KR20180130462A - 이차 전지용 전극의 기공 분포 측정 방법 - Google Patents

이차 전지용 전극의 기공 분포 측정 방법 Download PDF

Info

Publication number
KR20180130462A
KR20180130462A KR1020180061024A KR20180061024A KR20180130462A KR 20180130462 A KR20180130462 A KR 20180130462A KR 1020180061024 A KR1020180061024 A KR 1020180061024A KR 20180061024 A KR20180061024 A KR 20180061024A KR 20180130462 A KR20180130462 A KR 20180130462A
Authority
KR
South Korea
Prior art keywords
electrode
secondary battery
pores
binder
silicon
Prior art date
Application number
KR1020180061024A
Other languages
English (en)
Other versions
KR102097613B1 (ko
Inventor
한정훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20180130462A publication Critical patent/KR20180130462A/ko
Application granted granted Critical
Publication of KR102097613B1 publication Critical patent/KR102097613B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N2001/045Laser ablation; Microwave vaporisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • G01N2001/2886Laser cutting, e.g. tissue catapult
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/079Investigating materials by wave or particle radiation secondary emission incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/402Imaging mapping distribution of elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/409Imaging embedding or impregnating the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/649Specific applications or type of materials porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

본 발명은 이차 전지용 전극 내부의 기공 분포를 용이하게 측정할 수 있는 이차 전지용 전극의 기공 분포 측정 방법을 제공한다.

Description

이차 전지용 전극의 기공 분포 측정 방법{METHOD FOR MEASURING DISTRIBUTION OF PORES IN SECONDARY BATTERY ELECTRODE}
본 명세서는 2017년 5월 29일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0065845호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 이차 전지용 전극 내부의 기공 분포를 용이하게 측정할 수 있는 이차 전지용 전극의 기공 분포 측정 방법에 관한 것이다.
이차 전지는 크게 전극, 분리막 및 전해액으로 구성되어 있으며, 전극은 음극과 양극으로 분류된다. 전극에는 활물질, 도전재, 바인더 등의 구성 물질이 3차원적으로 분포하고 있으므로, 이들의 틈새에는 다수의 기공이 존재하고 있다. 전극에 존재하는 기공은 이차 전지 내에서 전해액으로 채워져 이온 등의 통로가 된다. 따라서 기공의 크기, 개수, 분포 등은 이온의 확산성에 영향을 주며, 이차 전지 성능에 큰 영향을 미치기 때문에 전극 내부 기공의 분포를 정확하게 분석하는 것이 중요하다.
다만, 종래에는 전극 단면 상에서 기공의 분포를 관찰하는 것이 어려웠으며, 주사 전자 현미경(SEM)의 경우 깊은 초점 심도를 가지기 때문에 기공 하단의 서로 상이한 초점면(focal plane)에 존재하는 전극 내부 구성 물질의 신호가 동시에 검출되어, 실제 기공임에도 불구하고 주사 전자 현미경 이미지 상에는 전극 내부 구성 물질로 표현되어 정확한 분석이 불가능한 문제점이 있었다.
따라서, 전극 내부 구성 물질과 기공을 명확히 구분하고, 동시에 전극 내부의 기공의 분포를 분석할 수 있는 방법이 필요한 실정이다.
대한민국 공개특허 제2014-0132956호
본 발명은 전극 내부 구성 물질과 기공을 명확히 구분함으로써, 전극 내부의 기공의 분포를 용이하게 분석할 수 있는 이차 전지용 전극의 기공 분포 측정 방법에 관한 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는 전극 활물질, 바인더 및 도전재를 포함하는 이차 전지용 전극을 준비하는 단계; 규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계; 이온 밀링 장치의 이온 빔을 상기 이차 전지용 전극에 조사하여 전극 단면 시료를 제조하는 단계; 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계; 및 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여 기공의 분포를 확인하는 단계;를 포함하는 이차 전지용 전극의 기공 분포 측정 방법을 제공한다.
본 발명의 일 실시상태에 따른 이차 전지용 전극의 기공 분포 측정 방법은 전극의 구성 물질과 기공을 명확하게 구분하여 전극 내부의 기공 분포를 확인할 수 있고, 이를 통해 이차 전지용 전극의 성능을 정확하게 예측할 수 있다.
본 발명의 일 실시상태에 따르면, 바인더를 염색함으로써 전극 내의 기공을 보다 명확하게 구분할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시상태에 따른 전극 단면 시료를 제조하는 단계에서 사용되는 이온 밀링 장치를 나타낸 도면이다.
도 2a는 2개의 이차 전지 음극의 단면을 나타낸 도면이고, 도 2b는 상기 2개의 이차 전지 음극의 충전 특성을 나타낸 그래프이다.
도 3a는 본 발명의 일 실시상태에 따른 EDS(energy-dispersive X-ray spectroscopy)를 이용하여 획득한 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 3b는 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 4a는 본 발명의 일 실시상태에 따른 EDS를 이용하여 획득한 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 4b는 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 5a는 실시예 1에서 제조된 음극 단면 시료의 SEM(scanning electron microscope) 사진이고, 도 5b는 실시예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5c는 비교예 1에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5d는 비교예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5e는 비교예 3에서 제조된 음극 단면 시료의 SEM 사진이다.
도 6a는 EDS를 이용하여 획득한 본 발명의 실시예 1 및 실시예 2에 따른 음극 단면 시료의 EDS 맵핑 이미지를 나타낸 도면이고, 도 6b는 실시예 1 및 실시예 2에 따른 음극 단면 시료에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 것이다.
본원 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는 전극 활물질, 바인더 및 도전재를 포함하는 이차 전지용 전극을 준비하는 단계; 규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계; 이온 밀링 장치의 이온 빔을 상기 이차 전지용 전극에 조사하여 전극 단면 시료를 제조하는 단계; 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계; 및 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여 기공의 분포를 확인하는 단계;를 포함하는 이차 전지용 전극의 기공 분포 측정 방법을 제공한다.
본 발명의 일 실시상태에 따른 이차 전지용 전극의 기공 분포 측정 방법은 전극의 구성 물질과 기공을 명확하게 구분하여 전극 내부의 기공 분포를 확인할 수 있고, 이를 통해 이차 전지용 전극의 성능을 정확하게 예측할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극은 전극 활물질, 바인더 및 도전재를 포함한다. 또한, 상기 이차 전지용 전극은 이의 성능을 향상시킬 수 있는 각종 첨가물 들을 더 포함할 수 있다. 상기 전극 활물질, 바인더, 도전재 등은 이자 전지용 전극 내에 3차원적으로 분포하고 있으며, 그 틈새에 다수의 기공(pore)이 존재할 수 있다. 즉, 전극 활물질, 바인더, 도전재 등의 전극 구성 물질과 다수의 기공이 상기 이차 전지용 전극을 구성할 수 있다.
상기 이차 전지용 전극에 포함되는 전극 활물질, 바인더 및 도전재 등으로 당 분야에서 통상적으로 사용되는 물질을 특별한 제한 없이 채택하여 사용할 수 있다. 구체적으로, 상기 이차 전지용 전극이 음극인 경우, 상기 바인더로 카르복시메틸셀룰로우즈(CMC), 부타티엔 등의 디엔계 바인더, 아크릴계 바인더 등을 사용할 수 있다. 또한, 상기 음극 활물질로 리튬의 삽입 및 탈리가 가능한 인조 흑연, 천연 흑연, 또는 하드 카본을 포함한 다양한 형태의 탄소계 물질, 규소(Si)가 포함된 비탄소계 물질, 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO) 등을 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계는, 규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 규소를 포함하는 고분자를 상기 이차 전지용 전극의 기공에 침투시키는 것일 수 있다. 상기 규소를 포함하는 고분자로 액상의 고분자를 사용할 수 있다. 규소를 포함하는 액상의 고분자를 사용하여, 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자를 보다 효과적으로 채울 수 있다. 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자를 함침시키는 방법은 당업계에서 통상적인 방법으로 실시될 수 있다. 예를 들면, 상기 규소를 포함하는 고분자를 상기 이차 전지용 전극 상에 도포하거나, 상기 규소를 포함하는 고분자 용액에 상기 이차 전지용 전극을 담그는 방식 등을 통해, 상기 규소를 포함하는 고분자를 상기 이차 전지용 전극의 기공에 함침시킬 수 있다.
도 1은 본 발명의 일 실시상태에 따른 전극 단면 시료를 제조하는 단계에서 사용되는 이온 밀링 장치를 나타낸 도면이다. 도 1을 참고하면, 이온 건(ion gun)에서 생성된 집속 이온 빔(ion beam)이 마스크(mask)를 거쳐 시료의 표면에 조사될 수 있다.
본 발명의 일 실시상태에 따르면, 이온 밀링 장치의 이온 건에서 생성된 이온 빔을 상기 이차 전지용 전극 상에 조사함으로써, 전극 물질들이 스퍼터링(sputtering)될 수 있다. 이를 통해 물리적 손상이 없는 깨끗한 단면을 가지는 전극 단면 시료를 제조할 수 있다. 상기 전극 단면 시료가 물리적 손상이 없는 깨끗한 단면을 가짐에 따라, 상기 이차 전지용 전극의 기공을 보다 정밀하게 분석할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이온 빔은 아르곤 이온 빔일 수 있다. 아르곤 이온 빔을 상기 이차 전지용 전극에 조사함으로써, 보다 안정적으로 상기 전극 단면 시료를 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이온 밀링 장치의 이온 빔 전류는 100 μA 이상 250 μA 이하일 수 있다. 구체적으로, 상기 이온 밀링 장치의 이온 빔 전류는 110 μA 이상 150 μA 이하, 또는 200 μA 이상 230 μA 이하일 수 있다. 상기 이온 밀링 장치의 이온 빔 전류를 전술한 범위로 조절함으로써, 상기 전극 단면 시료의 제조 시간을 단축시킬 수 있고, 시료의 단면에 전극 물질들이 재증착(redepositon)되는 현상을 방지하여 보다 깨끗한 단면을 가지는 전극 단면 시료를 제조할 수 있다. 이를 통해, 이차 전지용 전극의 내부 기공의 분석 효율을 증가시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이온 밀링 장치의 방전 전류는 250 μA 이상 450 μA 이하일 수 있다. 구체적으로, 상기 이온 밀링 장치의 방전 전류는 370 μA 이상 450 μA 이하, 또는 400 μA 이상 430 μA 이하일 수 있다. 상기 이온 밀링 장치의 방전 전류를 전술한 범위 내로 조절함으로써, 상기 이온 밀링 장치의 작동 효율이 감소되는 것을 방지할 수 있고, 상기 전극 단면 시료를 제조하는 시간을 최소화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계는 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에서 규소가 존재하는 지점을 파악할 수 있다. 구체적으로, 상기 규소를 포함하는 고분자는 상기 이차 전지용 전극의 기공에 채워져 있고, 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여 기공에 채워져 있는 고분자에 포함된 규소를 검출할 수 있다. 이를 통해, 상기 이차 전지용 전극 내에 기공이 위치하는 지점, 기공의 크기, 개수, 분포 등을 파악할 수 있다.
전극을 구성하는 물질들의 틈새에 형성되는 기공은 이온 등의 통로가 될 수 있어, 전극 내에 존재하는 기공의 크기, 개수, 분포 등은 이차 전지 성능에 큰 영향을 미칠 수 있다.
도 2a는 2개의 이차 전지 음극의 단면을 나타낸 도면이고, 도 2b는 상기 2개의 이차 전지 음극의 충전 특성을 나타낸 그래프이다. 구체적으로, 도 2a는 동일한 전체 기공 분포를 가지되, 이차 전지용 음극 단면 상의 상부와 하부의 기공 분포가 상이한 2개의 이차 전지용 음극 단면을 나타내고 있다.
음극 1과 음극 2는 동일한 면적 상에서 전체 기공의 분포가 25%로 동일하다. 다만, 도 2a를 참고하면, 음극 1의 경우에는 음극 단면 상의 상부와 하부에 기공이 유사한 크기로, 상부와 하부에 고르게 분포되어 있다. 반면, 음극 2의 경우에는 음극 단면 상의 상부에 존재하는 기공이 하부에 존재하는 기공보다 크며, 하부보다 상부에 보다 많은 기공이 존재하고 있다. 도 2b는 상기 음극 1과 음극 2에 인가되는 전압에 따른 충전 특성(state of charge; SOC)을 나타낸 도면이다. 도 2b를 참고하면, 음극 단면 상의 상부에 존재하는 기공의 크기가 크고 하부보다 상부에 기공이 보다 많이 존재하는 음극 2가 음극 단면 상의 상부와 하부에 비슷한 크기의 기공이 고르게 분포되어 있는 음극 1보다 충전 특성이 우수한 것을 알 수 있다.
따라서, 전극 내부의 기공의 크기, 개수, 분포 등을 정확하게 분석하는 경우, 이자 전지용 전극 및 이를 포함하는 이차 전지의 성능을 보다 효과적으로 예측할 수 있다.
종래에는 이차 전지용 전극에 존재하는 기공의 크기, 개수, 분포 등을 분석하기 위하여, 주사 전자 현미경(SEM)을 사용하였다. 다만, 주사 전자 현미경(SEM)은 깊은 초점 심도를 가지기 때문에, 기공 하단의 서로 상이한 초점면(focal plane)에 존재하는 이차 전지용 전극의 전극 활물질, 바인더 등의 신호가 동시에 검출되는 문제가 있다. 이에, 이차 전지용 전극 내에 존재하는 기공임에도 불구하고, 주사 전자 현미경에 의해 생성된 이미지 상에는 이차 전지용 전극의 구성 물질로 도시되어, 이차 전지용 전극에 존재하는 기공을 정확하게 분석하는 것이 불가능하였다.
반면, 본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극의 기공에 규소를 포함하는 고분자를 채우고, 상기 이차 전지용 전극으로부터 제조되는 상기 전극 단면 시료에 존재하는 규소를 검출함으로써, 상기 이차 전지용 전극의 구성 물질과 기공을 명확하게 구분할 수 있고, 기공의 크기, 개수, 분포 등을 용이하게 확인할 수 있다.
구체적으로, 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자를 채워, 기공 하단의 상이한 초점면에 상기 이차 전지용 전극의 구성 물질이 존재함에 따라 발생될 수 있는 이차 전지용 전극의 구성 물질 신호가 동시에 검출되는 현상을 방지할 수 있다. 따라서, 상기 이차 전지용 전극의 기공에 상기 규소를 포함하는 고분자가 채워진 전극 단면 시료를 주사 전자 현미경으로 관찰하는 경우에도, 기공과 이차 전지용 전극의 구성 물질을 구분할 수 있다. 또한, 상기 이차 전지용 전극의 기공에 채워진 고분자의 규소를 에너지 분산형 스펙트럼 원소 분석기를 이용하여 검출함으로써, 상기 이차 전지용 전극의 구성 물질과 기공을 명확하게 구분하여, 기공의 크기, 개수, 분포 등을 용이하게 분석할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극의 구성 물질과 기공을 명확하게 구분하여 기공을 정확하게 분석할 수 있고 기공의 분포를 확인할 수 있어, 상기 이차 전지용 전극 및 이를 포함하는 이차 전지의 성능을 보다 효과적으로 예측할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 규소를 포함하는 고분자는 폴리디메틸실록세인(polydimethylsiloxane). 폴리실록세인(Polysiloxane), 폴리실레인(polysilane) 및 폴리실라제인(polysilazane)으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 상기 규소를 포함하는 고분자의 반복 단위(repeat unit)에 규소가 포함될 수 있다. 상기 고분자에 포함되는 규소 성분은 원자 번호 차이에 의한 대비(contrast) 효과를 극대화시킬 수 있어, 상기 이차 전지용 전극의 기공과 구성 물질을 명확하게 구분시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여, 상기 이차 전지용 전극에 존재하는 기공의 분포 및 기공의 크기, 개수, 위치 등을 확인할 수 있다.
상기 에너지 분산형 스펙트럼 원소 분석기(energy-dispersive X-ray spectroscopy; EDS)로 주사 전자 현미경에 부착되어 있는 것을 사용할 수 있다. 상기 에너지 분산형 스펙트럼 원소 분석기는 전자선이 시료면 상을 조사할 때 발생되는 X-ray를 검출하여 시료의 성분을 측정하는 분석 기기로서, 조작이 간단하고 시료에 포함되는 모든 원소의 에너지를 동시에 검출할 수 있는 이점이 있다.
본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기로 5.9 keV 이상 136 keV 이하의 에너지 분해능을 가지고, 0.1 wt%의 최소 검출 한계를 가지는 기기를 사용할 수 있다. 상기 조건을 보유한 에너지 분산형 스펙트럼 원소 분석기를 사용함으로써, 상기 이차 전지용 전극의 기공에 채워진 고분자의 규소를 보다 정확하게 검출할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여 상기 이차 전지용 전극의 기공에 채워진 고분자의 규소를 검출할 수 있고, 상기 검출된 규소의 지점이 표시된 EDS 맵핑 이미지를 추출할 수 있다. 상기 규소의 지점이 맵핑된 이미지를 통해, 상기 이차 전지용 전극의 기공의 위치, 기공의 형태, 크기, 개수, 분포 등을 확인할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 기공의 분포를 확인하는 단계는 상기 이차 전지용 전극의 기공 분포를 정량적으로 분석하는 단계를 포함할 수 있다. 구체적으로, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 EDS 맵핑 이미지를 이미지 프로세싱(image processing)에 적용하여, 상기 이차 전지용 전극의 부분 별 기공 분포를 정량 분석할 수 있다. 예를 들면, 이미지 프로세싱 작업을 통해, EDS 맵핑 이미지를 흑백으로 전환하고, 흑백으로 전환된 EDS 맵핑 이미지 내의 부분 별 밝기 차를 이용하여, 상기 전극 단면 시료의 단면에 보이는 기공과 전극 구성 물질을 효과적으로 구분할 수 있다. 전극 단면 시료의 기공과 전극 구성 물질을 구분함으로써, 상기 이차 전지용 전극의 부분 별 기공 분포를 정량 분석할 수 있다.
또한, 상기 이차 전지용 전극으로부터 제조된 상기 전극 단면 시료의 단면을 상부, 중부 및 하부로 분류할 수 있으며, 상기 상부, 중부 및 하부 각각을 보다 작은 단위 영역으로 분류하여 기공 분포를 정밀하게 정량 분석 할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 맵핑 이미지를 사용하여, 상기 이차 전지용 전극의 기공 분포를 정량 분석할 수 있으며, 이를 통해 상기 이차 전지용 전극을 포함하는 이차 전지의 성능을 미리 산출할 수 있다.
도 3a는 본 발명의 일 실시상태에 따른 EDS(energy-dispersive X-ray spectroscopy)를 이용하여 획득한 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 3b는 음극 단면 시료의 기공에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 3a를 참고하면, 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 표시된 EDS 맵핑 이미지 상에서, 어두운 색으로 나타나는 이차 전지용 음극의 구성 물질과, 보다 밝은 색으로 나타나는 기공이 명확하게 구분되는 것을 확인할 수 있다. 상기 도 3b와 같이, 이미지 프로세싱에 의해 추출된 음극 단면 시료 단면의 이미지를 상, 중, 하 영역으로 분류할 수 있다. 또한, 상, 중, 하로 분류된 각 영역을 상측 방향에서 하측 방향으로 균등하게 3 등분하여 총 9개의 단위 영역으로 분류할 수 있고, 이를 이용하여 이차 전지용 음극의 기공을 정량 분석할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 전극 단면 시료를 제조하는 단계 전에, 상기 바인더를 염색하는 단계를 더 포함할 수 있다. 상기 바인더를 염색하는 단계는 상기 이차 전지용 전극의 기공에 규소를 포함하는 고분자를 채우는 단계 전에 수행될 수 있고, 상기 고분자를 채우는 단계 후에 수행될 수도 있다. 상기 바인더를 염색함으로써 상기 전극 단면 시료를 주사 전자 현미경으로 관찰하는 경우에도, 바인더와 전극 활물질, 기공 등을 서로 구분할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 이차 전지용 전극에 포함되는 바인더를 염색함으로써, 상기 바인더와 전극 활물질, 기공 등을 명확하게 구분할 수 있어, 상기 이차 전지용 전극의 기공을 보다 정밀하게 분석할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 바인더를 염색하는 단계는 오스뮴 화합물 및 류테늄 화합물 중 적어도 하나를 포함하는 염색재로 상기 바인더를 염색할 수 있다. 일 예로, 상기 오스뮴 화합물로 OsO4 등의 오스뮴 산화물을 사용할 수 있고, 류테늄 화합물로 RuO4 등의 류테늄 산화물을 사용할 수 있다. 구체적으로, 상기 이차 전지용 전극에 포함되는 바인더로 디엔계의 부타디엔을 사용하고, 염색재로 OsO4를 사용하는 경우, 하기 반응식 1과 같이 OsO4는 부타디엔의 이중결합과 반응하여 결합될 수 있다.
[반응식 1]
Figure pat00001
상기 오스뮴 화합물에 포함되는 오스뮴 성분은 원자 번호 차이에 의한 대비(contrast) 효과를 극대화시킬 수 있어, 상기 이차 전지용 전극의 바인더와 기공, 전극 활물질 등을 명확하게 구분시킬 수 있다.
본 발명의 일 실시상태에 따르면, 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 바인더 내의 염색재를 검출하는 단계; 및 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 염색재의 지점이 맵핑된 이미지를 분석하여 바인더의 면적 비율을 계산하는 단계;를 더 포함할 수 있다.
또한, 이하에서는 염색재로 OsO4를 사용하는 경우로 상세히 설명하기로 한다.
본 발명의 일 실시상태에 따르면, 상기 염색재로 OsO4를 사용하는 경우, 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여 상기 바인더에 염색된 오스뮴을 검출할 수 있고, 상기 검출된 오스뮴의 지점이 표시된 EDS 맵핑 이미지를 추출할 수 있다. 상기 오스뮴의 지점이 맵핑된 이미지를 통해, 상기 이차 전지용 전극에 포함되는 바인더의 면적, 위치, 분포 등을 파악할 수 있다. 이를 통해, 상기 이차 전지용 전극에 존재하는 기공의 분포 및 기공의 크기, 개수, 위치 등을 보다 정확하게 확인할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 오스뮴의 지점이 맵핑된 이미지를 분석하여 바인더의 면적 비율을 계산하는 단계는 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 EDS 맵핑 이미지를 이미지 프로세싱(image processing)에 적용하여, 상기 이차 전지용 전극의 부분 별 상기 바인더의 면적을 정량 분석할 수 있다. 또한, 상기 이차 전지용 전극으로부터 제조된 상기 전극 단면 시료의 단면을 상부, 중부 및 하부로 분류할 수 있으며, 상기 상부, 중부 및 하부 각각을 보다 작은 단위 영역으로 분류하여 상기 바인더의 면적 비율을 정밀하게 계산할 수 있다.
도 4a는 본 발명의 일 실시상태에 따른 EDS를 이용하여 획득한 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 나타낸 도면이고, 도 4b는 음극 단면 시료의 바인더에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 도면이다.
도 4a를 참고하면, 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 오스뮴의 지점이 표시된 EDS 맵핑 이미지 상에서, 어두운 색으로 나타나는 이차 전지용 음극의 구성 물질과, 보다 밝은 색으로 나타나는 바인더가 명확하게 구분되는 것을 확인할 수 있다. 도 4b와 같이, 이미지 프로세싱에 의해 추출된 음극 단면 시료 단면의 이미지를 상, 중 및 하 영역으로 분류할 수 있다. 또한, 상, 중 및 하로 분류된 각 영역을 상측 방향에서 하측 방향으로 3등분하여 총 9개의 단위 영역으로 분류할 수 있고, 이를 이용하여, 이차 전지용 음극의 바인더의 면적을 정량 분석할 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 상기 에너지 분산형 스펙트럼 원소 분석기에 의해 추출된 맵핑 이미지를 사용하여, 상기 이차 전지용 전극의 바인더 면적 비율을 정량 분석할 수 있으며, 이를 통해 상기 이차 전지용 전극의 기공의 분포를 보다 정확하게 파악할 수 있고, 상기 이차 전지용 전극 및 이를 포함하는 이차 전지의 성능을 미리 산출할 수 있다.
또한, 본 발명의 일 실시상태에 따른 이차 전지용 전극의 기공 분포 측정 방법은 이차 전지용 양극 및 음극에 적용될 수 있다.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 하기 실시예에서는 이차 전지용 전극 중 음극에 대한 것이며, 이들 실시예는 단지 설명하기 위한 것이며 본 발명을 제한하는 것은 아니다.
음극 단면 시료의 제조
실시예 1
이차 전지용 음극(LG CHEM 社)를 준비하고, 염색재로 OsO4, 규소를 포함하는 고분자로 폴리디메틸실록세인(Polydimethylsiloxane; PDMS)을 준비하였다. 준비된 OsO4를 사용하여 이차 전지용 음극의 바인더를 염색하고, 이차 전지용 음극을 준비된 PDMS에 함침시켜, 이차 전지용 음극 기공을 PDMS로 채웠다. 이후, 아르곤 이온 빔을 조사하는 이온 밀링 장치(IM 4000, Hitachi 社)를 이용하여 상기 이차 전지용 음극에 집속 아르곤(Ar) 이온 빔을 조사하여 표면을 깎아 내어 깨끗한 단면을 가지는 음극 단면 시료를 제조하였다. 아르곤 이온 빔 조사 시, 방전 전류를 400 μA, 이온 빔 전류를 130 μA로 하여 수행하였으며, 기체 유량(gas flow)는 1 cm3/분이었고, 3시간 동안 수행하였다.
실시예 2
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, 이차 전지용 음극의 바인더를 염색하지 않은 상태에서, 폴리디메틸실록세인으로 이차 전지용 음극의 기공을 채운 것을 제외하고 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
비교예 1
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, OsO4로 이차 전지용 음극의 바인더를 염색하고, 에폭시를 포함하는 고분자로 이차 전지용 음극의 기공을 채운 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
비교예 2
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, 이차 전지용 음극의 바인더를 염색하지 않고, 규소를 포함하는 고분자로 이차 전지용 음극의 기공을 채우지 않은 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
비교예 3
상기 실시예 1과 동일한 이차 전지용 음극을 준비하였고, 이차 전지용 음극의 바인더를 염색하지 않고, 에폭시를 포함하는 고분자로 이차 전지용 음극의 기공을 채운 것을 제외하고 상기 실시예 1과 동일한 방법으로 음극 단면 시료를 제조하였다.
이차 전지용 음극의 SEM 사진 분석
본 발명의 실시예 1, 실시예 2 및 비교예 1 내지 비교예 3에서 제조된 음극 단면 시료를 주사 전자 현미경(SU8020, HITACHI 社)으로 관찰하고, SEM 사진을 촬영하였다.
도 5a는 실시예 1에서 제조된 음극 단면 시료의 SEM(scanning electron microscope) 사진이고, 도 5b는 실시예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5c는 비교예 1에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5d는 비교예 2에서 제조된 음극 단면 시료의 SEM 사진이고, 도 5e는 비교예 3에서 제조된 음극 단면 시료의 SEM 사진이다.
도 5a 및 도 5b를 참고하면, 실시예 1 및 실시예 2에 따른 이차 전지용 음극 기공에 PDMS가 함침되어 기공 하단의 상이한 초점면에 존재하는 활물질 등의 이차 전지용 음극 구성 물질이 관찰되지 않아, 이차 전지용 음극 구성 물질과 기공이 명확하게 구분되는 것을 확인하였다. 나아가, 도 5a를 참고하면, OsO4를 사용하여 이차 전지용 음극의 바인더를 염색한 실시예 1의 경우, 이차 전지용 음극 구성 물질, 바인더 및 기공이 명확하게 구분되어, 기공을 보다 정확하게 확인할 수 있음을 알 수 있었다.
반면, 도 5d를 참고하면, 규소를 포함하는 고분자로 이차 전지용 음극의 기공을 함침하지 않은 비교예 2의 경우, 주사 전자 현미경의 높은 초점 심도에 의해 기공 하단의 상이한 초점면에 존재하는 활물질 등의 이차 전지용 음극 구성 물질이 함께 관찰되어, 이차 전지용 음극 구성 물질과 기공을 구분하기 어려운 것을 확인하였다. 또한, 비교예 2의 경우에는 바인더를 염색하지 않아, 음극 구성 물질 및 기공을 바인더와 구분하는 것이 어려운 것을 확인하였다.
도 5c 및 도 5e를 참고하면, 에폭시를 포함하는 고분자로 이차 전지용 음극의 기공을 채운 비교예 1 및 비교예 3의 경우, 기공에 PDMS가 함침된 실시예 1 및 실시예 2 대비, 기공과 음극 활물질을 구분하는 것이 용이하지 않음을 확인할 수 있었다. 나아가, 이러한 차이에 의하여 실시예 1, 실시예 2 및 비교예 1, 비교예 3의 SEM 사진을 이미지 프로세싱에 적용하는 경우, 실시예 1 및 실시예 2에서 보다 명확하게 기공과 음극 활물질을 구분할 수 있음을 알 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 규소를 포함하는 고분자를 이차 전지용 전극의 기공에 채워, 기공과 음극 구성 물질을 명확하게 구분할 수 있고, 이차 전지용 전극의 바인더를 염색하여 바인더를 명확하게 구분할 수 있으므로, 이차 전지용 전극의 기공을 보다 정밀하게 확인할 수 있다.
이차 전지용 음극의 기공 분석
실시예 1에서 제조된 음극 단면 시료를 주사 전자 현미경(SU8020, HITACHI 社)에 부속되어 있는 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 이차 전지용 음극 기공에 채워져 있는 PDMS의 규소 성분을 검출하고, 이차 전지용 음극 바인더에 염색된 OsO4 염색재의 오스뮴 성분을 검출하였다. 이후, 검출된 규소 및 오스뮴의 지점이 표시된 EDS 맵핑 이미지를 추출하였다. 이후, 추출된 EDS 맵핑 이미지를 이미지 프로세싱(image processing)에 적용하여 기공의 정량 분석을 위한 이미지를 추출하였다. 이 때, 에너지 분산형 스펙트럼 원소 분석기로 5.9 keV 이상 136 keV 이하의 에너지 분해능을 가지고, 0.1 wt%의 최소 검출 한계를 가지는 것을 사용하였다.
또한, 실시예 2에서 제조된 음극 단면 시료를 상기 에너지 분산형 스펙트럼 원소 분석기를 이용하여, 이차 전지용 음극 기공에 채워져 있는 PDMS의 규소 성분을 검출하고, 검출된 규소의 지점이 표시된 EDS 맵핑 이미지를 추출하였다. 이후, 추출된 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 기공의 정량 분석을 위한 이미지를 추출하였다.
도 6a는 EDS를 이용하여 획득한 본 발명의 실시예 1 및 실시예 2에 따른 음극 단면 시료의 EDS 맵핑 이미지를 나타낸 도면이고, 도 6b는 실시예 1 및 실시예 2에 따른 음극 단면 시료에 대한 EDS 맵핑 이미지를 이미지 프로세싱에 적용하여 추출한 이미지를 나타낸 것이다.
도 6a를 참고하면, 실시예 1의 경우에 음극 단면 시료 상에서 기공, 음극 활물질 및 바인더가 명확하게 구분되는 것을 확인할 수 있었고, 실시예 2의 경우에는 바인더를 염색하지 않아, 기공과 음극 활물질만을 구분할 수 있음을 확인하였다. 또한, 상기 도 6b와 같이, 이미지 프로세싱에 의해 추출된 음극 단면 시료 단면의 이미지를 상, 중, 하 영역으로 분류할 수 있으며, 상, 중, 하로 분류된 각 영역을 상측 방향에서 하측 방향으로 3등분하여 총 9개의 단위 영역으로 분류하여, 이차 전지용 음극의 기공을 정량 분석하였다.
하기 표 1에는 실시예 1에서 제조된 이차 전지용 음극의 9개의 단위 영역 각각의 면적에 존재하는 기공의 분포를 나타내는 공극률(porosity), 음극 활물질 영역, 바인더 영역의 비율을 기재하였고, 하기 표 2에는 실시예 2에서 제조된 이차 전지용 음극의 9개의 단위 영역 각각의 면적의 공극률과 바인더 영역의 비율을 기재하였다.
영역 평균
단위 영역 1 2 3 4 5 6 7 8 9
음극
활물질(%)
65.1 59.6 57.2 61.0 58.7 60.3 59.8 54.4 57.4 59.3
바인더(%) 0.7 2.1 2.0 2.5 1.7 3.1 1.1 1.4 1.3 1.8
공극률(%) 34.2 38.3 40.8 36.5 39.6 36.6 39.1 44.2 41.3 38.9
영역 평균
단위 영역 1 2 3 4 5 6 7 8 9
음극
활물질(%)
65.7 58.8 56.4 61.3 57.3 60.7 60.8 54.6 57.2 59.2
공극률(%) 34.3 41.2 43.6 38.7 42.7 39.3 39.2 45.4 42.8 40.8
상기 표 1 및 표 2를 참고하면, 바인더를 염색하지 않은 실시예 2 대비, 기공을 PDMS로 함침시키고 바인더를 OsO4로 염색한 실시예 1은 보다 정확하게 이차 전지용 음극의 기공 분포를 확인할 수 있음을 알 수 있었다. 구체적으로, 바인더를 염색한 실시예 1의 경우, 기공 및 음극 활물질이 바인더와 구분되어, 단위 영역에서의 공극률이 실시예 2보다 작은 것을 확인할 수 있었으며, 이를 통해 보다 정확하게 이차 전지용 음극의 공극률을 확인할 수 있음을 알 수 있다.
따라서, 본 발명의 일 실시상태에 따르면, 이차 전지용 전극에 존재하는 기공, 활물질 및 바인더를 정량적으로 분석할 수 있으며, 이를 통해 이차 전지용 전극이 사용되는 이차 전지의 성능을 예측할 수 있다.

Claims (8)

  1. 전극 활물질, 바인더 및 도전재를 포함하는 이차 전지용 전극을 준비하는 단계;
    규소를 포함하는 고분자를 상기 이차 전지용 전극에 함침하여, 상기 이차 전지용 전극의 내부 기공에 상기 규소를 포함하는 고분자를 채우는 단계;
    이온 밀링 장치의 이온 빔을 상기 이차 전지용 전극에 조사하여 전극 단면 시료를 제조하는 단계;
    에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 전극 단면 시료에 존재하는 규소를 검출하는 단계; 및
    상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 규소의 지점이 맵핑된 이미지를 분석하여 기공의 분포를 확인하는 단계;를 포함하는 이차 전지용 전극의 기공 분포 측정 방법.
  2. 청구항 1에 있어서,
    상기 규소를 포함하는 고분자는 폴리디메틸실록세인. 폴리실록세인, 폴리실레인 및 폴리실라제인으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  3. 청구항 1에 있어서,
    상기 전극 단면 시료를 제조하는 단계 전에,
    상기 바인더를 염색하는 단계를 더 포함하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  4. 청구항 3에 있어서,
    상기 바인더를 염색하는 단계는 오스뮴 화합물 및 류테늄 화합물 중 적어도 하나를 포함하는 염색재로 상기 바인더를 염색하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  5. 청구항 4에 있어서,
    에너지 분산형 스펙트럼 원소 분석기를 이용하여, 상기 바인더 내의 염색재를 검출하는 단계; 및
    상기 에너지 분산형 스펙트럼 원소 분석기에 의해 검출된 염색재의 지점이 맵핑된 이미지를 분석하여 바인더의 면적 비율을 계산하는 단계;를 더 포함하는 것인 이차 전지용 전극의 기공 분포 측정 방법.
  6. 청구항 1에 있어서,
    상기 이온 빔은 아르곤 이온 빔인 것인 이차 전지용 전극의 기공 분포 측정 방법.
  7. 청구항 1에 있어서,
    상기 이온 밀링 장치의 이온 빔 전류는 100 μA 이상 250 μA 이하인 것인 이차 전지용 전극의 기공 분포 측정 방법.
  8. 청구항 1에 있어서,
    상기 이온 밀링 장치의 방전 전류는 250 μA 이상 450 μA 이하인 것인 이차 전지용 전극의 기공 분포 측정 방법.
KR1020180061024A 2017-05-29 2018-05-29 이차 전지용 전극의 기공 분포 측정 방법 KR102097613B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170065845 2017-05-29
KR1020170065845 2017-05-29

Publications (2)

Publication Number Publication Date
KR20180130462A true KR20180130462A (ko) 2018-12-07
KR102097613B1 KR102097613B1 (ko) 2020-04-06

Family

ID=64455067

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180061024A KR102097613B1 (ko) 2017-05-29 2018-05-29 이차 전지용 전극의 기공 분포 측정 방법

Country Status (6)

Country Link
US (1) US20200141841A1 (ko)
EP (1) EP3633359B1 (ko)
JP (1) JP6860129B2 (ko)
KR (1) KR102097613B1 (ko)
CN (1) CN110352347B (ko)
WO (1) WO2018221929A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11334984B2 (en) 2019-07-10 2022-05-17 Lg Energy Solution, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery
WO2022216063A1 (ko) * 2021-04-06 2022-10-13 주식회사 엘지에너지솔루션 분리막용 다공성 고분자 기재의 불량품 사전 검출 방법
WO2024054044A1 (ko) * 2022-09-06 2024-03-14 주식회사 엘지화학 다공성 구조물의 기공 분포 분석방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220043448A (ko) 2020-09-29 2022-04-05 주식회사 엘지에너지솔루션 전극 구조에 따른 이차전지 성능 추정 장치 및 그 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279508A (ja) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd 有機材料の分散状態を評価する方法
KR20070011543A (ko) * 2006-11-27 2007-01-24 니폰 쇼쿠바이 컴파니 리미티드 고체 산화물형 연료 전지용 애노드 지지 기판 및 그의 제조방법
KR20140132956A (ko) 2013-05-09 2014-11-19 주식회사 엘지화학 전극 밀도 및 전극 공극률의 측정 방법
KR20170006663A (ko) * 2015-07-09 2017-01-18 주식회사 엘지화학 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자
KR20170019146A (ko) * 2015-08-11 2017-02-21 주식회사 엘지화학 이차 전지 전극 내부 구성 물질 및 기공의 분포를 분석하는 방법 및 이를 위한 조성물

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686952B2 (ja) * 1998-12-08 2005-08-24 独立行政法人 国立印刷局 インキ転移物の断面観察法
JP2003139728A (ja) * 2001-11-05 2003-05-14 Toray Res Center:Kk 多孔性材料の構造解析方法および構造解析写真
KR100766967B1 (ko) * 2006-11-20 2007-10-15 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이로부터 제조된 리튬 이차전지
JP5675519B2 (ja) * 2011-07-11 2015-02-25 株式会社日立製作所 二次電池用負極,二次電池用負極を用いた非水電解質二次電池およびそれらの製造方法
JP5596875B1 (ja) * 2013-07-19 2014-09-24 日本碍子株式会社 燃料電池セル及び空気極材料
KR101813302B1 (ko) * 2013-10-31 2017-12-28 주식회사 엘지화학 음극 활물질 및 이의 제조 방법
WO2017031006A1 (en) * 2015-08-14 2017-02-23 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279508A (ja) * 2002-03-25 2003-10-02 Matsushita Electric Ind Co Ltd 有機材料の分散状態を評価する方法
KR20070011543A (ko) * 2006-11-27 2007-01-24 니폰 쇼쿠바이 컴파니 리미티드 고체 산화물형 연료 전지용 애노드 지지 기판 및 그의 제조방법
KR20140132956A (ko) 2013-05-09 2014-11-19 주식회사 엘지화학 전극 밀도 및 전극 공극률의 측정 방법
KR20170006663A (ko) * 2015-07-09 2017-01-18 주식회사 엘지화학 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자
KR20170019146A (ko) * 2015-08-11 2017-02-21 주식회사 엘지화학 이차 전지 전극 내부 구성 물질 및 기공의 분포를 분석하는 방법 및 이를 위한 조성물

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11334984B2 (en) 2019-07-10 2022-05-17 Lg Energy Solution, Ltd. Analysis method for crack rate of electrode active material of electrode for lithium secondary battery
WO2022216063A1 (ko) * 2021-04-06 2022-10-13 주식회사 엘지에너지솔루션 분리막용 다공성 고분자 기재의 불량품 사전 검출 방법
KR20220138751A (ko) * 2021-04-06 2022-10-13 주식회사 엘지에너지솔루션 분리막용 다공성 고분자 기재의 불량품 사전 검출 방법
US11940368B2 (en) 2021-04-06 2024-03-26 Lg Energy Solution, Ltd. Method for pre-detecting defective porous polymer substrate for separator
WO2024054044A1 (ko) * 2022-09-06 2024-03-14 주식회사 엘지화학 다공성 구조물의 기공 분포 분석방법

Also Published As

Publication number Publication date
CN110352347A (zh) 2019-10-18
US20200141841A1 (en) 2020-05-07
CN110352347B (zh) 2022-04-15
EP3633359B1 (en) 2024-06-12
KR102097613B1 (ko) 2020-04-06
JP6860129B2 (ja) 2021-04-14
EP3633359A4 (en) 2020-06-24
JP2020507889A (ja) 2020-03-12
EP3633359A1 (en) 2020-04-08
WO2018221929A1 (ko) 2018-12-06

Similar Documents

Publication Publication Date Title
KR102097613B1 (ko) 이차 전지용 전극의 기공 분포 측정 방법
Bailey et al. Laser‐preparation of geometrically optimised samples for X‐ray nano‐CT
KR102048342B1 (ko) 이차 전지 양극 내부 기공 분포 분석 방법 및 이를 위한 고분자
Cantoni et al. Advances in 3D focused ion beam tomography
Zekri et al. Microstructure degradation of Ni/CGO anodes for solid oxide fuel cells after long operation time using 3D reconstructions by FIB tomography
KR102068764B1 (ko) 배터리 음극 내 기공 분포 관찰방법 및 관찰시스템
Mahbub et al. A method for quantitative 3D mesoscale analysis of solid oxide fuel cell microstructures using Xe-plasma focused ion beam (PFIB) coupled with SEM
KR20200027693A (ko) 이차 전지용 전극의 성능 예측 방법
Linsenmann et al. A liquid electrolyte-based lithium-ion battery cell design for operando neutron depth profiling
Meffert et al. Optimization of material contrast for efficient FIB‐SEM tomography of solid oxide fuel cells
Sar et al. Three dimensional analysis of Ce0. 9Gd0. 1O1. 95–La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ oxygen electrode for solid oxide cells
Zhang et al. Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing process
Eswara-Moorthy et al. An in situ SEM-FIB-based method for contrast enhancement and tomographic reconstruction for structural quantification of porous carbon electrodes
CN112189142B (zh) 电池电极的分析方法
CN108088864B (zh) 一种材料三维微观结构重构方法及系统
Zekri et al. Microstructure degradation of LSM/YSZ cathodes for solid oxide fuel cells aged in stack after long operation time
Cooper et al. Methods—Kintsugi Imaging of Battery Electrodes: Distinguishing Pores from the Carbon Binder Domain using Pt Deposition
Priebe et al. State-of-the-Art Three-Dimensional Chemical Characterization of Solid Oxide Fuel Cell Using Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry Tomography
Taiwo et al. In-Situ examination of microstructural changes within a lithium-ion battery electrode using synchrotron X-ray microtomography
KR102197898B1 (ko) 전극 내 탄소나노튜브의 분산성 평가 방법
Cooper et al. Kintsugi Imaging of Battery Electrodes: Unambiguously Distinguishing Pores from the Carbon Binder Domain using Pt Deposition
Wang et al. Multimodal and in-situ chemical imaging of critical surfaces and interfaces in Li batteries
Blanc et al. MultiScale and MultiTime Image-Based Control and Characterization of Lithium-Ion Batteries and Materials
Bozzetti Electron imaging of gas diffusion electrodes for proton exchange membrane fuel cells
KR101779801B1 (ko) 전극과 전해질에 양성자를 조사하여 제조한 고체 산화물 연료전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant