CN106384673B - 一种制备钨酸铜光阳极薄膜方法 - Google Patents

一种制备钨酸铜光阳极薄膜方法 Download PDF

Info

Publication number
CN106384673B
CN106384673B CN201610896768.0A CN201610896768A CN106384673B CN 106384673 B CN106384673 B CN 106384673B CN 201610896768 A CN201610896768 A CN 201610896768A CN 106384673 B CN106384673 B CN 106384673B
Authority
CN
China
Prior art keywords
copper
tin
solution
thin film
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610896768.0A
Other languages
English (en)
Other versions
CN106384673A (zh
Inventor
李朝升
钱勤枫
黄辉庭
邹志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201610896768.0A priority Critical patent/CN106384673B/zh
Publication of CN106384673A publication Critical patent/CN106384673A/zh
Application granted granted Critical
Publication of CN106384673B publication Critical patent/CN106384673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2045Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic System (C, Si, Ge, Sn, Pb) with or without impurities, e.g. doping materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

本发明涉及一种制备钨酸铜光阳极薄膜的方法,包括如下步骤:1)首先配制含有铜、锡元素的有机溶液,分别为三水合硝酸铜溶于乙二醇甲醚,浓度为0.04‑0.08mol/L;二水合氯化亚锡溶于乙二醇甲醚,浓度为0.04‑0.08mol/L;2)分别取(5‑X)ml和Xml的步骤1)中配置的铜与锡溶液,混合至均匀;3)再加入等摩尔量的偏钨酸铵,再加入0.1‑0.7ml的浓硝酸以及10‑100mg硝酸铵,搅拌溶液至澄清,即得前驱体溶液;4)利用移液器移取一定量的步骤3)中制备好的前驱体溶液,滴加在氟掺杂的氧化锡导电衬底上,在70℃的加热板上加热20min,去除有机溶剂;5)将步骤4)中覆有薄膜前驱体的氟掺杂氧化锡导电衬底置于550±50℃的马弗炉中煅烧1‑4h,取出自然冷却至室温,即得相应的锡元素掺杂的钨酸铜薄膜。

Description

一种制备钨酸铜光阳极薄膜方法
技术领域
本发明涉及到一种制备钨酸铜薄膜并利用锡元素掺杂提升载流子浓度的方法。
背景技术
随着现代社会对能源消耗的需求日益加剧,传统化石能源的缺点也被日益放大,其有限的总量和使用过程产生的环境污染问题亟待解决,寻找传统化石能源的替代品一事也早已被很多国家提上日程。利用光电化学电池直接将高度分散的、波动性大的以及难以存储运输的太阳能转化为高能量密度和稳定的清洁氢能,有希望解决目前的能源问题。然而目前的光电化学电池分解水系统的转换效率受限于光阳极材料较低的光电流密度以及较高的开启电位。金属氧化物光阳极材料因为具有低廉的制造成本和良好的光电化学稳定性等特点得到了研究者的广泛关注。但是其光电流密度受材料的导电性制约,研究者通常利用元素掺杂来提升材料的多数载流子浓度或者载流子迁移率,改善材料的电荷传输能力,提升其分解水性能。
钨酸铜能够吸收到550nm附近的可见光,其理论太阳能到氢能转换效率可达到10%,但是实际的太阳能到氢能转换效率非常低。
发明内容:
本发明目的是,提出一种制备锡元素掺杂的钨酸铜光阳极薄膜的方法,并利用锡元素掺杂提升载流子浓度的方法,能用于提高太阳电池的氢能转换效率。
本发明的技术方案是,一种制备锡元素掺杂的钨酸铜光阳极薄膜的方法,其特征是包括如下步骤:
(1)首先配制含有铜、锡元素的有机溶液,分别为三水合硝酸铜溶于乙二醇甲醚,浓度为0.04-0.08mol/L;二水合氯化亚锡溶于乙二醇甲醚,浓度为0.04-0.08 mol/L;
(2)分别取(5-X)ml和X ml的步骤(1)中配置的铜与锡溶液,混合至均匀,X取0.1-0.5;
(3)再加入等摩尔量的偏钨酸铵,再加入0.1-0.7ml的浓硝酸以及10-100mg 硝酸铵,搅拌溶液至澄清,即得前驱体溶液;
(4)利用移液器移取一定量的步骤(3)中制备好的前驱体溶液,滴加在氟掺杂的氧化锡导电衬底上,在70℃的加热板上加热20min,去除有机溶剂;
(5)将步骤(4)中覆有薄膜前驱体的氟掺杂氧化锡导电衬底置于550±50℃的马弗炉中煅烧1-4h,取出自然冷却至室温,即得相应的锡元素掺杂的钨酸铜薄膜。
本发明的有益效果:采用本方法制备的锡掺杂钨酸铜光阳极薄膜材料,其性能相较于未掺杂的钨酸铜光阳极材料有大幅度提高,在模拟太阳光下(AM 1.5G, 100mW cm-2)的饱和光电流密度达到1.05mAcm-2。实现了太阳能向化学能的转换。
附图说明
图1是未掺杂与3%的锡元素掺杂比例的钨酸铜薄膜样品的X射线衍射图谱;
图2是未掺杂与3%的锡元素掺杂比例的钨酸铜薄膜样品的光吸收图谱;
图3是未掺杂与3%的锡元素掺杂比例的钨酸铜薄膜样品在不同偏压下的量子转换效率;
图4是未掺杂与3%的锡元素掺杂比例的钨酸铜薄膜样品的电镜照片;
图4中a、c给出了3%的锡元素掺杂比例的钨酸铜薄膜样品的电镜照片(分别是表面与截面),图4中b、d给出了未掺杂钨酸铜薄膜样品的电镜照片(分别是表面与截面);
图5是未掺杂与不同锡元素掺杂比例的钨酸铜薄膜样品在可见光下的光电流图;
图6是未掺杂与3%的锡元素掺杂比例的钨酸铜薄膜样品在模拟太阳光下的光电流图;
图7是未掺杂与3%的锡元素掺杂比例的钨酸铜薄膜样品的mott-schottky曲线图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
钨酸铜光阳极的制备方法包括如下步骤:
(1)首先配制含有铜、锡元素的有机溶液,分别为三水合硝酸铜溶于乙二醇甲醚,浓度为0.05mol/L;二水合氯化亚锡溶于乙二醇甲醚,浓度为0.05mol/L;
(2)分别取(5-X)ml和Xml的步骤(1)中配置的铜与锡溶液,混合至均匀,其中X=0.15时,锡掺杂的钨酸铜光阳极性能最优;
(3)再加入等摩尔量的偏钨酸铵,再加入0.1-0.7ml的浓硝酸以及10-100mg 硝酸铵,搅拌溶液至澄清,即得前驱体溶液.其中浓硝酸体积为0.4ml,硝酸铵的质量为40mg,锡掺杂的钨酸铜光阳极性能最优;
(4)利用移液器移取一定量的步骤(3)中制备好的前驱体溶液,滴加在氟掺杂的氧化锡导电衬底上,在70℃的加热板上加热20min,去除有机溶剂。结果表明滴液量为30ulcm-2,制得的薄膜最为均匀,性能最优。
(5)将步骤(4)中覆有薄膜前驱体的氟掺杂氧化锡导电衬底置于550℃的马弗炉中煅烧2h,取出自然冷却至室温,即得相应的锡元素掺杂的钨酸铜薄膜。
图1给出了未掺杂与3at%的锡元素掺杂比例的钨酸铜薄膜样品的X射线衍射图谱,可以看出合成出的钨酸铜薄膜样品均为纯相,无杂相。
图2给出了未掺杂与3at%的锡元素掺杂比例的钨酸铜薄膜样品的光吸收图谱,可以看出两用样品的带边均在550nm附近,掺杂并没有引起带隙发生改变,而未掺杂的样品的光吸收效率要高于3at%锡元素掺杂的样品,这是因为锡元素掺杂引起了钨酸铜纳米结构的改变而导致。
图3给出了未掺杂与3at%的锡元素掺杂比例的钨酸铜薄膜样品在不同偏压下的量子转换效率,在1.23与1.63VRHE的外加偏压下,可以看出3%锡元素掺杂的钨酸铜光阳极的量子转换效率均要高于未掺杂的钨酸铜薄膜。
图4给出了未掺杂(图4b、d)与3at%的锡元素掺杂(图4a、c)比例的钨酸铜薄膜样品的电镜照片,可以看出通过该种方法合成的钨酸铜薄膜具有多孔结构,并且由于锡元素的引入导致了晶粒大小的改变,导致薄膜的厚度减薄,从1.1μm 降低至700nm。
图5给出了未掺杂与不同锡元素掺杂比例的钨酸铜薄膜样品在可见光下的光电流图,可以锡元素的掺杂会提升钨酸铜薄膜光阳极的光电流密度,其中3at%的掺杂比例提升最大。
图6给出了未掺杂与3at%的锡元素掺杂比例的钨酸铜薄膜样品在模拟太阳光下的光电流图,可以看出在模拟太阳光光照下(AM 1.5G,100mW cm-2),3at%锡元素掺杂的钨酸铜薄膜光阳极的光电流密度达到1.05mA cm-2
图7给出了未掺杂与3at%的锡元素掺杂比例的钨酸铜薄膜样品的mott-schottky曲线图,可以出来3at%的锡元素掺杂使的薄膜的载流子浓度提升了40倍。

Claims (1)

1.制备钨酸铜光阳极薄膜的方法,其特征是包括如下步骤:
1)首先配制含有铜、锡元素的有机溶液,分别为三水合硝酸铜溶于乙二醇甲醚,浓度为0.04-0.08mol/L;二水合氯化亚锡溶于乙二醇甲醚,浓度为0.04-0.08 mol/L;
2)分别取(5-X)ml和Xml的步骤1)中配置的铜与锡溶液,混合至均匀; X取0.1-0.5;
3)再加入等摩尔量的偏钨酸铵,再加入0.1-0.7 ml的浓硝酸以及10-100 mg硝酸铵,搅拌溶液至澄清,即得前驱体溶液;
4)利用移液器移取一定量的步骤3)中制备好的前驱体溶液,滴加在氟掺杂的氧化锡导电衬底上,在70 ℃的加热板上加热20 min,去除有机溶剂;
5)将步骤4)中覆有薄膜前驱体的氟掺杂氧化锡导电衬底置于550±50℃的马弗炉中煅烧1-4h,取出自然冷却至室温,即得相应的锡元素掺杂的钨酸铜薄膜。
CN201610896768.0A 2016-10-13 2016-10-13 一种制备钨酸铜光阳极薄膜方法 Active CN106384673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610896768.0A CN106384673B (zh) 2016-10-13 2016-10-13 一种制备钨酸铜光阳极薄膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610896768.0A CN106384673B (zh) 2016-10-13 2016-10-13 一种制备钨酸铜光阳极薄膜方法

Publications (2)

Publication Number Publication Date
CN106384673A CN106384673A (zh) 2017-02-08
CN106384673B true CN106384673B (zh) 2018-04-10

Family

ID=57937388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610896768.0A Active CN106384673B (zh) 2016-10-13 2016-10-13 一种制备钨酸铜光阳极薄膜方法

Country Status (1)

Country Link
CN (1) CN106384673B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295474A (zh) * 2018-10-09 2019-02-01 天津城建大学 一种Co掺杂的纳米棒状的CuWO4光阳极薄膜的制备方法
CN109868486B (zh) * 2019-04-02 2020-03-17 台州学院 一种具有可见光响应的钨酸铜/磷酸镍光阳极薄膜的制备方法
CN111482150B (zh) * 2020-04-22 2022-07-19 上海市普陀区人民医院(上海纺织第一医院) 一种可见光响应的全铜基串联光电催化装置及其制备方法
CN112695304A (zh) * 2020-12-10 2021-04-23 华北理工大学 一种钨酸铜光阳极薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102106033A (zh) * 2008-09-19 2011-06-22 日本电气硝子株式会社 用于太阳能电池的基板和用于色素增感型太阳能电池的氧化物半导体电极
CN102324315A (zh) * 2011-07-20 2012-01-18 彩虹集团公司 一种染料敏化电池光阳极的制备方法
CN102372305A (zh) * 2010-08-13 2012-03-14 范晓星 介孔钨酸盐光催化材料及其制备方法
CN104240961A (zh) * 2013-06-09 2014-12-24 中国科学院大连化学物理研究所 一种染料敏化太阳电池的对电极及其制备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1680531A4 (en) * 2003-10-23 2008-04-02 Transfert Plus Sec ELECTRODE WITH A COS LAYER THEREOF, METHOD OF MANUFACTURING THEREFOR AND USES THEREOF
GB2501247A (en) * 2012-04-11 2013-10-23 Univ Swansea Counter Electrode for a Dye-Sensitised Solar Cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102106033A (zh) * 2008-09-19 2011-06-22 日本电气硝子株式会社 用于太阳能电池的基板和用于色素增感型太阳能电池的氧化物半导体电极
CN102372305A (zh) * 2010-08-13 2012-03-14 范晓星 介孔钨酸盐光催化材料及其制备方法
CN102324315A (zh) * 2011-07-20 2012-01-18 彩虹集团公司 一种染料敏化电池光阳极的制备方法
CN104240961A (zh) * 2013-06-09 2014-12-24 中国科学院大连化学物理研究所 一种染料敏化太阳电池的对电极及其制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Improved charge separation via Fe-doping of copper tungstate photoanodes;Bohra D;Smith WA.;《Physical Chemistry Chemical Physics》;20151231;第17卷(第15期);9857-9866 *

Also Published As

Publication number Publication date
CN106384673A (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
Gao et al. Application of carbon dots in dye‐sensitized solar cells: a review
Liang et al. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications
Yoon et al. NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system
Nan et al. Carbon quantum dots coated BiVO4 inverse opals for enhanced photoelectrochemical hydrogen generation
Zhao et al. Structure, synthesis, and applications of TiO2 nanobelts
CN106384673B (zh) 一种制备钨酸铜光阳极薄膜方法
Lin et al. Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting
Pilli et al. Light induced water oxidation on cobalt-phosphate (Co–Pi) catalyst modified semi-transparent, porous SiO 2–BiVO 4 electrodes
Peng et al. Enhanced photoelectrochemical water oxidation by fabrication of p-LaFeO3/n-Fe2O3 heterojunction on hematite nanorods
Akman et al. Electrochemically stable, cost-effective and facile produced selenium@ activated carbon composite counter electrodes for dye-sensitized solar cells
Karunakaran et al. Research progress on the application of lanthanide-ion-doped phosphor materials in perovskite solar cells
Wrede et al. Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion
Sadeghzadeh-Attar Enhanced photocatalytic hydrogen evolution by novel Nb-doped SnO2/V2O5 heteronanostructures under visible light with simultaneous basic red 46 dye degradation
Lee et al. Photoelectrochemical water splitting using one-dimensional nanostructures
Zhang et al. Novel bilayer structure ZnO based photoanode for enhancing conversion efficiency in dye-sensitized solar cells
Kharel et al. Enhancing the photovoltaic performance of dye-sensitized solar cells with rare-earth metal oxide nanoparticles
da Trindade et al. Effective strategy to coupling Zr-MOF/ZnO: Synthesis, morphology and photoelectrochemical properties evaluation
Llanos et al. A down-shifting Eu3+-doped Y2WO6/TiO2 photoelectrode for improved light harvesting in dye-sensitized solar cells
Liu et al. In-situ growth of Cu2ZnSnS4 nanospheres thin film on transparent conducting glass and its application in dye-sensitized solar cells
Kaizra et al. Improved activity of SnO for the photocatalytic oxygen evolution
Kaliamurthy et al. Trap‐Assisted Transition Energy Levels of SrF2: Pr3+− Yb3+ Nanophosphor in TiO2 Photoanode for Luminescence Tuning in Dye‐Sensitized Photovoltaic Cells
Ghorpade et al. Eutectic solvent-mediated selective synthesis of Cu–Sb–S-based nanocrystals: Combined experimental and theoretical studies toward highly efficient water splitting
CN107742580A (zh) 一种基于吸光涂料制备量子点太阳电池的方法
KR100830786B1 (ko) 산화타이타늄 입자, 이 산화타이타늄 입자를 이용한 광전 변환 소자 및 그 산화타이타늄 입자의 제조방법
Hu et al. Enhancing the photoelectrochemical performance of TiO2 through decorating a topological insulator Bi2Te3 film and non-noble plasmonic Cu nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant