CN104966763A - 一种提高钙钛矿太阳能电池效率的方法 - Google Patents

一种提高钙钛矿太阳能电池效率的方法 Download PDF

Info

Publication number
CN104966763A
CN104966763A CN201510423665.8A CN201510423665A CN104966763A CN 104966763 A CN104966763 A CN 104966763A CN 201510423665 A CN201510423665 A CN 201510423665A CN 104966763 A CN104966763 A CN 104966763A
Authority
CN
China
Prior art keywords
perovskite
solution
film
pbi
precursor solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510423665.8A
Other languages
English (en)
Other versions
CN104966763B (zh
Inventor
史彦涛
王香媛
张鸿
郝策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Xuanshi Photoelectric Technology Co.,Ltd.
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510423665.8A priority Critical patent/CN104966763B/zh
Publication of CN104966763A publication Critical patent/CN104966763A/zh
Application granted granted Critical
Publication of CN104966763B publication Critical patent/CN104966763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种提高钙钛矿太阳能电池效率的方法,属于太阳能电池技术领域。即将有机小分子4-叔丁基吡啶作为添加剂按照0.4~0.8mol/L的浓度加入到钙钛矿前驱体溶液中,制作钙钛矿晶体膜,再进行电池的制作,采用本发明所述的有机小分子添加剂制得的钙钛矿晶体膜质量更好,并能显著提高钙钛矿太阳能电池的效率。

Description

一种提高钙钛矿太阳能电池效率的方法
技术领域
本发明属于太阳能电池技术领域,涉及一种提高钙钛矿太阳能电池效率的方法。
背景技术
能源危机和环境污染是当今人类社会发展面临的两大突出问题。一方面,随着化石能源的不断消耗,造成化石能源面临枯竭;另一方面,由于燃烧产生大量的二氧化碳和其他有害物质造成的全球气候变暖、温室效应和厄尔尼诺现象日益突出,空气质量严重下降,生态环境遭到了严重破坏。解决上述问题的有效途径之一是开发和利用可再生能源。太阳能、风能、生物质能、潮汐能等都是廉价、清洁和环境友好的可再生能源。其中太阳能作为一种取之不尽、用之不竭的清洁能源,具有不受地域条件限制和利用方式灵活的优点,是未来全球能源系统中最有前景的替代新能源。对太阳能的利用主要包括光电转换、光热转换和光化学能转换3种形式。光电转换是通过太阳能电池实现的。作为一种新型的第三代太阳能电池,有机-无机钙钛矿太阳能电池(Perovskite solar cells,PSCs)发展速度惊人,其从2009到2015的6年间能量转化效率从3.81%迅速增加到20.1%。作为目前光伏领域的研究热点,PSCs被美国《科学》杂志评选为2013年世界十大科学突破之一。
有机-无机混合钙钛矿材料以其高效率、低成本、易于液相法制作而备受瞩目。有机铅卤化物甲氨基碘化铅在电池中不仅起到吸收光的作用,还可能同时起到传输电子和空穴的作用。甲氨基铅卤化物CH3NH3PbX3是一种具有钙钛矿晶型的有机-无机复合吸光材料。它具有以下特点:合适的带隙(1.48~2.23eV)、较高的摩尔消光系数(1.5×104cm-1at 550nm)、较高的载流子迁移率(电子7.5cm2V–1s–1,空穴12.5cm2V–1s–1~66cm2V–1s–1),较长的电子-空穴扩散距离(超过1μm),有双极特性(传输电子和空穴)等。基于这种材料制备的太阳能电池被称为钙钛矿太阳能电池,简称PSCs。
PSCs结构主要由四个部分组成。一是电子收集层,其主要作用是负责传输电子与收集电子的作用,主要有无机半导体TiO2,ZnO等。二是有机-无机钙钛矿光吸收层,例如CH3NH3PbI3,CH3NH3PbI2Cl,CH3NH3PbBr3等。三是空穴传输层(Hole transport material,HTM),如Spiro-OMeTAD。四是背电极,主要是Au,Ag等。其中钙钛矿光吸收层作为钙钛矿太阳能电池的核心部分,它的膜形态对电池性能起着决定性作用。钙钛矿膜的质量与光捕获效率直接相关,最终影响电池的光电性能。目前常见的制备钙钛矿膜的方法有3种:真空沉积法、液相法、蒸汽辅助沉积法。其中液相法由于其低廉的制作成本而被广泛应用。但是液相法容易受人为操作控制的影响,制作的钙钛矿膜质量良莠不齐,导致电池性能不佳。通过向钙钛矿的前驱体溶液中加入添加剂以调控钙钛矿形貌是优化电池性能,提高电池效率的一种简单有效的途径。
发明内容
本发明的目的是提供一种提高钙钛矿太阳能电池效率的方法,即采用一种有机易挥发小分子添加剂4-叔丁基吡啶(4-tert-Butylpydrdine,TBP),TBP的化学结构式为:应用到钙钛矿太阳能电池中。这种方法能有效改善钙钛矿太阳能电池的光电性能。
本发明的技术方案:一种提高钙钛矿太阳能电池效率的方法,步骤如下:
(1)按照摩尔浓度0.4~0.8mol/L将有机易挥发小分子添加剂4-叔丁基吡啶添加到钙钛矿前驱体溶液中,加热溶解均匀,形成可以有效改善制备出的钙钛矿膜质量的钙钛矿前驱体溶液;
所述的钙钛矿前驱体溶液是1mol/L的PbI2溶液或摩尔比为1:3的PbCl2与CH3NH3I的混合溶液;
(2)将步骤(1)配制好的钙钛矿前驱体溶液旋涂到有TiO2致密层的导电基底上,当钙钛矿前驱体溶液是1mol/L的PbI2溶液时,70°加热成PbI2膜,再浸泡CH3NH3I溶液加热成钙钛矿膜;当钙钛矿前驱体溶液是1:3的PbCl2与CH3NH3I的混合溶液时,先90°加热1h再100°加热25min成钙钛矿膜;在钙钛矿膜上旋涂空穴传输层,蒸镀金属对电极,组装成电池。
由于上述技术方案的应用,本发明与现有的技术相比有以下优点:
1.本发明所述的有机小分子TBP是一种易挥发小分子,可以用作钙钛矿太阳能电池钙钛矿溶液的添加剂,本发明所述的方法成本低廉、操作简单;
2.将本发明所述的有机小分子TBP添加剂按照0.4~0.8mol/L的浓度加入到钙钛矿前驱体溶液中,再进行电池的制作,采用本发明所述的有机小分子添加剂TBP制得的钙钛矿膜质量更好,电池性能更加优良。
附图说明
图1是本发明实施例1制得的具有多孔结构的PbI2膜的SEM照片。
图2是实施例2制得的定向结晶的钙钛矿晶体膜的SEM照片。
图3是有无添加剂TBP对比的CH3NH3PbI3钙钛矿膜的XRD图。
图4是有无添加剂TBP对比的CH3NH3PbI3-xClx钙钛矿膜的XRD图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1
配制1mol/L的PbI2的N,N-二甲基甲酰胺(N,N-Dimethylformamide,DMF)溶液,加入纯度为96%的TBP添加剂,TBP与PbI2溶液的体积比为1:12.5,加热搅拌至完全混溶。将此溶液旋涂到已制作好的有致密TiO2层的导电基底FTO上,一定温度下加热,生成了具有多孔结构的PbI2膜,此膜的SEM照片见图1。然后在碘甲胺溶液中浸泡2min,一定温度下加热,制成了转化率更高、反应物PbI2残留更少的CH3NH3PbI3(with TBP)钙钛矿晶体膜,此膜的XRD测试结果见图3。最后组装电池,用于钙钛矿太阳能电池光电性能测试。结果见表一。
比较实施例1
配制1mol/L的PbI2的N,N-二甲基甲酰胺(N,N-Dimethylformamide,DMF)溶液。将此PbI2溶液旋涂到已制作好的有致密TiO2层的导电基底FTO上,一定温度下加热成膜,然后在碘甲胺溶液中浸泡2min,加热制成CH3NH3PbI3钙钛矿晶体膜,此膜的XRD测试结果见图3。最后组装电池,用于钙钛矿太阳能电池光电性能测试。结果见表一。
实施例2
将PbCl2和CH3NH3I以摩尔比为1:3的比例混溶在溶剂DMF中,加入TBP添加剂,TBP与混合溶液的体积比为1:12.5,加热搅拌至完全混溶,配制成CH3NH3PbI3-xClx钙钛矿溶液。把配制好的钙钛矿溶液旋涂到已制作好的有致密TiO2层的导电基底FTO上,一定温度下加热,制成了定向结晶的CH3NH3PbI3-xClx(with TBP)钙钛矿晶体膜,此膜的SEM照片见图2,XRD测试结果见图4。然后组装电池,用于钙钛矿太阳能电池光电性能测试。结果见表一。
比较实施例2
将PbCl2和CH3NH3I以摩尔比为1:3的比例混溶在溶剂DMF中,配制成CH3NH3PbI3-xClx钙钛矿溶液。把配制好的钙钛矿溶液旋涂到已制作好的有致密TiO2层的导电基底FTO上,一定温度下加热制成CH3NH3PbI3-xClx钙钛矿晶体膜,此膜的XRD测试结果见图4。然后组装电池,用于钙钛矿太阳能电池光电性能测试。结果见表一。
上述实施例中,钙钛矿太阳能电池的光电性能测试按照传统的两电极体系,照射光源为AM 1.5,100mW/cm2,光电压和光电流输出通过Keithley 2601数字源表(美国Keithley公司)测量。
注:本发明使用的4-叔丁基吡啶(TBP)来自市售
表一
注:测试条件:室温环境,使用太阳光模拟器(Peccell-L15,日本),光强100mW/cm2条件下,测得电池(有效面积0.12cm2)的光电性能。
其中,表示当电池具有最大输出功率(Pmax)时,对应的电流和电压的乘积与短路电流和开路电压乘积的比值。光电转换效率计算采用如下公式: η = V o c × J s c × F F P i n × 100 % .

Claims (1)

1.一种提高钙钛矿太阳能电池效率的方法,其特征在于,步骤如下:
(1)按照摩尔浓度0.4~0.8mol/L将有机易挥发小分子添加剂4-叔丁基吡啶添加到钙钛矿前驱体溶液中,加热溶解均匀,形成可以有效改善制备出的钙钛矿膜质量的钙钛矿前驱体溶液;
所述的钙钛矿前驱体溶液是1mol/L的PbI2溶液或摩尔比为1:3的PbCl2与CH3NH3I的混合溶液;
(2)将步骤(1)配制好的钙钛矿前驱体溶液旋涂到有TiO2致密层的导电基底上,当钙钛矿前驱体溶液是1mol/L的PbI2溶液时,70°加热成PbI2膜,再浸泡CH3NH3I溶液加热成钙钛矿膜;当钙钛矿前驱体溶液是1:3的PbCl2与CH3NH3I的混合溶液时,先90°加热1h再100°加热25min成钙钛矿膜;在钙钛矿膜上旋涂空穴传输层,蒸镀金属对电极,组装成电池。
CN201510423665.8A 2015-07-20 2015-07-20 一种提高钙钛矿太阳能电池效率的方法 Active CN104966763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510423665.8A CN104966763B (zh) 2015-07-20 2015-07-20 一种提高钙钛矿太阳能电池效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510423665.8A CN104966763B (zh) 2015-07-20 2015-07-20 一种提高钙钛矿太阳能电池效率的方法

Publications (2)

Publication Number Publication Date
CN104966763A true CN104966763A (zh) 2015-10-07
CN104966763B CN104966763B (zh) 2017-04-12

Family

ID=54220777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510423665.8A Active CN104966763B (zh) 2015-07-20 2015-07-20 一种提高钙钛矿太阳能电池效率的方法

Country Status (1)

Country Link
CN (1) CN104966763B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816535A (zh) * 2016-12-13 2017-06-09 中国电子科技集团公司第十八研究所 利用离子液体添加剂提高钙钛矿太阳能电池效率的方法
CN106972101A (zh) * 2017-03-03 2017-07-21 苏州协鑫纳米科技有限公司 钙钛矿晶体复合材料及其制备方法及应用
CN107437587A (zh) * 2016-05-25 2017-12-05 中南大学 一种在空气中制备钙钛矿太阳能电池钙钛矿活性层的方法
WO2018000294A1 (en) * 2016-06-30 2018-01-04 The University Of Hong Kong An organolead halide perovskite film and the method of making the same
CN107887515A (zh) * 2017-11-27 2018-04-06 宁波大学 一种介孔钙钛矿薄膜及其制备方法和应用
CN108447994A (zh) * 2018-01-16 2018-08-24 华中科技大学鄂州工业技术研究院 高疏水性钙钛矿薄膜及其制备方法
WO2018219155A1 (zh) * 2017-06-02 2018-12-06 颜步一 一种钙钛矿太阳能电池组件及其制备方法
CN113629198A (zh) * 2021-08-05 2021-11-09 北京佰耐特能源科技有限公司 一种PbI2多孔膜以及钙钛矿光伏薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700768A (zh) * 2013-12-03 2014-04-02 常州大学 一种钙钛矿结构太阳能电池及其制备方法
CN103956394A (zh) * 2014-05-13 2014-07-30 国家纳米科学中心 一种改善钙钛矿太阳电池吸光层性能的方法
CN104022185A (zh) * 2014-06-17 2014-09-03 华北电力大学 一种钙钛矿膜及其制备与应用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700768A (zh) * 2013-12-03 2014-04-02 常州大学 一种钙钛矿结构太阳能电池及其制备方法
CN103956394A (zh) * 2014-05-13 2014-07-30 国家纳米科学中心 一种改善钙钛矿太阳电池吸光层性能的方法
CN104022185A (zh) * 2014-06-17 2014-09-03 华北电力大学 一种钙钛矿膜及其制备与应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
史彦涛等: "史彦涛等", 《说明书第0025段至第0026段》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437587A (zh) * 2016-05-25 2017-12-05 中南大学 一种在空气中制备钙钛矿太阳能电池钙钛矿活性层的方法
US10840030B2 (en) 2016-06-30 2020-11-17 The University Of Hong Kong Organolead halide perovskite film and the method of making the same
WO2018000294A1 (en) * 2016-06-30 2018-01-04 The University Of Hong Kong An organolead halide perovskite film and the method of making the same
CN109564948A (zh) * 2016-06-30 2019-04-02 香港大学 有机铅卤化物钙钛矿薄膜及制造其的方法
CN109564948B (zh) * 2016-06-30 2022-06-21 香港大学 有机铅卤化物钙钛矿薄膜及制造其的方法
CN106816535A (zh) * 2016-12-13 2017-06-09 中国电子科技集团公司第十八研究所 利用离子液体添加剂提高钙钛矿太阳能电池效率的方法
CN106972101A (zh) * 2017-03-03 2017-07-21 苏州协鑫纳米科技有限公司 钙钛矿晶体复合材料及其制备方法及应用
CN106972101B (zh) * 2017-03-03 2019-11-26 苏州协鑫纳米科技有限公司 钙钛矿晶体复合材料及其制备方法及应用
WO2018219155A1 (zh) * 2017-06-02 2018-12-06 颜步一 一种钙钛矿太阳能电池组件及其制备方法
CN107887515A (zh) * 2017-11-27 2018-04-06 宁波大学 一种介孔钙钛矿薄膜及其制备方法和应用
CN108447994A (zh) * 2018-01-16 2018-08-24 华中科技大学鄂州工业技术研究院 高疏水性钙钛矿薄膜及其制备方法
CN113629198A (zh) * 2021-08-05 2021-11-09 北京佰耐特能源科技有限公司 一种PbI2多孔膜以及钙钛矿光伏薄膜的制备方法
CN113629198B (zh) * 2021-08-05 2024-02-27 北京佰耐特能源科技有限公司 一种PbI2多孔膜以及钙钛矿光伏薄膜的制备方法

Also Published As

Publication number Publication date
CN104966763B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
Gao et al. Application of carbon dots in dye‐sensitized solar cells: a review
CN104966763B (zh) 一种提高钙钛矿太阳能电池效率的方法
Ranabhat et al. An introduction to solar cell technology
Kalyanasundaram et al. Themed issue: nanomaterials for energy conversion and storage
CN108039411B (zh) 一种钙钛矿型太阳能电池及其修饰层制备方法
CN104157786A (zh) 钙钛矿型太阳能电池及其制备方法
CN106128772B (zh) 一种硫化铅量子点光伏电池的制备方法
CN109659394A (zh) 一种高质量全无机钙钛矿薄膜材料的制备方法及应用
CN110676385A (zh) 一种基于多功能界面修饰层的碳基钙钛矿太阳能电池
CN104733183A (zh) 钙钛矿型太阳能电池及其制备方法
CN103219159A (zh) 一种用于量子点敏化太阳电池的CuxS(x=1–2)对电极的制备方法
CN104310794A (zh) 三维纳米棒花结构的多孔TiO2纳米晶薄膜、制备方法及应用
CN102610394A (zh) 一种过渡金属掺杂式α-Fe2O3纳米棒阵列的制备方法
CN100541822C (zh) 一种纳米晶薄膜的染料敏化太阳能电池及其制备方法
CN101728487B (zh) 锰酞菁双酚a环氧衍生物有机太阳能电池的制备方法
CN103515106B (zh) 一种PbS/ITO薄膜基光电化学光伏电池制备法
CN105552235B (zh) 一种提高钙钛矿太阳能电池效率的方法
Sun et al. CoS nanorod arrays with different lenghth used in CdS sensitized ZnO solar cells
CN103400941A (zh) 基于杂多酸阳极修饰层的有机太阳能电池及其制备方法
CN109748928B (zh) 吩噻嗪超分子染料敏化剂及制备方法和应用
Nikolić et al. A review of non-silicon and new photovoltaics technology for electricity generation
CN102760580A (zh) 一种Co掺杂CdSe量子点敏化TiO2纳米棒光电极及其制备方法
Ribeiro et al. Dye-sensitized solar cells: novel concepts, materials, and state-of-the-art performances
CN103383897A (zh) 一种制备染料敏化太阳能电池光阳极的方法
CN109651410B (zh) 超分子染料敏化剂及制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221221

Address after: 1101-1, No. 19, Erquan East Road, Huizhi Enterprise Center, Xishan Economic and Technological Development Zone, Wuxi City, Jiangsu Province, 214101

Patentee after: Wuxi Xuanshi Photoelectric Technology Co.,Ltd.

Address before: 116024 No. 2 Ling Road, Ganjingzi District, Liaoning, Dalian

Patentee before: DALIAN University OF TECHNOLOGY