WO2018218856A1 - 成像镜片组 - Google Patents
成像镜片组 Download PDFInfo
- Publication number
- WO2018218856A1 WO2018218856A1 PCT/CN2017/107332 CN2017107332W WO2018218856A1 WO 2018218856 A1 WO2018218856 A1 WO 2018218856A1 CN 2017107332 W CN2017107332 W CN 2017107332W WO 2018218856 A1 WO2018218856 A1 WO 2018218856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging
- lens group
- focal length
- optical axis
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Definitions
- the present application relates to an imaging lens set and, more particularly, to a small imaging lens set consisting of five lenses.
- the invention proposes an imaging lens set which is suitable for portable electronic products and is small in size and has good imaging quality.
- an imaging lens set may sequentially include a first lens group and a second lens group from the object side to the imaging side along the optical axis, wherein the first lens group may have a positive power; the second lens group may have a negative power .
- the first lens group may sequentially include a first lens, a second lens, and a third lens from the object side to the imaging side along the optical axis, wherein the first lens may have positive power and the object side thereof is convex; the second lens Can Having a negative power; and the third lens may have a positive power or a negative power.
- the second lens group may sequentially include a fourth lens and a fifth lens from the object side to the imaging side along the optical axis, wherein the fourth lens may have a negative power; and the fifth lens may have a positive power or a negative light
- the power is convex on the side of the object.
- the effective focal length f of the imaging lens group and the combined focal length f45 of the fourth lens and the fifth lens may satisfy: -1.0 ⁇ f / f45 ⁇ -0.5, for example, -0.78 ⁇ f / f45 ⁇ -0.58.
- an imaging lens set may sequentially include a first lens group and a second lens group from the object side to the imaging side along the optical axis, wherein the first lens group may have a positive power; the second lens group may have a negative power .
- the first lens group may sequentially include a first lens, a second lens, and a third lens from the object side to the imaging side along the optical axis, wherein the first lens may have positive power and the object side thereof is convex; the second lens There may be a negative power; and the third lens may have a positive power or a negative power.
- the second lens group may sequentially include a fourth lens and a fifth lens from the object side to the imaging side along the optical axis, wherein the fourth lens may have a negative power; and the fifth lens may have a positive power or a negative light
- the power is convex on the side of the object.
- the distance between the side of the fifth lens image side to the imaging surface on the optical axis BFL and the distance TTL of the first lens object side to the imaging surface on the optical axis may satisfy: 0.15 ⁇ BFL / TTL ⁇ 0.3, for example, 0.19 ⁇ BFL / TTL ⁇ 0.25.
- an imaging lens set may sequentially include a first lens group and a second lens group from the object side to the imaging side along the optical axis, wherein the first lens group may have a positive power; the second lens group may have a negative power .
- the first lens group may sequentially include a first lens, a second lens, and a third lens from the object side to the imaging side along the optical axis, wherein the first lens may have positive power and the object side thereof is convex; the second lens There may be a negative power; and the third lens may have a positive power or a negative power.
- the second lens group may sequentially include a fourth lens and a fifth lens from the object side to the imaging side along the optical axis, wherein the fourth lens may have a negative power; and the fifth lens may have a positive power or a negative light
- the power is convex on the side of the object.
- the effective focal length f of the imaging lens group and the distance TTL of the first lens object side to the imaging surface on the optical axis may satisfy: TTL / f ⁇ 1.0, for example, TTL / f ⁇ 0.97.
- the effective focal length f2 of the second lens and the effective focal length f4 of the fourth lens may satisfy: 0.3 ⁇ f2 / f4 ⁇ 1.0, for example, 0.36 ⁇ f2 / f4 ⁇ 0.62.
- the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy: -1.5 ⁇ R3 / R4 ⁇ -0.5, for example, -1.06 ⁇ R3 / R4 ⁇ -0.62.
- the effective focal length f of the imaging lens group and the effective focal length f3 of the third lens may satisfy:
- the effective focal length f of the imaging lens group and the effective focal length f5 of the fifth lens may satisfy:
- the effective focal length f of the imaging lens group and the radius of curvature R9 of the fifth lens object side may satisfy: f/R9 ⁇ 1.0, for example, f/R9 ⁇ 0.81.
- the air interval T23 of the second lens and the third lens on the optical axis and the air interval T34 of the third lens and the fourth lens on the optical axis may satisfy: T23/T34 ⁇ 0.5, for example , T23/T34 ⁇ 0.45.
- the imaging lens group can be miniaturized, small field of view, and high by rationally distributing the power of each lens, the surface shape, the on-axis spacing between the lenses, and the like. At least one of a magnification, a good imaging quality, a low sensitivity, and a balance aberration.
- FIG. 1 is a schematic structural view showing an imaging lens group of Embodiment 1 of the present application.
- 2D shows a magnification chromatic aberration curve of the imaging lens group of Example 1;
- FIG. 3 is a schematic structural view showing an imaging lens group of Embodiment 2 of the present application.
- 4D shows a magnification chromatic aberration curve of the imaging lens group of Example 2;
- FIG. 5 is a schematic structural view showing an imaging lens group of Embodiment 3 of the present application.
- 6A shows an axial chromatic aberration curve of the imaging lens group of Embodiment 3.
- 6B shows an astigmatism curve of the imaging lens group of Example 3.
- 6C shows a distortion curve of the imaging lens group of Embodiment 3.
- 6D shows a magnification chromatic aberration curve of the imaging lens group of Example 3.
- Figure 7 is a schematic structural view showing an imaging lens group of Embodiment 4 of the present application.
- Figure 9 is a schematic structural view showing an imaging lens group of Embodiment 5 of the present application.
- Figure 10A shows an axial chromatic aberration curve of the imaging lens group of Example 5.
- Figure 10B shows an astigmatism curve of the imaging lens set of Example 5.
- Figure 10C shows a distortion curve of the imaging lens set of Example 5.
- Fig. 10D shows a magnification chromatic aberration curve of the imaging lens group of Example 5.
- Figure 11 is a schematic structural view showing an imaging lens group of Embodiment 6 of the present application.
- Figure 12A shows an axial chromatic aberration curve of the imaging lens group of Example 6
- Figure 12B shows an astigmatism curve of the imaging lens set of Example 6
- Figure 12C shows a distortion curve of the imaging lens group of Example 6
- Fig. 12D shows a magnification chromatic aberration curve of the imaging lens group of Example 6.
- first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature. Therefore, The first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
- the thickness, size, and shape of the lens have been slightly exaggerated for convenience of explanation, but it should be understood that the dimensions of the respective components are not limited by the drawings, but may be appropriately adjusted within a certain range.
- the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
- the drawings are only examples and are not to scale.
- the paraxial region refers to a region near the optical axis.
- the first lens is the lens closest to the object and the fifth lens is the lens closest to the photosensitive element.
- the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
- the application provides an imaging lens set.
- the imaging lens group may be provided with a first lens group and a first order from the object side to the imaging side along the optical axis.
- Two lens groups may be provided.
- the first lens group may have a positive power and the second lens group may have a negative power.
- the first lens group may be sequentially provided with a first lens, a second lens, and a third lens from the object side to the image side along the optical axis.
- the second lens group may be sequentially provided with a fourth lens and a fifth lens from the object side to the image side along the optical axis.
- the first lens may have a positive power with a convex side; the second lens may have a negative power; the third lens may optionally have a positive power or a negative power; The four lenses may have a negative power; and the fifth lens may optionally have a positive power or a negative power, the sides of which are convex at the paraxial.
- the effective focal length f of the imaging lens group and the combined focal length f45 of the fourth lens and the fifth lens may satisfy: -1.0 ⁇ f/f45 ⁇ -0.5, and more specifically, may satisfy -0.78 ⁇ f/f45 ⁇ -0.58.
- the effective focal length f2 of the second lens and the effective focal length f4 of the fourth lens may satisfy: 0.3 ⁇ f2 / f4 ⁇ 1.0, and more specifically, may satisfy 0.36 ⁇ f2 / f4 ⁇ 0.62.
- the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy: -1.5 ⁇ R3/R4 ⁇ -0.5, and more specifically, may satisfy -1.06 ⁇ R3/R4 ⁇ -0.62.
- the effective focal length f of the imaging lens group and the effective focal length f3 of the third lens may satisfy:
- the effective focal length f of the imaging lens group and the effective focal length f5 of the fifth lens may satisfy:
- astigmatism can be balanced, image quality can be improved, and CRA matching can be improved.
- the effective focal length f of the imaging lens group and the radius of curvature R9 of the fifth lens object side may satisfy: f/R9 ⁇ 1.0, and more specifically, f/R9 ⁇ 0.81 may be satisfied. : With this configuration, advanced coma and advanced astigmatism can be improved to improve image quality.
- the air interval T23 of the second lens and the third lens on the optical axis and the air interval T34 of the third lens and the fourth lens on the optical axis may satisfy: T23/T34 ⁇ 0.5, Specifically, T23/T34 ⁇ 0.45 can be satisfied.
- T23/T34 ⁇ 0.5 Specifically, T23/T34 ⁇ 0.45 can be satisfied.
- the distance BFL of the fifth lens image side to the imaging plane on the optical axis and the distance TTL of the first lens object side to the imaging surface on the optical axis may satisfy: 0.15 ⁇ BFL/TTL ⁇ 0.3 More specifically, it can satisfy 0.19 ⁇ BFL / TTL ⁇ 0.25.
- the lens can be miniaturized while reducing the interaction between the lens and the motor and the chip, keeping the appearance of the lens clean and reducing the optical effective surface.
- the effective focal length f of the imaging lens group and the distance TTL of the first lens object side to the imaging surface on the optical axis may satisfy: TTL/f ⁇ 1.0, and more specifically, TTL/f ⁇ 0.97.
- the imaging lens group system may also be provided with an aperture STO for limiting the beam to adjust the amount of incoming light.
- an aperture STO for limiting the beam to adjust the amount of incoming light.
- the aperture STO can be placed at any lens position as desired, i.e., the arrangement of the aperture STO should not be limited to the position shown in the drawings.
- the optical imaging lens set according to the above-described embodiments of the present application may employ a plurality of lenses, such as the five sheets described above.
- the aperture of the optical imaging lens system can be effectively expanded, the system sensitivity can be reduced, and the lens can be ultra-thin.
- sexuality and miniaturization and improved image quality make the optical imaging lens set system more advantageous for production processing and applicable to portable electronic products.
- at least one of the mirror faces of each lens is an aspherical mirror.
- Aspherical lenses are characterized by: curvature from the center of the lens to the periphery It is continuously changing.
- the aspherical lens Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality. In addition, the use of aspherical lenses can also effectively reduce the number of lenses in an optical system.
- the number of components of the lens can be varied to achieve the various results and advantages described below without departing from the technical solutions claimed herein.
- the imaging lens group is not limited to including five lenses.
- the imaging lens set can also include other numbers of lenses if desired.
- FIG. 1 is a schematic view showing the structure of an imaging lens group according to Embodiment 1 of the present application.
- Embodiment 1 of the imaging lens group sequentially includes two imaging lens groups from the object side to the imaging side along the optical axis, wherein the first lens group includes the image lens from the object side to the imaging side along the optical axis.
- the first lens E1, the second lens E2, and the third lens E3 are sequentially arranged;
- the second lens group includes a fourth lens E4 and a fifth lens E5 which are sequentially arranged from the object side to the imaging side along the optical axis.
- the first lens group may have a positive power and the second lens group may have a negative power.
- the first lens E1 has an object side surface S1 and an image side surface S2; the second lens E2 has an object side surface S3 and an image side surface S4; the third lens E3 has an object side surface S5 and an image side surface S6; and the fourth lens E4 has an object side surface S7 and an image side surface S8; and the fifth lens E5 has an object side surface S9 and an image side surface S10.
- the first lens may have a positive power with a convex side; the second lens may have a negative power; the third lens may optionally have a positive power or a negative power; The lens may have a negative power; and the fifth lens may optionally have a positive power or a negative power with the object side being convex at the paraxial.
- the imaging lens group may further be provided with a filter E6 having an object side surface S11 and an image side surface S12 for filtering out infrared light.
- a filter E6 having an object side surface S11 and an image side surface S12 for filtering out infrared light.
- an aperture STO is further provided to adjust the amount of light entering, thereby improving the imaging quality of the system. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
- Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 1.
- each aspherical surface type x is defined by the following formula:
- x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
- k is the conic coefficient (given in Table 1 above);
- Ai is the correction coefficient of the a-th order of the aspheric surface.
- Table 2 below shows the higher order coefficient A4, A6, A8, A10, A12, A14 and A16 of each spherical or aspherical surface S1-S10 which can be used for each lens in the embodiment 1.
- the effective focal lengths f1 to f5 of the lenses in Embodiment 1, the effective focal length f of the imaging lens group, the object side S1 of the first lens E1, and the imaging surface S13 of the imaging lens group on the optical axis are shown in Table 3 below. Distance TTL and half of the maximum field of view of the imaging lens set HFOV.
- 0.23; the effective focal length f of the imaging lens group and the effective focal length f5 of the fifth lens E5 satisfy
- 2A shows an axial chromatic aberration curve of the imaging lens group of Embodiment 1, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
- 2B shows an astigmatism curve of the imaging lens group of Example 1, which shows meridional field curvature and sagittal image plane curvature.
- 2C shows a distortion curve of the imaging lens group of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
- 2D shows a magnification chromatic aberration curve of the imaging lens group of Example 1, which shows the deviation of different image heights on the imaging surface after the light passes through the imaging lens group.
- the imaging lens group according to Embodiment 1 can achieve miniaturization, good image quality, and low sensitivity.
- Embodiment 2 of the above-described imaging lens group of the present application is described below with reference to FIGS. 3 to 4D.
- the imaging lens set described in the respective embodiments is the same as the arrangement of the imaging lens group described in Embodiment 1. For the sake of brevity, a description similar to that of Embodiment 1 will be omitted.
- FIG. 3 is a schematic view showing the structure of an imaging lens group according to Embodiment 2 of the present application.
- the imaging lens group according to Embodiment 2 sequentially includes two imaging lens groups from the object side to the imaging side along the optical axis, wherein the first lens group includes the object side to the imaging side along the optical axis.
- the first lens E1, the second lens E2, and the third lens E3 are sequentially arranged, and the second lens group includes a fourth lens E4 and a fifth lens E5 which are sequentially arranged from the object side to the image side along the optical axis.
- Table 4 below shows the surface type, radius of curvature, thickness, and thickness of each lens in this embodiment 2. Material and conical coefficient.
- Table 5 shows the higher order coefficient A4, A6, A8, A10, A12, A14, A16, A18, and A20 of each spherical or aspherical surface S1-S10 which can be used for each lens in this Embodiment 2.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Table 6 shows the effective focal lengths f1 to f5 of the lenses in Embodiment 2, the effective focal length f of the imaging lens group, the object side surface S1 of the first lens E1, and the distance of the imaging surface S13 of the imaging lens group on the optical axis. TTL and half of the maximum field of view of the imaging lens set HFOV.
- 4A shows an axial chromatic aberration curve of the imaging lens group of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
- 4B shows an astigmatism curve of the imaging lens group of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 4C shows a distortion curve of the imaging lens group of Example 2, which shows distortion magnitude values in the case of different viewing angles.
- 4D shows a magnification chromatic aberration curve of the imaging lens group of Embodiment 2, which shows deviations of different image heights on the imaging surface after the light passes through the imaging lens group.
- the imaging lens group according to Embodiment 2 can realize miniaturization, good image quality, and low sensitivity.
- FIG. 5 is a schematic view showing the structure of an imaging lens group according to Embodiment 3 of the present application.
- the imaging lens group according to Embodiment 3 sequentially includes two imaging lens groups from the object side to the imaging side along the optical axis, wherein the first lens group includes the object side to the imaging side along the optical axis.
- the first lens E1, the second lens E2, and the third lens E3 are sequentially arranged, and the second lens group includes a fourth lens E4 and a fifth lens E5 which are sequentially arranged from the object side to the image side along the optical axis.
- Table 7 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 3.
- Table 8 shows the higher order coefficient A4, A6, A8, A10, A12, A14, A16, A18, and A20 of each spherical or aspherical surface S1-S10 which can be used for each lens in this Embodiment 3.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- the effective focal lengths f1 to f5 of the lenses in Embodiment 3, the effective focal length f of the imaging lens group, the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the imaging lens group on the optical axis are shown in Table 9. TTL and half of the maximum field of view of the imaging lens set HFOV.
- Fig. 6A shows an axial chromatic aberration curve of the imaging lens group of Example 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
- Fig. 6B shows an astigmatism curve of the imaging lens group of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 6C shows a distortion curve of the imaging lens group of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 6D shows a magnification chromatic aberration curve of the imaging lens group of Example 3, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens group.
- the imaging lens group according to Embodiment 3 can realize miniaturization, good image quality, and low sensitivity.
- FIG. 7 is a view showing the structure of an imaging lens group according to Embodiment 4 of the present application.
- the imaging lens group according to Embodiment 4 sequentially includes two imaging lens groups from the object side to the imaging side along the optical axis, wherein the first lens group includes the object side to the imaging side along the optical axis.
- the first lens E1, the second lens E2, and the third lens E3 are sequentially arranged, and the second lens group includes a fourth lens E4 and a fifth lens E5 which are sequentially arranged from the object side to the image side along the optical axis.
- Table 10 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 4.
- Table 11 shows the higher order coefficient A4, A6, A8, A10, A12, A14, A16, A18, and A20 of each spherical or aspherical surface S1-S10 which can be used for each lens in this Embodiment 4.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Table 12 shows the effective focal lengths f1 to f5 of the lenses in Embodiment 4, the effective focal length f of the imaging lens group, the object side surface S1 of the first lens E1, and the distance of the imaging surface S13 of the imaging lens group on the optical axis. TTL and half of the maximum field of view of the imaging lens set HFOV.
- Fig. 8A shows an axial chromatic aberration curve of the imaging lens group of Example 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
- Fig. 8B shows an astigmatism curve of the imaging lens group of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 8C shows a distortion curve of the imaging lens group of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 8D shows a magnification chromatic aberration curve of the imaging lens group of Example 4, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens group.
- the imaging lens group according to Embodiment 4 can be realized. It is now characterized by miniaturization, good image quality and low sensitivity.
- FIG. 9 is a view showing the structure of an imaging lens group according to Embodiment 5 of the present application.
- the imaging lens group according to Embodiment 5 sequentially includes two imaging lens groups from the object side to the imaging side along the optical axis, wherein the first lens group includes the object side to the imaging side along the optical axis.
- the first lens E1, the second lens E2, and the third lens E3 are sequentially arranged, and the second lens group includes a fourth lens E4 and a fifth lens E5 which are sequentially arranged from the object side to the image side along the optical axis.
- Table 13 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 5.
- Table 14 shows the higher order coefficient A4, A6, A8, A10, A12, A14, A16, A18, and A20 of each spherical or aspherical surface S1-S10 which can be used for each lens in the embodiment 5.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Table 15 shows the effective focal lengths f1 to f5 of the lenses in Embodiment 5, the effective focal length f of the imaging lens group, the object side surface S1 of the first lens E1, and the distance of the imaging surface S13 of the imaging lens group on the optical axis. TTL and half of the maximum field of view of the imaging lens set HFOV.
- Fig. 10A shows an axial chromatic aberration curve of the imaging lens group of Example 5, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
- Fig. 10B shows an astigmatism curve of the imaging lens group of Example 5, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 10C shows a distortion curve of the imaging lens group of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 10D shows a magnification chromatic aberration curve of the imaging lens group of Example 5, which shows the deviation of the different image heights on the imaging plane after the light rays pass through the imaging lens group.
- the imaging lens group according to Embodiment 5 can realize miniaturization, good image quality, and low sensitivity.
- FIG. 11 is a view showing the structure of an imaging lens group according to Embodiment 6 of the present application.
- the imaging lens group according to Embodiment 6 is sequentially arranged from the object side to the imaging side along the optical axis.
- the invention comprises two imaging lens groups, wherein the first lens group comprises a first lens E1, a second lens E2 and a third lens E3 arranged in sequence along the optical axis from the object side to the imaging side, the second lens group comprising along The fourth lens E4 and the fifth lens E5 whose optical axes are sequentially arranged from the object side to the imaging side.
- Table 16 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 6.
- Table 17 shows the higher order coefficient A4, A6, A8, A10, A12, A14, A16, A18, and A20 of each spherical or aspherical surface S1-S10 which can be used for each lens in the embodiment 6.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Table 18 shows the effective focal lengths f1 to f5 of the lenses in Embodiment 6, the effective focal length f of the imaging lens group, the distance from the object side S1 of the first lens E1 to the imaging plane S13 of the imaging lens group on the optical axis. TTL and half of the maximum field of view of the imaging lens set HFOV.
- Fig. 12A shows an axial chromatic aberration curve of the imaging lens group of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
- Fig. 12B shows an astigmatism curve of the imaging lens group of Example 6, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 12C shows a distortion curve of the imaging lens group of Example 6, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 12D shows a magnification chromatic aberration curve of the imaging lens group of Example 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens group.
- the imaging lens group according to Embodiment 6 can realize miniaturization, good image quality, and low sensitivity.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种成像镜片组,沿着光轴从物侧至成像侧依序包括第一透镜组和第二透镜组,第一透镜组具有正光焦度;第二透镜组具有负光焦度;第一透镜组沿着光轴从物侧至成像侧依序包括第一透镜(E1)、第二透镜(E2)和第三透镜(E3),第一透镜(E1)具有正光焦度,其物侧面(S1)为凸面;第二透镜(E2)具有负光焦度;第三透镜(E3)具有正光焦度或负光焦度;第二透镜组沿着光轴从物侧至成像侧依序包括第四透镜(E4)和第五透镜(E5),第四透镜(E4)具有负光焦度;第五透镜(E5)具有正光焦度或负光焦度,其物侧面(S9)在近轴处为凸面;成像镜片组的有效焦距f与第四透镜(E4)和第五透镜(E5)的组合焦距f45之间满足:-1.0≤f/f45≤-0.5。通过合理分配各透镜的光焦度、面型、各透镜之间的轴上间距,该成像镜片组能够在小型化的前提下获得良好的成像品质。
Description
相关申请的交叉引用
本申请要求于2017年5月27日提交于中国国家知识产权局(SIPO)的、第201710388372.X号以及第201720605343.X号中国专利申请的优先权和权益,这两个中国专利申请的全部内容通过引用并入本文。
本申请涉及一种成像镜片组,更具体地,涉及一种由五片镜片组成的小型的成像镜片组。
随着消费电子产品的不断更新换代,对于其中的成像镜头品质越发重视。为保证电子产品的轻薄,需要镜头不断小型化,同时需要高像素、高放大倍率等条件。随着双摄概念的提出,长焦与广角镜头相互配合,自动对焦的状态下,在近景以及远景都可得到清晰的高品质图像。
本发明提出了一种可适用于便携式电子产品,小型化的、具有良好成像质量的成像镜片组。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了一种成像镜片组。该成像镜片组沿着光轴从物侧至成像侧依序可包括第一透镜组和第二透镜组,其中,第一透镜组可具有正光焦度;第二透镜组可具有负光焦度。第一透镜组沿着光轴从物侧至成像侧依序可包括第一透镜、第二透镜和第三透镜,其中,第一透镜可具有正光焦度,其物侧面为凸面;第二透镜可
具有负光焦度;以及第三透镜可具有正光焦度或负光焦度。第二透镜组沿着光轴从物侧至成像侧依序可包括第四透镜和第五透镜,其中,第四透镜可具有负光焦度;以及第五透镜可具有正光焦度或负光焦度,其物侧面在近轴处为凸面。成像镜片组的有效焦距f与第四透镜和第五透镜的组合焦距f45之间可满足:-1.0≤f/f45≤-0.5,例如,-0.78≤f/f45≤-0.58。
根据本申请的另一方面,提供了一种成像镜片组。该成像镜片组沿着光轴从物侧至成像侧依序可包括第一透镜组和第二透镜组,其中,第一透镜组可具有正光焦度;第二透镜组可具有负光焦度。第一透镜组沿着光轴从物侧至成像侧依序可包括第一透镜、第二透镜和第三透镜,其中,第一透镜可具有正光焦度,其物侧面为凸面;第二透镜可具有负光焦度;以及第三透镜可具有正光焦度或负光焦度。第二透镜组沿着光轴从物侧至成像侧依序可包括第四透镜和第五透镜,其中,第四透镜可具有负光焦度;以及第五透镜可具有正光焦度或负光焦度,其物侧面在近轴处为凸面。第五透镜像侧面至成像面在光轴上的距离BFL与第一透镜物侧面至成像面在光轴上的距离TTL之间可满足:0.15<BFL/TTL<0.3,例如,0.19≤BFL/TTL≤0.25。
根据本申请的又一方面,提供了一种成像镜片组。该成像镜片组沿着光轴从物侧至成像侧依序可包括第一透镜组和第二透镜组,其中,第一透镜组可具有正光焦度;第二透镜组可具有负光焦度。第一透镜组沿着光轴从物侧至成像侧依序可包括第一透镜、第二透镜和第三透镜,其中,第一透镜可具有正光焦度,其物侧面为凸面;第二透镜可具有负光焦度;以及第三透镜可具有正光焦度或负光焦度。第二透镜组沿着光轴从物侧至成像侧依序可包括第四透镜和第五透镜,其中,第四透镜可具有负光焦度;以及第五透镜可具有正光焦度或负光焦度,其物侧面在近轴处为凸面。成像镜片组的有效焦距f与第一透镜物侧面至成像面在光轴上的距离TTL之间可满足:TTL/f<1.0,例如,TTL/f≤0.97。
根据本申请的实施方式,第二透镜的有效焦距f2与第四透镜的有效焦距f4之间可满足:0.3<f2/f4<1.0,例如,0.36≤f2/f4≤0.62。
根据本申请的实施方式,第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4之间可满足:-1.5<R3/R4<-0.5,例如,-1.06≤R3/R4≤-0.62。
根据本申请的实施方式,成像镜片组的有效焦距f与第三透镜的有效焦距f3之间可满足:|f/f3|<0.5,例如,|f/f3|≤0.33。
根据本申请的实施方式,成像镜片组的有效焦距f与第五透镜的有效焦距f5之间可满足:|f/f5|<0.5,例如,|f/f5≤0.28。
根据本申请的实施方式,成像镜片组的有效焦距f与第五透镜物侧面的曲率半径R9之间可满足:f/R9<1.0,例如,f/R9≤0.81。
根据本申请的实施方式,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜和第四透镜在光轴上的空气间隔T34之间可满足:T23/T34≤0.5,例如,T23/T34≤0.45。
本申请采用了多片(例如,五片)透镜,通过合理分配各透镜的光焦度、面型、各透镜之间的轴上间距等,可使成像镜片组具有小型化、小视场、高放大倍率、良好成像品质、低敏度感、平衡像差中的至少一个有益效果。
通过参照以下附图进行的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1示出了本申请的实施例1的成像镜片组的示意性结构图;
图2A示出了实施例1的成像镜片组的轴上色差曲线;
图2B示出了实施例1的成像镜片组的象散曲线;
图2C示出了实施例1的成像镜片组的畸变曲线;
图2D示出了实施例1的成像镜片组的倍率色差曲线;
图3示出了本申请的实施例2的成像镜片组的示意性结构图;
图4A示出了实施例2的成像镜片组的轴上色差曲线;
图4B示出了实施例2的成像镜片组的象散曲线;
图4C示出了实施例2的成像镜片组的畸变曲线;
图4D示出了实施例2的成像镜片组的倍率色差曲线;
图5示出了本申请的实施例3的成像镜片组的示意性结构图;
图6A示出了实施例3的成像镜片组的轴上色差曲线;
图6B示出了实施例3的成像镜片组的象散曲线;
图6C示出了实施例3的成像镜片组的畸变曲线;
图6D示出了实施例3的成像镜片组的倍率色差曲线;
图7示出了本申请的实施例4的成像镜片组的示意性结构图;
图8A示出了实施例4的成像镜片组的轴上色差曲线;
图8B示出了实施例4的成像镜片组的象散曲线;
图8C示出了实施例4的成像镜片组的畸变曲线;
图8D示出了实施例4的成像镜片组的倍率色差曲线;
图9示出了本申请的实施例5的成像镜片组的示意性结构图;
图10A示出了实施例5的成像镜片组的轴上色差曲线;
图10B示出了实施例5的成像镜片组的象散曲线;
图10C示出了实施例5的成像镜片组的畸变曲线;
图10D示出了实施例5的成像镜片组的倍率色差曲线。
图11示出了本申请的实施例6的成像镜片组的示意性结构图;
图12A示出了实施例6的成像镜片组的轴上色差曲线;
图12B示出了实施例6的成像镜片组的象散曲线;
图12C示出了实施例6的成像镜片组的畸变曲线;
图12D示出了实施例6的成像镜片组的倍率色差曲线。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,
在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状,但应理解各部件的尺寸不由附图限制,而是可在一定的范围内适当调整。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
此外,近轴区域是指光轴附近的区域。第一透镜是最靠近物体的透镜而第五透镜是最靠近感光元件的透镜。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以/可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本发明所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
本申请提供了一种成像镜片组。根据本申请的示例性实施方式,该成像镜片组沿着光轴从物侧至成像侧可依次设置有第一透镜组和第
二透镜组。在示例性实施方式中,第一透镜组可具有正光焦度,第二透镜组可具有负光焦度。
在示例性实施方式中,第一透镜组沿着光轴从物侧至成像侧可依次设置有第一透镜、第二透镜和第三透镜。第二透镜组沿着光轴从物侧至成像侧可依次设置有第四透镜和第五透镜。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面为凸面;第二透镜可具有负光焦度;第三透镜可选地可具有正光焦度或负光焦度;第四透镜可具有负光焦度;以及第五透镜可选地可具有正光焦度或负光焦度,其物侧面在近轴处为凸面。通过合理的控制系统中各个透镜的光焦度的正负分配,可有效地平衡控制系统的低阶像差,使得系统获得较优的成像品质。通过上述配置,第一透镜组与第二透镜组形成一组摄远透镜,可得到小景深以及高放大倍率,使成像透镜组具备长焦特性。
在示例性实施方式中,成像镜片组的有效焦距f与第四透镜和第五透镜的组合焦距f45之间可满足:-1.0≤f/f45≤-0.5,更具体地,可满足-0.78≤f/f45≤-0.58。通过合理配置有效焦距f和f45组合焦距,可有效减小第一透镜组的光焦度,降低高级球差,同时可平衡高级象散。
在示例性实施方式中,第二透镜的有效焦距f2与第四透镜的有效焦距f4之间可满足:0.3<f2/f4<1.0,更具体地,可满足0.36≤f2/f4≤0.62。通过合理配置第二透镜和第四透镜的光焦度,可平衡高级慧差和高级象散。
在示例性实施方式中,第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4之间可满足:-1.5<R3/R4<-0.5,更具体地,可满足-1.06≤R3/R4≤-0.62。通过这样的配置,可对球差进行平衡,减小彗差,避免周边斜率变化较大,进而降低杂散光的产生。
在示例性实施方式中,成像镜片组的有效焦距f与第三透镜的有效焦距f3之间可满足:|f/f3|<0.5,更具体地,可满足|f/f3|≤0.33。通过这样的配置,可减小光线偏折角度,矫正镜头像差,降低公差敏感性,规避杂散光。
在示例性实施方式中,成像镜片组的有效焦距f与第五透镜的有效焦距f5之间可满足:|f/f5|<0.5,更具体地,可满足|f/f5≤0.28。通过这样的配置,可平衡象散,提升成像质量,改善CRA匹配性。
在示例性实施方式中,成像镜片组的有效焦距f与第五透镜物侧面的曲率半径R9之间可满足:f/R9<1.0,更具体地,可满足f/R9≤0.81。:通过这样的配置,可改善高级慧差和高级象散,提升成像品质。
在示例性实施方式中,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜和第四透镜在光轴上的空气间隔T34之间可满足:T23/T34≤0.5,更具体地,可满足T23/T34≤0.45。通过这样的配置,可减小光线偏折角,减小高级像差,提升轴上象质,降低敏感度。
在示例性实施方式中,第五透镜像侧面至成像面在光轴上的距离BFL与第一透镜物侧面至成像面在光轴上的距离TTL之间可满足:0.15<BFL/TTL<0.3,更具体地,可满足0.19≤BFL/TTL≤0.25。通过这样的配置,可保持镜头小型化,同时减少镜头与马达以及芯片的相互影响,保持镜头外观清洁,减小光学有效面。
在示例性实施方式中,成像镜片组的有效焦距f与第一透镜物侧面至成像面在光轴上的距离TTL之间可满足:TTL/f<1.0,更具体地,可满足TTL/f≤0.97。通过这样的配置,可维持长焦镜头小型化,实现小视场,高放大倍率。
在示例性实施方式中,成像镜片组系统还可设置有用于限制光束的光圈STO,以调节进光量。本领域技术人员应当理解的是,光圈STO可根据需要设置于任意透镜位置处,即,光圈STO的设置不应局限于附图中所示的位置。
根据本申请的上述实施方式的光学成像镜片组可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效扩大光学成像镜片组系统的孔径、降低系统敏感度、保证镜头的超薄性和小型化并提高成像质量,从而使得光学成像镜片组系统更有利于生产加工并且可适用于便携式电子产品。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:曲率从透镜中心到周边
是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。
然而,本领域的技术人员应当理解,在不背离本申请要求保护的技术方案的情况下,可改变镜头的构成数量,来获得下面描述的各种结果和优点。例如,虽然在第一实施方式中的描述中采用由五个透镜为例进行了描述,但是该成像镜片组不限于包括五个透镜。如果需要,该成像镜片组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的成像镜片组的具体实施例。
实施例1
以下参照图1至图2D描述本申请上述实施方式的成像镜片组的实施例1。图1示出了根据本申请实施例1的成像镜片组的结构示意图。
如图1所示,成像镜片组的实施例1沿着光轴从物侧至成像侧依序包括两个成像镜片组,其中,第一镜片组包括沿着光轴从物侧至成像侧依序排列的第一透镜E1、第二透镜E2和第三透镜E3;第二镜片组包括沿着光轴从物侧至成像侧依序排列的第四透镜E4和第五透镜E5。第一透镜组可具有正光焦度,第二透镜组可具有负光焦度。
第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。在该实施例中,第一透镜可具有正光焦度,其物侧面为凸面;第二透镜可具有负光焦度;第三透镜可选地可具有正光焦度或负光焦度;第四透镜可具有负光焦度;以及第五透镜可选地可具有正光焦度或负光焦度,其物侧面在近轴处为凸面。该成像镜片组还可设置有用于滤除红外光的、具有物侧面S11和像侧面S12的滤光片E6。
在本实施例的成像镜片组中,还设置有光圈STO以调节进光量,提高系统的成像品质。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了该实施例1中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表1
参照表1,第二透镜E2物侧面S3的曲率半径R3与第二透镜E2像侧面S4的曲率半径R4之间满足R3/R4=-0.88;以及第二透镜E2和第三透镜E3在光轴上的空气间隔T23与第三透镜E3和第四透镜E4在光轴上的空气间隔T34之间满足T23/T34=0.45。
本实施例采用了5片透镜作为示例,通过合理分配5个镜片的焦距与面型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的大孔径与小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表2中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了可用于该实施例1中的各透镜的各球面或非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14和A16。
表2
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | 4.1590E-01 | -6.1728E-01 | 9.6355E-01 | -9.8614E-01 | 5.8615E-01 | -0.145221433 | 0 |
S2 | -1.2034E-02 | 2.7259E-02 | 2.8481E-02 | -1.0015E-01 | 1.2624E-01 | -0.068926453 | 0 |
S3 | 8.4089E-03 | 1.8618E-01 | -1.8103E-01 | -3.0275E-02 | 1.4363E-01 | -0.094734793 | 0 |
S4 | 2.8567E-02 | 3.7633E-01 | -7.5548E-01 | 1.5246E+00 | -1.7883E+00 | 0.884106151 | 0 |
S5 | -1.7781E-01 | 1.9272E-01 | -9.8119E-02 | 2.3987E-01 | -2.8074E-01 | 0.097636216 | 0 |
S6 | -1.5903E-01 | 2.2526E-01 | -2.5529E-01 | 4.1229E-01 | -3.1672E-01 | 0.083066222 | 0 |
S7 | -2.0534E-01 | 2.9911E-02 | 5.4869E-04 | 8.6485E-03 | -4.1934E-03 | 0.00056183 | 0 |
S8 | -1.2732E-01 | 3.4079E-02 | -5.8550E-03 | -2.9483E-04 | 4.6048E-04 | -0.000113079 | 9.1232E-06 |
S9 | -6.5236E-02 | 4.0104E-02 | -1.7119E-02 | 4.0871E-03 | -5.3463E-04 | 3.65912E-05 | -1.0572E-06 |
S10 | -6.4868E-02 | 1.6621E-02 | 2.4095E-03 | -2.8267E-03 | 7.2712E-04 | -8.17E-05 | 3.5100E-06 |
下表3中示出了实施例1中的各透镜的有效焦距f1至f5、成像镜片组的有效焦距f、第一透镜E1的物侧面S1至成像镜片组的成像面S13在光轴上的距离TTL以及成像镜片组的最大视场角的一半HFOV。
表3
f1(mm) | 2.88 | f(mm) | 5.49 |
f2(mm) | -4.40 | TTL(mm) | 5.31 |
f3(mm) | 23.87 | HFOV(゜) | 30.5 |
f4(mm) | -7.69 | ||
f5(mm) | 38.55 |
参照表1和表3可知,成像镜片组的有效焦距f与第四透镜E4和第五透镜E5的组合焦距f45之间满足f/f45=-0.58;第二透镜E2的有效焦距f2与第四透镜E4的有效焦距f4之间满足f2/f4=0.57;成像镜
片组的有效焦距f与第五透镜E5物侧面S9的曲率半径R9之间满足f/R9=0.65;成像镜片组的有效焦距f与第三透镜E3的有效焦距f3之间满足|f/f3|=0.23;成像镜片组的有效焦距f与第五透镜E5的有效焦距f5之间满足|f/f5|=0.14;第五透镜E5像侧面S10至成像面S13在光轴上的距离BFL与第一透镜E1物侧面S1至成像面S13在光轴上的距离TTL之间满足BFL/TTL=0.25;以及成像镜片组的有效焦距f与第一透镜E1物侧面S1至成像面S13在光轴上的距离TTL之间满足TTL/f=0.97。
图2A示出了实施例1的成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的成像镜片组的倍率色差曲线,其表示光线经由成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图2A至图2D可以看出,根据实施例1的成像镜片组可实现小型化、良好的成像质量且低敏感性的特征。
实施例2
以下参照图3至图4D描述本申请的上述成像镜片组的实施例2。除了成像镜片组的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的成像镜片组与实施例1中描述的成像镜片组的布置结构相同。为了简洁起见,将省略部分与实施例1相似的描述。
图3示出了根据本申请实施例2的成像镜片组的结构示意图。如图3所示,根据实施例2的成像镜片组沿着光轴从物侧至成像侧依序包括两个成像镜片组,其中,第一镜片组包括沿着光轴从物侧至成像侧依序排列的第一透镜E1、第二透镜E2和第三透镜E3,第二镜片组包括沿着光轴从物侧至成像侧依序排列的第四透镜E4和第五透镜E5。下表4示出了该实施例2中的各透镜的表面类型、曲率半径、厚度、
材料和圆锥系数。表5示出了可用于该实施例2中的各透镜的各球面或非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6中示出了实施例2中的各透镜的有效焦距f1至f5、成像镜片组的有效焦距f、第一透镜E1的物侧面S1至成像镜片组的成像面S13在光轴上的距离TTL以及成像镜片组的最大视场角的一半HFOV。
表4
表5
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 4.2050E-01 | -7.3219E-01 | 1.6805E+00 | -3.2484E+00 | 4.7493E+00 | -4.7776E+00 | 3.0649E+00 | -1.1108E+00 | 1.7075E-01 |
S2 | -1.6798E-02 | 1.0165E-01 | -5.5495E-01 | 2.2228E+00 | -5.5595E+00 | 8.7348E+00 | -8.4115E+00 | 4.5437E+00 | -1.0592E+00 |
S3 | 1.6283E-02 | 5.3669E-02 | 4.7048E-01 | -2.4870E+00 | 6.4952E+00 | -1.0364E+01 | 1.0001E+01 | -5.3293E+00 | 1.1883E+00 |
S4 | 4.7864E-02 | 2.4123E-01 | -4.1962E-01 | 8.7440E-01 | -2.8650E-01 | -3.4161E+00 | 8.6059E+00 | -8.6053E+00 | 3.3036E+00 |
S5 | -1.5759E-01 | 1.1379E-01 | -6.3794E-02 | 7.0193E-01 | -2.4291E+00 | 4.6734E+00 | -5.2284E+00 | 3.1336E+00 | -7.7553E-01 |
S6 | -1.4668E-01 | 3.0739E-01 | -9.7818E-01 | 3.0271E+00 | -5.8956E+00 | 7.3616E+00 | -5.7081E+00 | 2.4895E+00 | -4.6630E-01 |
S7 | -1.4538E-01 | 1.0646E-04 | 3.2207E-02 | -3.9778E-02 | 3.7602E-02 | -2.0688E-02 | 6.2202E-03 | -9.4020E-04 | 5.42048E-05 |
S8 | -9.3019E-02 | 1.6767E-02 | 2.0125E-03 | -9.2111E-04 | -1.9679E-03 | 1.6298E-03 | -5.3021E-04 | 8.1029E-05 | -4.8272E-06 |
S9 | -6.1503E-02 | 3.1835E-02 | -7.2630E-03 | -2.2901E-03 | 1.8182E-03 | -4.5900E-04 | 5.4936E-05 | -2.7631E-06 | 1.9396E-08 |
S10 | -6.8956E-02 | 2.6831E-02 | -9.8077E-03 | 4.9309E-03 | -2.1351E-03 | 5.6256E-04 | -8.4676E-05 | 6.8050E-06 | -2.2856E-07 |
表6
f1(mm) | 2.89 | f(mm) | 5.48 |
f2(mm) | -4.99 | TTL(mm) | 5.31 |
f3(mm) | 62.25 | HFOV(゜) | 30.7 |
f4(mm) | -8.06 | ||
f5(mm) | 51.29 |
图4A示出了实施例2的成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的成像镜片组的倍率色差曲线,其表示光线经由成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图4A至图4D可以看出,根据实施例2的成像镜片组可实现小型化、良好的成像质量且低敏感性的特征。
实施例3
以下参照图5至图6D描述本申请的上述成像镜片组的实施例3。图5示出了根据本申请实施例3的成像镜片组的结构示意图。如图5所示,根据实施例3的成像镜片组沿着光轴从物侧至成像侧依序包括两个成像镜片组,其中,第一镜片组包括沿着光轴从物侧至成像侧依序排列的第一透镜E1、第二透镜E2和第三透镜E3,第二镜片组包括沿着光轴从物侧至成像侧依序排列的第四透镜E4和第五透镜E5。
下表7示出了该实施例3中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表8示出了可用于该实施例3中的各透镜的各球面或非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9中示出了实施例3中的各透镜的有效焦距f1至f5、成像镜片组的有效焦距f、第一透镜E1的物侧面S1至成像镜片组的成像面S13在光轴上的距离TTL以及成像镜片组的最大视场角的一半HFOV。
表7
表8
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 4.1524E-01 | -7.4419E-01 | 1.7702E+00 | -3.5984E+00 | 5.5755E+00 | -6.0101E+00 | 4.1924E+00 | -1.6897E+00 | 2.9883E-01 |
S2 | -1.2009E-02 | 7.8011E-02 | -3.7994E-01 | 1.4119E+00 | -3.3864E+00 | 5.1703E+00 | -4.8537E+00 | 2.5573E+00 | -5.7914E-01 |
S3 | 1.1402E-02 | 8.0007E-02 | 2.3759E-01 | -1.5432E+00 | 4.0190E+00 | -6.0205E+00 | 5.2959E+00 | -2.5166E+00 | 4.8710E-01 |
S4 | 4.2995E-02 | 2.4061E-01 | -6.5634E-01 | 2.3092E+00 | -5.6113E+00 | 8.9388E+00 | -8.4466E+00 | 4.2247E+00 | -7.8311E-01 |
S5 | -1.5521E-01 | 1.2099E-01 | -2.4229E-01 | 1.2642E+00 | -3.4602E+00 | 6.0226E+00 | -6.3983E+00 | 3.7362E+00 | -9.2208E-01 |
S6 | -1.1632E-01 | 1.9477E-01 | -5.6898E-01 | 1.8268E+00 | -3.5506E+00 | 4.4791E+00 | -3.5315E+00 | 1.5692E+00 | -3.0249E-01 |
S7 | -1.4945E-01 | 3.1875E-02 | -4.9977E-02 | 6.8214E-02 | -5.2352E-02 | 2.6280E-02 | -8.3396E-03 | 1.4965E-03 | -1.1546E-04 |
S8 | -8.3742E-02 | 1.7280E-02 | -1.4135E-02 | 1.7387E-02 | -1.2299E-02 | 4.9697E-03 | -1.1495E-03 | 1.4217E-04 | -7.3182E-06 |
S9 | -6.0152E-02 | 3.8631E-02 | -1.7097E-02 | 4.8801E-03 | -1.0592E-03 | 1.9681E-04 | -2.7825E-05 | 2.3684E-06 | -8.6669E-08 |
S10 | -4.3112E-02 | 7.3788E-03 | -3.2209E-04 | 5.4347E-04 | -3.6486E-04 | 9.1289E-05 | -1.1142E-05 | 6.7297E-07 | -1.6184E-08 |
表9
f1(mm) | 2.83 | f(mm) | 5.48 |
f2(mm) | -4.25 | TTL(mm) | 5.31 |
f3(mm) | 22.62 | HFOV(゜) | 30.6 |
f4(mm) | -8.62 | ||
f5(mm) | -85.37 |
图6A示出了实施例3的成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的成像镜片组的倍率色差曲线,其表示光线经由成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图6A至图6D可以看出,根据实施例3的成像镜片组可实现小型化、良好的成像质量且低敏感性的特征。
实施例4
以下参照图7至图8D描述本申请的上述成像镜片组的实施例4。图7示出了根据本申请实施例4的成像镜片组的结构示意图。如图7所示,根据实施例4的成像镜片组沿着光轴从物侧至成像侧依序包括两个成像镜片组,其中,第一镜片组包括沿着光轴从物侧至成像侧依序排列的第一透镜E1、第二透镜E2和第三透镜E3,第二镜片组包括沿着光轴从物侧至成像侧依序排列的第四透镜E4和第五透镜E5。
下表10示出了该实施例4中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表11示出了可用于该实施例4中的各透镜的各球面或非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12中示出了实施例4中的各透镜的有效焦距f1至f5、成像镜片组的有效焦距f、第一透镜E1的物侧面S1至成像镜片组的成像面S13在光轴上的距离TTL以及成像镜片组的最大视场角的一半HFOV。
表10
表11
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 4.1168E-01 | -7.3665E-01 | 1.7487E+00 | -3.5538E+00 | 5.5163E+00 | -5.9680E+00 | 4.1859E+00 | -1.6995E+00 | 3.0346E-01 |
S2 | -1.0317E-02 | 7.2165E-02 | -3.4916E-01 | 1.2846E+00 | -3.0510E+00 | 4.6162E+00 | -4.2951E+00 | 2.2432E+00 | -5.0330E-01 |
S3 | 1.3172E-02 | 7.2797E-02 | 2.0940E-01 | -1.3656E+00 | 3.5371E+00 | -5.2542E+00 | 4.5733E+00 | -2.1455E+00 | 4.0801E-01 |
S4 | 5.0700E-02 | 2.0417E-01 | -5.4719E-01 | 1.8994E+00 | -4.4621E+00 | 6.8427E+00 | -6.1422E+00 | 2.8439E+00 | -4.4810E-01 |
S5 | -1.4561E-01 | 1.1719E-01 | -2.5713E-01 | 1.2581E+00 | -3.3013E+00 | 5.5925E+00 | -5.8305E+00 | 3.3563E+00 | -8.1976E-01 |
S6 | -1.0628E-01 | 1.7413E-01 | -4.8834E-01 | 1.5359E+00 | -2.8920E+00 | 3.5600E+00 | -2.7560E+00 | 1.2084E+00 | -2.3179E-01 |
S7 | -1.4188E-01 | 2.5341E-02 | -4.6865E-02 | 6.6386E-02 | -5.0989E-02 | 2.4959E-02 | -7.5636E-03 | 1.2831E-03 | -9.3491E-05 |
S8 | -7.9348E-02 | 1.1092E-02 | -1.0635E-02 | 1.6300E-02 | -1.2087E-02 | 4.9106E-03 | -1.1299E-03 | 1.3884E-04 | -7.1158E-06 |
S9 | -6.3294E-02 | 4.1487E-02 | -1.8660E-02 | 5.4822E-03 | -1.2260E-03 | 2.2756E-04 | -3.1242E-05 | 2.5706E-06 | -9.1493E-08 |
S10 | -4.2359E-02 | 5.2242E-03 | 1.6123E-03 | -7.6425E-04 | 1.5964E-04 | -2.9569E-05 | 4.7795E-06 | -4.4546E-07 | 1.6349E-08 |
表12
f1(mm) | 2.84 | f(mm) | 5.48 |
f2(mm) | -4.19 | TTL(mm) | 5.31 |
f3(mm) | 20.10 | HFOV(゜) | 30.6 |
f4(mm) | -9.48 | ||
f5(mm) | -39.51 |
图8A示出了实施例4的成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的成像镜片组的倍率色差曲线,其表示光线经由成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图8A至图8D可以看出,根据实施例4的成像镜片组可实
现小型化、良好的成像质量且低敏感性的特征。
实施例5
以下参照图9至图10D描述本申请的上述成像镜片组的实施例5。图9示出了根据本申请实施例5的成像镜片组的结构示意图。如图9所示,根据实施例5的成像镜片组沿着光轴从物侧至成像侧依序包括两个成像镜片组,其中,第一镜片组包括沿着光轴从物侧至成像侧依序排列的第一透镜E1、第二透镜E2和第三透镜E3,第二镜片组包括沿着光轴从物侧至成像侧依序排列的第四透镜E4和第五透镜E5。
下表13示出了该实施例5中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表14示出了可用于该实施例5中的各透镜的各球面或非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15中示出了实施例5中的各透镜的有效焦距f1至f5、成像镜片组的有效焦距f、第一透镜E1的物侧面S1至成像镜片组的成像面S13在光轴上的距离TTL以及成像镜片组的最大视场角的一半HFOV。
表13
表14
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 4.0041E-01 | -7.0749E-01 | 1.6547E+00 | -3.3189E+00 | 5.0945E+00 | -5.4596E+00 | 3.7986E+00 | -1.5318E+00 | 2.7199E-01 |
S2 | -6.4119E-03 | 6.5443E-02 | -3.1897E-01 | 1.1579E+00 | -2.7161E+00 | 4.0619E+00 | -3.7367E+00 | 1.9299E+00 | -4.2823E-01 |
S3 | 1.4802E-02 | 7.1979E-02 | 9.8156E-02 | -8.4583E-01 | 2.2316E+00 | -3.2583E+00 | 2.7343E+00 | -1.2101E+00 | 2.0754E-01 |
S4 | 6.4560E-02 | 1.4448E-01 | -4.5426E-01 | 1.7448E+00 | -4.3049E+00 | 6.9228E+00 | -6.7009E+00 | 3.5536E+00 | -7.6807E-01 |
S5 | -1.2953E-01 | 1.1317E-01 | -2.3798E-01 | 1.0348E+00 | -2.4820E+00 | 4.0052E+00 | -4.0925E+00 | 2.3475E+00 | -5.7843E-01 |
S6 | -8.4495E-02 | 1.3325E-01 | -2.9341E-01 | 8.5003E-01 | -1.3964E+00 | 1.5454E+00 | -1.1279E+00 | 4.9236E-01 | -1.0127E-01 |
S7 | -1.1744E-01 | -4.2185E-03 | -5.5100E-03 | 1.4401E-02 | -7.3035E-03 | 4.1080E-04 | 1.0007E-03 | -3.5066E-04 | 3.5649E-05 |
S8 | -7.1518E-02 | -3.1682E-03 | 4.3115E-03 | 4.8771E-03 | -5.9242E-03 | 2.6387E-03 | -6.1343E-04 | 7.5367E-05 | -3.9200E-06 |
S9 | -7.0617E-02 | 4.8901E-02 | -2.3719E-02 | 8.4964E-03 | -2.4257E-03 | 5.1180E-04 | -6.9877E-05 | 5.3706E-06 | -1.7602E-07 |
S10 | -4.1002E-02 | -1.5550E-03 | 7.8805E-03 | -4.5865E-03 | 1.5902E-03 | -3.4679E-04 | 4.5494E-05 | -3.2388E-06 | 9.5452E-08 |
表15
f1(mm) | 2.86 | f(mm) | 5.48 |
f2(mm) | -4.13 | TTL(mm) | 5.31 |
f3(mm) | 17.93 | HFOV(゜) | 30.6 |
f4(mm) | -10.86 | ||
f5(mm) | -22.87 |
图10A示出了实施例5的成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的成像镜片组的倍率色差曲线,其表示光线经由成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图10A至图10D可以看出,根据实施例5的成像镜片组可实现小型化、良好的成像质量且低敏感性的特征。
实施例6
以下参照图11至图12D描述本申请的上述成像镜片组的实施例6。图11示出了根据本申请实施例6的成像镜片组的结构示意图。如图11所示,根据实施例6的成像镜片组沿着光轴从物侧至成像侧依序
包括两个成像镜片组,其中,第一镜片组包括沿着光轴从物侧至成像侧依序排列的第一透镜E1、第二透镜E2和第三透镜E3,第二镜片组包括沿着光轴从物侧至成像侧依序排列的第四透镜E4和第五透镜E5。
下表16示出了该实施例6中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表17示出了可用于该实施例6中的各透镜的各球面或非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18中示出了实施例6中的各透镜的有效焦距f1至f5、成像镜片组的有效焦距f、第一透镜E1的物侧面S1至成像镜片组的成像面S13在光轴上的距离TTL以及成像镜片组的最大视场角的一半HFOV。
表16
表17
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.9105E-01 | -6.8508E-01 | 1.5736E+00 | -3.0977E+00 | 4.6725E+00 | -4.927431937 | 3.3763E+00 | -1.3410E+00 | 2.3444E-01 |
S2 | -4.0284E-03 | 5.9779E-02 | -2.6972E-01 | 9.6042E-01 | -2.2396E+00 | 3.33486289 | -3.0553E+00 | 1.5723E+00 | -3.4812E-01 |
S3 | 1.0186E-02 | 1.0152E-01 | -3.3517E-02 | -4.2581E-01 | 1.2888E+00 | -1.886534514 | 1.5203E+00 | -6.2199E-01 | 8.9603E-02 |
S4 | 6.9879E-02 | 1.0726E-01 | -3.0311E-01 | 1.1620E+00 | -2.8741E+00 | 4.677031086 | -4.5773E+00 | 2.4657E+00 | -5.5150E-01 |
S5 | -1.2953E-01 | 1.0669E-01 | -1.4059E-01 | 5.7399E-01 | -1.2193E+00 | 1.827854006 | -1.8044E+00 | 1.0175E+00 | -2.5035E-01 |
S6 | -7.6873E-02 | 1.1889E-01 | -2.1690E-01 | 6.3079E-01 | -9.9941E-01 | 1.079442954 | -7.8656E-01 | 3.5570E-01 | -7.8761E-02 |
S7 | -1.0012E-01 | -4.8010E-02 | 6.2744E-02 | -6.1166E-02 | 4.9087E-02 | -0.027798623 | 9.7394E-03 | -1.8271E-03 | 1.3894E-04 |
S8 | -6.1333E-02 | -3.5985E-02 | 4.6006E-02 | -2.7365E-02 | 1.0159E-02 | -0.002570854 | 4.2801E-04 | -4.0305E-05 | 1.5230E-06 |
S9 | -7.3110E-02 | 5.2005E-02 | -2.8514E-02 | 1.2435E-02 | -4.1028E-03 | 0.000912179 | -1.2445E-04 | 9.3579E-06 | -2.9779E-07 |
S10 | -4.6777E-02 | 3.1767E-03 | 5.1824E-03 | -3.9358E-03 | 1.6109E-03 | -0.000387498 | 5.3577E-05 | -3.9188E-06 | 1.1707E-07 |
表18
f1(mm) | 2.86 | f(mm) | 5.48 |
f2(mm) | -4.08 | TTL(mm) | 5.31 |
f3(mm) | 16.70 | HFOV(゜) | 30.6 |
f4(mm) | -11.38 | ||
f5(mm) | -19.61 |
图12A示出了实施例6的成像镜片组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图12B示出了实施例6的成像镜片组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的成像镜片组的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的成像镜片组的倍率色差曲线,其表示光线经由成像镜片组后在成像面上的不同的像高的偏差。综上所述并参照图12A至图12D可以看出,根据实施例6的成像镜片组可实现小型化、良好的成像质量且低敏感性的特征。
综上所述,参照表1至表18,实施例1至实施例6的各参数之间分别可满足下表19所示的关系。
表19
公式\实施例 | 1 | 2 | 3 | 4 | 5 | 6 |
f/f45 | -0.58 | -0.59 | -0.73 | -0.74 | -0.77 | -0.78 |
f2/f4 | 0.57 | 0.62 | 0.49 | 0.44 | 0.38 | 0.36 |
R3/R4 | -0.88 | -0.62 | -0.72 | -0.78 | -0.97 | -1.06 |
f/R9 | 0.65 | 0.70 | 0.81 | 0.73 | 0.59 | 0.53 |
f/f3 | 0.23 | 0.09 | 0.24 | 0.27 | 0.31 | 0.33 |
f/f5 | 0.14 | 0.11 | -0.06 | -0.14 | -0.24 | -0.28 |
BFL/TTL | 0.25 | 0.23 | 0.20 | 0.19 | 0.19 | 0.19 |
T23/T34 | 0.45 | 0.44 | 0.35 | 0.35 | 0.32 | 0.31 |
TTL/f | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (27)
- 一种成像镜片组,沿着光轴从物侧至成像侧依序包括第一透镜组和第二透镜组,其特征在于,所述第一透镜组具有正光焦度;以及所述第二透镜组具有负光焦度,其中,所述第一透镜组沿着所述光轴从物侧至成像侧依序包括:第一透镜,具有正光焦度,其物侧面为凸面;第二透镜,具有负光焦度;以及第三透镜,具有正光焦度或负光焦度,其中,所述第二透镜组沿着所述光轴从物侧至成像侧依序包括:第四透镜,具有负光焦度;以及第五透镜,具有正光焦度或负光焦度,其物侧面在近轴处为凸面,以及所述成像镜片组的有效焦距f与所述第四透镜和所述第五透镜的组合焦距f45之间满足:-1.0≤f/f45≤-0.5。
- 如权利要求1所述的成像镜片组,其特征在于,所述第二透镜的有效焦距f2与所述第四透镜的有效焦距f4之间满足:0.3<f2/f4<1.0。
- 如权利要求1或2所述的成像镜片组,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半径R4之间满足:-1.5<R3/R4<-0.5。
- 如权利要求1所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第三透镜的有效焦距f3之间满足:|f/f3|<0.5。
- 如权利要求1所述的成像镜片组,其特征在于,所述成像镜片 组的所述有效焦距f与所述第五透镜的有效焦距f5之间满足:|f/f5|<0.5。
- 如权利要求5所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第五透镜物侧面的曲率半径R9之间满足:f/R9<1.0。
- 如权利要求1所述的成像镜片组,其特征在于,所述第二透镜和所述第三透镜在所述光轴上的空气间隔T23与所述第三透镜和所述第四透镜在所述光轴上的空气间隔T34之间满足:T23/T34≤0.5。
- 如权利要求1所述的成像镜片组,其特征在于,所述第五透镜像侧面至成像面在所述光轴上的距离BFL与所述第一透镜物侧面至成像面在所述光轴上的距离TTL之间满足:0.15<BFL/TTL<0.3。
- 如权利要求8所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第一透镜物侧面至成像面在所述光轴上的距离TTL之间满足:TTL/f<1.0。
- 一种成像镜片组,沿着光轴从物侧至成像侧依序包括第一透镜组和第二透镜组,其特征在于,所述第一透镜组具有正光焦度;以及所述第二透镜组具有负光焦度,其中,所述第一透镜组沿着所述光轴从物侧至成像侧依序包括:第一透镜,具有正光焦度,其物侧面为凸面;第二透镜,具有负光焦度;以及第三透镜,具有正光焦度或负光焦度,其中,所述第二透镜组沿着所述光轴从物侧至成像侧依序包括:第四透镜,具有负光焦度;以及第五透镜,具有正光焦度或负光焦度,其物侧面在近轴处为凸面,以及所述第五透镜像侧面至成像面在所述光轴上的距离BFL与所述第一透镜物侧面至成像面在所述光轴上的距离TTL之间满足:0.15<BFL/TTL<0.3。
- 如权利要求10所述的成像镜片组,其特征在于,所述第二透镜的有效焦距f2与所述第四透镜的有效焦距f4之间满足:0.3<f2/f4<1.0。
- 如权利要求11所述的成像镜片组,其特征在于,所述成像镜片组的有效焦距f与所述第四透镜和所述第五透镜的组合焦距f45之间满足:-1.0≤f/f45≤-0.5。
- 如权利要求10或12所述的成像镜片组,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半径R4之间满足:-1.5<R3/R4<-0.5。
- 如权利要求10所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第三透镜的有效焦距f3之间满足:|f/f3|<0.5。
- 如权利要求10所述的成像镜片组,其特征在于,所述成像镜片组的有效焦距f与所述第五透镜的有效焦距f5之间满足:|f/f5|<0.5。
- 如权利要求14所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第五透镜物侧面的曲率半径R9之间满足:f/R9<1.0。
- 如权利要求10所述的成像镜片组,其特征在于,所述第二透 镜和所述第三透镜在所述光轴上的空气间隔T23与所述第三透镜和所述第四透镜在所述光轴上的空气间隔T34之间满足:T23/T34≤0.5。
- 如权利要求17所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第一透镜物侧面至成像面在所述光轴上的距离TTL之间满足:TTL/f<1.0。
- 一种成像镜片组,沿着光轴从物侧至成像侧依序包括第一透镜组和第二透镜组,其特征在于,所述第一透镜组具有正光焦度;以及所述第二透镜组具有负光焦度,其中,所述第一透镜组沿着所述光轴从物侧至成像侧依序包括:第一透镜,具有正光焦度,其物侧面为凸面;第二透镜,具有负光焦度;以及第三透镜,具有正光焦度或负光焦度,其中,所述第二透镜组沿着所述光轴从物侧至成像侧依序包括:第四透镜,具有负光焦度;以及第五透镜,具有正光焦度或负光焦度,其物侧面在近轴处为凸面,以及所述成像镜片组的所述有效焦距f与所述第一透镜物侧面至成像面在所述光轴上的距离TTL之间满足:TTL/f<1.0。
- 如权利要求19所述的成像镜片组,其特征在于,所述成像镜片组的有效焦距f与所述第四透镜和所述第五透镜的组合焦距f45之间满足:-1.0≤f/f45≤-0.5。
- 如权利要求19所述的成像镜片组,其特征在于,所述第二透镜的有效焦距f2与所述第四透镜的有效焦距f4之间满足:0.3<f2/f4<1.0。
- 如权利要求19或21所述的成像镜片组,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半径R4之间满足:-1.5<R3/R4<-0.5。
- 如权利要求19所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第三透镜的有效焦距f3之间满足:|f/f3|<0.5。
- 如权利要求19所述的成像镜片组,其特征在于,所述成像镜片组的有效焦距f与所述第五透镜的有效焦距f5之间满足:|f/f5|<0.5。
- 如权利要求23所述的成像镜片组,其特征在于,所述成像镜片组的所述有效焦距f与所述第五透镜物侧面的曲率半径R9之间满足:f/R9<1.0。
- 如权利要求19所述的成像镜片组,其特征在于,所述第二透镜和所述第三透镜在所述光轴上的空气间隔T23与所述第三透镜和所述第四透镜在所述光轴上的空气间隔T34之间满足:T23/T34≤0.5。
- 如权利要求19所述的成像镜片组,其特征在于,所述第五透镜像侧面至成像面在所述光轴上的距离BFL与所述第一透镜物侧面至成像面在所述光轴上的距离TTL之间满足:0.15<BFL/TTL<0.3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/074,680 US11372208B2 (en) | 2017-05-27 | 2017-10-23 | Imaging lens assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720605343.X | 2017-05-27 | ||
CN201720605343.XU CN206930822U (zh) | 2017-05-27 | 2017-05-27 | 成像镜片组 |
CN201710388372.XA CN107065142B (zh) | 2017-05-27 | 2017-05-27 | 成像镜片组 |
CN201710388372.X | 2017-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018218856A1 true WO2018218856A1 (zh) | 2018-12-06 |
Family
ID=64455167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/107332 WO2018218856A1 (zh) | 2017-05-27 | 2017-10-23 | 成像镜片组 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11372208B2 (zh) |
WO (1) | WO2018218856A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111308650A (zh) * | 2020-02-24 | 2020-06-19 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115185066A (zh) * | 2019-06-25 | 2022-10-14 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040190158A1 (en) * | 2003-03-31 | 2004-09-30 | Kenichi Sato | Single focus lens |
CN105259636A (zh) * | 2015-10-19 | 2016-01-20 | 浙江舜宇光学有限公司 | 长焦镜头 |
CN205229553U (zh) * | 2013-03-26 | 2016-05-11 | 富士胶片株式会社 | 摄像透镜以及具备摄像透镜的摄像装置 |
CN106646829A (zh) * | 2017-01-04 | 2017-05-10 | 浙江舜宇光学有限公司 | 摄远镜头以及摄像装置 |
CN106680974A (zh) * | 2017-02-17 | 2017-05-17 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN107065142A (zh) * | 2017-05-27 | 2017-08-18 | 浙江舜宇光学有限公司 | 成像镜片组 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI431312B (zh) * | 2011-06-28 | 2014-03-21 | Largan Precision Co Ltd | 光學影像拾取鏡片組 |
TWI438470B (zh) * | 2011-07-22 | 2014-05-21 | Largan Precision Co Ltd | 影像拾取光學鏡片組 |
TWI476435B (zh) * | 2013-03-20 | 2015-03-11 | Largan Precision Co Ltd | 結像鏡頭系統組 |
CN105259640B (zh) | 2015-11-03 | 2018-06-01 | 广东思锐光学股份有限公司 | 一种可交换式镜头及包括该镜头的无反数码相机 |
TWI615627B (zh) * | 2016-11-18 | 2018-02-21 | 大立光電股份有限公司 | 光學攝影鏡片系統、取像裝置及電子裝置 |
-
2017
- 2017-10-23 WO PCT/CN2017/107332 patent/WO2018218856A1/zh active Application Filing
- 2017-10-23 US US16/074,680 patent/US11372208B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040190158A1 (en) * | 2003-03-31 | 2004-09-30 | Kenichi Sato | Single focus lens |
CN205229553U (zh) * | 2013-03-26 | 2016-05-11 | 富士胶片株式会社 | 摄像透镜以及具备摄像透镜的摄像装置 |
CN105259636A (zh) * | 2015-10-19 | 2016-01-20 | 浙江舜宇光学有限公司 | 长焦镜头 |
CN106646829A (zh) * | 2017-01-04 | 2017-05-10 | 浙江舜宇光学有限公司 | 摄远镜头以及摄像装置 |
CN106680974A (zh) * | 2017-02-17 | 2017-05-17 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN107065142A (zh) * | 2017-05-27 | 2017-08-18 | 浙江舜宇光学有限公司 | 成像镜片组 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111308650A (zh) * | 2020-02-24 | 2020-06-19 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN111308650B (zh) * | 2020-02-24 | 2021-10-29 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
US20210055513A1 (en) | 2021-02-25 |
US11372208B2 (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019210672A1 (zh) | 光学成像系统 | |
WO2019114366A1 (zh) | 光学成像镜头 | |
WO2020119172A1 (zh) | 光学成像镜头 | |
WO2020093725A1 (zh) | 摄像光学系统 | |
WO2020073702A1 (zh) | 光学成像镜片组 | |
WO2019210739A1 (zh) | 光学成像镜头 | |
WO2020073703A1 (zh) | 光学透镜组 | |
WO2020119146A1 (zh) | 光学成像镜头 | |
WO2020119171A1 (zh) | 光学成像镜头 | |
WO2019100768A1 (zh) | 光学成像镜头 | |
WO2020134129A1 (zh) | 光学成像系统 | |
WO2018214349A1 (zh) | 摄像镜头 | |
WO2019210740A1 (zh) | 光学成像镜头 | |
WO2020029613A1 (zh) | 光学成像镜头 | |
WO2019007030A1 (zh) | 光学成像镜头 | |
WO2019052220A1 (zh) | 光学成像镜头 | |
WO2019169856A1 (zh) | 摄像镜头组 | |
WO2020042799A1 (zh) | 光学成像镜片组 | |
WO2019218628A1 (zh) | 光学成像镜头 | |
WO2019056817A1 (zh) | 光学成像系统 | |
WO2019137055A1 (zh) | 摄像透镜系统 | |
WO2019192160A1 (zh) | 光学成像镜头 | |
WO2018209890A1 (zh) | 成像镜头 | |
WO2021042954A1 (zh) | 摄像镜头组 | |
WO2018218889A1 (zh) | 光学成像系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17911812 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17911812 Country of ref document: EP Kind code of ref document: A1 |