WO2018221929A1 - 이차 전지용 전극의 기공 분포 측정 방법 - Google Patents

이차 전지용 전극의 기공 분포 측정 방법 Download PDF

Info

Publication number
WO2018221929A1
WO2018221929A1 PCT/KR2018/006076 KR2018006076W WO2018221929A1 WO 2018221929 A1 WO2018221929 A1 WO 2018221929A1 KR 2018006076 W KR2018006076 W KR 2018006076W WO 2018221929 A1 WO2018221929 A1 WO 2018221929A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
pores
binder
negative electrode
Prior art date
Application number
PCT/KR2018/006076
Other languages
English (en)
French (fr)
Inventor
한정훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880014563.2A priority Critical patent/CN110352347B/zh
Priority to US16/607,526 priority patent/US20200141841A1/en
Priority to EP18809590.5A priority patent/EP3633359B1/en
Priority to JP2019541699A priority patent/JP6860129B2/ja
Publication of WO2018221929A1 publication Critical patent/WO2018221929A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/079Investigating materials by wave or particle radiation secondary emission incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/402Imaging mapping distribution of elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/409Imaging embedding or impregnating the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/649Specific applications or type of materials porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for measuring the pore distribution of an electrode for secondary batteries that can easily measure the pore distribution inside the electrode for secondary batteries.
  • the secondary battery is largely composed of an electrode, a separator and an electrolyte, and the electrode is classified into a cathode and an anode. Since constituent materials such as an active material, a conductive material, and a binder are three-dimensionally distributed in the electrode, many pores exist in these gaps. The pores present in the electrode are filled with the electrolyte in the secondary battery to become a passage of ions or the like. Therefore, it is important to accurately analyze the distribution of pores in the electrode because the size, number, and distribution of the pore affect the diffusivity of the ions and the secondary battery performance.
  • Patent Document 1 Republic of Korea Patent Publication No. 2014-0132956
  • the present invention relates to a method for measuring the pore distribution of an electrode for a secondary battery that can easily analyze the distribution of pores in the electrode by clearly distinguishing the electrode internal constituent material and the pores.
  • One embodiment of the present invention comprises the steps of preparing an electrode for a secondary battery comprising an electrode active material, a binder and a conductive material; Impregnating a polymer including silicon into the secondary battery electrode to fill the polymer including the silicon in internal pores of the secondary battery electrode; Preparing an electrode cross-section sample by irradiating an ion beam of an ion milling device on the secondary battery electrode; Detecting silicon present in the sample of electrode cross-section using an energy dispersive spectral element analyzer; And determining a distribution of pores by analyzing an image to which points of silicon detected by the energy dispersive spectral element analyzer are mapped.
  • the pore distribution in the electrode may be confirmed by clearly distinguishing the constituent material and the pores of the electrode, and thereby accurately predicting the performance of the electrode for the secondary battery.
  • the pores in the electrode can be more clearly distinguished by dyeing the binder.
  • FIG. 1 is a view showing the ion milling apparatus used in the step of preparing an electrode cross-section sample according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of two secondary battery negative electrodes
  • FIG. 2B is a graph illustrating charging characteristics of the two secondary battery negative electrodes.
  • Figure 3a is a view showing the EDS mapping image of the pores of the negative electrode cross-section sample obtained using energy-dispersive X-ray spectroscopy (EDS) according to an embodiment of the present invention
  • Figure 3b is a pore of the negative electrode cross-section sample A diagram showing an image extracted by applying the EDS mapping image to image processing.
  • EDS energy-dispersive X-ray spectroscopy
  • FIG. 4A illustrates an EDS mapping image of a binder of a negative electrode cross-sectional sample obtained using an EDS according to an exemplary embodiment of the present invention
  • FIG. 4B illustrates an EDS mapping image of a binder of a negative electrode cross-section sample applied to image processing. The extracted image is shown.
  • FIG. 5A is a scanning electron microscope (SEM) photograph of the negative electrode cross-section sample prepared in Example 1
  • FIG. 5B is a SEM photograph of the negative electrode cross-section sample prepared in Example 2
  • FIG. 5C is a negative electrode cross-section prepared in Comparative Example 1
  • a SEM photograph of the sample
  • FIG. 5D is an SEM photograph of the negative electrode cross section sample prepared in Comparative Example 2
  • FIG. 5E is an SEM photograph of the negative electrode cross section sample prepared in Comparative Example 3.
  • Figure 6a is a view showing the EDS mapping image of the negative electrode cross-sectional sample according to Example 1 and Example 2 of the present invention obtained using the EDS
  • Figure 6b is a negative electrode cross-sectional sample according to Example 1 and Example 2
  • the EDS mapping image is applied to image processing to show the extracted image.
  • One embodiment of the present invention comprises the steps of preparing an electrode for a secondary battery comprising an electrode active material, a binder and a conductive material; Impregnating a polymer including silicon into the secondary battery electrode to fill the polymer including the silicon in internal pores of the secondary battery electrode; Preparing an electrode cross-section sample by irradiating an ion beam of an ion milling device on the secondary battery electrode; Detecting silicon present in the sample of electrode cross-section using an energy dispersive spectral element analyzer; And determining a distribution of pores by analyzing an image to which points of silicon detected by the energy dispersive spectral element analyzer are mapped.
  • the pore distribution in the electrode may be confirmed by clearly distinguishing the constituent material and the pores of the electrode, and thereby accurately predicting the performance of the electrode for the secondary battery.
  • the secondary battery electrode includes an electrode active material, a binder, and a conductive material.
  • the secondary battery electrode may further include various additives capable of improving its performance.
  • the electrode active material, the binder, and the conductive material are three-dimensionally distributed in the electrode for the rechargeable battery, and a plurality of pores may exist in the gap. That is, an electrode constituent material such as an electrode active material, a binder, a conductive material, and a plurality of pores may constitute the secondary battery electrode.
  • the electrode active material, the binder, and the conductive material included in the secondary battery electrode a material commonly used in the art may be used without particular limitation.
  • a diene binder such as carboxymethyl cellulose (CMC), butadiene, acrylic binder, or the like may be used as the binder.
  • CMC carboxymethyl cellulose
  • acrylic binder acrylic binder
  • various types of carbon-based materials including artificial graphite, natural graphite, or hard carbon, non-carbon-based materials including silicon (Si) and lithium titanium oxide (Lithium Titanium Oxide: LTO) and the like can be used.
  • Si silicon
  • Lithium Titanium Oxide: LTO lithium titanium oxide
  • the filling of the polymer including the silicon in the internal pores of the secondary battery electrode includes impregnating the polymer including silicon into the electrode for the secondary battery, and the polymer including silicon to the secondary. It may be to penetrate the pores of the battery electrode.
  • Liquid polymers may be used as the polymer containing silicon. Using a liquid polymer containing silicon, it is possible to more effectively fill the polymer containing the silicon in the pores of the secondary battery electrode.
  • the method of impregnating the polymer containing silicon in the pores of the secondary battery electrode may be carried out by a conventional method in the art.
  • the polymer including silicon may be applied to the secondary battery electrode by applying the silicon-containing polymer onto the secondary battery electrode, or immersing the secondary battery electrode in the polymer solution containing silicon. Can be impregnated into the pores.
  • FIG. 1 is a view showing the ion milling apparatus used in the step of preparing an electrode cross-section sample according to an embodiment of the present invention.
  • a focused ion beam generated by an ion gun may be irradiated onto a surface of a sample through a mask.
  • the electrode materials may be sputtered by irradiating an ion beam generated in an ion gun of an ion milling device on the secondary battery electrode.
  • This can produce an electrode cross-section sample having a clean cross section without physical damage.
  • the pores of the secondary battery electrode can be analyzed more precisely.
  • the ion beam may be an argon ion beam.
  • the said electrode cross-section sample can be manufactured more stably.
  • the ion beam current of the ion milling device may be 100 ⁇ A or more and 250 ⁇ A or less. Specifically, the ion beam current of the ion milling device may be 110 ⁇ A or more and 150 ⁇ A or less, or 200 ⁇ A or more and 230 ⁇ A or less.
  • the branch can manufacture an electrode cross-section sample. Through this, the analysis efficiency of the internal pores of the secondary battery electrode can be increased.
  • the discharge current of the ion milling device may be 250 ⁇ A or more and 450 ⁇ A or less.
  • the discharge current of the ion milling apparatus may be 370 ⁇ A or more and 450 ⁇ A or less, or 400 ⁇ A or more and 430 ⁇ A or less.
  • the detecting of the silicon present in the electrode cross-section sample may determine a point where silicon exists in the electrode cross-section sample by using the energy dispersive spectral element analyzer.
  • the polymer containing silicon is filled in the pores of the electrode for the secondary battery, it is possible to detect the silicon contained in the polymer filled in the pores by using the energy dispersive spectral element analyzer. Through this, it is possible to determine the location of the pores in the secondary battery electrode, the size, number, distribution, and the like of the pores.
  • the pores formed in the gaps of the materials constituting the electrode may be a passage of ions, and the like, and the size, number, and distribution of pores present in the electrode may greatly affect the performance of the secondary battery.
  • FIG. 2A is a cross-sectional view of two secondary battery negative electrodes
  • FIG. 2B is a graph illustrating charging characteristics of the two secondary battery negative electrodes.
  • FIG. 2A illustrates two secondary battery negative electrode cross-sections having the same total pore distribution but having different pore distributions on the upper and lower portions on the negative electrode cross-section of the secondary battery.
  • the negative electrode 1 and the negative electrode 2 have the same distribution of 25% of the total pores on the same area.
  • FIG. 2A in the case of the negative electrode 1, pores are similarly sized in the upper and lower portions on the negative electrode cross section, and are evenly distributed in the upper and lower portions.
  • the pores present in the upper portion on the negative electrode cross section is larger than the pores present in the lower portion, there are more pores in the upper portion than the lower portion.
  • FIG. 2B illustrates a state of charge (SOC) according to voltages applied to the negative electrodes 1 and 2. Referring to FIG.
  • the negative electrode 2 having a larger pore size in the upper portion on the negative electrode cross section and more pores in the upper portion than the lower portion is compared to the negative electrode 1 in which pores of similar size are evenly distributed in the upper and lower portions on the negative electrode cross section. It turns out that the charging characteristic is excellent.
  • the present invention by filling a polymer containing silicon in the pores of the secondary battery electrode, by detecting the silicon present in the electrode cross-sectional sample prepared from the secondary battery electrode, the material and the pores can be clearly distinguished, and the size, number, distribution, etc. of the pores can be easily confirmed.
  • the material signal of the secondary battery electrode which may be generated by filling the polymer including the silicon in the pores of the electrode for the secondary battery, may be generated by the presence of the material of the secondary battery electrode on different focal planes at the bottom of the pore.
  • the phenomenon which is detected can be prevented. Therefore, even when the electrode cross-section sample in which the polymer containing silicon is filled in the pores of the secondary battery electrode is observed with a scanning electron microscope, the constituent material of the pores and the secondary battery electrode can be distinguished.
  • the constituent material and the pores of the secondary battery electrode is clearly distinguished, and the size, number, distribution, etc. of the pores are determined. It can be easily analyzed.
  • the pores can be accurately analyzed and the distribution of the pores can be confirmed, and thus the secondary battery electrode and the secondary battery including the same The performance of can be predicted more effectively.
  • the polymer containing silicon is polydimethylsiloxane (polydimethylsiloxane). It may include one or more selected from the group consisting of polysiloxane, polysilane, and polysilazane. Silicon may be included in a repeat unit of the polymer including silicon. The silicon component included in the polymer may maximize the contrast effect due to the atomic number difference, thereby clearly distinguishing the pores and the constituent material of the electrode for secondary batteries.
  • the distribution of pores present in the secondary battery electrode and the size, number, location, etc. of the pores can confirm.
  • the energy-dispersive X-ray spectroscopy may be used to attach to a scanning electron microscope.
  • the energy dispersive spectral element analyzer is an analytical device that detects X-rays generated when an electron beam is irradiated onto a sample surface and measures components of the sample. There is an advantage to this.
  • an energy dissipation type spectral element analyzer having an energy resolution of 5.9 keV or more and 136 keV or less and having a minimum detection limit of 0.1 wt% may be used.
  • the silicon of the polymer filled in the pores of the secondary battery electrode can be detected more accurately.
  • the energy dispersive spectral element analyzer may detect silicon of the polymer filled in the pores of the secondary battery electrode, and extract the EDS mapping image displaying the detected silicon spot.
  • the location of the pores of the electrode for secondary batteries, the shape, size, number, distribution, and the like of the pores of the secondary battery electrode may be confirmed through the mapped image of the silicon.
  • the determining of the pore distribution may include quantitatively analyzing the pore distribution of the secondary battery electrode.
  • the EDS mapping image extracted by the energy dispersive spectral element analyzer may be applied to image processing to quantitatively analyze the pore distribution of each part of the electrode for secondary batteries.
  • an image processing operation converts the EDS mapping image to black and white, and uses the partial brightness difference in the EDS mapping image converted to black and white to effectively remove pores and electrode constituents in the cross section of the sample of the electrode cross section. Can be distinguished. By distinguishing the pores of the electrode cross-section sample and the electrode constituent material, it is possible to quantitatively analyze the pore distribution for each part of the secondary battery electrode.
  • the cross-section of the sample of the electrode cross-section prepared from the electrode for secondary batteries can be classified into upper, middle and lower, and each of the upper, middle and lower portions can be classified into smaller unit areas to precisely quantitatively analyze the pore distribution. Can be.
  • pore distribution of the electrode for secondary batteries may be quantitatively analyzed, thereby including the secondary battery electrode.
  • the performance of the secondary battery can be calculated in advance.
  • Figure 3a is a view showing the EDS mapping image of the pores of the negative electrode cross-section sample obtained using energy-dispersive X-ray spectroscopy (EDS) according to an embodiment of the present invention
  • Figure 3b is a pore of the negative electrode cross-section sample A diagram showing an image extracted by applying the EDS mapping image to image processing.
  • EDS energy-dispersive X-ray spectroscopy
  • an image of the cathode cross-section sample cross-section extracted by image processing may be classified into upper, middle, and lower regions.
  • each region classified into upper, middle, and lower portions may be equally divided into three units from the upper direction to the lower direction to be divided into nine unit regions, and the pores of the negative electrode for secondary batteries may be quantitatively analyzed using the same.
  • the step of preparing the electrode cross-sectional sample may further comprise the step of dyeing the binder.
  • the dyeing may be performed before the step of filling the polymer containing silicon in the pores of the secondary battery electrode, or may be performed after the step of filling the polymer. Even when the electrode cross section sample is observed with a scanning electron microscope by dyeing the binder, the binder, the electrode active material, the pores, and the like can be distinguished from each other.
  • the binder included in the secondary battery electrode by dyeing the binder included in the secondary battery electrode, the binder and the electrode active material, pores, etc. can be clearly distinguished, and thus the pores of the secondary battery electrode can be analyzed more precisely. Can be.
  • the step of dyeing the binder may be dyed the binder with a dyeing material containing at least one of an osmium compound and a ruthenium compound.
  • a dyeing material containing at least one of an osmium compound and a ruthenium compound.
  • osmium oxide such as OsO 4
  • ruthenium oxide such as RuO 4
  • OsO as shown below in Scheme 14 it may be coupled by reacting with the double bond of butadiene.
  • the osmium component included in the osmium compound can maximize the contrast effect due to the atomic number difference, so that the binder and the pores of the secondary battery electrode, the electrode active material, and the like can be clearly distinguished.
  • the energy dispersive spectral element analyzer using the energy dispersive spectral element analyzer, detecting the dyeing material in the binder; And calculating an area ratio of the binder by analyzing an image to which the points of the dyeing material detected by the energy dispersive spectral element analyzer are mapped.
  • osmium dyed in the binder may be detected by using the energy dispersive spectral element analyzer, and the spot of the detected osmium is displayed. EDS mapping image can be extracted. The area, location, distribution, etc. of the binder included in the secondary battery electrode may be grasped through the image in which the points of the osmium are mapped. Through this, it is possible to more accurately check the distribution of the pores present in the secondary battery electrode and the size, number, location, and the like of the pores.
  • the step of calculating the area ratio of the binder by analyzing the image to which the point of osmium is mapped may include processing the EDS mapping image extracted by the energy dispersive spectral element analyzer.
  • the area of the binder for each part of the secondary battery electrode can be quantitatively analyzed.
  • the cross-section of the sample of the electrode cross-section prepared from the electrode for secondary batteries can be classified into upper, middle and lower, and each of the upper, middle and lower portions are classified into smaller unit regions to precisely area ratio of the binder. Can be calculated
  • FIG. 4A illustrates an EDS mapping image of a binder of a negative electrode cross-sectional sample obtained using an EDS according to an exemplary embodiment of the present invention
  • FIG. 4B illustrates an EDS mapping image of a binder of a negative electrode cross-section sample applied to image processing. The extracted image is shown.
  • the constituent material of the negative electrode for a secondary battery that appears in dark colors and the binder that appears in brighter colors are clearly distinguished. You can check it.
  • an image of the cathode cross section sample cross section extracted by image processing may be classified into upper, middle, and lower regions. In addition, each region classified into upper, middle, and lower portions may be divided into three unit regions from the upper direction to the lower direction, and classified into nine unit areas in total. Using this, the area of the binder of the negative electrode for secondary batteries can be quantitatively analyzed.
  • the binder area ratio of the electrode for secondary batteries may be quantitatively analyzed using the mapping image extracted by the energy dispersive spectral element analyzer. Through this, it is possible to more accurately grasp the distribution of pores of the secondary battery electrode, and to calculate the performance of the secondary battery electrode and the secondary battery including the same in advance.
  • the method of measuring pore distribution of a secondary battery electrode according to an exemplary embodiment of the present invention may be applied to a positive electrode and a negative electrode for a secondary battery.
  • a secondary battery negative electrode (LG CHEM Co., Ltd.) was prepared, and polydimethylsiloxane (PDMS) was prepared as a polymer containing OsO 4 and silicon as the dyeing material.
  • the prepared OsO 4 was used to dye the binder of the negative electrode for the secondary battery, and the negative electrode for the secondary battery was impregnated into the prepared PDMS to fill the negative electrode pores for the secondary battery with PDMS.
  • an ion milling apparatus IM 4000, Hitachi Co., Ltd.
  • IM 4000 Hitachi Co., Ltd.
  • a focused argon (Ar) ion beam was irradiated with a focused argon (Ar) ion beam to the anode for the secondary battery to cut a surface to prepare a negative electrode cross-section sample having a clean cross section.
  • discharge current was performed at 400 ⁇ A and ion beam current at 130 ⁇ A, and the gas flow was 1 cm 3 / min and was performed for 3 hours.
  • a negative electrode cross section was prepared in the same manner as in Example 1, and in the state in which the binder of the negative electrode for the secondary battery was not dyed, the cross section of the negative electrode was the same as in Example 1 except that the pores of the negative electrode for the secondary battery were filled with polydimethylsiloxane. Samples were prepared.
  • a negative electrode for a secondary battery was prepared in the same manner as in Example 1, except that the binder of the negative electrode for the secondary battery was dyed with OsO 4 , and the pores of the negative electrode for the secondary battery were filled with a polymer containing epoxy, in the same manner as in Example 1.
  • a negative electrode cross section sample was prepared.
  • a negative electrode was prepared in the same manner as in Example 1, except that the binder of the negative electrode for the secondary battery was not dyed and the pores of the negative electrode for the secondary battery were not filled with a polymer containing silicon. Sectional samples were prepared.
  • a negative electrode cross-section sample was prepared in the same manner as in Example 1, except that the same negative electrode for the secondary battery was prepared as in Example 1, and the pores of the negative electrode for the secondary battery were filled with a polymer containing epoxy without dyeing the binder of the negative electrode for the secondary battery. was prepared.
  • the negative electrode cross-sectional samples prepared in Examples 1, 2 and Comparative Examples 1 to 3 of the present invention were observed with a scanning electron microscope (SU8020, HITACHI Co., Ltd.), and SEM pictures were taken.
  • FIG. 5A is a scanning electron microscope (SEM) photograph of the negative electrode cross-section sample prepared in Example 1
  • FIG. 5B is a SEM photograph of the negative electrode cross-section sample prepared in Example 2
  • FIG. 5C is a negative electrode cross-section prepared in Comparative Example 1
  • a SEM photograph of the sample
  • FIG. 5D is an SEM photograph of the negative electrode cross section sample prepared in Comparative Example 2
  • FIG. 5E is an SEM photograph of the negative electrode cross section sample prepared in Comparative Example 3.
  • a polymer containing silicon may be filled in the pores of the secondary battery electrode to clearly distinguish the pores and the negative constituent material, and the binder may be clearly distinguished by dyeing the binder of the secondary battery electrode. As a result, pores of the secondary battery electrode can be confirmed more precisely.
  • the energy dispersive spectral element analyzer attached to the scanning electron microscope (SU8020, HITACHI Co., Ltd.) of the negative electrode cross-section sample prepared in Example 1, the silicon component of PDMS filled in the negative electrode pores for secondary batteries was detected, OsO 4 Dyed on Cathode Binder The osmium component of the dye was detected. Thereafter, an EDS mapping image showing the detected points of silicon and osmium was extracted. Thereafter, the extracted EDS mapping image was applied to image processing to extract an image for quantitative analysis of pores. At this time, an energy dispersion type spectral element analyzer having an energy resolution of 5.9 keV or more and 136 keV or less and having a minimum detection limit of 0.1 wt% was used.
  • the silicon component of PDMS filled in the anode pores for secondary batteries is detected, and the EDS mapping image showing the detected silicon spot is extracted. It was. Thereafter, the extracted EDS mapping image was applied to image processing to extract an image for quantitative analysis of pores.
  • Figure 6a is a view showing the EDS mapping image of the negative electrode cross-sectional sample according to Example 1 and Example 2 of the present invention obtained using the EDS
  • Figure 6b is a negative electrode cross-sectional sample according to Example 1 and Example 2
  • the EDS mapping image is applied to image processing to show the extracted image.
  • Example 1 the pores, the negative electrode active material, and the binder were clearly distinguished from each other on the negative electrode cross-section sample, and in Example 2, the binder was not dyed to distinguish only the pores and the negative electrode active material. Confirmed that it can.
  • the image of the cathode cross section sample cross section extracted by image processing may be classified into upper, middle, and lower regions, and each region classified into upper, middle, and lower regions may be divided into three regions from the upper direction to the lower direction.
  • the pores of the negative electrode for secondary batteries were quantitatively analyzed by dividing into nine unit areas.
  • Table 1 below describes the porosity, the negative electrode active material region, and the ratio of the binder region indicating the distribution of pores in each of the nine unit regions of the secondary battery negative electrode manufactured in Example 1, and in Table 2 below.
  • the porosity of the area of each of the nine unit regions of the negative electrode for secondary batteries prepared in Example 2 and the ratio of the binder region were described.
  • Example 1 in which the pores were impregnated with PDMS and the binder was dyed with OsO 4 was compared with Example 2, which did not dye the binder.
  • Example 2 in which the binder was dyed the pore and the negative electrode active material were distinguished from the binder, so that the porosity in the unit region was smaller than that in Example 2, and through this, the porosity of the negative electrode for the secondary battery was more accurately confirmed. It can be seen that.
  • the present invention it is possible to quantitatively analyze the pores, the active material and the binder present in the secondary battery electrode, thereby predicting the performance of the secondary battery using the secondary battery electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

본 발명은 이차 전지용 전극 내부의 기공 분포를 용이하게 측정할 수 있는 이차 전지용 전극의 기공 분포 측정 방법을 제공한다.

Description

이차 전지용 전극의 기공 분포 측정 방법
본 명세서는 2017년 5월 29일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0065845호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 이차 전지용 전극 내부의 기공 분포를 용이하게 측정할 수 있는 이차 전지용 전극의 기공 분포 측정 방법에 관한 것이다.
이차 전지는 크게 전극, 분리막 및 전해액으로 구성되어 있으며, 전극은 음극과 양극으로 분류된다. 전극에는 활물질, 도전재, 바인더 등의 구성 물질이 3차원적으로 분포하고 있으므로, 이들의 틈새에는 다수의 기공이 존재하고 있다. 전극에 존재하는 기공은 이차 전지 내에서 전해액으로 채워져 이온 등의 통로가 된다. 따라서 기공의 크기, 개수, 분포 등은 이온의 확산성에 영향을 주며, 이차 전지 성능에 큰 영향을 미치기 때문에 전극 내부 기공의 분포를 정확하게 분석하는 것이 중요하다.
다만, 종래에는 전극 단면 상에서 기공의 분포를 관찰하는 것이 어려웠으며, 주사 전자 현미경(SEM)의 경우 깊은 초점 심도를 가지기 때문에 기공 하단의 서로 상이한 초점면(focal plane)에 존재하는 전극 내부 구성 물질의 신호가 동시에 검출되어, 실제 기공임에도 불구하고 주사 전자 현미경 이미지 상에는 전극 내부 구성 물질로 표현되어 정확한 분석이 불가능한 문제점이 있었다.
따라서, 전극 내부 구성 물질과 기공을 명확히 구분하고, 동시에 전극 내부의 기공의 분포를 분석할 수 있는 방법이 필요한 실정이다.
[특허문헌]
(특허문헌 1) 대한민국 공개특허 제2014-0132956호
본 발명은 전극 내부 구성 물질과 기공을 명확히 구분함으로써, 전극 내부의 기공의 분포를 용이하게 분석할 수 있는 이차 전지용 전극의 기공 분포 측정 방법에 관한 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는 전극 활물질, 바인더 및 도전재를 포함하는 이차 전지용 전극을 준비하는 단계; 규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계; 이온 밀링 장치의 이온 빔을 상기 이차 전지용 전극에 조사하여 전극 단면 시료를 제조하는 단계; 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계; 및 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여 기공의 분포를 확인하는 단계;를 포함하는 이차 전지용 전극의 기공 분포 측정 방법을 제공한다.
본 발명의 일 실시상태에 따른 이차 전지용 전극의 기공 분포 측정 방법은 전극의 구성 물질과 기공을 명확하게 구분하여 전극 내부의 기공 분포를 확인할 수 있고, 이를 통해 이차 전지용 전극의 성능을 정확하게 예측할 수 있다.
본 발명의 일 실시상태에 따르면, 바인더를 염색함으로써 전극 내의 기공을 보다 명확하게 구분할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시상태에 따른 전극 단면 시료를 제조하는 단계에서 사용되는 이온 밀링 장치를 나타낸 도면이다.
도 2a는 2개의 이차 전지 음극의 단면을 나타낸 도면이고, 도 2b는 상기 2개의 이차 전지 음극의 충전 특성을 나타낸 그래프이다.
도 3a는 본 발명의 일 실시상태에 따른 EDS(energy-dispersive X-ray spectroscopy)를 이용하여 획득한 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 3b는 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 4a는 본 발명의 일 실시상태에 따른 EDS를 이용하여 획득한 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 4b는 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 5a는 실시예 1에서 제조된 음극 단면 시료의 SEM(scanning electron microscope) 사진이고, 도 5b는 실시예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5c는 비교예 1에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5d는 비교예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5e는 비교예 3에서 제조된 음극 단면 시료의 SEM 사진이다.
도 6a는 EDS를 이용하여 획득한 본 발명의 실시예 1 및 실시예 2에 따른 음극 단면 시료의 EDS 맵핑 이미지를 나타낸 도면이고, 도 6b는 실시예 1 및 실시예 2에 따른 음극 단면 시료에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 것이다.
본원 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는 전극 활물질, 바인더 및 도전재를 포함하는 이차 전지용 전극을 준비하는 단계; 규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계; 이온 밀링 장치의 이온 빔을 상기 이차 전지용 전극에 조사하여 전극 단면 시료를 제조하는 단계; 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계; 및 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여 기공의 분포를 확인하는 단계;를 포함하는 이차 전지용 전극의 기공 분포 측정 방법을 제공한다.
본 발명의 일 실시상태에 따른 이차 전지용 전극의 기공 분포 측정 방법은 전극의 구성 물질과 기공을 명확하게 구분하여 전극 내부의 기공 분포를 확인할 수 있고, 이를 통해 이차 전지용 전극의 성능을 정확하게 예측할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극은 전극 활물질, 바인더 및 도전재를 포함한다. 또한, 상기 이차 전지용 전극은 이의 성능을 향상시킬 수 있는 각종 첨가물 들을 더 포함할 수 있다. 상기 전극 활물질, 바인더, 도전재 등은 이자 전지용 전극 내에 3차원적으로 분포하고 있으며, 그 틈새에 다수의 기공(pore)이 존재할 수 있다. 즉, 전극 활물질, 바인더, 도전재 등의 전극 구성 물질과 다수의 기공이 상기 이차 전지용 전극을 구성할 수 있다.
상기 이차 전지용 전극에 포함되는 전극 활물질, 바인더 및 도전재 등으로 당 분야에서 통상적으로 사용되는 물질을 특별한 제한 없이 채택하여 사용할 수 있다. 구체적으로, 상기 이차 전지용 전극이 음극인 경우, 상기 바인더로 카르복시메틸셀룰로우즈(CMC), 부타티엔 등의 디엔계 바인더, 아크릴계 바인더 등을 사용할 수 있다. 또한, 상기 음극 활물질로 리튬의 삽입 및 탈리가 가능한 인조 흑연, 천연 흑연, 또는 하드 카본을 포함한 다양한 형태의 탄소계 물질, 규소(Si)가 포함된 비탄소계 물질, 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO) 등을 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계는, 규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 규소를 포함하는 고분자를 상기 이차 전지용 전극의 기공에 침투시키는 것일 수 있다. 상기 규소를 포함하는 고분자로 액상의 고분자를 사용할 수 있다. 규소를 포함하는 액상의 고분자를 사용하여, 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자를 보다 효과적으로 채울 수 있다. 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자를 함침시키는 방법은 당업계에서 통상적인 방법으로 실시될 수 있다. 예를 들면, 상기 규소를 포함하는 고분자를 상기 이차 전지용 전극 상에 도포하거나, 상기 규소를 포함하는 고분자 용액에 상기 이차 전지용 전극을 담그는 방식 등을 통해, 상기 규소를 포함하는 고분자를 상기 이차 전지용 전극의 기공에 함침시킬 수 있다.
도 1은 본 발명의 일 실시상태에 따른 전극 단면 시료를 제조하는 단계에서 사용되는 이온 밀링 장치를 나타낸 도면이다. 도 1을 참고하면, 이온 건(ion gun)에서 생성된 집속 이온 빔(ion beam)이 마스크(mask)를 거쳐 시료의 표면에 조사될 수 있다.
본 발명의 일 실시상태에 따르면, 이온 밀링 장치의 이온 건에서 생성된 이온 빔을 상기 이차 전지용 전극 상에 조사함으로써, 전극 물질들이 스퍼터링(sputtering)될 수 있다. 이를 통해 물리적 손상이 없는 깨끗한 단면을 가지는 전극 단면 시료를 제조할 수 있다. 상기 전극 단면 시료가 물리적 손상이 없는 깨끗한 단면을 가짐에 따라, 상기 이차 전지용 전극의 기공을 보다 정밀하게 분석할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이온 빔은 아르곤 이온 빔일 수 있다. 아르곤 이온 빔을 상기 이차 전지용 전극에 조사함으로써, 보다 안정적으로 상기 전극 단면 시료를 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이온 밀링 장치의 이온 빔 전류는 100 μA 이상 250 μA 이하일 수 있다. 구체적으로, 상기 이온 밀링 장치의 이온 빔 전류는 110 μA 이상 150 μA 이하, 또는 200 μA 이상 230 μA 이하일 수 있다. 상기 이온 밀링 장치의 이온 빔 전류를 전술한 범위로 조절함으로써, 상기 전극 단면 시료의 제조 시간을 단축시킬 수 있고, 시료의 단면에 전극 물질들이 재증착(redepositon)되는 현상을 방지하여 보다 깨끗한 단면을 가지는 전극 단면 시료를 제조할 수 있다. 이를 통해, 이차 전지용 전극의 내부 기공의 분석 효율을 증가시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이온 밀링 장치의 방전 전류는 250 μA 이상 450 μA 이하일 수 있다. 구체적으로, 상기 이온 밀링 장치의 방전 전류는 370 μA 이상 450 μA 이하, 또는 400 μA 이상 430 μA 이하일 수 있다. 상기 이온 밀링 장치의 방전 전류를 전술한 범위 내로 조절함으로써, 상기 이온 밀링 장치의 작동 효율이 감소되는 것을 방지할 수 있고, 상기 전극 단면 시료를 제조하는 시간을 최소화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계는 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에서 규소가 존재하는 지점을 파악할 수 있다. 구체적으로, 상기 규소를 포함하는 고분자는 상기 이차 전지용 전극의 기공에 채워져 있고, 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여 기공에 채워져 있는 고분자에 포함된 규소를 검출할 수 있다. 이를 통해, 상기 이차 전지용 전극 내에 기공이 위치하는 지점, 기공의 크기, 개수, 분포 등을 파악할 수 있다.
전극을 구성하는 물질들의 틈새에 형성되는 기공은 이온 등의 통로가 될 수 있어, 전극 내에 존재하는 기공의 크기, 개수, 분포 등은 이차 전지 성능에 큰 영향을 미칠 수 있다.
도 2a는 2개의 이차 전지 음극의 단면을 나타낸 도면이고, 도 2b는 상기 2개의 이차 전지 음극의 충전 특성을 나타낸 그래프이다. 구체적으로, 도 2a는 동일한 전체 기공 분포를 가지되, 이차 전지용 음극 단면 상의 상부와 하부의 기공 분포가 상이한 2개의 이차 전지용 음극 단면을 나타내고 있다.
음극 1과 음극 2는 동일한 면적 상에서 전체 기공의 분포가 25%로 동일하다. 다만, 도 2a를 참고하면, 음극 1의 경우에는 음극 단면 상의 상부와 하부에 기공이 유사한 크기로, 상부와 하부에 고르게 분포되어 있다. 반면, 음극 2의 경우에는 음극 단면 상의 상부에 존재하는 기공이 하부에 존재하는 기공보다 크며, 하부보다 상부에 보다 많은 기공이 존재하고 있다. 도 2b는 상기 음극 1과 음극 2에 인가되는 전압에 따른 충전 특성(state of charge; SOC)을 나타낸 도면이다. 도 2b를 참고하면, 음극 단면 상의 상부에 존재하는 기공의 크기가 크고 하부보다 상부에 기공이 보다 많이 존재하는 음극 2가 음극 단면 상의 상부와 하부에 비슷한 크기의 기공이 고르게 분포되어 있는 음극 1보다 충전 특성이 우수한 것을 알 수 있다.
따라서, 전극 내부의 기공의 크기, 개수, 분포 등을 정확하게 분석하는 경우, 이자 전지용 전극 및 이를 포함하는 이차 전지의 성능을 보다 효과적으로 예측할 수 있다.
종래에는 이차 전지용 전극에 존재하는 기공의 크기, 개수, 분포 등을 분석하기 위하여, 주사 전자 현미경(SEM)을 사용하였다. 다만, 주사 전자 현미경(SEM)은 깊은 초점 심도를 가지기 때문에, 기공 하단의 서로 상이한 초점면(focal plane)에 존재하는 이차 전지용 전극의 전극 활물질, 바인더 등의 신호가 동시에 검출되는 문제가 있다. 이에, 이차 전지용 전극 내에 존재하는 기공임에도 불구하고, 주사 전자 현미경에 의해 생성된 이미지 상에는 이차 전지용 전극의 구성 물질로 도시되어, 이차 전지용 전극에 존재하는 기공을 정확하게 분석하는 것이 불가능하였다.
반면, 본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극의 기공에 규소를 포함하는 고분자를 채우고, 상기 이차 전지용 전극으로부터 제조되는 상기 전극 단면 시료에 존재하는 규소를 검출함으로써, 상기 이차 전지용 전극의 구성 물질과 기공을 명확하게 구분할 수 있고, 기공의 크기, 개수, 분포 등을 용이하게 확인할 수 있다.
구체적으로, 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자를 채워, 기공 하단의 상이한 초점면에 상기 이차 전지용 전극의 구성 물질이 존재함에 따라 발생될 수 있는 이차 전지용 전극의 구성 물질 신호가 동시에 검출되는 현상을 방지할 수 있다. 따라서, 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자가 채워진 전극 단면 시료를 주사 전자 현미경으로 관찰하는 경우에도, 기공과 이차 전지용 전극의 구성 물질을 구분할 수 있다. 또한, 상기 이차 전지용 전극의 기공에 채워진 고분자의 규소를 에너지 분산형 스펙트럼 원소 분석기를 이용하여 검출함으로써, 상기 이차 전지용 전극의 구성 물질과 기공을 명확하게 구분하여, 기공의 크기, 개수, 분포 등을 용이하게 분석할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극의 구성 물질과 기공을 명확하게 구분하여 기공을 정확하게 분석할 수 있고 기공의 분포를 확인할 수 있어, 상기 이차 전지용 전극 및 이를 포함하는 이차 전지의 성능을 보다 효과적으로 예측할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 규소를 포함하는 고분자는 폴리디메틸실록세인(polydimethylsiloxane). 폴리실록세인(Polysiloxane), 폴리실레인(polysilane) 및 폴리실라제인(polysilazane)으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 상기 규소를 포함하는 고분자의 반복 단위(repeat unit)에 규소가 포함될 수 있다. 상기 고분자에 포함되는 규소 성분은 원자 번호 차이에 의한 대비(contrast) 효과를 극대화시킬 수 있어, 상기 이차 전지용 전극의 기공과 구성 물질을 명확하게 구분시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여, 상기 이차 전지용 전극에 존재하는 기공의 분포 및 기공의 크기, 개수, 위치 등을 확인할 수 있다.
상기 에너지 분산형 스펙트럼 원소 분석기(energy-dispersive X-ray spectroscopy; EDS)로 주사 전자 현미경에 부착되어 있는 것을 사용할 수 있다. 상기 에너지 분산형 스펙트럼 원소 분석기는 전자선이 시료면 상을 조사할 때 발생되는 X-ray를 검출하여 시료의 성분을 측정하는 분석 기기로서, 조작이 간단하고 시료에 포함되는 모든 원소의 에너지를 동시에 검출할 수 있는 이점이 있다.
본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기로 5.9 keV 이상 136 keV 이하의 에너지 분해능을 가지고, 0.1 wt%의 최소 검출 한계를 가지는 기기를 사용할 수 있다. 상기 조건을 보유한 에너지 분산형 스펙트럼 원소 분석기를 사용함으로써, 상기 이차 전지용 전극의 기공에 채워진 고분자의 규소를 보다 정확하게 검출할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여 상기 이차 전지용 전극의 기공에 채워진 고분자의 규소를 검출할 수 있고, 상기 검출된 규소의 지점이 표시된 EDS 맵핑 이미지를 추출할 수 있다. 상기 규소의 지점이 맵핑된 이미지를 통해, 상기 이차 전지용 전극의 기공의 위치, 기공의 형태, 크기, 개수, 분포 등을 확인할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기공의 분포를 확인하는 단계는 상기 이차 전지용 전극의 기공 분포를 정량적으로 분석하는 단계를 포함할 수 있다. 구체적으로, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 EDS 맵핑 이미지를 이미지 프로세싱(image processing)에 적용하여, 상기 이차 전지용 전극의 부분 별 기공 분포를 정량 분석할 수 있다. 예를 들면, 이미지 프로세싱 작업을 통해, EDS 맵핑 이미지를 흑백으로 전환하고, 흑백으로 전환된 EDS 맵핑 이미지 내의 부분 별 밝기 차를 이용하여, 상기 전극 단면 시료의 단면에 보이는 기공과 전극 구성 물질을 효과적으로 구분할 수 있다. 전극 단면 시료의 기공과 전극 구성 물질을 구분함으로써, 상기 이차 전지용 전극의 부분 별 기공 분포를 정량 분석할 수 있다.
또한, 상기 이차 전지용 전극으로부터 제조된 상기 전극 단면 시료의 단면을 상부, 중부 및 하부로 분류할 수 있으며, 상기 상부, 중부 및 하부 각각을 보다 작은 단위 영역으로 분류하여 기공 분포를 정밀하게 정량 분석할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 맵핑 이미지를 사용하여, 상기 이차 전지용 전극의 기공 분포를 정량 분석할 수 있으며, 이를 통해 상기 이차 전지용 전극을 포함하는 이차 전지의 성능을 미리 산출할 수 있다.
도 3a는 본 발명의 일 실시상태에 따른 EDS(energy-dispersive X-ray spectroscopy)를 이용하여 획득한 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 3b는 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 3a를 참고하면, 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 표시된 EDS 맵핑 이미지 상에서, 어두운 색으로 나타나는 이차 전지용 음극의 구성 물질과, 보다 밝은 색으로 나타나는 기공이 명확하게 구분되는 것을 확인할 수 있다. 상기 도 3b와 같이, 이미지 프로세싱에 의해 추출된 음극 단면 시료 단면의 이미지를 상, 중, 하 영역으로 분류할 수 있다. 또한, 상, 중, 하로 분류된 각 영역을 상측 방향에서 하측 방향으로 균등하게 3 등분하여 총 9개의 단위 영역으로 분류할 수 있고, 이를 이용하여 이차 전지용 음극의 기공을 정량 분석할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전극 단면 시료를 제조하는 단계 전에, 상기 바인더를 염색하는 단계를 더 포함할 수 있다. 상기 바인더를 염색하는 단계는 상기 이차 전지용 전극의 기공에 규소를 포함하는 고분자를 채우는 단계 전에 수행될 수 있고, 상기 고분자를 채우는 단계 후에 수행될 수도 있다. 상기 바인더를 염색함으로써 상기 전극 단면 시료를 주사 전자 현미경으로 관찰하는 경우에도, 바인더와 전극 활물질, 기공 등을 서로 구분할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극에 포함되는 바인더를 염색함으로써, 상기 바인더와 전극 활물질, 기공 등을 명확하게 구분할 수 있어, 상기 이차 전지용 전극의 기공을 보다 정밀하게 분석할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 바인더를 염색하는 단계는 오스뮴 화합물 및 류테늄 화합물 중 적어도 하나를 포함하는 염색재로 상기 바인더를 염색할 수 있다. 일 예로, 상기 오스뮴 화합물로 OsO4 등의 오스뮴 산화물을 사용할 수 있고, 류테늄 화합물로 RuO4 등의 류테늄 산화물을 사용할 수 있다. 구체적으로, 상기 이차 전지용 전극에 포함되는 바인더로 디엔계의 부타디엔을 사용하고, 염색재로 OsO4를 사용하는 경우, 하기 반응식 1과 같이 OsO4는 부타디엔의 이중결합과 반응하여 결합될 수 있다.
[반응식 1]
Figure PCTKR2018006076-appb-I000001
상기 오스뮴 화합물에 포함되는 오스뮴 성분은 원자 번호 차이에 의한 대비(contrast) 효과를 극대화시킬 수 있어, 상기 이차 전지용 전극의 바인더와 기공, 전극 활물질 등을 명확하게 구분시킬 수 있다.
본 발명의 일 실시상태에 따르면, 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 바인더 내의 염색재를 검출하는 단계; 및 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 염색재의 지점이 맵핑된 이미지를 분석하여 바인더의 면적 비율을 계산하는 단계;를 더 포함할 수 있다.
또한, 이하에서는 염색재로 OsO4를 사용하는 경우로 상세히 설명하기로 한다.
본 발명의 일 실시상태에 따르면, 상기 염색재로 OsO4를 사용하는 경우, 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여 상기 바인더에 염색된 오스뮴을 검출할 수 있고, 상기 검출된 오스뮴의 지점이 표시된 EDS 맵핑 이미지를 추출할 수 있다. 상기 오스뮴의 지점이 맵핑된 이미지를 통해, 상기 이차 전지용 전극에 포함되는 바인더의 면적, 위치, 분포 등을 파악할 수 있다. 이를 통해, 상기 이차 전지용 전극에 존재하는 기공의 분포 및 기공의 크기, 개수, 위치 등을 보다 정확하게 확인할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 오스뮴의 지점이 맵핑된 이미지를 분석하여 바인더의 면적 비율을 계산하는 단계는 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 EDS 맵핑 이미지를 이미지 프로세싱(image processing)에 적용하여, 상기 이차 전지용 전극의 부분 별 상기 바인더의 면적을 정량 분석할 수 있다. 또한, 상기 이차 전지용 전극으로부터 제조된 상기 전극 단면 시료의 단면을 상부, 중부 및 하부로 분류할 수 있으며, 상기 상부, 중부 및 하부 각각을 보다 작은 단위 영역으로 분류하여 상기 바인더의 면적 비율을 정밀하게 계산할 수 있다.
도 4a는 본 발명의 일 실시상태에 따른 EDS를 이용하여 획득한 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 4b는 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 4a를 참고하면, 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 오스뮴의 지점이 표시된 EDS 맵핑 이미지 상에서, 어두운 색으로 나타나는 이차 전지용 음극의 구성 물질과, 보다 밝은 색으로 나타나는 바인더가 명확하게 구분되는 것을 확인할 수 있다. 도 4b와 같이, 이미지 프로세싱에 의해 추출된 음극 단면 시료 단면의 이미지를 상, 중, 및 하 영역으로 분류할 수 있다. 또한, 상, 중, 및 하로 분류된 각 영역을 상측 방향에서 하측 방향으로 3등분하여 총 9개의 단위 영역으로 분류할 수 있다. 이를 이용하여, 이차 전지용 음극의 바인더의 면적을 정량 분석할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 맵핑 이미지를 사용하여, 상기 이차 전지용 전극의 바인더 면적 비율을 정량 분석할 수 있다. 이를 통해 상기 이차 전지용 전극의 기공의 분포를 보다 정확하게 파악할 수 있고, 상기 이차 전지용 전극 및 이를 포함하는 이차 전지의 성능을 미리 산출할 수 있다.
또한, 본 발명의 일 실시상태에 따른 이차 전지용 전극의 기공 분포 측정 방법은 이차 전지용 양극 및 음극에 적용될 수 있다.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 하기 실시예에서는 이차 전지용 전극 중 음극에 대한 것이며, 이들 실시예는 단지 설명하기 위한 것이며 본 발명을 제한하는 것은 아니다.
음극 단면 시료의 제조
실시예 1
이차 전지용 음극(LG CHEM 社)를 준비하고, 염색재로 OsO4, 규소를 포함하는 고분자로 폴리디메틸실록세인(Polydimethylsiloxane; PDMS)을 준비하였다. 준비된 OsO4를 사용하여 이차 전지용 음극의 바인더를 염색하고, 이차 전지용 음극을 준비된 PDMS에 함침시켜, 이차 전지용 음극 기공을 PDMS로 채웠다. 이후, 아르곤 이온 빔을 조사하는 이온 밀링 장치(IM 4000, Hitachi 社)를 이용하여 상기 이차 전지용 음극에 집속 아르곤(Ar) 이온 빔을 조사하여 표면을 깎아 내어 깨끗한 단면을 가지는 음극 단면 시료를 제조하였다. 아르곤 이온 빔 조사 시, 방전 전류를 400 μA, 이온 빔 전류를 130 μA로 하여 수행하였으며, 기체 유량(gas flow)는 1 cm3/분이었고, 3시간 동안 수행하였다.
실시예 2
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, 이차 전지용 음극의 바인더를 염색하지 않은 상태에서, 폴리디메틸실록세인으로 이차 전지용 음극의 기공을 채운 것을 제외하고 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
비교예 1
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, OsO4로 이차 전지용 음극의 바인더를 염색하고, 에폭시를 포함하는 고분자로 이차 전지용 음극의 기공을 채운 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
비교예 2
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, 이차 전지용 음극의 바인더를 염색하지 않고, 규소를 포함하는 고분자로 이차 전지용 음극의 기공을 채우지 않은 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
비교예 3
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, 이차 전지용 음극의 바인더를 염색하지 않고, 에폭시를 포함하는 고분자로 이차 전지용 음극의 기공을 채운 것을 제외하고 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
이차 전지용 음극의 SEM 사진 분석
본 발명의 실시예 1, 실시예 2 및 비교예 1 내지 비교예 3에서 제조된 음극 단면 시료를 주사 전자 현미경(SU8020, HITACHI 社)으로 관찰하고, SEM 사진을 촬영하였다.
도 5a는 실시예 1에서 제조된 음극 단면 시료의 SEM(scanning electron microscope) 사진이고, 도 5b는 실시예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5c는 비교예 1에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5d는 비교예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5e는 비교예 3에서 제조된 음극 단면 시료의 SEM 사진이다.
도 5a 및 도 5b를 참고하면, 실시예 1 및 실시예 2에 따른 이차 전지용 음극 기공에 PDMS가 함침되어 기공 하단의 상이한 초점면에 존재하는 활물질 등의 이차 전지용 음극 구성 물질이 관찰되지 않아, 이차 전지용 음극 구성 물질과 기공이 명확하게 구분되는 것을 확인하였다. 나아가, 도 5a를 참고하면, OsO4를 사용하여 이차 전지용 음극의 바인더를 염색한 실시예 1의 경우, 이차 전지용 음극 구성 물질, 바인더 및 기공이 명확하게 구분되어, 기공을 보다 정확하게 확인할 수 있음을 알 수 있었다.
반면, 도 5d를 참고하면, 규소를 포함하는 고분자로 이차 전지용 음극의 기공을 함침하지 않은 비교예 2의 경우, 주사 전자 현미경의 높은 초점 심도에 의해 기공 하단의 상이한 초점면에 존재하는 활물질 등의 이차 전지용 음극 구성 물질이 함께 관찰되어, 이차 전지용 음극 구성 물질과 기공을 구분하기 어려운 것을 확인하였다. 또한, 비교예 2의 경우에는 바인더를 염색하지 않아, 음극 구성 물질 및 기공을 바인더와 구분하는 것이 어려운 것을 확인하였다.
도 5c 및 도 5e를 참고하면, 에폭시를 포함하는 고분자로 이차 전지용 음극의 기공을 채운 비교예 1 및 비교예 3의 경우, 기공에 PDMS가 함침된 실시예 1 및 실시예 2 대비, 기공과 음극 활물질을 구분하는 것이 용이하지 않음을 확인할 수 있었다. 나아가, 이러한 차이에 의하여 실시예 1, 실시예 2 및 비교예 1, 비교예 3의 SEM 사진을 이미지 프로세싱에 적용하는 경우, 실시예 1 및 실시예 2에서 보다 명확하게 기공과 음극 활물질을 구분할 수 있음을 알 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 규소를 포함하는 고분자를 이차 전지용 전극의 기공에 채워, 기공과 음극 구성 물질을 명확하게 구분할 수 있고, 이차 전지용 전극의 바인더를 염색하여 바인더를 명확하게 구분할 수 있으므로, 이차 전지용 전극의 기공을 보다 정밀하게 확인할 수 있다.
이차 전지용 음극의 기공 분석
실시예 1에서 제조된 음극 단면 시료를 주사 전자 현미경(SU8020, HITACHI 社)에 부속되어 있는 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 이차 전지용 음극 기공에 채워져 있는 PDMS의 규소 성분을 검출하고, 이차 전지용 음극 바인더에 염색된 OsO4 염색재의 오스뮴 성분을 검출하였다. 이후, 검출된 규소 및 오스뮴의 지점이 표시된 EDS 맵핑 이미지를 추출하였다. 이후, 추출된 EDS 맵핑 이미지를 이미지 프로세싱(image processing)에 적용하여 기공의 정량 분석을 위한 이미지를 추출하였다. 이 때, 에너지 분산형 스펙트럼 원소 분석기로 5.9 keV 이상 136 keV 이하의 에너지 분해능을 가지고, 0.1 wt%의 최소 검출 한계를 가지는 것을 사용하였다.
또한, 실시예 2에서 제조된 음극 단면 시료를 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 이차 전지용 음극 기공에 채워져 있는 PDMS의 규소 성분을 검출하고, 검출된 규소의 지점이 표시된 EDS 맵핑 이미지를 추출하였다. 이후, 추출된 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 기공의 정량 분석을 위한 이미지를 추출하였다.
도 6a는 EDS를 이용하여 획득한 본 발명의 실시예 1 및 실시예 2에 따른 음극 단면 시료의 EDS 맵핑 이미지를 나타낸 도면이고, 도 6b는 실시예 1 및 실시예 2에 따른 음극 단면 시료에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 것이다.
도 6a를 참고하면, 실시예 1의 경우에 음극 단면 시료 상에서 기공, 음극 활물질 및 바인더가 명확하게 구분되는 것을 확인할 수 있었고, 실시예 2의 경우에는 바인더를 염색하지 않아, 기공과 음극 활물질만을 구분할 수 있음을 확인하였다. 또한, 상기 도 6b와 같이, 이미지 프로세싱에 의해 추출된 음극 단면 시료 단면의 이미지를 상, 중, 하 영역으로 분류할 수 있으며, 상, 중, 하로 분류된 각 영역을 상측 방향에서 하측 방향으로 3등분하여 총 9개의 단위 영역으로 분류하여, 이차 전지용 음극의 기공을 정량 분석하였다.
하기 표 1에는 실시예 1에서 제조된 이차 전지용 음극의 9개의 단위 영역 각각의 면적에 존재하는 기공의 분포를 나타내는 공극률(porosity), 음극 활물질 영역, 바인더 영역의 비율을 기재하였고, 하기 표 2에는 실시예 2에서 제조된 이차 전지용 음극의 9개의 단위 영역 각각의 면적의 공극률과 바인더 영역의 비율을 기재하였다.
영역 평균
단위 영역 1 2 3 4 5 6 7 8 9
음극활물질(%) 65.1 59.6 57.2 61.0 58.7 60.3 59.8 54.4 57.4 59.3
바인더(%) 0.7 2.1 2.0 2.5 1.7 3.1 1.1 1.4 1.3 1.8
공극률(%) 34.2 38.3 40.8 36.5 39.6 36.6 39.1 44.2 41.3 38.9
영역 평균
단위 영역 1 2 3 4 5 6 7 8 9
음극활물질(%) 65.7 58.8 56.4 61.3 57.3 60.7 60.8 54.6 57.2 59.2
공극률(%) 34.3 41.2 43.6 38.7 42.7 39.3 39.2 45.4 42.8 40.8
상기 표 1 및 표 2를 참고하면, 바인더를 염색하지 않은 실시예 2 대비, 기공을 PDMS로 함침시키고 바인더를 OsO4로 염색한 실시예 1은 보다 정확하게 이차 전지용 음극의 기공 분포를 확인할 수 있음을 알 수 있었다. 구체적으로, 바인더를 염색한 실시예 1의 경우, 기공 및 음극 활물질이 바인더와 구분되어, 단위 영역에서의 공극률이 실시예 2보다 작은 것을 확인할 수 있었으며, 이를 통해 보다 정확하게 이차 전지용 음극의 공극률을 확인할 수 있음을 알 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 이차 전지용 전극에 존재하는 기공, 활물질 및 바인더를 정량적으로 분석할 수 있으며, 이를 통해 이차 전지용 전극이 사용되는 이차 전지의 성능을 예측할 수 있다.

Claims (8)

  1. 전극 활물질, 바인더 및 도전재를 포함하는 이차 전지용 전극을 준비하는 단계;
    규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계;
    이온 밀링 장치의 이온 빔을 상기 이차 전지용 전극에 조사하여 전극 단면 시료를 제조하는 단계;
    에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계; 및
    상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여 기공의 분포를 확인하는 단계;를 포함하는 이차 전지용 전극의 기공 분포 측정 방법.
  2. 청구항 1에 있어서,
    상기 규소를 포함하는 고분자는 폴리디메틸실록세인. 폴리실록세인, 폴리실레인 및 폴리실라제인으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  3. 청구항 1에 있어서,
    상기 전극 단면 시료를 제조하는 단계 전에,
    상기 바인더를 염색하는 단계를 더 포함하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  4. 청구항 3에 있어서,
    상기 바인더를 염색하는 단계는 오스뮴 화합물 및 류테늄 화합물 중 적어도 하나를 포함하는 염색재로 상기 바인더를 염색하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  5. 청구항 4에 있어서,
    에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 바인더 내의 염색재를 검출하는 단계; 및
    상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 염색재의 지점이 맵핑된 이미지를 분석하여 바인더의 면적 비율을 계산하는 단계;를 더 포함하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  6. 청구항 1에 있어서,
    상기 이온 빔은 아르곤 이온 빔인 것인 이차 전지용 전극의 기공 분포 측정 방법.
  7. 청구항 1에 있어서,
    상기 이온 밀링 장치의 이온 빔 전류는 100 μA 이상 250 μA 이하인 것인 이차 전지용 전극의 기공 분포 측정 방법.
  8. 청구항 1에 있어서,
    상기 이온 밀링 장치의 방전 전류는 250 μA 이상 450 μA 이하인 것인 이차 전지용 전극의 기공 분포 측정 방법.
PCT/KR2018/006076 2017-05-29 2018-05-29 이차 전지용 전극의 기공 분포 측정 방법 WO2018221929A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880014563.2A CN110352347B (zh) 2017-05-29 2018-05-29 测量二次电池用电极中的孔隙分布的方法
US16/607,526 US20200141841A1 (en) 2017-05-29 2018-05-29 Method for Measuring Distribution of Pores in Electrode for Secondary Battery
EP18809590.5A EP3633359B1 (en) 2017-05-29 2018-05-29 Method for measuring pore distribution in electrode for secondary battery
JP2019541699A JP6860129B2 (ja) 2017-05-29 2018-05-29 二次電池用電極の気孔分布測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170065845 2017-05-29
KR10-2017-0065845 2017-05-29

Publications (1)

Publication Number Publication Date
WO2018221929A1 true WO2018221929A1 (ko) 2018-12-06

Family

ID=64455067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006076 WO2018221929A1 (ko) 2017-05-29 2018-05-29 이차 전지용 전극의 기공 분포 측정 방법

Country Status (6)

Country Link
US (1) US20200141841A1 (ko)
EP (1) EP3633359B1 (ko)
JP (1) JP6860129B2 (ko)
KR (1) KR102097613B1 (ko)
CN (1) CN110352347B (ko)
WO (1) WO2018221929A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764429A1 (en) * 2019-07-10 2021-01-13 Lg Chem, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220043448A (ko) 2020-09-29 2022-04-05 주식회사 엘지에너지솔루션 전극 구조에 따른 이차전지 성능 추정 장치 및 그 방법
KR102648343B1 (ko) * 2021-04-06 2024-03-14 주식회사 엘지에너지솔루션 분리막용 다공성 고분자 기재의 불량품 사전 검출 방법
WO2024054044A1 (ko) * 2022-09-06 2024-03-14 주식회사 엘지화학 다공성 구조물의 기공 분포 분석방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279508A (ja) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd 有機材料の分散状態を評価する方法
KR20070011543A (ko) * 2006-11-27 2007-01-24 니폰 쇼쿠바이 컴파니 리미티드 고체 산화물형 연료 전지용 애노드 지지 기판 및 그의 제조방법
KR100766967B1 (ko) * 2006-11-20 2007-10-15 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이로부터 제조된 리튬 이차전지
KR20140132956A (ko) 2013-05-09 2014-11-19 주식회사 엘지화학 전극 밀도 및 전극 공극률의 측정 방법
KR20170006663A (ko) * 2015-07-09 2017-01-18 주식회사 엘지화학 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자
KR20170019146A (ko) * 2015-08-11 2017-02-21 주식회사 엘지화학 이차 전지 전극 내부 구성 물질 및 기공의 분포를 분석하는 방법 및 이를 위한 조성물

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686952B2 (ja) * 1998-12-08 2005-08-24 独立行政法人 国立印刷局 インキ転移物の断面観察法
JP2003139728A (ja) * 2001-11-05 2003-05-14 Toray Res Center:Kk 多孔性材料の構造解析方法および構造解析写真
JP5675519B2 (ja) * 2011-07-11 2015-02-25 株式会社日立製作所 二次電池用負極,二次電池用負極を用いた非水電解質二次電池およびそれらの製造方法
JP5596875B1 (ja) * 2013-07-19 2014-09-24 日本碍子株式会社 燃料電池セル及び空気極材料
KR101813302B1 (ko) * 2013-10-31 2017-12-28 주식회사 엘지화학 음극 활물질 및 이의 제조 방법
WO2017030995A1 (en) * 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Nano-featured porous silicon materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279508A (ja) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd 有機材料の分散状態を評価する方法
KR100766967B1 (ko) * 2006-11-20 2007-10-15 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이로부터 제조된 리튬 이차전지
KR20070011543A (ko) * 2006-11-27 2007-01-24 니폰 쇼쿠바이 컴파니 리미티드 고체 산화물형 연료 전지용 애노드 지지 기판 및 그의 제조방법
KR20140132956A (ko) 2013-05-09 2014-11-19 주식회사 엘지화학 전극 밀도 및 전극 공극률의 측정 방법
KR20170006663A (ko) * 2015-07-09 2017-01-18 주식회사 엘지화학 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자
KR20170019146A (ko) * 2015-08-11 2017-02-21 주식회사 엘지화학 이차 전지 전극 내부 구성 물질 및 기공의 분포를 분석하는 방법 및 이를 위한 조성물

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764429A1 (en) * 2019-07-10 2021-01-13 Lg Chem, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery
KR20210007165A (ko) * 2019-07-10 2021-01-20 주식회사 엘지화학 리튬 이차전지용 전극의 전극 활물질 깨짐율 분석 방법
US11334984B2 (en) 2019-07-10 2022-05-17 Lg Energy Solution, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery
KR102420242B1 (ko) 2019-07-10 2022-07-13 주식회사 엘지에너지솔루션 리튬 이차전지용 전극의 전극 활물질 깨짐율 분석 방법

Also Published As

Publication number Publication date
EP3633359A1 (en) 2020-04-08
KR20180130462A (ko) 2018-12-07
US20200141841A1 (en) 2020-05-07
KR102097613B1 (ko) 2020-04-06
CN110352347A (zh) 2019-10-18
EP3633359A4 (en) 2020-06-24
JP2020507889A (ja) 2020-03-12
CN110352347B (zh) 2022-04-15
JP6860129B2 (ja) 2021-04-14
EP3633359B1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
WO2018221929A1 (ko) 이차 전지용 전극의 기공 분포 측정 방법
Thydén et al. Microstructural characterization of SOFC Ni–YSZ anode composites by low-voltage scanning electron microscopy
CN1822305A (zh) 扫描电子显微镜
Harvey et al. Investigating PID shunting in polycrystalline silicon modules via multiscale, multitechnique characterization
WO2014181998A1 (ko) 전극 밀도 및 전극 공극률의 측정 방법
KR20170006663A (ko) 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자
Saowadee et al. Lattice constant measurement from electron backscatter diffraction patterns
US10505234B2 (en) Battery cell and n situ battery electrode analysis method
Müller et al. Multimodal nanoscale tomographic imaging for battery electrodes
KR20200027693A (ko) 이차 전지용 전극의 성능 예측 방법
JP2013235778A (ja) 走査型電子顕微鏡用試料台および走査型電子顕微鏡の試料設置方法
CN108088864B (zh) 一种材料三维微观结构重构方法及系统
US8866103B2 (en) Charged particle energy analysers and methods of operating charged particle energy analysers
Cooper et al. Methods—Kintsugi Imaging of Battery Electrodes: Distinguishing Pores from the Carbon Binder Domain using Pt Deposition
CN112189142A (zh) 电池电极的分析方法
WO2020027573A1 (ko) 고분자 솔루션의 미용해물 측정법
Mahlman Work Functions and Conductivity of Oxide‐Coated Cathodes
WO2023204440A1 (ko) 전극 크랙 및 탈리 발생 예측 방법
Boyes Analytical potential of EDS at low voltages
WO2019164235A1 (ko) 전극 내 탄소나노튜브의 분산성 평가 방법
WO2019088758A9 (ko) 급속 충전 가능한 리튬 이차전지용 음극 및 그 제조방법
WO2020130202A1 (ko) 인시츄 광학 및 전기화학 분석 방법 및 이를 위한 전지 셀 단면측정 모듈
Alamarguy et al. Characterisation of sol–gel crystalline V2O5 thin films after Li intercalation cycling
CN108398417A (zh) 一种评价锂离子电池正极片中导电剂分散情况的方法
Siddiqui An investigation of active surfaces of microchannel plates using Auger electron and ESCA spectroscopic techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541699

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018809590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018809590

Country of ref document: EP

Effective date: 20200102