WO2018221428A1 - 非接触給電装置及び異常停止方法 - Google Patents

非接触給電装置及び異常停止方法 Download PDF

Info

Publication number
WO2018221428A1
WO2018221428A1 PCT/JP2018/020242 JP2018020242W WO2018221428A1 WO 2018221428 A1 WO2018221428 A1 WO 2018221428A1 JP 2018020242 W JP2018020242 W JP 2018020242W WO 2018221428 A1 WO2018221428 A1 WO 2018221428A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
voltage
coil
power supply
Prior art date
Application number
PCT/JP2018/020242
Other languages
English (en)
French (fr)
Other versions
WO2018221428A8 (ja
Inventor
悟朗 中尾
佑介 河合
俊行 財津
篤志 野村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US16/612,215 priority Critical patent/US11190058B2/en
Priority to DE112018002813.5T priority patent/DE112018002813T5/de
Priority to CN201880026914.1A priority patent/CN110546855B/zh
Publication of WO2018221428A1 publication Critical patent/WO2018221428A1/ja
Publication of WO2018221428A8 publication Critical patent/WO2018221428A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/266One coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a contactless power supply device and an abnormal stop method in the contactless power supply device.
  • non-contact power feeding also called wireless power feeding
  • a method of feeding power by electromagnetic induction As a non-contact power feeding technique, a method of feeding power by electromagnetic induction is known.
  • a primary series / secondary parallel capacitor method (hereinafter referred to as SP method) is used (for example, see Non-Patent Document 1).
  • SP method a primary series / secondary parallel capacitor method
  • a capacitor is connected in series with a transmission coil that operates as a part of a transformer on the primary side (power transmission side), and a reception coil that operates as another part of the transformer on the secondary side (power reception side)
  • a capacitor is connected in parallel.
  • the resonance circuit composed of the receiving coil and the capacitor on the power receiving side resonates in parallel, so the output from the resonance circuit is a constant current output.
  • the SP method is generally more difficult to control than the primary series / secondary series capacitor method (hereinafter referred to as the SS method), which provides a constant voltage output on the power receiving side. This is because general electronic devices are controlled with a constant voltage.
  • metal foreign matter may enter between the transmitting coil on the power transmission side and the receiving coil on the power receiving side.
  • the foreign matter may be heated by induction heating during power transmission, resulting in failure such as ignition or deformation of the cover of the device. Therefore, a technique for detecting a metallic foreign object that has entered between the transmitting coil and the receiving coil has been proposed (see, for example, Non-Patent Document 2).
  • Non-Patent Document 2 as a foreign object detection method, (I) a method of comparing the transformer efficiency estimated from the voltage ratio of the transmission coil and the reception coil with the actual efficiency, and (II) transmission without a device on the power receiving side Three methods have been proposed: a method of comparing current values when a constant voltage is applied to a coil, and a method of (III) sampling and comparing transmission loss at a fixed time. Among these, methods (I) and (II) are methods for detecting foreign matters mixed before the start of power transmission, and method (III) is a method for detecting foreign matters mixed during power transmission. Is the method.
  • the present invention provides a non-contact power feeding device that can prevent a failure due to foreign matter mixed between the transmission coil and the reception coil even when the degree of coupling between the transmission coil of the power transmission device and the reception coil of the power reception device changes.
  • the purpose is to provide.
  • the non-contact electric power feeder which has a power transmission apparatus and the power receiving apparatus by which electric power transmission is non-contacted from a power transmission apparatus.
  • the power receiving device includes a resonance circuit having a receiving coil that receives power from the power transmission device, and a rectifier circuit that rectifies power output from the resonance circuit.
  • a transmission coil for supplying power to the power supply circuit, a power supply circuit for supplying AC power having an adjustable switching frequency to the transmission coil, and a switching frequency of the AC power supplied from the power supply circuit to the transmission coil.
  • the contactless power feeding device When the contactless power feeding device does not operate at a constant voltage output even if it is changed over the frequency domain, it has a control circuit that stops power supply from the power supply circuit to the transmission coil.
  • this non-contact power feeding device is caused by foreign matter mixed between the transmission coil and the reception coil even when the coupling degree between the transmission coil of the power transmission device and the reception coil of the power reception device changes. Failure can be prevented.
  • the power receiving device further includes a coil connected in series with the receiving coil between the resonance circuit and the rectifier circuit, and the resonance circuit of the power receiving device is a resonance connected in parallel with the receiving coil.
  • the control circuit of the power transmission device further includes a capacitor and controls the power supply circuit so that AC power having a switching frequency at which the transmission coil does not resonate is supplied to the transmission coil.
  • the resonance circuit of the power reception device further includes a resonance capacitor connected in series with the reception coil.
  • the power receiving device measures the output voltage of the power output from the resonance circuit and obtains a measured value of the output voltage, and the non-contact power feeding based on the measured value of the output voltage.
  • a constant voltage determination circuit for determining whether or not the device is operating at a constant voltage output, and whether or not a measured value of the output voltage of the resonance circuit is included within a predetermined voltage tolerance range;
  • a transmitter that transmits a signal including determination information indicating whether or not the constant voltage output operation is performed and whether or not the measured value of the output voltage is included in an allowable range of the predetermined voltage to the power transmission device. It is preferable.
  • the power transmission device further includes a receiver that receives a signal including the determination information, and the control circuit of the power transmission device sets the switching frequency of the AC power supplied from the power supply circuit to the transmission coil over a predetermined frequency region. Even if it is changed, when the determination information indicating that the non-contact power feeding apparatus is operating at a constant voltage output is not received, it is preferable to stop the power supply from the power supply circuit to the transmission coil. By having such a configuration, this non-contact power feeding device can reliably prevent a failure due to foreign matter mixed between the transmission coil and the reception coil.
  • the constant voltage determination circuit of the power receiving apparatus obtains the amount of change in the measured value of the output voltage during a predetermined time, and the transmitter of the power receiving apparatus includes the amount of change in the measured value of the output voltage in the determination information. It is preferable. And when the control circuit of the power transmission device changes the switching frequency of the AC power supplied from the power supply circuit to the transmission coil to be higher by a predetermined amount, the amount of change in the measured value of the output voltage included in the determination information is When the measured value of the output voltage indicates an increase, it is preferable to stop the power supply from the power supply circuit to the transmission coil. By having such a configuration, this non-contact power feeding device can reliably prevent a failure due to foreign matter mixed between the transmission coil and the reception coil.
  • the constant voltage determination circuit of the power receiving device has a non-contact power feeding device when the measured value of the output voltage becomes substantially constant even if the resistance value of the circuit connected to the resonance circuit is changed. Is preferably determined to be operating at a constant voltage output.
  • the power transmission device further includes a current detection circuit that measures a current flowing through the transmission coil and obtains a measurement value of the current, and the control circuit of the power transmission device sets the switching frequency to a predetermined frequency. While changing over the area, the measured current value is monitored to determine whether or not the switching frequency at which the measured current value becomes the maximum value is detected, and the switching frequency at which the measured current value becomes the maximum value is detected. If not, it is preferable to stop the power supply from the power supply circuit to the transmission coil. By having such a configuration, this non-contact power feeding device can reliably prevent a failure due to foreign matter mixed between the transmission coil and the reception coil.
  • the abnormal stop method in the non-contact electric power feeder which has a power transmission apparatus and the power receiving apparatus by which electric power transmission is non-contacted from a power transmission apparatus.
  • the power receiving device of the non-contact power feeding device includes a resonant circuit having a receiving coil that receives power from the power transmitting device, a rectifier circuit that rectifies power output from the resonant circuit, a resonant circuit, and a rectifier circuit Between the receiving coil and the coil connected in series, the power transmitting device supplies the transmitting coil for supplying power to the power receiving device, and AC power having an adjustable switching frequency to the transmitting coil.
  • a power supply circuit is provided.
  • the abnormal stopping method includes a step of changing the switching frequency of AC power supplied from the power supply circuit to the transmission coil over a predetermined frequency region, and contactless power feeding even when the switching frequency of AC power is changed over the predetermined frequency region. And stopping the power supply from the power supply circuit to the transmission coil when the device does not operate at a constant voltage output.
  • FIG. 1 is an equivalent circuit diagram of a non-contact power feeding apparatus using the SPL method.
  • FIG. 2 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage of the SPL-type non-contact power feeding device.
  • FIG. 3 is a diagram illustrating an example of a simulation result of the frequency characteristics of the output voltage of the SPL-type non-contact power feeding apparatus when foreign matter is mixed.
  • FIG. 4A is a diagram illustrating another example of the simulation result of the frequency characteristics of the output voltage of the SPL-type non-contact power feeding device when foreign matter is mixed.
  • FIG. 4B is a diagram illustrating another example of the simulation result of the frequency characteristic of the output voltage of the SPL-type non-contact power feeding device when foreign matter is mixed.
  • FIG. 1 is an equivalent circuit diagram of a non-contact power feeding apparatus using the SPL method.
  • FIG. 2 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage of the SPL-type non-contact power feeding
  • FIG. 5 is a schematic configuration diagram of a non-contact power feeding device according to one embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage of the non-contact power feeding device according to the present embodiment.
  • FIG. 7 is a diagram illustrating an example of a simulation result of the frequency characteristics of the output voltage when the voltage applied to the transmission coil is changed according to the degree of coupling in the simulation illustrated in FIG. 6.
  • FIG. 8 is an operation flowchart of the abnormal stop process.
  • FIG. 9 is a diagram illustrating an example of a simulation result of the frequency characteristics of the output voltage of the non-contact power feeding device when a foreign object is mixed.
  • FIG. 10 is an operation flowchart of an abnormal stop process according to a modification.
  • FIG. 10 is an operation flowchart of an abnormal stop process according to a modification.
  • FIG. 11 is a simulation result of frequency characteristics of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the simulation shown in FIG. It is a figure which shows an example.
  • FIG. 12 shows an example of the simulation result of the frequency characteristic of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the simulation shown in FIG.
  • FIG. 13 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the SL-type non-contact power feeding device.
  • FIG. 12 shows an example of the simulation result of the frequency characteristic of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the simulation shown in FIG.
  • FIG. 13 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to
  • FIG. 14 shows an example of the simulation result of the frequency characteristic of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the simulation shown in FIG.
  • FIG. 15 is a diagram illustrating an example of a relationship between the frequency characteristic of the output voltage and the frequency characteristic of the input impedance of the non-contact power feeding device according to the embodiment illustrated in FIG. 5.
  • FIG. 16 is a schematic configuration diagram of a non-contact power feeding device according to a modification.
  • FIG. 17 is a schematic configuration diagram of a non-contact power feeding device according to another modification.
  • FIG. 18 is a diagram illustrating an example of a simulation result of the frequency characteristics of the output voltage when the voltage applied to the transmission coil is changed according to the degree of coupling in the non-contact power feeding device according to the modification illustrated in FIG. .
  • FIG. 19 is a diagram illustrating an example of a simulation result of the frequency characteristics of the output voltage for the non-contact power feeding device of the modification illustrated in FIG. 17 when foreign matter is mixed.
  • FIG. 20A is a circuit diagram of a power supply circuit according to a modification.
  • FIG. 20B is a circuit diagram of a power supply circuit according to a modification.
  • This non-contact power feeding device has a coil connected in series with the receiving coil of the power receiving side resonance circuit, similar to the SPL method, but unlike the SPL method, the transmitting coil does not resonate with the transmitting coil on the power transmission side. While supplying AC power having a frequency and adjusting the frequency, a constant voltage output operation can be performed even when the coupling degree between the transmission coil and the reception coil changes. And when this non-contact electric power feeder does not become constant voltage output operation, even if it adjusts the frequency of the alternating current power supplied to a transmission coil, metal foreign materials mixed in between a transmission coil and a reception coil Determine and stop power transmission.
  • FIG. 1 is an equivalent circuit diagram of a non-contact power feeding apparatus using the SPL method.
  • this equivalent circuit 100 the transmission coil of the resonance circuit on the power transmission side and the reception coil of the resonance circuit on the power reception side are combined to form an n: 1 ideal transformer.
  • Cr1 is the capacitance of a capacitor connected in series with the transmission coil in the resonance circuit on the power transmission side.
  • Ri is a winding resistance value on the power transmission side
  • Ris is a winding resistance value on the power reception side
  • Cp is a capacitance of a capacitor connected in parallel with the receiving coil in the resonance circuit on the power receiving side
  • Lop is the inductance of the coil connected in series with the receiving coil.
  • the F matrix Fspl (s, k, Rac) of the SPL type non-contact power feeding device is expressed by the following equation.
  • s j2 ⁇ f.
  • f the frequency of the alternating current power supplied to the resonance circuit on the power transmission side.
  • K is the degree of coupling between the transmission coil and the reception coil.
  • the output gain Gspl (s, k, Rac) of the SPL-type non-contact power feeding device is expressed by the following equation.
  • Vin is the voltage (amplitude) of AC power supplied to the resonance circuit on the power transmission side
  • Fspl (s, k, Rac) 0,0 is the upper left in the F matrix expressed by equation (1) Represents an element.
  • FIG. 2 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage of the SPL-type non-contact power supply device calculated according to the equation (2).
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • Lp 174 ⁇ H
  • Lop 3 Lp
  • Ro 200 ⁇ (Rac ⁇ 162.1 ⁇ ).
  • the output voltage becomes substantially constant even when the AC equivalent resistance value of the load circuit changes under the condition that the coupling degree k is constant (that is, the coupling degree k is constant).
  • a constant voltage is output
  • the low frequency side points 211 to 213 are close to the resonance frequency of the power transmission side resonance circuit and are influenced by the resonance of the power transmission side resonance circuit.
  • the points 214 to 216 on the high frequency side are somewhat higher than the resonance frequency of the resonance circuit on the power transmission side, and are less affected by the resonance of the resonance circuit on the power transmission side.
  • the resonance circuit on the power transmission side is also resonated. Therefore, in order to operate the non-contact power feeding device at a constant voltage output, AC power having a frequency as indicated by points 211 to 213 is supplied to the power transmission side. It will be supplied to the resonant circuit.
  • FIG. 3 is a diagram showing an example of the simulation result of the frequency characteristic of the output voltage of the non-contact power feeding device of the SPL method when foreign matter is mixed, calculated according to the equation (4).
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • the same values as those in the simulation of FIG. 2 are used as parameters of each circuit element.
  • FIGS. 4A and 4B are diagrams illustrating another example of the simulation result of the frequency characteristics of the output voltage of the SPL-type non-contact power feeding device when foreign matter is mixed, calculated according to the equation (4).
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • 4A shows the frequency characteristic of the output voltage in the frequency band in which the resonance circuit on the power transmission side resonates
  • FIG. 4B shows the frequency characteristic of the output voltage in a frequency band higher than the frequency band in which the resonance circuit on the power transmission side resonates.
  • FIG. 4A and FIG. 4B when no foreign matter is mixed between the transmission coil and the reception coil and the degree of coupling between the transmission coil and the reception coil changes, the transmission coil By adjusting the frequency of the AC power supplied to the non-contact power feeding device, the constant voltage output operation can be continued.
  • the non-contact power feeding device can perform a constant voltage output operation even if the frequency of the AC power supplied to the transmission coil is adjusted. Can not.
  • the contactless power supply device adjusts the frequency of the AC power supplied to the transmission coil when the constant voltage output operation cannot be continued, so that the contactless power supply device performs the constant voltage output operation. Search for the frequency to be used. If there is no frequency at which the non-contact power supply device operates to output a constant voltage, the non-contact power supply device determines that a foreign object is mixed between the transmission coil and the reception coil, and stops power transmission. On the other hand, if there is a frequency at which the non-contact power feeding device operates at a constant voltage output, the non-contact power feeding device assumes that the degree of coupling between the transmitting coil and the receiving coil has changed, and transmits power at the frequency at which the constant voltage output operates. continue. Thereby, this non-contact electric power feeder can detect the foreign material mixed between the transmission coil and the receiving coil even when the coupling degree between the transmission coil and the receiving coil changes.
  • the constant voltage output operation is an allowable voltage range determined according to the specifications of the load circuit connected to the non-contact power feeding device (for example, within ⁇ 10% of a predetermined voltage reference value). It means that the non-contact power feeding device operates so that the output voltage is maintained in the inside.
  • FIG. 5 is a schematic configuration diagram of a non-contact power feeding device according to one embodiment of the present invention.
  • the contactless power supply device 1 includes a power transmission device 2 and a power reception device 3 that transmits power from the power transmission device 2 in a contactless manner through a space.
  • the power transmission device 2 includes a power supply circuit 10, a transmission coil 14, a receiver 15, gate drivers 16-1 and 16-2, and a control circuit 17.
  • the power receiving device 3 includes a resonance circuit 20 having a reception coil 21 and a resonance capacitor 22, a coil 23, a rectifying / smoothing circuit 24, a load circuit 27, a voltage detection circuit 28, a constant voltage determination circuit 29, and a transmission. Instrument 32.
  • the power supply circuit 10 supplies AC power having an adjustable switching frequency and an adjustable voltage to the transmission coil 14.
  • the power supply circuit 10 includes a power supply 11, a power factor correction circuit 12, and four switching elements 13-1 to 13-4.
  • the power source 11 supplies power having a predetermined pulsating voltage.
  • the power source 11 is connected to a commercial AC power source, and has a full-wave rectifier circuit for rectifying AC power supplied from the AC power source.
  • the power factor correction circuit 12 converts the power voltage output from the power supply 11 into a voltage corresponding to the control from the control circuit 17 and outputs the voltage.
  • the power factor correction circuit 12 includes, for example, a coil L and a diode D connected in series in order from the positive terminal of the power source 11, and a drain terminal connected between the coil L and the diode D.
  • a switching element SW which is an n-channel MOSFET having a source terminal connected to the side terminal, and a smoothing capacitor C connected in parallel to the switching element SW with the diode D interposed therebetween.
  • the gate terminal of the switching element SW is connected to the gate driver 16-1.
  • the power factor correction circuit 12 includes two resistors R1 and R2 connected in series between the positive terminal and the negative terminal of the power supply 11.
  • the resistors R1 and R2 are connected in parallel with the smoothing capacitor C between the diode D and the smoothing capacitor C. Then, the voltage between the resistor R1 and the resistor R2 is measured by the control circuit 17 as representing the voltage output from the diode D.
  • the gate driver 16-1 operates in accordance with the duty ratio instructed by the control circuit 17 and the switching element SW so that the locus of the current waveform output from the diode D coincides with the locus of the voltage supplied from the power supply 11.
  • the power factor correction circuit 12 executes a power factor correction operation.
  • the voltage output from the diode D increases as the duty ratio at which the switching element SW is turned on increases.
  • the voltage output from the diode D is smoothed by the smoothing capacitor C and supplied to the transmission coil 14 via the four switching elements 13-1 to 13-4.
  • the power factor correction circuit 12 is not limited to the above-described configuration, and may have another configuration capable of adjusting the output voltage by the control from the control circuit 17.
  • the four switching elements 13-1 to 13-4 can be, for example, n-channel MOSFETs.
  • the switching element 13-1 and the switching element 13-2 are provided with a power factor correction circuit 12 between the positive terminal and the negative terminal of the power supply 11. Connected in series.
  • the switching element 13-1 is connected to the positive side of the power source 11, while the switching element 13-2 is connected to the negative side of the power source 11.
  • the drain terminal of the switching element 13-1 is connected to the positive terminal of the power source 11 via the power factor correction circuit 12, and the source terminal of the switching element 13-1 is connected to the drain terminal of the switching element 13-2.
  • the source terminal of the switching element 13-2 is connected to the negative terminal of the power supply 11 through the power factor correction circuit 12.
  • the source terminal of the switching element 13-1 and the drain terminal of the switching element 13-2 are connected to one end of the transmission coil 14, and the source terminal of the switching element 13-2 is connected via the switching element 13-4.
  • the other end of the transmission coil 14 is connected.
  • the switching element 13-3 and the switching element 13-4 are parallel to the switching element 13-1 and the switching element 13-2 and have a power factor.
  • the power supply 11 is connected in series between the positive terminal and the negative terminal via the improvement circuit 12.
  • the switching element 13-3 is connected to the positive electrode side of the power supply 11, while the switching element 13-4 is connected to the negative electrode side of the power supply 11.
  • the drain terminal of the switching element 13-3 is connected to the positive terminal of the power source 11 via the power factor correction circuit 12, and the source terminal of the switching element 13-3 is connected to the drain terminal of the switching element 13-4.
  • the source terminal of the switching element 13-4 is connected to the negative terminal of the power source 11 through the power factor correction circuit 12. Further, the source terminal of the switching element 13-3 and the drain terminal of the switching element 13-4 are connected to the other end of the transmission coil 14.
  • the gate terminals of the switching elements 13-1 to 13-4 are connected to the control circuit 17 via the gate driver 16-2. Furthermore, the gate terminals of the respective switching elements 13-1 to 13-4 are connected to the respective switching elements 13-1 to 13-4 through their respective resistors in order to ensure that the switching elements are turned on when a voltage to be turned on is applied. It may be connected to the source terminal. Each of the switching elements 13-1 to 13-4 is switched on / off at an adjustable switching frequency in accordance with a control signal from the control circuit 17.
  • the switching element 13-1 and the switching element 13-4 are on, the switching element 13-2 and the switching element 13-3 are off, and conversely, While the switching element 13-3 is on, the set of the switching element 13-1 and the switching element 13-4 and the switching element so that the switching element 13-1 and the switching element 13-4 are off. On / off is alternately switched for the set of 13-2 and switching element 13-3. Thereby, the DC power supplied from the power supply 11 via the power factor correction circuit 12 is converted into AC power having the switching frequency of each switching element and supplied to the transmission coil 14.
  • the transmission coil 14 transmits the AC power supplied from the power supply circuit 10 to the resonance circuit 20 of the power receiving device 3 through the space.
  • the receiver 15 Each time the receiver 15 receives a radio signal from the transmitter 32 of the power receiving device 3, the receiver 15 takes out determination information indicating whether or not the non-contact power feeding device 1 is performing a constant voltage output operation from the radio signal, Output to the control circuit 17.
  • the receiver 15 includes, for example, an antenna that receives a radio signal in accordance with a predetermined radio communication standard and a communication circuit that demodulates the radio signal.
  • the predetermined wireless communication standard can be, for example, ISO / IEC 15693, ZigBee (registered trademark), or Bluetooth (registered trademark).
  • the gate driver 16-1 receives a control signal for switching on / off of the switching element SW of the power factor correction circuit 12 from the control circuit 17, and the voltage applied to the gate terminal of the switching element SW according to the control signal To change. That is, when the gate driver 16-1 receives the control signal for turning on the switching element SW, the gate driver 16-1 applies a relatively high voltage at which the switching element SW is turned on to the gate terminal of the switching element SW. On the other hand, when receiving a control signal for turning off the switching element SW, the gate driver 16-1 applies a relatively low voltage at which the switching element SW is turned off to the gate terminal of the switching element SW. As a result, the gate driver 16-1 switches on / off the switching element SW of the power factor correction circuit 12 at a timing instructed by the control circuit 17.
  • the gate driver 16-2 receives a control signal for switching on / off of each of the switching elements 13-1 to 13-4 from the control circuit 17, and according to the control signal, each of the switching elements 13-1 to 13- The voltage applied to the gate terminal 4 is changed. That is, when the gate driver 16-2 receives the control signal for turning on the switching element 13-1 and the switching element 13-4, the gate driver 16-2 performs switching to the gate terminal of the switching element 13-1 and the gate terminal of the switching element 13-4. A relatively high voltage is applied to turn on the element 13-1 and the switching element 13-4. As a result, the current from the power source 11 flows through the switching element 13-1, the transmission coil 14, and the switching element 13-4.
  • the gate driver 16-2 when the gate driver 16-2 receives the control signal for turning off the switching element 13-1 and the switching element 13-4, the gate driver 16-2 performs switching to the gate terminal of the switching element 13-1 and the gate terminal of the switching element 13-4.
  • the device 13-1 and the switching device 13-4 are turned off, and a relatively low voltage is applied so that the current from the power source 11 does not flow through the switching device 13-1 and the switching device 13-4.
  • the gate driver 16-2 controls the voltage applied to the gate terminal for the switching element 13-2 and the switching element 13-3.
  • the switching element 13-1 and the switching element 13-4 are turned off and the switching element 13-2 and the switching element 13-3 are turned on, the current from the power supply 11 is changed to the switching element 13-3, the transmission coil 14, and the like. It flows through the switching element 13-2.
  • the control circuit 17 includes, for example, a nonvolatile memory circuit and a volatile memory circuit, an arithmetic circuit, and an interface circuit for connecting to other circuits. Each time the control circuit 17 receives the determination information from the receiver 15, the control circuit 17 controls the switching frequency and voltage of the AC power supplied from the power supply circuit 10 to the transmission coil 14 according to the determination information.
  • the control circuit 17 turns on the switching element 13-1 and the switching element 13-4 and the switching element 13-2 and the switching element 13-3 alternately, A period in which the set of the switching element 13-1 and the switching element 13-4 is on and a period in which the set of the switching element 13-2 and the switching element 13-3 is on in one cycle corresponding to the frequency;
  • the switching elements 13-1 to 13-4 are controlled so that.
  • the control circuit 17 prevents the power supply 11 from being short-circuited by simultaneously turning on the set of the switching element 13-1 and the switching element 13-4 and the set of the switching element 13-2 and the switching element 13-3.
  • the dead time when both sets of the switching elements are turned off. May be provided.
  • control circuit 17 is a switching frequency and a duty ratio for ON / OFF control of the switching element SW of the power factor correction circuit 12 corresponding to a voltage applied to the transmission coil 14 which is a constant voltage output at the switching frequency.
  • the duty ratio corresponding to the switching frequency is selected with reference to a reference table representing the relationship between Then, the control circuit 17 determines the timing for switching on / off the switching element SW in accordance with the duty ratio and the change in the output voltage from the diode D of the power factor correction circuit 12, and outputs a control signal representing the timing. Output to the gate driver 16-1.
  • the control circuit 17 may stop the power supply from the power supply circuit 10 to the transmission coil 14 by setting the duty ratio of the on / off control of the switching element SW to 0. Thereby, the loss of energy is suppressed while the power transmission device 2 is in the standby state.
  • the control circuit 17 sets the duty ratio of the ON / OFF control of the switching element SW to 0. Then, the power supply from the power supply circuit 10 to the transmission coil 14 is stopped.
  • the resonance circuit 20 is an LC resonance circuit including a reception coil 21 and a resonance capacitor 22 connected in parallel to each other.
  • One end of the reception coil 21 included in the resonance circuit 20 is connected to one end of the resonance capacitor 22 and is connected to one input terminal of the rectifying and smoothing circuit 24 via the coil 23.
  • the other end of the receiving coil 21 is connected to the other end of the resonance capacitor 22 and is connected to the other input terminal of the rectifying / smoothing circuit 24.
  • the reception coil 21 receives power from the transmission coil 14 by resonating with an alternating current flowing through the transmission coil 14 of the power transmission device 2.
  • the receiving coil 21 outputs the received power to the rectifying / smoothing circuit 24 via the resonant capacitor 22 and the coil 23. Note that the number of turns of the reception coil 21 and the number of turns of the transmission coil 14 of the power transmission device 2 may be the same or different.
  • the resonant capacitor 22 is connected to one end of the receiving coil 21 and the coil 23 at one end thereof and to the other end of the receiving coil 21 and the rectifying / smoothing circuit 24 at the other end. Then, the resonance capacitor 22 outputs the power received by the receiving coil 21 to the rectifying / smoothing circuit 24 via the coil 23.
  • the coil 23 is connected between the resonance circuit 20 and the rectifying / smoothing circuit 24.
  • the coil 23 is connected to the reception coil 21 and the resonance capacitor 22 of the resonance circuit 20 at one end thereof and is connected to the rectifying / smoothing circuit 24 at the other end so as to be in series with the reception coil 21.
  • the coil 23 outputs the power from the resonance circuit 20 to the rectifying / smoothing circuit 24.
  • the harmonic component of the received electric power is suppressed similarly to the SPL method.
  • the rectifying / smoothing circuit 24 is an example of a rectifying circuit, and includes a full-wave rectifying circuit 25 having four diodes connected in a bridge and a smoothing capacitor 26.
  • the rectifying / smoothing circuit 24 is received by the resonance circuit 20 and passes through the coil 23.
  • the received power is rectified and smoothed and converted to DC power.
  • the rectifying / smoothing circuit 24 outputs the DC power to the load circuit 27.
  • the voltage detection circuit 28 measures the output voltage between both terminals of the rectifying / smoothing circuit 24 at predetermined intervals. Since the output voltage between both terminals of the rectifying / smoothing circuit 24 corresponds to the output voltage of the resonant circuit 20 on a one-to-one basis, the measured value of the output voltage between both terminals of the rectifying / smoothing circuit 24 is indirectly measured by the resonant circuit 20. This is the measured value of the output voltage.
  • the voltage detection circuit 28 can be any of various known voltage detection circuits that can detect a DC voltage, for example. Then, the voltage detection circuit 28 outputs a voltage detection signal representing the measured value of the output voltage to the constant voltage determination circuit 29.
  • the constant voltage determination circuit 29 determines whether or not the non-contact power feeding apparatus 1 is performing a constant voltage output operation, and the measurement value of the output voltage is a constant voltage output. It is determined whether or not the voltage is within an allowable range when the operation is performed.
  • the constant voltage determination circuit 29 notifies the transmitter 32 of the determination result.
  • the constant voltage determination circuit 29 includes, for example, a determination circuit 30 that includes a memory circuit that stores an allowable voltage range and an arithmetic circuit that compares a measured value of the output voltage with the allowable voltage range.
  • the constant voltage determination circuit 29 has a switching element 31 such as a MOSFET connected between the rectifying / smoothing circuit 24 and the load circuit 27.
  • a switching element 31 such as a MOSFET connected between the rectifying / smoothing circuit 24 and the load circuit 27.
  • the determination circuit 30 of the constant voltage determination circuit 29 switches on / off the switching element 31 at a predetermined cycle while the measured value of the output voltage is out of the allowable voltage range. As a result, the resistance value of the entire circuit including the load circuit 27 connected to the rectifying / smoothing circuit 24 changes at the predetermined cycle.
  • the determination circuit 30 determines whether or not the measured value of the output voltage is substantially constant while switching the switching element 31 on / off, so that the contactless power feeding device 1 is performing a constant voltage output operation. You can determine whether or not. Therefore, the determination circuit 30 is configured so that the non-contact power feeding device 1 performs a constant voltage output operation while the measured value of the output voltage is substantially constant even when the switching element 31 is switched on / off at a predetermined cycle. Is sent to the transmitter 32.
  • the determination circuit 30 stops switching on / off of the switching element 31 when the non-contact power feeding device 1 is performing a constant voltage output operation for a certain period in which the measured value of the output voltage is longer than a predetermined period. Then, the on state is maintained. Then, the determination circuit 30 determines whether or not the measured value of the output voltage is included in the allowable voltage range, and notifies the transmitter 32 of the determination result.
  • the determination circuit 30 performs the constant voltage output operation of the contactless power feeding device 1 and The transmitter 32 is notified of a determination result indicating that the output voltage measurement value is within the allowable voltage range.
  • the constant voltage determination circuit 29 may have a resistor connected in parallel to the load circuit 27 with respect to the rectifying and smoothing circuit 24.
  • the switching element 31 may be provided in series with the resistor and in parallel with the load circuit 27.
  • the determination circuit 30 turns off the switching element 31 while the measured value of the output voltage is included in the allowable voltage range.
  • the determination circuit 30 may switch on / off the switching element 31 at a predetermined cycle, as in the above embodiment. According to this modification, power supply to the load circuit 27 is continued even when the non-contact power feeding apparatus 1 is not performing a constant voltage output operation.
  • a second switching element such as a MOSFET may be provided in parallel with the resistor and in series with the load circuit 27.
  • the determination circuit 30 enables the power supply to the load circuit 27 by turning on the second switching element.
  • the determination circuit 30 may turn off the second switching element and stop the power supply to the load circuit 27.
  • the transmitter 32 determines whether or not the non-contact power feeding device 1 is performing a constant voltage output operation according to the determination result received from the determination circuit 30 of the constant voltage determination circuit 29 and the output voltage for each predetermined transmission cycle.
  • a wireless signal including determination information indicating whether or not the measured value is included in the allowable voltage range is generated, and the wireless signal is transmitted to the receiver 15 of the power transmission device 2.
  • the transmitter 32 includes, for example, a communication circuit that generates a radio signal in accordance with a predetermined radio communication standard and an antenna that outputs the radio signal.
  • the predetermined wireless communication standard can be, for example, ISO / IEC 15693, ZigBee (registered trademark), or Bluetooth (registered trademark), similarly to the receiver 15.
  • control circuit 17 of the power transmission device 2 controls the transmission coil 14 from the power supply circuit 10 so that the non-contact power feeding device 1 continues the constant voltage output operation based on the determination information received from the receiver 15.
  • the switching frequency and voltage of the AC power supplied to the are controlled.
  • the contactless power supply device is different from the SPL method contactless power supply device in that the resonance of the resonance circuit is not used on the power transmission side.
  • the frequency characteristic of the output voltage of the non-contact power feeding device 1 is in series with the transmission coil in the resonance circuit on the power transmission side so that the resonance of the resonance circuit on the power transmission side does not affect the power feeding in the equivalent circuit of FIG. This is similar to the frequency characteristic of the output voltage of the SPL-type non-contact power feeding device when the capacitance Cr1 of the connected capacitor is increased to lower the resonance frequency of the resonance circuit on the power transmission side.
  • FIG. 6 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage of the contactless power supply device 1 according to the present embodiment.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • the output voltages when the constant voltage output is obtained with respect to the fluctuation of the resistance value of the load circuit 27 are different from each other depending on the degree of coupling.
  • the output voltage can be made substantially constant regardless of the degree of coupling.
  • FIG. 7 is a diagram showing an example of the simulation result of the frequency characteristic of the output voltage when the voltage applied to the transmission coil 14 is changed in accordance with the degree of coupling in the simulation shown in FIG.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • control circuit 17 controls the switching frequency and voltage of the AC power applied to the transmission coil 14 as described below in order to achieve the constant voltage output operation.
  • the control circuit 17 When the determination information included in the wireless signal received from the power receiving device 3 via the receiver 15 indicates that the non-contact power feeding device 1 is not performing a constant voltage output operation, the control circuit 17 The switching frequency is changed within a predetermined frequency range.
  • the predetermined frequency region is, for example, the lower limit of the frequency that is a constant voltage output at the minimum value of the assumed degree of coupling between the transmission coil 14 and the reception coil 21 when power is supplied from the power transmission device 2 to the power reception device 3. And the frequency region having the upper limit of the frequency at which the constant voltage output is obtained at the maximum value of the assumed degree of coupling between the transmission coil 14 and the reception coil 21.
  • the control circuit 17 may increase the switching frequency in order from the lower limit to the upper limit of the predetermined frequency region, or conversely decrease the switching frequency in order from the upper limit to the lower limit of the predetermined frequency region. May be.
  • the control circuit 17 allows the determination circuit 30 of the constant voltage determination circuit 29 of the switching element 31 so that the constant voltage determination circuit 29 of the power receiving device 3 can check whether or not the output voltage has become substantially constant. It is preferable to change the switching frequency stepwise so that the same switching frequency is maintained for a period longer than the cycle of switching on and off.
  • the control circuit 17 preferably reduces the voltage applied to the transmission coil 14 to the lower limit voltage while adjusting the switching frequency. Thereby, it is suppressed that the voltage of the electric power supplied to the power receiving device 3 becomes excessively high.
  • the control circuit 17 Even if the control circuit 17 changes the switching frequency over the entire predetermined frequency region, the constant voltage output operation is performed in the determination information included in the radio signal received from the power receiving device 3 via the receiver 15. Is not indicated, it is determined that a foreign object is mixed between the transmission coil 14 and the reception coil 21. Then, the control circuit 17 stops power supply from the power supply circuit 10 to the transmission coil 14 and interrupts power transmission.
  • the control circuit 17 does not include the measured value of the output voltage within the allowable voltage range, but the resistance of the load circuit is If it is shown that the change is substantially constant, that is, that a constant voltage output operation is performed, the switching frequency is kept constant thereafter.
  • the control circuit 17 shows the relationship between the switching frequency and the duty ratio of the on / off control of the switching element SW of the power factor correction circuit 12 that provides a constant voltage output regardless of the degree of coupling at the switching frequency. The duty ratio is determined with reference to the reference table shown. Then, the control circuit 17 controls the gate driver 16-1 so as to switch on / off the switching element SW of the power factor correction circuit 12 according to the duty ratio.
  • the voltage applied to the transmission coil 14 is adjusted so that the output voltage from the resonance circuit 20 is included in the allowable voltage range, that is, a constant voltage is output regardless of the degree of coupling.
  • the control circuit 17 The switching frequency and voltage of the supplied AC power are kept constant.
  • the control circuit 17 uses the determination information included in the radio signal received from the power receiving apparatus 3 via the receiver 15 to determine the measured value of the output voltage.
  • the duty ratio may be gradually changed until it is shown that the voltage is within the allowable range.
  • FIG. 8 is an operation flowchart of the abnormal stop process executed by the control circuit 17.
  • control circuit 17 causes the power to reduce the voltage of the AC power supplied to the transmission coil 14 to a predetermined value.
  • the supply circuit 10 is controlled (step S101).
  • the control circuit 17 controls the power supply circuit 10 so as to increase the switching frequency in order from the lower limit to the upper limit of the predetermined frequency region for adjusting the switching frequency (step S102). Then, the control circuit 17 refers to the determination information received from the power receiving device 3 and determines whether or not it is indicated that the constant voltage output operation is performed at any switching frequency (step S103).
  • step S103 When it is indicated that the constant voltage output operation is performed at any switching frequency (step S103—Yes), the control circuit 17 causes the AC power having the switching frequency to be supplied to the transmission coil 14.
  • the power supply circuit 10 is controlled. Further, the control circuit 17 sets the power supply circuit 10 so as to increase the voltage of the AC power supplied to the transmission coil 14 until the output voltage of the resonance circuit 20 of the power receiving device 3 falls within a predetermined voltage tolerance. Control (step S104).
  • the control circuit 17 stops the power supply from the power supply circuit 10 to the transmission coil 14, and stops the power transmission from the power transmission device 2 to the power reception device 3 (step S105). Furthermore, the control circuit 17 may output an abnormal signal indicating that a metal foreign object has been detected to another device via an interface (not shown).
  • step S104 or S105 the control circuit 17 ends the abnormal stop process.
  • the switching frequency of the AC power supplied to the transmission coil of the power transmission device is set to the assumed coupling between the transmission coil and the reception coil. Change in the frequency domain according to the degree. If the constant voltage output operation cannot be performed even if the switching frequency is changed over the entire frequency range, the contactless power supply device determines that a metal foreign object has entered between the transmission coil and the reception coil, and Stops power transmission from the device to the power receiving device. As a result, this non-contact power feeding device can detect a metallic foreign object mixed between the transmitting coil and the receiving coil even when the degree of coupling between the transmitting coil and the receiving coil changes, and the failure due to the mixed foreign object can be detected. Occurrence can be prevented.
  • FIG. 9 is a diagram showing an example of the simulation result of the frequency characteristics of the output voltage of the non-contact power feeding device when foreign matter is mixed.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • the value of the leakage inductance Lr is reduced by 30 ⁇ H from that used in the simulation of FIG. 2, and the winding resistance value Ri on the power transmission side and the power receiving side are reduced. The value obtained by reducing the winding resistance value Ris of 3 ⁇ was used.
  • the frequency at which the constant voltage output operation is performed is included in a frequency region where the output voltage decreases as the frequency increases. From this, as shown in the graph 901, the output voltage rises when the switching frequency is increased from the switching frequency (point 911 in FIG. 9) when the constant voltage output operation is apparently performed. If this is the case, it is assumed that foreign matter is mixed.
  • the determination circuit 30 of the constant voltage determination circuit 29 stores the measurement value for a predetermined period (for example, several tens of milliseconds) each time the measurement value of the output voltage by the voltage detection circuit 28 is acquired. Then, the determination circuit 30 subtracts the stored measured value of the output voltage before a predetermined period from the latest measured value of the output voltage to calculate the change amount ⁇ v of the output voltage. Then, the determination circuit 30 includes the change amount ⁇ v of the output voltage in the determination information and transmits it to the power transmission device 2 via the transmitter 32.
  • a predetermined period for example, several tens of milliseconds
  • control circuit 17 of the power transmission device 2 performs periodic switching even when the determination information indicating that the measured value of the output voltage is included in the allowable voltage range is continuously received from the power reception device 3. If the frequency is increased by a predetermined amount ⁇ f and the change amount ⁇ v of the output voltage at that time is increased, it is determined that a metal foreign object is mixed between the transmission coil 14 and the reception coil 21, and power transmission is performed. To stop.
  • FIG. 10 is an operation flowchart of the abnormal stop process executed by the control circuit 17 according to this modification.
  • the control circuit 17 may execute the abnormal stop process according to the following operation flowchart.
  • the control circuit 17 determines whether or not the determination information received from the power receiving device 3 indicates that the measured value of the output voltage from the resonance circuit 20 is included in the allowable voltage range (step S201).
  • the determination information indicates that the measured value of the output voltage from the resonance circuit 20 is out of the allowable voltage range (step S201-No)
  • step S201-No the determination information indicates that the measured value of the output voltage from the resonance circuit 20 is out of the allowable voltage range
  • the control circuit 17 executes the processing after step S101 in FIG.
  • step S201 when the determination information indicates that the measured value of the output voltage from the resonance circuit 20 is included in the allowable voltage range (step S201—Yes), the control circuit 17 continues for a certain period. Then, it is determined whether or not the determination information indicating that the constant voltage output operation is performed is received from the power receiving device 3 (step S202). If the period in which the determination information indicating that the constant voltage output operation is being performed has not been received has reached the certain period (No in step S202), the control circuit 17 waits for a predetermined time and then proceeds to step S202. Repeat the process.
  • step S202 if the period of continuous reception of the determination information indicating that the constant voltage output operation is being performed has reached the certain period (step S202—Yes), the control circuit 17 transmits from the power supply circuit 10.
  • the switching frequency of the AC power supplied to the coil 14 is increased by a predetermined width ⁇ f (step S203).
  • the control circuit 17 refers to the output voltage variation ⁇ v included in the determination information received from the power receiving device 3 after increasing the switching frequency, and determines whether ⁇ v / ⁇ f is negative (step S204). .
  • step S204 When ⁇ v / ⁇ f becomes negative, that is, when the output voltage from the resonance circuit 20 of the power receiving device 3 decreases as the switching frequency increases (step S204—Yes), the control circuit 17 receives the transmission coil 14 and the reception coil. It is determined that no foreign matter is mixed with the coil 21. Therefore, the control circuit 17 lowers the switching frequency of the AC power supplied from the power supply circuit 10 to the transmission coil 14 by a predetermined width ⁇ f (step S205). That is, the control circuit 17 returns to the original switching frequency. And the control circuit 17 repeats the process after step S201.
  • control circuit 17 determines that a foreign object has entered between the receiver coil 21 and the receiver coil 21. Therefore, the control circuit 17 stops the power supply from the power supply circuit 10 to the transmission coil 14, and stops the power transmission from the power transmission device 2 to the power reception device 3 (step S206). In this modification as well, the control circuit 17 may output an abnormal signal indicating that a metal foreign object has been detected to another device via an interface (not shown).
  • step S206 the control circuit 17 ends the abnormal stop process.
  • the output voltage may hardly change even when the degree of coupling changes as well as when foreign matter is mixed. Therefore, even when the output voltage from the resonance circuit 20 of the power receiving device 3 increases in response to an increase in the switching frequency in step S204, the control circuit 17 instead of immediately stopping power transmission, the process from step S101 in FIG. It may be determined whether or not to stop the power transmission by executing the process.
  • non-contact power feeding apparatus for determining foreign matter contamination is not limited to the above-described embodiment, and the switching frequency and voltage of the AC power supplied to the transmission coil are adjusted, so that they are within a certain voltage fluctuation allowable range. Any non-contact power feeding device capable of performing a constant voltage output operation may be used.
  • the non-contact power supply device may be an SPL non-contact power supply device.
  • the power transmission device 2 may include a capacitor connected in series with the transmission coil 14.
  • the power supply circuit 10 has a switching frequency at which a resonance circuit constituted by the transmission coil 14 and this capacitor (hereinafter referred to as a resonance circuit 20 on the power transmission side to distinguish from the resonance circuit 20 of the power receiving device 3) resonates. You may supply the alternating current power which it has to the resonance circuit by the side of power transmission.
  • FIG. 11 is a simulation result of frequency characteristics of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the simulation shown in FIG. It is a figure which shows an example.
  • the horizontal axis represents frequency and the vertical axis represents output voltage.
  • the output voltage becomes substantially constant even when the AC equivalent resistance value of the load circuit 27 changes under the condition where the coupling degree k does not change (that is, a constant voltage output).
  • Each output voltage of the combination of frequency and output voltage is substantially equal to each other. Therefore, even in the SPL method, by adjusting the switching frequency and voltage of the AC power supplied to the resonance circuit on the power transmission side, the non-contact power feeding device can perform a constant voltage output operation and maintain a substantially constant output voltage.
  • the frequency at which the constant voltage output operation is performed is within the frequency range in which the output voltage decreases as the frequency increases.
  • FIG. 12 shows the output voltage for the SPL-type non-contact power feeding device when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the simulation shown in FIG. It is a figure which shows an example of the simulation result of the frequency characteristic of.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • the value of the leakage inductance Lr is reduced by 30 ⁇ H from that used in the simulation of FIG. 2, and the winding resistance value Ri on the power transmission side and the winding resistance value Ris on the power reception side are set. The value increased by 3 ⁇ was used.
  • the output voltage largely fluctuates due to the fluctuation of the AC equivalent resistance value of the load circuit 27 in any degree of coupling, and the non-contact power feeding device does not perform the constant voltage output operation.
  • the control circuit of the power transmission device performs the abnormal stop process according to the operation flowchart shown in FIG. 8 or FIG. Can be determined, and when it is determined that a metallic foreign object has been mixed, the power transmission from the power transmitting apparatus to the power receiving apparatus can be stopped.
  • the resonance capacitor of the resonance circuit on the power receiving side may be omitted.
  • the non-contact power feeding device can perform a constant voltage output operation.
  • the power transmission device 2 has a capacitor connected in series with the transmission coil 14, and the resonance capacitor 22 is omitted from the resonance circuit 20 of the power reception device 3. That's fine.
  • the non-contact power feeding device according to this modification will be referred to as an SL-type non-contact power feeding device for convenience.
  • FIG. 13 is a diagram illustrating an example of the simulation result of the frequency characteristic of the output voltage when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the SL-type non-contact power feeding device.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • Lp 174 ⁇ H
  • Cr1 20 nF
  • Lop 3 Lp
  • Ro 200 ⁇ (Rac ⁇ 162.1 ⁇ ).
  • the output voltage becomes substantially constant (that is, a constant voltage output) even if the AC equivalent resistance value of the load circuit 27 changes under the condition that the degree of coupling k does not change.
  • Each output voltage of the combination of frequency and output voltage is substantially equal to each other. Therefore, even in the SL method, the contactless power supply device can maintain a substantially constant output voltage while performing a constant voltage output operation by adjusting the switching frequency and voltage of the AC power supplied to the resonance circuit on the power transmission side.
  • the frequency at which the constant voltage output operation is performed is within the frequency range in which the output voltage decreases as the frequency increases.
  • FIG. 14 shows the output voltage of the SL-type non-contact power feeding device when the voltage applied to the resonance circuit on the power transmission side is changed according to the degree of coupling in the simulation shown in FIG. It is a figure which shows an example of the simulation result of a frequency characteristic.
  • the horizontal axis represents the frequency
  • the vertical axis represents the output voltage.
  • the value of the leakage inductance Lr is reduced by 30 ⁇ H from that used in the simulation of FIG. 13, and the winding resistance value Ri on the power transmission side and the winding resistance value Ris on the power reception side are set. The value increased by 3 ⁇ was used.
  • the control circuit of the power transmission device executes the abnormal stop process according to the operation flowchart shown in FIG. 8 or FIG. Can be determined, and when it is determined that a metallic foreign object has been mixed, the power transmission from the power transmitting apparatus to the power receiving apparatus can be stopped.
  • the inventor determines that when the resistance value of the load circuit of the power receiving device is a preset value, the non-contact power feeding device according to the above-described embodiment or the modification is at a frequency at which the non-contact power supply operation is performed. The knowledge that the input impedance of the power feeding device is a minimum value was obtained.
  • FIG. 15 is a diagram illustrating an example of the relationship between the frequency characteristic of the output voltage and the frequency characteristic of the input impedance of the wireless power supply device 1 illustrated in FIG.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • the horizontal axis represents the frequency
  • the vertical axis represents the input impedance.
  • the same value as the parameter value of each circuit element used in the simulation shown in FIG. 2 was used.
  • the input impedance when the AC equivalent resistance value of the load circuit 27 is Rac becomes a minimum value at the frequency f0 at which the non-contact power feeding apparatus 1 operates at a constant voltage output. That is, at the frequency f0, the current flowing through the transmission coil 14 has a maximum value.
  • the control circuit of the power transmission device determines whether the non-contact power feeding device performs a constant voltage output operation according to the frequency characteristics of the current flowing through the transmission coil, and according to the result, the foreign object It may be determined whether or not is mixed.
  • FIG. 16 is a schematic configuration diagram of a non-contact power feeding device according to this modification.
  • the contactless power supply device 4 includes a power transmission device 42 and a power reception device 43 that transmits power from the power transmission device 42 in a contactless manner through a space.
  • the power transmission device 42 includes a power supply circuit 50, a transmission coil 54, a capacitor 55, a current detection circuit 56, a receiver 57, a gate driver 58, and a control circuit 59.
  • the power receiving device 43 includes a resonance circuit 60 having a reception coil 61 and a resonance capacitor 62, a coil 63, a rectification smoothing circuit 64 having a full-wave rectification circuit 65 and a smoothing capacitor 66, a load circuit 67, and a voltage detection circuit. 68, a constant voltage determination circuit 69, a fixed load circuit 72, and a transmitter 73.
  • the non-contact power feeding device 4 has a configuration of the power supply circuit 50, a point having a capacitor 55 and a current detection circuit 56, and a control for the power transmission device 42. A part of the control by the circuit 59 is different.
  • the power receiving device 43 is different in that it has a fixed load circuit 72. Therefore, the difference and related parts will be described below.
  • the power supply circuit 50 supplies AC power having an adjustable switching frequency and an adjustable voltage to the transmission coil 54.
  • the power supply circuit 50 includes a voltage variable power supply 51, a DC / DC converter 52, and three switching elements 53-1 to 53-3.
  • the voltage variable power supply 51 is a power supply that can supply DC power and adjust the voltage of the DC power by control from the control circuit 59.
  • the voltage variable power supply 51 may have any of various circuit configurations that can adjust the supplied voltage. While the contactless power supply device 4 is operating at a constant voltage output, the DC power supplied from the voltage variable power source 51 is converted into AC power via the switching elements 53-1 and 53-2 and supplied to the transmission coil 54. Is done. On the other hand, during the adjustment of the switching frequency for the non-contact power feeding device 4 to perform the constant voltage output operation, the DC power supplied from the voltage variable power supply 51 is supplied to the DC / DC converter 52 and the switching element 53-3. Via the transmission coil 54.
  • the input terminal of the DC / DC converter 52 is connected to the positive terminal of the voltage variable power supply 51, and the output terminal of the DC / DC converter 52 is connected to one end of the capacitor 55 via the diode D and the switching element 53-3. The Then, the DC / DC converter 52 reduces the voltage of the DC power supplied from the voltage variable power supply 51 to a predetermined voltage (for example, 5V).
  • a predetermined voltage for example, 5V
  • the switching frequency is adjusted so that the non-contact power feeding device 4 performs the constant voltage output operation
  • the voltage output from the DC / DC converter 52 is passed through the diode D, the switching element 53-3, and the capacitor 55. It is supplied to the transmission coil 54.
  • Each of the switching elements 53-1 to 53-3 can be, for example, an n-channel MOSFET.
  • the switching element 53-1 and the switching element 53-2 are connected in series between the positive terminal and the negative terminal of the voltage variable power supply 51. Further, the switching element 53-1 is connected to the positive electrode side of the voltage variable power supply 51, while the switching element 53-2 is connected to the negative electrode side of the voltage variable power supply 51.
  • the drain terminal of the switching element 53-1 is connected to the positive terminal of the voltage variable power supply 51, and the source terminal of the switching element 53-1 is connected to the drain terminal of the switching element 53-2.
  • the source terminal of the switching element 53-1 and the drain terminal of the switching element 53-2 are connected to one end of the transmission coil 54 via the capacitor 55. Further, the source terminal of the switching element 53-2 is connected to the negative terminal of the voltage variable power supply 51 and the other end of the transmission coil 54 via the current detection circuit 56.
  • drain terminal of the switching element 53-3 is connected to the output terminal of the DC / DC converter 52, and the source terminal of the switching element 53-3 is connected to one end of the transmission coil 54 via the capacitor 55.
  • the gate terminal of each switching element is connected to the gate driver 58.
  • the gate driver 58 keeps the switching element 53-3 off according to the control signal from the control circuit 59. Further, the gate driver 58 alternately switches on / off the switching element 53-1 and the switching element 53-2 at a switching frequency at which a constant voltage output operation is performed in accordance with a control signal from the control circuit 59. That is, when the switching element 53-1 is turned on and the switching element 53-2 is turned off, power is supplied from the voltage variable power source 51 to the capacitor 55 via the switching element 53-1, and the capacitor 55 is charged. As a result, a current flows to the transmission coil 54. On the other hand, when the switching element 53-1 is turned off and the switching element 53-2 is turned on, the capacitor 55 is discharged, and a current flows from the capacitor 55 to the transmission coil.
  • the gate driver 58 keeps the switching element 53-1 off according to the control signal from the control circuit 59, Instead, the switching element 53-3 and the switching element 53-2 are alternately switched on / off at the switching frequency in accordance with a control signal from the control circuit 59.
  • the capacitor 55 is connected between the transmission coil 54 and the power supply circuit 50. And the capacitor
  • the resonance frequency of the transmission coil 54 and the capacitor 55 is the resonance frequency and the switching frequency of the resonance circuit 60 of the power receiving device 43 so that the transmission coil 54 and the capacitor 55 do not operate as a resonance circuit in a frequency range in which the switching frequency is adjusted. It is preferable that the capacitance of the capacitor 55 is set so that the frequency becomes smaller than the lower limit frequency of the frequency range to be adjusted.
  • the current detection circuit 56 is connected between the transmission coil 54 and the power supply circuit 50 and measures the current flowing through the transmission coil 54. Then, the current detection circuit 56 outputs the measured current value to the control circuit 59.
  • the current detection circuit 56 may be connected to the transmission coil 54 in parallel with the capacitor 55 together with a shunt capacitor (not shown) connected in series to the current detection circuit 56. In this case, the current detection circuit 56 can indirectly measure the current flowing through the transmission coil 54.
  • the constant voltage determination circuit 69 of the power receiving device 43 includes the determination circuit 70 and the switching element 71 similar to the determination circuit 30 and the switching element 31 according to the above-described embodiment.
  • the determination circuit 70 of the constant voltage determination circuit 69 is configured so that the measured value of the output voltage from the resonance circuit 60 by the voltage detection circuit 68 is maintained within the allowable voltage range, that is, the contactless power supply device 4 is fixed.
  • the switching element 71 is turned on so that the output voltage from the resonance circuit 60 is supplied to the load circuit 67 via the rectifying / smoothing circuit 64.
  • the determination circuit 70 turns off the switching element 71 so that the output voltage from the resonance circuit 60 is not supplied to the load circuit 67.
  • the fixed load circuit 72 is connected to the rectifying / smoothing circuit 64 in parallel with the load circuit 67, and the load serving as a reference for the load circuit 67 (for example, as shown in FIG. 9) while the switching frequency is adjusted.
  • a load substantially equal to the simulation Rac) is provided to the power receiving apparatus 43.
  • the fixed load circuit 72 includes a resistor R1 that is connected in parallel to the load circuit 67 with respect to the rectifying and smoothing circuit 64 and has a resistance value corresponding to a load serving as a reference for the load circuit 67.
  • the resistor R1 is connected in series with a switching element SW1 such as an n-channel MOSFET.
  • the fixed load circuit 72 includes a resistor R2 and a switching element SW2 such as an npn-type bipolar transistor connected in series from the positive electrode side between both output terminals of the rectifying and smoothing circuit 64.
  • the resistor R2 and the switching element SW2 are connected in parallel with the resistor R1.
  • the gate terminal of the switching element SW1 is connected between the resistor R2 and one end (in this example, the collector terminal) of the switching element SW2.
  • the base terminal of the switching element SW2 is connected to the positive terminal of the rectifying / smoothing circuit 64 via the resistor R3 and the reverse-biased Zener diode ZD.
  • the output voltage of the resonance circuit 60 is higher than the breakdown voltage of the Zener diode ZD.
  • the Zener diode ZD and the resistor are connected to the base terminal of the switching element SW2.
  • a current is supplied via R3, and the switching element SW2 is turned on.
  • the voltage applied to the gate terminal of the switching element SW1 decreases, and the switching element SW1 is turned off. Therefore, the output voltage from the resonance circuit 60 is not applied to the resistor R1.
  • the power transmission device 42 since the voltage of the power supplied from the DC / DC converter 52 to the transmission coil 54 is low while the switching frequency is adjusted for the non-contact power supply device 4 to perform the constant voltage output operation, the power transmission device 42 The power supplied to the power receiving device 43 also decreases. For this reason, the output voltage from the resonance circuit 60 also decreases, and becomes lower than the breakdown voltage of the Zener diode ZD. As a result, the switching element SW2 is turned off, and accordingly, the voltage applied to the gate terminal of the switching element SW1 rises, and the switching element SW1 is turned on. Therefore, the output voltage from the resonance circuit 60 is applied to the resistor R1. As a result, a fixed load possessed by the resistor R1 is provided to the power receiving device 43.
  • control circuit 59 of the power transmission device 42 While the non-contact power feeding device 4 is performing the constant voltage output operation, the measured value of the output voltage from the resonance circuit 60 of the power receiving device 43 is within a predetermined allowable range, as in the above embodiment.
  • the voltage variable power supply 51 of the power supply circuit 50 is controlled so as to supply a DC voltage having a voltage corresponding to the switching frequency to the transmission coil 54.
  • the control circuit 59 keeps the switching element 53-3 off through the gate driver 58, and switches on / off the switching elements 53-1 and 53-2 at the switching frequency at which the constant voltage output operation is performed.
  • the control circuit 59 Power is supplied from the DC / DC converter 52 to the transmission coil 54 by keeping the switching element 53-1 off via the driver 58 and switching the switching elements 53-3 and 53-2 on and off alternately. So that Further, the control circuit 59 controls the voltage variable power supply 51 so that the voltage supplied from the DC / DC converter 52 to the transmission coil 54 becomes a predetermined value. Accordingly, the control circuit 59 reduces the power supplied from the power transmission device 42 to the power reception device 43 until the voltage is applied to the resistor R1 of the fixed load circuit 72 of the power reception device 43.
  • the control circuit 59 monitors the measured value of the current flowing through the transmission coil 54 by the current detection circuit 56 while changing the switching frequency, and detects the switching frequency at which the measured value of the current becomes the maximum value.
  • the switching frequency at which the measured value of the current flowing through the transmission coil 54 becomes a maximum value is a frequency at which the input impedance of the contactless power supply device 4 becomes a minimum value, such as the frequency f0 shown in FIG. This is the frequency at which the constant voltage output operates. Therefore, when the switching frequency at which the measured value of the current flowing through the transmission coil 54 reaches a maximum value is detected, the control circuit 59 supplies power from the voltage variable power source 51 to the transmission coil 54 at the switching frequency.
  • the switching elements 53-1 and 53-2 are turned on / off via the gate driver 58.
  • the control circuit 59 turns off the switching element 53-3.
  • the control circuit 59 can cause the non-contact power feeding device 4 to perform a constant voltage output operation.
  • the control circuit 59 generates a DC voltage having a voltage corresponding to the switching frequency so that the measured value of the output voltage from the resonance circuit 60 of the power receiving device 43 is within a predetermined allowable range.
  • the voltage variable power supply 51 of the power supply circuit 50 is controlled so as to be supplied to the power supply circuit.
  • the non-contact power feeding device 4 does not operate at a constant voltage, and as a result, as shown in a lower graph 1511 in FIG.
  • there is no minimum value of input impedance that is, the input impedance increases monotonously, for example, as the switching frequency increases. Therefore, when the switching frequency is adjusted, even if the measured value of the current flowing through the transmission coil 54 by the current detection circuit 56 is monitored, if the switching frequency at which the measured current value reaches the maximum value is not detected, the transmission coil It is assumed that a metallic foreign object has entered between 54 and the receiving coil 61.
  • the control circuit 59 detects a switching frequency at which the measured value of the current flowing through the transmission coil 54 by the current detection circuit 56 becomes a maximum value in step S103 in the operation flowchart of FIG.
  • the non-contact power feeding device 4 performs a constant voltage output operation.
  • the control circuit 59 does not perform the constant voltage output operation of the non-contact power feeding device 4. What is necessary is just to determine with the metal foreign material having mixed between the transmission coil 54 and the receiving coil 61.
  • control circuit 59 may determine whether or not a metallic foreign object has entered between the transmission coil 54 and the reception coil 61 according to the operation flowchart shown in FIG.
  • non-contact power feeding device shown in FIG. 16 may be configured to follow the SPL method or SL method, similarly to the non-contact power feeding device shown in FIG.
  • control circuit of the power transmission device can detect the switching frequency at which the non-contact power feeding device operates at a constant voltage by monitoring the current flowing through the transmission coil of the power transmission device, and the transmission coil. It can be detected that a metal foreign object is mixed between the receiving coil and the receiving coil.
  • the receiving coil and the resonance capacitor may be connected in series as in the case of the SS type non-contact power feeding device. Also in this case, since the non-contact power feeding device can perform a constant voltage output operation, the switching frequency at which the non-contact power feeding device performs a constant voltage output operation can be detected as in the above-described embodiment or modification. , It can be detected that a metal foreign object is mixed between the transmitting coil and the receiving coil.
  • FIG. 17 is a schematic configuration diagram of a contactless power feeding device according to this modification.
  • the contactless power supply device 5 includes a power transmission device 2 and a power reception device 44 that transmits power from the power transmission device 2 in a contactless manner through a space.
  • the power transmission device 2 includes a power supply circuit 10, a transmission coil 14, a receiver 15, gate drivers 16-1 and 16-2, and a control circuit 17.
  • the power receiving device 44 includes a resonance circuit 20 a including the reception coil 21 and the resonance capacitor 22, a rectifying / smoothing circuit 24, a load circuit 27, a voltage detection circuit 28, a constant voltage determination circuit 29, and a transmitter 32.
  • the contactless power supply device 5 according to this modification is different from the contactless power supply device 1 shown in FIG. 5 in that the configuration of the resonance circuit 20a and the coil 23 are omitted. In the following, this difference and related points will be described.
  • the reception coil 21 and the resonance capacitor 22 are connected in series.
  • the electric power received through the receiving coil 21 is output to the rectifying / smoothing circuit 24 through the resonant capacitor 22.
  • the resonance circuit 20a resonates in series, and therefore the coil 23 may be omitted.
  • the non-contact power feeding device 5 does not have to use the resonance of the transmission coil 14 on the power transmission side. That is, the control circuit 17 of the power transmission device 2 may control the power supply circuit 10 so that AC power having a switching frequency at which the transmission coil 14 does not resonate is supplied to the transmission coil 14 as in the above embodiment.
  • FIG. 18 is a diagram illustrating an example of a simulation result of the frequency characteristics of the output voltage when the voltage applied to the transmission coil 14 is changed according to the degree of coupling in the non-contact power feeding device 5 according to this modification.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • Lp 174 ⁇ H
  • Cp 20 nF
  • Ro 10 ⁇ (Rac ⁇ 8.1 ⁇ ).
  • the output voltage is changed even if the AC equivalent resistance value of the load circuit 27 changes for each value of the coupling degree under the condition that the coupling degree k does not vary.
  • the output voltages at points 1811 to 1813 are substantially equal to each other.
  • the non-contact power feeding device 5 is also applied to the transmission coil 14 regardless of which of the resistance value and the degree of coupling of the load circuit 27 varies as long as no foreign matter is mixed between the transmission coil 14 and the reception coil 21. It can be seen that the output voltage can be kept substantially constant by appropriately adjusting the switching frequency and voltage of the alternating current power.
  • FIG. 19 is a diagram illustrating an example of the simulation result of the frequency characteristics of the output voltage for the non-contact power supply device 5 when foreign matter is mixed.
  • the horizontal axis represents frequency
  • the vertical axis represents output voltage.
  • a graph 1901 represents a frequency characteristic of the output voltage when the degree of coupling is 0.15, the AC equivalent resistance value of the load circuit 27 is Rac, and the voltage applied to the transmission coil 14 is Vin when foreign matter is mixed.
  • the value of the leakage inductance Lr is reduced by 50 ⁇ H from that used in the simulation of FIG. 18 as the parameter of each circuit element, and the winding resistance value Ri on the power transmission side and A value obtained by increasing the winding resistance Ris on the power receiving side by 3 ⁇ was used.
  • the output voltage largely fluctuates due to the fluctuation of the AC equivalent resistance value of the load circuit 27 in any degree of coupling, and the non-contact power feeding device 5 does not perform the constant voltage output operation. Furthermore, it can be seen that the waveform of the output voltage is shifted to the high frequency side regardless of the degree of coupling due to the inclusion of foreign matter.
  • the control circuit 17 of the power transmission device 2 executes the abnormal stop process according to the operation flowchart shown in FIG. 8 or FIG.
  • the power transmission from the power transmission device 2 to the power reception device 44 can be stopped when it is determined that the metal foreign matter is mixed.
  • the power transmission device 2 has a capacitor connected in series with the transmission coil 14, and the control circuit 17 has a switching frequency at which the transmission coil 14 and a resonance circuit composed of the capacitor resonate.
  • the power supply circuit 10 may be controlled so that AC power is supplied to the transmission coil 14.
  • the non-contact power supply device 5 operates as an SS-type non-contact power supply device.
  • the control circuit 17 determines whether or not a metal foreign object has entered between the transmission coil 14 and the reception coil 21 by executing an abnormal stop process according to the operation flowchart shown in FIG. 8 or FIG. When it is determined that a metallic foreign object has been mixed, the power transmission from the power transmission device 2 to the power reception device 44 can be stopped.
  • the power receiving device 43 receives a reception circuit instead of the resonance circuit 60 in which the reception coil 61 and the resonance capacitor 62 are connected in parallel. You may have a resonance circuit where a coil and a resonance capacitor are connected in series. The coil 63 connected between the resonance circuit and the rectifying / smoothing circuit 64 may be omitted. In this case as well, the non-contact power feeding device performs a constant voltage output operation when no foreign matter is mixed between the transmission coil and the reception coil, and does not perform a constant voltage output operation when foreign matter is mixed between the transmission coil and the reception coil. .
  • control circuit 59 of the power transmission device 42 executes the abnormal stop process similar to that of the non-contact power supply device 4 shown in FIG. 16 to determine whether or not a metal foreign object has entered between the transmission coil and the reception coil. When it is determined that a metallic foreign object is mixed, the power transmission from the power transmission device 42 to the power reception device 43 can be stopped.
  • the power supply circuit that supplies AC power to the transmission coil is a circuit that can variably adjust the switching frequency and the voltage applied to the transmission coil. You may have a circuit structure different from a modification.
  • 20A and 20B are circuit diagrams of power supply circuits according to modifications.
  • the power supply circuit 110 shown in FIG. 20A includes a power source 11, a power factor correction circuit 12, two switching elements 13-1, a switching element 13-2, and a transmission coil 14, which are connected in series. And the capacitor 131. Also in this modification, each switching element can be, for example, an n-channel MOSFET. Further, the power factor correction circuit 12 can be the same as the power factor improvement circuit 12 in the above embodiment, for example.
  • the switching element 13-1 and the switching element 13-2 are connected in series between the positive terminal and the negative terminal of the power supply 11. Further, the switching element 13-1 is connected to the positive electrode side of the power supply 11, while the switching element 13-2 is connected to the negative electrode side of the power supply 11.
  • the drain terminal of the switching element 13-1 is connected to the positive terminal of the power source 11 via the power factor correction circuit 12, and the source terminal of the switching element 13-1 is connected to the drain terminal of the switching element 13-2.
  • the source terminal of the switching element 13-2 is connected to the negative terminal of the power supply 11 via the power factor correction circuit 12.
  • the source terminal of the switching element 13-1 and the drain terminal of the switching element 13-2 are connected to one end of the transmission coil 14, and the source terminal of the switching element 13-2 is connected to the transmission coil 14 via the capacitor 131. Connected to the other end.
  • the gate terminal of each switching element is connected to the gate driver 16-2.
  • the gate driver 16-2 may alternately switch on / off the switching element 13-1 and the switching element 13-2 in accordance with a control signal from the control circuit 17. That is, when the switching element 13-1 is turned on and the switching element 13-2 is turned off, a current flows from the power source 11 to the transmission coil 14 via the power factor correction circuit 12 and the switching element 13-1, and the capacitor 131 is charged. On the other hand, when the switching element 13-1 is turned off and the switching element 13-2 is turned on, the capacitor 131 is discharged, and a current flows from the capacitor 131 via the transmission coil 14 and the switching element 13-2. Therefore, in this modification, the control circuit 17 switches on / off of the switching element 13-1 and the switching element 13-2 via the gate driver 16-2 in accordance with the determination information received from the power receiving device 3. What is necessary is just to control a switching frequency.
  • the power supply circuit 120 shown in FIG. 20B is in series with the power source 11, the power factor correction circuit 12, the two switching elements 13-1, the switching element 13-2, and the transmission coil 14. And a capacitor 131 connected to the capacitor.
  • the power supply circuit 120 compared to the power supply circuit 110, one end of the transmission coil 14 is connected to the positive terminal of the power supply 11 via the power factor correction circuit 12, and the other end of the transmission coil 14 is a capacitor 131.
  • the source terminal of the switching element 13-1 and the drain terminal of the switching element 13-2 are connected to the source terminal of the switching element 13-1 and the drain terminal of the switching element 13-2.
  • the gate driver 16-2 may switch on / off of the switching element 13-1 and the switching element 13-2 alternately according to the control signal from the control circuit 17.
  • the modification shown in FIG. 17, and the modification shown in FIGS. 20A and 20B instead of the power source and the power factor correction circuit, as shown in FIG. 16, A voltage variable power supply may be used.
  • the power source and the power factor correction circuit in the embodiment shown in FIG. 5 may be used instead of the voltage variable power source.
  • the voltage variable power supply 51 may be configured so that power having a predetermined voltage while the switching frequency is adjusted can be supplied to the transmission coil 54. In this case, the DC / DC converter 52 and the switching element 53-3 may be omitted.
  • the receiver and the transmitter each have determination information. It suffices to have a communication circuit that can communicate a signal including the wire.
  • Non-contact power feeding device 2 42 Power transmission device 10, 110, 120 Power supply circuit 11 Power source 12 Power factor correction circuit 51 Voltage variable power source 52 DC / DC converter 13-1 to 13-4, 53-1 to 53-3 Switching element 14, 54 Transmitting coil 55 Capacitor 56 Current detection circuit 15, 57 Receiver 16-1, 16-2, 58 Gate driver 17, 59 Control circuit 3, 43, 44 Power receiving device 20, 20a, 60 Resonance Circuit 21, 61 Receiving coil 22, 62 Resonance capacitor 23, 63 Coil 24, 64 Rectification smoothing circuit 25, 65 Full wave rectification circuit 26, 66 Smoothing capacitor 27, 67 Load circuit 28, 68 Voltage detection circuit 29, 69 Constant voltage determination Circuit 30, 70 Judgment circuit 31, 71 Switching element 72 Fixed load times 32,73 transmitter 111 AC power source 131 capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

非接触給電装置1の受電装置3は、送電装置2からの電力を受信する受信コイル21を有する共振回路20と、共振回路20から出力された電力を整流する整流回路24とを有する。一方、送電装置2は、受電装置3へ電力を供給する送信コイル14と、送信コイル14に対して、調整可能なスイッチング周波数を持つ交流電力を供給する電力供給回路10と、スイッチング周波数を所定の周波数領域にわたって変化させても非接触給電装置1が定電圧出力動作しない場合、電力供給回路10から送信コイル14への電力供給を停止する制御回路17を有する。

Description

非接触給電装置及び異常停止方法
 本発明は、非接触給電装置、及び、非接触給電装置における異常停止方法に関する。
 従来より、金属の接点などを介さずに、空間を通じて電力を伝送する、いわゆる非接触給電(ワイヤレス給電とも呼ばれる)技術が研究されている。
 非接触給電技術の一つとして、電磁誘導により給電する方式が知られている。電磁誘導により給電する方式では、一次直列二次並列コンデンサ方式(以下、SP方式と呼ぶ)が利用される(例えば、非特許文献1を参照)。SP方式では、一次側(送電側)に、トランスの一部として動作する送信コイルと直列にコンデンサが接続され、二次側(受電側)に、トランスの他の一部として動作する受信コイルと並列にコンデンサが接続される。
 SP方式では、受電側の受信コイル及びコンデンサにより構成される共振回路が並列共振するために、共振回路からの出力は定電流出力となる。そのため、受電側で定電圧出力となる、一次直列二次直列コンデンサ方式(以下、SS方式と呼ぶ)と比較して、SP方式の方が一般的に制御が難しい。これは、一般的な電子機器は定電圧で制御されるためである。
 また、SP方式において、受電側の共振回路のコイルに対して直列に接続されるリアクトルを設ける技術が提案されている(例えば、非特許文献1及び特許文献1を参照)。なお、この技術による方式は、SPL方式と呼ばれることもある。本明細書でも、この方式をSPL方式と呼ぶ。
 このような様々な非接触給電装置において、送電側の送信コイルと受電側の受信コイルとの間に金属製の異物が入り込んでしまうことがある。このような場合、電力伝送中にその異物が誘導加熱により加熱されることで、発火したり、装置のカバーの変形が生じるといった故障が生じることがある。そこで、送信コイルと受信コイルとの間に入り込んだ金属製の異物を検出する技術が提案されている(例えば、非特許文献2を参照)。
特開2015-42051号公報
渡辺他、「一方向非接触給電から拡張容易な双方向非接触給電システム」、電気学会論文誌D、IEEJ Transactions on Industry Applications、Vol.133、No.7、pp.707-713、2013年 駒崎他、「電気自動車用非接触給電装置のギャップ中の異物検知法」、電気学会産業応用部門大会、2012年
 非特許文献2には、異物検知方法として、(I)送信コイルと受信コイルの電圧比から推定されるトランス効率と実際の効率を比較する方法、(II)受電側の装置が無い状態で送信コイルに定電圧を印加したときの電流値を比較する方法、(III)伝送損失を定時でサンプリングして比較する方法、の3通りの手法が提案されている。このうち、方法(I)及び(II)は、電力伝送の開始前に混入した異物を検知するための方法であり、方法(III)は、電力伝送の途中で混入した異物を検知するための方法である。しかし、これらの方法は、送信コイルと受信コイル間の結合度が変化しないことが前提となっており、電力伝送中に、例えば、送電側の装置と受電側の装置の相対的な位置関係が変化して結合度が変化する場合には、異物が混入したか、結合度が変化したのかを判別することはできない。
 そこで、本発明は、送電側の装置の送信コイルと受電側の装置の受信コイル間の結合度が変化する場合でも、送信コイルと受信コイル間に混入した異物による故障を防止できる非接触給電装置を提供することを目的とする。
 本発明の一つの形態として、送電装置と、送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置が提供される。この非接触給電装置において、受電装置は、送電装置からの電力を受信する受信コイルを有する共振回路と、共振回路から出力される電力を整流する整流回路とを有し、送電装置は、受電装置へ電力を供給する送信コイルと、送信コイルに対して、調整可能なスイッチング周波数を持つ交流電力を供給する電力供給回路と、電力供給回路から送信コイルに供給される交流電力のスイッチング周波数を所定の周波数領域にわたって変化させても非接触給電装置が定電圧出力動作しない場合、電力供給回路から送信コイルへの電力供給を停止する制御回路とを有する。
 係る構成を有することにより、この非接触給電装置は、送電側の装置の送信コイルと受電側の装置の受信コイル間の結合度が変化する場合でも、送信コイルと受信コイル間に混入した異物による故障を防止できる。
 この非接触給電装置において、受電装置は、共振回路と整流回路の間に、受信コイルと直列に接続されるコイルをさらに有するとともに、受電装置の共振回路は、受信コイルと並列に接続される共振コンデンサをさらに有し、送電装置の制御回路は、送信コイルに対して、送信コイルが共振しないスイッチング周波数を持つ交流電力が供給されるように電力供給回路を制御することが好ましい。
 係る構成を有することで、この非接触給電装置は、定電圧出力動作するか否かで、送信コイルと受信コイルとの間に異物が混入したか否かを判定できるので、送信コイルと受信コイル間に異物が混入したか否かを正確に判定できる。
 あるいは、この非接触給電装置において、受電装置の共振回路は、受信コイルと直列に接続される共振コンデンサをさらに有することが好ましい。
 係る構成を有することで、この非接触給電装置は、定電圧出力動作するか否かで、送信コイルと受信コイルとの間に異物が混入したか否かを判定できるので、送信コイルと受信コイル間に異物が混入したか否かを正確に判定できる。
 この非接触給電装置において、受電装置は、共振回路から出力される電力の出力電圧を測定してその出力電圧の測定値を求める電圧検出回路と、出力電圧の測定値に基づいて、非接触給電装置が定電圧出力動作しているか否か、及び、共振回路の出力電圧の測定値が所定の電圧の許容範囲内に含まれるか否かを判定する定電圧判定回路と、非接触給電装置が定電圧出力動作しているか否か、及び、出力電圧の測定値が所定の電圧の許容範囲内に含まれるか否かを表す判定情報を含む信号を送電装置へ送信する送信器とをさらに有することが好ましい。一方、送電装置は、その判定情報を含む信号を受信する受信器をさらに有し、送電装置の制御回路は、電力供給回路から送信コイルに供給される交流電力のスイッチング周波数を所定の周波数領域にわたって変化させても、非接触給電装置が定電圧出力動作していることを示す判定情報を受信しなかった場合、電力供給回路から送信コイルへの電力供給を停止することが好ましい。
 係る構成を有することで、この非接触給電装置は、送信コイルと受信コイル間に混入した異物による故障を確実に防止できる。
 この場合において、受電装置の定電圧判定回路は、所定時間経過する間の出力電圧の測定値の変化量を求め、受電装置の送信器は、判定情報に出力電圧の測定値の変化量を含めることが好ましい。そして送電装置の制御回路は、電力供給回路から送信コイルに供給される交流電力のスイッチング周波数を所定量高くなるよう変化させたときに、判定情報に含まれる出力電圧の測定値の変化量が、出力電圧の測定値が上昇していることを示している場合、電力供給回路から送信コイルへの電力供給を停止することが好ましい。
 係る構成を有することで、この非接触給電装置は、送信コイルと受信コイル間に混入した異物による故障を確実に防止できる。
 また、この非接触給電装置において、受電装置の定電圧判定回路は、共振回路と接続される回路の抵抗値を変更しても、出力電圧の測定値が略一定となる場合、非接触給電装置が定電圧出力動作していると判定することが好ましい。
 係る構成を有することで、この非接触給電装置は、送信コイルと受信コイルの間に異物が混入していない場合において非接触給電装置が定電圧出力動作しているか否かを正確に判定できる。
 あるいは、この非接触給電装置において、送電装置は、送信コイルに流れる電流を測定してその電流の測定値を求める電流検出回路をさらに有し、送電装置の制御回路は、スイッチング周波数を所定の周波数領域にわたって変化させながら、電流の測定値を監視して、電流の測定値が極大値となるスイッチング周波数が検出されるか否か判定し、電流の測定値が極大値となるスイッチング周波数が検出されなかった場合、電力供給回路から送信コイルへの電力供給を停止することが好ましい。
 係る構成を有することで、この非接触給電装置は、送信コイルと受信コイル間に混入した異物による故障を確実に防止できる。
 本発明の他の形態によれば、送電装置と、送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置における、異常停止方法が提供される。この異常停止方法において、非接触給電装置の受電装置は、送電装置からの電力を受信する受信コイルを有する共振回路と、共振回路から出力される電力を整流する整流回路と、共振回路と整流回路の間に、受信コイルと直列に接続されるコイルとを有し、送電装置は、受電装置へ電力を供給する送信コイルと、送信コイルに対して、調整可能なスイッチング周波数を持つ交流電力を供給する電力供給回路とを有する。そして異常停止方法は、電力供給回路から送信コイルに供給される交流電力のスイッチング周波数を所定の周波数領域にわたって変化させるステップと、交流電力のスイッチング周波数を所定の周波数領域にわたって変化させても非接触給電装置が定電圧出力動作しない場合、電力供給回路から送信コイルへの電力供給を停止するステップとを含む。
 係る構成を有することにより、この異常停止方法は、送電側の装置の送信コイルと受電側の装置の受信コイル間の結合度が変化する場合でも、送信コイルと受信コイル間に混入した異物による故障を防止できる。
図1は、SPL方式による非接触給電装置の等価回路図である。 図2は、SPL方式の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図3は、異物混入時のSPL方式の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図4Aは、異物混入時のSPL方式の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の他の一例を示す図である。 図4Bは、異物混入時のSPL方式の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の他の一例を示す図である。 図5は、本発明の一つの実施形態に係る非接触給電装置の概略構成図である。 図6は、本実施形態による非接触給電装置の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図7は、図6に示されたシミュレーションにおいて、結合度に応じて送信コイルに印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図8は、異常停止処理の動作フローチャートである。 図9は、異物混入時の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図10は、変形例による、異常停止処理の動作フローチャートである。 図11は、SPL方式の非接触給電装置に関する図2に示されたシミュレーションにおいて、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図12は、図11に示されたシミュレーションにおいて、異物混入時における、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図13は、SL方式の非接触給電装置について、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図14は、図13に示されるシミュレーションにおいて、異物混入時における、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図15は、図5に示された実施形態による、非接触給電装置の出力電圧の周波数特性と入力インピーダンスの周波数特性との関係の一例を示す図である。 図16は、変形例による、非接触給電装置の概略構成図である。 図17は、他の変形例による、非接触給電装置の概略構成図である。 図18は、図17に示される変形例による非接触給電装置について、結合度に応じて送信コイルに印加する電圧を変化させたときの出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図19は、異物混入時における、図17に示される変形例の非接触給電装置についての出力電圧の周波数特性のシミュレーション結果の一例を示す図である。 図20Aは、変形例による、電力供給回路の回路図である。 図20Bは、変形例による、電力供給回路の回路図である。
 以下、本発明の一つの実施形態による非接触給電装置を、図を参照しつつ説明する。この非接触給電装置は、SPL方式と同様に、受電側の共振回路の受信コイルと直列に接続されるコイルを有するが、SPL方式と異なり、送電側の送信コイルに、その送信コイルが共振しない周波数を持つ交流電力を供給するとともに、その周波数を調整して、送信コイルと受信コイル間の結合度が変化しても定電圧出力動作することを可能とする。そしてこの非接触給電装置は、送信コイルに供給される交流電力の周波数を調整しても、定電圧出力動作とならない場合に、送信コイルと受信コイルとの間に金属製の異物が混入したと判定して、電力伝送を停止する。
 最初に、本発明による非接触給電装置の理解を容易にするために、SPL方式による非接触給電装置による、定電圧出力動作と異物混入との関係について説明する。
 図1は、SPL方式による非接触給電装置の等価回路図である。この等価回路100において、送電側の共振回路の送信コイルと受電側の共振回路の受信コイルとが結合して、n:1の理想トランスを形成するものとする。Cr1は、送電側の共振回路における、送信コイルと直列接続されるコンデンサの静電容量である。Lr及びLmは、送電側の共振回路の漏れインダクタンス及び励磁インダクタンスである。なお、送電側の共振回路の送信コイルのインダクタンスLpは、(Lm+Lr)と等しく、送信コイルと受信コイル間の結合度をkとすると、Lr=(1-k)Lp、Lm=kLpである。また、Riは、送電側の巻線抵抗値であり、Risは、受電側の巻線抵抗値である。Cpは、受電側の共振回路における、受信コイルと並列接続されるコンデンサの静電容量である。Lopは、受信コイルと直列接続されるコイルのインダクタンスである。そしてRacは、負荷回路の交流等価抵抗値であり、負荷回路の抵抗値Roを用いてRac=(8/π2)×Roで表される。
 等価回路100より、SPL方式の非接触給電装置のF行列Fspl(s,k,Rac)は、次式で表される。
Figure JPOXMLDOC01-appb-M000001
ここでs=j2πfである。ただしfは、送電側の共振回路に供給される交流電力の周波数である。またkは送信コイルと受信コイル間の結合度である。
 F行列の定義から、SPL方式の非接触給電装置の出力利得Gspl(s,k,Rac)は、次式で表される。
Figure JPOXMLDOC01-appb-M000002
ここでVinは、送電側の共振回路に供給される交流電力の電圧(振幅)であり、Fspl(s,k,Rac)0,0は、(1)式で表されたF行列における左上の要素を表す。
 図2は、(2)式に従って算出される、SPL方式の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図2において、横軸は、周波数を表し、縦軸は、出力電圧を表す。グラフ201は、結合度k=0.15、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ202は、結合度k=0.15、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。また、グラフ203は、結合度k=0.3、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ204は、結合度k=0.3、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。さらに、グラフ205は、結合度k=0.6、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ206は、結合度k=0.6、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。なお、この例では、Lp=174μH、Cr1=Cp=20nF、Lop=3Lp、Ri=Ris=0.04Ω、n=1、Vin=200V、Ro=200Ω(Rac≒162.1Ω)とした。
 図2においてポイント211~216で示されるように、結合度kが一定となる条件下で負荷回路の交流等価抵抗値が変化しても出力電圧が略一定となる(すなわち、結合度kが一定の場合に定電圧出力となる)、周波数と出力電圧の組み合わせは6通りある。このうち、低周波数側のポイント211~213は、送電側の共振回路の共振周波数に近く、送電側の共振回路の共振に影響される。一方、高周波数側のポイント214~216は、送電側の共振回路の共振周波数よりもある程度高く、送電側の共振回路の共振による影響は少ない。なお、一般に、SPL方式では、送電側の共振回路も共振させるので、非接触給電装置を定電圧出力動作させるためには、ポイント211~213に示されるような周波数を持つ交流電力を送電側の共振回路に供給することとなる。
 ここで、送信コイルと受信コイルとの間に、金属製の異物が混入したとする。そのような異物の混入により、漏れインダクタンスLr及び送電側の巻線抵抗値Ri及び受電側の巻線抵抗値Risが影響される。例えば、異物の混入により、漏れインダクタンスLrが50μH減少し、送電側の巻線抵抗値Ri及び受電側の巻線抵抗値Risがそれぞれ3Ω増加すると仮定する。この場合、異物混入時のSPL方式の非接触給電装置のF行列Fp5(s,k,Rac)は、次式で表される。
Figure JPOXMLDOC01-appb-M000003
 したがって、異物混入時の出力利得Gp5(s, k, Rac)は、次式で表される。
Figure JPOXMLDOC01-appb-M000004
ここでFp5(s,k,Rac)0,0は、(3)式で表されたF行列における左上の要素を表す。
 図3は、(4)式に従って算出される、異物混入時のSPL方式の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図3において、横軸は、周波数を表し、縦軸は、出力電圧を表す。グラフ301は、結合度k=0.15、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ302は、結合度k=0.15、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。また、グラフ303は、比較として、異物が混入しておらず(すなわち、(2)式に従って算出される)、結合度k=0.15、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ304は、比較として、異物が混入しておらず、結合度k=0.15、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。なお、この例では、各回路素子のパラメータとして、図2のシミュレーションと同じ値を使用した。
 図3においてポイント311及び312で示されるように、異物が混入していない場合には、負荷回路の抵抗値が変化しても出力電圧が略一定となる周波数が存在する。これに対して、異物が混入している場合は、負荷回路の抵抗値の変化によらず、出力電圧が略一定となる周波数が存在しない。また、ポイント313で示されるように、負荷回路の抵抗値が変化した場合の出力電圧の差が最小となる周波数は、ポイント311及び312に示される、異物が混入していない場合に出力電圧が略一定となる周波数と異なっている。
 図4A及び図4Bは、(4)式に従って算出される、異物混入時のSPL方式の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の他の一例を示す図である。図4A及び図4Bにおいて、横軸は、周波数を表し、縦軸は、出力電圧を表す。なお、図4Aは、送電側の共振回路が共振する周波数帯域における出力電圧の周波数特性を表し、図4Bは、送電側の共振回路が共振する周波数帯域よりも高い周波数帯域における出力電圧の周波数特性を表す。グラフ401は、結合度k=0.6、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ402は、結合度k=0.6、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。また、グラフ403は、比較として、異物が混入しておらず(すなわち、(2)式に従って算出される)、結合度k=0.6、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ404は、比較として、異物が混入しておらず、結合度k=0.6、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。なお、この例では、各回路素子のパラメータとして、図2のシミュレーションと同じ値を使用した。
 図4A及び図4Bにおいてポイント411及び412で示されるように、異物が混入していない場合には、負荷回路の抵抗値が変化しても出力電圧が略一定となる周波数が存在する。これに対して、異物が混入している場合は、負荷回路の抵抗値の変化によらず、出力電圧が略一定となる周波数が存在しない。また、ポイント413で示されるように、負荷回路の抵抗値が変化した場合の出力電圧の差が最小となる周波数は、ポイント411及び412に示される、異物が混入していない場合に出力電圧が略一定となる周波数と異なっている。
 図3、図4A及び図4Bで示されるように、送信コイルと受信コイルの間に異物が混入しておらず、かつ、送信コイルと受信コイル間の結合度が変化する場合には、送信コイルに供給される交流電力の周波数を調整することで、非接触給電装置は定電圧出力動作を継続できる。これに対して、送信コイルと受信コイルの間に異物が混入した場合には、送信コイルに供給される交流電力の周波数を調整しても、非接触給電装置は定電圧出力動作を行うことができない。
 そこで、本発明の実施形態による非接触給電装置は、定電圧出力動作を継続できなくなった場合に、送信コイルに供給される交流電力の周波数を調整して、非接触給電装置が定電圧出力動作する周波数を探索する。そして非接触給電装置が定電圧出力動作する周波数がなければ、非接触給電装置は、送信コイルと受信コイルとの間に異物が混入したと判定し、電力伝送を停止する。一方、非接触給電装置が定電圧出力動作する周波数があれば、非接触給電装置は、送信コイルと受信コイル間の結合度が変化したものとして、その定電圧出力動作する周波数にて電力伝送を継続する。これにより、この非接触給電装置は、送信コイルと受信コイル間の結合度が変化する場合でも、送信コイルと受信コイル間に混入した異物を検出できる。
 なお、本明細書において、定電圧出力動作とは、非接触給電装置に接続される負荷回路の仕様などに応じて定められる電圧の許容範囲(例えば、所定の電圧基準値の±10%以内)内で出力電圧が維持されるように、非接触給電装置が動作することをいう。
 図5は、本発明の一つの実施形態に係る非接触給電装置の概略構成図である。図5に示されるように、非接触給電装置1は、送電装置2と、送電装置2から空間を介して非接触で電力伝送される受電装置3とを有する。送電装置2は、電力供給回路10と、送信コイル14と、受信器15と、ゲートドライバ16-1、16-2と、制御回路17とを有する。一方、受電装置3は、受信コイル21及び共振コンデンサ22を有する共振回路20と、コイル23と、整流平滑回路24と、負荷回路27と、電圧検出回路28と、定電圧判定回路29と、送信器32とを有する。
 先ず、送電装置2について説明する。
 電力供給回路10は、調節可能なスイッチング周波数、及び、調節可能な電圧を持つ交流電力を送信コイル14へ供給する。そのために、電力供給回路10は、電源11と、力率改善回路12と、4個のスイッチング素子13-1~13-4とを有する。
 電源11は、所定の脈流電圧を持つ電力を供給する。そのために、電源11は、商用の交流電源と接続され、その交流電源から供給された交流電力を整流するための全波整流回路を有する。
 力率改善回路12は、電源11から出力された電力の電圧を、制御回路17からの制御に応じた電圧に変換して出力する。そのために、力率改善回路12は、例えば、電源11の正極側端子から順に直列に接続されるコイルL及びダイオードDと、コイルLとダイオードDの間にドレイン端子が接続され、電源11の負極側端子にソース端子が接続されたnチャネル型のMOSFETであるスイッチング素子SWと、ダイオードDを挟んでスイッチング素子SWと並列に接続される平滑コンデンサCを有する。またスイッチング素子SWのゲート端子は、ゲートドライバ16-1と接続される。さらに、力率改善回路12は、電源11の正極側端子と負極側端子との間に直列に接続される二つの抵抗R1、R2を有する。この抵抗R1、R2は、ダイオードDと平滑コンデンサCとの間に、平滑コンデンサCと並列に接続される。そして抵抗R1と抵抗R2間の電圧が、ダイオードDから出力される電圧を表すものとして、制御回路17により測定される。
 制御回路17により指示されたデューティ比にしたがって、かつ、ダイオードDから出力される電流波形の軌跡が、電源11から供給される電圧の軌跡と一致するように、ゲートドライバ16-1がスイッチング素子SWのオン/オフを制御することにより、力率改善回路12は、力率改善動作を実行する。そしてスイッチング素子SWがオンとなるデューティ比が高くなるほど、ダイオードDから出力される電圧は高くなる。
 ダイオードDから出力される電圧は、平滑コンデンサCにより平滑化されて、4個のスイッチング素子13-1~13-4を介して送信コイル14へ供給される。
 なお、力率改善回路12は、上記の構成に限られず、制御回路17からの制御によって出力電圧を調整可能な他の構成を有していてもよい。
 4個のスイッチング素子13-1~13-4は、例えば、nチャネル型のMOSFETとすることができる。そして4個のスイッチング素子13-1~13-4のうち、スイッチング素子13-1とスイッチング素子13-2は、電源11の正極側端子と負極側端子との間に、力率改善回路12を介して直列に接続される。また本実施形態では、電源11の正極側に、スイッチング素子13-1が接続され、一方、電源11の負極側に、スイッチング素子13-2が接続される。そしてスイッチング素子13-1のドレイン端子は、力率改善回路12を介して電源11の正極側端子と接続され、スイッチング素子13-1のソース端子は、スイッチング素子13-2のドレイン端子と接続される。また、スイッチング素子13-2のソース端子は、力率改善回路12を介して電源11の負極側端子と接続される。さらに、スイッチング素子13-1のソース端子、及び、スイッチング素子13-2のドレイン端子は、送信コイル14の一端に接続され、スイッチング素子13-2のソース端子は、スイッチング素子13-4を介して送信コイル14の他端に接続される。
 同様に、4個のスイッチング素子13-1~13-4のうち、スイッチング素子13-3とスイッチング素子13-4は、スイッチング素子13-1及びスイッチング素子13-2と並列に、かつ、力率改善回路12を介して電源11の正極側端子と負極側端子との間に直列に接続される。また、電源11の正極側に、スイッチング素子13-3が接続され、一方、電源11の負極側に、スイッチング素子13-4が接続される。そしてスイッチング素子13-3のドレイン端子は、力率改善回路12を介して電源11の正極側端子と接続され、スイッチング素子13-3のソース端子は、スイッチング素子13-4のドレイン端子と接続される。また、スイッチング素子13-4のソース端子は、力率改善回路12を介して電源11の負極側端子と接続される。さらに、スイッチング素子13-3のソース端子、及び、スイッチング素子13-4のドレイン端子は、送信コイル14の他端に接続される。
 また、各スイッチング素子13-1~13-4のゲート端子は、ゲートドライバ16-2を介して制御回路17と接続される。さらに、各スイッチング素子13-1~13-4のゲート端子は、オンとなる電圧が印加されたときにそのスイッチング素子がオンとなることを保証するために、それぞれ、抵抗を介して自素子のソース端子と接続されてもよい。そして各スイッチング素子13-1~13-4は、制御回路17からの制御信号にしたがって、調整可能なスイッチング周波数にてオン/オフが切り替えられる。本実施形態では、スイッチング素子13-1とスイッチング素子13-4とがオンとなっている間、スイッチング素子13-2とスイッチング素子13-3とがオフとなり、逆に、スイッチング素子13-2とスイッチング素子13-3とがオンとなっている間、スイッチング素子13-1とスイッチング素子13-4とがオフとなるように、スイッチング素子13-1とスイッチング素子13-4の組と、スイッチング素子13-2とスイッチング素子13-3との組について交互にオン/オフが切り替えられる。これにより、電源11から力率改善回路12を介して供給された直流電力は、各スイッチング素子のスイッチング周波数を持つ交流電力に変換されて、送信コイル14に供給される。
 そして送信コイル14は、電力供給回路10から供給された交流電力を、空間を介して受電装置3の共振回路20へ伝送する。
 受信器15は、受電装置3の送信器32から無線信号を受信する度に、その無線信号から、非接触給電装置1が定電圧出力動作しているか否かなどを表す判定情報を取り出して、制御回路17へ出力する。そのために、受信器15は、例えば、所定の無線通信規格に準じて無線信号を受信するアンテナと、その無線信号を復調する通信回路とを有する。なお、所定の無線通信規格は、例えば、ISO/IEC 15693、ZigBee(登録商標)、あるいはBluetooth(登録商標)とすることができる。
 ゲートドライバ16-1は、制御回路17から、力率改善回路12のスイッチング素子SWのオン/オフを切り替える制御信号を受信し、その制御信号に応じて、スイッチング素子SWのゲート端子に印加する電圧を変化させる。すなわち、ゲートドライバ16-1は、スイッチング素子SWをオンにする制御信号を受け取ると、スイッチング素子SWのゲート端子に、スイッチング素子SWがオンとなる相対的に高い電圧を印加する。一方、ゲートドライバ16-1は、スイッチング素子SWをオフにする制御信号を受け取ると、スイッチング素子SWのゲート端子に、スイッチング素子SWがオフとなる、相対的に低い電圧を印加する。これにより、ゲートドライバ16-1は、制御回路17により指示されたタイミングで力率改善回路12のスイッチング素子SWのオン/オフを切り替える。
 ゲートドライバ16-2は、制御回路17から、各スイッチング素子13-1~13-4のオン/オフを切り替える制御信号を受信し、その制御信号に応じて、各スイッチング素子13-1~13-4のゲート端子に印加する電圧を変化させる。すなわち、ゲートドライバ16-2は、スイッチング素子13-1及びスイッチング素子13-4をオンにする制御信号を受け取ると、スイッチング素子13-1のゲート端子及びスイッチング素子13-4のゲート端子に、スイッチング素子13-1及びスイッチング素子13-4がオンとなる相対的に高い電圧を印加する。これにより、電源11からの電流が、スイッチング素子13-1、送信コイル14及びスイッチング素子13-4を介して流れるようになる。一方、ゲートドライバ16-2は、スイッチング素子13-1及びスイッチング素子13-4をオフにする制御信号を受け取ると、スイッチング素子13-1のゲート端子及びスイッチング素子13-4のゲート端子に、スイッチング素子13-1及びスイッチング素子13-4がオフとなり、電源11からの電流がスイッチング素子13-1及びスイッチング素子13-4を流れなくなる、相対的に低い電圧を印加する。ゲートドライバ16-2は、スイッチング素子13-2及びスイッチング素子13-3についても同様に、ゲート端子に印加する電圧を制御する。したがって、スイッチング素子13-1及びスイッチング素子13-4がオフとなり、スイッチング素子13-2及びスイッチング素子13-3がオンとなると、電源11からの電流が、スイッチング素子13-3、送信コイル14及びスイッチング素子13-2を介して流れるようになる。
 制御回路17は、例えば、不揮発性のメモリ回路及び揮発性のメモリ回路と、演算回路と、他の回路と接続するためのインターフェース回路とを有する。そして制御回路17は、受信器15から判定情報を受け取る度に、その判定情報に応じて、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数及び電圧を制御する。
 そのために、本実施形態では、制御回路17は、スイッチング素子13-1及びスイッチング素子13-4の組とスイッチング素子13-2及びスイッチング素子13-3の組とが交互にオンとなり、かつ、スイッチング周波数に対応する1周期内でスイッチング素子13-1及びスイッチング素子13-4の組がオンとなっている期間とスイッチング素子13-2及びスイッチング素子13-3の組がオンとなっている期間とが等しくなるように、各スイッチング素子13-1~13-4を制御する。なお、制御回路17は、スイッチング素子13-1及びスイッチング素子13-4の組とスイッチング素子13-2及びスイッチング素子13-3の組が同時にオンとなり、電源11が短絡されることを防止するために、スイッチング素子13-1及びスイッチング素子13-4の組とスイッチング素子13-2及びスイッチング素子13-3の組のオン/オフを切り替える際に、両方のスイッチング素子の組がオフとなるデッドタイムを設けてもよい。
 また、制御回路17は、スイッチング周波数と、そのスイッチング周波数にて定電圧出力となる、送信コイル14への印加電圧に相当する、力率改善回路12のスイッチング素子SWのオン/オフ制御のデューティ比との関係を表す参照テーブルを参照して、スイッチング周波数に応じたデューティ比を選択する。そして制御回路17は、そのデューティ比と、力率改善回路12のダイオードDからの出力電圧の変化に応じて、スイッチング素子SWのオン/オフを切り替えるタイミングを決定し、そのタイミングを表す制御信号をゲートドライバ16-1へ出力する。
 さらに、受信器15が受電装置3からの無線信号を受信できない場合、受電装置3は、送電装置2から電力供給を受けることができる位置に存在しない、すなわち、送電装置2は待機状態にあると想定される。そこでこの場合、制御回路17は、スイッチング素子SWのオン/オフ制御のデューティ比を0として、電力供給回路10から送信コイル14への電力供給を停止してもよい。これにより、送電装置2が待機状態となっている間、エネルギーの損失が抑制される。また後述するように、送信コイル14と受信コイル21との間に金属製の異物が混入したと判定される場合にも、制御回路17は、スイッチング素子SWのオン/オフ制御のデューティ比を0として、電力供給回路10から送信コイル14への電力供給を停止する。
 なお、制御回路17による、スイッチング周波数及び送信コイル14への印加電圧の制御と、異物停止処理の詳細については後述する。
 次に、受電装置3について説明する。
 共振回路20は、互いに並列に接続される受信コイル21と共振コンデンサ22とからなるLC共振回路である。そして共振回路20が有する受信コイル21の一端が共振コンデンサ22の一端に接続されるとともに、コイル23を介して整流平滑回路24の一方の入力端子に接続される。また、受信コイル21の他端が共振コンデンサ22の他端に接続されるとともに、整流平滑回路24の他方の入力端子に接続される。
 受信コイル21は、送電装置2の送信コイル14に流れる交流電流と共振することで、送信コイル14から電力を受信する。そして受信コイル21は、共振コンデンサ22及びコイル23を介して、受信した電力を整流平滑回路24へ出力する。なお、受信コイル21の巻き数と、送電装置2の送信コイル14の巻き数は同一でもよく、あるいは、異なっていてもよい。
 共振コンデンサ22は、その一端で受信コイル21の一端及びコイル23と接続され、他端で受信コイル21の他端及び整流平滑回路24と接続される。そして共振コンデンサ22は、受信コイル21にて受信した電力を、コイル23を介して整流平滑回路24へ出力する。
 コイル23は、共振回路20と整流平滑回路24との間に接続される。本実施形態では、コイル23は、受信コイル21と直列となるように、その一端で共振回路20の受信コイル21及び共振コンデンサ22と接続され、他端で整流平滑回路24と接続される。そしてコイル23は、共振回路20からの電力を整流平滑回路24へ出力する。なお、このコイル23が設けられることにより、SPL方式と同様に、受電した電力の高調波成分が抑制される。
 整流平滑回路24は、整流回路の一例であり、ブリッジ接続された4個のダイオードを有する全波整流回路25と平滑コンデンサ26とを有し、共振回路20により受信され、かつ、コイル23を介して受け取った電力を整流し、かつ、平滑化して、直流電力に変換する。そして整流平滑回路24は、その直流電力を、負荷回路27に出力する。
 電圧検出回路28は、整流平滑回路24の両端子間の出力電圧を所定の周期ごとに測定する。整流平滑回路24の両端子間の出力電圧は、共振回路20の出力電圧と1対1に対応するので、整流平滑回路24の両端子間の出力電圧の測定値は、間接的に共振回路20の出力電圧の測定値となる。電圧検出回路28は、例えば、直流電圧を検出できる公知の様々な電圧検出回路の何れかとすることができる。そして電圧検出回路28は、その出力電圧の測定値を表す電圧検出信号を定電圧判定回路29へ出力する。
 定電圧判定回路29は、電圧検出回路28から受け取った出力電圧の測定値に基づいて、非接触給電装置1が定電圧出力動作しているか否か、及び、出力電圧の測定値が定電圧出力動作が行われているときの電圧の許容範囲内に含まれているか否か判定する。そして定電圧判定回路29は、その判定結果を送信器32へ通知する。そのために、定電圧判定回路29は、例えば、電圧の許容範囲を記憶するメモリ回路と、出力電圧の測定値と電圧の許容範囲とを比較する演算回路とを有する判定回路30を有する。
 さらに、定電圧判定回路29は、整流平滑回路24と負荷回路27との間に接続される、MOSFETといったスイッチング素子31を有する。このスイッチング素子31は、オフとなると整流平滑回路24から負荷回路27へ電流が流れないようにし(すなわち、Rac=∞)、一方、オンとなると整流平滑回路24から負荷回路27へ電流が流れるようにする。そして定電圧判定回路29の判定回路30は、出力電圧の測定値が、電圧の許容範囲から外れている間、所定の周期でスイッチング素子31のオン/オフを切り替える。これにより、その所定の周期で、整流平滑回路24と接続される、負荷回路27を含む回路全体の抵抗値が変化する。したがって、判定回路30は、スイッチング素子31のオン/オフを切り替えながら、出力電圧の測定値が略一定となるか否かを判定することで、非接触給電装置1が定電圧出力動作しているか否かを判定できる。そこで、判定回路30は、所定の周期でスイッチング素子31のオン/オフを切り替えても出力電圧の測定値が略一定となっている間、非接触給電装置1が定電圧出力動作していることを送信器32へ通知する。
 また、判定回路30は、出力電圧の測定値が所定の周期よりも長い一定期間の間、非接触給電装置1が定電圧出力動作している場合、スイッチング素子31のオン/オフの切り替えを停止して、オンとなる状態を維持する。そして判定回路30は、出力電圧の測定値が電圧の許容範囲に含まれるか否か判定し、その判定結果を送信器32へ通知する。
 その際、判定回路30は、出力電圧の測定値が所定の周期よりも長い一定期間の間、電圧の許容範囲に含まれる場合、非接触給電装置1が定電圧出力動作しており、かつ、出力電圧の測定値が電圧の許容範囲内であることを表す判定結果を送信器32へ通知する。
 なお、変形例によれば、定電圧判定回路29は、整流平滑回路24に対して、負荷回路27と並列に接続される抵抗を有していてもよい。この場合、スイッチング素子31は、その抵抗と直列、かつ、負荷回路27と並列となるように設けられてもよい。この場合には、出力電圧の測定値が電圧の許容範囲に含まれる間、判定回路30は、スイッチング素子31をオフにする。一方、出力電圧の測定値が電圧の許容範囲から外れると、上記の実施形態と同様に、判定回路30は、所定の周期でスイッチング素子31のオン/オフを切り替えればよい。この変形例によれば、非接触給電装置1が定電圧出力動作していない場合にも、負荷回路27への電力供給が継続される。
 さらに他の変形例によれば、上記の抵抗と並列、かつ、負荷回路27と直列に、MOSFETといった第2のスイッチング素子が設けられてもよい。この場合、出力電圧の測定値が電圧の許容範囲に含まれる間、判定回路30は、第2のスイッチング素子をオンにして、負荷回路27への電力供給を可能とする。一方、出力電圧の測定値が電圧の許容範囲から外れると、判定回路30は、第2のスイッチング素子をオフにして、負荷回路27への電力供給を停止してもよい。これにより、送電装置2においてスイッチング周波数が調整されている間に、受電した電力の電圧が過度に高くなっても、その過度に高い電圧が負荷回路27に印加されることが防止される。
 送信器32は、所定の送信周期ごとに、定電圧判定回路29の判定回路30から受け取った判定結果に応じて、非接触給電装置1が定電圧出力動作しているか否か、及び、出力電圧の測定値が電圧の許容範囲に含まれるか否かを表す判定情報を含む無線信号を生成し、その無線信号を送電装置2の受信器15へ向けて送信する。そのために、送信器32は、例えば、所定の無線通信規格に準じて無線信号を生成する通信回路と、その無線信号を出力するアンテナとを有する。なお、所定の無線通信規格は、受信器15と同様に、例えば、ISO/IEC 15693、ZigBee(登録商標)、あるいはBluetooth(登録商標)とすることができる。
 以下、非接触給電装置1の動作の詳細について説明する。
 本実施形態では、送電装置2の制御回路17は、受信器15から受け取った判定情報に基づいて、非接触給電装置1が定電圧出力動作を継続するように、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数及び電圧を制御する。
 ここで、本実施形態による非接触給電装置は、SPL方式による非接触給電装置と比較して、送電側において共振回路の共振を利用しない点で相違する。このことから、非接触給電装置1の出力電圧の周波数特性は、図1の等価回路において、送電側の共振回路の共振が給電に影響しないように、送電側の共振回路における、送信コイルと直列接続されるコンデンサの静電容量Cr1を大きくして、送電側の共振回路の共振周波数を低下させたときのSPL方式の非接触給電装置の出力電圧の周波数特性と類似したものとなる。
 図6は、本実施形態による非接触給電装置1の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図6において、横軸は、周波数を表し、縦軸は、出力電圧を表す。なお、このシミュレーションでは、図2に示されたシミュレーションに用いられた各回路素子のパラメータの値と同じ値を使用した。グラフ601は、結合度k=0.15、負荷回路27の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ602は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。また、グラフ603は、結合度k=0.3、負荷回路27の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ604は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。さらに、グラフ605は、結合度k=0.6、負荷回路27の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ606は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。
 図6では、送信コイル14が共振しないため、図6に示される周波数の範囲では、図2と比較して、低周波数側で出力電圧の極値がなくなっている。しかし、この場合でも、結合度kが変化しない条件下で、負荷回路27の交流等価抵抗値が変化しても出力電圧が略一定となる(すなわち、定電圧出力となる)、周波数と出力電圧の組み合わせは、結合度ごとに(図のポイント611~613の3通り)存在する。したがって、送信コイル14が共振しないスイッチング周波数を持つ交流電力を送信コイル14に印加しても、負荷回路27の抵抗値の変化に対して非接触給電装置1を定電圧出力動作させることができることが分かる。さらに、ポイント611~613で示される通り、負荷回路27の抵抗値の変動に関して定電圧出力となるときの出力電圧は、結合度に応じて互いに異なっているものの、この出力電圧の差は、送信コイル14に印加する電圧を調節することで、結合度によらず、略一定の出力電圧とすることができる。
 図7は、図6に示されたシミュレーションにおいて、結合度に応じて送信コイル14に印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図7において、横軸は、周波数を表し、縦軸は、出力電圧を表す。グラフ701は、結合度k=0.15、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。またグラフ702は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。また、グラフ703は、結合度k=0.3、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.47*Vin)としたときの出力電圧の周波数特性を表す。またグラフ704は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.47*Vin)としたときの出力電圧の周波数特性を表す。さらに、グラフ705は、結合度k=0.6、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.19*Vin)としたときの出力電圧の周波数特性を表す。またグラフ706は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.19*Vin)としたときの出力電圧の周波数特性を表す。
 図6に示されたポイント611~613に対応する、結合度kが変化しない条件下で、負荷回路27の交流等価抵抗値が変化しても出力電圧が略一定となる(すなわち、定電圧出力となる)、周波数と出力電圧の組み合わせは、ポイント711~713の3通りとなる。そしてポイント711~713のそれぞれの出力電圧は、互いに略等しい。
 以上により、送信コイル14と受信コイル21間に異物が混入していなければ、負荷回路27の抵抗値及び結合度の何れが変動しても、送信コイル14に印加する交流電力のスイッチング周波数及び電圧を適切に調節することで、出力電圧が略一定に保たれることが分かる。
 以上により、制御回路17は、定電圧出力動作を達成するために、下記のように送信コイル14に印加される交流電力のスイッチング周波数及び電圧を制御する。
 受電装置3から受信器15を介して受けとった無線信号に含まれる判定情報において、非接触給電装置1が定電圧出力動作していないことが示されている場合、制御回路17は、交流電力のスイッチング周波数を所定の周波数領域内で変化させる。所定の周波数領域は、例えば、送電装置2から受電装置3への給電が行われる場合における、送信コイル14と受信コイル21間の想定される結合度の最小値において定電圧出力となる周波数を下限とし、送信コイル14と受信コイル21間の想定される結合度の最大値において定電圧出力となる周波数を上限とする周波数領域とすることができる。
 制御回路17は、スイッチング周波数を変化させる際、所定の周波数領域の下限から上限まで順にスイッチング周波数を高くしてもよく、あるいは、逆に、所定の周波数領域の上限から下限まで順にスイッチング周波数を低くしてもよい。その際、制御回路17は、受電装置3の定電圧判定回路29が出力電圧が略一定となったか否かを調べることができるように、定電圧判定回路29の判定回路30がスイッチング素子31のオンとオフを切り替える周期よりも長い期間、同じスイッチング周波数を保つように、ステップ状にスイッチング周波数を変化させることが好ましい。
 なお、制御回路17は、スイッチング周波数を調整している間、送信コイル14に印加する電圧を下限の電圧にまで低下させることが好ましい。これにより、受電装置3に供給される電力の電圧が過度に高くなることが抑制される。
 制御回路17は、スイッチング周波数を所定の周波数領域全体にわたって変化させても、受電装置3から受信器15を介して受けとった無線信号に含まれる判定情報において、定電圧出力動作が行われていることが示されない場合、送信コイル14と受信コイル21間に異物が混入したと判定する。そして制御回路17は、電力供給回路10から送信コイル14への電力供給を停止して、電力伝送を中断する。
 一方、制御回路17は、受電装置3から受信器15を介して受けとった無線信号に含まれる判定情報において、出力電圧の測定値が電圧の許容範囲には含まれないものの、負荷回路の抵抗が変化しても略一定となること、すなわち、定電圧出力動作が行われていることが示されていると、それ以降、スイッチング周波数を一定に保つ。そして次に、制御回路17は、スイッチング周波数と、そのスイッチング周波数において結合度によらず一定の電圧出力となる、力率改善回路12のスイッチング素子SWのオン/オフ制御のデューティ比との関係を示す参照テーブルを参照して、そのデューティ比を決定する。そして制御回路17は、そのデューティ比に従って力率改善回路12のスイッチング素子SWのオン/オフを切り替えるよう、ゲートドライバ16-1を制御する。これにより、共振回路20からの出力電圧が電圧の許容範囲に含まれるように、すなわち、結合度によらずに一定の電圧が出力されるように、送信コイル14に印加される電圧が調整される。そして制御回路17は、受電装置3から受信器15を介して受けとった無線信号に含まれる判定情報において、出力電圧の測定値が電圧の許容範囲に含まれることが示されると、送信コイル14に供給される交流電力のスイッチング周波数及び電圧を一定に保つ。
 なお、制御回路17は、上記の参照テーブルを参照してデューティ比を決定する代わりに、受電装置3から受信器15を介して受けとった無線信号に含まれる判定情報において、出力電圧の測定値が電圧の許容範囲に含まれることが示されるようになるまで、徐々にデューティ比を変化させてもよい。
 図8は、制御回路17により実行される、異常停止処理の動作フローチャートである。
 受電装置3から受信した判定情報が、定電圧出力動作が行われていないことを示していると、制御回路17は、送信コイル14に供給される交流電力の電圧を所定値まで下げるよう、電力供給回路10を制御する(ステップS101)。
 制御回路17は、スイッチング周波数を調整する所定の周波数領域の下限から上限まで順に、スイッチング周波数を高くするよう、電力供給回路10を制御する(ステップS102)。そして制御回路17は、受電装置3から受信した判定情報を参照して、何れかのスイッチング周波数で定電圧出力動作が行われていることが示されているか否か判定する(ステップS103)。
 何れかのスイッチング周波数で定電圧出力動作が行われていることが示されている場合(ステップS103-Yes)、制御回路17は、そのスイッチング周波数を持つ交流電力が送信コイル14に供給されるよう、電力供給回路10を制御する。さらに、制御回路17は、受電装置3の共振回路20の出力電圧が所定の電圧の許容範囲内となるまで、送信コイル14に供給される交流電力の電圧を上昇させるよう、電力供給回路10を制御する(ステップS104)。
 一方、何れのスイッチング周波数でも定電圧出力動作が行われていることが示されていない場合(ステップS103-No)、非接触給電装置1は、所定の周波数領域、すなわち、想定される結合度の範囲において、定電圧出力動作することができない。したがって、送信コイル14と受信コイル21の近傍に、金属製の異物が存在すると判定される。そこで制御回路17は、電力供給回路10から送信コイル14への電力供給を停止して、送電装置2から受電装置3への電力伝送を停止する(ステップS105)。さらに、制御回路17は、図示しないインターフェースを介して、他の機器へ、金属製の異物を検出したことを表す異常信号を出力してもよい。
 ステップS104またはS105の後、制御回路17は、異常停止処理を終了する。
 以上に説明してきたように、この非接触給電装置は、定電圧出力動作しなくなると、送電装置の送信コイルに供給される交流電力のスイッチング周波数を、送信コイルと受信コイル間の想定される結合度に応じた周波数領域内で変化させる。そしてこの非接触給電装置は、その周波数領域全体にわたってスイッチング周波数を変化させても、定電圧出力動作を実行できない場合、送信コイルと受信コイルの間に金属製の異物が混入したと判定し、送電装置から受電装置への電力伝送を停止する。これにより、この非接触給電装置は、送信コイルと受信コイル間の結合度が変化する場合でも、送信コイルと受信コイルの間に混入した金属製の異物を検知できるとともに、混入した異物による故障の発生を防止できる。
 なお、送信コイルと受信コイルの間に混入された異物によっては、漏れインダクタンス及び巻線抵抗の変動により、受電装置の共振回路からの出力電圧がほとんど変化しない可能性がある。
 図9は、異物混入時の非接触給電装置の出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図9において、横軸は、周波数を表し、縦軸は、出力電圧を表す。グラフ901は、送信コイル14と受信コイル21との間に異物が混入した場合における、結合度k=0.15、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ902は、送信コイル14と受信コイル21との間に異物が混入した場合における、結合度k=0.15、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。また、グラフ903は、異物が混入していない場合における、結合度k=0.15、負荷回路の交流等価抵抗値をRacとしたときの出力電圧の周波数特性を表す。またグラフ904は、異物が混入していない場合における、結合度k=0.15、負荷回路の交流等価抵抗値を(10*Rac)としたときの出力電圧の周波数特性を表す。なお、この例では、グラフ901及びグラフ902に関して、各回路素子のパラメータとして、図2のシミュレーションで用いたものから、漏れインダクタンスLrの値を30μH減らし、送電側の巻線抵抗値Ri及び受電側の巻線抵抗値Risを3Ω減少させた値を用いた。
 グラフ901とグラフ903を比較すると、異物が混入することで、出力電圧のピーク値及び波形はほとんど変化せず、波形がわずかに高周波数側にシフトしていることが分かる。そのため、ポイント911で示される、異物が混入していないときの定電圧出力動作となる周波数では、負荷回路27の交流等価抵抗値がRacであれば、異物が混入したときと、混入していないときとで、出力電圧はほとんど変化しない。そのため、受電装置3の共振回路20からの出力電圧の測定値が電圧の許容範囲内に収まったままとなり、負荷回路27の抵抗値が変化しない限り、定電圧出力動作が継続されていると誤判断される可能性がある。実際には、グラフ901とグラフ902で示されるように、異物が混入することで、負荷回路27の抵抗値の変動に応じて共振回路20からの出力電圧も変動し、非接触給電装置1は、定電圧出力動作していない。
 また、発明者は、定電圧出力動作する周波数は、周波数が高くなるにつれて出力電圧が低下するような周波数領域に含まれるという知見を得た。このことから、グラフ901で示されるように、見掛け上、定電圧出力動作が継続しているときのスイッチング周波数(図9におけるポイント911)から、スイッチング周波数を上昇させたときに、出力電圧が上昇すれば、異物が混入していると想定される。
 そこで、変形例によれば、定電圧判定回路29の判定回路30は、電圧検出回路28による出力電圧の測定値を取得する度に、その測定値を所定期間(例えば、数10msec)記憶する。そして判定回路30は、最新の出力電圧の測定値から、記憶している所定期間前の出力電圧の測定値を減じて、出力電圧の変化量Δvを算出する。そして判定回路30は、判定情報に出力電圧の変化量Δvを含めて、送信器32を介して送電装置2へ送信する。一方、送電装置2の制御回路17は、出力電圧の測定値が電圧の許容範囲内に含まれることを示す判定情報を、継続して受電装置3から受信している場合でも、定期的にスイッチング周波数を所定量Δfだけ上昇させて、そのときの出力電圧の変化量Δvが増加していれば、送信コイル14と受信コイル21との間に金属製の異物が混入したと判定し、電力伝送を停止する。
 図10は、この変形例による、制御回路17により実行される異常停止処理の動作フローチャートである。制御回路17は、下記の動作フローチャートに従って異常停止処理を実行すればよい。
 制御回路17は、受電装置3から受信した判定情報が、共振回路20からの出力電圧の測定値が電圧の許容範囲内に含まれていることを示しているか否か判定する(ステップS201)。判定情報が、共振回路20からの出力電圧の測定値が電圧の許容範囲から外れていることを示している場合(ステップS201-No)、この場合、結合度が変化したか、送信コイル14と受信コイル21との間に異物が混入した可能性がある。そこで制御回路17は、図8のステップS101以降の処理を実行する。
 一方、判定情報が、共振回路20からの出力電圧の測定値が電圧の許容範囲内に含まれていることを示している場合(ステップS201-Yes)、制御回路17は、一定期間継続して、定電圧出力動作が行われていることを示す判定情報を受電装置3から受信したか否か判定する(ステップS202)。定電圧出力動作が行われていることを示す判定情報を継続して受信した期間がその一定期間に達していなければ(ステップS202-No)、制御回路17は、所定時間待機した後に、ステップS202の処理を繰り返す。
 一方、定電圧出力動作が行われていることを示す判定情報を継続して受信した期間がその一定期間に達していれば(ステップS202-Yes)、制御回路17は、電力供給回路10から送信コイル14へ供給される交流電力のスイッチング周波数を所定幅Δfだけ高くする(ステップS203)。そして制御回路17は、スイッチング周波数を高くした後に受電装置3から受信した判定情報に含まれる出力電圧の変化量Δvを参照して、Δv/Δfが負となるか否か判定する(ステップS204)。Δv/Δfが負となる場合、すなわち、スイッチング周波数の上昇に応じて受電装置3の共振回路20からの出力電圧が低下する場合(ステップS204-Yes)、制御回路17は、送信コイル14と受信コイル21との間に異物は混入していないと判定する。そこで制御回路17は、電力供給回路10から送信コイル14へ供給される交流電力のスイッチング周波数を所定幅Δfだけ低くする(ステップS205)。すなわち、制御回路17は、元のスイッチング周波数に戻す。そして制御回路17は、ステップS201以降の処理を繰り返す。
 一方、Δv/Δfが正となる場合、すなわち、スイッチング周波数の上昇に応じて受電装置3の共振回路20からの出力電圧も上昇する場合(ステップS204-No)、制御回路17は、送信コイル14と受信コイル21との間に異物が混入したと判定する。そこで制御回路17は、電力供給回路10から送信コイル14への電力供給を停止して、送電装置2から受電装置3への電力伝送を停止する(ステップS206)。なお、この変形例でも、制御回路17は、図示しないインターフェースを介して、他の機器へ、金属製の異物を検出したことを表す異常信号を出力してもよい。
 ステップS206の後、制御回路17は、異常停止処理を終了する。なお、異物混入時だけでなく、結合度が変化した場合でも、出力電圧がほとんど変化しない場合もある。そこで制御回路17は、ステップS204にて、スイッチング周波数の上昇に応じて受電装置3の共振回路20からの出力電圧も上昇する場合でも、直ちに電力伝送を停止する代わりに、図8のステップS101以降の処理を実行して、電力伝送を停止するか否かを判定してもよい。
 この変形例によれば、送信コイル14と受信コイル21の間に金属製の異物が混入しても受電装置3の共振回路20からの出力電圧がほとんど変化しない場合でも、非接触給電装置は、その混入した異物を検知して、混入した異物による故障の発生を防止できる。
 なお、異物混入を判定する非接触給電装置は、上記の実施形態に限られず、送信コイルに供給される交流電力のスイッチング周波数と電圧とを調節することで、一定の電圧変動の許容範囲内で定電圧出力動作することが可能な非接触給電装置であればよい。
 例えば、非接触給電装置は、SPL方式の非接触給電装置であってもよい。この場合、図5に示される非接触給電装置において、送電装置2は、送信コイル14と直列に接続されるコンデンサを有していてもよい。そして電力供給回路10は、送信コイル14とこのコンデンサとにより構成される共振回路(以下、受電装置3の共振回路20と区別するために、送電側の共振回路と呼ぶ)が共振するスイッチング周波数を持つ交流電力を、送電側の共振回路に供給してもよい。
 図11は、SPL方式の非接触給電装置に関する図2に示されたシミュレーションにおいて、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図11において、横軸は、周波数を表し、縦軸は、出力電圧を表す。なお、このシミュレーションでは、図2に示されたシミュレーションに用いられた各回路素子のパラメータの値と同じ値を使用した。グラフ1101は、結合度k=0.15、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.4*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1102は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.4*Vin)としたときの出力電圧の周波数特性を表す。また、グラフ1103は、結合度k=0.3、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.67*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1104は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.67*Vin)としたときの出力電圧の周波数特性を表す。さらに、グラフ1105は、結合度k=0.6、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。またグラフ1106は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。
 ポイント1111~1113で示されるように、結合度kが変化しない条件下で、負荷回路27の交流等価抵抗値が変化しても出力電圧が略一定となる(すなわち、定電圧出力となる)、周波数と出力電圧の組み合わせのそれぞれの出力電圧は、互いに略等しい。したがって、SPL方式でも、送電側の共振回路に供給される交流電力のスイッチング周波数及び電圧を調節することで、非接触給電装置は、定電圧出力動作するとともに、略一定の出力電圧を維持できることが分かる。またこの例でも、定電圧出力動作となる周波数は、周波数が上昇するにつれて出力電圧が低下する周波数の範囲内に存在する。
 図12は、図11に示されたシミュレーションにおいて、異物混入時における、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、SPL方式の非接触給電装置についての出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図12において、横軸は、周波数を表し、縦軸は、出力電圧を表す。なお、このシミュレーションでは、各回路素子のパラメータとして、図2のシミュレーションで用いたものから、漏れインダクタンスLrの値を30μH減らし、送電側の巻線抵抗値Ri及び受電側の巻線抵抗値Risを3Ω増加させた値を用いた。グラフ1201は、結合度k=0.15、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.4*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1202は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.4*Vin)としたときの出力電圧の周波数特性を表す。また、グラフ1203は、結合度k=0.3、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.67*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1204は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.67*Vin)としたときの出力電圧の周波数特性を表す。さらに、グラフ1205は、結合度k=0.6、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。またグラフ1206は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。
 図12に示される通り、何れの結合度においても、負荷回路27の交流等価抵抗値の変動により、出力電圧が大きく変動し、非接触給電装置が定電圧出力動作しなくなることが分かる。
 したがって、SPL方式の非接触給電装置についても、送電装置の制御回路が、図8または図10に示される動作フローチャートに従って異常停止処理を実行することで、送信コイルと受信コイル間に金属製の異物が混入したか否かを判定することができ、そして金属製の異物が混入したと判定した場合に、送電装置から受電装置への電力伝送を停止することができる。
 また、SPL方式の非接触給電装置において、受電側の共振回路の共振コンデンサが省略されてもよい。この場合も、非接触給電装置は、定電圧出力動作することができる。この変形例では、図5に示される非接触給電装置において、送電装置2は、送信コイル14と直列に接続されるコンデンサを有し、受電装置3の共振回路20から共振コンデンサ22が省略されればよい。この変形例による非接触給電装置を、以下では、便宜上、SL方式の非接触給電装置と呼ぶ。
 図13は、SL方式の非接触給電装置について、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図13において、横軸は、周波数を表し、縦軸は、出力電圧を表す。なお、このシミュレーションでは、Lp=174μH、Cr1=20nF、Lop=3Lp、Ri=Ris=0.04Ω、n=1、Vin=200V、Ro=200Ω(Rac≒162.1Ω)とした。グラフ1301は、結合度k=0.15、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1302は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。また、グラフ1303は、結合度k=0.3、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1304は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac) 、送信コイルに印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。さらに、グラフ1305は、結合度k=0.6、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。またグラフ1306は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。
 ポイント1311~1313で示されるように、結合度kが変化しない条件下で、負荷回路27の交流等価抵抗値が変化しても出力電圧が略一定となる(すなわち、定電圧出力となる)、周波数と出力電圧の組み合わせのそれぞれの出力電圧は、互いに略等しい。したがって、SL方式でも、送電側の共振回路に供給される交流電力のスイッチング周波数及び電圧を調節することで、非接触給電装置は、定電圧出力動作するとともに、略一定の出力電圧を維持できることが分かる。またこの例でも、定電圧出力動作となる周波数は、周波数が上昇するにつれて出力電圧が低下する周波数の範囲内に存在する。
 図14は、図13に示されるシミュレーションにおいて、異物混入時における、結合度に応じて送電側の共振回路に印加する電圧を変化させたときの、SL方式の非接触給電装置についての出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図14において、横軸は、周波数を表し、縦軸は、出力電圧を表す。なお、このシミュレーションでは、各回路素子のパラメータとして、図13のシミュレーションで用いたものから、漏れインダクタンスLrの値を30μH減らし、送電側の巻線抵抗値Ri及び受電側の巻線抵抗値Risを3Ω増加させた値を用いた。グラフ1401は、結合度k=0.15、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1402は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。また、グラフ1403は、結合度k=0.3、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1404は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。さらに、グラフ1405は、結合度k=0.6、負荷回路27の交流等価抵抗値をRac、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。またグラフ1406は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイルに印加される電圧をVinとしたときの出力電圧の周波数特性を表す。
 図14に示される通り、何れの結合度においても、負荷回路27の交流等価抵抗値の変動により、出力電圧が大きく変動し、非接触給電装置が定電圧出力動作しなくなることが分かる。
 したがって、SL方式の非接触給電装置についても、送電装置の制御回路が、図8または図10に示される動作フローチャートに従って異常停止処理を実行することで、送信コイルと受信コイル間に金属製の異物が混入したか否かを判定することができ、そして金属製の異物が混入したと判定した場合に、送電装置から受電装置への電力伝送を停止することができる。
 また、発明者は、受電装置の負荷回路の抵抗値が予め設定された値となる場合には、上記の実施形態または変形例による非接触給電装置が定電圧出力動作する周波数において、この非接触給電装置の入力インピーダンスが極小値となるという知見を得た。
 図15は、図5に示される非接触給電装置1の出力電圧の周波数特性と入力インピーダンスの周波数特性との関係の一例を示す図である。図15の上側のグラフにおいて、横軸は、周波数を表し、縦軸は、出力電圧を表す。また、図15の下側のグラフにおいて、横軸は、周波数を表し、縦軸は、入力インピーダンスを表す。なお、このシミュレーションでは、図2に示されたシミュレーションに用いられた各回路素子のパラメータの値と同じ値を使用した。上側のグラフにおいて、グラフ1501(図2のグラフ203と同一)は、結合度k=0.3、負荷回路27の交流等価抵抗値をRacとしたときの非接触給電装置1の出力電圧の周波数特性を表す。またグラフ1502(図2のグラフ204と同一)は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)としたときの非接触給電装置1の出力電圧の周波数特性を表す。また、下側のグラフにおいて、グラフ1511は、結合度k=0.3、負荷回路27の交流等価抵抗値をRacとしたときの非接触給電装置1の入力インピーダンスの周波数特性を表す。さらに、グラフ1512は、結合度k=0.3、負荷回路27の交流等価抵抗値を(100*Rac)としたときの非接触給電装置1の入力インピーダンスの周波数特性を表す。
 図15に示されるように、非接触給電装置1が定電圧出力動作する周波数f0では、負荷回路27の交流等価抵抗値がRacのときの入力インピーダンスは極小値となる。すなわち、周波数f0にて、送信コイル14に流れる電流は極大値を持つ。
 そこで変形例によれば、送電装置の制御回路は、送信コイルを流れる電流の周波数特性に応じて、非接触給電装置が定電圧出力動作するか否かを判定し、その結果に応じて、異物が混入されたか否かを判定してもよい。
 図16は、この変形例による、非接触給電装置の概略構成図である。図16に示されるように、非接触給電装置4は、送電装置42と、送電装置42から空間を介して非接触で電力伝送される受電装置43とを有する。送電装置42は、電力供給回路50と、送信コイル54と、コンデンサ55と、電流検出回路56と、受信器57と、ゲートドライバ58と、制御回路59とを有する。一方、受電装置43は、受信コイル61及び共振コンデンサ62を有する共振回路60と、コイル63と、全波整流回路65と平滑コンデンサ66を有する整流平滑回路64と、負荷回路67と、電圧検出回路68と、定電圧判定回路69と、固定負荷回路72と、送信器73とを有する。
 非接触給電装置4は、図5に示された非接触給電装置1と比較して、送電装置42については、電力供給回路50の構成と、コンデンサ55及び電流検出回路56を有する点と、制御回路59による制御の一部が相違する。また、受電装置43については、固定負荷回路72を有する点で相違する。そこで以下では、上記の相違点及び関連する部分について説明する。
 電力供給回路50は、調節可能なスイッチング周波数、及び、調節可能な電圧を持つ交流電力を送信コイル54へ供給する。そのために、電力供給回路50は、電圧可変電源51と、DC/DCコンバータ52と、3個のスイッチング素子53-1~53-3とを有する。
 電圧可変電源51は、直流電力を供給し、その直流電力の電圧を制御回路59からの制御によって調整可能な電源である。なお、電圧可変電源51は、供給する電圧を調整可能な様々な回路構成の何れを有していてもよい。非接触給電装置4が定電圧出力動作している間、電圧可変電源51から供給される直流電力は、スイッチング素子53-1及び53-2を介して交流電力に変換されて送信コイル54へ供給される。一方、非接触給電装置4が定電圧出力動作するためのスイッチング周波数の調整が行われている間、電圧可変電源51から供給される直流電力は、DC/DCコンバータ52及びスイッチング素子53-3を介して送信コイル54へ供給される。
 DC/DCコンバータ52の入力端子は、電圧可変電源51の正極側端子と接続され、DC/DCコンバータ52の出力端子は、ダイオードD及びスイッチング素子53-3を介してコンデンサ55の一端と接続される。そしてDC/DCコンバータ52は、電圧可変電源51から供給された直流電力の電圧を所定の電圧(例えば、5V)に低下させる。
 非接触給電装置4が定電圧出力動作するためのスイッチング周波数の調整が行われている間、DC/DCコンバータ52から出力された電圧は、ダイオードD、スイッチング素子53-3及びコンデンサ55を介して送信コイル54へ供給される。
 スイッチング素子53-1~53-3は、それぞれ、例えば、nチャネル型のMOSFETとすることができる。スイッチング素子53-1とスイッチング素子53-2は、電圧可変電源51の正極側端子と負極側端子との間に直列に接続される。また、電圧可変電源51の正極側に、スイッチング素子53-1が接続され、一方、電圧可変電源51の負極側に、スイッチング素子53-2が接続される。そしてスイッチング素子53-1のドレイン端子は、電圧可変電源51の正極側端子と接続され、スイッチング素子53-1のソース端子は、スイッチング素子53-2のドレイン端子と接続される。また、スイッチング素子53-1のソース端子、及び、スイッチング素子53-2のドレイン端子は、コンデンサ55を介して送信コイル54の一端と接続される。さらに、スイッチング素子53-2のソース端子は、電圧可変電源51の負極側端子、及び、電流検出回路56を介して送信コイル54の他端と接続される。
 また、スイッチング素子53-3のドレイン端子は、DC/DCコンバータ52の出力端子と接続され、スイッチング素子53-3のソース端子は、コンデンサ55を介して送信コイル54の一端と接続される。そして各スイッチング素子のゲート端子は、ゲートドライバ58と接続される。
 非接触給電装置4が定電圧出力動作している間、ゲートドライバ58は、制御回路59からの制御信号に従って、スイッチング素子53-3をオフに保つ。またゲートドライバ58は、制御回路59からの制御信号に従って、スイッチング素子53-1とスイッチング素子53-2のオン/オフを、定電圧出力動作となるスイッチング周波数にて交互に切り替える。すなわち、スイッチング素子53-1がオンとなり、スイッチング素子53-2がオフとなる場合には、電圧可変電源51からスイッチング素子53-1を介してコンデンサ55へ電力が供給されてコンデンサ55が充電されるのに伴って、送信コイル54へ電流が流れる。一方、スイッチング素子53-1がオフとなり、スイッチング素子53-2がオンとなる場合には、コンデンサ55が放電して、コンデンサ55から送信コイル54へ電流が流れる。
 また、非接触給電装置4が定電圧出力動作するためのスイッチング周波数の調整が行われている間、ゲートドライバ58は、制御回路59からの制御信号に従って、スイッチング素子53-1をオフに保ち、その代わりに、制御回路59からの制御信号に従って、スイッチング素子53-3とスイッチング素子53-2のオン/オフを、スイッチング周波数にて交互に切り替える。
 コンデンサ55は、送信コイル54と電力供給回路50の間に接続される。そしてコンデンサ55は、各スイッチング素子のスイッチング周波数でのオン/オフの切り替えに応じて充電と放電とを繰り返すことで、送信コイル54に、スイッチング周波数を持つ交流電力を供給する。なお、スイッチング周波数が調整される周波数範囲において送信コイル54とコンデンサ55とが共振回路として動作しないよう、送信コイル54とコンデンサ55の共振周波数は、受電装置43の共振回路60の共振周波数及びスイッチング周波数が調整される周波数範囲の下限周波数よりも小さくなるように、コンデンサ55の静電容量が設定されることが好ましい。
 電流検出回路56は、送信コイル54と電力供給回路50との間に接続され、送信コイル54を流れる電流を測定する。そして電流検出回路56は、電流の測定値を制御回路59へ出力する。なお、電流検出回路56は、電流検出回路56に対して直列に接続される分流用のコンデンサ(図示せず)とともに、送信コイル54に対して、コンデンサ55と並列に接続されてもよい。この場合、電流検出回路56は、間接的に送信コイル54に流れる電流を測定できる。
 また、受電装置43の定電圧判定回路69は、上記の実施形態による判定回路30及びスイッチング素子31と同様の判定回路70及びスイッチング素子71を有する。
 定電圧判定回路69の判定回路70は、電圧検出回路68による、共振回路60からの出力電圧の測定値が、電圧の許容範囲内に保たれている間、すなわち、非接触給電装置4が定電圧出力動作を行っている間、スイッチング素子71をオンにして、共振回路60からの出力電圧が整流平滑回路64を介して負荷回路67へ供給されるようにする。一方、出力電圧の測定値が、電圧の許容範囲から外れている間、判定回路70は、スイッチング素子71をオフにして、共振回路60からの出力電圧が負荷回路67へ供給されないようにする。
 固定負荷回路72は、整流平滑回路64に対して、負荷回路67と並列に接続され、スイッチング周波数の調整が行われている間、負荷回路67の基準となる負荷(例えば、図9に示されるシミュレーションによるRac)と略等しい負荷を受電装置43に提供する。そのために、固定負荷回路72は、整流平滑回路64に対して負荷回路67と並列に接続され、かつ、負荷回路67の基準となる負荷に応じた抵抗値を持つ抵抗R1を有する。そして抵抗R1は、nチャネル型のMOSFETといったスイッチング素子SW1と直列に接続される。さらに、固定負荷回路72は、整流平滑回路64の両出力端子間に、正極側から順に直列に接続される抵抗R2とnpn型のバイポーラトランジスタといったスイッチング素子SW2とを有する。また抵抗R2とスイッチング素子SW2とは、抵抗R1と並列に接続される。そしてスイッチング素子SW1のゲート端子は、抵抗R2とスイッチング素子SW2の一端(この例では、コレクタ端子)との間に接続される。さらに、スイッチング素子SW2のベース端子は、抵抗R3及び逆バイアスされたツェナーダイオードZDを介して整流平滑回路64の正極側端子と接続される。
 非接触給電装置4が定電圧出力動作している間、共振回路60の出力電圧は、ツェナーダイオードZDの降伏電圧よりも高く、その結果としてスイッチング素子SW2のベース端子には、ツェナーダイオードZD及び抵抗R3を介して電流が供給され、スイッチング素子SW2はオンとなる。その結果、スイッチング素子SW1のゲート端子に印加される電圧は低下して、スイッチング素子SW1はオフとなる。そのため、抵抗R1には共振回路60からの出力電圧は印加されない。
 一方、非接触給電装置4が定電圧出力動作するためのスイッチング周波数の調整が行われている間、DC/DCコンバータ52から送信コイル54へ供給される電力の電圧が低いため、送電装置42から受電装置43へ供給される電力も低下する。そのため、共振回路60からの出力電圧も低下して、ツェナーダイオードZDの降伏電圧よりも低くなる。その結果、スイッチング素子SW2はオフとなり、これに伴い、スイッチング素子SW1のゲート端子に印加される電圧が上昇し、スイッチング素子SW1がオンとなる。そのため、共振回路60からの出力電圧が、抵抗R1に印加されることとなる。その結果、抵抗R1の持つ固定の負荷が受電装置43に提供される。
 以下、この変形例による、送電装置42の制御回路59の動作について説明する。制御回路59は、非接触給電装置4が定電圧出力動作している間、上記の実施形態と同様に、受電装置43の共振回路60からの出力電圧の測定値が所定の許容範囲内となるように、スイッチング周波数に応じた電圧を持つ直流電圧を送信コイル54に供給するよう、電力供給回路50の電圧可変電源51を制御する。また制御回路59は、ゲートドライバ58を介して、スイッチング素子53-3をオフに保つとともに、定電圧出力動作するスイッチング周波数にて、スイッチング素子53-1及び53-2のオン/オフを切り替える。
 一方、受電装置43から受信器57を介して受けとった無線信号に含まれる判定情報において、非接触給電装置4が定電圧出力動作していないことが示されている場合、制御回路59は、ゲートドライバ58を介してスイッチング素子53-1をオフに保つとともに、スイッチング素子53-3及び53-2のオン/オフを交互に切り替えることで、DC/DCコンバータ52から送信コイル54に電力が供給されるようにする。また制御回路59は、DC/DCコンバータ52から送信コイル54に供給される電圧が所定値となるように、電圧可変電源51を制御する。これにより、制御回路59は、送電装置42から受電装置43へ供給される電力を、受電装置43の固定負荷回路72の抵抗R1に電圧が印加される程度となるまで低下させる。
 そして制御回路59は、スイッチング周波数を変化させながら、電流検出回路56による、送信コイル54に流れる電流の測定値を監視して、その電流の測定値が極大値となるスイッチング周波数を検出する。送信コイル54に流れる電流の測定値が極大値となるスイッチング周波数は、図15に示される周波数f0といった、非接触給電装置4の入力インピーダンスが極小値となる周波数、すなわち、非接触給電装置4が定電圧出力動作する周波数である。そこで制御回路59は、送信コイル54に流れる電流の測定値が極大値となるスイッチング周波数が検出されると、そのスイッチング周波数にて、電圧可変電源51からの電力が送信コイル54に供給されるように、ゲートドライバ58を介してスイッチング素子53-1及び53-2のオン/オフを制御する。また制御回路59は、スイッチング素子53-3をオフにする。これにより、制御回路59は、非接触給電装置4を定電圧出力動作させることが可能となる。また制御回路59は、上記のように、受電装置43の共振回路60からの出力電圧の測定値が所定の許容範囲内となるように、スイッチング周波数に応じた電圧を持つ直流電圧が送信コイル54に供給されるよう、電力供給回路50の電圧可変電源51を制御する。
 ただし、送信コイル54と受信コイル61の間に、金属製の異物が混入すると、非接触給電装置4は定電圧出力動作しなくなり、その結果として、図15の下側のグラフ1511に示されるような、入力インピーダンスの極小値が存在しなくなる。すなわち、入力インピーダンスは、スイッチング周波数の増加に応じて、例えば、単調増加するようになる。したがって、スイッチング周波数が調整される際に、電流検出回路56による送信コイル54に流れる電流の測定値を監視しても、電流の測定値が極大値となるスイッチング周波数が検出されなければ、送信コイル54と受信コイル61の間に、金属製の異物が混入したと想定される。
 そこでこの変形例によれば、図8の動作フローチャートにおけるステップS103にて、制御回路59は、電流検出回路56による送信コイル54に流れる電流の測定値が極大値となるスイッチング周波数が検出されたときに、非接触給電装置4が定電圧出力動作すると判定すればよい。逆に、制御回路59は、電流検出回路56による送信コイル54に流れる電流の測定値が極大値となるスイッチング周波数が検出されなかったときに、非接触給電装置4が定電圧出力動作せず、送信コイル54と受信コイル61の間に、金属製の異物が混入したと判定すればよい。
 なお、この変形例でも、制御回路59は、図10に示される動作フローチャートに従って、送信コイル54と受信コイル61の間に、金属製の異物が混入したか否かを判定してもよい。
 なお、図16に示される非接触給電装置も、図5に示される非接触給電装置と同様に、SPL方式またはSL方式に従うように構成されてもよい。
 この変形例によれば、送電装置の制御回路は、送電装置の送信コイルに流れる電流を監視することで、非接触給電装置が定電圧出力動作するスイッチング周波数を検出することができるとともに、送信コイルと受信コイル間に金属製の異物が混入したことを検出できる。
 さらに他の変形例によれば、受電装置の共振回路において、SS方式の非接触給電装置と同様に、受信コイルと共振コンデンサとが直列に接続されてもよい。この場合も、非接触給電装置は、定電圧出力動作することができるので、上記の実施形態または変形例と同様に、非接触給電装置が定電圧出力動作するスイッチング周波数を検出することができるとともに、送信コイルと受信コイル間に金属製の異物が混入したことを検出できる。
 図17は、この変形例による非接触給電装置の概略構成図である。図17に示されるように、この変形例による非接触給電装置5は、送電装置2と、送電装置2から空間を介して非接触で電力伝送される受電装置44とを有する。送電装置2は、電力供給回路10と、送信コイル14と、受信器15と、ゲートドライバ16-1、16-2と、制御回路17とを有する。一方、受電装置44は、受信コイル21及び共振コンデンサ22を有する共振回路20aと、整流平滑回路24と、負荷回路27と、電圧検出回路28と、定電圧判定回路29と、送信器32とを有する。この変形例による非接触給電装置5は、図5に示された非接触給電装置1と比較して、共振回路20aの構成、及び、コイル23が省略される点で相違する。そこで以下では、この相違点及び関連する点について説明する。
 共振回路20aでは、受信コイル21と共振コンデンサ22とは直列に接続される。そして受信コイル21を介して受電した電力は、共振コンデンサ22を介して整流平滑回路24へ出力される。このように、非接触給電装置5は、SS方式と同様の構成を有するため、定電圧出力動作することができる。またこの例では、SPL方式の非接触給電装置とは異なり、共振回路20aは、直列共振するので、コイル23は省略されてよい。なお、SS方式と異なり、非接触給電装置5は、送電側において送信コイル14の共振を利用しなくてもよい。すなわち、送電装置2の制御回路17は、上記の実施形態と同様に、送信コイル14が共振しないスイッチング周波数を持つ交流電力を送信コイル14へ供給するよう、電力供給回路10を制御すればよい。
 図18は、この変形例による非接触給電装置5について、結合度に応じて送信コイル14に印加する電圧を変化させたときの出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図18において、横軸は、周波数を表し、縦軸は、出力電圧を表す。なお、このシミュレーションでは、Lp=174μH、Cp=20nF、Ri=Ris=0.1Ω、n=1、Vin=300V、Ro=10Ω(Rac≒8.1Ω)とした。グラフ1801は、結合度k=0.15、負荷回路27の交流等価抵抗値をRac、送信コイル14に印加される電圧をVinとしたときの出力電圧の周波数特性を表す。またグラフ1802は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイル14に印加される電圧をVinとしたときの出力電圧の周波数特性を表す。また、グラフ1803は、結合度k=0.3、負荷回路27の交流等価抵抗値をRac、送信コイル14に印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1804は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイル14に印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。さらに、グラフ1805は、結合度k=0.6、負荷回路27の交流等価抵抗値をRac、送信コイル14に印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1806は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイル14に印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。
 図18におけるポイント1811~1813で示される通り、この変形例においても、結合度の値ごとに、結合度kが変化しない条件下で、負荷回路27の交流等価抵抗値が変化しても出力電圧が略一定となる(すなわち、定電圧出力となる)、周波数と出力電圧の組み合わせが存在する。そしてポイント1811~1813のそれぞれでの出力電圧は、互いに略等しい。
 以上により、非接触給電装置5についても、送信コイル14と受信コイル21間に異物が混入していなければ、負荷回路27の抵抗値及び結合度の何れが変動しても、送信コイル14に印加する交流電力のスイッチング周波数及び電圧を適切に調節することで、出力電圧が略一定に保たれることが分かる。
 図19は、異物混入時における、非接触給電装置5についての出力電圧の周波数特性のシミュレーション結果の一例を示す図である。図19において、横軸は、周波数を表し、縦軸は、出力電圧を表す。グラフ1901は、異物混入時における、結合度k=0.15、負荷回路27の交流等価抵抗値をRac、送信コイル14に印加される電圧をVinとしたときの出力電圧の周波数特性を表す。またグラフ1902は、結合度k=0.15、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイル14に印加される電圧をVinとしたときの出力電圧の周波数特性を表す。また、グラフ1903は、結合度k=0.3、負荷回路27の交流等価抵抗値をRac、送信コイル14に印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1904は、結合度k=0.3、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイル14に印加される電圧を(0.5*Vin)としたときの出力電圧の周波数特性を表す。さらに、グラフ1905は、結合度k=0.6、負荷回路27の交流等価抵抗値をRac、送信コイル14に印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。またグラフ1906は、結合度k=0.6、負荷回路27の交流等価抵抗値を(10*Rac)、送信コイル14に印加される電圧を(0.25*Vin)としたときの出力電圧の周波数特性を表す。なお、この例では、異物混入による影響を表すために、各回路素子のパラメータとして、図18のシミュレーションで用いたものから、漏れインダクタンスLrの値を50μH減らし、送電側の巻線抵抗値Ri及び受電側の巻線抵抗値Risを3Ω増加させた値を使用した。
 図19に示される通り、何れの結合度においても、負荷回路27の交流等価抵抗値の変動により、出力電圧が大きく変動し、非接触給電装置5が定電圧出力動作しなくなることが分かる。さらに、異物が混入することで、結合度によらず、出力電圧の波形が高周波数側にシフトしていることが分かる。
 したがって、非接触給電装置5についても、送電装置2の制御回路17が、図8または図10に示される動作フローチャートに従って異常停止処理を実行することで、送信コイル14と受信コイル21間に金属製の異物が混入したか否かを判定することができ、そして金属製の異物が混入したと判定した場合に、送電装置2から受電装置44への電力伝送を停止することができる。
 なお、非接触給電装置5において、送電装置2は、送信コイル14と直列に接続されるコンデンサを有し、制御回路17は、送信コイル14及びそのコンデンサからなる共振回路が共振するスイッチング周波数を持つ交流電力が送信コイル14に供給されるように電力供給回路10を制御してもよい。この場合、非接触給電装置5は、SS方式の非接触給電装置として動作する。この場合も、制御回路17は、図8または図10に示される動作フローチャートに従って異常停止処理を実行することで、送信コイル14と受信コイル21間に金属製の異物が混入したか否かを判定することができ、そして金属製の異物が混入したと判定した場合に、送電装置2から受電装置44への電力伝送を停止することができる。
 さらに、図16に示される非接触給電装置4において、非接触給電装置5と同様に、受電装置43は、受信コイル61と共振コンデンサ62とが並列に接続される共振回路60の代わりに、受信コイルと共振コンデンサとが直列に接続される共振回路を有してもよい。そして、共振回路と整流平滑回路64との間に接続されるコイル63は省略されてもよい。この場合も、非接触給電装置は、送信コイルと受信コイルの間に異物が混入していない場合に定電圧出力動作し、送信コイルと受信コイルの間に異物が混入すると定電圧出力動作しなくなる。そのため、送電装置42の制御回路59は、図16に示される非接触給電装置4と同様の異常停止処理を実行することで、送信コイルと受信コイル間に金属製の異物が混入したか否かを判定することができ、そして金属製の異物が混入したと判定した場合に、送電装置42から受電装置43への電力伝送を停止することができる。
 さらに他の変形例によれば、送電装置において、送信コイルに交流電力を供給する電力供給回路は、スイッチング周波数及び送信コイルに印加する電圧を可変に調節できる回路であれば、上記の実施形態及び変形例とは異なる回路構成を持っていてもよい。
 図20A及び図20Bは、それぞれ、変形例による、電力供給回路の回路図である。
 図20Aに示される電力供給回路110は、電源11と、力率改善回路12と、二つのスイッチング素子13-1及びスイッチング素子13-2と、送信コイル14と直列に接続される、直流遮断用のコンデンサ131とを有する。なお、この変形例においても、各スイッチング素子は、例えば、nチャネル型のMOSFETとすることができる。また、力率改善回路12は、例えば、上記の実施形態における力率改善回路12と同一とすることができる。
 この変形例では、スイッチング素子13-1とスイッチング素子13-2は、電源11の正極側端子と負極側端子との間に直列に接続される。また、電源11の正極側に、スイッチング素子13-1が接続され、一方、電源11の負極側に、スイッチング素子13-2が接続される。そしてスイッチング素子13-1のドレイン端子は、電源11の正極側端子と力率改善回路12を介して接続され、スイッチング素子13-1のソース端子は、スイッチング素子13-2のドレイン端子と接続される。また、スイッチング素子13-2のソース端子は、電源11の負極側端子と力率改善回路12を介して接続される。さらに、スイッチング素子13-1のソース端子、及び、スイッチング素子13-2のドレイン端子は、送信コイル14の一端に接続され、スイッチング素子13-2のソース端子は、コンデンサ131を介して送信コイル14の他端に接続される。また、各スイッチング素子のゲート端子は、ゲートドライバ16-2と接続される。
 この変形例では、ゲートドライバ16-2が、制御回路17からの制御信号に従って、スイッチング素子13-1とスイッチング素子13-2のオン/オフを交互に切り替えればよい。すなわち、スイッチング素子13-1がオンとなり、スイッチング素子13-2がオフとなる場合には、電源11から力率改善回路12及びスイッチング素子13-1を介して送信コイル14へ電流が流れ、コンデンサ131が充電される。一方、スイッチング素子13-1がオフとなり、スイッチング素子13-2がオンとなる場合には、コンデンサ131が放電して、コンデンサ131から送信コイル14及びスイッチング素子13-2を介して電流が流れる。したがって、この変形例では、制御回路17が、受電装置3から受信した判定情報に応じて、ゲートドライバ16-2を介して、スイッチング素子13-1とスイッチング素子13-2のオン/オフを切り替えるスイッチング周波数を制御すればよい。
 図20Bに示される電力供給回路120も、電力供給回路110と同様に、電源11と、力率改善回路12と、二つのスイッチング素子13-1及びスイッチング素子13-2と、送信コイル14と直列に接続されるコンデンサ131とを有する。ただし、電力供給回路120は、電力供給回路110と比較して、送信コイル14の一端が電源11の正極側端子と力率改善回路12を介して接続され、送信コイル14の他端がコンデンサ131を介してスイッチング素子13-1のソース端子、及び、スイッチング素子13-2のドレイン端子と接続される。
 この変形例でも、ゲートドライバ16-2が、制御回路17からの制御信号に従って、スイッチング素子13-1とスイッチング素子13-2のオン/オフを交互に切り替えればよい。
 また、図5に示される実施形態、図17に示される変形例、及び、図20A及び図20Bに示される変形例において、電源と力率改善回路の代わりに、図16に示されるように、電圧可変電源が用いられてもよい。逆に、図16に示される変形例において、電圧可変電源の代わりに、図5に示される実施形態における電源と力率改善回路とが用いられてもよい。さらに、図16に示される変形例において、スイッチング周波数が調整されている間の所定の電圧を持つ電力を送信コイル54に供給可能なように、電圧可変電源51が構成されてもよい。この場合には、DC/DCコンバータ52及びスイッチング素子53-3は省略されてもよい。
 また、上記の実施形態または各変形例において、送電装置の受信器と受電装置の送信器とを有線にて接続することが可能な場合には、受信器及び送信器は、それぞれ、判定情報を含む信号を有線にて通信可能な通信回路を有していればよい。
 このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
 1、4、5  非接触給電装置
 2、42  送電装置
 10、110、120  電力供給回路
 11  電源
 12  力率改善回路
 51  電圧可変電源
 52  DC/DCコンバータ
 13-1~13-4、53-1~53-3  スイッチング素子
 14、54  送信コイル
 55  コンデンサ
 56  電流検出回路
 15、57  受信器
 16-1、16-2、58  ゲートドライバ
 17、59  制御回路
 3、43、44  受電装置
 20、20a、60  共振回路
 21、61  受信コイル
 22、62  共振コンデンサ
 23、63  コイル
 24、64  整流平滑回路
 25、65  全波整流回路
 26、66  平滑コンデンサ
 27、67  負荷回路
 28、68  電圧検出回路
 29、69  定電圧判定回路
 30、70  判定回路
 31、71  スイッチング素子
 72  固定負荷回路
 32、73  送信器
 111  交流電源
 131  コンデンサ

Claims (8)

  1.  送電装置と、前記送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置であって、
     前記受電装置は、
      前記送電装置からの電力を受信する受信コイルを有する共振回路と、
      前記共振回路から出力される電力を整流する整流回路と、
     を有し、
     前記送電装置は、
      前記受電装置へ電力を供給する送信コイルと、
      前記送信コイルに対して、調整可能なスイッチング周波数を持つ交流電力を供給する電力供給回路と、
      前記電力供給回路から前記送信コイルに供給される前記交流電力のスイッチング周波数を所定の周波数領域にわたって変化させても前記非接触給電装置が定電圧出力動作しない場合、前記電力供給回路から前記送信コイルへの電力供給を停止する制御回路と、
    を有する非接触給電装置。
  2.  前記受電装置は、前記共振回路と前記整流回路の間に、前記受信コイルと直列に接続されるコイルをさらに有し、
     前記受電装置の共振回路は、前記受信コイルと並列に接続される共振コンデンサをさらに有し、
     前記送電装置の前記制御回路は、前記送信コイルに対して、前記送信コイルが共振しないスイッチング周波数を持つ交流電力が供給されるように前記電力供給回路を制御する、請求項1に記載の非接触給電装置。
  3.  前記受電装置の共振回路は、前記受信コイルと直列に接続される共振コンデンサをさらに有する、請求項1に記載の非接触給電装置。
  4.  前記受電装置は、
      前記共振回路から出力される電力の出力電圧を測定して当該出力電圧の測定値を求める電圧検出回路と、
      前記出力電圧の測定値に基づいて、前記非接触給電装置が定電圧出力動作しているか否か、及び、前記共振回路の出力電圧の測定値が前記所定の電圧の許容範囲内に含まれるか否かを判定する定電圧判定回路と、
     前記非接触給電装置が定電圧出力動作しているか否か、及び、前記出力電圧の測定値が所定の電圧の許容範囲内に含まれるか否かを表す判定情報を含む信号を前記送電装置へ送信する送信器とをさらに有し、
     前記送電装置は、
      前記判定情報を含む信号を受信する受信器をさらに有し、
      前記制御回路は、前記電力供給回路から前記送信コイルに供給される前記交流電力のスイッチング周波数を所定の周波数領域にわたって変化させても、前記非接触給電装置が定電圧出力動作していることを示す前記判定情報を受信しなかった場合、前記電力供給回路から前記送信コイルへの電力供給を停止する、
    請求項1~3の何れか一項に記載の非接触給電装置。
  5.  前記受電装置の前記定電圧判定回路は、所定時間経過する間の前記出力電圧の測定値の変化量を求め、
     前記受電装置の前記送信器は、前記判定情報に前記出力電圧の測定値の変化量を含め、
     前記送電装置の前記制御回路は、前記電力供給回路から前記送信コイルに供給される前記交流電力のスイッチング周波数を所定量高くなるよう変化させたときに、前記判定情報に含まれる前記出力電圧の測定値の変化量が、前記出力電圧の測定値が上昇していることを示している場合、前記電力供給回路から前記送信コイルへの電力供給を停止する、請求項4に記載の非接触給電装置。
  6.  前記定電圧判定回路は、前記共振回路と接続される回路の抵抗値を変更しても、前記出力電圧の測定値が略一定となる場合、前記非接触給電装置が定電圧出力動作していると判定する、請求項4または5に記載の非接触給電装置。
  7.  前記送電装置は、前記送信コイルに流れる電流を測定して当該電流の測定値を求める電流検出回路をさらに有し、
     前記送電装置の前記制御回路は、前記スイッチング周波数を前記所定の周波数領域にわたって変化させながら、前記電流の測定値を監視して、前記電流の測定値が極大値となるスイッチング周波数が検出されるか否か判定し、前記電流の測定値が極大値となるスイッチング周波数が検出されなかった場合、前記電力供給回路から前記送信コイルへの電力供給を停止する、請求項1~3の何れか一項に記載の非接触給電装置。
  8.  送電装置と、前記送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置における、異常停止方法であって、
     前記受電装置は、
      前記送電装置からの電力を受信する受信コイルを有する共振回路と、
      前記共振回路から出力される電力を整流する整流回路とを有し、
     前記送電装置は、
      前記受電装置へ電力を供給する送信コイルと、
      前記送信コイルに対して、調整可能なスイッチング周波数を持つ交流電力を供給する電力供給回路とを有し、
     前記異常停止方法は、
      前記電力供給回路から前記送信コイルに供給される前記交流電力のスイッチング周波数を所定の周波数領域にわたって変化させるステップと、
      前記交流電力のスイッチング周波数を前記所定の周波数領域にわたって変化させても前記非接触給電装置が定電圧出力動作しない場合、前記電力供給回路から前記送信コイルへの電力供給を停止するステップと、
    を含む異常停止方法。
PCT/JP2018/020242 2017-06-02 2018-05-25 非接触給電装置及び異常停止方法 WO2018221428A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/612,215 US11190058B2 (en) 2017-06-02 2018-05-25 Non-contact power supply device and method for abnormal stop
DE112018002813.5T DE112018002813T5 (de) 2017-06-02 2018-05-25 Kontaktlose energieversorgungsvorrichtung und verfahren zum anomalen stoppen
CN201880026914.1A CN110546855B (zh) 2017-06-02 2018-05-25 非接触供电装置以及异常停止方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017110334 2017-06-02
JP2017-110334 2017-06-02
JP2018-045506 2018-03-13
JP2018045506A JP6399244B1 (ja) 2017-06-02 2018-03-13 非接触給電装置及び異常停止方法

Publications (2)

Publication Number Publication Date
WO2018221428A1 true WO2018221428A1 (ja) 2018-12-06
WO2018221428A8 WO2018221428A8 (ja) 2019-12-12

Family

ID=63708609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020242 WO2018221428A1 (ja) 2017-06-02 2018-05-25 非接触給電装置及び異常停止方法

Country Status (5)

Country Link
US (1) US11190058B2 (ja)
JP (1) JP6399244B1 (ja)
CN (1) CN110546855B (ja)
DE (1) DE112018002813T5 (ja)
WO (1) WO2018221428A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673544A (zh) * 2019-01-11 2021-04-16 欧姆龙株式会社 非接触电力传输系统
WO2021181883A1 (ja) * 2020-03-11 2021-09-16 オムロン株式会社 異物検出装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200235612A1 (en) * 2019-01-23 2020-07-23 Mediatek Singapore Pte. Ltd. Addressing borderline foreign object detection results
DE102019208122A1 (de) * 2019-06-04 2020-12-10 Audi Ag Verfahren zum Betrieb einer elektrischen Schaltung, elektrische Schaltung und Kraftfahrzeug
JP7404706B2 (ja) 2019-08-19 2023-12-26 オムロン株式会社 異物検出装置
JP7451916B2 (ja) 2019-09-25 2024-03-19 オムロン株式会社 異物検出装置
JP7452173B2 (ja) 2020-03-26 2024-03-19 オムロン株式会社 異物検出装置
GB202110295D0 (en) * 2021-07-16 2021-09-01 Imperial College Innovations Ltd Induced electromotive force measurement system for inductive power transfer
JP2023071459A (ja) 2021-11-11 2023-05-23 オムロン株式会社 給電ステーション

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126307A (ja) * 2011-12-15 2013-06-24 Equos Research Co Ltd 電力伝送システム
JP2015173587A (ja) * 2014-02-18 2015-10-01 パナソニック株式会社 無線電力伝送システムおよび送電装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730506B2 (ja) * 1995-02-27 1998-03-25 日本電気株式会社 圧電トランスを用いたdc/dcコンバータ
JP2792536B2 (ja) * 1995-09-26 1998-09-03 日本電気株式会社 共振型dc−dcコンバータ
TW356618B (en) * 1997-01-16 1999-04-21 Nippon Electric Co AC/DC converter with a piezoelectric transformer
KR100853889B1 (ko) * 2005-07-29 2008-08-25 엘에스전선 주식회사 무 접점 충전 배터리 및 충전기, 이들을 포함하는 배터리충전 세트, 및 충전제어 방법
JP5316541B2 (ja) * 2008-09-26 2013-10-16 株式会社村田製作所 無接点充電システム
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
EP2763279A4 (en) * 2011-09-29 2015-07-01 Hitachi Power Solutions Co Ltd LOAD CONTROL DEVICE AND LOAD CONTROL METHOD
JP6157878B2 (ja) * 2013-03-01 2017-07-05 株式会社トーキン 非接触電力伝送システム
JP5808355B2 (ja) * 2013-03-22 2015-11-10 株式会社東芝 無線給電システム、受電制御装置、および、送電制御装置
CN105393432B (zh) * 2013-07-31 2018-12-28 松下电器产业株式会社 无线电力传输系统以及送电装置
JP5977213B2 (ja) 2013-08-21 2016-08-24 トヨタ自動車株式会社 非接触電力伝送システム
WO2015029221A1 (ja) * 2013-08-30 2015-03-05 パイオニア株式会社 非接触電力受電システム、非接触電力伝送システム、制御方法、コンピュータプログラム及び記録媒体
CN105594098B (zh) * 2014-02-28 2020-01-21 松下知识产权经营株式会社 异物检测装置、用于无线电力传输的送电装置和受电装置以及无线电力传输系统
US9831684B2 (en) * 2014-08-08 2017-11-28 Texas Instruments Incorporated Adaptive rectifier and method of operation
JP6390808B1 (ja) * 2017-05-19 2018-09-19 オムロン株式会社 非接触給電装置
JP7003445B2 (ja) * 2017-05-19 2022-02-04 オムロン株式会社 非接触給電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126307A (ja) * 2011-12-15 2013-06-24 Equos Research Co Ltd 電力伝送システム
JP2015173587A (ja) * 2014-02-18 2015-10-01 パナソニック株式会社 無線電力伝送システムおよび送電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673544A (zh) * 2019-01-11 2021-04-16 欧姆龙株式会社 非接触电力传输系统
CN112673544B (zh) * 2019-01-11 2023-09-08 欧姆龙株式会社 非接触电力传输系统
WO2021181883A1 (ja) * 2020-03-11 2021-09-16 オムロン株式会社 異物検出装置

Also Published As

Publication number Publication date
US20210143676A1 (en) 2021-05-13
JP2018207764A (ja) 2018-12-27
JP6399244B1 (ja) 2018-10-03
CN110546855A (zh) 2019-12-06
WO2018221428A8 (ja) 2019-12-12
CN110546855B (zh) 2023-06-06
DE112018002813T5 (de) 2020-02-13
US11190058B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP6399244B1 (ja) 非接触給電装置及び異常停止方法
JP6390808B1 (ja) 非接触給電装置
US11329513B2 (en) Contactless power transmission apparatus
WO2019171786A1 (ja) 非接触給電装置
CN111712991B (zh) 非接触式供电装置
WO2019155820A1 (ja) 非接触給電装置
JP6384569B1 (ja) 非接触給電装置
US20190312525A1 (en) Non-contact feeding device
CN110582923B (zh) 非接触供电装置
WO2018212074A1 (ja) 非接触給電装置
JP6791185B2 (ja) 非接触給電装置
WO2020116033A1 (ja) 非接触給電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808863

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18808863

Country of ref document: EP

Kind code of ref document: A1