列的辐射波束分布范围包括沿垂直于所述载板平面的所述一个幅射平面上的60° 至120°之间的扇区。
  20. 如权利要求17所述的天线系统,其特征在于,还包括:收发芯片,所述收发芯片分别与所述第一天线阵列和所述第二天线阵列电气连接,所述收发芯片适于接收和发送预设频率范围的信号。
  21. 如权利要求20所述的天线系统,其特征在于,所述收发芯片包括:收发外围电路和射频集成电路芯片。
  22. 如权利要求20所述的天线系统,其特征在于,所述收发芯片适于接收和发送毫米波信号。
  23. 如权利要求20所述的天线系统,其特征在于,所述载板包括封装基板。
  24. 如权利要求23所述的天线系统,其特征在于,还包括PCB板,所述封装基板的第一表面设置有所述第一天线阵列和所述第二天线阵列,所述封装基板的第二表面设置有所述收发芯片,所述承载有第一天线阵列、第二天线阵列和收发芯片的封装基板集成于所述PCB板上。
  25. 如权利要求23所述的天线系统,其特征在于,还包括PCB板,所述封装基板的第一表面设置有所述第一天线阵列,所述封装基板的第二表面设置有所述收发芯片,所述承载有第一天线阵列和收发芯片的封装基板集成于所述PCB板的第一区域,所述第二天线阵列集成于所述PCB板的第二区域。
  26. 如权利要求23所述的天线系统,其特征在于,还包括PCB板,所述封装基板的第一表面设置有所述第二天线阵列,所述封装基板的第二表面设置有所述收发芯片,所述承载有第二天线阵列和收发芯片的封装基板集成于所述PCB板的第一区域,所述第一天线阵列集成于所述PCB板的第二区域。
  27. 如权利要求20所述的天线系统,其特征在于,所述载板包括PCB板,所述第一天线阵列、所述第二天线阵列和所述收发芯片均集成于 所述PCB板上。
  28. 一种电子装置,其特征在于,包括:如权利要求17至27任一项所述的天线系统。
  29. 如权利要求28所述的电子装置,其特征在于,所述电子装置包括适用于5G新空口标准的移动终端。
PCT/CN2019/079607 2019-01-31 2019-03-26 天线单元、天线系统及电子装置 WO2020155346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/979,703 US11456526B2 (en) 2019-01-31 2019-03-26 Antenna unit, antenna system and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910101624.5 2019-01-31
CN201910101624.5A CN111293420B (zh) 2019-01-31 2019-01-31 天线单元、天线系统及电子装置

Publications (1)

Publication Number Publication Date
WO2020155346A1 true WO2020155346A1 (zh) 2020-08-06

Family

ID=71023261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079607 WO2020155346A1 (zh) 2019-01-31 2019-03-26 天线单元、天线系统及电子装置

Country Status (3)

Country Link
US (1) US11456526B2 (zh)
CN (1) CN111293420B (zh)
WO (1) WO2020155346A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994168A (zh) * 2019-12-27 2020-04-10 维沃移动通信有限公司 一种天线模组及电子设备
TWI749987B (zh) * 2021-01-05 2021-12-11 友達光電股份有限公司 天線結構及陣列天線模組
CN113466783B (zh) * 2021-06-22 2022-05-10 中国电子科技集团公司第五十四研究所 一种监测频段可扩展的九通道超短波测向系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201417818Y (zh) * 2009-03-18 2010-03-03 深圳市麦捷微电子科技股份有限公司 一种片式多层射频天线
KR20110125716A (ko) * 2010-05-14 2011-11-22 주식회사 에이스테크놀로지 미앤더라인을 이용하는 입체형 안테나 구조
CN102800932A (zh) * 2011-05-24 2012-11-28 瑞昱半导体股份有限公司 双频天线及相关的无线通信装置
CN104882667A (zh) * 2015-04-27 2015-09-02 北京理工大学 一种多层四臂螺旋天线系统
CN206628599U (zh) * 2014-08-27 2017-11-10 株式会社村田制作所 表面安装型天线以及电子设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094178A (en) * 1997-11-14 2000-07-25 Ericsson, Inc. Dual mode quadrifilar helix antenna and associated methods of operation
KR100860281B1 (ko) 2000-08-04 2008-09-25 미츠비시 마테리알 가부시키가이샤 안테나
CN2838057Y (zh) * 2005-07-19 2006-11-15 达智科技股份有限公司 外露式印刷电路板天线
US7557772B2 (en) * 2006-03-21 2009-07-07 Broadcom Corporation Planer helical antenna
CN201336360Y (zh) * 2008-12-01 2009-10-28 佳邦科技股份有限公司 芯片型调频广播天线
JP4748334B2 (ja) * 2009-09-01 2011-08-17 横浜ゴム株式会社 アンテナ
CN101777698A (zh) * 2009-12-30 2010-07-14 上海集成电路研发中心有限公司 集成电路中的片上天线结构及其制造方法
JP5712885B2 (ja) * 2011-09-29 2015-05-07 三菱マテリアル株式会社 アンテナ装置
US8760352B2 (en) 2012-03-30 2014-06-24 Htc Corporation Mobile device and antenna array thereof
GB2503930A (en) * 2012-07-13 2014-01-15 Harris Corp Dielectrically loaded antenna with PCB feeder structure and mounting tabs, mounted to RF PCB
CN204809410U (zh) 2013-08-13 2015-11-25 株式会社村田制作所 天线装置、卡式器件及电子设备
KR102185196B1 (ko) * 2014-07-04 2020-12-01 삼성전자주식회사 무선 통신 기기에서 안테나 장치
WO2016143584A1 (ja) * 2015-03-09 2016-09-15 株式会社村田製作所 コイルデバイスおよび電子デバイス
JP6589403B2 (ja) * 2015-06-15 2019-10-16 Tdk株式会社 アンテナ装置及びこれに用いるコイル部品
JP6369666B1 (ja) * 2016-09-26 2018-08-08 株式会社村田製作所 アンテナ装置および電子機器
KR20190009936A (ko) * 2017-07-20 2019-01-30 삼성전기주식회사 안테나 모듈 및 이를 구비하는 전자 기기
US10895634B2 (en) * 2018-02-21 2021-01-19 Apple Inc. Electronic devices having millimeter wave ranging capabilities
US10978797B2 (en) * 2018-04-10 2021-04-13 Apple Inc. Electronic devices having antenna array apertures mounted against a dielectric layer
US11024971B2 (en) * 2018-08-08 2021-06-01 The Board Of Trustees Of The University Of Alabama Wideband millimeter (mmWave) antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201417818Y (zh) * 2009-03-18 2010-03-03 深圳市麦捷微电子科技股份有限公司 一种片式多层射频天线
KR20110125716A (ko) * 2010-05-14 2011-11-22 주식회사 에이스테크놀로지 미앤더라인을 이용하는 입체형 안테나 구조
CN102800932A (zh) * 2011-05-24 2012-11-28 瑞昱半导体股份有限公司 双频天线及相关的无线通信装置
CN206628599U (zh) * 2014-08-27 2017-11-10 株式会社村田制作所 表面安装型天线以及电子设备
CN104882667A (zh) * 2015-04-27 2015-09-02 北京理工大学 一种多层四臂螺旋天线系统

Also Published As

Publication number Publication date
US11456526B2 (en) 2022-09-27
CN111293420A (zh) 2020-06-16
CN111293420B (zh) 2021-04-27
US20210050656A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
EP3726649B1 (en) Antenna module and electronic device
EP4047746A1 (en) Antenna module and electronic device
US7999753B2 (en) Apparatus and methods for constructing antennas using vias as radiating elements formed in a substrate
JP4305282B2 (ja) アンテナ装置
KR101744886B1 (ko) 마이크로 스트립 패치 안테나
TWI245454B (en) Low sidelobes dual band and broadband flat endfire antenna
WO2020155346A1 (zh) 天线单元、天线系统及电子装置
WO2019223318A1 (zh) 室内基站及其pifa天线
CN110534884B (zh) 一种新型宽带宽波束的圆极化天线单元
CN111052507A (zh) 一种天线及无线设备
CN109560388B (zh) 基于基片集成波导喇叭的毫米波宽带圆极化天线
CN112054289B (zh) 电子设备
CN108400436B (zh) 天线模块
US11239560B2 (en) Ultra wide band antenna
CN220492202U (zh) 一种应用于x频段的宽带端射天线
EP3893329B1 (en) Antenna for sending and/or receiving electromagnetic signals
RU2793067C1 (ru) Широкополосный антенный модуль
CN112821054B (zh) 一种高增益开槽微带贴片天线
CN113161731B (zh) 天线和通讯设备
CN117673705A (zh) 天线单元及通信设备
CN115566406A (zh) 一种适用于反无人机信号干扰装置的微带准八木天线
CN116683171A (zh) 一种应用于x频段的宽带端射天线
EP4252320A1 (en) End-fire tapered slot antenna
CN117117518A (zh) 一种基于基片集成同轴线的双频平面套筒单极子天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912683

Country of ref document: EP

Kind code of ref document: A1