WO2018219155A1 - 一种钙钛矿太阳能电池组件及其制备方法 - Google Patents

一种钙钛矿太阳能电池组件及其制备方法 Download PDF

Info

Publication number
WO2018219155A1
WO2018219155A1 PCT/CN2018/087356 CN2018087356W WO2018219155A1 WO 2018219155 A1 WO2018219155 A1 WO 2018219155A1 CN 2018087356 W CN2018087356 W CN 2018087356W WO 2018219155 A1 WO2018219155 A1 WO 2018219155A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
perovskite
solvent
preparing
layer
Prior art date
Application number
PCT/CN2018/087356
Other languages
English (en)
French (fr)
Inventor
颜步一
姚冀众
Original Assignee
颜步一
姚冀众
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 颜步一, 姚冀众 filed Critical 颜步一
Publication of WO2018219155A1 publication Critical patent/WO2018219155A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of solar cells, and in particular relates to a perovskite solar cell module and a preparation method thereof.
  • perovskite solar cells are generally only suitable for preparing small-area batteries for scientific research and cannot be mass-produced.
  • a few patents on perovskite solar modules are only for the film forming process of perovskite coating.
  • perovskite film formation of perovskite solar cells there are two main methods for perovskite film formation of perovskite solar cells: one-step method (one-shot molding) and two-step method.
  • the one-step molding process is relatively simple because it is reduced by one step, but the compatible process is limited, and is limited to several solution coating methods.
  • the large-area coated film has many defects, and at the same time, the coating
  • the process is not only a simple process of solvent evaporation and solute deposition, but also a process in which two reactants react in solution and crystallize to form perovskite crystals. Therefore, the disadvantage of the one-step method is that it is difficult to control the reaction process, and it is easy to cause defects in the formed perovskite crystal. In the two-step process, the crystallization process is effectively controlled and the film formation quality is better.
  • the perovskite photovoltaic active layer is sandwiched between the transparent conductive electrode and the metal electrode, and such a component technical solution allows light to be incident only from the side of the transparent substrate. This limits the choice of substrate and limits the efficient use of light energy.
  • the technical problem to be solved by the present invention is to provide a perovskite solar cell module and a preparation method thereof, and for the first time, a method for preparing a perovskite solar cell module by a two-step method is provided.
  • the light can be incident from the positive and negative directions, and the utilization of the light energy can be improved, and the substrate material with better opacity but better water barrier can be selected when selecting the base material, thereby improving the stability of the component. .
  • the present invention is achieved by providing a perovskite solar cell module comprising a plurality of mutually separated perovskite solar cell cells and a structured region connecting the respective separated perovskite solar cell cells,
  • the perovskite solar cell comprises a first electrode, a perovskite layer and a second electrode, the perovskite layer being disposed between the first electrode and the second electrode; the first electrode and the second electrode respectively being transparent a conductive electrode and a common metal electrode, at least one of which is a transparent conductive electrode;
  • the molecular structure of the perovskite layer material is ABX 3
  • the perovskite layer is formed by two types of perovskite precursor materials and reacts with each other to form a film
  • the two types of perovskite precursor materials are BX 2 and AX, respectively, wherein A is at least one cation of lanthanum, cerium, amine, sulfhydryl or alkali group, and B is lead,
  • the perovskite solar cell module of the invention can realize the incidence of light from both directions in the positive and negative directions by adjusting the deployment of the transparent conductive electrode, thereby improving the utilization of light energy, and also allowing opaque but water-repellent when selecting the substrate material. Better substrate materials for improved component stability.
  • the present invention is achieved by providing a method for preparing the aforementioned perovskite solar cell module, comprising the steps of:
  • the method for preparing the aforementioned perovskite solar cell module of the present invention provides for the first time a method for preparing a perovskite solar cell module by using a two-step method, and dividing the light absorbing layer in the perovskite solar cell module into the first type of calcium.
  • the film of the titanium ore precursor material BX 2 and the film of the second type of perovskite precursor material AX are separately prepared, effectively control the reaction process of the perovskite film, improve the quality of the finished product of the perovskite film, and increase the perovskite.
  • the production of solar cells is reproducible, increasing the utilization and stability of light energy, and enabling the preparation of large-area solar cell modules.
  • the perovskite solar cell module of the invention and the preparation method thereof have the following characteristics:
  • the component preparation cost and power generation cost are lower than the existing solar cells such as crystalline silicon, copper indium gallium selenide, etc., and the photovoltaic emission level price can be realized;
  • the preparation process does not involve the use and discharge of high temperature and high pressure and toxic gases, and is environmentally friendly.
  • 1 is a cross-sectional structural view of a perovskite solar cell module
  • Fig. 1 is a substrate, 2 is a first electrode, 3 is a perovskite layer, 4 is a second electrode, and 5 is a structured region.
  • Figure 2 is a graph showing the current-voltage characteristics of a perovskite solar cell module (six junction series) prepared by this method.
  • a preferred embodiment of the perovskite solar cell module of the present invention comprises a plurality of mutually separated perovskite solar cell cells and a structure for connecting the respective separated perovskite solar cell cells. Region 5, where the connections referred to include parallel or parallel in series or in parallel in series.
  • the perovskite solar cell and the structured region 5 are both disposed on the substrate 1.
  • the perovskite solar cell comprises a first electrode 2, a perovskite layer 3 and a second electrode 4, the perovskite layer 3 being disposed between the first electrode 2 and the second electrode 4; the first electrode 2 and the second electrode 4 may be a transparent conductive electrode and a common metal electrode, respectively, at least one of which is a transparent conductive electrode.
  • the material of the transparent conductive electrode comprises a metal-dielectric-metal (MDM), a fluorine doped tin oxide (FTO), an indium doped tin oxide (ITO). ), graphene, reduced graphene oxide (rGO), aluminum doped zinc oxide (AZO), fluorine doped zinc oxide (FZO), zinc doped tin oxide (zinc doped tin) Oxide, ZTO), carbon nanotubes (CNTs), metals, metal grids, metallic nanowires (NWs), polyethylene dioxythiophene-poly(styrene sulfonate) and their high conductivity At least any one of the derivatives (PEDOT: PSS).
  • MDM metal-dielectric-metal
  • FTO fluorine doped tin oxide
  • ITO indium doped tin oxide
  • ZTO zinc doped tin oxide
  • CNTs carbon nanotubes
  • metals metal grids
  • metallic nanowires NWs
  • the material of the common metal electrode includes at least one of gold, silver, copper, platinum, rhodium, nickel, aluminum, calcium, magnesium, titanium, tungsten, iron, cobalt, zinc, tin, chromium, manganese, indium, and lead. kind.
  • the molecular structure of the perovskite layer 3 material is ABX 3
  • the perovskite layer 3 is formed by two kinds of perovskite precursor materials successively forming a film and reacting with each other, and the two types of perovskite precursor materials are respectively BX 2 and AX, wherein A is at least one cation of ruthenium, osmium, amine, sulfhydryl or alkali group, and B is lead, tin, tungsten, copper, zinc, gallium, antimony, arsenic, selenium, tellurium, At least one divalent metal cation of palladium, silver, cadmium, indium, lanthanum, cerium, lanthanum, platinum, gold, mercury, cerium, lanthanum or cerium, and X is at least one anion of iodine, bromine, chlorine or ruthenium And X in BX 2 is not necessarily the same as X in AX.
  • the preparation method of the perovskite solar cell module of the invention comprises the following steps:
  • the preparation of the first electrode 2 in the step (1) comprises the following steps:
  • Vacuum thermal evaporation involves electron beam deposition.
  • Solution coating and solution growth methods include water bath growth, electrochemical deposition, knife coating, slit coating, wet coating, wire bar coating, ink jet printing, sputtering, screen printing.
  • the preparation of the first electrode 2 in the step (1) comprises the following steps:
  • the first electrode 2 is prepared by one or more of vacuum thermal evaporation, magnetron sputtering, pulsed laser deposition, atomic layer deposition through a mask.
  • the preparation of the first electrode 2 in the step (1) comprises the following steps:
  • step (14) using one or more of pressure bonding, mask deposition, solution coating, or wire rolling, coating a metal mesh or metal nanowire in a predetermined pattern in step (14).
  • a second layer of the first electrode 2, ie a mesh layer is formed above the full cover layer.
  • the partial etching after the preparation in the step (1) refers to a method of etching a portion of the first electrode 2 by laser etching and/or mechanical etching to satisfy the requirement of the structured connection.
  • the preparation of the film of the first type of perovskite precursor material BX 2 required to form the perovskite layer 3 in the step (2) comprises the following steps:
  • the partial etching before the preparation in the step (2) means that the substrate 1 is not included on the substrate 1 including the first electrode 2 prepared in the step (1) on the substrate 1 before the step (21) is performed. All structures are partially etched to meet the needs of structured connections.
  • the material of the BX 2 is a divalent metal halide; when the solution is coated and the solution method Method of Growth
  • the precursor solution component used in the preparation of the precursor layer includes a divalent metal halide BX 2 and an organic solvent; wherein the concentration of the BX 2 is from 0.2 mol/L to 2 mol/L.
  • the organic solvent includes a main solvent which is an amide solvent, a sulfone/sulfoxide solvent, an ester solvent, a hydrocarbon, a halogenated hydrocarbon solvent, an alcohol solvent, a ketone solvent, and an ether.
  • a main solvent which is an amide solvent, a sulfone/sulfoxide solvent, an ester solvent, a hydrocarbon, a halogenated hydrocarbon solvent, an alcohol solvent, a ketone solvent, and an ether.
  • any of a solvent-like or aromatic hydrocarbon solvent or N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), ⁇ -butyrolactone (GBL)
  • the solvent additive is an amide solvent, a sulfone/sulfoxide solvent, an ester solvent, a hydrocarbon, a halogenated hydrocarbon solvent, an alcohol solvent, a ketone solvent, an ether solvent , an aromatic hydrocarbon, DMSO, NMP, 1,8- diiodo-octane (DIO), N- cyclohexyl-2-pyrrolidone (of CHP), chlorobenzene (CB), at least one of toluene; of the BX 2
  • the molar concentration is 0.2 to 2 mol/L, and the molar ratio of the solvent additive to BX 2 is 0 to 1.
  • the first type of perovskite precursor material AX required to form the perovskite layer 3 is deposited into the surface of the film of the BX 2 film formed in the step (2), and the AX in the step (3) Deposition includes the following steps:
  • the film of the second type perovskite precursor material AX comprises a material AX and an organic polymer additive, wherein A is at least one cation of cerium, lanthanum, amine group, sulfhydryl group or alkali group, and X is iodine, At least one anion of bromine, chlorine or hydrazine, the organic polymer additive is a branched or heterochain polymer, is insulating and soluble in the main solvent used, specifically polyethylene glycol, polypropylene glycol, polyvinylpyrrolidone, poly At least one of lactic acid, polyvinyl alcohol, polyacrylic acid, polyurethane, polyethyleneimine, polypropylene thiamine, polystyrene sulfonic acid, polyvinylpyrrolidone, polyvinyl butyral resin, fluorine polymer,
  • the molecular weight ranges from 1000 to 100,000, and the organic polymer additive accounts for 0.05% to 0.5% of the AX
  • the second type of perovskite precursor material AX required to form the perovskite layer 3 is deposited into the second surface of the film of the BX 2 film formed in the step (2), and the AX in the step (3) Film deposition also includes the following steps:
  • the substrate 1 is subjected to the following treatments: heating (heating temperature: 35 to 500 degrees Celsius), solvent fumigation, and coating of a sub-solvent, which may be one or more of them, if Multiple items can be performed simultaneously or alternately.
  • the solvent used in the solvent fumigation treatment includes an amide solvent, a sulfone/sulfoxide solvent, an ester solvent, a hydrocarbon, a halogenated hydrocarbon solvent, an alcohol solvent, a ketone solvent, an ether solvent, and an aromatic hydrocarbon solvent.
  • amide solvent a sulfone/sulfoxide solvent
  • ester solvent a hydrocarbon
  • halogenated hydrocarbon solvent an alcohol solvent
  • a ketone solvent an ether solvent
  • an aromatic hydrocarbon solvent Any one of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), ⁇ -butyrolactone (GBL) One.
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • GBL ⁇ -butyrolactone
  • the sub-solvent used in the coating sub-solvent treatment includes an amide solvent, a sulfone/sulfoxide solvent, an ester solvent, a hydrocarbon, a halogenated hydrocarbon solvent, an alcohol solvent, a ketone solvent, an ether solvent, Any one of aromatic hydrocarbon solvents, or N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), ⁇ -butyrolactone (GBL) Any of them.
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • GBL ⁇ -butyrolactone
  • the partial etching after the preparation in the step (3) refers to the use of laser etching and/or mechanical etching on the substrate 1 on which the AX is deposited and AX and BX 2 are reacted to form a perovskite layer.
  • the layer 3 or layers of the inner layer 3 are etched to meet the requirements of the structured connection.
  • the preparation of the second electrode 4 in the step (4) comprises the following steps:
  • Methods of solution coating include spin coating, knife coating, slit coating, wet coating, wire bar coating, ink jet printing, sputtering, screen printing.
  • the preparation of the second electrode 4 in the step (4) comprises the following steps:
  • the second electrode 4 is prepared through at least one of vacuum thermal evaporation, magnetron sputtering, pulsed laser deposition, and atomic layer deposition through a mask.
  • the preparation of the second electrode 4 in the step (4) comprises the following steps:
  • step (445) coating the metal mesh or the metal nanowire in a predetermined pattern by at least one of pressure bonding, mask deposition, or solution coating to form a full coverage of the second electrode 4 in step (44)
  • a second layer of the second electrode 4 a mesh layer, is formed.
  • the partial etching before the preparation in the step (4) refers to etching a portion of one or more layers including the perovskite layer 3 on the substrate 1 by laser etching and/or mechanical etching.
  • the partial etching after the preparation of the second electrode 4 in the step (5) comprises the following steps:
  • FIG. 2 is a current-voltage characteristic curve of a perovskite solar cell module (six junction series) prepared by the method.
  • the short-circuit current density was 18.3 mA/cm 2
  • the open circuit voltage was 6.4 V
  • the FF was 77%
  • the photoelectric conversion efficiency was 15%.
  • Example 1 for preparing a perovskite solar cell module
  • zinc-doped tin oxide is prepared by magnetron sputtering as the first electrode 2.
  • the magnetron sputtering chamber gas pressure is maintained at 10 -5 mbar, with zinc and tin oxide.
  • RF sputtering was performed to obtain zinc-doped tin oxide having a thickness of 200 nm.
  • the zinc-doped tin oxide is partially etched by laser etching, and the zinc-doped tin oxide is divided into independent regions of equal area.
  • the precursor layer PbI 2 was prepared by vacuum thermal evaporation.
  • the pressure of the evaporation chamber was controlled at 10 -6 mbar.
  • PbI 2 powder was added to the evaporation boat, evaporated evenly, and the thickness was monitored by a crystal oscillator to obtain a PbI 2 layer having a thickness of 300 nm.
  • the MAI was deposited by vacuum thermal evaporation.
  • the evaporation chamber pressure was controlled at 10 -6 mbar.
  • the MAI powder was added to the evaporation boat, evaporated evenly, and the thickness was monitored by a crystal oscillator.
  • the evaporated MAI reacted with PbI 2 in real time to form a perovskite layer 3 having a thickness of 500 nm.
  • a 300 nm metal silver electrode was prepared as the second electrode 4 by vacuum thermal evaporation.
  • the pressure of the thermal evaporation chamber was maintained at 10 -6 mbar and evaporated at a rate of 0.3 nm/second to obtain silver having a thickness of 300 nm.
  • the portion of the silver electrode is etched by laser etching to completely etch through the silver electrode without damaging the zinc-doped tin oxide layer.
  • Example 2 for preparing a perovskite solar cell module
  • a high conductivity PEDOT:PSS was prepared by using a doctor blade as the first electrode 2, and the gap between the blade and the substrate 1 was 50 ⁇ m, and the moving speed of the blade was 1500 mm/min.
  • a zinc-doped tin oxide having a thickness of 100 nm was obtained.
  • PEDOT:PSS The part of PEDOT:PSS is etched by mechanical etching, and PEDOT:PSS is divided into independent areas of equal area.
  • the precursor layer PbI 2 is prepared by solution coating, and the solution solvent is dimethyl sulfoxide, and the PbI 2 molar concentration is 1.2. Mol/L, in addition, polyurethane was added to the solution, the polyurethane content was 1% of PbI 2 , the pulling speed was 300 mm/min, and a PbI 2 layer having a thickness of 400 nm was obtained.
  • Gold was prepared by magnetron sputtering as the second electrode 4. During the preparation, the pressure of the magnetron sputtering chamber was maintained at 10 -5 mbar, and gold was used as a target for RF sputtering to obtain gold with a thickness of 100 nm. electrode.
  • the portion of the gold electrode is etched by laser etching to completely penetrate the gold electrode without damaging the PEDOT:PSS layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种钙钛矿太阳能电池组件,包括若干相互分隔的钙钛矿太阳能电池单体以及将各个分隔的钙钛矿太阳能电池单体连接起来的结构化区域,钙钛矿太阳能电池单体包括第一电极2、钙钛矿层3以及第二电极4,钙钛矿层3设置在第一电极2与第二电极4之间。本发明还涉及一种钙钛矿太阳能电池组件的制备方法,包括:(1)第一电极2的制备;(2)制备形成钙钛矿层3所需的第一类钙钛矿前驱体材料BX 2的薄膜;(3)把形成钙钛矿层3所需的第二类钙钛矿前驱体材料AX沉积到步骤(2)形成的BX 2的薄膜的表面;(4)第二电极4的制备;(5)第二电极4制备后的局部刻蚀。本发明提供一种利用两步法制备钙钛矿太阳能电池组件的方法,实现大面积太阳能电池组件的制备。

Description

一种钙钛矿太阳能电池组件及其制备方法 技术领域
本发明属于太阳能电池技术领域,特别涉及一种钙钛矿太阳能电池组件及其制备方法。
背景技术
现有的制造钙钛矿太阳能电池的技术方案普遍地只适合于制备小面积的电池,用于科学研究而无法大规模生产。少数有关钙钛矿太阳能电池组件的专利则只针对钙钛矿一次涂布成型的成膜工艺。目前,钙钛矿太阳能电池的钙钛矿成膜主要有两种方法:一步法(一次成型)和两步法。一步法成型的工艺因为减少了一个步骤,相对更简单,但是与其相兼容的工艺方法有限,仅限于几种溶液涂布的方法,大面积涂布的薄膜的缺陷较多,同时由于该涂布过程不仅仅是溶剂挥发、溶质沉积的简单过程,还伴随着两种反应物在溶液里反应、结晶形成钙钛矿晶体的过程。因此,一步法的缺点是很难控制反应过程,容易在形成的钙钛矿晶体中产生缺陷。在两步法的方案中,结晶过程得到有效控制,成膜质量更佳。
此外,现有的钙钛矿太阳能电池组件,钙钛矿光伏活性层被夹在透明导电电极和金属电极之间,这样的组件技术方案使得光线只能从透明基底一侧入射。这样限制了基底的选择范围,更限制了对光能的有效利用。
因此,现有技术有待进一步改善。
发明内容
本发明所要解决的技术问题在于,提供一种钙钛矿太阳能电池组件及其制备方法,首次提供了一种利用两步法制备钙钛矿太阳能电池组件的方法。同时通过调整透明导电电极的部署,可以实现光线从正反两个方向的入射,提高光能利用率,也可以允许在选择基底材料时选择不透明但隔水性更佳的基底材料,提高组件稳定性。
本发明是这样实现的,提供一种钙钛矿太阳能电池组件,包括若干相互分隔的钙钛矿太阳能电池单体以及将各个分隔的钙钛矿太阳能电池单体连接起来的结构化区域,所述钙钛矿太阳能电池单体包括第一电极、钙钛矿层以及第二电极,所述钙钛矿层设置在第一电极与第二电极之间;所述第一电极和第二电极分别可以是透明导电电极和普通金属电极,其中至少有一个是透明导电电极;所述钙钛矿层材料的分子结构为ABX 3,所述钙钛矿层由两类钙钛矿前驱体材料先后成膜并相互反应形成,所述的两类钙钛矿前驱体材料分别为BX 2和AX,其中,A为铯、铷、胺基、脒基或者碱族中的至少一种阳离子,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋或者钋中的至少 一种二价金属阳离子,X为碘、溴、氯、砹中的至少一种阴离子,并且BX 2中的X与AX中的X不一定相同。
本发明的一种钙钛矿太阳能电池组件通过调整透明导电电极的部署,可以实现光线从正反两个方向的入射,提高光能利用率,也可以允许在选择基底材料时选择不透明但隔水性更佳的基底材料,提高组件稳定性。
本发明是这样实现的,提供一种前述的钙钛矿太阳能电池组件的制备方法,包括以下步骤:
(1)所述第一电极的制备,和/或制备后的局部刻蚀;
(2)制备形成所述钙钛矿层所需的第一类钙钛矿前驱体材料BX 2的薄膜,和/或制备前的局部刻蚀;
(3)把形成所述钙钛矿层所需的第二类钙钛矿前驱体材料AX沉积到步骤(2)形成的BX 2的薄膜的表面,和/或制备后的局部刻蚀;
(4)所述第二电极的制备,和/或制备前的局部刻蚀;
(5)所述第二电极制备后的局部刻蚀。
本发明一种前述的钙钛矿太阳能电池组件的制备方法首次提供了一种利用两步法制备钙钛矿太阳能电池组件的方法,将钙钛矿太阳能电池组件中的吸光层分成第一类钙钛矿前驱体材料BX 2的薄膜和第二类钙钛矿前驱体材料AX的薄膜分别进行制备,有效控制钙钛矿薄膜的反应过程,提高钙钛矿薄膜的成品质量,增加了钙钛矿太阳能电池的生产可重复性,增加了光能的利用率和稳定性,实现大面积太阳能电池组件的制备。
与现有技术相比,本发明的钙钛矿太阳能电池组件及其制备方法,具有以下特点:
1.组件制备成本和发电成本比现有晶硅、铜铟镓硒等太阳能电池更低,可以实现光伏发电平价上网;
2.制备工艺不涉及高温高压以及有毒气体的利用和排放,绿色环保。
附图说明
图1为钙钛矿太阳能电池组件的剖视结构图;
附图1中标记:1为基底,2为第一电极,3为钙钛矿层,4为第二电极,5为结构化区域。
图2为用该方法制备的钙钛矿太阳能电池组件(六结串联)的电流-电压特性曲线。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图 及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明钙钛矿太阳能电池组件的较佳实施例,包括若干相互分隔的钙钛矿太阳能电池单体以及将各个分隔的钙钛矿太阳能电池单体连接起来的结构化区域5,该处所指的连接包括相互串联或并联或者串联并联同时有。所述钙钛矿太阳能电池单体以及结构化区域5均设置在基底1上。所述钙钛矿太阳能电池单体包括第一电极2、钙钛矿层3以及第二电极4,所述钙钛矿层3设置在第一电极2与第二电极4之间;所述第一电极2和第二电极4分别可以是透明导电电极和普通金属电极,其中至少有一个是透明导电电极。
所述透明导电电极的材料包括金属-介质材料-金属的组合(metal-dielectric-metal,MDM)、掺氟氧化锡(fluorine doped tin oxide,FTO)、掺铟氧化锡(indium doped tin oxide,ITO)、石墨烯、氧化石墨烯(reduced graphene oxide,rGO)、掺铝氧化锌(aluminum doped zinc oxide,AZO)、掺氟氧化锌(fluorine doped zinc oxide,FZO)、掺锌氧化锡(zinc doped tin oxide,ZTO)、碳纳米管(carbon nanotubes,CNTs)、金属、金属网格、金属纳米线(metallic nanowires,NWs)、聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)及其高导电性衍生物(PEDOT:PSS)中的至少任意一种。
所述普通金属电极的材料包括金、银、铜、铂、铱、镍、铝、钙、镁、钛、钨、铁、钴、锌、锡、铬、锰、铟以及铅中的至少任意一种。
所述钙钛矿层3材料的分子结构为ABX 3,所述钙钛矿层3由两类钙钛矿前驱体材料先后成膜并相互反应形成,所述的两类钙钛矿前驱体材料分别为BX 2和AX,其中,A为铯、铷、胺基、脒基或者碱族中的至少一种阳离子,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋或者钋中的至少一种二价金属阳离子,X为碘、溴、氯、砹中的至少一种阴离子,并且BX 2中的X与AX中的X不一定相同。
本发明的钙钛矿太阳能电池组件的制备方法,包括以下步骤:
(1)所述第一电极2的制备,和/或制备后的局部刻蚀;
(2)制备形成所述钙钛矿层3所需的第一类钙钛矿前驱体材料BX 2的薄膜,和/或制备前的局部刻蚀;
(3)把形成所述钙钛矿层所需的第二类钙钛矿前驱体材料AX沉积到步骤(2)形成的BX 2的薄膜的表面,和/或制备后的局部刻蚀;
(4)所述第二电极4的制备,和/或制备前的局部刻蚀;
(5)所述第二电极4制备后的局部刻蚀。
第一电极2的制备的方案一,所述步骤(1)中的第一电极2的制备包括以下步骤:
(11)在清洗干净的柔性或刚性基底1上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中至少一种制备第一电极2。
真空热蒸发包括电子束沉积。溶液涂布和溶液法生长方法包括水浴生长、电化学沉积、刮刀涂布、狭缝涂布、浸润涂布、线棒涂布、喷墨打印、喷镀、丝网印刷。
第一电极2的制备的方案二,所述步骤(1)中的第一电极2的制备包括以下步骤:
(12)在清洗干净的柔性或刚性基底1上覆盖所需的掩模板;
(13)透过掩模板,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积中的一种或多种制备第一电极2。
第一电极2的制备的方案三,所述步骤(1)中的第一电极2的制备包括以下步骤:
(14)在清洗干净的柔性或刚性基底1上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中的至少一种制备第一电极2的第一层,即全覆盖层;
(15)利用压力粘接、掩膜沉积、溶液涂布或者线材轧制方法中的一种或多种,按照预先确定的图案将金属网格或金属纳米线涂布在步骤(14)制成的全覆盖层之上,形成第一电极2的第二层,即网格层。
所述步骤(1)中的制备后的局部刻蚀是指利用激光刻蚀和/或机械刻蚀对第一电极2的局部进行刻蚀,满足结构化连接的需求的方法。
所述步骤(2)中的形成钙钛矿层3所需的第一类钙钛矿前驱体材料BX 2的薄膜的制备包括以下步骤:
(21)在完成步骤(1)制备的第一电极2之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中的至少一种制备形成钙钛矿层3所需的第一类钙钛矿前驱体材料BX 2的薄膜。
所述步骤(2)中的制备前的局部刻蚀是指在进行所述步骤(21)之前对基底1上包括步骤(1)制备的第一电极2在内的基底1上不包括基底1的所有结构进行局部刻蚀,满足结构化连接的需求。
当以真空热蒸发、磁控溅射、脉冲激光沉积或原子层沉积方法制备BX 2薄膜层层时,所述BX 2的材料是二价金属卤化物;当以所述溶液涂布和溶液法生长的方法制备前驱体层时,所使用的前驱体溶液成分包括:二价金属卤化物BX 2以及有机溶剂;其中,所述BX 2的浓度为0.2mol/L~2mol/L。
所述有机溶剂包括主溶剂及溶剂添加剂,所述主溶剂为酰胺类溶剂、砜类/亚砜类溶剂、 酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的任意一种,或者为N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、γ-丁内酯(GBL)中的任意一种,所述溶剂添加剂为酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃、DMSO、NMP、1,8-二碘辛烷(DIO)、N-环己基-2-吡咯烷酮(CHP)、氯苯(CB)、甲苯中的至少一种;所述BX 2的摩尔浓度为0.2~2mol/L,所述溶剂添加剂与BX 2的摩尔比为0~1。
形成所述钙钛矿层3所需的第二类钙钛矿前驱体材料AX沉积到步骤(2)形成的BX 2的薄膜的表面的制备的方案一,所述步骤(3)中的AX的沉积包括以下步骤:
(31)在完成步骤(2)制备的BX 2薄膜层之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布方法中的至少一种沉积第二类钙钛矿前驱体材料AX的薄膜。所述第二类钙钛矿前驱体材料AX的薄膜包括材料AX和有机聚合物添加剂,其中,A为铯、铷、胺基、脒基或者碱族中的至少一种阳离子,X为碘、溴、氯、砹中的至少一种阴离子,有机聚合物添加剂为支链或杂链聚合物,绝缘且可溶于所用的主溶剂,具体为聚乙二醇、聚丙二醇、聚乙烯吡咯烷酮、聚乳酸、聚乙烯醇、聚丙烯酸、聚氨酯、聚乙烯亚胺、聚丙烯硫胺、聚苯乙烯磺酸、聚乙烯吡咯烷酮、聚乙烯醇缩丁醛树脂、氟类聚合物中的至少一种,其分子量范围为1000-100000,所述有机聚合物添加剂占AX摩尔量的0.05%~0.5%。
形成所述钙钛矿层3所需的第二类钙钛矿前驱体材料AX沉积到步骤(2)形成的BX 2的薄膜的表面的制备的方案二,所述步骤(3)中的AX的薄膜沉积还包括以下步骤:
(32)在沉积所述AX后,对基底1进行以下处理:加热(加热温度35~500摄氏度)、溶剂熏蒸和涂布副溶剂,所述处理方式可以是其中的一项或多项,若是多项,可以同时进行,也可以交替进行。
所述溶剂熏蒸处理所使用的溶剂包括酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的任意一种,或者为N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、γ-丁内酯(GBL)中的任意一种。
所述涂布副溶剂处理所使用的副溶剂包括酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的任意一种,或者为N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、γ-丁内酯(GBL)中的任意一种。
钙钛矿前驱液各组分材料种类及含量具体如表1所示。
表1 前驱液各组分材料种类及含量
Figure PCTCN2018087356-appb-000001
所述步骤(3)中的制备后的局部刻蚀是指在沉积了AX且AX与BX 2反应形成钙钛矿层的基底1之上,利用激光刻蚀和/或机械刻蚀对包括钙钛矿层3在内的一层或多层的局部进行刻蚀,满足结构化连接的需求。
第二电极4的制备的方案一,所述步骤(4)中的第二电极4的制备包括以下步骤:
(41)在完成步骤(3)后形成的钙钛矿层3之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布的方法中的至少一种制备第二电极4。
溶液涂布的方法包括旋涂、刮刀涂布、狭缝涂布、浸润涂布、线棒涂布、喷墨打印、喷镀、丝网印刷。
第二电极4的制备的方案二,所述步骤(4)中的第二电极4的制备包括以下步骤:
(42)在完成步骤(3)后形成的钙钛矿层3之上覆盖所需的掩模板;
(43)透过掩模板,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积方法中的至少一种制备第二电极4。
第二电极4的制备的方案三,所述步骤(4)中的第二电极4的制备包括以下步骤:
(44)在完成步骤(3)后形成的钙钛矿层3之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中的至少一种制备第二电极4的第一层,即全覆盖层;
(45)利用压力粘接、掩膜沉积或者溶液涂布方法中的至少一种按照预先确定的图案将金属网格或金属纳米线涂布在步骤(44)制成第二电极4的全覆盖层之上,形成第二电极4的第二层,即网格层。
所述步骤(4)中的制备前的局部刻蚀是指利用激光刻蚀和/或机械刻蚀对基底1上包括钙钛矿层3在内的一层或多层的局部进行刻蚀,满足结构化连接的需求。
所述步骤(5)中的第二电极4制备后的局部刻蚀包括以下步骤:
(51)在完成步骤(4)制备的第二电极4之上,利用激光刻蚀和/或机械刻蚀对基底1上包括第二电极4在内的一层或多层的局部进行刻蚀,实现结构化连接的目的。
请参照图2所示,为用该方法制备的钙钛矿太阳能电池组件(六结串联)的电流-电压特性曲线。在该曲线中显示该短路电流密度为18.3mA/cm 2、开路电压为6.4V、FF为77%、光电转化效率达到15%。
下面结合具体实施例做进一步说明。
制备钙钛矿太阳能电池组件的实施例1:
(1)在清洗干净的玻璃基底1上,利用磁控溅射制备掺锌氧化锡作为第一电极2,制备时,磁控溅射腔体气压维持在10 -5mbar,以锌和氧化锡为靶材,进行射频溅射,得到厚度为200nm的掺锌氧化锡。
(2)利用激光刻蚀对掺锌氧化锡的局部进行刻蚀,把掺锌氧化锡划分为面积相等的独立区域。
(3)在完成步骤(2)制备的掺锌氧化锡之上,利用真空热蒸发制备前驱体层PbI 2。蒸发腔室气压控制在10 -6mbar,在蒸发舟内加入PbI 2粉末,均匀蒸发,通过晶振片监测厚度,制得厚度为300nm的PbI 2层。
(4)在完成步骤(3)制备的PbI 2层之上,利用真空热蒸发的方法沉积MAI。蒸发腔室气压控制在10 -6mbar,在蒸发舟内加入MAI粉末,均匀蒸发,通过晶振片监测厚度,蒸发的 MAI与PbI 2实时反应,最终形成厚度为500nm的钙钛矿层3。
(5)利用激光刻蚀对由PbI 2和MAI反应形成的钙钛矿层3的局部进行刻蚀,刻蚀过后恰好暴露位于钙钛矿层3下方的掺锌氧化锡层。
(6)利用真空热蒸发制备300nm的金属银电极作为第二电极4。制备时,热蒸发腔体气压维持在10 -6mbar,以0.3nm/秒的速度蒸发,得到厚度为300nm的银。
(7)在完成步骤(6)制备的银电极之上,利用激光刻蚀对银电极的局部进行刻蚀,完全刻穿银电极,并且不伤害掺锌氧化锡层。
制备钙钛矿太阳能电池组件的实施例2:
(1)在清洗干净的PET基底1上,利用刮刀涂布制备高导电率PEDOT:PSS作为第一电极2,制备时,刮刀与基底1间隙为50微米,刮刀移动速度为1500毫米/分钟,得到厚度为100nm的掺锌氧化锡。
(2)利用机械刻蚀对PEDOT:PSS的局部进行刻蚀,把PEDOT:PSS划分为面积相等的独立区域。
(3)在完成步骤(2)制备的PEDOT:PSS之上,利用溶液提拉涂布制备前驱体层PbI 2,提拉涂布的溶液溶剂为二甲基亚砜,PbI 2摩尔浓度为1.2mol/L,另外溶液里还添加聚氨酯,聚氨酯含量是PbI 2的1%,提拉速度为300mm/分钟,制得厚度为400nm的PbI 2层。
(4)在完成步骤(3)制备的PbI 2之上,利用刮刀涂布的方法沉积FAI。制备时,刮刀与基底1间隙为200微米,刮刀移动速度为300毫米/分钟,光活化层在涂布过程中与PbI 2反应,得到厚度为800nm的钙钛矿层3。
(5)利用激光刻蚀对由PbI 2和MAI反应形成的钙钛矿层3的局部进行刻蚀,刻蚀过后恰好暴露位于钙钛矿层3下方的PEDOT:PSS层。
(6)利用磁控溅射制备金作为第二电极4,制备时,磁控溅射腔体气压维持在10 -5mbar,以金为靶材,进行射频溅射,得到厚度为100nm的金电极。
(7)在完成步骤(6)制备的金电极之上,利用激光刻蚀对金电极的局部进行刻蚀,完全刻穿金电极,并且不伤害PEDOT:PSS层。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种钙钛矿太阳能电池组件,其特征在于,包括若干相互分隔的钙钛矿太阳能电池单体以及将各个分隔的钙钛矿太阳能电池单体连接起来的结构化区域,所述钙钛矿太阳能电池单体包括第一电极、钙钛矿层以及第二电极,所述钙钛矿层设置在第一电极与第二电极之间;所述第一电极和第二电极分别可以是透明导电电极和普通金属电极,其中至少有一个是透明导电电极;所述钙钛矿层材料的分子结构为ABX 3,所述钙钛矿层由两类钙钛矿前驱体材料先后成膜并相互反应形成,所述的两类钙钛矿前驱体材料分别为BX 2和AX,其中,A为铯、铷、胺基、脒基或者碱族中的至少一种阳离子,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋或者钋中的至少一种二价金属阳离子,X为碘、溴、氯、砹中的至少一种阴离子,并且BX 2中的X与AX中的X不一定相同。
  2. 如权利要求1所述的钙钛矿太阳能电池组件,其特征在于,所述透明导电电极的材料包括金属-介质材料-金属的组合、掺氟氧化锡、掺铟氧化锡、石墨烯、氧化石墨烯、掺铝氧化锌、掺氟氧化锌、掺锌氧化锡、碳纳米管、金属、金属网格、金属纳米线、聚乙撑二氧噻吩-聚及其高导电性衍生物中的至少任意一种;
    所述普通金属电极的材料包括金、银、铜、铂、铱、镍、铝、钙、镁、钛、钨、铁、钴、锌、锡、铬、锰、铟以及铅中的至少任意一种。
  3. 一种如权利要求1或2所述的钙钛矿太阳能电池组件的制备方法,其特征在于,包括以下步骤:
    (1)所述第一电极的制备,和/或制备后的局部刻蚀;
    (2)制备形成所述钙钛矿层所需的第一类钙钛矿前驱体材料BX 2的薄膜,和/或制备前的局部刻蚀;
    (3)把形成所述钙钛矿层所需的第二类钙钛矿前驱体材料AX沉积到步骤(2)形成的BX 2的薄膜的表面,和/或制备后的局部刻蚀;
    (4)所述第二电极的制备,和/或制备前的局部刻蚀;
    (5)所述第二电极制备后的局部刻蚀。
  4. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(1)中的第一电极的制备包括以下步骤:
    (11)在清洗干净的柔性或刚性基底上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中至少一种制备第一电极。
  5. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(1)中的第一电极的制备包括以下步骤:
    (12)在清洗干净的柔性或刚性基底上覆盖所需的掩模板;
    (13)透过掩模板,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积中的一种或多种制备第一电极。
  6. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(1)中的第一电极的制备包括以下步骤:
    (14)在清洗干净的柔性或刚性基底上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中的至少一种制备第一电极的第一层,即全覆盖层;
    (15)利用压力粘接、掩膜沉积、溶液涂布或者线材轧制方法中的一种或多种,按照预先确定的图案将金属网格或金属纳米线涂布在步骤(14)制成的全覆盖层之上,形成第一电极的第二层,即网格层。
  7. 如权利要求3至6中任意一项所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(1)中的制备后的局部刻蚀是指利用激光刻蚀和/或机械刻蚀对第一电极的局部进行刻蚀,满足结构化连接的需求的方法。
  8. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(2)中的制备形成所述钙钛矿层所需的第一类钙钛矿前驱体材料BX 2的薄膜包括以下步骤:
    (21)在完成步骤(1)制备的第一电极之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中的至少一种制备形成钙钛矿层所需的第一类钙钛矿前驱体材料BX 2的薄膜。
  9. 如权利要求8所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(2)中的制备前的局部刻蚀是指在进行所述步骤(21)之前对基底上包括步骤(1)制备的第一电极在内的基底上不包括基底的所有结构进行局部刻蚀,满足结构化连接的需求。
  10. 如权利要求8所述的钙钛矿太阳能电池组件的制备方法,其特征在于,当以真空热蒸发、磁控溅射、脉冲激光沉积或原子层沉积方法制备BX 2薄膜层时,所述BX 2是二价金属卤化物;当以所述溶液涂布和溶液法生长的方法制备前驱体层时,所使用的前驱体溶液成分包括:二价金属卤化物BX 2以及有机溶剂;
    其中,B为铅、锡、钨、铜、锌、镓、锗、砷、硒、铑、钯、银、镉、铟、锑、锇、铱、铂、金、汞、铊、铋或者钋中的至少一种二价金属阳离子,X为碘、溴、氯、砹中的至少一种阴离子,所述BX 2的浓度为0.2mol/L~2mol/L;
    所述有机溶剂包括主溶剂及溶剂添加剂,所述主溶剂为酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的任意一种,或者为N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮、γ-丁内酯中的任意一种, 所述溶剂添加剂为酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃、二甲基亚砜、N-甲基吡咯烷酮、1,8-二碘辛烷、N-环己基-2-吡咯烷酮、氯苯、甲苯中的至少一种;所述BX 2在主溶剂中的摩尔浓度为0.2mol/L~2mol/L,所述溶剂添加剂与BX 2的摩尔比为0~1。
  11. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(3)中的把形成所述钙钛矿层所需的第二类钙钛矿前驱体材料AX沉积到步骤(2)形成的BX 2的薄膜的表面包括以下步骤:
    (31)在完成步骤(2)制备的BX 2薄膜层之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布方法中的至少一种沉积第二类钙钛矿前驱体材料AX的薄膜。
  12. 如权利要求11所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述第二类钙钛矿前驱体材料AX的薄膜包括材料AX和有机聚合物添加剂,其中,
    A为铯、铷、胺基、脒基或者碱族中的至少一种阳离子,X为碘、溴、氯、砹中的至少一种阴离子,有机聚合物添加剂为支链或杂链聚合物,绝缘且可溶于所用的主溶剂,具体为聚乙二醇、聚丙二醇、聚乙烯吡咯烷酮、聚乳酸、聚乙烯醇、聚丙烯酸、聚氨酯、聚乙烯亚胺、聚丙烯硫胺、聚苯乙烯磺酸、聚乙烯吡咯烷酮、聚乙烯醇缩丁醛树脂、氟类聚合物中的至少一种,其分子量范围为1000-100000,所述有机聚合物添加剂占AX摩尔量的0.05%~0.5%。
  13. 如权利要求11所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(3)中的第二类钙钛矿前驱体材料AX的薄膜沉积还包括以下步骤:
    (32)在沉积第二类钙钛矿前驱体材料AX的过程中和/或沉积完成后,对基底进行以下处理:加热、溶剂熏蒸和涂布副溶剂,所述处理方式可以是其中的一项或多项,若是多项,可以同时进行,也可以交替进行。
  14. 如权利要求13所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述溶剂熏蒸处理所使用的溶剂包括酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的任意一种,或者为N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮、γ-丁内酯中的任意一种。
  15. 如权利要求13所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述涂布副溶剂处理所使用的副溶剂包括酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的任意一种,或者为N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮、γ-丁内酯中的任意一种。
  16. 如权利要求11至15中任意一项所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(3)中的制备后的局部刻蚀是指在沉积了AX且AX与BX 2反应形成钙钛矿 层的基底之上,利用激光刻蚀和/或机械刻蚀对包括钙钛矿层在内的一层或多层的局部进行刻蚀,满足结构化连接的需求。
  17. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(4)中的第二电极的制备包括以下步骤:
    (41)在完成步骤(3)后形成的钙钛矿层之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布的方法中的至少一种制备第二电极。
  18. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(4)中的第二电极的制备包括以下步骤:
    (42)在完成步骤(3)后形成的钙钛矿层之上覆盖所需的掩模板;
    (43)透过掩模板,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积方法中的至少一种制备第二电极。
  19. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(4)中的第二电极的制备包括以下步骤:
    (44)在完成步骤(3)后形成的钙钛矿层之上,利用真空热蒸发、磁控溅射、脉冲激光沉积、原子层沉积、溶液涂布和/或溶液法生长的方法中的至少一种制备第二电极的第一层,即全覆盖层;
    (45)利用压力粘接、掩膜沉积或者溶液涂布方法中的至少一种按照预先确定的图案将金属网格或金属纳米线涂布在步骤(44)制成第二电极的全覆盖层之上,形成第二电极的第二层,即网格层。
  20. 如权利要求17至19中任意一项所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(4)中的制备前的局部刻蚀是指利用激光刻蚀和/或机械刻蚀对基底上包括钙钛矿层在内的一层或多层的局部进行刻蚀,满足结构化连接的需求。
  21. 如权利要求3所述的钙钛矿太阳能电池组件的制备方法,其特征在于,所述步骤(5)中的第二电极制备后的局部刻蚀包括以下步骤:
    (51)在完成步骤(4)制备的第二电极之上,利用激光刻蚀和/或机械刻蚀对基底上包括第二电极在内的一层或多层的局部进行刻蚀,实现结构化连接的目的。
PCT/CN2018/087356 2017-06-02 2018-05-17 一种钙钛矿太阳能电池组件及其制备方法 WO2018219155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710406369.6A CN108987586A (zh) 2017-06-02 2017-06-02 一种钙钛矿太阳能电池组件及其制备方法
CN201710406369.6 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018219155A1 true WO2018219155A1 (zh) 2018-12-06

Family

ID=64456338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087356 WO2018219155A1 (zh) 2017-06-02 2018-05-17 一种钙钛矿太阳能电池组件及其制备方法

Country Status (2)

Country Link
CN (1) CN108987586A (zh)
WO (1) WO2018219155A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394693A (zh) * 2020-05-13 2020-07-10 杭州纤纳光电科技有限公司 掩膜板和其制备方法及使用该掩膜板制备光伏组件的方法
CN113380957A (zh) * 2020-03-10 2021-09-10 杭州纤纳光电科技有限公司 一种钙钛矿光电组件及其封装工艺
CN116119712A (zh) * 2022-12-28 2023-05-16 四川启睿克科技有限公司 一种Cs2AgBiI6钙钛矿纳米晶及其制备方法
CN116317864A (zh) * 2023-02-09 2023-06-23 北京大学长三角光电科学研究院 一种百叶窗发电集成装置及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429179B (zh) * 2019-07-15 2021-04-27 河南大学 一种azo/二氧化钛/二氧化锡-氧化石墨烯薄膜及利用其制得的钙钛矿太阳能电池
CN112993164B (zh) * 2019-12-13 2023-10-13 中国科学院大连化学物理研究所 一种矩阵式大面积钙钛矿电池及其制备方法
CN111446370B (zh) * 2020-04-23 2023-05-05 泉州师范学院 一种空腔限域原位生长大面积准单晶钙钛矿薄膜的方法
CN113707815B (zh) * 2021-08-03 2023-06-30 深圳市华星光电半导体显示技术有限公司 钙钛矿器件及其制备方法和钙钛矿层前驱液
CN115706178B (zh) * 2021-08-10 2024-07-30 隆基绿能科技股份有限公司 一种钙钛矿材料旁路二极管及其制备方法、钙钛矿太阳能电池组件及其制备方法、光伏组件
WO2023022666A2 (en) * 2021-08-19 2023-02-23 National University Of Singapore Semiconductor devices and methods of batch manufacturing thereof
WO2023022667A2 (en) * 2021-08-19 2023-02-23 National University Of Singapore Method of in-line manufacturing semiconductor devices and semiconductor devices thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393109A (zh) * 2014-10-28 2015-03-04 合肥工业大学 一种钙钛矿太阳能电池的化学气相沉积制备方法
CN104966763A (zh) * 2015-07-20 2015-10-07 大连理工大学 一种提高钙钛矿太阳能电池效率的方法
CN105679944A (zh) * 2016-02-06 2016-06-15 杭州纤纳光电科技有限公司 一种基于钙钛矿材料的太阳能电池及其制备方法
CN106206839A (zh) * 2016-06-30 2016-12-07 华侨大学 一种制备钙钛矿太阳能电池的溶剂热处理方法
US9564593B2 (en) * 2014-06-06 2017-02-07 The Board Of Trustees Of The Leland Stanford Junior University Solar cells comprising 2d-perovskites

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013023B2 (en) * 2011-12-28 2015-04-21 Panasonic Corporation Photoelectric element having stacked charge-transport layers
TWI474992B (zh) * 2014-04-29 2015-03-01 Univ Nat Central 鈣鈦礦薄膜及太陽能電池的製備方法
CN104979477A (zh) * 2015-05-18 2015-10-14 常州天合光能有限公司 Z型串联钙钛矿太阳电池组件及其制备方法
CN107210368B (zh) * 2015-05-18 2019-11-08 高丽大学校产学协力团 钙钛矿太阳能电池模块
CN105140406B (zh) * 2015-08-06 2018-05-25 中南大学 一种可双面进光的钙钛矿太阳能电池及其制备方法
CN205016565U (zh) * 2015-08-27 2016-02-03 常州天合光能有限公司 一种大面积钙钛矿太阳电池组件
KR20170040708A (ko) * 2015-10-05 2017-04-13 한국에너지기술연구원 양면 투명전극을 활용한 높은 내구성을 가지는 유-무기 하이브리드 태양전지 및 이의 제조 방법
CN105428535A (zh) * 2015-11-15 2016-03-23 河北工业大学 薄膜晶硅钙钛矿异质结太阳电池的制备方法
CN105552236B (zh) * 2015-12-08 2018-07-10 中国电子科技集团公司第十八研究所 一种钙钛矿太阳电池及其制备方法
CN106159096B (zh) * 2016-10-09 2018-06-01 天津市职业大学 一种双面受光大面积钙钛矿太阳电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564593B2 (en) * 2014-06-06 2017-02-07 The Board Of Trustees Of The Leland Stanford Junior University Solar cells comprising 2d-perovskites
CN104393109A (zh) * 2014-10-28 2015-03-04 合肥工业大学 一种钙钛矿太阳能电池的化学气相沉积制备方法
CN104966763A (zh) * 2015-07-20 2015-10-07 大连理工大学 一种提高钙钛矿太阳能电池效率的方法
CN105679944A (zh) * 2016-02-06 2016-06-15 杭州纤纳光电科技有限公司 一种基于钙钛矿材料的太阳能电池及其制备方法
CN106206839A (zh) * 2016-06-30 2016-12-07 华侨大学 一种制备钙钛矿太阳能电池的溶剂热处理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380957A (zh) * 2020-03-10 2021-09-10 杭州纤纳光电科技有限公司 一种钙钛矿光电组件及其封装工艺
CN111394693A (zh) * 2020-05-13 2020-07-10 杭州纤纳光电科技有限公司 掩膜板和其制备方法及使用该掩膜板制备光伏组件的方法
CN116119712A (zh) * 2022-12-28 2023-05-16 四川启睿克科技有限公司 一种Cs2AgBiI6钙钛矿纳米晶及其制备方法
CN116317864A (zh) * 2023-02-09 2023-06-23 北京大学长三角光电科学研究院 一种百叶窗发电集成装置及其制备方法
CN116317864B (zh) * 2023-02-09 2024-02-06 北京大学长三角光电科学研究院 一种百叶窗发电集成装置及其制备方法

Also Published As

Publication number Publication date
CN108987586A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2018219155A1 (zh) 一种钙钛矿太阳能电池组件及其制备方法
KR102595057B1 (ko) 멕신-변형 하이브리드 광변환기
Li et al. Scalable fabrication of perovskite solar cells
Zhao et al. In situ fabrication of 2D SnS 2 nanosheets as a new electron transport layer for perovskite solar cells
CN105655427B (zh) 太阳能电池及其制造方法
US10593816B2 (en) Method for manufacturing device comprising inorganic/organic hybrid perovskite compound film and device comprising inorganic/organic hybrid perovskite compound film
US8598568B2 (en) Photodetector using a graphene thin film and nanoparticles, and method for producing the same
KR101119916B1 (ko) 그래핀 전극과 유기물/무기물 복합소재를 사용한 전자 소자 및 그 제조 방법
US20200294728A1 (en) Perovskite devices and methods of making the same
CN104201287B (zh) 一种钙钛矿基柔性薄膜太阳能电池及其制备方法
WO2017073472A1 (ja) 高信頼性ペロブスカイト太陽電池
KR20090104304A (ko) 벌크 이종접합형 태양전지 및 그 제조방법
CN102201479A (zh) 薄膜光伏电池
Zhang et al. Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation
KR20190026484A (ko) 텐덤 태양전지 및 그 제조 방법
CN114784198A (zh) 一种高效钙钛矿太阳能电池、电池组件、电池器件及其制备方法
CN108574049B (zh) 一种钙钛矿太阳能电池模块及其制备方法
US11031566B2 (en) Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
KR102451616B1 (ko) 광-캐소드의 제조방법, 광-캐소드 및 이를 이용한 광전기화학적 물 분해 방법
Swain et al. CH3NH3PbBr3 nanocubes-array for solar cell application
KR101048350B1 (ko) 이종접합 나노입자 제조방법, 이종접합 나노입자를 이용한 태양 전지 및 그 제조방법
US20130092220A1 (en) Apparatus for generating electricity using solar power and method for manufacturing same
CN103413842A (zh) 一种A1掺杂ZnO透明导电微/纳米线阵列膜及其制备方法
KR20220028381A (ko) 박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법
Matteocci et al. Perovskite Solar Modules: Correlation Between Efficiency and Scalability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808765

Country of ref document: EP

Kind code of ref document: A1