WO2018221406A1 - 中空粒子及び化粧料 - Google Patents

中空粒子及び化粧料 Download PDF

Info

Publication number
WO2018221406A1
WO2018221406A1 PCT/JP2018/020149 JP2018020149W WO2018221406A1 WO 2018221406 A1 WO2018221406 A1 WO 2018221406A1 JP 2018020149 W JP2018020149 W JP 2018020149W WO 2018221406 A1 WO2018221406 A1 WO 2018221406A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
hollow
silica
particle
specific gravity
Prior art date
Application number
PCT/JP2018/020149
Other languages
English (en)
French (fr)
Inventor
慧 渡邊
直幸 榎本
郁子 嶋崎
建一 末光
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to CN201880030062.3A priority Critical patent/CN110603223B/zh
Priority to US16/617,677 priority patent/US11020326B2/en
Priority to EP18810761.9A priority patent/EP3632849B1/en
Priority to KR1020197032967A priority patent/KR102575425B1/ko
Priority to BR112019024941-9A priority patent/BR112019024941B1/pt
Priority to JP2019522190A priority patent/JP7170633B2/ja
Priority to CA3063038A priority patent/CA3063038A1/en
Publication of WO2018221406A1 publication Critical patent/WO2018221406A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0279Porous; Hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Definitions

  • the present invention relates to hollow particles having soft touch characteristics unique to plastic beads, and cosmetics including the same.
  • plastics are used in various industries and support modern and convenient lives. Many synthetic polymers have been developed for long-term stability. Therefore, it is not decomposed in the natural environment and causes various environmental problems. For example, plastic products that have spilled into the water environment have accumulated for a long period of time, causing the problem of serious damage to the marine and lake ecosystems. In recent years, a fine plastic having a length of 5 mm or less to a nano level, called a micro plastic, has become a big problem. Examples of micro plastics include fine particles contained in cosmetics, small lumps of plastic resin before processing, and products that have become finer as large products float in the sea.
  • plastic particles for example, polyethylene particles
  • plastic particles have a low true specific gravity and are difficult to remove at sewage treatment plants, and flow into rivers, oceans, ponds and marshes. Since plastic particles are easy to adsorb chemical substances such as insecticides, there is a possibility that the human body is affected by bioconcentration. This is pointed out in the United Nations Environment Program, etc., and various countries and various industry groups are considering regulations.
  • inorganic oxide particles that do not use organic substances have been proposed.
  • porous or non-porous spherical particles obtained by coating an aggregate of inorganic oxide fine particles with a silica layer are used as a filler for cosmetics, a cosmetic that is very light, soft, and has good elongation can be obtained. It is known (see, for example, WO 2004/006873).
  • porous particles having an average particle diameter in the range of 0.5 to 30 ⁇ m and excellent in surface smoothness for example, JP-A 2009-2009). No. 137806).
  • an inorganic oxide particle having a touch property that is highly adherent to the skin and low in sharpness it has cavities (porosity of 20 to 95% by weight) inside the nonporous outer shell. Hollow particles having a negative pressure are known (for example, see JP 2011-256098 A).
  • inorganic oxide particles that do not use organic substances are not satisfactory as a substitute for plastic beads because it is difficult to develop soft touch characteristics during coating.
  • an object of the present invention is to realize inorganic oxide particles having soft touch characteristics such as plastic beads.
  • the inventors of the present invention indicate that the true specific gravity of the particles is a factor that gives a soft feeling during coating, and that the adhesive force is reduced by forming fine convex portions on the particle surface, and appropriate fluidity is imparted. I found out. As a result, inorganic oxide particles with soft feel like plastic beads were realized.
  • the inorganic oxide particles of the present invention are hollow particles having cavities inside the outer shell, have convex portions of 3 to 100 nm on the outer shell surface, and the true specific gravity of the particles is 0.3 to 3. 0 g / cm 3 .
  • the average particle diameter of the hollow particles is 1 to 20 ⁇ m, and the specific surface area per unit volume determined by the BET method is 0.5 or more and less than 60 m 2 / cm 3 . According to such particles, it is possible to obtain a soft touch characteristic and an effect of easily extending and spreading uniformly on the skin (that is, high fluidity).
  • the convex portions on the particle surface are preferably provided at a ratio of 5 or more per 1 ⁇ m 2 , and a spherical crown shape is preferable.
  • the outer shell of the hollow particles is preferably nonporous. Therefore, the true specific gravity is preferably 2.2 g / cm 3 or more.
  • the cosmetic of the present invention contains any of the hollow particles described above.
  • the hollow particles of the present invention have a balloon structure having a cavity inside the outer shell. Projections of 3 to 100 nm are provided on the surface of the particles.
  • the true specific gravity of the particles is 0.3 to 3.0 g / cm 3 and the specific surface area (m 2 / cm 3 ) per unit volume determined by the BET method is 0.5 or more and less than 60.
  • the average particle diameter (d 1 ) determined by the laser diffraction method is in the range of 1 to 20 ⁇ m. According to such particles, soft feel characteristics and appropriate fluidity can be obtained.
  • the average particle diameter (d 1 ) is less than 1 ⁇ m, the adhesion becomes high, and it becomes difficult to uniformly spread on the skin (that is, the fluidity is low).
  • the particle diameter exceeds 20 ⁇ m it feels rough when the particle powder is touched, and the soft feeling is reduced.
  • the average particle size is preferably 2 to 8 ⁇ m.
  • the hollow particles are inorganic oxide particles containing silica. That is, the outer shell of the hollow particles is formed of a composite oxide such as silica-alumina, silica-zirconia, and silica-titania, and silica. In consideration of blending into cosmetics, amorphous silica particles are suitable for the hollow particles.
  • the preferable range of the true specific gravity varies depending on the composition of the particles. For example, if 99% or more of the composition is silica, the true specific gravity of the particles is preferably 0.3 to 2.1 g / cm 3 . Since the specific gravity of silica is 2.2 g / cm 3 , it can be considered that there is a cavity inside if it is 2.1 g / cm 3 or less. Hollow particles having a true specific gravity of 0.3 g / cm 3 or less have a thin outer shell and a low strength. Therefore, there is a possibility that particles are destroyed due to mechanical share when blended in cosmetics. On the other hand, when the true specific gravity exceeds 2.1 g / cm 3 , sufficient cavities do not exist. Therefore, it is difficult to obtain soft touch characteristics.
  • the true specific gravity of the particles is more preferably 0.5 to 2.0 g / cm 3 , further preferably 0.7 to 1.8 g / cm 3 .
  • the calculated specific gravity is 2.5 g / cm 3 .
  • the true specific gravity is preferably 0.4 to 2.4 g / cm 3 .
  • the composition ratio (silica / alumina) is 35/65, the calculated specific gravity is 3.1 g / cm 3 , so the true specific gravity of the particles is 0.5 to 3.0 g / cm 3. preferable.
  • the specific gravity of the particles is lower than the theoretical specific gravity calculated from the composition, it can be said that there is a cavity inside.
  • porosity (1 ⁇ true specific gravity / (theoretical specific gravity calculated from the composition of particles)) ⁇ 100”
  • porosity 1 ⁇ true specific gravity / (theoretical specific gravity calculated from the composition of particles)
  • the specific surface area of the hollow particles obtained by the BET method is 60 m 2 / cm 3 or more, the definition of the nanomaterial is satisfied, and there is a possibility that the hollow particles cannot be used with peace of mind in the same applications as conventional plastic beads.
  • the size of the convex portion on the particle surface is less than 3 nm, the adhesiveness is high, and the fluidity is significantly lowered. On the other hand, when it exceeds 100 nm, the adhesion is too low, and the rolling property of the particles is increased, and as a result, it becomes difficult to obtain a desired soft feeling.
  • the height of the convex portion is preferably 5 to 60 nm, and more preferably 7 to 20 nm. Further, it is preferable that 5 or more convex portions having a size of 3 nm or more exist per 1 ⁇ m 2 . If there are five or more, uniform frictional resistance can be imparted. Furthermore, it is preferable that the convex portion has a spherical crown shape. The spherical crown shape makes it easy to uniformly control the frictional resistance.
  • the outer shell is preferably nonporous. That is, when 99% or more of the composition of the particles is silica, the true specific gravity of the outer shell is preferably 2.2 g / cm 3 . When the true specific gravity of the outer shell is less than 2.2 g / cm 3 , the mechanical strength of the outer shell is lowered, and the particles may be broken due to the mechanical share when blended in the cosmetic.
  • the preferable true specific gravity value increases as the proportion of alumina increases. That is, a true specific gravity of 2.2 g / cm 3 or less is not preferable for a nonporous outer shell.
  • the haze when the haze is measured by putting hollow particles in a dispersion having a refractive index of 1.46, it is suitable that the haze is 50% or more. Since the refractive index of sebum secreted from the skin is around 1.46, even when the hollow particles are applied to the skin and then wet with sebum, the appropriate light diffusivity is not impaired.
  • the maximum absorbance (I 1) in the 3730 ⁇ 3750cm -1, the ratio of the maximum absorbance (I 2) in the 1160 ⁇ 1260cm -1 (I 1 / I 2) is 0.05 or less is suitable.
  • the silanol group (Si—OH) on the particle surface decreases, the infrared absorbance at 3730-3750 cm ⁇ 1 decreases.
  • the infrared absorbance at 1160 to 1260 cm ⁇ 1 belonging to Si—O—Si increases. Since silanol groups bind to water, the less silanol groups, the lower the hydrophilicity.
  • the surface may be hydrophobized by surface treatment with a silane compound or the like, or crushing silanol groups by high-temperature baking or the like.
  • a sol in which spherical inorganic oxide fine particles are dispersed in water is prepared.
  • the sol preferably contains 1 to 30% by weight of inorganic oxide fine particles in terms of solid content.
  • the inorganic oxide fine particles are fine particles containing silica as a component, and examples thereof include fine particles of composite oxides such as silica-alumina, silica-zirconia, silica-titania, and silica fine particles.
  • amorphous silica fine particles are preferable. Note that it is not necessary to change the production conditions depending on the difference in the composition of the fine particles.
  • a slurry is prepared by adding a silicic acid solution having a silica concentration of 1 to 50% by weight to this inorganic oxide sol.
  • the inorganic oxide sol and the silicic acid so that the solid weight ratio (I / II) of the inorganic oxide component (I) of the sol and the silica component (II) of the silicic acid solution is in the range of 0.05 to 1. Mix the liquid.
  • Silicate salts include alkali metal silicates such as sodium silicate (water glass) and potassium silicate, and silicates of organic bases such as quaternary ammonium silicate.
  • granulation is performed by a conventionally known spray drying method.
  • a spray liquid slurry
  • a spray liquid sprayed into a hot air stream at a rate of 1 to 3 liters / hour.
  • the temperature of the hot air is preferably in the range of 70 to 600 ° C. at the inlet temperature and 40 to 300 ° C. at the outlet temperature.
  • the inlet temperature is less than 70 ° C.
  • the solid content is insufficiently dried.
  • it exceeds 600 degreeC there exists a possibility that a particle shape may be distorted.
  • the outlet temperature is less than 40 ° C., the degree of drying of the solid content is poor, and the particles tend to adhere to the inside of the apparatus. If necessary, the obtained particles may be washed, dried, and fired.
  • particles having a balloon structure in which cavities are formed inside the outer shell are obtained.
  • this hollow particle has a convex part of 3 to 100 nm on the surface, and the true specific gravity of the hollow particle is 0.3 to 3.0 g / cm 3 .
  • the outer shell is composed of a silicic acid component contained in the slurry, and the convex portion formed in the outer shell is composed of inorganic oxide fine particles. Therefore, the average particle diameter (d 2 ) of the inorganic oxide fine particles is preferably 6 nm to 200 nm. When the average particle diameter exceeds 200 nm, the convex portions on the particle surface are too large, and desired touch characteristics cannot be obtained.
  • inorganic oxide fine particles having an average particle diameter of less than 6 nm have low stability and are not preferable from an industrial viewpoint.
  • the average particle size is more preferably from 10 to 120 nm, particularly preferably from 14 to 90 nm.
  • the particle size variation coefficient (CV) of the inorganic oxide fine particles is preferably within 10%.
  • the inorganic oxide fine particles fine particles having the above composition may be used, and a metal component such as alumina, zirconia, or titania may be included in the silicic acid solution. That is, hollow particles having various compositions can be obtained by adjusting the composition of the inorganic oxide sol and the composition of the silicic acid solution. For example, particles having outer shells and convex portions made of silica, particles having outer shells and convex portions made of silica-alumina, and particles made of silica-based materials having different outer shells and convex portions are easily obtained. be able to.
  • generated from the raw material derived from a plant it is preferable from a viewpoint of realization of a sustainable society to comprise a hollow particle using the silica component produced
  • ISO16128-1 (Guidelines on technical definitions and criteria for natural And organic cosmetic ingredients and products Part1: Definitions for ingredients)
  • the raw materials are defined.
  • Silica sand, which is frequently used as a silica source, is classified as a mineral component, but if it is a plant-derived silica component, it is classified as a naturally-derived component, so that it can meet the needs.
  • Plant-derived silica components are abundant in gramineous plants and can be extracted from rice husks and their ears. For example, it is known that high-purity silica can be obtained by a firing method disclosed in JP-A-7-196312, a pressurized hot water method disclosed in JP-A-2002-265257, or the like. The plant-derived silica component thus obtained is dissolved in sodium hydroxide to prepare sodium silicate, and then silica-based particles can be prepared according to a conventional method.
  • Example 1 The sol (commercial product: manufactured by JGC Catalysts &Chemicals; Cataloid SI-30, silica concentration of 30% by weight) in which silica fine particles having an average particle diameter of 11 nm are dispersed in water is subjected to cation exchange to adjust the pH to 2.0. did. Thereby, a silica sol having a solid concentration of 30% by weight was obtained as an inorganic oxide sol.
  • This silica sol contains silica fine particles as inorganic oxide fine particles.
  • the dispersion slurry is spray-dried by using a spray dryer (NIRO-ATMIZER, manufactured by NIRO) as a spray solution. That is, in a dry air flow set at an inlet temperature of 200 ° C. and an outlet temperature of 50 to 55 ° C., gas is supplied from one of the two-fluid nozzles at a flow rate of 2 L / hour and from the other nozzle at a pressure of 0.15 MPa. Spray dried to obtain a dry powder.
  • a spray dryer NIRO-ATMIZER, manufactured by NIRO
  • the dried powder was baked at 600 ° C. for 4 hours. Thereafter, dry sieving was performed to obtain a powder of hollow particles.
  • Table 2 shows the physical properties of this powder.
  • Table 1 shows the particle preparation conditions. Each measured value in the table was measured by the following method.
  • Average particle size (d 1 ), (d 2 ), and particle size variation coefficient (CV) The particle size distribution of each particle was measured by a laser diffraction method. The average particle diameter of the hollow particles based on the particle size distribution (d 1), to obtain an average particle size of the inorganic oxide fine particles (d 2) and the particle diameter coefficient of variation (CV). At this time, the median value obtained from the particle size distribution was defined as the average particle size.
  • the particle size distribution was measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-950v2 (manufactured by Horiba, Ltd.).
  • Pore Volume After taking 10 g of hollow particle powder in a crucible and drying at 105 ° C. for 1 hour, it was placed in a desiccator and cooled to room temperature. Next, 1.0 g of a sample was placed in a well-cleaned cell, nitrogen was adsorbed using a nitrogen adsorption device, and the pore volume was calculated from the following equation.
  • Pore volume (ml / g) (0.001567 ⁇ (V ⁇ Vc) / W)
  • V is the adsorption amount (ml) in the standard state at a pressure of 735 mmHg
  • Vc is the cell blank capacity (ml) at a pressure of 735 mmHg
  • W is the mass (g) of the sample.
  • the ratio of the density of nitrogen gas and liquid nitrogen is 0.001567.
  • Shape and number of convex portions of hollow particles SEM photographs taken using a scanning electron microscope were observed to evaluate the number of convex portions of the hollow particles. An SEM image of 100 to 200 randomly selected particles was analyzed to confirm whether the shape of the convex portion was a spherical crown. Moreover, the convex part of a magnitude
  • Haze in dispersion (refractive index 1.46) 9.0 g of distilled water and 91.0 g of glycerin (special grade, manufactured by Kanto Chemical Co., Ltd.) were mixed to prepare an aqueous glycerin solution having a refractive index of 1.46. To 7.0 g of this glycerin aqueous solution, 3.0 g of hollow particle powder was added and dispersed by irradiating ultrasonic waves for 30 minutes (US-2KS manufactured by SND Co., Ltd.). The Haze of the obtained dispersion was measured using a color / turbidity simultaneous measuring device (300A manufactured by Nippon Denshoku Co., Ltd.) to obtain a Haze of hollow particles.
  • a color / turbidity simultaneous measuring device 300A manufactured by Nippon Denshoku Co., Ltd.
  • Example 2 In Example 1, instead of silica sol (SI-30), SS-160 (manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 160 nm) was used to prepare an inorganic oxide sol having a solid content concentration of 16% by weight. . This sol and the silicic acid solution of Example 1 were added so as to have a solid content weight ratio shown in Table 1 to obtain a dispersed slurry. Using this dispersion slurry, a hollow particle powder was prepared and measured in the same manner as in Example 1.
  • Example 3 In this example, the gas supply pressure of the two-fluid nozzle was set to 0.3 MPa. Except for this, a hollow particle powder was prepared and measured in the same manner as in Example 1.
  • Example 4 In this example, the gas supply pressure of the two-fluid nozzle was set to 0.6 MPa. Except for this, a hollow particle powder was prepared and measured in the same manner as in Example 1.
  • Example 5 JIS No. 3 water glass was used as a silicate solution (II) without cation exchange, and the inlet temperature during spray drying was 380 ° C. Except for this, a dry powder was prepared in the same manner as in Example 1. 100 g of the obtained dry powder was suspended in a sulfuric acid aqueous solution (25%) and neutralized. The slurry obtained by neutralization was filtered through a quantitative filter paper (No. 2 manufactured by Advantech Toyo Co., Ltd.) using a Buchner funnel (3.2 L manufactured by Sekiya Rika Glass Instruments Co., Ltd.). Thereafter, it was repeatedly washed with pure water to obtain a cake-like substance.
  • a quantitative filter paper No. 2 manufactured by Advantech Toyo Co., Ltd.
  • This cake-like substance was dried (120 ° C., 16 hours) to obtain a dry powder ⁇ . Then, it baked at 1000 degreeC for 3 hours, the dry-type sieve process was performed, and the powder was obtained. This powder was measured in the same manner as in Example 1.
  • Example 6 the solid content weight ratio (I / II) of the silica component (I) of the inorganic oxide sol and the silica component (II) of the silicic acid solution in the dispersion slurry was changed to 50/50. Except for this, a hollow particle powder was prepared and measured in the same manner as in Example 1.
  • Example 7 In Example 1, an inorganic oxide sol was prepared using SI-80P (manufactured by JGC Catalysts & Chemicals, Inc., average particle size of 80 nm) instead of silica sol (SI-30). This sol and the silicic acid solution of Example 1 were added so as to have a solid content weight ratio shown in Table 1. Using the resulting dispersion slurry, a hollow particle powder was prepared and measured in the same manner as in Example 1.
  • SI-80P manufactured by JGC Catalysts & Chemicals, Inc., average particle size of 80 nm
  • SI-30 silica sol
  • Example 8 In this example, the firing conditions were 1000 ° C. and 3 hours. Except for this, a hollow particle powder was prepared and measured in the same manner as in Example 1.
  • Example 1 In Example 1, instead of silica sol (SI-30), SI-550 (manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 5 nm) was used to prepare an inorganic oxide sol having a solid content concentration of 10% by weight. . This sol and the silicic acid solution of Example 1 were added so as to have a solid content weight ratio shown in Table 1. Using the resulting dispersion slurry, a particle powder was prepared and measured in the same manner as in Example 1.
  • SI-550 manufactured by JGC Catalysts & Chemicals Co., Ltd., average particle size 5 nm
  • Comparative Example 5 In this comparative example, a dispersion slurry was prepared only with silicic acid solution without using silica sol. Except for this, a powder of particles was prepared and measured in the same manner as in Example 1.
  • the particle powder obtained in each example and comparative example was subjected to a sensory test by 20 professional panelists, and it was smooth, moist, rolling, uniform spreadability, adhesion to the skin, and rolling.
  • Interviews were conducted on seven evaluation items (feel characteristics) of the sustainability and soft feeling. The results were evaluated based on the following evaluation point criteria (a). Furthermore, the evaluation points given by each person were totaled, and the feel of the particles was evaluated based on the following evaluation criteria (b).
  • Evaluation point criteria (a) 5 points: Very good 4 points: Excellent 3 points: Normal 2 points: Inferior 1 point: Very inferior evaluation criteria (b) ⁇ : Total score is 80 or more ⁇ : Total score is 60 or more and less than 80 ⁇ : Total score is 40 or more and less than 60 ⁇ : Total score is 20 or more and less than 40 ⁇ : Total score is less than 20
  • Table 3 As can be seen from the table, the powder of each example is extremely excellent as a feel-improving material for cosmetics, but the powder of the comparative example is not suitable as a feel-improving material.
  • the cosmetics A to C according to Examples 1, 2, and 5 were found to be very excellent in use feeling both during and after application. However, it was found that the cosmetics a to c of Comparative Examples 1, 2, and 4 were not good in use feeling.
  • hollow particles obtained in each of the above-described examples are used by blending with various cosmetic ingredients exemplified below.
  • Oils such as olive oil, rapeseed oil, and beef tallow.
  • Jojoba oil carnauba wax, candelilla wax, beeswax as waxes.
  • hydrocarbons paraffin, squalane, synthetic and vegetable squalane, ⁇ -olefin oligomer, microcrystalline wax, pentane, hexane.
  • fatty acids stearic acid, myristic acid, oleic acid, ⁇ -hydroxy acid.
  • alcohols examples include isostearyl alcohol, octyldodecanol, lauryl alcohol, ethanol, isopropanol, butyl alcohol, myristyl alcohol, cetanol, stearyl alcohol, and behenyl alcohol.
  • Esters include alkyl glyceryl ethers, isopropyl myristate, isopropyl palmitate, ethyl stearate, ethyl oleate, cetyl laurate, decyl oleate.
  • polyhydric alcohols ethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, glycerin, diglycerin.
  • Silicone oils include methylpolysiloxane, methylhydrogenpolysiloxane, methylphenyl silicone oil, various modified silicone oils, and cyclic dimethylsilicone oil. Silicone gel cross-linked with silicone and / or other organic compounds. Nonionic, cationic and anionic surfactants. Fluorine oil such as perfluoropolyether. Various polymers such as gum arabic, carrageenan, agar, xanthan gum, gelatin, alginic acid, guar gum, albumin, pullulan, carboxyvinyl polymer, cellulose and its derivatives, polyacrylamide, sodium polyacrylate, polyvinyl alcohol and the like.
  • UV protection agents such as cinnamic acid such as octyl paramethoxycinnamate, salicylic acid, benzoic acid ester, urocanic acid and benzophenone.
  • Disinfectant / preservative Antioxidant. Modified or unmodified clay mineral. Solvents such as butyl acetate, acetone, and toluene. Various organic facial dyes. water. Perfume.
  • the surface of the inorganic compound such as titanium oxide or zinc oxide may be subjected to silicone treatment, fluorine treatment, metal soap treatment, or the like in advance.
  • resin particles such as polymethyl acrylate, nylon, silicone resin, silicone rubber, polyethylene, polyester, and polyurethane may be included.
  • resin particles such as polymethyl acrylate, nylon, silicone resin, silicone rubber, polyethylene, polyester, and polyurethane may be included.
  • a component having a whitening effect arbutin, kojic acid, vitamin C, sodium ascorbate, magnesium ascorbate phosphate, ascorbyl di-palmitate, glucoside ascorbate, other ascorbic acid derivatives, placenta extract, sulfur, oil Plant extracts such as soluble licorice extract and mulberry extract, linoleic acid, linolenic acid, lactic acid, tranexamic acid and the like may be included.
  • Anti-aging effects such as vitamin C, carotenoids, flavonoids, tannins, caffeic acid derivatives, lignans, saponins, retinoic acid and retinoic acid structural analogs, N-acetylglucosamine, ⁇ -hydroxy acids, etc.
  • Such cosmetics can be produced by a conventionally known general method.
  • Cosmetics are used in various forms such as powder, cake, pencil, stick, cream, gel, mousse, liquid, and cream.
  • cosmetics for cleaning (soaps, cleansing foams, makeup-removing creams, etc.), skin care cosmetics (moisturizing, preventing rough skin, acne, keratin care, massage, wrinkle / sagging, dullness / bearing, UV care , Whitening, antioxidant care, etc.), base makeup cosmetics (powder foundation, liquid foundation, cream foundation, mousse foundation, pressed powder, makeup base), point makeup cosmetics (eye shadow, eyebrow, Eyeliner, mascara, lipstick), hair care cosmetics (for hair growth, anti-dandruff, itching prevention, cleaning, conditioning / hair styling, permanent wave, hair color / hair bleach cosmetic), body care cosmetics (for cleaning) , Sunburn prevention, rough hand prevention, For rimming, blood circulation improvement, itching suppression, body odor prevention, antiperspirant, hair care, repellant,

Abstract

本発明の中空粒子は、外殻の内部に空洞を有するバルーン構造であり、表面に3~100nmの凸部を有している。また、粒子の真比重は0.3~3.0g/cm3、BET法で求めた単位体積あたりの比表面積(m2/cm3)は0.5以上60未満である。平均粒子径(d1)は1~20μmの範囲にある。このような中空粒子を配合した化粧料は、プラスチックビーズ同様のソフトな感触特性を有している。

Description

中空粒子及び化粧料
 本発明は、プラスチックビーズ特有のソフトな感触特性を有する中空粒子、及びこれを含む化粧料に関する。
 現在、石油由来の合成高分子(プラスチック)は、さまざまな産業で利用され、現代の便利な生活を支えている。合成高分子の多くは、長期安定性を求めて開発されている。そのため、自然環境中で分解されず、様々な環境問題を引き起こしている。例えば、水環境中に流出したプラスチック製品が長い期間蓄積され、海洋や湖沼の生態系に大きな害を与えるという問題が発生している。また、近年、マイクロプラスチックと呼ばれる長さが5mm以下からナノレベルまでの微細なプラスチックが大きな問題となっている。マイクロプラスチックに該当するものとして、化粧用品などに含まれる微粒子、加工前のプラスチック樹脂の小さな塊、大きな製品が海中で浮遊するうちに微細化した物、などが挙げられている。
 近年では、洗浄効果を高めるため、洗顔料に数百μm級のプラスチック粒子(例えば、ポリエチレン粒子)が配合されている。プラスチック粒子は、真比重が軽いため下水処理場で除去し難く、河川、海洋、池沼等に流出している。プラスチック粒子は、殺虫剤などの化学物質を吸着し易いため、生物濃縮により人体に影響を与える虞がある。このことは国連環境計画等でも指摘されており、各国、各種業界団体が規制を検討している。
 このような背景から、有機物を用いない無機酸化物粒子が提案されている。例えば、無機酸化物微粒子の集合体をシリカ層で被覆した、多孔質または無孔質の球状粒子を化粧料のフィラーとして用いると、非常に軽く、ソフトで伸びが良い化粧料が得られることが知られている(例えば、WO2004/006873号公報を参照)。また、化粧料の感触特性を向上させるために、平均粒子径が0.5~30μmの範囲にある表面平滑性の優れた多孔質粒子を用いることが知られている(例えば、特開2009-137806号公報を参照)。
 さらに、肌への付着性が高く、シャリシャリ感が低い感触特性を有する無機酸化物粒子として、無孔質の外殻の内部に空洞(空隙率が20~95重量%)を有し、空洞が負圧である中空粒子が知られている(例えば、特開2011-256098号公報を参照)。
 しかしながら、有機物を用いない無機酸化物粒子では、塗布時のソフトな感触特性を発現することが難しく、プラスチックビーズの代替として満足できるものではなかった。
 そこで、本発明は、プラスチックビーズのようなソフトな感触特性を持つ無機酸化物粒子を実現することを目的とする。
 本発明者らは、粒子の真比重が塗布時のソフト感を感じさせる因子であること、また、粒子表面に微細な凸部を形成することにより付着力が低下し、適度な流動性が付与されること、を見出した。これにより、プラスチックビーズのようなソフトな感触特性を持つ無機酸化物粒子を実現した。
 すなわち、本発明の無機酸化物粒子は、外殻の内部に空洞を有する中空粒子であり、外殻表面に3~100nmの凸部を有し、該粒子の真比重が0.3~3.0g/cmである。この中空粒子の平均粒子径は1~20μmであり、BET法で求めた単位体積あたりの比表面積が0.5以上60m/cm未満である。このような粒子によれば、ソフトな感触特性と、肌上で均一に延び広がりやすくなる効果(すなわち、流動性が高い)が得られる。さらに、粒子表面の凸部は、1μm当たり5個以上の割合で設けられることが好ましく、また、球冠状が好ましい。
 また、中空粒子の外殻は無孔質であることが好ましい。したがって、真比重は2.2g/cm以上が好ましい。
 また、本発明の化粧料は、上述したいずれかの中空粒子が配合されている。
 本発明によれば、環境問題を引き起こす懸念がなく、さらに、プラスチックビーズのようなソフトな感触特性を持つ粒子が実現できる。そのため、プラスチックビーズの代替として安心して使用することができる。
 本発明の中空粒子は、外殻の内部に空洞を持つバルーン構造である。この粒子の表面には3~100nmの凸部が設けられている。また、粒子の真比重は0.3~3.0g/cm、BET法で求めた単位体積あたりの比表面積(m/cm)は0.5以上60未満である。レーザー回折法で求められる平均粒子径(d)は1~20μmの範囲にある。このような粒子によれば、ソフトな感触特性と適度な流動性が得られる。平均粒子径(d)が1μm未満だと、付着性が高くなり、肌の上で均一に延び広がり難くなる(すなわち、流動性が低い)。一方、20μmを超えると、粒子粉体に触った時にざらつきを感じるようになり、ソフト感が低減する。特に、平均粒子径は2~8μmが好ましい。
 ここで、中空粒子はシリカを含有する無機酸化物粒子である。すなわち、中空粒子の外殻は、シリカ-アルミナ、シリカ-ジルコニア、およびシリカ-チタニアなどの複合酸化物、並びにシリカによって形成されている。化粧料に配合することを考慮すると、中空粒子には非晶質のシリカ粒子が適している。
 真比重の好ましい範囲は、粒子の組成により異なる。例えば、組成の99%以上がシリカであれば、その粒子の真比重は0.3~2.1g/cmが好ましい。シリカの比重が2.2g/cmなので、2.1g/cm以下であれば内部に空洞があると見做すことができる。真比重が0.3g/cm以下の中空粒子は、外殻が薄く、強度が低い。そのため、化粧料に配合する際の機械的シェアにより粒子が破壊されるおそれがある。一方、真比重が2.1g/cmを超える場合には、十分な空洞が存在していない。そのため、ソフトな感触特性が得られ難い。粒子の真比重は0.5~2.0g/cmがより好ましく、0.7~1.8g/cmがさらに好ましい。
 中空粒子の外殻がシリカ-アルミナで構成され、その組成比(シリカ/アルミナ)が85/15の場合は、計算上の比重は2.5g/cmとなる。このとき、真比重は0.4~2.4g/cmが好ましい。また、組成比(シリカ/アルミナ)が35/65の場合には、計算上の比重は3.1g/cmとなることから、粒子の真比重は0.5~3.0g/cmが好ましい。このように、組成から計算される理論上の比重よりも、粒子の真比重が低ければ、内部に空洞があるといえる。
 また、内部に空洞が存在しているか否かは、以下の式で求められる空隙率から類推できる。「空隙率=(1-真比重/(粒子の組成から算出された理論比重))×100」
 ここで、組成の99%以上がシリカであれば、粒子の空隙率は5~86%である。
 一方、BET法で求めた中空粒子の比表面積が60m/cm以上であると、ナノマテリアルの定義に適合してしまい、従来のプラスチックビーズと同様な用途で安心して使用できないおそれがある。
 また、粒子表面の凸部の大きさが3nm未満では、付着性が高いため、流動性が著しく低下する。一方、100nmを超えると付着性が低すぎて、粒子の転がり性が高まり、その結果、所望のソフト感が得られにくくなる。なお、凸部の高さは、5~60nmが好ましく、更に7~20nmが好ましい。また、大きさ3nm以上の凸部は1μm当たり5個以上存在することが好ましい。5個以上あれば、均一な摩擦抵抗力を付与することができる。さらに、凸部が球冠状であることが好ましい。球冠状であると摩擦抵抗力を均一に制御することが容易になる。
 さらに、外殻が無孔質であることが好ましい。すなわち、粒子の組成の99%以上がシリカである場合、外殻の真比重は2.2g/cmが好ましい。外殻の真比重が2.2g/cm未満では、外殻の機械的強度が低下し、化粧料に配合する際の機械的シェアにより粒子が破壊されることがある。
 なお、外殻がシリカ-アルミナなどの複合酸化物で構成されている場合には、アルミナの割合が多いほど好ましい真比重値は大きくなる。すなわち、無孔質の外殻では、2.2g/cm以下の真比重は好ましくない。
 また、中空粒子を屈折率1.46の分散液に入れてHazeを測定した場合、Hazeが50%以上となることが適している。肌から分泌される皮脂の屈折率は、1.46付近なので、中空粒子を肌へ塗布した後で皮脂に濡れた場合にも、適度な光拡散性が損なわれない。
 さらに、中空粒子の赤外線吸収スペクトルを測定した場合、3730~3750cm-1における最大吸光度(I)と、1160~1260cm-1における最大吸光度(I)との比(I/I)は0.05以下が適している。粒子表面のシラノール基(Si-OH)が減少すると3730~3750cm-1における赤外線吸光度は小さくなる。一方、Si-O-Siに帰属する1160~1260cm-1における赤外線吸光度は大きくなる。シラノール基は水と結合するため、シラノール基が少ないほど親水性が低い。すなわち、吸光度比(I/I)が小さいほど粒子の表面は親水性が低いと言える。親水性が低い粒子は、肌への付着力が低くなるため、肌への塗布時にソフトな感触特性を発現することができる。なお、吸光度比を小さくするためには、シラン化合物等による表面処理、または、高温焼成等でシラノール基を潰すことなどにより、表面を疎水化すればよい。
 <中空粒子の製造方法>
 次に、本発明の中空粒子の製造方法について説明する。
 (工程A)
 はじめに、球状の無機酸化物微粒子が水に分散されたゾルを用意する。ゾルには、無機酸化物微粒子が固形分換算で1~30重量%含まれることが望ましい。ここで、無機酸化物微粒子は、成分にシリカを含有する微粒子であり、シリカ-アルミナ、シリカ-ジルコニア、シリカ-チタニアなどの複合酸化物の微粒子、およびシリカ微粒子が例示できる。化粧料に配合することを考慮すると、非晶質のシリカ微粒子が好適である。なお、微粒子の組成の違いによって製造条件を変更する必要はない。
 この無機酸化物ゾルにシリカ濃度1~50重量%の珪酸液を加えて、スラリーを調製する。このとき、ゾルの無機酸化物成分(I)と珪酸液のシリカ成分(II)の固形分重量比(I/II)が、0.05~1の範囲になるように無機酸化物ゾルと珪酸液を混合する。
 珪酸液として、珪酸塩水溶液を陽イオン交換樹脂で処理して脱アルカリ(Naイオンの除去など)したものを使用できる。珪酸塩には、珪酸ナトリウム(水ガラス)や珪酸カリウム等のアルカリ金属珪酸塩、第4級アンモニウムシリケート等の有機塩基の珪酸塩などがある。
 (工程B)
 工程Aで得られたスラリーを用いて、従来公知の噴霧乾燥方法で造粒する。例えば、スプレードライヤーによる噴霧乾燥法では、噴霧液(スラリー)を熱風気流中に1~3リットル/時の速度で噴霧する。これによって中空粒子が得られる。このとき、熱風の温度は、入口温度で70~600℃、出口温度で40~300℃の範囲が好ましい。入口温度が70℃未満だと、固形分の乾燥が不充分となる。また600℃を超えると、粒子形状が歪むおそれがある。また、出口温度が40℃未満であると、固形分の乾燥度合いが悪く、粒子が装置内に付着しやすい。必要に応じて、得られた粒子を、洗浄、乾燥、焼成してもよい。
 このような工程により、外殻の内部に空洞が形成されたバルーン構造を持つ粒子(すなわち、中空粒子)が得られる。さらに、この中空粒子は表面に3~100nmの凸部を有し、中空粒子の真比重が0.3~3.0g/cmである。ここで、外殻はスラリーに含まれる珪酸成分により構成され、外殻に形成された凸部は無機酸化物微粒子で構成されると考えられる。そのため、無機酸化物微粒子の平均粒子径(d)は、6nm~200nmが好ましい。平均粒子径が200nmを超えると粒子表面の凸部が大きすぎて、所望の感触特性が得られなくなる。一方、平均粒子径が6nm未満の無機酸化物微粒子は安定性が低く、工業的な側面で好ましくない。平均粒子径は10~120nmがより好ましく、特に14~90nmが好ましい。さらに、無機酸化物微粒子の粒子径変動係数(CV)は10%以内が好ましい。
 無機酸化物微粒子として上述の組成の微粒子を用いるとともに、珪酸液にアルミナ、ジルコニア、チタニアなどの金属成分を含ませてもよい。すなわち、無機酸化物ゾルの組成と珪酸液の組成を調整することにより、いろいろな組成の中空粒子が得られる。例えば、外殻と凸部がシリカで構成された粒子や、外殻と凸部がシリカ-アルミナで構成された粒子、外殻と凸部が異なるシリカ系材料で構成された粒子を容易に得ることができる。
 なお、植物由来の原料から生成されたシリカ成分を用いて中空粒子を構成することが持続可能な社会の実現の観点で好ましい。また、欧米などの海外では環境との調和、安全性への拘りの観点でオーガニック化粧料のニーズが高まっている。ISO16128-1(Guidelines on technical definitions and criteria for natural And organic cosmetic ingredients and products Part1:Definitions for ingredients)ではその原料が定義されている。シリカ源として多用されている珪砂はミネラル成分の分類であるが、植物由来のシリカ成分であれば自然由来成分として分類されることから、当該ニーズに対応することができる。
 植物由来のシリカ成分は、イネ科植物に多く含まれており、米の籾殻やその稲穂から抽出することができる。例えば、特開平7-196312号公報に開示された焼成法や特開2002-265257号公報に開示された加圧熱水法などにより、高純度なシリカが得られることが知られている。このようにして得られた植物由来のシリカ成分を水酸化ナトリウムで溶解して珪酸ナトリウムを調製し、その後、常法に従って、シリカ系粒子を調製することができる。
 <化粧料>
 本発明の中空粒子を化粧料に用いると、従来のシリカ粒子等の無機粒子と異なり、転がり感、転がり感の持続性、及び均一な延び広がり性だけでなく、プラスチックビーズ特有のソフト感としっとり感という、化粧料の感触改良材に求められる代表的な感触特性が得られる。
 以下、無機酸化物ゾルとしてシリカゾルを用いた実施例を具体的に説明する。
 [実施例1]
 平均粒子径11nmのシリカ微粒子が水に分散されたゾル(市販品:日揮触媒化成(株)製;Cataloid SI-30、シリカ濃度30重量%)を陽イオン交換し、pHを2.0に調整した。これにより、固形分濃度30重量%のシリカゾルが無機酸化物ゾルとして得られた。このシリカゾルにはシリカ微粒子が無機酸化物微粒子として含まれている。
 一方、JIS3号水硝子を純水で希釈した後、陽イオン交換して、シリカ濃度4.5重量%の珪酸液を調製した。この珪酸液2000gに前述の無機酸化物ゾル75gを加えた。このとき、無機酸化物ゾルのシリカ成分(I)と珪酸液のシリカ成分(II)の固形分重量比(I/II)は「22.5/90」すなわち「20/80」である。これにより、無機酸化物ゾル濃度1.1重量%、水硝子由来のシリカ濃度4.3重量%、固形分濃度5.4重量%の分散スラリーが得られた。
 この分散スラリーを噴霧液として、スプレードライヤー(NIRO社製、NIRO-ATMIZER)により噴霧乾燥する。すなわち、入口温度200℃、出口温度50~55℃に設定した乾燥気流中に、2流体ノズルの一方からスラリーを2L/時の流量で、他方のノズルから0.15MPaの圧力で気体を供給して噴霧乾燥し、乾燥粉体を得た。
 この乾燥粉体を600℃で4時間焼成した。その後、乾式篩処理を行い、中空粒子の粉体を得た。この粉体の物性を表2に示す。また、粒子の調製条件を表1に示す。表中の各測定値は以下の方法で測定された。
 (1)平均粒子径(d)、(d)、および粒子径変動係数(CV)
 それぞれの粒子の粒度分布をレーザー回折法により測定した。この粒度分布に基づいて中空粒子の平均粒子径(d)、無機酸化物微粒子の平均粒子径(d)と粒子径変動係数(CV)を求めた。このとき、粒度分布から得られたメジアン値を平均粒子径とした。なお、レーザー回折/散乱式粒子径分布測定装置LA-950v2(株式会社堀場製作所製)を用いて粒度分布を測定した。
 (2)粒子の真比重
 中空粒子の粉体を磁性ルツボ(B-2型)に約30ml採取し、300℃で1時間乾燥後、デシケーターに入れて室温まで冷却する。次に、サンプルを15ml採取し、全自動ピクノメーター(QUANTACHROME社製:Ultrapyc1200e)を用いて真比重を測定した。
 (3)外殻の真比重
 中空粒子の粉体をメノウ乳鉢に入れ、乳棒を用いて粉砕し、得られた粉砕物の真比重を測定した。粉砕により、中空粒子が崩壊して、内部の空洞がなくなっている。そのため、粉砕物の真比重を外殻の真比重とした。
 (4)比表面積
 中空粒子の粉体を磁性ルツボ(B-2型)に約30ml採取し、300℃で1時間乾燥させた後、デシケーターに入れて室温まで冷却した。次に、試料を1.0g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、BET法で比表面積(m/g)を測定した。そして、シリカの比重を2.2g/cmとして単位体積当たりの比表面積に換算した。
 (5)細孔容積
 中空粒子の粉体10gをルツボに取り、105℃で1時間乾燥させた後、デシケーターに入れて室温まで冷却した。次いで、よく洗浄したセルに試料1.0gを入れ、窒素吸着装置を用いて窒素を吸着させ、以下の式から細孔容積を算出した。
  細孔容積(ml/g)=(0.001567×(V-Vc)/W)
 上式で、Vは圧力735mmHgにおける標準状態の吸着量(ml)、Vcは圧力735mmHgにおけるセルブランクの容量(ml)、Wは試料の質量(g)を表す。また、窒素ガスと液体窒素の密度の比は0.001567とする。
 (6)凸部の大きさ
 中空粒子の粉体0.1gをエポキシ樹脂約1g(BUEHLHER製EPO-KWICK)に均一に混合して常温で硬化させた後、FIB加工装置(日立製作所製、FB-2100)を用いて、20μmエリアの断面加工を行い、厚み100~200nmの切片の試料を作製した。次いで、透過型電子顕微鏡(日立製作所製、HF-2200)を用いて、この試料を加速電圧200kVの条件下で、倍率100000倍のTEM写真を撮影した。さらに、任意のTEM写真10枚について、粒子表面の外接円と内接円の差を計測し、その平均値を中空粒子表面の凸部の大きさとした。
 (7)中空粒子の凸部の形状、数
 走査型電子顕微鏡を用いて撮影したSEM写真を観察し、中空粒子の凸部の数を評価した。無作為に選択した粒子100~200個のSEM画像を解析して凸部の形状が球冠状かどうかを確認した。また、5nm以上の大きさの凸部をカウントし、1μmの投影部に5個以上形成されているかどうかを確認した。
 (8)分散液(屈折率1.46)中でのHaze
 蒸留水9.0gとグリセリン(関東化学(株)製、特級)91.0gを混合し、屈折率1.46のグリセリン水溶液を調製した。このグリセリン水溶液7.0gに中空粒子の粉体3.0gを加え、超音波を30分間照射((株)エスエヌディ製US-2KS)して分散した。得られた分散液のHazeを色彩・濁度同時測定器(日本電色(株)製300A)を用いて測定し、中空粒子のHazeとした。
 (9)SiO定量値
 中空粒子の粉体0.2gを白金皿で精秤し、硫酸10mlと弗化水素酸10mlを加えて、砂浴上で硫酸の白煙が出るまで加熱した。冷却後、水約50mlを加えて加温溶解した。冷却後、水200mlに希釈しこれを試験溶液とした。この試験溶液について誘導結合プラズマ発光分光分析装置(島津製作所(株)製、ICPS-8100、解析ソフトウェアICPS-8000)を使用し、中空粒子の組成率を求めた。
 (10)吸光度比
 中空粒子の赤外吸収スペクトルを、FT-IR6300(日本分光社製)を用いて測定し、波数(cm-1)とクベルカムンク式で計算した吸光度との関係を示すグラフを作成した。得られたグラフから、3730~3750cm-1における最大吸光度(I)と1160~1260cm-1における最大吸光度(I)を読み取り、吸光度比(I/ I)を算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [実施例2]
 実施例1で、シリカゾル(SI-30)の代わりに、SS-160(日揮触媒化成(株)製、平均粒子径160nm)を使用し、固形分濃度16重量%の無機酸化物ゾルを調製した。このゾルと実施例1の珪酸液を表1に示した固形分重量比になるように加え、分散スラリーを得た。この分散スラリーを用いて、実施例1と同様に中空粒子の粉体を調製し、測定した。
 [実施例3]
 本実施例では、2流体ノズルの気体供給圧力を0.3MPaとした。これ以外は実施例1と同様に、中空粒子の粉体を調製し、測定した。
 [実施例4]
 本実施例では、2流体ノズルの気体供給圧力を0.6MPaとした。これ以外は実施例1と同様に、中空粒子の粉体を調製し、測定した。
 [実施例5]
 本実施例では、JIS3号水硝子を陽イオン交換せずに珪酸液(II)として使用し、噴霧乾燥時の入口温度を380℃とした。これ以外は実施例1と同様に乾燥粉体を調製した。得られた乾燥粉体100gを、硫酸水溶液(25%)中に懸濁し、中和した。中和して得られたスラリーをブフナー漏斗(関谷理化硝子器械(株)製3.2L)を用いて定量濾紙(アドバンテック東洋(株)製No.2)で濾過した。その後、純水で繰り返し洗浄し、ケーキ状物質を得た。このケーキ状物質を乾燥(120℃、16時間)させ、乾燥粉体αを得た。その後、1000℃で3時間焼成し、乾式篩処理を行って粉体を得た。この粉体を実施例1と同様に測定した。
 [実施例6]
 本実施例では、分散スラリー内の無機酸化物ゾルのシリカ成分(I)と珪酸液のシリカ成分(II)の固形分重量比(I/II)を50/50に変更した。これ以外は実施例1と同様に、中空粒子の粉体を調製し、測定した。
 [実施例7]
 実施例1で、シリカゾル(SI-30)の代わりに、SI-80P(日揮触媒化成(株)製、平均粒子径80nm)を使用して無機酸化物ゾルを調製した。このゾルと実施例1の珪酸液を表1に示した固形分重量比になるように加えた。これにより得られた分散スラリーを用いて、実施例1と同様に中空粒子の粉体を調製し、測定した。
 [実施例8]
 本実施例では、焼成条件を1000℃、3時間とした。これ以外は実施例1と同様に、中空粒子の粉体を調製し、測定した。
 [実施例9]
 実施例1で、シリカゾル(SI-30)の代わりに、USBB-120(日揮触媒化成(株)製、平均粒子径5nm、組成:シリカ/アルミナ=70/30)を使用し、固形分濃度23重量%の無機酸化物ゾルを調製した。このゾルと実施例1の珪酸液を表1に示した固形分重量比になるように加えた。これにより得られた分散スラリーを用いて、実施例1と同様に中空粒子の粉体を調製し、測定した。
 [比較例1]
 実施例1で、シリカゾル(SI-30)の代わりに、SI-550(日揮触媒化成(株)製、平均粒子径5nm)を使用し、固形分濃度10重量%の無機酸化物ゾルを調製した。このゾルと実施例1の珪酸液を表1に示した固形分重量比になるように加えた。これにより得られた分散スラリーを用いて、実施例1と同様に粒子の粉体を調製し、測定した。
 [比較例2]
 分散スラリー内の無機酸化物ゾルのシリカ成分(I)と珪酸液のシリカ成分(II)の固形分重量比(I/II)が95/5になるように混合した。これ以外は実施例1と同様に、粒子の粉体を調製し、測定した。
 [比較例3]
 本比較例では、分散スラリー内の無機酸化物ゾルのシリカ成分(I)と珪酸液のシリカ成分(II)の固形分重量比(I/II)が50/50になるように混合した。さらに、2流体ノズルの気体供給圧力を0.05MPa、噴霧速度を4L/時とした。これ以外は実施例1と同様に、粒子の粉体を調製し、測定した。
 [比較例4]
 本比較例では、分散スラリー内の無機酸化物ゾルのシリカ成分(I)と珪酸液のシリカ成分(II)の固形分重量比(I/II)が1/99になるように混合した。これ以外は実施例1と同様に、粒子の粉体を調製し、測定した。
 [比較例5]
 本比較例では、シリカゾルを用いずに珪酸液だけで分散スラリーを調製した。これ以外は実施例1と同様に、粒子の粉体を調製し、測定した。
 <化粧料への適用>
 各実施例と比較例により得られた粒子の粉体について、20名の専門パネラーによる官能テストを行い、さらさら感、しっとり感、転がり感、均一な延び広がり性、肌への付着性、転がり感の持続性、およびソフト感の7つの評価項目(感触特性)に関して聞き取り調査を行った。その結果を以下の評価点基準(a)に基づき評価した。さらに、各人がつけた評価点を合計し、以下の評価基準(b)に基づき粒子の感触を評価した。
評価点基準(a)
  5点:非常に優れている
  4点:優れている
  3点:普通
  2点:劣る
  1点:非常に劣る
評価基準(b)
  ◎:合計点が80点以上
  ○:合計点が60点以上80点未満
  △:合計点が40点以上60点未満
  ▲:合計点が20点以上40点未満
  ×:合計点が20点未満
 その結果を表3に示す。表から解るように、各実施例の粉体は、化粧料の感触改良材として極めて優れているが、比較例の粉体は、感触改良材として適していない。
Figure JPOXMLDOC01-appb-T000003
 [パウダーファンデーションの使用感]
 表4に示す配合比率(重量%)で、各実施例(または比較例)の粒子の粉体と、他の成分(2)~(9)をミキサーに入れて撹拌し、均一に混合させた。次に、化粧料成分(10)~(12)をこのミキサーに入れて撹拌し、さらに均一に混合させた。得られたケーキ状物質を解砕処理した後、その中から約12gを取り出し、46mm×54mm×4mmの角金皿に入れてプレス成型した。この様にして得られたパウダーファンデーションについて、20名の専門パネラーによる官能テストを行い、(i)肌への塗布中の均一な延び、しっとり感、滑らかさ、および(ii)肌に塗布後の化粧膜の均一性、しっとり感、やわらかさの6つの評価項目に関して聞き取り調査を行った。その結果を前述の評価点基準(a)に基づき評価する。また、各人がつけた評価点を合計し、前述の評価基準(b)に基づきファンデーションの使用感を評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1,2,5による化粧料A~Cは、その使用感が、塗布中でも塗布後でも、非常に優れていることが分かった。しかし、比較例1,2,4の化粧料a~cは、その使用感がよくないことが分かった。
 なお、上述の各実施例により得られた中空粒子は、以下に例示する各種化粧料成分に配合して用いられる。
 油脂類としてオリーブ油、ナタネ油、牛脂。ロウ類としてホホバ油、カルナバロウ、キャンデリラロウ、ミツロウ。炭化水素類としてパラフィン、スクワラン、合成及び植物性スクワラン、α-オレフィンオリゴマー、マイクロクリスタリンワックス、ペンタン、ヘキサン。脂肪酸類としてステアリン酸、ミリスチン酸、オレイン酸、α-ヒドロキシ酸。アルコール類としてイソステアリルアルコール、オクチルドデカノール、ラウリルアルコール、エタノール、イソプロパノール、ブチルアルコール、ミリスチルアルコール、セタノール、ステアリルアルコール、ベヘニルアルコール。エステル類としてアルキルグリセリルエーテル類、ミリスチン酸イソプロピル、パルミチン酸イソプロピル、ステアリン酸エチル、オレイン酸エチル、ラウリル酸セチル、オレイン酸デシル。多価アルコール類としてエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ジグリセリン。糖類としてソルビトール、ブドウ糖、ショ糖、トレハロース。シリコーン油として、メチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルシリコーン油、各種変性シリコーン油、環状ジメチルシリコン油。シリコーン系および/または他の有機化合物にて架橋させたシリコーンゲル。ノニオン系、カチオン系、アニオン系の各種界面活性剤。パーフルオロポリエーテル等のフッ素油。アラビアガム、カラギーナン、寒天、キサンタンガム、ゼラチン、アルギン酸、グアーガム、アルブミン、プルラン、カルボキシビニルポリマー、セルロース及びその誘導体、ポリアクリル酸アミド、ポリアクリル酸ナトリウム、ポリビニルアルコール等の各種高分子。動植物抽出物。アミノ酸及びペプチド類。ビタミン類。パラメトキシケイ皮酸オクチル等のケイ皮酸系、サリチル酸系、安息香酸エステル系、ウロカニン酸系、ベンゾフェノン系等の紫外線防御剤。殺菌・防腐剤。酸化防止剤。変性又は未変性の粘土鉱物。酢酸ブチル、アセトン、トルエン等の溶剤。各種有機顔染料。水。香料。各種粒子径、粒子径分布および形状を有する酸化チタン、酸化亜鉛、酸化アルミニウム、水酸化アルミニウム、ベンガラ、黄色酸化鉄、黒色酸化鉄、酸化セリウム、酸化ジルコニウム、シリカ、マイカ、タルク、セリサイト、窒化ホウ素、硫酸バリウム、パール光沢を有する雲母チタン、およびそれらの複合物。ここで、酸化チタンや酸化亜鉛等の無機化合物には、その表面に予めシリコーン処理、フッ素処理、金属石鹸処理などを施してもよい。
 また、ポリアクリル酸メチル、ナイロン、シリコーン樹脂、シリコーンゴム、ポリエチレン、ポリエステル、ポリウレタンなどの樹脂粒子を含んでいてもよい。さらに、美白効果を有する成分として、アルブチン、コウジ酸、ビタミンC、アスコルビン酸ナトリウム、アスコルビン酸リン酸エステルマグネシウム、ジ-パルミチン酸アスコルビル、アスコルビン酸グルコシド、その他のアスコルビン酸誘導体、プラセンタエキス、イオウ、油溶性甘草エキス、クワエキス等の植物抽出液、リノール酸、リノレイン酸、乳酸、トラネキサム酸などを含ませてもよい。
 また、肌荒れ改善効果を有する成分として、ビタミンC、カロチノイド、フラボノイド、タンニン、カフェー酸誘導体、リグナン、サポニン、レチノイン酸及びレチノイン酸構造類縁体、N-アセチルグルコサミン、α-ヒドロキシ酸等の抗老化効果を有する有効成分、グリセリン、プロピレングリコール、1,3-ブチレングリコール等の多価アルコール類、混合異性化糖、トレハロース、プルラン等の糖類、ヒアルロン酸ナトリウム、コラーゲン、エラスチン、キチン・キトサン、コンドロイチン硫酸ナトリウム等の生体高分子類、アミノ酸、ベタイン、セラミド、スフィンゴ脂質、セラミド、コレステロール及びその誘導体、ε-アミノカプロン酸、グリチルリチン酸、各種ビタミン類などを含ませてもよい。
 さらに、医薬部外品原料規格2006(発行:株式会社薬事日報社、平成18年6月16日)や、International Cosmetic Ingredient Dictionary and Handbook(発行:The Cosmetic, Toiletry, and Fragrance Association、Eleventh Edition2006)等に収載されている化粧料成分を配合してもよい。
 このような化粧料は、従来公知の一般的な方法で製造することができる。化粧料は、粉末状、ケーキ状、ペンシル状、スティック状、クリーム状、ジェル状、ムース状、液状、クリーム状などの各種形態で使用される。具体的には、洗浄用化粧料(石鹸、クレンジングフォーム、メーク落とし用クリーム等)、スキンケア化粧料(保湿・肌荒れ防止、アクネ、角質ケア、マッサージ、しわ・たるみ対応、くすみ・くま対応、紫外線ケア、美白、抗酸化ケア用等の化粧料)、ベースメークアップ化粧料(パウダーファンデーション、リキッドファンデーション、クリームファンデーション、ムースファンデーション、プレスドパウダー、化粧下地)、ポイントメークアップ化粧料(アイシャドウ、アイブロー、アイライナー、マスカラ、口紅)、ヘアケア化粧料(育毛用、フケ防止、かゆみ防止、洗浄用、コンディショニング・整髪、パーマネント・ウエーブ用、ヘアカラー・ヘアブリーチ用化粧料)、ボディーケア化粧料(洗浄用、日焼け防止、手荒れ防止、スリミング用、血行改善用、かゆみ抑制、体臭防止、制汗、体毛ケア、リペラント用、ボディパウダー等の化粧料)、フレグランス化粧料(香水、オードパルファム、オードトワレ、オーデコロン、シャワーコロン、練り香水、ボディーローション、バスオイル)、オーラルケア製品(歯磨き粉、マウスウォッシュ剤)などが挙げられる。

Claims (7)

  1.  平均粒子径(d)が1~20μmの範囲にあり、外殻の内部に空洞を有するバルーン構造の中空粒子であって、該粒子の真比重が0.3~3.0g/cm、BET法で求めた単位体積あたりの比表面積が0.5m/cm以上60m/cm未満であり、粒子表面に3~100nmの凸部を有することを特徴とする中空粒子。
  2.  前記凸部が、1μm当たり5個以上存在することを特徴とする請求項1に記載の中空粒子。
  3.  前記凸部が球冠状であることを特徴とする請求項1または2に記載の中空粒子。
  4.  前記外殻が成分としてシリカを含むことを特徴とする請求項1~3のいずれか一項に記載の中空粒子。
  5.  前記外殻の真比重は2.2g/cm以上であることを特徴とする請求項1~4のいずれか一項に記載の中空粒子。
  6.  屈折率1.46の分散液中における該中空粒子のHazeが50%以上であることを特徴とする請求項1~5のいずれか一項に記載の中空粒子。
  7.  請求項1~6のいずれか一項に記載の中空粒子が配合された化粧料。
PCT/JP2018/020149 2017-05-31 2018-05-25 中空粒子及び化粧料 WO2018221406A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880030062.3A CN110603223B (zh) 2017-05-31 2018-05-25 中空粒子和化妆品
US16/617,677 US11020326B2 (en) 2017-05-31 2018-05-25 Hollow particles and cosmetic
EP18810761.9A EP3632849B1 (en) 2017-05-31 2018-05-25 Hollow particles and cosmetics containing them
KR1020197032967A KR102575425B1 (ko) 2017-05-31 2018-05-25 중공 입자 및 화장료
BR112019024941-9A BR112019024941B1 (pt) 2017-05-31 2018-05-25 Partículas ocas e cosméticos
JP2019522190A JP7170633B2 (ja) 2017-05-31 2018-05-25 中空粒子及び化粧料
CA3063038A CA3063038A1 (en) 2017-05-31 2018-05-25 Hollow particles and cosmetic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108323 2017-05-31
JP2017108323 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221406A1 true WO2018221406A1 (ja) 2018-12-06

Family

ID=64454732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020149 WO2018221406A1 (ja) 2017-05-31 2018-05-25 中空粒子及び化粧料

Country Status (8)

Country Link
US (1) US11020326B2 (ja)
EP (1) EP3632849B1 (ja)
JP (1) JP7170633B2 (ja)
KR (1) KR102575425B1 (ja)
CN (1) CN110603223B (ja)
BR (1) BR112019024941B1 (ja)
CA (1) CA3063038A1 (ja)
WO (1) WO2018221406A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169135A (ja) * 2019-04-03 2020-10-15 ポーラ化成工業株式会社 化粧料
JP2021020865A (ja) * 2019-07-25 2021-02-18 ポーラ化成工業株式会社 水中油乳化型化粧料
WO2023218948A1 (ja) * 2022-05-09 2023-11-16 Agc株式会社 シリカ粒子分散液
JP7429029B2 (ja) 2019-11-15 2024-02-07 日興リカ株式会社 シリカ粒子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474142B (zh) * 2020-05-21 2021-08-03 中南大学 一种利用近红外1550nm激光器检测微塑料浓度的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049319A (ja) * 1990-04-27 1992-01-14 Matsumoto Yushi Seiyaku Co Ltd 化粧料
JPH07196312A (ja) 1993-12-28 1995-08-01 Maeda Seikan Kk 籾殻を原料とする非晶質シリカの製造方法
JP2002265257A (ja) 2001-03-05 2002-09-18 National Institute Of Advanced Industrial & Technology シリカ原料の製造方法
WO2004006873A1 (ja) 2002-07-11 2004-01-22 Catalysts & Chmicals Industries Co.,Ltd. 化粧料
JP2009137806A (ja) 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd 表面平滑性を備えた多孔質シリカ系粒子、その製造方法および該多孔質シリカ系粒子を配合してなる化粧料
JP2011256098A (ja) 2010-05-11 2011-12-22 Jgc Catalysts & Chemicals Ltd シリカ系粒子の製造方法およびシリカ系粒子ならびに該粒子の用途
JP2012140286A (ja) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd 新規シリカ系中空微粒子、透明被膜付基材および透明被膜形成用塗料
JP2013082599A (ja) * 2011-10-13 2013-05-09 Nagoya Institute Of Technology ナノ粒子と複合化したシリカナノ中空粒子とその製造方法
JP2013231010A (ja) * 2012-05-01 2013-11-14 Kao Corp 固体化粧料
WO2015050243A1 (ja) * 2013-10-03 2015-04-09 国立大学法人名古屋工業大学 複合材中空粒子およびその製造方法、蛍光材料
WO2016164987A1 (en) * 2015-04-17 2016-10-20 The University Of Queensland Composition, particulate materials and methods for making particulate materials.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118220A1 (en) 2002-07-11 2005-06-02 Catalysts& Chemicals Industries Co., Ltd Cosmetics
WO2007037202A1 (ja) 2005-09-28 2007-04-05 Sekisui Plastics Co., Ltd. シリカ複合重合体粒子、その製造方法及びその用途
US9025194B2 (en) * 2010-12-01 2015-05-05 Canon Kabushiki Kaisha Data transmission apparatus for transferring data to an output device for outputting data, printer, information processing apparatus, and control method thereof
US9203915B2 (en) * 2013-01-03 2015-12-01 Hitachi Data Systems Corporation System and method for continuously monitoring and searching social networking media
BR112016029544B1 (pt) * 2014-06-30 2022-09-27 Jgc Catalysts And Chemicals Ltd Partículas de sílica porosa e produto cosmético contendo as referidas partículas
JP6552387B2 (ja) * 2015-11-06 2019-07-31 花王株式会社 中空シリカ粒子の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049319A (ja) * 1990-04-27 1992-01-14 Matsumoto Yushi Seiyaku Co Ltd 化粧料
JPH07196312A (ja) 1993-12-28 1995-08-01 Maeda Seikan Kk 籾殻を原料とする非晶質シリカの製造方法
JP2002265257A (ja) 2001-03-05 2002-09-18 National Institute Of Advanced Industrial & Technology シリカ原料の製造方法
WO2004006873A1 (ja) 2002-07-11 2004-01-22 Catalysts & Chmicals Industries Co.,Ltd. 化粧料
JP2009137806A (ja) 2007-12-07 2009-06-25 Jgc Catalysts & Chemicals Ltd 表面平滑性を備えた多孔質シリカ系粒子、その製造方法および該多孔質シリカ系粒子を配合してなる化粧料
JP2011256098A (ja) 2010-05-11 2011-12-22 Jgc Catalysts & Chemicals Ltd シリカ系粒子の製造方法およびシリカ系粒子ならびに該粒子の用途
JP2012140286A (ja) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd 新規シリカ系中空微粒子、透明被膜付基材および透明被膜形成用塗料
JP2013082599A (ja) * 2011-10-13 2013-05-09 Nagoya Institute Of Technology ナノ粒子と複合化したシリカナノ中空粒子とその製造方法
JP2013231010A (ja) * 2012-05-01 2013-11-14 Kao Corp 固体化粧料
WO2015050243A1 (ja) * 2013-10-03 2015-04-09 国立大学法人名古屋工業大学 複合材中空粒子およびその製造方法、蛍光材料
WO2016164987A1 (en) * 2015-04-17 2016-10-20 The University Of Queensland Composition, particulate materials and methods for making particulate materials.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169135A (ja) * 2019-04-03 2020-10-15 ポーラ化成工業株式会社 化粧料
JP2021020865A (ja) * 2019-07-25 2021-02-18 ポーラ化成工業株式会社 水中油乳化型化粧料
JP7442991B2 (ja) 2019-07-25 2024-03-05 ポーラ化成工業株式会社 水中油乳化型化粧料
JP7429029B2 (ja) 2019-11-15 2024-02-07 日興リカ株式会社 シリカ粒子の製造方法
WO2023218948A1 (ja) * 2022-05-09 2023-11-16 Agc株式会社 シリカ粒子分散液

Also Published As

Publication number Publication date
EP3632849B1 (en) 2022-07-06
BR112019024941A2 (pt) 2020-06-23
BR112019024941B1 (pt) 2022-04-26
EP3632849A4 (en) 2020-05-06
CN110603223A (zh) 2019-12-20
US11020326B2 (en) 2021-06-01
CN110603223B (zh) 2023-05-09
JPWO2018221406A1 (ja) 2020-05-21
JP7170633B2 (ja) 2022-11-14
KR20200014744A (ko) 2020-02-11
CA3063038A1 (en) 2019-12-03
US20200179244A1 (en) 2020-06-11
EP3632849A1 (en) 2020-04-08
KR102575425B1 (ko) 2023-09-07

Similar Documents

Publication Publication Date Title
US9808407B2 (en) Porous silica particle, method for producing the same, and cosmetic containing the same
JP7170633B2 (ja) 中空粒子及び化粧料
US9327258B2 (en) Porous silica-based particles having smooth surface, method for production thereof and cosmetic comprising such particles
US10314769B2 (en) Organic-inorganic composite particles and cosmetic product
US11701307B2 (en) Organic-inorganic composite particles, manufacturing method therefor, and cosmetic
US11806421B2 (en) Porous-cellulose particles and production method thereof, and cosmetic
JP5791771B2 (ja) 表面平滑性に優れた多孔質シリカ系粒子および該多孔質シリカ系粒子を配合してなる化粧料
JP2019178257A (ja) 有機無機複合粒子、及び化粧料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522190

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197032967

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3063038

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024941

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018810761

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018810761

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 112019024941

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191126