WO2018220941A1 - 電動工具 - Google Patents

電動工具 Download PDF

Info

Publication number
WO2018220941A1
WO2018220941A1 PCT/JP2018/009893 JP2018009893W WO2018220941A1 WO 2018220941 A1 WO2018220941 A1 WO 2018220941A1 JP 2018009893 W JP2018009893 W JP 2018009893W WO 2018220941 A1 WO2018220941 A1 WO 2018220941A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
motor shaft
rotating body
rotation
power tool
Prior art date
Application number
PCT/JP2018/009893
Other languages
English (en)
French (fr)
Inventor
村上 弘明
亜紀子 本田
光政 水野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP18810556.3A priority Critical patent/EP3632625B1/en
Priority to US16/617,494 priority patent/US11478916B2/en
Publication of WO2018220941A1 publication Critical patent/WO2018220941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • H02K7/145Hand-held machine tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present invention relates to an electric tool including a rotation detection unit that detects a rotation angle of a motor.
  • Hand-held power tools used for drilling operations and screw tightening operations often use built-in motors to reduce size and weight (for example, Patent Documents 1 to 3).
  • the built-in type motor is configured by directly assembling the components of the motor to a rib member protruding from the inner peripheral surface of the housing.
  • control is performed to estimate the tightening torque from the rotation angle of the motor.
  • control is performed to estimate the tightening torque from the rotation angle of the motor.
  • it is necessary to provide the electric power tool with a rotation detector that detects the rotation angle of the motor with high accuracy.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for efficiently providing a rotation detection unit in an electric tool.
  • an electric tool includes a motor, a transmission mechanism that transmits a rotation output of the motor to a tip tool, and a rotation detection unit that detects a rotation angle of the motor.
  • the rotation detecting unit includes a rotating body attached to the motor shaft of the motor and a position detecting unit that outputs a rotation position signal corresponding to the rotating position of the rotating body.
  • the rotating body has an opening, and the motor shaft is press-fitted and fixed to the opening of the rotating body.
  • FIG. 1 It is a partial cross section schematic diagram of the electric tool concerning an embodiment. It is a figure which shows the cross section of a rotary body and a motor shaft.
  • (A)-(c) is a figure which shows the example of a press-fit restriction
  • (A)-(b) is a figure which shows the example of a rotation stop mechanism. It is a figure which shows an example of a rotary body.
  • A)-(b) is a figure which shows the example of the recessed part formed in the fixed surface.
  • FIG. 1 shows a partial cross-sectional schematic diagram of an electric power tool according to an embodiment of the present invention.
  • the electric tool 1 includes a housing 2, and a motor unit 4 is housed in the housing 2.
  • the motor unit 4 is configured as a built-in motor that functions by assembling the stator and the rotor integrated with the motor shaft 9 to the housing 2, and contributes to reducing the size and weight of the electric tool 1 by not having a motor case. To do.
  • the motor shaft 9 on the front side of the motor unit 4 is referred to as “motor shaft 9a”, and the motor shaft 9 on the rear side is referred to as “motor shaft 9b”.
  • a cooling fan 3 that is a centrifugal fan is fixed to the motor shaft 9a.
  • the drive block 5 includes a transmission mechanism that transmits the rotational output of the motor to the tip tool.
  • the drive block 5 includes a power transmission mechanism that transmits the rotational output of the motor shaft 9a to the output shaft 6.
  • the power transmission mechanism includes a planetary gear reduction mechanism that meshes with a pinion gear attached to the motor shaft 9a. Good.
  • the power transmission mechanism includes an impact mechanism that generates an intermittent rotational impact force on the output shaft 6.
  • a chuck mechanism 7 is connected to the output shaft 6 so that a tip tool such as a drill or a driver can be attached and detached.
  • the grip portion of the housing 2 is provided with an operation switch 8 operated by an operator. When the operator pulls the operation switch 8, the rotor in the motor unit 4 rotates and the output shaft 6 drives the tip tool.
  • the motor unit 4 is an inner rotor type brushless motor, and a rotor having a plurality of permanent magnets rotates inside the stator.
  • the rotor and stator, which are components of the motor unit 4 are fixed to the housing 2 separately and independently.
  • the housing 2 is composed of a pair of (left and right) half-cracked housing members that are divided in two by a vertical plane that crosses the rotation axis center of the electric power tool 1.
  • the motor unit 4 is assembled to the housing 2 by incorporating the first bearing 10a and the second bearing 10b of the stator and the motor shaft 9 into one housing member, and sandwiching the other housing member to screw the pair of housing members together. It is done by joining by fastening.
  • Rotation detector 12 for detecting the rotation angle of the motor is provided behind motor unit 4.
  • the rotation detection unit 12 includes a rotating body 20 attached to the motor shaft 9 b and a position detection unit 30 that outputs a rotation position signal corresponding to the rotation position of the rotating body 20.
  • the position detection unit 30 is a sensor provided on the sensor substrate.
  • the rotation detector 12 may be a magnetic encoder, but may be an optical encoder.
  • the rotation detection unit 12 When the rotation detection unit 12 is a magnetic encoder, the rotating body 20 has a magnet, and the position detection unit 30 has a magnetic sensor that detects a change in magnetic force. In order to improve the detection accuracy of the motor rotation angle, the interval between the rotating body 20 and the position detection unit 30 is set to be narrow, for example, the interval between them is about 2 mm.
  • the rotation detector 12 is an optical encoder
  • the rotator 20 is a rotating disk formed with a slit for blocking / transmitting light
  • the position detector 30 includes a light receiving element such as a photodiode.
  • the rotation detection unit 12 may be any type of encoder, and the position detection unit 30 outputs a rotation position signal corresponding to the rotation position of the rotating body 20 to a control unit (not shown) that controls the motor rotation. To do.
  • the position detector 30 is fixed to the stator side of the motor unit 4 by the support member 14. By fixing the rotating body 20 to the motor shaft 9b and fixing the position detecting unit 30 to the motor unit 4, the assembly accuracy of the rotating body 20 and the position detecting unit 30 can be improved.
  • the interval between the parts 30 can be set to a predetermined value with high accuracy.
  • the relative position between the rotating body 20 and the position detection unit 30 affects the deformation of the housing 2 by fixing the position detection unit 30 to the motor unit 4. Therefore, it is possible to realize the rotation detection unit 12 that is not easily received and has high reliability.
  • FIG. 2 shows a cross section of the rotating body 20 and the motor shaft 9b.
  • the rotating body 20 has an opening 21, and the motor shaft 9 b is press-fitted and fixed to the opening 21 of the rotating body 20.
  • press-fitting and fixing the motor shaft 9b and the opening 21, for example as compared with the case where the motor shaft 9b and the rotating body 20 are fixed by screwing, not only the assembly process can be facilitated but also the number of parts can be reduced. Miniaturization can be realized.
  • the rotating body 20 is attached to the motor shaft 9b at a position that does not contact the second bearing 10b that supports the motor shaft 9b.
  • the second bearing 10b is already press-fitted and fixed to the motor shaft 9b.
  • the rotator 20 is pushed into the motor shaft 9b with the opening 21 disposed coaxially with the motor shaft 9b.
  • the rotator 20 is not pushed into the press-fit position of the second bearing 10b. Designed to. For this reason, the press-fitting position of the second bearing 10b does not shift due to the pressing of the rotating body 20.
  • a press-fit restricting portion that restricts the press-fit depth of the motor shaft 9b may be provided in at least one of the motor shaft 9b or the opening 21.
  • the press-fit restricting portion By using the press-fit restricting portion, the positioning of the rotating body 20 with respect to the motor shaft 9b can be easily realized.
  • 3 (a) to 3 (c) show examples of the press-fitting restriction unit.
  • FIG. 3A shows a press-fit restricting portion 22 that is the bottom of the opening 21 of the rotating body 20.
  • the rotating body 20 is attached to the motor shaft 9b by forming the opening 21 with a bottom and press-fitting the motor shaft 9b into the opening 21 until it abuts against the press-fit restricting portion 22.
  • FIG. 3B shows a press-fit restricting portion 23 that is a step portion formed in the opening 21 of the rotating body 20.
  • the rotating body 20 is attached to the motor shaft 9 b by forming a small diameter portion in the opening 21 and press-fitting the motor shaft 9 b into the opening 21 until it abuts against the press-fit limiting portion 23.
  • FIG. 3 (c) shows the press-fit limiting portion 24 that is a step portion formed on the motor shaft 9b.
  • the rotating body 20 is attached to the motor shaft 9 b by press-fitting the motor shaft 9 b into the opening 21 until the press-fit restricting portion 24 contacts the end surface of the opening 21 of the rotating body 20.
  • the rotating body 20 In order for the rotation detection unit 12 to detect the rotation angle of the motor with high accuracy, the rotating body 20 needs to be attached to the motor shaft 9b so as not to be relatively rotatable. Therefore, the rotating body 20 is fixed to the motor shaft 9b via a rotation stop structure. 4 (a) to 4 (b) show examples of the rotation stop mechanism.
  • FIG. 4A shows a rotation stop structure in which the opening 21 of the rotating body 20 has a D-shaped cross section and the motor shaft 9b has a D-shaped end section.
  • FIG. 4B shows a rotation stopping structure in which a key groove is formed in the opening 21 and the motor shaft 9b, and a rotation inhibiting member 25 as a key is inserted into both the key grooves.
  • FIG. 5 shows an example of the rotating body 20.
  • the rotating body 20 constitutes one part of a magnetic encoder and includes a magnet 26 and a fixing bush 27 for fixing the magnet 26.
  • a recess for fitting the magnet 26 is formed on the fixing surface of the fixing bush 27, and the magnet 26 is fitted into the recess and fixed.
  • the magnet 26 is preferably bonded and fixed to the concave portion of the bush fixing surface. Thereby, the magnet 26 can be reliably fixed to the fixing bush 27.
  • the magnet 26 has a shape that fits in the recess of the fixing bush 27 so as not to be relatively rotatable, and is fitted in the recess so as not to be relatively rotatable.
  • FIG. 6A shows an example in which the concave portion of the fixing surface of the fixing bush 27 is formed in a D shape.
  • the magnet 26 has a D shape that fits into the recess, fits into the recess, and is fixed by an adhesive.
  • FIG. 6B shows an example in which the concave portion of the fixing surface of the fixing bush 27 is formed in a square shape.
  • the magnet 26 has a quadrangular shape that fits into the recess, fits into the recess, and is fixed by an adhesive.
  • An electric tool (1) includes a motor (4), a transmission mechanism (5) that transmits a rotation output of the motor to a tip tool, and a rotation detection unit (12) that detects a rotation angle of the motor.
  • the rotation detection unit (12) includes a rotation body (20) attached to the motor shaft (9b) of the motor, and a position detection unit (30) that outputs a rotation position signal corresponding to the rotation position of the rotation body.
  • the rotating body (20) has an opening (21), and the motor shaft (9b) is press-fitted and fixed to the opening of the rotating body.
  • At least one of the motor shaft (9b) and the opening (21) is provided with a press-fit restricting portion (22, 23, 24) for restricting the press-fit depth of the motor shaft.
  • the rotating body (20) is preferably attached to the motor shaft (9b) so as not to be relatively rotatable.
  • the rotation detector (12) may be a magnetic encoder, and the rotating body (20) may have a magnet (26) and a fixing bush (27) for fixing the magnet.
  • the magnet (26) may be adhesively fixed to the fixing bush (27).
  • the fixing bush (27) may have a recess in the fixing surface of the magnet, and the magnet may have a shape that fits into the recess of the fixing bush so as not to be relatively rotatable.
  • a rotary body (20) is attached to a motor shaft in the position which does not contact the bearing (10b) which supports a motor shaft (9b).
  • the present invention can be used in the field of electric tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

電動工具(1)は、モータを有するモータユニット(4)と、モータの回転出力を先端工具に伝達する駆動ブロック(5)と、モータの回転角度を検出する回転検出部(12)とを備える。回転検出部(12)は、モータシャフト(9b)に取り付けられた回転体(20)と、回転体(20)の回転位置に応じた回転位置信号を出力する位置検出部(30)を有する。回転体(20)は開口を有し、モータシャフト(9b)が回転体(20)の開口に圧入固定される。

Description

電動工具
 本発明は、モータの回転角度を検出する回転検出部を備えた電動工具に関する。
 穴あけ作業やねじ類の締付作業に用いられる手持ち式の電動工具は、小型化および軽量化のために、ビルトイン式モータを使用することが多い(たとえば特許文献1~3)。ビルトイン式モータは、モータの構成要素をハウジングの内周面に突設されたリブ部材に直接組み付けることで構成される。
特開2007-136607号公報 特開2006-972号公報 特開2012-71360号公報
 インパクト回転工具などの電動工具では、モータの回転角度から締付トルクを推定する制御が実施される。締付トルクの推定精度を高めるためには、モータの回転角度を高精度に検出する回転検出部を電動工具に設けることが必要となる。
 本発明はこうした状況に鑑みなされたものであり、その目的は、回転検出部を効率的に電動工具に設ける技術を提供することにある。
 上記課題を解決するために、本発明のある態様の電動工具は、モータと、モータの回転出力を先端工具に伝達する伝達機構と、モータの回転角度を検出する回転検出部と、を備えた電動工具であって、回転検出部は、モータのモータシャフトに取り付けられた回転体と、回転体の回転位置に応じた回転位置信号を出力する位置検出部とを有する。回転体は開口を有し、モータシャフトが回転体の開口に圧入固定される。
実施形態に係る電動工具の一部断面概要図である。 回転体およびモータシャフトの断面を示す図である。 (a)~(c)は、圧入制限部の例を示す図である。 (a)~(b)は、回転止め機構の例を示す図である。 回転体の一例を示す図である。 (a)~(b)は、固定面に形成した凹部の例を示す図である。
 図1は、本発明の実施形態に係る電動工具の一部断面概要図を示す。電動工具1はハウジング2を備え、モータユニット4がハウジング2に内装される。モータユニット4は、ステータ、およびモータシャフト9と一体化したロータをハウジング2に組み付けることで機能するビルトイン式モータとして構成され、モータケースを有しないことで電動工具1の小型化および軽量化に貢献する。以下、モータユニット4の前方側のモータシャフト9を「モータシャフト9a」、後方側のモータシャフト9を「モータシャフト9b」と呼ぶ。モータシャフト9aには、遠心ファンである冷却ファン3が固定される。
 駆動ブロック5は、モータの回転出力を先端工具に伝達する伝達機構を備える。具体的に駆動ブロック5は、モータシャフト9aの回転出力を出力軸6に伝達する動力伝達機構を備え、動力伝達機構は、モータシャフト9aに取り付けられたピニオンギヤに噛み合う遊星歯車減速機構を有してよい。電動工具1がインパクト回転工具である場合、動力伝達機構は、出力軸6に間欠的な回転衝撃力を発生させるインパクト機構を含む。出力軸6にはチャック機構7が連結し、ドリルやドライバなどの先端工具を着脱可能とする。ハウジング2のグリップ部には、作業者により操作される操作スイッチ8が設けられ、作業者が操作スイッチ8を引くとモータユニット4におけるロータが回転して、出力軸6が先端工具を駆動する。
 モータユニット4はインナーロータ型のブラシレスモータであって、複数の永久磁石を有するロータがステータの内側で回転する。モータユニット4の構成要素であるロータおよびステータは、それぞれ別個独立にハウジング2に固定される。ハウジング2は、電動工具1の回転軸線中心を横切る垂直面で2分される一対の(左右の)半割れハウジング部材から構成される。モータユニット4のハウジング2への組付は、一方のハウジング部材に、ステータおよびモータシャフト9の第1軸受10a、第2軸受10bを組み込み、他方のハウジング部材をかさねて、一対のハウジング部材をねじ締め等で結合することで行われる。
 モータユニット4の後方には、モータの回転角度を検出する回転検出部12が設けられる。回転検出部12は、モータシャフト9bに取り付けられた回転体20と、回転体20の回転位置に応じた回転位置信号を出力する位置検出部30とを有する。位置検出部30は、センサ基板上に設けられたセンサである。回転検出部12は、磁気式エンコーダであってよいが、光学式エンコーダであってもよい。
 回転検出部12が磁気式エンコーダである場合、回転体20は磁石を有し、位置検出部30は、磁力の変化を検出する磁気センサを有する。モータ回転角度の検出精度を高めるために、回転体20および位置検出部30の間隔は狭く設定され、たとえば両者の間隔は約2mmである。なお回転検出部12が光学式エンコーダである場合、回転体20は光を遮断/透過するスリットを形成された回転円板であり、位置検出部30は、フォトダイオードなどの受光素子を有する。回転検出部12はいずれの形式のエンコーダであってもよく、位置検出部30は、モータ回転を制御する制御部(図示せず)に、回転体20の回転位置に応じた回転位置信号を出力する。
 位置検出部30は支持部材14により、モータユニット4のステータ側に固定される。回転体20をモータシャフト9bに固定し、且つ位置検出部30をモータユニット4に固定することで、回転体20および位置検出部30の組付精度を高めることができ、回転体20および位置検出部30の間隔を所定値に高精度に設定できる。また位置検出部30をハウジング2に固定する場合と比べると、位置検出部30をモータユニット4に固定することで、ハウジング2の変形に対して回転体20および位置検出部30の相対位置が影響を受けにくく、信頼性の高い回転検出部12を実現できる。
 図2は、回転体20およびモータシャフト9bの断面を示す。回転体20は開口21を有し、モータシャフト9bが回転体20の開口21に圧入固定される。モータシャフト9bと開口21とを圧入固定することで、たとえばモータシャフト9bと回転体20とをねじ締めにより固定する場合と比べると、組付工程を容易にできるだけでなく、部品点数を少なくして小型化を実現できる。
 なお図1を参照して、回転体20は、モータシャフト9bを支持する第2軸受10bに接触しない位置でモータシャフト9bに取り付けられる。回転体20を取り付ける前に、モータシャフト9bには、すでに第2軸受10bが圧入固定されている。回転体20は、開口21をモータシャフト9bと同軸に配置した状態で押し込まれて、モータシャフト9bに取り付けられるが、このとき回転体20は、第2軸受10bの圧入位置までは押し込まれないように設計されている。このため回転体20の押し込みによって、第2軸受10bの圧入位置がずれることはない。
 なお回転体20の組付工程をさらに容易にするために、モータシャフト9bまたは開口21の少なくとも一方に、モータシャフト9bの圧入深さを制限する圧入制限部が設けられてよい。圧入制限部を利用することで、モータシャフト9bに対する回転体20の位置決めを容易に実現できるようになる。図3(a)~(c)は、圧入制限部の例を示す。
 図3(a)は、回転体20の開口21の底部である圧入制限部22を示す。図3(a)に示す例では、開口21を有底に形成し、モータシャフト9bを圧入制限部22に当接するまで開口21に圧入することで、回転体20がモータシャフト9bに取り付けられる。
 図3(b)は、回転体20の開口21に形成された段部である圧入制限部23を示す。図3(b)に示す例では、開口21に小径部を形成し、モータシャフト9bを圧入制限部23に当接するまで開口21に圧入することで、回転体20がモータシャフト9bに取り付けられる。
 図3(c)は、モータシャフト9bに形成された段部である圧入制限部24を示す。図3(c)に示す例では、圧入制限部24が回転体20の開口21の端面に当接するまでモータシャフト9bを開口21に圧入することで、回転体20がモータシャフト9bに取り付けられる。
 回転検出部12がモータの回転角度を高精度に検出するためには、回転体20がモータシャフト9bに相対回転不能に取り付けられる必要がある。そこで回転体20は、モータシャフト9bに回転止め構造を介して固定される。図4(a)~(b)は、回転止め機構の例を示す。
 図4(a)は、回転体20の開口21の断面をD形状とし、モータシャフト9bの端部断面をD形状とした回転止め構造を示す。断面D形状のモータシャフト9bを開口21に圧入することで、回転体20とモータシャフト9bとの相対回転が抑止される。
 図4(b)は、開口21とモータシャフト9bにキー溝を形成し、両方のキー溝に、キーである回転抑止部材25を差し込んだ回転止め構造を示す。回転抑止部材25を開口21とモータシャフト9bのキー溝に配置することで、回転体20とモータシャフト9bとの相対回転が抑止される。
 図5は、回転体20の一例を示す。この回転体20は、磁気式エンコーダにおける一部品を構成し、磁石26と、磁石26を固定する固定用ブッシュ27を有する。固定用ブッシュ27の固定面には磁石26を嵌合する凹部が形成され、磁石26は、凹部に嵌合されて固定される。なお磁石26は、ブッシュ固定面の凹部に接着固定されることが好ましい。これにより磁石26を固定用ブッシュ27に確実に固定できる。
 磁石26は、固定用ブッシュ27の凹部に相対回転不能に嵌合する形状を有して、凹部に相対回転不能に嵌合することが好ましい。
 図6(a)は、固定用ブッシュ27の固定面の凹部をD形状に形成した例を示す。磁石26は凹部に嵌合するD形状を有して、凹部に嵌合し、接着剤により固定される。
 図6(b)は、固定用ブッシュ27の固定面の凹部を四角形状に形成した例を示す。磁石26は凹部に嵌合する四角形状を有して、凹部に嵌合し、接着剤により固定される。
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 本発明の態様の概要は、次の通りである。
 本発明のある態様の電動工具(1)は、モータ(4)と、モータの回転出力を先端工具に伝達する伝達機構(5)と、モータの回転角度を検出する回転検出部(12)とを備える。回転検出部(12)は、モータのモータシャフト(9b)に取り付けられた回転体(20)と、回転体の回転位置に応じた回転位置信号を出力する位置検出部(30)とを有し、回転体(20)は開口(21)を有し、モータシャフト(9b)が回転体の開口に圧入固定される。
 モータシャフト(9b)または開口(21)の少なくとも一方に、モータシャフトの圧入深さを制限する圧入制限部(22,23,24)が設けられることが好ましい。回転体(20)は、モータシャフト(9b)に相対回転不能に取り付けられることが好ましい。
 回転検出部(12)は、磁気式エンコーダであってよく、回転体(20)は、磁石(26)と、磁石を固定する固定用ブッシュ(27)を有してよい。磁石(26)は、固定用ブッシュ(27)に接着固定されてよい。固定用ブッシュ(27)は、磁石の固定面に凹部を有し、磁石は、固定用ブッシュの凹部に相対回転不能に嵌合する形状を有してよい。なお回転体(20)は、モータシャフト(9b)を支持する軸受(10b)に接触しない位置でモータシャフトに取り付けられることが好ましい。
1・・・電動工具、2・・・ハウジング、4・・・モータユニット、5・・・駆動ブロック、6・・・出力軸、9a,9b・・・モータシャフト、10a・・・第1軸受、10b・・・第2軸受、12・・・回転検出部、20・・・回転体、21・・・開口、22,23,24・・・圧入制限部、25・・・回転抑止部材、26・・・磁石、27・・・固定用ブッシュ、30・・・位置検出部。
 本発明は、電動工具の分野において利用できる。

Claims (7)

  1.  モータと、
     前記モータの回転出力を先端工具に伝達する伝達機構と、
     前記モータの回転角度を検出する回転検出部と、を備えた電動工具であって、
     前記回転検出部は、前記モータのモータシャフトに取り付けられた回転体と、前記回転体の回転位置に応じた回転位置信号を出力する位置検出部とを有し、
     前記回転体は開口を有し、前記モータシャフトが前記回転体の前記開口に圧入固定される、
     ことを特徴とする電動工具。
  2.  前記モータシャフトまたは前記開口の少なくとも一方に、前記モータシャフトの圧入深さを制限する圧入制限部が設けられる、
     ことを特徴とする請求項1に記載の電動工具。
  3.  前記回転体は、前記モータシャフトに相対回転不能に取り付けられる、
     ことを特徴とする請求項1または2に記載の電動工具。
  4.  前記回転検出部は、磁気式エンコーダであって、
     前記回転体は、磁石と、磁石を固定する固定用ブッシュを有する、
     ことを特徴とする請求項1から3のいずれかに記載の電動工具。
  5.  前記磁石は、前記固定用ブッシュに接着固定される、
     ことを特徴とする請求項4に記載の電動工具。
  6.  前記固定用ブッシュは、前記磁石の固定面に凹部を有し、
     前記磁石は、前記固定用ブッシュの凹部に相対回転不能に嵌合する形状を有する、
     ことを特徴とする請求項4または5に記載の電動工具。
  7.  前記回転体は、前記モータシャフトを支持する軸受に接触しない位置で前記モータシャフトに取り付けられる、
     ことを特徴とする請求項1から6のいずれかに記載の電動工具。
PCT/JP2018/009893 2017-05-30 2018-03-14 電動工具 WO2018220941A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18810556.3A EP3632625B1 (en) 2017-05-30 2018-03-14 Power tool
US16/617,494 US11478916B2 (en) 2017-05-30 2018-03-14 Electric power tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017107098A JP6899541B2 (ja) 2017-05-30 2017-05-30 電動工具
JP2017-107098 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018220941A1 true WO2018220941A1 (ja) 2018-12-06

Family

ID=64455360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009893 WO2018220941A1 (ja) 2017-05-30 2018-03-14 電動工具

Country Status (4)

Country Link
US (1) US11478916B2 (ja)
EP (1) EP3632625B1 (ja)
JP (1) JP6899541B2 (ja)
WO (1) WO2018220941A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101946A (ja) * 1988-10-11 1990-04-13 Matsushita Electric Ind Co Ltd 速度検出装置付電動機
JP2006000972A (ja) 2004-06-17 2006-01-05 Matsushita Electric Works Ltd インパクト工具
JP2007136607A (ja) 2005-11-17 2007-06-07 Matsushita Electric Works Ltd 電動工具
JP2010035411A (ja) * 2008-07-04 2010-02-12 Mabuchi Motor Co Ltd センサマグネットホルダ、及び該ホルダを組み込んだモータとその製造方法
JP2012071360A (ja) 2010-09-27 2012-04-12 Panasonic Eco Solutions Power Tools Co Ltd 回転工具
JP2015188943A (ja) * 2014-03-27 2015-11-02 勝行 戸津 定トルク電動ドライバー等におけるトルクリミッタ
JP2016022555A (ja) * 2014-07-19 2016-02-08 日立工機株式会社 電動工具
JP2017009312A (ja) * 2015-06-17 2017-01-12 株式会社ジェイテクト 回転角センサ、それを備えたモータ装置および回転角センサの製造方法
US20170106490A1 (en) * 2015-10-14 2017-04-20 Black & Decker Inc. Handheld grinder with brushless electric motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938595A (en) * 1974-09-19 1976-02-17 Raymond International, Inc. Apparatus and method for driving bulb piles
US4006993A (en) * 1975-11-25 1977-02-08 Borg-Warner Corporation Shaft mounting arrangement
US4316512A (en) * 1979-04-04 1982-02-23 Sps Technologies, Inc. Impact wrench
SE511336C2 (sv) * 1997-10-27 1999-09-13 Atlas Copco Tools Ab Metod för fastställande av det installerade momentet i ett skruvförband vid impulsåtdragning, metod för styrning av en åtdragningsprocess, metod för kvalitetsövervakning och ett momentimpulsverktyg för åtdragning av skruvförband
JP4961808B2 (ja) * 2006-04-05 2012-06-27 マックス株式会社 鉄筋結束機
US10193422B2 (en) * 2015-05-13 2019-01-29 Makita Corporation Power tool
JP2016221632A (ja) * 2015-05-30 2016-12-28 日立工機株式会社 電動工具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101946A (ja) * 1988-10-11 1990-04-13 Matsushita Electric Ind Co Ltd 速度検出装置付電動機
JP2006000972A (ja) 2004-06-17 2006-01-05 Matsushita Electric Works Ltd インパクト工具
JP2007136607A (ja) 2005-11-17 2007-06-07 Matsushita Electric Works Ltd 電動工具
JP2010035411A (ja) * 2008-07-04 2010-02-12 Mabuchi Motor Co Ltd センサマグネットホルダ、及び該ホルダを組み込んだモータとその製造方法
JP2012071360A (ja) 2010-09-27 2012-04-12 Panasonic Eco Solutions Power Tools Co Ltd 回転工具
JP2015188943A (ja) * 2014-03-27 2015-11-02 勝行 戸津 定トルク電動ドライバー等におけるトルクリミッタ
JP2016022555A (ja) * 2014-07-19 2016-02-08 日立工機株式会社 電動工具
JP2017009312A (ja) * 2015-06-17 2017-01-12 株式会社ジェイテクト 回転角センサ、それを備えたモータ装置および回転角センサの製造方法
US20170106490A1 (en) * 2015-10-14 2017-04-20 Black & Decker Inc. Handheld grinder with brushless electric motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3632625A4

Also Published As

Publication number Publication date
JP6899541B2 (ja) 2021-07-07
JP2018202498A (ja) 2018-12-27
US11478916B2 (en) 2022-10-25
EP3632625A4 (en) 2020-06-03
EP3632625A1 (en) 2020-04-08
EP3632625B1 (en) 2024-06-26
US20200180131A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US11539272B2 (en) Electric power tool
WO2007080888A1 (ja) 回転電機
JP5823165B2 (ja) 回転検出装置及びモータ
WO2016084742A1 (ja) インパクト工具及びインパクト工具用スピンドルの製造方法
JP6952241B2 (ja) 電動工具
JP6539513B2 (ja) 電動ドライバ
JP2016022555A (ja) 電動工具
JP2002364713A (ja) モータ
WO2018220941A1 (ja) 電動工具
JP7194903B2 (ja) 電動工具
JP6228779B2 (ja) モータ
JP7210478B2 (ja) 自動車両ワイピングシステム用ギアモータ
JP6887118B2 (ja) 電動工具
KR20120073853A (ko) Eps 모터
KR20110070146A (ko) 전동 파워 스티어링용 모터
JP4287254B2 (ja) モータ
JP5335341B2 (ja) モータ
JP6863415B2 (ja) 電動工具
JP6105294B2 (ja) モータ
JP2007020241A (ja) 小型モータ
JP2013188025A (ja) ブラシレスモータ及び電動工具
JP2004299677A (ja) 電動パワーステアリング装置
JP2019129682A (ja) ブレーキ付きモータ及びモータシリーズの製造方法
JP2016011899A (ja) トルクセンサの取付装置
JP2006291983A (ja) 差動歯車装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018810556

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018810556

Country of ref document: EP

Effective date: 20200102