CN116119712A - 一种Cs2AgBiI6钙钛矿纳米晶及其制备方法 - Google Patents

一种Cs2AgBiI6钙钛矿纳米晶及其制备方法 Download PDF

Info

Publication number
CN116119712A
CN116119712A CN202211694999.5A CN202211694999A CN116119712A CN 116119712 A CN116119712 A CN 116119712A CN 202211694999 A CN202211694999 A CN 202211694999A CN 116119712 A CN116119712 A CN 116119712A
Authority
CN
China
Prior art keywords
agbii
solution
preparation
nanocrystalline
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211694999.5A
Other languages
English (en)
Inventor
高剑
周称新
李丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Qiruike Technology Co Ltd
Sichuan Changhong Electronic Holding Group Co Ltd
Original Assignee
Sichuan Qiruike Technology Co Ltd
Sichuan Changhong Electronic Holding Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Qiruike Technology Co Ltd, Sichuan Changhong Electronic Holding Group Co Ltd filed Critical Sichuan Qiruike Technology Co Ltd
Priority to CN202211694999.5A priority Critical patent/CN116119712A/zh
Publication of CN116119712A publication Critical patent/CN116119712A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7428Halogenides
    • C09K11/7435Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种Cs2AgBiI6钙钛矿纳米晶及其制备方法,包括以下步骤:将CsI和BiBr3溶解在HI中,剧烈搅拌,使其充分溶解,得到溶液A;将AgI添加到溶液A中,并剧烈搅拌,使固体充分溶解得到溶液B;将溶液B转移至聚四氟乙烯反应釜中,加热并保温反应,反应结束后自然冷却至室温;将所得溶液离心并收集所得沉淀,并用去离子水和乙醇洗涤得到沉淀物;将所得沉淀物干燥研磨得到Cs2AgBiI6纳米晶。该方法使用简单成本低、无需消耗大量有机溶剂的水热法制备出高纯且高度结晶的Cs2AgBiI6纳米晶,其具有较小的禁带宽度、较高的光吸收强度、较宽的光谱响应范围、较长的载流子寿命、较高的载流子迁移率。

Description

一种Cs2AgBiI6钙钛矿纳米晶及其制备方法
技术领域
本发明涉及钙钛矿纳米晶材料制备技术领域,具体涉及一种Cs2AgBiI6钙钛矿纳米晶及其制备方法。
背景技术
铅基卤素钙钛矿材料具有制备原料便宜,工艺简单等优点。而且其良好的光电特性,如高的载流子迁移率和较长的载流子寿命,高吸光系数,禁带宽度可调等,都为钙钛矿材料在光电领域快速发展和应用提供了基础。尽管它们具有优异的光伏特性,但不稳定性和铅的毒性阻碍了商业化发展。为了确保钙钛矿光伏器件的长期稳定性,已经进行了大量研究,包括成分调整、界面钝化以及用无机元素如铯(Cs)替换CH3NH3 +(MA+)。然而,消除毒性的唯一方法是用其他无毒阳离子取代Pb2+阳离子。锡(Sn)是一种替代元素,与铅位于同一主族,但Sn2+在空气中很容易被氧化为Sn4+,破坏八面体晶体结构,这导致严重的稳定性问题。无铅钙钛矿材料的另一种方法是用M3+代替Pb2+,其中M可以是铋(Bi)或锑(Sb)。与铅基钙钛矿不同,Bi或Sb基钙钛矿化合物通常由于较高的电荷而表现出低维结构,这导致了不利的光电性能,包括低电荷载流子迁移率、短载流子扩散长度和高激子结合能。有三种主族元素具有6s26p0电子构型的稳定阳离子:Tl+、Pb2+和Bi3+。在这些候选者中,只有Bi具有低毒性。
研究发现,Pb2+阳离子可以被一个单价M+和一个三价M'3+阳离子取代,形成3D双钙钛矿AMM'X6(A=Cs,CH3NH3;M=Ag,Au;M'=Bi,In;X=Cl,Br,I.),既能够保持钙钛矿的高对称的结构维度及共价-离子键特性,又具有潜在的优异的光电性能。已有研究表明其中Cs2AgBiBr6具有结构、物化稳定性好,具有可见光范围内的可调谐带隙,载流子质量低等优势,但是使用Cs2AgBiBr6制备太阳能电池或其他光电器件的效率仍然低,主要原因是Cs2AgBiBr6带隙偏大,光谱响应范围不够宽,光吸收强度不够高。文献[1]报导了一种有机染料/Cs2AgBiBr6异质结太阳能电池,发现双钙钛矿作为染料和螺环OMeTAD之间的夹层,将空穴从前者传递到后者,从而提高了整体性能。结合轨道杂化泛函理论,碘化物的禁带宽度会比溴化物和氯化物更小,具有更宽的光谱响应范围。但是,由于合成困难,关于Cs2AgBiI6(CABI)鲜有研究,鲜有的报导也没有具体的光电性能测试。而且,该体系的合成方法比较复杂,多采用反溶剂法需要使用大量的有机溶剂,从而造成环境污染并增加成本。
如专利CN113856713A中公开了一种用于CO2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用,化学为Cs2BBX6,与二维材料Ti3C2、铋烯、黑磷等复合,用于光催化还原领域,发现通过构建异质结能延长催化剂光吸收范围,降低光生电子-空穴对的复合,但制备方法比较复杂,需要消耗大量十八烯、油酸、油胺等。专利CN114471628A中公开了一种钙钛矿复合光催化剂Cs2AgBiI6-GO用于降解污染物,用反溶剂法制备,消耗了大量的二甲基亚砜和异丙醇,该发明的催化剂中Cs2AgBiI6在可见光照射下,其内部的电子从价带激发到导带,从而产生光生电子和空穴降解染料。专利CN114308084A中公开了一种TiO2/Cs2AgBiBr6光催化剂用于水污染处理、二氧化碳还原及制氢等光催化领域。
发明内容
本发明的目的在于提供一种Cs2AgBiI6钙钛矿纳米晶及其制备方法,使用简单成本低、无需消耗大量有机溶剂的水热法制备出高纯且高度结晶的Cs2AgBiI6纳米晶,并表征了其光电性能,结果表明其具有较小的禁带宽度、较高的光吸收强度、较宽的光谱响应范围、较长的载流子寿命、较高的载流子迁移率等等,是一种潜在的优异光电材料。
本发明具体采用如下技术方案:
一种Cs2AgBiI6钙钛矿纳米晶的制备方法,包括以下步骤:(1)将CsI和BiBr3溶解在HI溶液中,剧烈搅拌,使其充分溶解,得到溶液A;(2)将AgI添加到溶液A中,并剧烈搅拌,使固体充分溶解得到溶液B;(3)将溶液B转移至聚四氟乙烯反应釜中,加热并保温反应,反应结束后自然冷却至室温;(4)将步骤(3)所得溶液离心并收集所得沉淀,并用去离子水和乙醇洗涤得到沉淀物;(5)将步骤(4)所得沉淀物干燥研磨得到Cs2AgBiI6纳米晶。
进一步的技术方案为,所述CsI和BiBr3的摩尔比为1:2~4:1,所述AgI与所述BiBr3的摩尔比为1:3~3:1。
进一步的技术方案为,步骤(1)中剧烈搅拌的时间为1~3小时。
进一步的技术方案为,步骤(2)中剧烈搅拌的时间为1~3小时。
进一步的技术方案为,步骤(3)中加热的温度为加热至100~120℃,并保温反应1~3h。
进一步的技术方案为,步骤(4)中离心转速为7000~9000r/min,离心时间2~4min,去离子水和乙醇反复洗涤2~4次。
进一步的技术方案为,步骤(5)中干燥温度为70~90℃,干燥时间为8~10h。
本发明还提供一种由上述制备方法植被得到的Cs2AgBiI6钙钛矿纳米晶。
与现有技术相比,本发明具有如下有益效果:本发明采用简单易操作的水热法制备出Cs2AgBiI6,解决了现阶段多采用反溶剂重结晶法需要消耗大量有机溶剂造成成本增加和环境污染的问题。本发明制备出了纯度高、结晶度高的Cs2AgBiI6纳米晶,对比标准衍射谱发现合成的样品较纯,解决了现存的Cs2AgBiI6中极易混合Cs3Bi2I9杂质的问题。采用Ag和Bi双元素替代Pb,解决了铅基钙钛矿含有重金属元素,污染环境,危害人体健康,阻碍商业化发展的问题。稳定性测试表明所合成的Cs2AgBiI6对空气、水及光照都是稳定的,解决了传统钙钛矿普遍存在暴露在光照下以及在受热或者与水/氧气接触的情况下很容易在短时间内降解失效的问题。采用双元素替换,解决了锡化物钙钛矿在空气中很容易被氧化且极易溶于水、乙醇等溶剂的问题。解决了用单一元素替代形成的钙钛矿化合物通常存在低维结构、较低的电荷载流子迁移率、较短的载流子扩散长度和较高的激子结合能等问题,从而提高了光电性能。所合成的钙钛矿具有高光吸收系数、窄禁带宽度(1.60eV)、高荧光强度、长载流子寿命、高载流子迁移速率,稳定的晶体结构和优异的载流子传输性能,是一种性能优异的新型光电材料,在光电器件如太阳能电池、光电探测器、发光二极管、场效应晶体管、激光器及光催化等领域都具有较高的应用价值。
附图说明
图1为Cs2AgBiI6的制备技术路线示意图;
图2为Cs2AgBiI6的模型结构图;
图3为Cs2AgBiI6的XRD图谱;
图4为Cs2AgBiI6的SEM图;
图5为Cs2AgBiI6的XPS全谱;
图6为Cs2AgBiI6的紫外-可见光吸收图谱;
图7为Cs2AgBiI6的Tauc-plot模拟曲线;
图8为Cs2AgBiI6的Mott-Schottky模拟曲线;
图9为Cs2AgBiI6的稳态荧光光谱(PL);
图10为Cs2AgBiI6的时间分辨荧光光谱(TRPL)。
具体实施方式
以下通过实施例进一步阐述本发明,这些实施例仅用于举例说明的目的,并没有限制本发明的范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件。
实施例1
一种Cs2AgBiI6纳米晶的制备方法,具体步骤如下:
1、将CsI和BiBr3按照摩尔比1mmol:1mmol溶解在5ml HI中,剧烈搅拌,使其充分溶解,得到溶液A;
2、将1.0mmol AgI添加到溶液A中,并剧烈搅拌1h,使固体药品充分溶解得到溶液B;
3、将B溶液转移至聚四氟乙烯反应釜中,加热至100℃,并保温反应1h,反应结束后自然冷却至室温;
4、将步骤3所得溶液7000r/min离心2min,收集所得沉淀,并用去离子水和乙醇反复洗涤2次;
5、最终将步骤4所得沉淀物于干燥箱中70℃干燥8h,充分研磨,得到Cs2AgBiI6纳米晶。
实施例2
一种Cs2AgBiI6纳米晶的制备方法,具体步骤如下:
1、将CsI和BiBr3按照摩尔比1mmol:2mmol溶解在5ml HI中,剧烈搅拌,使其充分溶解,得到溶液A;
2、将2.0mmol AgI添加到溶液A中,并剧烈搅拌1h,使固体药品充分溶解得到溶液B;
3、将B溶液转移至聚四氟乙烯反应釜中,加热至120℃,并保温反应1h,反应结束后自然冷却至室温;
4、将步骤3所得溶液7000r/min离心4min,收集所得沉淀,并用去离子水和乙醇反复洗涤4次;
5、最终将步骤4所得沉淀物于干燥箱中90℃干燥8h,充分研磨,得到Cs2AgBiI6纳米晶。
实施例3
一种Cs2AgBiI6纳米晶的制备方法,具体步骤如下:
1、将CsI和BiBr3按照摩尔比1mmol:3mmol溶解在15ml HI中,剧烈搅拌,使其充分溶解,得到溶液A;
2、将1.0mmol AgI添加到溶液A中,并剧烈搅拌3h,使固体药品充分溶解得到溶液B;
3、将B溶液转移至聚四氟乙烯反应釜中,加热至100℃,并保温反应1h,反应结束后自然冷却至室温;
4、将步骤3所得溶液8000r/min离心4min,收集所得沉淀,并用去离子水和乙醇反复洗涤3次;
5、最终将步骤4所得沉淀物于干燥箱中70℃干燥10h,充分研磨,得到Cs2AgBiI6纳米晶。
实施例4
一种Cs2AgBiI6纳米晶的制备方法,具体步骤如下:
1、将CsI和BiBr3按照摩尔比2mmol:1mmol溶解在10ml HI中,剧烈搅拌,使其充分溶解,得到溶液A;
2、将3.0mmol AgI添加到溶液A中,并剧烈搅拌3h,使固体药品充分溶解得到溶液B;
3、将B溶液转移至聚四氟乙烯反应釜中,加热至110℃,并保温反应3h,反应结束后自然冷却至室温;
4、将步骤3所得溶液9000r/min离心2min,收集所得沉淀,并用去离子水和乙醇反复洗涤2次;
5、最终将步骤4所得沉淀物于干燥箱中90℃干燥8h,充分研磨,得到Cs2AgBiI6纳米晶。
实施例5
一种Cs2AgBiI6纳米晶的制备方法,具体步骤如下:
1、将CsI和BiBr3按照摩尔比2mmol:1mmol溶解在10ml HI中,剧烈搅拌,使其充分溶解,得到溶液A;
2、将1.0mmol AgI添加到溶液A中,并剧烈搅拌2h,使固体药品充分溶解得到溶液B;
3、将B溶液转移至聚四氟乙烯反应釜中,加热至110℃,并保温反应2h,反应结束后自然冷却至室温;
4、将步骤3所得溶液8000r/min离心3min,收集所得沉淀,并用去离子水和乙醇反复洗涤3次;
5、最终将步骤4所得沉淀物于干燥箱中80℃干燥9h,充分研磨,得到Cs2AgBiI6纳米晶。
实施例6
一种Cs2AgBiI6纳米晶的制备方法,具体步骤如下:
1、将CsI和BiBr3按照摩尔比1mmol:4mmol溶解在5ml HI中,剧烈搅拌,使其充分溶解,得到溶液A;
2、将4.0mmol AgI添加到溶液A中,并剧烈搅拌3h,使固体药品充分溶解得到溶液B;
3、将B溶液转移至聚四氟乙烯反应釜中,加热至120℃,并保温反应3h,反应结束后自然冷却至室温;
4、将步骤3所得溶液9000r/min离心2min,收集所得沉淀,并用去离子水和乙醇反复洗涤2次;
5、最终将步骤4所得沉淀物于干燥箱中70℃干燥8h,充分研磨,得到Cs2AgBiI6纳米晶。
实施例7
一种Cs2AgBiI6纳米晶的制备方法,具体步骤如下:
1、将CsI和BiBr3按照摩尔比1mmol:3mmol溶解在10ml HI中,剧烈搅拌,使其充分溶解,得到溶液A;
2、将4.0mmol AgI添加到溶液A中,并剧烈搅拌2h,使固体药品充分溶解得到溶液B;
3、将B溶液转移至聚四氟乙烯反应釜中,加热至120℃,并保温反应1h,反应结束后自然冷却至室温;
4、将步骤3所得溶液9000r/min离心4min,收集所得沉淀,并用去离子水和乙醇反复洗涤4次;
5、最终将步骤4所得沉淀物于干燥箱中90℃干燥10h,充分研磨,得到Cs2AgBiI6纳米晶。
对实施例制备得到的样品进行性能测试,包括瞬态荧光光谱、禁带宽度和载流子迁移率,测试结果如图2-10和表1所示,实施例五的样品具有较高的发光强度、较窄的禁带宽度、较长的载流子寿命和较高的载流子迁移率,说明本发明合成的双金属无铅钙钛矿是一种性能优异的光电材料。
图2为的Cs2AgBiI6建模原子排布图,可得其成八面体构型。
图3为Cs2AgBiI6的X-射线衍射图谱(XRD),可知已成功合成立方相的Cs2AgBiI6晶体,XRD衍射峰较窄其较高,说明其结晶度较高。
图4为Cs2AgBiI6的扫描电镜图谱(SEM),可得其为粒径非常小的量子点。
图5为Cs2AgBiI6的X射线光电子能谱全谱(XPS),可知样品中含有Cs、Ag、Bi、I等元素,说明已合成目标产物。
图6为Cs2AgBiI6的紫外-可见光吸收图谱(UV-Vis),可知其光吸收强度较高,光谱响应范围较宽,且有明显的线性区域,说明其为半导体且成分单一,没有其他杂质。
图7为Cs2AgBiI6的Tauc-plot模拟曲线,为了评估其在光伏应用中的适用性,根据紫外-可见吸收光谱模拟得到了其光学带隙。钙钛矿Cs2AgBiI6显示出间接带隙半导体的特性,浅吸收区从1.40eV开始,随后在1.80eV附近吸收急剧增加。Tauc-plot图中的线性区域显示了声子辅助过程,在1.40和1.80eV的跃迁分别发生在声子的吸收和发射。因此可得间接带隙为1.60eV,辅助声子能量为0.2eV。
图8为Cs2AgBiI6的Mott-Schottky模拟曲线,为了研究其平带电位,从而得出半导体材料的导带电位,分析可得其导带电位为-0.53eV。
图9为Cs2AgBiI6的稳态荧光光谱(PL),可得其具有较高的光致发光强度,达到7.7×106,说明它是一种性能优异的光电材料。
图10为Cs2AgBiI6的瞬态荧光光谱(TRPL),使用三指数拟合的方法模拟得到载流子寿命,可知其长载流子寿命达到了363.66ns,说明其具有优异的光电特性。
表1.不同实施例Cs2AgBiI6的光电性能参数
实施例 荧光强度 载流子寿命(ns) 禁带宽度(eV) 载流子迁移率
实施例1 <![CDATA[5.0×10<sup>6</sup>]]> 300.20 1.62 <![CDATA[272cm<sup>2</sup>/V/s]]>
实施例2 <![CDATA[6.2×10<sup>6</sup>]]> 320.33 1.60 <![CDATA[285cm<sup>2</sup>/V/s]]>
实施例3 <![CDATA[4.8×10<sup>6</sup>]]> 290.55 1.65 <![CDATA[262cm<sup>2</sup>/V/s]]>
实施例4 <![CDATA[6.5×10<sup>6</sup>]]> 336.20 1.67 <![CDATA[300cm<sup>2</sup>/V/s]]>
实施例5 <![CDATA[7.7×10<sup>6</sup>]]> 363.66 1.60 <![CDATA[368cm<sup>2</sup>/V/s]]>
实施例6 <![CDATA[6.9×10<sup>6</sup>]]> 338.20 1.65 <![CDATA[320cm<sup>2</sup>/V/s]]>
实施例7 <![CDATA[6.6×10<sup>6</sup>]]> 337.40 1.66 <![CDATA[315cm<sup>2</sup>/V/s]]>
本发明采用简单易操作的水热法制备出了纯度高、结晶度高的,对比标准衍射谱发现合成的样品较纯,解决了现存的Cs2AgBiI6中极易混合Cs3Bi2I9杂质的问题,在水中以及强光照射下都能保持性能稳定。且解决了现阶段多采用反溶剂重结晶法需要消耗大量有机溶剂造成成本增加和环境污染的问题。
根据将Cs2AgBiI6的CIF文件导入VESTA得出的X射线衍射谱可得,合成的晶体衍射峰与标准谱对应较好,没有其他杂质成分,这解决了Cs2AgBiI6中很容易混合Cs3Bi2I9的问题。
根据离子固体中填充的半径比规则,Ag+具有适当的尺寸,以支持钙钛矿晶格中碘化物或溴化物的八面体配位。
将所合成的样品进行了详细的光电性能测试,紫外-可见光吸收分析表明其具有较高的光吸收系数,光谱响应范围较宽,能充分利用可见光区域的光子,是一种优异的光伏材料。
根据紫外-可见吸收光谱Tauc-plot模拟可知,其表现出间接带隙半导体的属性,浅吸收区从1.40eV开始,随后在1.80eV附近吸收急剧增加,Tauc-plot图中的线性区域显示了声子辅助过程,在1.40和1.80eV的跃迁分别发生在声子的吸收和发射,因此可得间接带隙为1.60eV,辅助声子能量为0.2eV。
瞬态荧光光谱分析表明其具有三种形态的载流子,其中长载流子具有较高的载流子寿命,达363.33ns,说明它是一种潜在的性能优异的光电半导体。
窄禁带宽度、高光吸收系数、长载流子寿命、高载流子迁移率均为光电材料需要满足的条件,说明Cs2AgBiI6是一种很有应用潜力的光电材料。
Mott-Schottky模拟表明其导电属性为n型,导带电位为-0.53V,满足光催化分解水制氢的电位要求,说明它是一种潜在的可应用于光催化分解水的光催化剂。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (8)

1.一种Cs2AgBiI6钙钛矿纳米晶的制备方法,其特征在于,包括以下步骤:(1)将CsI和BiBr3溶解在HI溶液中,剧烈搅拌,使其充分溶解,得到溶液A;(2)将AgI添加到溶液A中,并剧烈搅拌,使固体充分溶解得到溶液B;(3)将溶液B转移至聚四氟乙烯反应釜中,加热并保温反应,反应结束后自然冷却至室温;(4)将步骤(3)所得溶液离心并收集所得沉淀,并用去离子水和乙醇洗涤得到沉淀物;(5)将步骤(4)所得沉淀物干燥研磨得到Cs2AgBiI6纳米晶。
2.根据权利要求1所述的Cs2AgBiI6钙钛矿纳米晶的制备方法,其特征在于,所述CsI和BiBr3的摩尔比为1:2~4:1,所述AgI与所述BiBr3的摩尔比为1:3~3:1。
3.根据权利要求1所述的Cs2AgBiI6钙钛矿纳米晶的制备方法,其特征在于,步骤(1)中剧烈搅拌的时间为1~3小时。
4.根据权利要求1所述的Cs2AgBiI6钙钛矿纳米晶的制备方法,其特征在于,步骤(2)中剧烈搅拌的时间为1~3小时。
5.根据权利要求1所述的Cs2AgBiI6钙钛矿纳米晶的制备方法,其特征在于,步骤(3)中加热的温度为加热至100~120℃,并保温反应1~3h。
6.根据权利要求1所述的Cs2AgBiI6钙钛矿纳米晶的制备方法,其特征在于,步骤(4)中离心转速为7000~9000r/min,离心时间2~4min,去离子水和乙醇反复洗涤2~4次。
7.根据权利要求1所述的Cs2AgBiI6钙钛矿纳米晶的制备方法,其特征在于,步骤(5)中干燥温度为70~90℃,干燥时间为8~10h。
8.一种Cs2AgBiI6钙钛矿纳米晶,其特征在于,其采用权利要求1-7任意一项所述的制备方法制备得到。
CN202211694999.5A 2022-12-28 2022-12-28 一种Cs2AgBiI6钙钛矿纳米晶及其制备方法 Pending CN116119712A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211694999.5A CN116119712A (zh) 2022-12-28 2022-12-28 一种Cs2AgBiI6钙钛矿纳米晶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211694999.5A CN116119712A (zh) 2022-12-28 2022-12-28 一种Cs2AgBiI6钙钛矿纳米晶及其制备方法

Publications (1)

Publication Number Publication Date
CN116119712A true CN116119712A (zh) 2023-05-16

Family

ID=86305741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211694999.5A Pending CN116119712A (zh) 2022-12-28 2022-12-28 一种Cs2AgBiI6钙钛矿纳米晶及其制备方法

Country Status (1)

Country Link
CN (1) CN116119712A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107954902A (zh) * 2017-12-13 2018-04-24 合肥工业大学 一种宽光谱的有机-无机杂化钙钛矿量子点荧光材料及其制备方法
WO2018219155A1 (zh) * 2017-06-02 2018-12-06 颜步一 一种钙钛矿太阳能电池组件及其制备方法
CN110616461A (zh) * 2019-10-17 2019-12-27 南京信息工程大学 一种Cs2AgBiBr6型双钙钛矿晶体的制备方法
CN110927769A (zh) * 2019-11-13 2020-03-27 南昌大学 一种双钙钛矿粒子探测器及其制备方法
US20200212240A1 (en) * 2017-09-13 2020-07-02 Glass To Power S.P.A. Luminescent solar concentrator using perovskite structures
CN114471628A (zh) * 2022-03-10 2022-05-13 重庆邮电大学 一种钙钛矿光催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219155A1 (zh) * 2017-06-02 2018-12-06 颜步一 一种钙钛矿太阳能电池组件及其制备方法
US20200212240A1 (en) * 2017-09-13 2020-07-02 Glass To Power S.P.A. Luminescent solar concentrator using perovskite structures
CN107954902A (zh) * 2017-12-13 2018-04-24 合肥工业大学 一种宽光谱的有机-无机杂化钙钛矿量子点荧光材料及其制备方法
CN110616461A (zh) * 2019-10-17 2019-12-27 南京信息工程大学 一种Cs2AgBiBr6型双钙钛矿晶体的制备方法
CN110927769A (zh) * 2019-11-13 2020-03-27 南昌大学 一种双钙钛矿粒子探测器及其制备方法
CN114471628A (zh) * 2022-03-10 2022-05-13 重庆邮电大学 一种钙钛矿光催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHU ZHANG ET AL.: ""Design of a novel and highly stable lead-free Cs2NaBiI6 double perovskite for photovoltaic application"", 《SUSTAINABLE ENERGY FUELS》, vol. 2, 24 May 2018 (2018-05-24), pages 2 *

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application
Zhao et al. Colloidal quantum dots for solar technologies
Dong et al. Species, engineering and characterizations of defects in TiO2-based photocatalyst
Su et al. Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application
Guo et al. Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value‐Added Chemicals
Zhang et al. Colloidal Bi-Doped Cs2Ag1–x Na x InCl6 Nanocrystals: Undercoordinated Surface Cl Ions Limit their Light Emission Efficiency
CN109913898B (zh) 一种WO3/CuWO4/NiFe LDH三元复合光电极薄膜的制备方法
JP6883799B2 (ja) 金属化合物の製造方法、光触媒の製造方法、および光触媒複合体の製造方法
Shi et al. Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives
CN105289657B (zh) 石墨烯‑硫化锑纳米棒复合可见光催化剂的制备方法
Chen et al. Recent advances in zinc‐containing colloidal semiconductor nanocrystals for optoelectronic and energy conversion applications
CN110624563A (zh) 一种银离子掺杂硫代铟酸锌异质结光催化剂制备方法
CN107308961B (zh) 一种碘掺杂纳米Bi4O5Br2可见光催化剂、制备方法及其应用
Shah et al. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells
de Souza Carvalho et al. Lead‐free metal halide perovskite nanocrystals: from fundamentals to applications
CN114700104B (zh) 一种以石墨相氮化碳为模板的掺碳多孔微球无铅双钙钛矿复合光催化剂的制备方法
Liu et al. Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs
Reis et al. Enhanced photoelectrocatalytic performance of ZnO films doped with N2 by a facile electrochemical method
Wu et al. Recent progress and perspectives on nonlead halide perovskites in photocatalytic applications
Huang et al. Phase-formation and luminescence properties of Eu3+-doped Bi2O3 on synthetic process
Wang et al. Lead‐Free Halide Perovskite Photocatalysts for Photocatalytic CO2 Reduction: A Review
CN106384673B (zh) 一种制备钨酸铜光阳极薄膜方法
CN112337476B (zh) 一种钨酸铜/铋酸铜复合光催化剂及其制备方法
Hong et al. A novel quaternary solid solution photo-absorber material for photoelectrochemical hydrogen generation
CN111558389B (zh) 一种BiVO4/质子化g-C3N4/AgI三元复合光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination