WO2018221594A1 - 接合材、接合体および接合方法 - Google Patents

接合材、接合体および接合方法 Download PDF

Info

Publication number
WO2018221594A1
WO2018221594A1 PCT/JP2018/020776 JP2018020776W WO2018221594A1 WO 2018221594 A1 WO2018221594 A1 WO 2018221594A1 JP 2018020776 W JP2018020776 W JP 2018020776W WO 2018221594 A1 WO2018221594 A1 WO 2018221594A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
bonding material
temporary
joining
metal particles
Prior art date
Application number
PCT/JP2018/020776
Other languages
English (en)
French (fr)
Inventor
圭一 遠藤
達朗 堀
哲 栗田
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Publication of WO2018221594A1 publication Critical patent/WO2018221594A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention relates to a bonding material, a bonded body, and a bonding method.
  • one specific example is as follows. First, after applying a bonding material to a substrate to be bonded, preliminary drying is performed to form a preliminary drying film. Thereafter, an electronic component is placed on the pre-dried film as another object to be bonded, heated at a temperature lower than the main bonding, and pressurized at a pressure lower than the main bonding to bond the objects to be bonded (that is, the substrate and the electronic component). Temporary joining is performed (see Patent Document 1 for provisional joining). Thereafter, sufficient heating and pressurization are performed by a press machine, and the substrate and the electronic component are finally joined.
  • each process is performed and the process immediately proceeds to the next process.
  • the preliminary drying film It is conceivable to produce a large amount at a time by batch processing, and to move to the next step.In this case, a certain time is required between the preliminary drying film formation and the temporary bonding. Become.
  • the implementation body responsible for the formation of the preliminary drying film is different from the implementation body responsible for the subsequent temporary joining and the main joining. In this case as well, a certain amount of time (in some cases, several days) is required to transport the product (substrate, laminate of the pre-dried film) from the pre-dried film to the temporary and main bonded bodies. Become.
  • the bonding strength when a chip is temporarily bonded to a pre-dried film is the bonding strength when the chip is temporarily bonded without an interval, as the pre-dried film has a gap from pre-drying to temporary bonding. It became clear that it decreased greatly compared with.
  • the bonding strength is not significantly reduced as compared with the case where the bonding is temporarily performed without the interval.
  • the purpose is to provide materials and related technologies.
  • Metal particles A heterocyclic compound having N as a ring-constituting atom; It is a joining material containing.
  • the metal particles are silver particles.
  • the heterocyclic compound is an azole compound.
  • the average primary particle diameter of the metal particles is 5 nm to 10 ⁇ m.
  • the metal particles are coated with an organic compound having 8 or less carbon atoms.
  • the sixth invention is a joined body in which the substrate and the semiconductor element are joined by the joining material according to any one of the first to fifth inventions.
  • the bonding material according to any one of the first to fifth inventions is applied onto a substrate, and the formed coating film is dried at 60 to 160 ° C. to obtain a pre-dried film.
  • a semiconductor element is disposed on the film and temporarily bonded by heat treatment at 60 to 150 ° C. while applying pressure of 3 MPa or less to form a temporary bonded body including the substrate, the pre-dried film, and the semiconductor element.
  • the bonded body is subjected to heat treatment at 170 ° C. or higher while applying pressure exceeding 3 MPa to the temporary bonded body after 30 seconds or more have passed from the formation at a temperature lower than the temperature of the heat treatment in the temporary bonding. This is a joining method.
  • the preliminary drying film is allowed to stand for two days or more at a temperature lower than the temperature in the drying, and then the temporary bonding is performed.
  • the joint strength is significantly reduced as compared with the case of the temporary joining without the interval.
  • a bonding material hereinafter referred to as “maintenance of temporary bonding strength”
  • refers to a value that is greater than or equal to a predetermined value and less than or equal to a predetermined value.
  • Metal particles there are no particular limitations on the metal particles used in the bonding material of the present invention, and silver, gold, copper, or the like may be used as the type of metal. Silver particles are preferred as the metal particles from the viewpoint of bonding strength, oxidation resistance and cost.
  • the particle size (average primary particle size) of the metal particles is not particularly limited, but is usually 5 nm to 10 ⁇ m, and preferably a nano size of 500 nm or less from the viewpoint of bonding strength.
  • the average primary particle size of the metal particles is more preferably 350 nm or less, further preferably 200 nm or less, and most preferably 120 nm or less.
  • the average primary particle size of the metal particles is usually 5 nm or more.
  • the metal particles may have a so-called sub-micron level or micron level in which the average primary particle diameter exceeds 500 nm in addition to the nano-sized particles.
  • the average primary particle diameter of the metal particle in this specification means the average value of the primary particle diameter calculated
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the average primary particle diameter of the metal particles is calculated, for example, by calculating the average value of the diameter of the circumscribed circle of each metal particle using image analysis software (A image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.). Can be performed.
  • image analysis software A image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.
  • the metal particles preferably used in the present invention are fine particles having an average primary particle diameter of 500 nm or less and are easy to aggregate, so that they are preferably coated with an organic compound.
  • the coating said here means that the organic compound exists in the surface of a metal particle. And as this organic compound, you may use the well-known thing which can coat
  • organic compounds include fatty acids having 3 to 8 carbon atoms such as hexanoic acid and sorbic acid, and amines having 3 to 8 carbon atoms such as octylamine and hexylamine.
  • fatty acids having 6 to 24 carbon atoms for example, oleic acid or stearic acid
  • amines are used to improve the filling properties in the bonding material. It is preferably coated with (for example, hexylamine, octylamine or oleylamine).
  • the content of the metal particles described above in the bonding material of the present invention is preferably 4 to 97% by mass, and more preferably 50 to 90% by mass from the viewpoint of developing an appropriate bonding force.
  • heterocyclic compound having N as a ring constituent atom in addition to the above metal particles, a heterocyclic compound having N (nitrogen) as a ring constituent atom is also contained.
  • the remaining organic matter (metal) in the preliminary dried film during this interval is a cause of the decrease in bonding strength compared to the case without the interval.
  • the organic compound that coats the particles) is volatilized, and the pre-dried film is cured, so that the semiconductor element may not be bonded with sufficient bonding strength under the temporary bonding conditions (hereinafter referred to as such a change in the pre-dried film).
  • the heterocyclic compound can appropriately compensate for volatilization of the remaining organic matter and can prevent deterioration of the pre-dried film over a long interval. Thereby, it is thought that the maintenance characteristic of the temporary joining strength which was excellent in the joining material of the present invention is exhibited.
  • the heterocyclic compound is not particularly limited as long as it has N as a ring-constituting atom, and may have another atom (for example, C (carbon) or S (sulfur)) in addition to N. In view of maintaining the temporary bonding strength, an azole compound is preferable.
  • azole compound 1,2,3-benzotriazole (BTA) and 2-undecylimidazole (C11Z: product names of Shikoku Kasei Kogyo Co., Ltd.) used in the items of Examples described later.
  • BTA 1,2,3-benzotriazole
  • C11Z product names of Shikoku Kasei Kogyo Co., Ltd.
  • the bonding material of the present invention usually contains a solvent in order to make it easy to print.
  • a solvent there is no particular limitation on the solvent used in the present invention, and it is only necessary to finally obtain a bonding material (metal paste) that can form a bonding layer by sintering metal particles and has a viscosity that allows easy printing.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the content of the solvent in the bonding material is preferably 1 to 95% by mass, and more preferably 5 to 49% by mass.
  • a polar solvent or a nonpolar solvent can be used, but a polar solvent is preferable from the viewpoint of compatibility with other components in the bonding material and environmental load.
  • Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, methoxybutyl acetate, methoxypropyl acetate, diethylene glycol monoethyl ether acetate, ethyl lactate, 1-octanol and the like can be used.
  • Examples of such polar solvents include 1-decanol, 1-dodecanol, 1-tetradecanol, 3-methyl-1,3-butanediol 3-hydroxy-3-methylbutyl acetate, 2-ethyl-1,3-hexane Diol, hexyl diglycol, 2-ethylhexyl glycol, dibutyl diglycol, glycerin, dihydroxyterpiol, dihydroterpinyl acetate, 2-methyl-butane-2,3,4-triol (isoprenetriol A (IPTL-A, Nippon Terpene Chemical Co., Ltd.), 2-methyl-butane-1,3,4-triol (Isoprene Triol B (IPTL-B, Nippon Terpene Chemical Co., Ltd.)), Tersolve IPG-2Ac (Nihon Terpene Chemical Co., Ltd.) , Telsolve MTPH (manufactured by Nippon Terpene Chemical Co
  • Tersolve DTO-210 (manufactured by Nippon Terpene Chemical Co., Ltd.), Tersolve THA-90 (manufactured by Nippon Terpene Chemical Co., Ltd.) ), Dihydroterpinyloxyethanol (manufactured by Nippon Terpene Chemical Co., Ltd.), terpinyl methyl ether (manufactured by Nippon Terpene Chemical Co., Ltd.), dihydroterpinyl methyl ether (manufactured by Nippon Terpene Chemical Co., Ltd.), etc.
  • At least one of 1-decanol, 1-dodecanol, 2-ethyl 1,3-hexanediol and 2-methyl-butane-1,3,4-triol is used. Is more preferable.
  • a dispersant may be added to the bonding material in order to more reliably maintain the dispersed state of the metal particles.
  • any dispersant may be used as long as it keeps the metal particles dispersed and volatilizes from the metal particles during sintering.
  • Various commercially available dispersants can be used as the dispersant. Among these, it is preferable to use an acid dispersant or a phosphate ester dispersant. Examples of the acid dispersant include butoxyethoxyacetic acid. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the dispersant in the bonding material is preferably 0.01 to 3% by mass, and more preferably 0.02 to 2% by mass.
  • the bonding material of the present invention may be appropriately included in the bonding material of the present invention.
  • known components include viscosity modifiers, organic binders, inorganic binders, pH adjusters, buffers, antifoaming agents, leveling agents, and volatilization inhibitors.
  • the suitable viscosity of the bonding material of the present invention varies depending on the printing method to which it is applied, but is preferably 5 to 40 Pa ⁇ s as a general index. In the present specification, the viscosity is measured with a rotary dynamic viscoelasticity measuring apparatus at 25 ° C. under the condition of 5 rpm unless otherwise specified.
  • each component metal particles, heterocyclic compound having N as a ring constituent atom, solvent, dispersant, etc.
  • each component is prepared individually, and these are ultrasonically dispersed in any order. It can be produced by mixing with a machine, a disper, a three-roll mill, a ball mill, a bead mill, a jet mill, a twin-screw kneader, or a rotating and rotating stirrer.
  • a known method for example, a known method for producing a conductive paste
  • a known method for producing a conductive paste may be employed.
  • the temporary bonding is performed without the interval.
  • the joint strength when the object to be joined is temporarily joined without any interval for the pre-dried film formed, for example, the pre-dried film is formed.
  • the ratio of the bonding strength when the objects to be bonded are temporarily bonded after being allowed to stand for 7 days is 60% or more.
  • Joining method using joining material The technical idea of the present invention can also be applied to a bonding method using the above-described bonding material.
  • the bonding material of the present invention is suitably used in a bonding method involving temporary bonding described below, particularly a bonding method in which a certain interval exists after the preliminary drying film is formed until temporary bonding is performed. It is done.
  • Specific bonding methods involving temporary bonding include the following procedures. 1.
  • a known method may be adopted as the preliminary dry film forming step.
  • a bonding material metal paste
  • the formed coating film is heated to 60 to 160 ° C. (preferably 80 to 160 ° C. 150 ° C.) to remove the solvent in the bonding material and form a pre-dried film.
  • a semiconductor element is placed on the preliminary dry film formed in the preliminary dry film forming step, and is temporarily bonded by heat treatment at 60 to 150 ° C. while applying a pressure of 3 MPa or less.
  • the pressurization is applied between the substrate and the semiconductor element. More specifically, for example, the semiconductor element is pressed by pressing the semiconductor element from above the semiconductor element toward the substrate while the substrate is fixed. By the heat treatment while performing such pressurization, the substrate and the semiconductor element are temporarily bonded through the pre-dried film to form a temporary bonded body.
  • Temporary bonding may be performed after leaving the pre-dried film (more precisely, a laminate of the substrate and the pre-dried film) at temperature for 2 days or more (usually 1 month or less). The temperature at this time is usually room temperature.
  • the main bonding process may be adopted for the main bonding process, but an example of the main bonding is as follows. 170 ° C. or higher (preferably 170 to 400 ° C., more preferably) while applying pressure exceeding 3 MPa to the substrate and the semiconductor element (temporary bonded body) temporarily bonded through the preliminary drying film by the temporary bonding step. Heat treatment at 200 to 300 ° C.).
  • the pressurization is performed between the substrate and the semiconductor element. More specifically, for example, the pressurization is performed by pressing the semiconductor element from the top toward the substrate in a state where the substrate is fixed.
  • the metal particles in the pre-dried film are sintered to form a bonding layer, and the bonding between the substrate and the semiconductor element is realized by this bonding layer.
  • this is transported to the main joining step (press machine or the like) to perform the main joining, so the temporary joined body is formed from the formation to the main joining.
  • the time of 30 seconds or longer (usually 6 hours or shorter) elapses at a temperature lower than the heating temperature of the temporary bonding.
  • the bonding method of the present invention has been described on the assumption that the bonding material of the present invention is printed by screen printing or metal mask printing, but printing may be performed by other methods such as dispensing printing.
  • examples of the objects to be bonded in the bonding method include a substrate, a semiconductor element, and substrates (may be made of different materials).
  • the bonding material of the present invention is not limited to this method.
  • the above-mentioned bonding material is applied to at least one of two objects to be bonded, arranged so that the bonding material is interposed between the objects to be bonded, and heated at 170 to 400 ° C., preferably 200 to 300 ° C.
  • the metal particles in the bonding material may be sintered to form a bonding layer, and the objects to be bonded may be bonded to each other by the bonding layer.
  • the bonding material of the present invention can still be used even when the preliminary drying film is not provided.
  • Example 1 [Preparation of base paste] 180.0 g of pure water was placed in a 300 mL beaker, and 33.6 g of silver nitrate (manufactured by Toyo Chemical Co., Ltd.) was added and dissolved to prepare an aqueous silver nitrate solution as a raw material solution. Further, 3322.0 g of pure water was put into a 5 L beaker, and the temperature was raised to 40 ° C. while nitrogen was passed through the pure water for 30 minutes to remove dissolved oxygen.
  • silver nitrate manufactured by Toyo Chemical Co., Ltd.
  • a raw material liquid (silver nitrate aqueous solution) whose liquid temperature was adjusted to 40 ° C. was added to the reducing liquid (reducing agent-containing aqueous solution) all at once and reacted. Then, the liquid temperature was raised from 40 ° C. to 60 ° C. at a heating rate of 1 ° C./min, and stirring was completed.
  • the liquid containing the aggregate of silver particles was designated as No.
  • the mixture was filtered with 5C filter paper, and the recovered material was washed with pure water to obtain an aggregate of silver particles.
  • the silver particle aggregate was dried in a vacuum dryer at 80 ° C. for 12 hours to obtain a dry powder of the silver particle aggregate.
  • the silver powder aggregate dried powder thus obtained was crushed to adjust the size of the secondary aggregate. In addition, it was 80 nm when the average primary particle diameter of this silver particle was calculated
  • This mixture was kneaded for 30 seconds at a revolution speed of 1400 rpm and a rotation speed of 700 rpm by a kneading defoaming machine (V-mini300 type manufactured by EME Co., Ltd.).
  • This kneaded product is diluted with a mixed solvent (Solmix AP-7 manufactured by Nippon Alcohol Sales Co., Ltd.), stirred, crushed with a wet jet mill (RM-L1000 manufactured by Rix Co., Ltd.), and vacuum stirred and degassed. All the mixed solvents (Solmix AP-7) were evaporated by vacuum degassing with a mixer.
  • a base paste made of a silver paste containing (DGA) was obtained.
  • the composition of the above base paste is summarized in Table 1.
  • the viscosity of the bonding material was measured at 25 ° C. with a rheometer (viscoelasticity measuring device) (HAAKE Rheoless 600 manufactured by Thermo, use cone: C35 / 2 °), and 5 rpm (15.7 [1 / S])
  • the viscosity measured in (1) was 15.2 (Pa ⁇ s)
  • the Ag concentration in the bonding material was determined by the thermal loss method.
  • the Ag concentration was 79.8% by mass.
  • Table 2 summarizes the mixing ratio when preparing the bonding material in Example 1 above.
  • the mixing ratios of Examples 2 to 5 and Comparative Example 1 described later are also summarized.
  • the composition after mixing is summarized in Table 3 to be described later.
  • a metal mask with a thickness of 100 ⁇ m is placed on a 30 mm ⁇ 30 mm ⁇ 1 mm pickled copper substrate (C1020), and the above is performed by a metal squeegee using a screen printer (SP18P-L made by Panasonic FS Engineering Co., Ltd.).
  • the bonding material of Example 1 was applied on a copper substrate so as to have a size of 10.5 mm ⁇ 10.5 mm and a thickness (printed film thickness) of 100 ⁇ m.
  • the printing speed was 30 mm / s
  • the printing pressure was 7 ⁇ 10 ⁇ 2 N / mm 2
  • the plate separation speed was 3 mm / s.
  • the copper substrate coated with the bonding material is placed on a metal bat, placed in an oven (manufactured by Yamato Kagaku Co., Ltd.), heated in an air atmosphere at 125 ° C. for 25 minutes, and preliminarily dried. The solvent was removed to form a pre-dried film.
  • a Si element chip was placed on the pre-dried film (a size of 10 mm ⁇ 10 mm with a gold-plated joint surface and a thickness of 300 ⁇ m). Then, it was installed in a flip chip bonder (DON400, manufactured by Hisol Co., Ltd.), and the load arrival point was set to 100 N in the air atmosphere, and the load was applied for 3 seconds. The temperature of the collet to which a load was applied (heating temperature for temporary bonding) was 130 ° C. In this way, a temporary joined body was obtained.
  • the joint strength of this temporary joined body was measured in accordance with “Lead-free solder test method—Part 5: Tensile and shear test methods of solder joints” of JIS Z3918-5 (2003). Specifically, the copper substrate of the temporary bonded body is fixed, and the Si element chip temporarily bonded to the copper substrate is pushed in the horizontal direction, and the interface between the Si element chip and the silver bonded layer, the silver bonded layer, or the silver bonded layer The force (N) when one of the interfaces of the copper substrate broke was measured with a bonding strength tester (universal bond tester series 4000 manufactured by DAGE). In this test, the shear height was 80 ⁇ m, the shear rate was 5 mm / min, and the measurement was performed at room temperature.
  • the force (N) at which the fracture occurs at the joint surface is directly measured, and since the joint strength is a value depending on the joint area, the force at which the joint surface breaks (N)
  • a value obtained by dividing by a bonding area (10 mm ⁇ 10 mm 100 mm 2 ) was calculated as a temporary bonding strength (average shear strength).
  • the joint strength of the temporary joined body was 1.73 MPa, and sufficient temporary joint strength was confirmed.
  • the preliminary dried film was allowed to stand at room temperature for one week, and then the preliminary dried film was subjected to the same temporary bonding and a bonding strength test was performed. As a result, a sufficient temporary bonding strength of 1.47 MPa was confirmed. did.
  • Example 1 the ratio (%) of the bonding strength when the interval is set to one week (room temperature) with respect to the bonding strength when the temporary bonding is performed without an interval (hereinafter simply referred to as “the ratio of the temporary bonding strength”).
  • the ratio of the bonding strength is a high value of 85.0%, and even if the interval until the objects to be bonded are temporarily bonded after the pre-dried film is formed is temporarily bonded without an interval. Compared to the case, it was possible to prevent a significant decrease in bonding strength from occurring.
  • the composition table and test results of the bonding material in Example 1 are summarized in Table 3.
  • the results of Comparative Example 1 and Examples 2 to 5 described later are also summarized.
  • Examples 2 to 5 and Comparative Example 1 A similar test was performed by preparing a bonding material in which the amount and type of the heterocyclic compound (BTA in Example 1) in the bonding material were changed.
  • the mixing table, the composition of the bonding material, and the test results when preparing the bonding materials in Examples 2 to 5 and Comparative Example 1 are summarized in Tables 2 and 3 as in Example 1.
  • Example 2 was the same as Example 1 except that the amount of BTA added during preparation of the bonding material in Example 1 was increased from 0.005 parts by mass to 0.010 parts by mass.
  • the viscosity of this bonding material was 14.7 (Pa ⁇ s).
  • the Ag concentration in the bonding material was determined by the thermal loss method, the Ag concentration was 79.8% by mass.
  • the ratio of the temporary bonding strength is a high value of 67.9% (see Table 3 for specific values of the temporary bonding strength), and the interval from the preliminary drying film to the temporary bonding of the objects to be bonded is long. Even if it became, compared with the case where it joins temporarily without an interval, it was able to prevent the significant fall of joining strength being expressed.
  • Example 3 was the same as Example 1 except that the amount of BTA added during preparation of the bonding material in Example 1 was increased from 0.005 parts by mass to 0.050 parts by mass.
  • the viscosity of this bonding material was 14.5 (Pa ⁇ s).
  • the Ag concentration in the bonding material was determined by the thermal loss method, the Ag concentration was 79.8% by mass.
  • the ratio of the temporary bonding strength is a high value of 183.8% (see Table 3 for specific values of the temporary bonding strength), and the interval from the preliminary drying film to the temporary bonding of the objects to be bonded is long. Even if it became, compared with the case where it joins temporarily without an interval, it was able to prevent the significant fall of joining strength being expressed.
  • Example 4 instead of 0.005 parts by mass of BTA added in the preparation of the bonding material in Example 1, 0.050 mass of 2-undecylimidazole (C11Z: product name of Shikoku Kasei Kogyo Co., Ltd.) Example 1 was used except that the part was used.
  • the viscosity of this bonding material was 27.7 (Pa ⁇ s), and the Ag concentration in the bonding material was determined by the thermal loss method.
  • the Ag concentration was 79.8% by mass.
  • the ratio of the temporary bonding strength is a high value of 385.3% (see Table 3 for specific values of the temporary bonding strength), and the interval between the preliminary drying film and the temporary bonding of the objects to be bonded is long. Even if it became, compared with the case where it joins temporarily without an interval, it was able to prevent the significant fall of joining strength being expressed.
  • Example 5 instead of 0.005 part by mass of BTA added in the preparation of the bonding material in Example 1, 2-phenylimidazole (2PZ: 0.050 part by mass of a product name of Shikoku Kasei Kogyo Co., Ltd.) was used. The procedure was the same as Example 1 except that it was used. The viscosity of this bonding material was 25.1 (Pa ⁇ s), and the Ag concentration in the bonding material was determined by a thermal loss method. The Ag concentration was 79.8% by mass. The ratio of the bonding strength is a high value of 68.1% (see Table 3 for specific values of the temporary bonding strength), and the interval between the preliminary drying film formation and the temporary bonding of the objects to be bonded becomes long. Even so, it was possible to prevent a significant decrease in bonding strength from the case where temporary bonding was performed without an interval.
  • Comparative Example 1 was the same as Example 1 except that BTA added during preparation of the bonding material in Example 1 was not added.
  • the bonding material had a viscosity of 15.8 (Pa ⁇ s), and the Ag concentration in the bonding material was determined by a thermal loss method. The Ag concentration was 79.8% by mass.
  • the ratio of the temporary bonding strength is a very low value of 15.3% (see Table 3 for specific values of the temporary bonding strength), and the interval between the formation of the pre-dried film and the bonding of the objects to be bonded is When it was long, the bonding strength was greatly reduced.
  • the bonding strength is higher than the case of temporary bonding without the interval. It was possible to prevent a significant decrease from occurring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Die Bonding (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しない接合材およびその関連技術を提供することを目的とする。金属粒子と、環構成原子としてNを有する複素環式化合物と、を含有する、接合材およびその関連技術を提供する。

Description

接合材、接合体および接合方法
 本発明は、接合材、接合体および接合方法に関する。
 従来、銅基板などの基板上にパワー素子などの電子部品を搭載した半導体装置では、電子部品が接合材としての半田により基板上に固定されており、近年では、人体や環境などへの負荷を考慮して、従来の鉛を含む半田から鉛フリー半田接合材への移行がなされている。さらに接合材から形成される接合層の耐熱性の観点から、近年、半田にかえて銀粒子などの融点の高い金属粒子を含む金属ペーストを接合材として使用し、これを焼結させて接合を実施することが検討されている。
 接合材の使用方法としては、一つの具体例を挙げると以下のものがある。
 まず、被接合物となる基板に接合材を塗布した後に予備乾燥を行い、予備乾燥膜を形成しておく。その後、予備乾燥膜に別の被接合物として電子部品を載置し、本接合より低い温度で加熱しかつ本接合より低い圧力で加圧して被接合物同士(すなわち基板と電子部品と)を仮接合させる(仮接合については特許文献1参照)。その後にプレス機により十分な加熱及び加圧を行い、基板と電子部品とを本接合させる。
特開2015-106677号公報
 上記で説明した予備乾燥膜の形成、仮接合、本接合のプロセスについて、一般的には各工程を実施してすぐに次工程に移るが、製造工場の製造ラインの構成によっては、予備乾燥膜の形成をバッチ処理で行って一度に大量に製造し、次の工程に移すことも考えられ、この場合には予備乾燥膜が形成されてから仮接合までの間に一定の時間が空くことになる。また、ビジネスモデルとして、予備乾燥膜の形成までを担う実施体と、その後の仮接合及び本接合を担う実施体とが異なることも考えられる。この場合にも予備乾燥膜の実施体から製品(基板、予備乾燥膜の積層体)を仮接合及び本接合の実施体に運搬するために一定の時間(場合によっては数日)が空くことになる。
 このように、例えば製造ライン構成やビジネスモデルによっては予備乾燥から仮接合まで様々なインターバル(日数の間隔)が存在することが考えられる。その一方、従来の接合材だと、予備乾燥から仮接合までの間隔があいた予備乾燥膜ほど、予備乾燥膜にチップを仮接合したときの接合強度が、インターバルなしで仮接合した場合の接合強度に比べて大きく低下することが明らかとなった。
 本発明は、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しない接合材およびその関連技術を提供することを目的とする。
 すなわち本発明は、
 金属粒子と、
 環構成原子としてNを有する複素環式化合物と、
を含有する、接合材である。
 第2の発明は、第1の発明において、
 前記金属粒子は銀粒子である。
 第3の発明は、第1または第2の発明において、
 前記複素環式化合物はアゾール化合物である。
 第4の発明は、第1~第3のいずれかの発明において、
 前記金属粒子の平均一次粒子径は5nm~10μmである。
 第5の発明は、第1~第4のいずれかの発明において、
 前記金属粒子は炭素数8以下の有機化合物により被覆されている。
 第6の発明は、第1~第5のいずれかの発明に記載の接合材により基板と半導体素子とが接合された接合体である。
 第7の発明は、第1~第5のいずれかの発明に記載の接合材を基板上に塗布し、形成された塗膜を60~160℃で乾燥して予備乾燥膜とし、当該予備乾燥膜上に半導体素子を配置し、3MPa以下で加圧しながら60~150℃で加熱処理することで仮接合して、前記基板、予備乾燥膜及び半導体素子からなる仮接合体を形成し、前記仮接合体について、その形成から前記仮接合における加熱処理の温度より低温で30秒以上経過した後、前記仮接合体に対して3MPaを超える加圧を行いながら170℃以上で加熱処理して本接合を行う、接合方法である。
 第8の発明は、第7の発明において、
 前記予備乾燥膜を、前記乾燥における温度未満の温度で2日以上放置した後に前記仮接合を行う。
 本発明によれば、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しない(以下、このような特性を「仮接合強度の維持」ともいう)接合材およびその関連技術が提供される。
 以下、本発明について詳細に説明する。なお、本明細書において「~」は所定の値以上かつ所定の値以下を指す。
<1.接合材>
 本発明における接合材を構成する各要素について説明する。
 1-1.金属粒子
 本発明の接合材において使用する金属粒子には特に限定は無く、金属の種類としては銀、金、銅などを用いても構わない。接合力、耐酸化性やコストの観点から金属粒子としては銀粒子が好ましい。また、金属粒子の粒径(平均一次粒子径)にも特に限定は無いが、通常5nm~10μmであり、接合力の観点から好ましくは500nm以下のナノサイズである。
 金属粒子の粒径についてであるが、接合力の点から、金属粒子の平均一次粒子径はより好ましくは350nm以下であり、さらに好ましくは200nm以下であり、最も好ましくは120nm以下である。また金属粒子の平均一次粒子径は通常5nm以上である。なお、金属粒子としては、上記ナノサイズのものに加え、平均一次粒子径が500nmを超えるいわゆるサブミクロンレベルやミクロンレベルのものを混合した態様でもよい。また金属粒子の作製手法としては公知のものを使用しても構わないし、市販された公知の金属粒子を使用しても構わない。
 なお、本明細書中における金属粒子の平均一次粒子径は、金属粒子の透過型電子顕微鏡写真(TEM像)又は走査型電子顕微鏡写真(SEM像)から求められる一次粒子径の平均値をいう。
 更に具体的に言うと、例えば、透過型電子顕微鏡(TEM)(日本電子株式会社製のJEM-1011)又は走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ株式会社製のS-4700)により金属粒子を所定の倍率で観察した像(SEM像又はTEM像)上の100個以上の任意の金属粒子の一次粒子径からその平均値として算出することができる。この金属粒子の平均一次粒子径の算出は、例えば、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))を使用して各金属粒子の外接円の直径の平均値を求めることにより行うことができる。
 本発明にて好ましく使用される金属粒子は、平均一次粒子径が500nm以下と微細な粒子であり、凝集し易いため、有機化合物で被覆されているのが好ましい。なお、ここで言う被覆とは金属粒子の表面に有機化合物が存在していることをいう。そしてこの有機化合物としては金属粒子を被覆可能な公知のものを使用して構わない。なお有機化合物としては、低温(例えば170~400℃)での焼成であっても十分に金属粒子から分離して金属粒子同士の焼結を阻害しないように、炭素数8以下(通常3以上)の有機化合物が好ましい。このような有機化合物としては、ヘキサン酸やソルビン酸などの炭素数3~8の脂肪酸や、オクチルアミンやヘキシルアミンなどの炭素数3~8のアミンが挙げられる。
 なお、平均一次粒子径が500nmを超えるサブミクロンないしミクロンサイズの金属粒子については、接合材中での充填性を高めるために、炭素数6~24の脂肪酸(例えばオレイン酸やステアリン酸)やアミン(例えばヘキシルアミン、オクチルアミンやオレイルアミン)で被覆されていることが好ましい。
 以上説明した金属粒子の本発明の接合材中における含有量は、適切な接合力を発現する観点から、4~97質量%であることが好ましく、50~90質量%であることがより好ましい。
 1-2.環構成原子としてNを有する複素環式化合物
 本発明の接合材においては上記の金属粒子に加え、環構成原子としてN(窒素)を有する複素環式化合物も含有させておく。予備乾燥膜を形成してから一定のインターバルを置いて仮接合したときに、インターバルなしの場合に比べて接合強度が低下する原因として、このインターバルの間に、予備乾燥膜中の残存有機物(金属粒子を被覆する有機化合物)が揮発し、予備乾燥膜が硬化して仮接合の接合条件では半導体素子が十分な接合強度で接合しなくなることが考えられる(以下、このような予備乾燥膜の変化を「予備乾燥膜の劣化」ともいう)。前記複素環式化合物は、前記の残存有機物の揮発を好適に補い、かつ長いインターバルにわたって予備乾燥膜の劣化を防止することができるものと考えられる。これにより、本発明の接合材の優れた仮接合強度の維持特性が発揮されるものと考えられる。
 この複素環式化合物としては、環構成原子としてNを有していれば特に限定は無く、Nに加えて他の原子(例えばC(炭素)やS(硫黄))を有していても構わず、仮接合強度の維持の観点からアゾール化合物が好ましい。例えば、アゾール化合物としては、後述の実施例の項目にて使用している1,2,3-ベンゾトリアゾール(BTA)、2-ウンデシルイミダゾール(C11Z:四国化成工業株式会社の製品名。以降、アゾール化合物のカッコ内の英数字記載は同様。)、2-フェニルイミダゾール(2PZ)に加えて、1,2,4-チアゾール-1-カルボキシアミヂンヒドロクロリド(TZA)、t-ブトキシカルボニルイミノ-[1,2,4]トリアゾール-1-イル-メチル)-カルバミン酸t-ブチルエステル(TZA-BOC)、チアゾール-2-カルボキシアルデヒド(2FTZ)、チアゾール-4-カルボキシアルデヒド(4FTZ)、チアゾール-5-カルボキシアルデヒド(5FTZ)、オキサゾール-2-カルボキシアルデヒド(2FOZ)、オキサゾール-4-カルボキシアルデヒド(4FOZ)、オキサゾール-5-カルボキシアルデヒド(5FOZ)、ピラゾール-4-カルボキシアルデヒド(4FPZ)、ピラゾール-3-カルボキシアルデヒド(3FPZ)、イミダゾール-4-カルボキシアルデヒド(4FZ)、2-フェニルイミダゾール-4-カルボキシアルデヒド(2P4FZ)、イミダゾール-2-カルボキシアルデヒド(2FZ)、イミダゾール-4-カルボニトリル(4CNZ)、2-フェニルイミダゾール-4-カルボニトリル(2P4NZ)、4-ヒドロキシメチルイミダゾールヒドロクロリド(4HZ-HCL)、2-ヒドロキシメチルイミダゾールヒドロクロリド(2HZ-HCL)、イミダゾール-4-カルボン酸(4GZ)、イミダゾール-4-ジチオカルボン酸(4SZ)、イミダゾール-4-チオカルボキシアミド(4TZ)、2-ブロモイミダゾール(2BZ)、2-メルカプトイミダゾール(2SHZ)が挙げられる。
 以上説明した複素環式化合物の本発明の接合材中における含有量は、仮接合強度の維持の観点から、好ましくは0.001~1質量%であり、より好ましくは0.005~0.5質量%である。
 1-3.溶剤
 本発明の接合材は印刷しやすい形態とするため、通常溶剤を含んでいる。本発明において使用する溶剤には特に限定は無く、最終的に、金属粒子が焼結して接合層を形成することができ且つ印刷し易い粘度を有する接合材(金属ペースト)を得られればよい。溶剤は1種単独で又は2種以上を組み合わせて使用することができる。
 接合材における溶剤の含有量は1~95質量%であるのが好ましく、5~49質量%であるのがさらに好ましい。この溶剤として、極性溶媒や非極性溶媒を使用することができるが、接合材中の他の成分との相溶性や環境負荷の観点からは、極性溶媒が好ましい。例えば、極性溶媒として、水、アルコール、ポリオール、グリコールエーテル、1-メチルピロリジノン、ピリジン、ターピネオール、ブチルカルビトール、ブチルカルビトールアセテート、テキサノール、フェノキシプロパノール、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、γ―ブチロラクトン、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、メトキシブチルアセテート、メトキシプロピルアセテート、ジエチレングリコールモノエチルエーテルアセテート、乳酸エチル、1-オクタノールなどを使用することができる。このような極性溶媒として、1-デカノール、1-ドデカノール、1-テトラデカノール、3-メチル-1,3-ブタンジオール3-ヒドロキシ-3-メチルブチルアセテート、2-エチル-1,3-ヘキサンジオール、ヘキシルジグリコール、2-エチルヘキシルグリコール、ジブチルジグリコール、グリセリン、ジヒドロキシターピオール、ジヒドロターピニルアセテート、2-メチル-ブタン-2,3,4-トリオール(イソプレントリオールA(IPTL-A、日本テルペン化学株式会社製)、2-メチル-ブタン-1,3,4-トリオール(イソプレントリオールB(IPTL-B、日本テルペン化学株式会社製)、テルソルブIPG-2Ac(日本テルペン化学株式会社製)、テルソルブMTPH(日本テルペン化学株式会社製)、テルソルブDTO-210(日本テルペン化学株式会社製)、テルソルブTHA-90(日本テルペン化学株式会社製)テルソルブTHA-70(日本テルペン化学株式会社製)、テルソルブTOE-100(日本テルペン化学株式会社製)、ジヒドロターピニルオキシエタノール(日本テルペン化学株式会社製)、ターピニルメチルエーテル(日本テルペン化学株式会社製)、ジヒドロターピニルメチルエーテル(日本テルペン化学株式会社製)などを使用するのが好ましく、1-デカノール、1-ドデカノール、2-エチル1,3-ヘキサンジオール及び2-メチル-ブタン-1,3,4-トリオール(イソプレントリオールB(IPTL-B))の少なくとも一種を使用するのがさらに好ましい。
 1-4.分散剤
 本発明において、金属粒子の分散状態をより確実に保持するため、接合材に分散剤を添加してもよい。使用される分散剤には特に限定は無く、金属粒子の分散を保ち、焼結時には金属粒子から揮散するなどして離脱するものであればよい。この分散剤として、様々な市販の分散剤を使用することができる。その中でも酸系分散剤やリン酸エステル系分散剤を使用するのが好ましい。前記酸系分散剤としては、例えば、ブトキシエトキシ酢酸が挙げられる。これらを1種単独で又は2種以上を組み合わせて使用することができる。
 接合材における分散剤の含有量は、0.01~3質量%であるのが好ましく、0.02~2質量%であるのがさらに好ましい。
 1-5.その他
 上記の各構成成分以外に、適宜、公知の成分を本発明の接合材に含有させても構わない。そのような成分の具体例としては、粘度調整剤、有機バインダー、無機バインダー、pH調整剤、緩衝剤、消泡剤、レベリング剤、揮発抑制剤が挙げられる。
 また本発明の接合材の好適な粘度は、それが適用される印刷方法によって変動するが、一般的な指標として、好ましくは5~40Pa・sである。なお、本明細書において粘度は、他に特記しない限り、回転式動的粘弾性測定装置により25℃において5rpmの条件で測定するものとする。
 1-6.接合材の製造方法
 次に、本発明の接合材の製造方法について説明する。接合材は、例えば、これを構成する各成分(金属粒子、環構成原子としてNを有する複素環式化合物、溶剤、分散剤等)を個別に用意し、これらを任意の順で、超音波分散機、ディスパー、三本ロールミル、ボールミル、ビーズミル、ジェットミル、二軸ニーダー、又は自転公転式攪拌機などで混合することによって製造することができる。具体的な手法としては公知の手法(例えば導電性ペーストの公知の製造方法)を採用しても構わない。
 本発明によれば、予備乾燥膜が形成されてから被接合物同士(代表的には基板と半導体素子)を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合に比べて接合強度の大幅な低下が発現しない(例えば予備乾燥膜を形成したものに対してインターバルを置くことなく被接合物を仮接合した際の接合強度に対し、予備乾燥膜を形成したものを7日放置した後に被接合物を仮接合した際の接合強度の割合は60%以上となる)接合材およびその関連技術を提供することができる。
<2.接合材を用いた接合方法>
 本発明の技術的思想は、上記の接合材を用いた接合方法にも適用可能である。具体的には、下記に説明する仮接合を伴う接合方法、特に予備乾燥膜を形成してから仮接合を行うまでに一定のインターバルが存在する接合方法に、本発明の接合材が好適に用いられる。
 具体的な仮接合を伴う接合方法としては以下の手順のものが挙げられる。
1.被接合物となる基板上に接合材を塗布した後に予備乾燥を行い、予備乾燥膜を形成する予備乾燥膜形成工程
2.予備乾燥膜に別の被接合物として半導体素子を配置し、加圧しながら加熱して被接合物同士(すなわち基板と半導体素子と)を仮接合させる仮接合工程
3.プレス機等により十分な加熱及び加圧を行って基板と半導体素子とを本接合させる本接合工程
 まず、予備乾燥膜形成工程としては公知の手法を採用して構わない。例えば後述の実施例の項目に記載のように、スクリーン印刷やメタルマスク印刷により基板に対し接合材(金属ペースト)を塗布し、その後、形成された塗膜を60~160℃(好ましくは80~150℃)で乾燥して接合材中の溶剤を除去して予備乾燥膜を形成する。
 次に、仮接合工程についても公知の手法を採用して構わないが、仮接合について一例を挙げると以下の通りである。
 上記の予備乾燥膜形成工程にて形成された予備乾燥膜に対し、半導体素子を載置し、3MPa以下で加圧しながら60~150℃で加熱処理して仮接合させる。加圧は基板と半導体素子との間にかけ、より具体的には、例えば基板を固定した状態で、半導体素子の上から基板方向に半導体素子を押圧することで加圧する。このような加圧を行いながらの加熱処理により、予備乾燥膜を介して基板と半導体素子とを仮接合して仮接合体を形成する。その際、本発明の課題の項目にて述べたように製造ラインの構成等によっては予備乾燥から仮接合まで様々なインターバル(日数の間隔)が存在しうることを鑑み、予備乾燥における温度未満の温度で予備乾燥膜(より正確には基板と予備乾燥膜の積層体)を2日以上(通常1か月以下)放置してから仮接合を実施しても構わない。この放置の際の温度は通常室温である。
 最後に、本接合工程についても公知の手法を採用して構わないが、本接合について一例を挙げると以下の通りである。
 上記の仮接合工程によって予備乾燥膜を介して仮接合された基板および半導体素子(仮接合体)に対し、3MPaを超える加圧を行いながら、170℃以上(好ましくは170~400℃、より好ましくは200~300℃)で加熱処理する。加圧は基板と半導体素子との間にかけ、より具体的には、例えば基板を固定した状態で、半導体素子を上から、基板の方向へ向かって押圧することによって加圧を実施する。このような加圧を伴った加熱処理により予備乾燥膜中の金属粒子が焼結して接合層を形成し、この接合層により基板と半導体素子との接合が実現される。なお通常は仮接合体を形成した後、これを本接合の工程(を行うプレス機等)に搬送して本接合が実施されることになるので、仮接合体については、その形成から本接合が行われるまでに、仮接合の加熱温度より低い温度で30秒以上(通常6時間以下)の時間が経過することになる。
 なお、仮接合にしても本接合にしても、窒素雰囲気などの不活性雰囲気中で加熱しても被接合物同士を接合することができるが、大気中で加熱しても、被接合物同士を(仮または本)接合することができる。
 本発明の接合方法について、上記では本発明の接合材をスクリーン印刷やメタルマスク印刷により印刷するとして説明したが、ディスペンス式印刷などの他の方法によって印刷してもよい。さらに、前記接合方法における被接合物の例としては、基板と半導体素子、基板同士(異なる材質のもの同士であってもよい)が挙げられる。
 ところで前記では予備乾燥膜を形成した後に、接合(仮接合そして本接合)を行う場合を例示した。その一方で、本発明の接合材の用途はこの手法に限定されない。例えば、上記の接合材を2つの被接合物の少なくとも一方に塗布し、接合材が被接合物間に介在するように配置させ、170~400℃、好ましくは200~300℃で加熱することにより、接合材中の金属粒子を焼結させて接合層を形成し、この接合層によって被接合物同士を接合するという用途に用いても構わない。本発明の接合材は、このように予備乾燥膜を設けない場合においても使用可能であることに変わりはない。
 以上、本発明を説明したが、本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
 以下、本発明による接合材およびそれを用いた接合体の実施例について詳細に説明する。なお、本発明はこれらにより何ら限定されるものではない。
[実施例1]
[ベースペーストの作製]
 300mLビーカーに純水180.0gを入れ、硝酸銀(東洋化学株式会社製)33.6gを添加して溶解させることにより、原料液として硝酸銀水溶液を調製した。
 また、5Lビーカーに3322.0gの純水を入れ、この純水内に窒素を30分間通気させて溶存酸素を除去しながら、40℃まで昇温させた。この純水に(銀粒子被覆用の)有機化合物としてソルビン酸(和光純薬工業株式会社製)44.8gを添加した後、安定化剤として28%のアンモニア水(和光純薬工業株式会社製)7.1gを添加した。このアンモニア水を添加した後の水溶液を撹拌しながら、アンモニア水の添加時点(反応開始時)から5分経過後に、還元剤として純度80%の含水ヒドラジン(大塚化学株式会社製)14.91gを添加して、還元液として還元剤含有水溶液を調製した。
 アンモニア水の添加時点(反応開始時)から9分経過後に、液温を40℃に調整した原料液(硝酸銀水溶液)を還元液(還元剤含有水溶液)へ一挙に添加して反応させ、さらに80分間撹拌し、その後、昇温速度1℃/分で液温を40℃から60℃まで昇温させて撹拌を終了した。
 このようにしてソルビン酸で被覆された銀粒子の凝集体を形成させた後、この銀粒子の凝集体を含む液をNo.5Cのろ紙で濾過し、この濾過による回収物を純水で洗浄して、銀粒子の凝集体を得た。この銀粒子の凝集体を、真空乾燥機中において80℃で12時間乾燥させ、銀粒子の凝集体の乾燥粉末を得た。このようにして得られた銀粒子の凝集体の乾燥粉末を解砕して、2次凝集体の大きさを調整した。なお、この銀粒子の平均一次粒子径を走査型電子顕微鏡(SEM)により求めたところ、80nmであった。
 次に、上記の銀粒子の凝集体の作製を繰り返すことにより、2次凝集体の大きさを調整した(ソルビン酸で被覆された)銀粒子の凝集体の乾燥粉末(銀粒子)を必要量得た。そして、乾燥粉末(銀粒子)860.00質量部に対し、溶剤としてのオクタンジオール(ODO)(協和発酵ケミカル株式会社製の2-エチル-1,3-ヘキサンジオール)98.91質量部、ジブチルジグリコール(DBDG)(日本乳化剤株式会社製)10.99質量部、2-メチル-ブタン-2,3,4-トリオール(テルソルブIPTL-A)(日本テルペン化学株式会社)30.00質量部および添加剤としてのジグリコール酸(DGA)(みどり化学株式会社製)0.10質量部を混合した。この混合物を混練脱泡機(株式会社EME社製のV-mini300型)により公転速度1400rpm、自転速度700rpmで30秒間混練した。この混練物を混合溶剤(日本アルコール販売株式会社製のソルミックスAP-7)で希釈して攪拌し、湿式ジェットミル装置(リックス株式会社製のRM-L1000)により解砕し、真空攪拌脱泡ミキサにより真空脱泡して全ての混合溶剤(ソルミックスAP-7)を蒸発させた。
 こうして86.0質量%の銀粒子と9.891質量%の溶剤(ODO)と1.099%の溶剤(DBDG)と3質量%の溶剤(IPTL-A)と0.01質量%の添加剤(DGA)を含む銀ペーストからなるベースペーストを得た。
 上記のベースペーストの組成を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 
[実施例1の接合材の調製]
 上記ベースペーストの作製で得られたベースペースト100質量部に、0.005質量部の複素環式化合物(1,2,3-ベンゾトリアゾール:BTA)(関東化学株式会社社製)、そして先ほどベースペースト作製にて用いた各種化合物のうち6.7455質量部の溶剤(ODO)および0.7495質量部の溶剤(DBDG)を追加で混合し、この混合物を混練脱泡機(株式会社EME社製のV-mini300型)により公転速度1400rpm、自転速度700rpmで30秒間混練した。
 こうして79.997質量%の銀粒子と15.479質量%の溶剤(ODO)と1.719%の溶剤(DBDG)と2.791質量%の溶剤(IPTL-A)と0.009質量%の添加剤(DGA)と0.005質量%の複素環式化合物(BTA)とを含む銀ペースト(実施例1の接合材)を得た。
 この接合材の粘度をレオメーター(粘弾性測定装置)(Thermo社製のHAAKE Rheostress 600、使用コーン:C35/2°)により25℃において測定したところ、5rpm(15.7[1/S])で測定した粘度は15.2(Pa・s)であり、接合材中のAg濃度を熱減量法で求めたところ、Ag濃度は79.8質量%であった。 
 上記実施例1での接合材の調製の際の混合割合を表2にまとめた。なお、後述する実施例2~5及び比較例1の混合割合もまとめている。なお、混合後の組成については後述の表3にまとめている。
Figure JPOXMLDOC01-appb-T000002
 
[仮付け強度試験]
 30mm×30mm×1mmの酸洗した銅基板(C1020)上に厚さ100μmのメタルマスクを配置し、スクリーン印刷機(パナソニックFSエンジニアリング株式会社製のSP18P-L)を使用してメタルスキージにより上記実施例1の接合材を10.5mm×10.5mmの大きさで厚さ(印刷膜厚)100μmになるように銅基板上に塗布した。印刷速度は30mm/s、印圧は7×10-2N/mm、版離れ速度は3mm/sとした。
 その後、接合材を塗布した銅基板を金属バットに載せ、オーブン(ヤマト科学株式会社製)内に設置し、大気雰囲気中において125℃で25分間加熱して予備乾燥することにより、接合材中の溶剤を除去して予備乾燥膜を形成した。
 次に、予備乾燥膜を形成した銅基板を25℃まで冷却した後、予備乾燥膜上に(接合面に金めっきが施された10mm×10mmの大きさ、厚み300um)Si素子チップを配置して、フリップチップボンダー(DON400、ハイソル社製)に設置し、大気雰囲気中において、荷重の到達点を100Nに設定して、荷重を3秒間かけた。荷重をかけたコレットの温度(仮接合の加熱温度)は130℃であった。このようにして仮接合体を得た。
 この仮接合体の接合強度をJIS Z3918-5(2003年)の「鉛フリーはんだ試験方法-第5部:はんだ継ぎ手の引張及びせん断試験方法」に準じて測定した。具体的には、仮接合体の銅基板を固定し、この銅基板に仮接合したSi素子チップを水平方向に押して、Si素子チップと銀接合層の界面、銀接合層、又は銀接合層と銅基板の界面のいずれかが破断したときの力(N)を接合強度試験機(DAGE社製の万能型ボンドテスターシリーズ4000)で測定した。この試験では、シア高さを80μm、シア速度を5mm/分とし、室温で測定を行った。なお、せん断試験方法では、接合面で破断が起きる際の力(N)を直接測定しており、接合強度は接合面積に依存する値であるため、接合面が破断する際の力(N)を接合面積(10mm×10mm=100mm)で除した値を仮接合強度(平均シア強度)として算出した。その結果、仮接合体の接合強度は1.73MPaであり、十分な仮接合強度を確認した。
 また、上記予備乾燥膜を1週間室温で放置した後で、その予備乾燥膜に対し同様な仮接合を実施して接合強度の試験を実施したところ、1.47MPaと十分な仮接合強度を確認した。
 実施例1においては、インターバルをあけずに仮接合を行った場合の接合強度に対する、インターバルを1週間(室温)とした場合の接合強度の割合(%)(以下、単に「仮接合強度の割合」ともいう)も算出した。その結果、接合強度の割合は85.0%という高い値であり、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しないようにすることができていた。
 上記実施例1での接合材の組成表と試験結果を表3にまとめた。後述する比較例1及び実施例2~5の結果もあわせてまとめた。
Figure JPOXMLDOC01-appb-T000003
 
[実施例2~5及び比較例1]
 上記の接合材における複素環式化合物(実施例1ではBTA)の添加量やその種類を変えた接合材を用意し、同様の試験を実施した。なお、以降の実施例2~5および比較例1における接合材の調製の際の混合表、接合材の組成および試験結果は実施例1と同じく表2および表3にまとめている。
 実施例2においては、実施例1での接合材の調製の際のBTAの添加量を0.005質量部から0.010質量部へと増量したことを除けば実施例1と同様とした。
 この接合材の粘度は14.7(Pa・s)であり、接合材中のAg濃度を熱減量法で求めたところ、Ag濃度は79.8質量%であった。 
 仮接合強度の割合は67.9%という高い値であり(仮接合強度の具体的数値は表3参照)、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しないようにすることができていた。
 実施例3においては、実施例1での接合材の調製の際のBTAの添加量を0.005質量部から0.050質量部へと増量したことを除けば実施例1と同様とした。
 この接合材の粘度は14.5(Pa・s)であり、接合材中のAg濃度を熱減量法で求めたところ、Ag濃度は79.8質量%であった。 
 仮接合強度の割合は183.8%という高い値であり(仮接合強度の具体的数値は表3参照)、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しないようにすることができていた。
 実施例4においては、実施例1での接合材の調製の際に添加したBTA0.005質量部の代わりに、2-ウンデシルイミダゾール(C11Z:四国化成工業株式会社の製品名)0.050質量部を用いたことを除けば実施例1と同様とした。
 この接合材の粘度は27.7(Pa・s)であり、接合材中のAg濃度を熱減量法で求めたところ、Ag濃度は79.8質量%であった。 
 仮接合強度の割合は385.3%という高い値であり(仮接合強度の具体的数値は表3参照)、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しないようにすることができていた。
 実施例5においては、実施例1での接合材の調製の際に添加したBTA0.005質量部の代わりに、2-フェニルイミダゾール(2PZ:四国化成工業株式会社の製品名0.050質量部を用いたことを除けば実施例1と同様とした。
 この接合材の粘度は25.1(Pa・s)であり、接合材中のAg濃度を熱減量法で求めたところ、Ag濃度は79.8質量%であった。 
 接合強度の割合は68.1%という高い値であり(仮接合強度の具体的数値は表3参照)、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長なったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しないようにすることができていた。
[比較例1]
 比較例1においては、実施例1での接合材の調製の際に添加したBTAを添加しなかったことを除けば実施例1と同様とした。
 この接合材の粘度15.8(Pa・s)であり、接合材中のAg濃度を熱減量法で求めたところ、Ag濃度は79.8質量%であった。
 仮接合強度の割合は15.3%という非常に低い値であり(仮接合強度の具体的数値は表3参照)、予備乾燥膜が形成されてから被接合物同士を接合するまでのインターバルが長いとき接合強度が大幅に低下していた。
 以上の結果、本実施例によれば、予備乾燥膜が形成されてから被接合物同士を仮接合するまでのインターバルが長くなったとしても、インターバルなしで仮接合した場合と比べて接合強度の大幅な低下が発現しないようにすることができていた。

Claims (8)

  1.  金属粒子と、
     環構成原子としてNを有する複素環式化合物と、
    を含有する、接合材。
  2.  前記金属粒子は銀粒子である、請求項1に記載の接合材。
  3.  前記複素環式化合物はアゾール化合物である、請求項1または2に記載の接合材。
  4.  前記金属粒子の平均一次粒子径は5nm~10μmである、請求項1~3のいずれかに記載の接合材。
  5.  前記金属粒子は炭素数8以下の有機化合物により被覆されている、請求項1~4のいずれかに記載の接合材。
  6.  請求項1~5のいずれかに記載の接合材により基板と半導体素子とが接合された接合体。
  7.  請求項1~5のいずれかに記載の接合材を基板上に塗布し、形成された塗膜を60~160℃で乾燥して予備乾燥膜とし、当該予備乾燥膜上に半導体素子を配置し、3MPa以下で加圧しながら60~150℃で加熱処理することで仮接合して、前記基板、予備乾燥膜及び半導体素子からなる仮接合体を形成し、前記仮接合体について、その形成から前記仮接合における加熱処理の温度より低温で30秒以上経過した後、前記仮接合体に対して3MPaを超える加圧を行いながら170℃以上で加熱処理して本接合を行う、接合方法。
  8.  前記予備乾燥膜を、前記乾燥における温度未満の温度で2日以上放置した後に前記仮接合を行う、請求項7に記載の接合方法。
PCT/JP2018/020776 2017-05-31 2018-05-30 接合材、接合体および接合方法 WO2018221594A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017107466A JP2018206826A (ja) 2017-05-31 2017-05-31 接合材、接合体および接合方法
JP2017-107466 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221594A1 true WO2018221594A1 (ja) 2018-12-06

Family

ID=64456197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020776 WO2018221594A1 (ja) 2017-05-31 2018-05-30 接合材、接合体および接合方法

Country Status (2)

Country Link
JP (1) JP2018206826A (ja)
WO (1) WO2018221594A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023302B2 (ja) * 2020-02-04 2022-02-21 田中貴金属工業株式会社 導電性接合材料を備える接合部材及び接合方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126614A1 (ja) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. ペースト状銀組成物、その製造方法、固形状銀の製造方法、固形状銀、接着方法および回路板の製造方法
JP2011065999A (ja) * 2010-09-27 2011-03-31 Hitachi Chem Co Ltd 電子部品及びその製造方法
JP2014051590A (ja) * 2012-09-07 2014-03-20 Namics Corp 銀ペースト組成物及びその製造方法
JP2014086252A (ja) * 2012-10-23 2014-05-12 Hitachi Chemical Co Ltd 導電粒子及び異方導電性接着剤
JP2014235942A (ja) * 2013-06-04 2014-12-15 Dowaエレクトロニクス株式会社 接合材およびその接合材を用いて電子部品を接合する方法
WO2015114770A1 (ja) * 2014-01-30 2015-08-06 千住金属工業株式会社 OSP処理Cuボール、はんだ継手、フォームはんだ、およびはんだペースト
JP2015147949A (ja) * 2014-02-04 2015-08-20 千住金属工業株式会社 Agボール、Ag核ボール、フラックスコートAgボール、フラックスコートAg核ボール、はんだ継手、フォームはんだ、はんだペースト、Agペースト及びAg核ペースト
WO2016103527A1 (en) * 2014-12-26 2016-06-30 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126614A1 (ja) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. ペースト状銀組成物、その製造方法、固形状銀の製造方法、固形状銀、接着方法および回路板の製造方法
JP2011065999A (ja) * 2010-09-27 2011-03-31 Hitachi Chem Co Ltd 電子部品及びその製造方法
JP2014051590A (ja) * 2012-09-07 2014-03-20 Namics Corp 銀ペースト組成物及びその製造方法
JP2014086252A (ja) * 2012-10-23 2014-05-12 Hitachi Chemical Co Ltd 導電粒子及び異方導電性接着剤
JP2014235942A (ja) * 2013-06-04 2014-12-15 Dowaエレクトロニクス株式会社 接合材およびその接合材を用いて電子部品を接合する方法
WO2015114770A1 (ja) * 2014-01-30 2015-08-06 千住金属工業株式会社 OSP処理Cuボール、はんだ継手、フォームはんだ、およびはんだペースト
JP2015147949A (ja) * 2014-02-04 2015-08-20 千住金属工業株式会社 Agボール、Ag核ボール、フラックスコートAgボール、フラックスコートAg核ボール、はんだ継手、フォームはんだ、はんだペースト、Agペースト及びAg核ペースト
WO2016103527A1 (en) * 2014-12-26 2016-06-30 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same

Also Published As

Publication number Publication date
JP2018206826A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
TWI716639B (zh) 接合材料及使用其之接合方法
KR20170012437A (ko) 접합재 및 그것을 사용한 접합 방법
WO2014175417A1 (ja) 金属ナノ粒子分散体、金属ナノ粒子分散体の製造方法および接合方法
KR101800155B1 (ko) 접합재 및 그것을 사용한 접합 방법
JP6032110B2 (ja) 金属ナノ粒子材料、それを含有する接合材料、およびそれを用いた半導体装置
WO2018124263A1 (ja) 接合材及びそれを用いた接合方法
JP6900150B2 (ja) 接合材およびそれを用いた接合方法
JP6887293B2 (ja) 接合材およびそれを用いた接合方法
WO2018221594A1 (ja) 接合材、接合体および接合方法
WO2018062220A1 (ja) 接合材およびそれを用いた接合方法
JP6662619B2 (ja) 接合材およびそれを用いた接合方法
KR20190128714A (ko) 접합재 및 그것을 사용한 접합체
WO2016035314A1 (ja) 接合材およびそれを用いた接合方法
WO2017188206A1 (ja) 接合材およびそれを用いた接合方法
JP2019151908A (ja) 金属粒子凝集体及びその製造方法並びにペースト状金属粒子凝集体組成物及びこれを用いた複合体の製造方法
US20230311249A1 (en) Metal paste for bonding and bonding method
JP2022049054A (ja) 導電体作製方法、金属ペースト及び導電体
WO2023190593A1 (ja) ペースト組成物及び複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809165

Country of ref document: EP

Kind code of ref document: A1