WO2018221664A1 - 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池 - Google Patents

非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池 Download PDF

Info

Publication number
WO2018221664A1
WO2018221664A1 PCT/JP2018/020988 JP2018020988W WO2018221664A1 WO 2018221664 A1 WO2018221664 A1 WO 2018221664A1 JP 2018020988 W JP2018020988 W JP 2018020988W WO 2018221664 A1 WO2018221664 A1 WO 2018221664A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
electrode active
active material
secondary battery
Prior art date
Application number
PCT/JP2018/020988
Other languages
English (en)
French (fr)
Inventor
一臣 漁師
大塚 良広
寛子 大下
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2019521303A priority Critical patent/JP7060776B2/ja
Priority to US16/617,768 priority patent/US20200251732A1/en
Priority to CN201880034765.3A priority patent/CN110679018B/zh
Priority to KR1020197035016A priority patent/KR102657433B1/ko
Publication of WO2018221664A1 publication Critical patent/WO2018221664A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/121Borates of alkali metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same, a positive electrode mixture paste for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
  • a lithium ion secondary battery as a non-aqueous electrolyte secondary battery that satisfies such requirements.
  • a lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material for the negative electrode and the positive electrode.
  • lithium ion secondary batteries are currently being actively researched and developed.
  • lithium ion secondary batteries using a layered or spinel type lithium metal composite oxide as a positive electrode active material Since a high voltage of 4V class can be obtained, it has been put into practical use as a battery having a high energy density.
  • the materials mainly proposed so far include lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium nickel.
  • lithium cobalt composite oxide uses an expensive cobalt compound as a raw material, the unit price per capacity of a battery using this lithium cobalt composite oxide is significantly higher than that of a nickel metal hydride battery. Limited. Therefore, not only for small secondary batteries for portable devices, but also for large-sized secondary batteries for power storage and electric vehicles, the cost of the cathode active material can be reduced and cheaper lithium ion secondary batteries can be manufactured. There is great expectation to make it possible, and its realization has great industrial significance.
  • a lithium nickel composite oxide using nickel which is cheaper than cobalt can be cited.
  • This lithium nickel composite oxide is more than the lithium cobalt composite oxide. Since it exhibits a low electrochemical potential, decomposition due to oxidation of the electrolyte is unlikely to be a problem, and a higher capacity can be expected, and a high battery voltage is exhibited in the same way as the cobalt system. It has been broken. However, even in an electric vehicle equipped with a battery manufactured using a lithium nickel composite oxide such as that disclosed in Patent Document 1, it is difficult to realize a cruising distance comparable to that of a gasoline vehicle, and further increase in capacity is required. It was sought after.
  • the positive electrode of the non-aqueous electrolyte secondary battery is prepared by mixing, for example, a positive electrode active material, a binder such as polyvinylidene fluoride (PVDF), and a solvent such as N-methyl-2-pyrrolidone (NMP). And is applied to a current collector such as an aluminum foil.
  • a positive electrode active material such as polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • Patent Document 2 proposes a positive electrode composition for a non-aqueous electrolyte secondary battery that includes a positive electrode active material composed of a lithium transition metal composite oxide and additive particles composed of acidic oxide particles.
  • a positive electrode active material composed of a lithium transition metal composite oxide
  • additive particles composed of acidic oxide particles.
  • lithium hydroxide generated by the reaction of moisture contained in the binder and lithium released from the positive electrode active material reacts preferentially with the acidic oxide, and the reaction between the generated lithium hydroxide and the binder.
  • the acidic oxide plays a role as a conductive agent in the positive electrode, lowers the resistance of the whole positive electrode, and contributes to the improvement of the output characteristics of the battery.
  • Patent Document 3 discloses a method for producing a lithium ion secondary battery, in which a lithium transition metal composite oxide containing LiOH outside the composition is prepared as a positive electrode active material; LiOH contained per gram of the positive electrode active material The molar amount P of LiOH; preparing 0.05 mol or more of tungsten oxide in terms of tungsten atoms per mol of LiOH with respect to the molar amount P of LiOH; and a positive electrode active material and tungsten oxide, There has been proposed a method for producing a lithium ion secondary battery, which includes preparing a positive electrode paste by kneading an organic solvent together with a conductive material and a binder.
  • Patent Document 4 discloses a technique for preventing gelation of an electrode paste by containing boric acid or the like as an inorganic acid in an electrode using a lithium transition metal composite oxide or the like.
  • a lithium transition metal composite oxide lithium nickelate is disclosed.
  • Patent Document 1 Even when the positive electrode active material described in Patent Document 1 is used, it is not sufficient as a secondary battery for electric vehicles, and further higher capacity is required. In addition, in the proposal of Patent Document 2, there is a risk of the separator being damaged and the thermal stability being lowered due to the remaining acidic oxide particles. In addition, it cannot be said that the gelation of the positive electrode mixture paste is sufficiently suppressed. Furthermore, although the suppression of gelation can be improved by increasing the amount of acidic oxide added, the increase in raw material costs due to the addition of acidic oxide and the increase in weight due to the addition of acidic oxide. Battery capacity per unit mass deteriorates.
  • a positive electrode active material, a conductive agent, and a binder are added and mixed in a solvent to which boric acid or the like is added.
  • the positive electrode active material is sufficiently dispersed. There is a risk that gelation will occur locally until this occurs.
  • an object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that has a high battery capacity when used as a positive electrode active material and can suppress gelation of the positive electrode mixture paste.
  • the purpose is to provide.
  • the present inventor conducted extensive research on a lithium metal composite oxide used as a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same, and as a result, the surface of the lithium nickel composite oxide
  • the present inventors have obtained knowledge that a positive electrode active material capable of improving the battery capacity and suppressing the gelation of the positive electrode mixture paste can be obtained by allowing two kinds of boron compounds to exist in a specific content ratio. was completed.
  • the general formula Li a Ni 1-x- y Co x M y O 2 + ⁇ (although, 0.01 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.10,0.95 ⁇ a ⁇ 1.10, 0 ⁇ ⁇ ⁇ 0.2, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) And a boron compound, and at least a part of the boron compound is present in the form of Li 3 BO 3 and LiBO 2 on the surface of the lithium nickel composite oxide, and Li 3 BO 3 and LiBO 2.
  • a mass ratio (Li 3 BO 3 / LiBO 2 ) of 0.005 to 10 and a boron content of 0.011 to 0.6% by mass with respect to the total amount of the positive electrode active material Provided is a positive electrode active material for an electrolyte secondary battery.
  • a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery wherein the nickel composite hydroxide or the nickel composite oxide, the lithium compound, and the first reactable with lithium.
  • a lithium compound is mixed with a boron compound so that the boron amount A in the first boron compound is 0.001% by mass to 0.1% by mass with respect to the total amount of the positive electrode active material.
  • baking the lithium mixture at 700 ° C. or higher and 800 ° C.
  • the boron amount of the second boron compound is such that the boron amount B in the second boron compound is 0.01 mass% or more and 0.5 mass% or less with respect to the total amount of the positive electrode active material, and the boron of the first boron compound Quantity A and number
  • the second lithium nickel composite oxide is mixed so that the ratio (A / B) of the boron compound to the boron amount B is 0.005 or more and 10 or less, and the first boron
  • the compound and the second boron compound are the same or different compounds, and the second lithium nickel composite oxide has the general formula Li a Ni 1-xy Co x M y O 2 + ⁇ (where 0 .05 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.10, 0.95 ⁇ a ⁇ 1.10, 0 ⁇ ⁇ ⁇ 0.2, M is Mn, V, M
  • the first boron compound comprises at least one of H 3 BO 3, B 2 O 3 and LiBO 2. Further, it is preferable that the second boron compound comprises one or both of the H 3 BO 3 and B 2 O 3.
  • a positive electrode mixture paste for a non-aqueous electrolyte secondary battery including a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte is provided, and the positive electrode includes the positive electrode active material.
  • the positive electrode material of a secondary battery when used for the positive electrode material of a secondary battery, it has a high battery capacity, and the positive electrode active material for nonaqueous electrolyte secondary batteries which can suppress gelatinization of positive electrode compound paste is obtained. . Furthermore, the manufacturing method is easy and suitable for production on an industrial scale, and its industrial value is extremely large.
  • Drawing 1 is a figure showing an example of a manufacturing method of a cathode active material for nonaqueous system electrolyte rechargeable batteries of an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a coin-type battery used for battery evaluation.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention a manufacturing method thereof, a positive electrode mixture paste, and a non-aqueous electrolyte secondary battery will be described. Note that the present invention is not limited to the following detailed description unless otherwise specified.
  • Positive electrode active material for non-aqueous electrolyte secondary battery is represented by the general formula (1): Li a Ni 1 ⁇ xy Co x M y O 2 + ⁇ (where 0.01 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.10, 0.95 ⁇ a ⁇ 1.10, 0 ⁇ ⁇ ⁇ 0.2, M is And at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al), and a boron compound.
  • a boron compound refers to a compound containing boron. The content of each element can be measured by ICP emission spectroscopy.
  • x indicating the content of cobalt (Co) is 0.01 ⁇ x ⁇ 0.35
  • M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al.
  • M is an additive element, and can be selected from a plurality of elements according to required characteristics.
  • M can include, for example, Al.
  • y indicating the content of M is 0 ⁇ y ⁇ 0.10, and preferably 0 ⁇ y from the viewpoint of further improving the battery capacity (charge / discharge capacity) of the secondary battery using the positive electrode active material.
  • (1-xy) indicating the content of nickel (Ni) is 0.55 ⁇ (1-xy) ⁇ 0.95, and the positive electrode active material was used. From the viewpoint of further improving the battery capacity of the secondary battery, it is preferably 0.6 ⁇ (1-xy) ⁇ 0.95, more preferably 0.65 ⁇ (1-xy) ⁇ 0. .95.
  • the range of a indicating the content of lithium (Li) is 0.95 ⁇ a ⁇ 1.10.
  • a indicating the content of lithium (Li) is 1 ⁇ a, or when the content of nickel (Ni) is high, gelation of the positive electrode mixture paste occurs more. It tends to be easy.
  • the positive electrode active material of the present embodiment contains a specific boron compound at a specific ratio, thereby suppressing the gelation of the positive electrode mixture paste and having a high battery even if the composition is prone to gelation. Can have capacity.
  • At least a part of the boron compound is present on the surface of the lithium nickel composite oxide in the form of Li 3 BO 3 and LiBO 2 .
  • the positive electrode active material according to the embodiment is used for the positive electrode of the secondary battery due to the presence of two types of lithium boron compounds represented by Li 3 BO 3 and LiBO 2 on the surface of the lithium nickel composite oxide, It has a high battery capacity and can suppress gelation of the positive electrode mixture paste.
  • the existence form of the boron compound can be confirmed by XRD diffraction.
  • Positive electrode active material of the present embodiment for example, by XRD diffraction, boron compounds is detected consisting of Li 3 BO 3 and LiBO 2.
  • the mass ratio of Li 3 BO 3 to LiBO 2 is 0.005 or more and 10 or less, preferably 0.01 or more and 5 or less.
  • the mass ratio (Li 3 BO 3 / LiBO 2 ) is less than 0.005
  • a large amount of the second boron compound is added to the first lithium-nickel composite oxide in the positive electrode active material manufacturing process described later. Therefore, lithium inside the crystal of the lithium nickel composite oxide easily reacts with boron in the second boron compound and decreases, and the battery capacity may decrease.
  • the mass ratio (Li 3 BO 3 / LiBO 2 ) exceeds 10
  • the addition amount of the first boron compound or the second boron compound is within a suitable range in the production process of the positive electrode active material described later. Therefore, the battery characteristics may be deteriorated.
  • the mass ratio (Li 3 BO 3 / LiBO 2 ) can be calculated by the ratio of Li and B determined by chemical analysis.
  • the positive electrode active material preferably has a mass ratio (Li 3 BO 3 / LiBO 2 ) of 0.05 or more and 2 or less from the viewpoint of making battery capacity and gelation suppression compatible at a higher level. More preferably, it is 0.05 or more and 1 or less.
  • the positive electrode active material of this embodiment contains 0.011 mass% or more and 0.6 mass% or less of boron with respect to the positive electrode active material whole quantity.
  • the boron contained in the positive electrode active material is less than 0.011% by mass with respect to the total amount of the positive electrode active material, it is difficult to achieve both the above-described discharge capacity improvement effect and gelation suppression effect.
  • it exceeds 0.6 mass% a large amount of Li 3 BO 3 and LiBO 2 are generated on the surface of the lithium nickel composite oxide, the resistance increases, and the battery capacity decreases, which is not preferable.
  • the positive electrode active material preferably contains 0.05% by mass or more of boron with respect to the total amount of the positive electrode active material, from the viewpoint of achieving both battery capacity and gelation suppression at a higher level, and 0.055% by mass. It is preferable to contain above, and it is more preferable to contain 0.1 mass% or more.
  • FIG. 1 is a diagram showing an example of a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present embodiment (hereinafter also referred to as “a method for producing a positive electrode active material”). is there.
  • a method for producing a positive electrode active material the manufacturing method of the positive electrode active material which concerns on this embodiment is demonstrated.
  • the manufacturing method of this embodiment mixes nickel composite hydroxide or nickel composite oxide, a lithium compound, and a 1st boron compound, and obtains a lithium mixture (step S10), and the obtained lithium mixture Is calcined at 700 ° C. or higher and 800 ° C. or lower in an oxygen atmosphere to obtain a first lithium nickel composite oxide (step S20), and the obtained first lithium nickel composite oxide and second boron Mixing a compound to obtain a second lithium nickel composite oxide (step S30). Li 3 BO 3 and LiBO 2 exist on the surface of the obtained second lithium nickel composite oxide.
  • step S10 nickel composite hydroxide or nickel composite oxide, a lithium compound, and a first boron compound are mixed to obtain a lithium mixture (step S10).
  • a boron compound capable of reacting with lithium can be used.
  • it is preferable to use at least one selected from H 3 BO 3 , B 2 O 3 and LiBO 2 it is more preferable to use at least one of H 3 BO 3 and B 2 O 3 .
  • boron compounds are highly reactive with lithium salts, and after the baking step (step S20) described later, react with lithium derived from the lithium compound used as a raw material to mainly form Li 3 BO 3 .
  • the mixing step (step S10) in addition to the lithium compound that contributes to the formation of the lithium nickel composite oxide, in the first boron compound added, in order not to reduce the amount of lithium contained in the crystal of the positive electrode active material A lithium salt containing lithium in an amount that can sufficiently generate Li 3 BO 3 may be added simultaneously.
  • the boron amount A in the first boron compound is preferably 0.001% by mass or more and 0.1% by mass or less, more preferably 0.003% by mass or more and 0% by mass with respect to the total amount of the positive electrode active material. 0.08% by mass or less, and more preferably 0.01% by mass or more and 0.08% by mass or less.
  • the battery capacity discharge capacity
  • the boron amount A is less than 0.001% by mass, the flux effect described later is insufficient, and the effect of improving the battery capacity is not exhibited.
  • the amount A of boron to be mixed exceeds 0.08% by mass, in the obtained positive electrode active material, a large amount of Li 3 BO 3 is generated, which causes resistance and decreases in capacity.
  • boron derived from the first boron compound is the first lithium-nickel composite oxide. It reacts with Li existing on the surface to produce Li 3 BO 3 .
  • Li 3 BO 3 formed on the surface of the first lithium-nickel composite oxide exhibits a flux effect on the first lithium-nickel composite oxide and promotes crystal growth. It is considered that the crystal structure of the lithium nickel composite oxide can be made more complete.
  • the positive electrode active material of this embodiment contains Li 3 BO 3 , when used as a positive electrode material of a secondary battery, an effect of improving the discharge capacity is exhibited.
  • the nickel composite hydroxide or the nickel composite oxide is not particularly limited, and a known one can be used.
  • a nickel composite oxide obtained by oxidative roasting (heat treatment) of the composite hydroxide can be used.
  • As a method for producing the nickel composite hydroxide either a batch method or a continuous method can be applied. From the viewpoint of cost and packing properties, a continuous method for continuously recovering nickel composite hydroxide particles overflowing from the reaction vessel is preferable. From the viewpoint of obtaining particles with higher uniformity, the batch method is preferable.
  • M (1 -Xy): x: y (where 0.01 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.10, M is at least selected from Mn, V, Mg, Mo, Nb, Ti and Al) 1 type of element).
  • the preferable range of the molar ratio of each element is in the positive electrode active material described above. This is the same as the range of each element in the general formula (1).
  • lithium compound for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate and the like can be used.
  • lithium hydroxide and lithium carbonate are preferable, and from the viewpoint of reactivity with the boron compound, hydroxylation is performed. Lithium is more preferred.
  • the lithium compound is mixed in such an amount that the ratio (Li / Me) of the number of atoms of lithium (Li) to the total number of atoms (Me) of metal elements other than lithium is 0.95 or more and 1.10 or less.
  • Li / Me is less than 0.95, since the reaction resistance of the positive electrode in the secondary battery using the obtained positive electrode active material increases, the battery output decreases.
  • Li / Me exceeds 1.10, while the initial discharge capacity of the obtained positive electrode active material falls, the reaction resistance of a positive electrode will also increase.
  • the mixing step (step S10) it is preferable that the first boron compound, the nickel composite hydroxide and / or the nickel composite oxide, and the lithium compound are sufficiently mixed.
  • a general mixer can be used.
  • a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, or the like can be used, and the complex acid hydrate particles are not destroyed. What is necessary is just to mix thoroughly with a lithium compound.
  • the obtained lithium mixture is fired at 700 ° C. or higher and 800 ° C. or lower in an oxygen atmosphere to obtain a first lithium nickel composite oxide (step S20).
  • the first lithium-nickel composite oxide can be produced, and at the same time, Li 3 BO 3 can be produced on the surface thereof.
  • the firing temperature is preferably 700 ° C. or higher and 800 ° C. or lower, and more preferably 720 ° C. or higher and 780 ° C. or lower.
  • the firing temperature is lower than 700 ° C., the first lithium nickel composite oxide crystal does not grow sufficiently.
  • the firing temperature exceeds 800 ° C., decomposition of the first lithium nickel composite oxide occurs and battery characteristics are deteriorated, which is not preferable.
  • the holding time at the firing temperature is, for example, about 5 hours to 20 hours, preferably about 5 hours to 10 hours.
  • the atmosphere at the time of baking is an oxygen atmosphere, For example, it is preferable to set it as the atmosphere whose oxygen concentration is 100 volume%.
  • Each condition in the mixing step (step S10) and the firing step (step S20) is within the above range so that most of the boron added as the first boron compound forms Li 3 BO 3. It can be adjusted appropriately. In addition, a part of boron may be dissolved in the first lithium-nickel composite oxide as long as the effect of the present invention is not impaired.
  • the composition of the first lithium nickel complex oxide except for boron, the formula (2): Li a Ni 1 -x-y Co x M y O 2 + ⁇ (although, 0.01 ⁇ x ⁇ 0. 35, 0 ⁇ y ⁇ 0.10, 0.95 ⁇ a ⁇ 1.10, 0 ⁇ ⁇ ⁇ 0.2, M is at least one selected from Mn, V, Mg, Mo, Nb, Ti and Al Element). Further, M in the general formula can include, for example, Al. When the first lithium-nickel composite oxide has the above composition, it can have a higher battery capacity.
  • the preferable range of the molar ratio of each element is general formula (1 in the positive electrode active material mentioned above. ) Is the same as the range of each element.
  • the first lithium nickel composite oxide and the second boron compound are mixed to obtain a second lithium nickel composite oxide (step S30).
  • the first lithium-nickel composite oxide and the second boron compound are mixed in a dry process to cause excess lithium in the first lithium-nickel composite oxide to react with the second boron compound. LiBO 2 is formed.
  • the positive electrode active material of this embodiment can be obtained more easily and with high productivity on an industrial scale.
  • the composition of the second lithium nickel composite hydroxide (positive electrode active material) and the molar ratio of each element are as described in the general formula (1).
  • a boron compound capable of reacting with lithium other than the lithium compound can be used.
  • boron oxide (B 2 O 3 ), boric acid (H 3 BO 3 ), ammonium tetraborate tetra Hydrates ((NH 4 ) 2B 4 O 7 ⁇ 4H 2 O), ammonium pentaborate octahydrate ((NH 4 ) 2 O ⁇ 5B 2 O 3 ⁇ 8H 2 O) and the like can be mentioned.
  • H 3 BO 3 and it is more preferable to use at least one of B 2 O 3, and more preferably a H 3 BO 3.
  • boron compounds are highly reactive with lithium hydroxide and can react with surplus lithium such as lithium hydroxide present on the surface of the first lithium-nickel composite oxide quickly upon addition.
  • the second boron compound may be the same as or different from the first boron compound.
  • the second boron compound is preferably a powder and preferably has an average particle size of 5 ⁇ m or more and 40 ⁇ m or less. Thereby, the distribution of boron in the obtained positive electrode active material is made uniform, and further, the reaction between excess lithium in the first lithium-nickel composite oxide and the second boron compound B is promoted, and LiBO 2 is More can be formed.
  • the boron content B in the second boron compound is 0.01% by mass or more and 0.5% by mass or less, preferably 0.03% by mass or more and 0.4% by mass with respect to the total amount of the positive electrode active material. It mixes in the quantity used as the mass% or less.
  • the boron amount B is in the above range, it is present on the surface of the first lithium nickel composite oxide and reacts with lithium hydroxide (excess lithium) that causes gelation, thereby generating LiBO 2 . Gelation can be suppressed.
  • the boron amount B of the second boron compound is less than 0.01% by mass, the addition amount is too small, and surplus lithium containing lithium hydroxide remains on the surface of the second lithium nickel composite oxide, and the gel Cannot be suppressed.
  • the boron amount B of the second boron compound exceeds 0.5% by mass, lithium inside the crystal of the lithium nickel composite oxide is extracted and reacts with the second boron compound to generate LiBO 2. In some cases, the amount of lithium in the lithium nickel composite oxide decreases and the capacity decreases.
  • the second boron compound has a ratio A / B (hereinafter also referred to as “boron mass ratio A / B”) of the boron amount A of the first boron compound and the boron amount B of the second boron compound. It mixes so that it may become 0.005 or more and 10 or less, preferably 0.01 or more and 5 or less. If boron mass ratio A / B within the above range, it is possible to obtain the second lithium nickel complex oxide having a Li 3 BO 3 and LiBO 2 in suitable proportions on the surface thereof.
  • the first boron compound forms Li 3 BO 3 to contribute to the growth of the crystal structure of the lithium nickel composite oxide
  • the second boron compound B forms LiBO 2 to form the first It is thought that it contributes to suppression of the gelation of the positive electrode mixture paste by surplus lithium such as lithium hydroxide present on the surface of the lithium nickel composite oxide.
  • the boron mass ratio A / B is less than 0.005
  • a large amount of the second boron compound B is added (mixed) to the first lithium nickel composite oxide whose crystal structure is not sufficiently grown.
  • the lithium in the crystal of the first lithium-nickel composite oxide may easily react with boron and decrease, resulting in a decrease in battery capacity.
  • the boron mass ratio A / B exceeds 10
  • the amount of the first boron compound or the second boron compound exceeds the above range, which is not preferable.
  • the first lithium nickel composite oxide and the second boron compound are sufficiently mixed so that the shape of the first lithium nickel composite oxide is not destroyed.
  • surplus lithium containing lithium hydroxide in the first lithium-nickel composite oxide reacts with the second boron compound to form LiBO 2 .
  • Li 3 BO 3 formed in the firing step (step S20) and LiBO 2 formed in the mixing step (step S30) are present on the surface of the obtained second lithium nickel composite oxide.
  • a general mixer can be used.
  • a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, or the like can be used.
  • the mixing time is not particularly limited, and the first lithium nickel composite oxide and the second boron compound may be sufficiently mixed to form LiBO 2.
  • the mixing time may be 3 minutes or more and 1 hour or less. Can be about.
  • step S30 The formation of LiBO 2 in this mixing step (step S30) can be confirmed by, for example, X-ray diffraction. Moreover, it is preferable that mixing is performed to such an extent that the powder which shows the shape of the 2nd boron compound B is not observed with the obtained positive electrode active material, when observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the obtained positive electrode active material of the present embodiment has a high battery capacity when used in a secondary battery, and can suppress gelation of the positive electrode mixture paste.
  • the positive electrode active material of this embodiment does not contain a boron compound, for example, and can have a higher initial discharge capacity than a positive electrode active material having a similar composition except for boron.
  • the positive electrode active material of the present embodiment can suppress gelation of the positive electrode mixture paste in the stability evaluation described in the examples.
  • Non-aqueous electrolyte secondary battery (hereinafter also referred to as “secondary battery”) according to the present embodiment includes a positive electrode including the positive electrode active material described above as a positive electrode material.
  • a non-aqueous electrolyte secondary battery can be comprised by the component similar to a conventionally well-known non-aqueous electrolyte secondary battery, for example, is provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the secondary battery may include, for example, a positive electrode, a negative electrode, and a solid electrolyte.
  • nonaqueous electrolyte secondary battery according to the present embodiment is based on the embodiments described in the present specification, based on the knowledge of those skilled in the art. It can be implemented in a form that has been changed or improved. Moreover, the use of the nonaqueous electrolyte secondary battery according to the present embodiment is not particularly limited.
  • a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows. First, a powdered positive electrode active material, a conductive material, and a binder are mixed, and activated carbon and a target solvent such as viscosity adjustment are added as necessary, and this is kneaded to prepare a positive electrode mixture paste. . At that time, the mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery.
  • the content of the positive electrode active material is 60 to 95 parts by mass as in the case of the positive electrode of a general non-aqueous electrolyte secondary battery, and the content of the conductive material
  • the content of the binder is preferably 1 to 20 parts by mass and the content of the binder is preferably 1 to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied to, for example, the surface of a current collector made of aluminum foil, and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
  • the sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production.
  • the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.
  • the conductive material for example, graphite (natural graphite, artificial graphite, expanded graphite and the like), and carbon black materials such as acetylene black and ketjen black can be used.
  • the binder plays a role of anchoring the active material particles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluorine rubber ethylene propylene diene rubber
  • styrene butadiene ethylene propylene diene rubber
  • cellulosic resin styrene butadiene
  • polyacrylic styrene butadiene
  • An acid can be used.
  • a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture.
  • a solvent that dissolves the binder is added to the positive electrode mixture.
  • an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
  • Activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
  • Negative electrode metallic lithium or lithium alloy, or a negative electrode active material that can occlude and desorb lithium ions is mixed with a binder, and an appropriate solvent is added into a paste to form a negative electrode mixture such as copper. It is applied to the surface of the metal foil current collector, dried, and compressed to increase the electrode density as necessary.
  • the negative electrode active material for example, a fired organic compound such as natural graphite, artificial graphite, and phenol resin, and a powdery carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the negative electrode binder as in the positive electrode
  • an organic material such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials and the binder.
  • a solvent can be used.
  • a separator is interposed between the positive electrode and the negative electrode as necessary.
  • the separator separates the positive electrode and the negative electrode and retains an electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
  • Non-aqueous electrolyte A non-aqueous electrolyte can be used as the non-aqueous electrolyte.
  • a nonaqueous electrolytic solution for example, a lithium salt as a supporting salt dissolved in an organic solvent may be used.
  • the ionic liquid refers to a salt that is composed of cations and anions other than lithium ions and that shows a liquid state even at room temperature.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate may be used alone, or two or more kinds may be mixed. Can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate
  • chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate
  • the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • a solid electrolyte may be used as the non-aqueous electrolyte.
  • the solid electrolyte has a property that can withstand a high voltage.
  • Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes.
  • an oxide solid electrolyte, a sulfide solid electrolyte, or the like is used as the inorganic solid electrolyte.
  • oxide type solid electrolyte it does not specifically limit as an oxide type solid electrolyte, If it contains oxygen (O) and has lithium ion conductivity and electronic insulation, it can be used.
  • oxide-based solid electrolyte include lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 N X , LiBO 2 N X , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , Li 4 SiO 4 -Li 3.
  • the sulfide-based solid electrolyte is not particularly limited, and any sulfur-containing solid electrolyte can be used as long as it contains sulfur (S) and has lithium ion conductivity and electronic insulation.
  • Examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2.
  • inorganic solid electrolyte those other than those described above may be used.
  • Li 3 N, LiI, Li 3 N—LiI—LiOH, or the like may be used.
  • the organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ionic conductivity, and for example, polyethylene oxide, polypropylene oxide, copolymers thereof, and the like can be used. Further, the organic solid electrolyte may contain a supporting salt (lithium salt). In addition, when using a solid electrolyte, in order to ensure the contact of electrolyte and a positive electrode active material, you may mix a solid electrolyte also in a positive electrode material.
  • the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte that have been described above, and the non-aqueous electrolyte secondary battery according to the present embodiment that includes the positive electrode, the negative electrode, and the solid electrolyte are cylindrical and laminated, Various shapes are possible.
  • the positive electrode and the negative electrode are laminated through a separator to form an electrode body, and the obtained electrode body is impregnated with the non-aqueous electrolyte solution to collect the positive electrode current collector.
  • the body and the positive electrode terminal communicating with the outside and between the negative electrode current collector and the negative electrode terminal communicating with the outside using a current collecting lead, etc., and sealed in a battery case. Complete the next battery.
  • the obtained positive electrode active material was dissolved in nitric acid, and then measured with an ICP emission spectroscopic analyzer (ICPS-8100, manufactured by Shimadzu Corporation).
  • the obtained positive electrode active material was evaluated by an X-ray diffractometer (trade name: X'Pert PRO, manufactured by Panalical).
  • FIG. 2 is a diagram schematically showing an evaluation coin type battery CBA.
  • the coin-type battery CBA includes an electrode EL and a case CA that accommodates the electrode EL therein.
  • the electrode EL is composed of a positive electrode PE, a separator SE1, and a negative electrode NE, which are stacked so as to be arranged in this order.
  • the positive electrode PE contacts the inner surface of the positive electrode can PC, and the negative electrode NE contacts the inner surface of the negative electrode can NC.
  • the coin-type battery CBA was manufactured as follows.
  • the initial discharge capacity is left for about 24 hours after the coin-type battery CBA is manufactured, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cut-off voltage 4
  • the battery was charged to 3 V, and after a pause of 1 hour, the discharge capacity when discharged to a cutoff voltage of 3.0 V was measured and used as the initial discharge capacity.
  • the positive electrode mixture paste is 20.0 g of a positive electrode active material for a non-aqueous electrolyte secondary battery, 2.35 g of carbon powder as a conductive additive, 14.7 g of KF polymer L # 7208 (solid content 8% by mass) as a binder, It was prepared by mixing 5.1 g of N-methyl-2-pyrrolidone (NMP) as a solvent with a rotating and rotating mixer.
  • NMP N-methyl-2-pyrrolidone
  • the stability of the positive electrode mixture paste was evaluated by placing it in a sealed container and storing it in a tube at room temperature for 7 days and visually observing it. Evaluations were made as ⁇ for those that did not gel, and x for those that gelled.
  • Mixing was performed using a shaker mixer apparatus (TURBULA Type T2C manufactured by Willy et Bacofen (WAB)). The obtained mixture was calcined at 750 ° C. for 8 hours in an oxygen stream (oxygen: 100% by volume), cooled, and crushed.
  • the X-ray diffraction is detected peak of lithium nickelate and Li 3 BO 3 is represented by the composition formula exists Li 3 BO 3 to the surface together with the ICP measurements Li 1.03 Ni 0.88 Co 0.09 Al 0 . It was confirmed to be a lithium nickel composite oxide represented by 03 O 2 . Furthermore, the amount of boron amount B to be 0.3 mass% was added to the positive electrode active material from which H 3 BO 3 can be obtained as the second boron compound, and mixed using a shaker mixer device. In the X-ray diffraction, peaks of lithium nickelate, Li 3 BO 3 , and LiBO 2 are detected, and Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0. It was confirmed to be a lithium nickel composite oxide represented by 03 O 2 .
  • Example 2 H 3 BO 3 as the first boron compound has a boron content A of 0.005 mass% with respect to the positive electrode active material, and H 3 BO 3 as the second boron compound has a boron content B of 0.05.
  • a positive electrode active material was obtained in the same manner as in Example 1 except that it was added so as to be in mass%.
  • peaks of lithium nickelate, Li 3 BO 3 , and LiBO 2 are detected, and Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0. It was confirmed to be a lithium nickel composite oxide represented by 03 O 2 .
  • Example 3 H 3 BO 3 as the first boron compound has a boron content A of 0.08% by mass based on the positive electrode active material, and H 3 BO 3 as the second boron compound has a boron content B of 0.5.
  • a positive electrode active material was obtained in the same manner as in Example 1 except that it was added so as to be in mass%.
  • peaks of lithium nickelate, Li 3 BO 3 , and LiBO 2 are detected, and Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0. It was confirmed to be a lithium nickel composite oxide represented by 03 O 2 .
  • Example 4 In Example 4, H 3 BO 3 as the first boron compound has a boron content A of 0.002% by mass based on the positive electrode active material, and H 3 BO 3 as the second boron compound has a boron content B of 0.2.
  • a positive electrode active material was obtained in the same manner as in Example 1 except that it was added so as to be in mass%. In the X-ray diffraction, peaks of lithium nickelate, Li 3 BO 3 , and LiBO 2 are detected, and Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0. It was confirmed to be a lithium nickel composite oxide represented by 03 O 2 .
  • Example 5 H 3 BO 3 as the first boron compound has a boron content A of 0.1 mass% with respect to the positive electrode active material, and H 3 BO 3 has a boron content B of 0.01% as the second boron compound.
  • a positive electrode active material was obtained in the same manner as in Example 1 except that it was added so as to be in mass%.
  • peaks of lithium nickelate, Li 3 BO 3 and LiBO 2 are detected, Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0 It was confirmed to be a lithium nickel composite oxide represented by 0.03 O 2 .
  • Example 6 a positive electrode active material was obtained in the same manner as in Example 1 except that B 2 O 3 was used as the first and second boron compounds. In X-ray diffraction, peaks of lithium nickelate, Li 3 BO 3 and LiBO 2 are detected, Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0 It was confirmed to be a lithium nickel composite oxide represented by 0.03 O 2 .
  • H 3 BO 3 as the first boron compound has a boron content A of 0.0005 mass% with respect to the positive electrode active material, and H 3 BO 3 has a boron content B of 0.05 as the second boron compound.
  • a positive electrode active material was obtained in the same manner as in Example 1 except that it was added so as to be in mass%.
  • lithium nickel oxide and LiBO 2 peaks are detected, and a lithium nickel composite represented by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 O 2 in which LiBO 2 exists on the surface It was confirmed to be an oxide.
  • H 3 BO 3 as the first boron compound has a boron content A of 0.005 mass% with respect to the positive electrode active material
  • H 3 BO 3 as the second boron compound has a boron content B of 0.005.
  • a positive electrode active material was obtained in the same manner as in Example 1 except that mass% was added.
  • peaks of lithium nickelate, Li 3 BO 3 , and LiBO 2 are detected, and Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0. It was confirmed to be a lithium nickel composite oxide represented by 03 O 2 .
  • H 3 BO 3 as the first boron compound has a boron content A of 0.002% by mass based on the positive electrode active material
  • H 3 BO 3 as the second boron compound has a boron content B of 0.5.
  • a positive electrode active material was obtained in the same manner as in Example 1 except that it was added so as to be in mass%.
  • peaks of lithium nickelate, Li 3 BO 3 , and LiBO 2 are detected, and Li 3 BO 3 and LiBO 2 are present on the surface, and the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0. It was confirmed to be a lithium nickel composite oxide represented by 03 O 2 .
  • Comparative Example 4 a positive electrode active material was obtained in the same manner as in Example 1 except that the first and second boron compounds were not added. The peak of lithium nickelate was detected by X-ray diffraction, and the lithium nickel composite oxide represented by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 O 2 was confirmed.
  • Comparative Example 5 In Comparative Example 5, H 3 BO 3 was added as the first boron compound so that the boron amount A was 0.03 mass% with respect to the positive electrode active material, and the second boron compound was not added. Obtained a positive electrode active material in the same manner as in Example 1. In X-ray diffraction, peaks of lithium nickelate and Li 3 BO 3 are detected, and expressed by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 O 2 in which Li 3 BO 3 is present on the surface. The lithium-nickel composite oxide was confirmed.
  • Comparative Example 6 In Comparative Example 6, except that the first boron compound was not added, and H 3 BO 3 was added as the second boron compound so that the boron amount B was 0.3% by mass with respect to the positive electrode active material, A positive electrode active material was obtained in the same manner as in Example 1. In the X-ray diffraction, lithium nickel oxide and LiBO 2 peaks are detected, and a lithium nickel composite represented by the composition formula Li 1.03 Ni 0.88 Co 0.09 Al 0.03 O 2 in which LiBO 2 exists on the surface It was confirmed to be an oxide.
  • Table 1 shows the results of producing a coin-type battery CBA using the positive electrode active materials obtained in Examples and Comparative Examples, measuring the initial discharge capacity, and the stability evaluation results of the positive electrode mixture paste.
  • Example 1 the appropriate amount of the boron compound was added, and the gelation of the positive electrode mixture paste was suppressed as compared with Comparative Example 4 in which the first and second boron compounds were not added. And the initial discharge capacity (battery capacity) also increased.
  • Comparative Example 1 the amount of the first boron compound added (boron amount A) was small, and the battery evaluation using the obtained positive electrode active material did not improve the battery capacity.
  • the positive electrode active material of Comparative Example 2 since the addition amount of the second boron compound (boron amount B) was small, gelation of the positive electrode mixture paste could not be suppressed.
  • Comparative Example 3 since the addition amount (boron amount B) of the second boron compound was small relative to the addition amount (boron amount A) of the first boron compound, the battery capacity was reduced in battery evaluation. In Comparative Example 5, since the second boron compound was not added, gelation of the positive electrode mixture paste could not be suppressed. In Comparative Example 6, since the first boron compound was not added, the capacity was not improved in battery evaluation using the obtained positive electrode active material.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention can increase the battery capacity when used as a positive electrode material for a secondary battery, and can suppress gelation of the positive electrode mixture paste. It is suitable as a positive electrode active material for lithium ion secondary batteries used as power sources for electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

二次電池の正極に用いられた場合に高い電池容量を有し、かつ、正極合材ペーストのゲル化を抑制できる非水系電解質二次電池用正極活物質の提供。 一般式:LiaNi1-x-yCoxMyO2+α(ただし、0.01≦x≦0.35、0≦y≦0.10、0.95≦a≦1.10、0≦α≦0.2、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物と、ホウ素化合物とを含む正極活物質であって、ホウ素化合物の少なくとも一部は、Li3BO3およびLiBO2の形態で、リチウムニッケル複合酸化物の表面に存在し、Li3BO3とLiBO2との質量比(Li3BO3/LiBO2)が0.005以上10以下であり、ホウ素が、正極活物質全量に対して0.011質量%以上0.6質量%以下含まれる、非水系電解質二次電池用正極活物質。

Description

非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
 本発明は、非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池に関する。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が要求されている。また、ハイブリッド自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発も要求されている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。
 このようなリチウムイオン二次電池については、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極活物質に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。これまで主に提案されている材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などを挙げることができる。
 このうちリチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高くなり、適用可能な用途はかなり限定されている。したがって、携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、正極活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。
 リチウムイオン二次電池用活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物を挙げることができる、このリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、特に電気自動車向けとして開発が盛んに行われている。しかし、特許文献1などに挙げられるリチウムニッケル複合酸化物を用いて作製した電池を搭載した電気自動車においても、ガソリン車に匹敵する航続距離を実現することは困難であり、更なる高容量化が求められていた。
 さらに、リチウムニッケル複合酸化物の欠点として、正極合材ペーストのゲル化が起こりやすいことが挙げられる。非水系電解質二次電池の正極は、例えば、正極活物質と、ポリフッ化ビニリデン(PVDF)などのバインダーや、N-メチル-2-ピロリドン(NMP)などの溶剤とを混合して正極合材ペーストにし、アルミ箔などの集電体に塗布することで形成される。このとき、正極合材ペースト中の正極活物質からリチウムが遊離した場合、バインダーなどに含まれる水分と反応し水酸化リチウムが生成することがある。この生成した水酸化リチウムとバインダーとが反応し、正極合材ペーストがゲル化を起こすと考えられる。正極合材ペーストのゲル化は、操作性の悪さ、歩留まりの悪化を招く。この傾向は、正極活物質におけるリチウムが化学量論比よりも過剰で、且つニッケルの割合が高い場合に顕著となる。
 正極合材ペーストのゲル化を抑制する試みがいくつかなされている。例えば、特許文献2には、リチウム遷移金属複合酸化物からなる正極活物質と、酸性酸化物粒子からなる添加粒子とを含む非水電解液二次電池用正極組成物が提案されている。この正極組成物は、バインダーに含まれる水分と正極活物質から遊離したリチウムとが反応して生成した水酸化リチウムが酸性酸化物と優先的に反応し、生成した水酸化リチウムとバインダーとの反応を抑制することにより、正極合材ペーストのゲル化を抑制するとしている。また、酸性酸化物は、正極内で導電剤としての役割を果たし、正極全体の抵抗を下げ、電池の出力特性向上に寄与するとしている。
 また、特許文献3には、リチウムイオン二次電池製造方法であって、正極活物質として、組成外にLiOHを含むリチウム遷移金属複合酸化物を用意すること;正極活物質1g当たりに含まれるLiOHのモル量Pを把握すること;LiOHのモル量Pに対して、LiOH1モル当たり、タングステン原子換算で0.05モル以上の酸化タングステンを用意すること;および、正極活物質と酸化タングステンとを、導電材および結着剤とともに有機溶媒で混練して正極ペーストを調製することを包含する、リチウムイオン二次電池製造方法が提案されている。
 また、特許文献4には、リチウム遷移金属複合酸化物等を用いた電極中に、無機酸としてホウ酸等を含有させ、電極ペーストのゲル化を防止する技術が開示されている。リチウム遷移金属複合酸化物の具体例として、ニッケル酸リチウムが開示されている。
特開平05-242891号公報 特開2012-28313号公報 特開2013-84395号公報 特開平10-79244号公報
 しかしながら、特許文献1に記載の正極活物質を用いた場合でも、電気自動車向けの二次電池として十分ではなく、さらなる高容量化が求められている。また、特許文献2の提案では、酸性酸化物の粒子が残留することによってセパレータの破損およびそれにともなう熱安定性の低下のおそれがある。また、正極合材ペーストのゲル化の抑制が十分であるとはいえない。さらに、酸性酸化物の添加量を増やすことでゲル化の抑制を向上させることができるが、酸性酸化物を添加することによる原料費の増加や、酸性酸化物を添加したことによる重量の増加により単位質量当たりの電池容量が劣化する。
 また、特許文献3の提案においても、酸性酸化物の残留によるセパレータの破損、さらには、ゲル化の抑制に関する問題点が解消されているとはいえない。また、充放電に寄与しない重元素であるタングステンを添加することにより、重量当たりの電池容量低下が大きい。
 また、特許文献4の提案においては、ホウ酸などを添加した溶媒中に正極活物質、導電剤、および結着剤を加えて撹拌混合しているが、この方法では正極活物質が十分に分散するまでに局所的にゲル化を生じるおそれがある。
 本発明の目的はこの問題に鑑みて、正極活物質に用いられた場合に高い電池容量を有し、かつ、正極合材ペーストのゲル化を抑制できる非水系電解質二次電池用正極活物質を提供することを目的とする。
 本発明者は上記課題を解決するため、非水系電解質二次電池用正極活物質として用いられているリチウム金属複合酸化物およびその製造方法に関して鋭意研究を重ねた結果、リチウムニッケル複合酸化物の表面に二種類のホウ素化合物を特定の含有割合で存在させることにより、電池容量が向上され、かつ、正極合材ペーストのゲル化が抑制できる正極活物質が得られるとの知見を得て、本発明を完成させた。
 本発明の第1の態様では、一般式:LiNi1-x-yCo2+α(ただし、0.01≦x≦0.35、0≦y≦0.10、0.95≦a≦1.10、0≦α≦0.2、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物と、ホウ素化合物とを含む正極活物質であって、ホウ素化合物の少なくとも一部は、LiBOおよびLiBOの形態で、リチウムニッケル複合酸化物の表面に存在し、LiBOとLiBOとの質量比(LiBO/LiBO)が0.005以上10以下であり、ホウ素が、正極活物質全量に対して0.011質量%以上0.6質量%以下含まれる、非水系電解質二次電池用正極活物質が提供される。
 本発明の第2の態様では、非水系電解質二次電池用正極活物質の製造方法であって、ニッケル複合水酸化物又はニッケル複合酸化物と、リチウム化合物と、リチウムと反応可能な第1のホウ素化合物とを、第1のホウ素化合物中のホウ素量Aが正極活物質全量に対して、0.001質量%以上0.1質量%以下となるように、混合して、リチウム混合物を得ることと、リチウム混合物を酸素雰囲気中にて700℃以上800℃以下で焼成して第1のリチウムニッケル複合酸化物を得ることと、第1のリチウムニッケル複合酸化物と、リチウムと反応可能な第2のホウ素化合物とを、第2のホウ素化合物中のホウ素量Bが正極活物質全量に対して0.01質量%以上0.5質量%以下となるように、かつ、第1のホウ素化合物のホウ素量Aと第2のホウ素化合物のホウ素量Bとの比(A/B)が0.005以上10以下となるように、混合して、第2のリチウムニッケル複合酸化物を得ることと、を備え、第1ホウ素化合物、及び、第2のホウ素化合物は、同一、または、異なる化合物であり、第2のリチウムニッケル複合酸化物は、一般式LiNi1-x-yCo2+α(ただし、0.05≦x≦0.35、0≦y≦0.10、0.95≦a≦1.10、0≦α≦0.2、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、かつ、その表面にLiBOおよびLiBOが存在する、非水系電解質二次電池用正極活物質の製造方法が提供される。
 また、第1のホウ素化合物がHBO、B及びLiBOのうちの少なくとも一つを含むことが好ましい。また、第2のホウ素化合物がHBO及びBのうちの一方又は両方を含むことが好ましい。
 本発明の第3の態様では、非水系電解質二次電池用正極活物質を含む、非水系電解質二次電池用正極合材ペーストが提供される。
 本発明の第4の態様では、正極と、負極と、セパレータと、非水系電解質とを備え、正極は、上記正極活物質を含む非水系電解質二次電池が提供される。
 本発明によれば、二次電池の正極材に用いられた場合に高い電池容量を有し、かつ、正極合材ペーストのゲル化を抑制できる非水系電解質二次電池用正極活物質が得られる。さらに、その製造方法は、容易で工業的規模での生産に適したものであり、その工業的価値は極めて大きい。
図1は、実施形態の非水系電解質二次電池用正極活物質の製造方法の一例を示した図である。 図2は、電池評価に使用したコイン型電池の概略断面図である。
 以下、本発明に係る非水系電解質二次電池用正極活物質とその製造方法、正極合材ペースト、及び、非水系電解質二次電池について説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。
1.非水系電解質二次電池用正極活物質
 本実施形態に係る非水系電解質二次電池用正極活物質(以下、「正極活物質」ともいう。)は、一般式(1):LiNi1-x-yCo2+α(ただし、0.01≦x≦0.35、0≦y≦0.10、0.95≦a≦1.10、0≦α≦0.2、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物と、ホウ素化合物とを含む。ホウ素化合物とは、ホウ素を含む化合物をいう。なお、各元素の含有量は、ICP発光分光法により測定することができる。
 上記一般式(1)中、コバルト(Co)の含有量を示すxは、0.01≦x≦0.35であり、正極活物質を用いた二次電池の電池容量(充放電容量)をより向上させるという観点から、好ましくは0.01≦x≦0.20である。また、xは、0.05≦x≦0.35であってもよく、0.05≦x≦0.20であってもよい。
 上記一般式(1)中、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素である。Mは、添加元素であり、要求される特性に応じて複数元素から選択できる。Mは、例えば、Alを含むことができる。また、Mの含有量を示すyは、0≦y≦0.10であり、正極活物質を用いた二次電池の電池容量(充放電容量)をより向上させるという観点から、好ましくは0≦y≦0.07であり、より好ましくは0≦y≦0.05である。
 上記一般式(1)中、ニッケル(Ni)の含有量を示す(1-x-y)は、0.55≦(1-x-y)≦0.95であり、正極活物質を用いた二次電池の電池容量をより向上させるという観点から、好ましくは0.6≦(1-x-y)≦0.95であり、さらに好ましくは0.65≦(1-x-y)≦0.95である。
 上記一般式(1)中、リチウム(Li)の含有量を示すaの範囲は、0.95≦a≦1.10である。例えば、上記一般式(1)中、リチウム(Li)の含有量を示すaが1<aである場合や、ニッケル(Ni)の含有量が高い場合、正極合材ペーストのゲル化がより生じやすい傾向がある。しかしながら、本実施形態の正極活物質は、特定のホウ素化合物を特定の割合で含むことにより、ゲル化の生じやすい組成であっても、正極合材ペーストのゲル化を抑制し、かつ、高い電池容量を有することができる。
 ホウ素化合物の少なくとも一部は、LiBOおよびLiBOの形態で、リチウムニッケル複合酸化物の表面に存在する。実施形態に係る正極活物質は、リチウムニッケル複合酸化物の表面に、LiBOおよびLiBOで示される2種類のリチウムホウ素化合物が存在することにより、二次電池の正極に用いた際、高い電池容量を有し、かつ、正極合材ペーストのゲル化を抑制できる。なお、ホウ素化合物の存在形態は、XRD回折により、確認することができる。本実施形態の正極活物質は、例えば、XRD回折により、LiBOおよびLiBOからなるホウ素化合物が検出される。
 正極活物質中、LiBOとLiBOの質量比(LiBO/LiBO)は、0.005以上10以下であり、好ましくは0.01以上5以下である。質量比(LiBO/LiBO)が0.005未満である場合、後述する正極活物質の製造工程において、第1のリチウムニッケル複合酸化物に、第2のホウ素化合物を多量に添加することが必要となり、リチウムニッケル複合酸化物の結晶内部のリチウムが容易に第2のホウ素化合物中のホウ素と反応して減少し、電池容量が低下することがある。一方、質量比(LiBO/LiBO)が、10を上回る場合は、後述する正極活物質の製造工程において、第1のホウ素化合物あるいは第2のホウ素化合物の添加量が好適な範囲を超えるため、電池特性が低下することがある。なお、質量比(LiBO/LiBO)は、化学分析により求めたLiとBの比により算出することができる。
 また、正極活物質は、電池容量とゲル化抑制とをより高いレベルで両立させるという観点から、質量比(LiBO/LiBO)が、0.05以上2以下であることが好ましく、0.05以上1以下であることがさらに好ましい。
 本実施形態の正極活物質は、ホウ素を、正極活物質全量に対して0.011質量%以上0.6質量%以下含有する。正極活物質に含まれるホウ素が、正極活物質全量に対して、0.011質量%を下回ると、上記の放電容量向上効果とゲル化抑制効果の両立が困難である。0.6質量%を超える場合、リチウムニッケル複合酸化物表面に多量のLiBOおよびLiBOが生成して抵抗が増大し、電池容量が低下するため好ましくない。
 また、正極活物質は、電池容量とゲル化抑制とをより高いレベルで両立させるという観点から、ホウ素を正極活物質全量に対して0.05質量%以上含むことが好ましく、0.055質量%以上含むことが好ましく、0.1質量%以上含むことがより好ましい。
2.正極活物質の製造方法
 図1は、本実施形態に係る非水系電解質二次電池用正極活物質(以下、「正極活物質の製造方法」ともいう。)の製造方法の一例を示した図である。以下、図1を参照して、本実施形態に係る正極活物質の製造方法について説明する。この正極活物質の製造方法により、上述したようなリチウムニッケル複合酸化物とホウ素化合物とを含む正極活物質を工業的規模で生産性よく得ることができる。
 本実施形態の製造方法は、ニッケル複合水酸化物又はニッケル複合酸化物と、リチウム化合物と、第1のホウ素化合物とを混合してリチウム混合物を得ること(ステップS10)と、得られたリチウム混合物を酸素雰囲気中にて700℃以上800℃以下で焼成して第1のリチウムニッケル複合酸化物を得ること(ステップS20)と、得られた第1のリチウムニッケル複合酸化物と、第2のホウ素化合物とを混合して第2のリチウムニッケル複合酸化物を得ること(ステップS30)と、を備える。得られた第2のリチウムニッケル複合酸化物の表面には、LiBOおよびLiBOが存在する。
 まず、ニッケル複合水酸化物又はニッケル複合酸化物と、リチウム化合物と、第1のホウ素化合物とを混合してリチウム混合物を得る(ステップS10)。
 第1のホウ素化合物としては、リチウムと反応可能なホウ素化合物を用いることができ、例えば、酸化ホウ素(B)、ホウ酸(HBO)、四ホウ酸アンモニウム四水和物((NH)2B・4HO)、五ホウ酸アンモニウム八水和物((NHO・5B・8HO)、LiBOなどが挙げられる。これらの中でも、HBO、B及びLiBOから選ばれる少なくとも一つを用いることが好ましく、HBO、及びBの少なくとも一つを用いることがより好ましい。これらのホウ素化合物は、リチウム塩との反応性が高く、後述する焼成工程(ステップS20)後は、原料として用いたリチウム化合物に由来するリチウムと反応して、主に、LiBOを形成すると考えられる。なお、正極活物質の結晶中に含まれるリチウム量を減少させないために、混合工程(ステップS10)において、リチウムニッケル複合酸化物の形成に寄与するリチウム化合物以外に、添加した第1のホウ素化合物中のホウ素がLiBOを十分に生成できる量のリチウムを含むリチウム塩を同時に添加してもよい。
 第1のホウ素化合物は、第1のホウ素化合物中のホウ素量Aが正極活物質全量に対して好ましくは0.001質量%以上0.1質量%以下、より好ましくは0.003質量%以上0.08質量%以下、さらに好ましくは0.01質量%以上0.08質量%以下となるように混合される。ホウ素量Aが上記範囲である場合、得られる正極活物質を二次電池に用いた際、電池容量(放電容量)を向上させることができる。ホウ素量Aが0.001質量%未満の場合、後述するフラックス効果が不十分となり、電池容量を向上させる効果は発現しない。一方、混合するホウ素量Aが0.08質量%を超える場合、得られる正極活物質において、LiBOが多量に生成し、抵抗の原因となって容量が低下するため好ましくない。
 第1のホウ素化合物のホウ素量Aを上記範囲で混合し、得られたリチウム混合物を焼成(ステップS20)した場合、第1のホウ素化合物に由来するホウ素が、第1のリチウムニッケル複合酸化物の表面に存在するLiと反応して、LiBOを生成する。焼成工程(ステップS20)において、第1のリチウムニッケル複合酸化物の表面に形成されるLiBOは、第1のリチウムニッケル複合酸化物に対してフラックス効果を発揮し、結晶成長を促進することでリチウムニッケル複合酸化物の結晶構造をより完全なものとすることができると考えられる。本実施形態の正極活物質は、LiBOを含むことにより、二次電池の正極材料として用いた際、放電容量の向上効果が発現する。
 ニッケル複合水酸化物、又は、ニッケル複合酸化物としては、特に限定されず、公知のものを用いることができ、例えば、晶析法によって得られたニッケル複合水酸化物、及び/又は、このニッケル複合水酸化物を酸化焙焼(熱処理)して得られたニッケル複合酸化物を用いることができる。ニッケル複合水酸化物の製造方法としては、バッチ法または連続法のいずれも適用可能である。コスト及び充填性の観点からは、反応容器からオーバーフローしたニッケル複合水酸化物粒子を連続的に回収する連続法が好ましい。また、より均一性の高い粒子を得るという観点からは、バッチ法が好ましい。
 また、ニッケル複合水酸化物、又は、ニッケル複合酸化物は、例えば、ニッケル(Ni)、コバルト(Co)、及び、元素Mの物質量比(モル比)が、Ni:Co:M=(1-x-y):x:y(ただし、0.01≦x≦0.35、0≦y≦0.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されてもよい。なお、ニッケル複合水酸化物、又は、ニッケル複合酸化物中の各元素のモル比は、得られる正極活物質中でも維持されるため、各元素のモル比の好ましい範囲は、上述した正極活物質における一般式(1)中の各元素の範囲と同様である。
 リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウムなどを用いることができ、これらの中でも水酸化リチウム、炭酸リチウムが好ましく、ホウ素化合物との反応性の観点から、水酸化リチウムがより好ましい。
 リチウム化合物は、リチウム以外の金属元素の原子数(Me)の合計に対するリチウム(Li)の原子数の比(Li/Me)が0.95以上1.10以下となる量で混合される。Li/Meが0.95未満である場合、得られた正極活物質を用いた二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。また、Li/Meが1.10を超える場合、得られた正極活物質の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。
 混合工程(ステップS10)において、第1のホウ素化合物と、ニッケル複合水酸化物及び/又はニッケル複合酸化物と、リチウム化合物とは、これらを十分混合することが好ましい。混合には、一般的な混合機を使用することができ、例えば、シェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いることができ、複合酸水化物粒子の形骸が破壊されない程度でリチウム化合物と十分に混合してやればよい。
 次いで、得られたリチウム混合物を、酸素雰囲気中、700℃以上800℃以下で焼成して、第1のリチウムニッケル複合酸化物を得る(ステップS20)。第1のホウ素化合物を含むリチウム混合物を焼成することで、第1のリチウムニッケル複合酸化物が生成すると同時に、その表面にLiBOを生成させることができる。
 焼成温度は700℃以上800℃以下が好ましく、720℃以上780℃以下であることがさらに好ましい。焼成温度が700℃よりも低い場合、第1のリチウムニッケル複合酸化物の結晶が十分に成長しない。焼成温度が800℃を超えると、第1のリチウムニッケル複合酸化物の分解が起こり、電池特性が低下するため好ましくない。
 焼成温度での保持時間は、例えば、5時間以上20時間以下、好ましくは5時間以上10時間以下程度である。また、焼成時の雰囲気は、酸素雰囲気であり、例えば、酸素濃度が100容量%の雰囲気とすることが好ましい。
 なお、混合工程(ステップS10)、及び、焼成工程(ステップS20)における各条件は、第1のホウ素化合物として添加したホウ素の大部分がLiBOを形成するように、上述の範囲内で適宜調整することができる。なお、本発明の効果を阻害しない範囲で、ホウ素の一部が、第1のリチウムニッケル複合酸化物内に固溶してもよい。
 なお、第1のリチウムニッケル複合酸化物の組成は、ホウ素を除いて、一般式(2):LiNi1-x-yCo2+α(ただし、0.01≦x≦0.35、0≦y≦0.10、0.95≦a≦1.10、0≦α≦0.2、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表すことができる。また、一般式中のMは、例えば、Alを含むことができる。第1のリチウムニッケル複合酸化物が上記組成を有する場合、より高い電池容量を有することができる。なお、第1のリチウムニッケル複合水酸化物の各元素のモル比は、得られる正極活物質中でも維持されるため、各元素のモル比の好ましい範囲は、上述した正極活物質における一般式(1)中の各元素の範囲と同様である。
 次いで、第1のリチウムニッケル複合酸化物と第2のホウ素化合物とを混合して、第2のリチウムニッケル複合酸化物を得る(ステップS30)。本工程では、第1のリチウムニッケル複合酸化物と第2のホウ素化合物とを乾式で混合することで、第1のリチウムニッケル複合酸化物中の余剰リチウムと第2のホウ素化合物とを反応させて、LiBOを形成させる。これにより、工業的規模でより簡便に生産性よく本実施形態の正極活物質を得ることができる。なお、第2のリチウムニッケル複合水酸化物(正極活物質)の組成及び各元素のモル比は、上述した一般式(1)の通りである。
 第2のホウ素化合物としては、リチウム化合物以外のリチウムと反応可能なホウ素化合物を用いることができ、例えば、酸化ホウ素(B)、ホウ酸(HBO)、四ホウ酸アンモニウム四水和物((NH)2B・4HO)、五ホウ酸アンモニウム八水和物((NHO・5B・8HO)などが挙げられる。これらの中でも、HBO、及びBの少なくとも一方を用いることがより好ましく、HBOであることがさらに好ましい。これらのホウ素化合物は、水酸化リチウムとの反応性が高く、添加時に速やかに、第1のリチウムニッケル複合酸化物の表面に存在する水酸化リチウムなどの余剰リチウムと反応できる。なお、第2のホウ素化合物は、第1のホウ素化合物と同一であってもよく、又は、異なっていてもよい。
 第2のホウ素化合物は、粉末であることが好ましく、平均粒径が5μm以上40μm以下であることが好ましい。これにより、得られる正極活物質内でのホウ素の分布を均一化し、さらに、第1のリチウムニッケル複合酸化物中の余剰リチウムと第2のホウ素化合物Bとの反応を促進して、LiBOをより多く形成させることができる。
 第2のホウ素化合物は、第2のホウ素化合物中のホウ素量Bが、正極活物質全量に対して0.01質量%以上0.5質量%以下、好ましくは0.03質量%以上0.4質量%以下となる量で混合される。ホウ素量Bが上記範囲である場合、第1のリチウムニッケル複合酸化物表面に存在し、ゲル化の原因となる水酸化リチウム(余剰リチウム)と反応し、LiBOを生成することにより、ペーストのゲル化を抑制できる。
 第2のホウ素化合物のホウ素量Bが0.01質量%未満である場合、添加量が小さすぎて、第2のリチウムニッケル複合酸化物の表面に水酸化リチウを含む余剰リチウムが残留し、ゲル化を抑制できない。第2のホウ素化合物のホウ素量Bが0.5質量%を超える場合、リチウムニッケル複合酸化物の結晶内部のリチウムが引き抜かれて、第2のホウ素化合物と反応して、LiBOを生成するため、リチウムニッケル複合酸化物内のリチウム量が減少して容量が低下することがある。
 また、第2のホウ素化合物は、第1のホウ素化合物のホウ素量Aと第2のホウ素化合物のホウ素量Bとの比A/B(以下、「ホウ素質量比A/B」ともいう。)が0.005以上10以下、好ましくは0.01以上5以下となるように、混合する。ホウ素質量比A/Bが上記範囲である場合、その表面に適切な割合でLiBOおよびLiBOを有する第2のリチウムニッケル複合酸化物を得ることができる。上記のように第1のホウ素化合物は、LiBOを形成して、リチウムニッケル複合酸化物の結晶構造の成長に寄与し、第2のホウ素化合物Bは、LiBOを形成して、第1のリチウムニッケル複合酸化物表面に存在する水酸化リチウムなどの余剰リチウムによる正極合材ペーストのゲル化の抑制に寄与すると考えられる。
 ホウ素質量比A/Bが0.005未満である場合、結晶構造が十分に成長していない第1のリチウムニッケル複合酸化物に、多量の第2のホウ素化合物Bを添加(混合)することとなり、第1のリチウムニッケル複合酸化物の結晶内部のリチウムが容易にホウ素と反応して減少し、電池容量が低下することがある。一方、ホウ素質量比A/Bが10を超える場合、第1のホウ素化合物あるいは第2のホウ素化合物の添加量が上記範囲を超えるため、好ましくない。
 混合工程(ステップS30)では、第1のリチウムニッケル複合酸化物と第2のホウ素化合物とを、第1のリチウムニッケル複合酸化物の形骸が破壊されない程度に十分混合する。混合中に第1のリチウムニッケル複合酸化物中の水酸化リチウムを含む余剰リチウムと第2のホウ素化合物とが反応し、LiBOが形成される。その結果、得られる第2のリチウムニッケル複合酸化物の表面に、焼成工程(ステップS20)で形成されたLiBOと、混合工程(ステップS30)で形成されたLiBOとが存在する。
 混合には、一般的な混合機を使用することができ、例えばシェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いることができる。また、混合時間は、特に限定されず、第1のリチウムニッケル複合酸化物と、第2のホウ素化合物が十分に混合され、LiBOが形成されればよいが、例えば、3分以上1時間以下程度とすることができる。
 なお、この混合工程(ステップS30)におけるLiBOの形成は、例えば、X線回折により確認することができる。また、混合は、得られた正極活物質では、走査型電子顕微鏡(SEM)を用いて観察した場合、第2のホウ素化合物Bの形状を示す粉末が観察されない程度に混合することが好ましい。
 得られた本実施形態の正極活物質は、二次電池に用いられた場合に高い電池容量を有し、かつ、正極合材ペーストのゲル化を抑制できる。本実施形態の正極活物質は、例えば、ホウ素化合物を含有せず、ホウ素以外は同様の組成を有する正極活物質と比較して、より高い初期放電容量を有することができる。本実施形態の正極活物質は、例えば、実施例に記載する安定性評価において、正極合材ペーストのゲル化を抑制できる。
3.非水系電解質二次電池
 本実施形態に係る非水系電解質二次電池(以下、「二次電池」ともいう。)は、上述した正極活物質を正極材料含む正極を備える。非水系電解質二次電池は、従来公知の非水系電解質二次電池と同様の構成要素により構成されることができ、例えば、正極、負極、及び非水系電解液を備える。また、二次電池は、例えば、正極、負極、及び固体電解液を備えてもよい。
 なお、以下で説明する実施形態は例示に過ぎず、本実施形態に係る非水系電解質二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本実施形態に係る非水系電解質二次電池は、その用途を特に限定するものではない。
(正極)
 前述のように得られた非水系電解質二次電池用正極活物質を用いて、例えば、以下のようにして、非水系電解質二次電池の正極を作製する。
 まず、粉末状の正極活物質、導電材および結着剤を混合し、さらに必要に応じて活性炭や、粘度調整などの目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。その際、正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60~95質量部とし、導電材の含有量を1~20質量部とし、結着剤の含有量を1~20質量部とすることが望ましい。
 得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレスなどにより加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などをして、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法によってもよい。
 正極の作製に当たって、導電材としては、例えば、黒鉛(天然黒鉛、人造黒鉛および膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂およびポリアクリル酸を用いることができる。
 必要に応じ、正極活物質、導電材および活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的には、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。
(負極)
 負極には、金属リチウムやリチウム合金など、あるいは、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛およびフェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDFなどの含フッ素樹脂を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
(セパレータ)
 正極と負極との間には、必要に応じてセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレンやポリプロピレンなどの薄い膜で、微少な孔を多数有する膜を用いることができる。
 (非水系電解質)
 非水系電解質としては、非水電解液を用いることができる。非水系電解液は、例えば、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いてもよい。また、非水系電解液として、イオン液体にリチウム塩が溶解したものを用いてもよい。なお、イオン液体とは、リチウムイオン以外のカチオンおよびアニオンから構成され、常温でも液体状を示す塩をいう。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフランおよびジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で用いてもよく、2種以上を混合して用いることができる。
 支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO、およびそれらの複合塩などを用いることができる。さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。
 また、非水系電解質としては、固体電解質を用いてもよい。固体電解質は、高電圧に耐えうる性質を有する。固体電解質としては、無機固体電解質、有機固体電解質が挙げられる。
 無機固体電解質として、酸化物系固体電解質、硫化物系固体電解質等が用いられる。
 酸化物系固体電解質としては、特に限定されず、酸素(O)を含有し、かつ、リチウムイオン電導性と電子絶縁性とを有するものであれば用いることができる。酸化物系固体電解質としては、例えば、リン酸リチウム(LiPO)、LiPO、LiBO、LiNbO、LiTaO、LiSiO、LiSiO-LiPO、LiSiO-LiVO、LiO-B-P、LiO-SiO、LiO-B-ZnO、Li1+XAlTi2-X(PO(0≦X≦1)、Li1+XAlGe2-X(PO(0≦X≦1)、LiTi(PO、Li3XLa2/3-XTiO(0≦X≦2/3)、LiLaTa12、LiLaZr12、LiBaLaTa12、Li3.6Si0.60.4等が挙げられる。
 硫化物系固体電解質としては、特に限定されず、硫黄(S)を含有し、かつ、リチウムイオン電導性と電子絶縁性とを有するものであれば用いることができる。硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B、LiPO-LiS-SiS、LiPO-LiS-SiS、LiPO-LiS-SiS、LiI-LiS-P、LiI-LiPO-P等が挙げられる。
 なお、無機固体電解質としては、上記以外のものを用いてよく、例えば、LiN、LiI、LiN-LiI-LiOH等を用いてもよい。
 有機固体電解質としては、イオン電導性を示す高分子化合物であれば、特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、これらの共重合体などを用いることができる。また、有機固体電解質は、支持塩(リチウム塩)を含んでいてもよい。なお、固体電解質を用いる場合は、電解質と正極活物質の接触を確保するため、正極材中にも固体電解質を混合させてもよい。
(電池の形状、構成)
 以上のように説明してきた正極、負極、セパレータ、及び非水系電解質や、正極、負極、及び固体電解質で構成される本実施形態に係る非水系電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。
 非水系電解質として非水系電解液を用いる場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
 以下、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、実施例及び比較例は、以下の装置及び方法を用いた測定結果により評価した。
 [粒子全体組成]
得られた正極活物質を硝酸で溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)で測定した。
 [化合物種同定]
 得られた正極活物質をX線回折装置(商品名X‘Pert PRO、パナリティカル製)により評価した。
 [電池特性の評価]
 評価用コイン電池型の作成
 図2は、評価用のコイン型電池CBAを模式的に示す図である。コイン型電池CBAは、図6に示すように、電極ELと、この電極ELを内部に収納するケースCAと、から構成されている。電極ELは、正極PE、セパレータSE1及び負極NEとからなり、この順で並ぶように積層されており、正極PEが正極缶PCの内面に接触し、負極NEが負極缶NCの内面に接触するようにケースCAに収容されている。コイン型電池CBAは、以下のようにして製作した。
 得られた正極活物質70質量%に、アセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し、正極PEとした。負極NEとしてリチウム金属を用い、電解液として、1MのLiClOを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用い、露点が-80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン型電池CBAを作製した。製造したコイン型電池CBAの性能を評価した。
 初期放電容量は、コイン型電池CBAを製作してから24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.1mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの放電容量を測定し、初期放電容量とした。
[正極合材ペースト安定性の評価方法]
 正極合材ペーストは、非水系電解質二次電池用正極活物質20.0g、導電助材としてカーボン粉末2.35g、結着剤としてKFポリマーL#7208(固形分8質量%)14.7g、溶媒としてN-メチル-2-ピロリドン(NMP)5.1gを自転公転ミキサーにより混合して作製した。正極合材ペースト安定性は、密閉容器に入れて室温で7日管保管し目視観察して評価した。ゲル化しなかったものを○、ゲル化したものを×として評価した。
(実施例1)
 平均粒径13μmのニッケル複合水酸化物(組成式Ni0.88Co0.09Al0.03(OH))に、第1のホウ素化合物としてHBO(和光純薬製)を得られる正極活物質に対してホウ素量Aが0.03質量%となる量添加し、Li/(Ni+Co+Al)=1.03となるように水酸化リチウムを混合して混合物を形成した。混合は、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて行った。得られたこの混合物を酸素気流中(酸素:100容量%)にて750℃で8時間焼成し、冷却した後に解砕した。X線回折ではニッケル酸リチウムとLiBOのピークが検出され、ICP測定結果と合わせて表面にLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。さらに、第2のホウ素化合物としてHBOを得られる正極活物質に対してホウ素量Bが0.3質量%となる量添加し、シェーカーミキサー装置を用いて混合した。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(実施例2)
 実施例2では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.005質量%、第2のホウ素化合物としてHBOをホウ素量Bが0.05質量%となるように加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(実施例3)
 実施例3では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.08質量%、第2のホウ素化合物としてHBOをホウ素量Bが0.5質量%となるように加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(実施例4)
 実施例4では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.002質量%、第2のホウ素化合物としてHBOをホウ素量Bが0.2質量%となるように加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(実施例5)
 実施例5では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.1質量%、第2のホウ素化合物としてHBOをホウ素量Bが0.01質量%となるように加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在し、組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(実施例6)
 実施例6では、第1および第2のホウ素化合物としてBを用いた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在し、組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(比較例1)
 比較例1では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.0005質量%、第2のホウ素化合物としてHBOをホウ素量Bが0.05質量%となるように加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBOのピークが検出され、表面にLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(比較例2)
 比較例2では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.005質量%、第2のホウ素化合物としてHBOをホウ素量Bが0.005質量%加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(比較例3)
 比較例3では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.002質量%、第2のホウ素化合物としてHBOをホウ素量Bが0.5質量%となるように加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBO、LiBOのピークが検出され、表面にLiBOおよびLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(比較例4)
 比較例4では、第1及び第2のホウ素化合物を添加しないこと以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウムのピークが検出され、組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(比較例5)
 比較例5では、第1のホウ素化合物としてHBOをホウ素量Aが正極活物質に対して0.03質量%となるように添加し、第2のホウ素化合物を添加しなかったこと以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBOのピークが検出され、表面にLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
(比較例6)
 比較例6では、第1のホウ素化合物を添加せず、第2のホウ素化合物としてHBOをホウ素量Bが正極活物質に対して0.3質量%となるように加えた以外は、実施例1と同様にして正極活物質を得た。X線回折ではニッケル酸リチウム、LiBOのピークが検出され、表面にLiBOが存在する組成式Li1.03Ni0.88Co0.09Al0.03で表されるリチウムニッケル複合酸化物であることが確認された。
Figure JPOXMLDOC01-appb-T000001
 実施例、比較例で得られた正極活物質を用いてコイン型電池CBAを作製し、初期放電容量を測定した結果、および正極合材ペーストの安定性評価結果を表1に示す。
 実施例1~6では、適切な量のホウ素化合物が添加されており、第1及び第2のホウ素化合物を添加しなかった比較例4と比較して、正極合材ペーストのゲル化が抑制され、かつ、初期放電容量(電池容量)も増加した。一方、比較例1では、第1のホウ素化合物の添加量(ホウ素量A)が少なく、得られた正極活物質を用いた電池評価では電池容量が向上しなかった。比較例2の正極活物質では、第2のホウ素化合物の添加量(ホウ素量B)が少なかったため、正極合材ペーストのゲル化を抑制できなかった。比較例3では、第1のホウ素化合物の添加量(ホウ素量A)に対して第2のホウ素化合物の添加量(ホウ素量B)が少なかったため、電池評価では電池容量の低下が見られた。比較例5では第2のホウ素化合物を添加しなかったため、正極合材ペーストのゲル化を抑制できなかった。比較例6では第1のホウ素化合物を添加しなかったため、得られた正極活物質を用いた電池評価では容量が向上しなかった。
 本発明の非水系電解質二次電池用正極活物質は、二次電池の正極材に用いられた場合に電池の容量が増加し、かつ、正極合材ペーストのゲル化が抑制でき、特にハイブリッド自動車や電気自動車用電源として使用されるリチウムイオン二次電池の正極活物質として好適である。
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、日本特許出願である特願2017-108035、及び、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。
CBA……コイン型電池
CA……ケース
PC……正極缶
NC……負極缶
GA……ガスケット
EL……電極
PE……正極
NE……負極
SE……セパレータ

 

Claims (6)

  1.  一般式:LiNi1-x-yCo2+α(ただし、0.01≦x≦0.35、0≦y≦0.10、0.95≦a≦1.10、0≦α≦0.2、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物と、ホウ素化合物とを含む正極活物質であって、
     前記ホウ素化合物の少なくとも一部は、LiBOおよびLiBOの形態で、前記リチウムニッケル複合酸化物の表面に存在し、LiBOとLiBOとの質量比(LiBO/LiBO)が0.005以上10以下であり、
     ホウ素が、正極活物質全量に対して0.011質量%以上0.6質量%以下含まれる、非水系電解質二次電池用正極活物質。
  2.  非水系電解質二次電池用正極活物質の製造方法であって、
     ニッケル複合水酸化物又はニッケル複合酸化物と、リチウム化合物と、リチウムと反応可能な第1のホウ素化合物とを、前記第1のホウ素化合物中のホウ素量Aが正極活物質全量に対して、0.001質量%以上0.1質量%以下となるように、混合して、リチウム混合物を得ることと、
     リチウム混合物を酸素雰囲気中にて700℃以上800℃以下で焼成して第1のリチウムニッケル複合酸化物を得ることと、
     第1のリチウムニッケル複合酸化物と、リチウムと反応可能な第2のホウ素化合物とを、第2のホウ素化合物中のホウ素量Bが正極活物質全量に対して0.01質量%以上0.5質量%以下となるように、かつ、前記第1のホウ素化合物のホウ素量Aと前記第2のホウ素化合物のホウ素量Bとの比(A/B)が0.005以上10以下となるように、混合して、第2のリチウムニッケル複合酸化物を得ることと、を備え、
     前記第1ホウ素化合物、及び、前記第2のホウ素化合物は、同一、または、異なる化合物であり、
     前記第2のリチウムニッケル複合酸化物は、一般式LiNi1-x-yCo2+α(ただし、0.01≦x≦0.35、0≦y≦0.10、0.95≦a≦1.10、0≦α≦0.2、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、かつ、その表面にLiBOおよびLiBOが存在する、
     非水系電解質二次電池用正極活物質の製造方法。
  3.  前記第1のホウ素化合物がHBO、B及びLiBOのうちの少なくとも一つを含む、請求項2に記載の非水系電解質二次電池用正極活物質の製造方法。
  4.  前記第2のホウ素化合物がHBO及びBのうちの一方又は両方を含む、請求項2又は請求項3に記載の非水系電解質二次電池用正極活物質の製造方法。
  5.  請求項1に記載の非水系電解質二次電池用正極活物質を含む、非水系電解質二次電池用正極合材ペースト。
  6.  正極と、負極と、セパレータと、非水系電解質とを備え、前記正極は、請求項1に記載の正極活物質を含む非水系電解質二次電池。

     
PCT/JP2018/020988 2017-05-31 2018-05-31 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池 WO2018221664A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019521303A JP7060776B2 (ja) 2017-05-31 2018-05-31 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
US16/617,768 US20200251732A1 (en) 2017-05-31 2018-05-31 Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN201880034765.3A CN110679018B (zh) 2017-05-31 2018-05-31 正极活性物质和其制造方法、正极复合材料糊剂和非水系电解质二次电池
KR1020197035016A KR102657433B1 (ko) 2017-05-31 2018-05-31 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 합재 페이스트 및 비수계 전해질 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108035 2017-05-31
JP2017-108035 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221664A1 true WO2018221664A1 (ja) 2018-12-06

Family

ID=64455834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020988 WO2018221664A1 (ja) 2017-05-31 2018-05-31 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池

Country Status (5)

Country Link
US (1) US20200251732A1 (ja)
JP (1) JP7060776B2 (ja)
KR (1) KR102657433B1 (ja)
CN (1) CN110679018B (ja)
WO (1) WO2018221664A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136114A (ja) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 リチウム二次電池の正極材料
WO2020240786A1 (ja) * 2019-05-30 2020-12-03 昭和電工マテリアルズ株式会社 電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法
WO2021106448A1 (ja) * 2019-11-29 2021-06-03 日亜化学工業株式会社 非水電解質二次電池用正極活物質及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200041882A (ko) 2017-08-25 2020-04-22 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지와 그의 제조 방법
JP7442061B2 (ja) * 2018-10-30 2024-03-04 パナソニックIpマネジメント株式会社 二次電池
KR20210154748A (ko) * 2020-06-12 2021-12-21 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
CN116325238A (zh) * 2021-08-13 2023-06-23 株式会社Lg 化学 锂二次电池用正极活性材料及其制备方法
WO2024063373A1 (ko) * 2022-09-19 2024-03-28 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
CN118039819A (zh) * 2022-11-08 2024-05-14 株式会社村田制作所 正极复合材料、其制备方法、正极以及锂离子二次电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115515A (ja) * 1995-10-13 1997-05-02 Sanyo Electric Co Ltd リチウム二次電池
JP2009146739A (ja) * 2007-12-14 2009-07-02 Sony Corp 正極活物質の製造方法
JP2014513392A (ja) * 2011-04-06 2014-05-29 ユミコア 充電池用のガラスコーティングされたカソード粉末

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244314B2 (ja) 1991-11-13 2002-01-07 三洋電機株式会社 非水系電池
JPH1079244A (ja) 1996-09-04 1998-03-24 Toray Ind Inc 電極およびそれを用いた非水電解液系二次電池
JP4710916B2 (ja) * 2008-02-13 2011-06-29 ソニー株式会社 非水電解質二次電池用正極活物質、これを用いた非水電解質二次電池用正極および非水電解質二次電池
JP5382061B2 (ja) 2010-06-22 2014-01-08 日亜化学工業株式会社 非水電解液二次電池用正極組成物及び該正極組成物を用いた正極スラリー
US9325001B2 (en) * 2011-02-02 2016-04-26 Toyota Jidosha Kabushiki Kaisha Composite active material, method for producing composite active material, and battery
JP2013084395A (ja) 2011-10-06 2013-05-09 Toyota Motor Corp リチウムイオン二次電池の製造方法
US20160301079A1 (en) * 2013-11-29 2016-10-13 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery
KR101747140B1 (ko) * 2014-08-29 2017-06-14 주식회사 엘 앤 에프 리튬 이차 전지용 니켈계 복합 산화물, 및 이를 포함하는 리튬 이차 전지
US11302919B2 (en) * 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
KR102295366B1 (ko) * 2016-07-20 2021-08-31 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US20220069301A1 (en) * 2016-07-20 2022-03-03 Samsung Sdi Co., Ltd. Positive active material for an all-solid-state battery, method of preparing the same, and all-solid-state battery
JP7209169B2 (ja) * 2017-04-27 2023-01-20 パナソニックIpマネジメント株式会社 固体電解質材料、電極材料、正極、及び電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115515A (ja) * 1995-10-13 1997-05-02 Sanyo Electric Co Ltd リチウム二次電池
JP2009146739A (ja) * 2007-12-14 2009-07-02 Sony Corp 正極活物質の製造方法
JP2014513392A (ja) * 2011-04-06 2014-05-29 ユミコア 充電池用のガラスコーティングされたカソード粉末

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136114A (ja) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 リチウム二次電池の正極材料
JP7074697B2 (ja) 2019-02-21 2022-05-24 トヨタ自動車株式会社 リチウム二次電池の正極材料
WO2020240786A1 (ja) * 2019-05-30 2020-12-03 昭和電工マテリアルズ株式会社 電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法
WO2021106448A1 (ja) * 2019-11-29 2021-06-03 日亜化学工業株式会社 非水電解質二次電池用正極活物質及びその製造方法
US11515533B2 (en) 2019-11-29 2022-11-29 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof

Also Published As

Publication number Publication date
CN110679018B (zh) 2023-05-23
JPWO2018221664A1 (ja) 2020-04-02
US20200251732A1 (en) 2020-08-06
KR20200014299A (ko) 2020-02-10
KR102657433B1 (ko) 2024-04-16
JP7060776B2 (ja) 2022-04-27
CN110679018A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
US11024836B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same, positive electrode mixed material paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7060776B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JP7215004B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極合剤ペースト、及び、リチウムイオン二次電池
JP7215423B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、及び、非水系電解質二次電池とその製造方法
CN108352526B (zh) 非水系电解质二次电池用正极活性物质和其制造方法、非水系电解质二次电池用正极复合材料糊剂和非水系电解质二次电池
JP7273268B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
WO2019163846A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP7310155B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極合剤ペーストおよびリチウムイオン二次電池
WO2019163845A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP7159639B2 (ja) 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
JP7262419B2 (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
JP2022095988A (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
JP7167540B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
WO2017034000A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP7439748B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP2023080310A (ja) リチウムイオン二次電池用の正極活物質、及び、リチウムイオン二次電池
JP2019040844A (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP7238881B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2020123493A (ja) リチウムイオン二次電池用正極活物質およびその製造方法と、リチウムイオン二次電池
JP7308586B2 (ja) 非水系電解質二次電池用正極活物質
JP2020004587A (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP2019192512A (ja) 非水系電解質二次電池用正極活物質とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197035016

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019521303

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810096

Country of ref document: EP

Kind code of ref document: A1