WO2019007030A1 - 光学成像镜头 - Google Patents
光学成像镜头 Download PDFInfo
- Publication number
- WO2019007030A1 WO2019007030A1 PCT/CN2018/072776 CN2018072776W WO2019007030A1 WO 2019007030 A1 WO2019007030 A1 WO 2019007030A1 CN 2018072776 W CN2018072776 W CN 2018072776W WO 2019007030 A1 WO2019007030 A1 WO 2019007030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical imaging
- imaging lens
- focal length
- satisfy
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/0005—Optical objectives specially designed for the purposes specified below having F-Theta characteristic
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
- G02B26/123—Multibeam scanners, e.g. using multiple light sources or beam splitters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
Definitions
- the present application relates to an optical imaging lens, and more particularly to an optical imaging lens composed of eight lenses.
- the present application proposes an optical imaging lens which is applicable to a portable electronic product and has optical characteristics of a multi-piece ultra-thin large aperture, miniaturization, and good imaging quality.
- an optical imaging lens including a first lens, a second lens, a third lens, a fourth lens, and a second along the optical axis from the object side to the image side.
- the first lens, the second lens, the fifth lens, the seventh lens, and the eighth lens may respectively have a positive power or a negative power; the combined power of the third lens and the fourth lens is a positive power;
- an optical imaging lens including a first lens, a second lens, a third lens, and a fourth lens sequentially from the object side to the image side along the optical axis.
- a fifth lens, a sixth lens, a seventh lens, and an eighth lens wherein the first lens, the second lens and the fifth lens may respectively have positive or negative power; the third lens and the sixth lens may have positive power; the fourth lens may have negative power;
- the combined power of the lens and the eighth lens is a negative power; and the effective focal length f of the optical imaging lens and the combined focal length f78 of the seventh lens and the eighth lens satisfy: -0.5 ⁇ f / f78 ⁇ 0.
- the combined power of the third lens and the fourth lens is positive power.
- the third lens may have positive power and the fourth lens may have negative power.
- the combined power of the seventh lens and the eighth lens is a negative power.
- At least one of the seventh lens and the eighth lens has a negative power.
- the effective focal length f of the optical imaging lens and the combined focal length f34 of the third lens and the fourth lens may satisfy: 0.5 ⁇ f / f34 ⁇ 1.0.
- the distance TTL between the side of the first lens object and the imaging surface of the optical imaging lens on the optical axis is between half and 1 mgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens: TTL/ImgH ⁇ 1.7.
- the effective focal length f of the optical imaging lens and the effective focal length f6 of the sixth lens may satisfy: 0 ⁇ f / f6 ⁇ 0.5, for example, 0.31 ⁇ f / f6 ⁇ 0.41.
- the effective focal length f of the optical imaging lens and the combined focal length f12 of the first lens and the second lens may satisfy: 0 ⁇ f / f12 ⁇ 0.5, for example, 0.05 ⁇ f / f12 ⁇ 0.23.
- the effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy:
- the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy: 0.6 ⁇ R3 / R4 ⁇ 1.2, for example, 0.88 ⁇ R3 / R4 ⁇ 1.07.
- the center thickness CT2 of the second lens on the optical axis and the center thickness CT3 of the third lens on the optical axis may satisfy: 0.5 ⁇ CT2/CT3 ⁇ 0.8, for example, 0.66 ⁇ CT2/CT3 ⁇ 0.69.
- the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image may satisfy: 0 ⁇ (R7-R8)/(R7+R8) ⁇ 1.0, for example, 0.46 ⁇ (R7-R8) / (R7 + R8) ⁇ 0.54.
- the effective focal length f of the optical imaging lens and the effective focal length f5 of the fifth lens may satisfy:
- the effective focal length f of the optical imaging lens and the radius of curvature R11 of the sixth lens object side may satisfy: 0.5 ⁇ f / R11 ⁇ 1.0, for example, 0.65 ⁇ f / R11 ⁇ 0.85.
- the center thickness CT6 of the sixth lens on the optical axis and the center thickness CT7 of the seventh lens on the optical axis may satisfy: 0.7 ⁇ CT6/CT7 ⁇ 1.2, for example, 0.82 ⁇ CT6/CT7 ⁇ 1.03.
- the effective focal length f of the optical imaging lens and the combined focal length f78 of the seventh lens and the eighth lens may satisfy: -0.5 ⁇ f / f78 ⁇ 0, for example, -0.38 ⁇ f / f78 ⁇ -0.25 .
- the radius of curvature R13 of the side surface of the seventh lens object and the radius of curvature R14 of the side surface of the seventh lens image may satisfy:
- the radius of curvature R15 of the side surface of the eighth lens object and the radius of curvature R16 of the side surface of the eighth lens image may satisfy: 1 ⁇ R15/R16 ⁇ 1.5, for example, 1.08 ⁇ R15/R16 ⁇ 1.4.
- the effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy: f/EPD ⁇ 1.8, for example, f/EPD ⁇ 1.73.
- the optical imaging lens of the above configuration can further have at least one beneficial effect of multi-sheet, ultra-thin, miniaturization, high image quality, low sensitivity, balance aberration, and the like.
- FIG. 1 is a schematic structural view showing an optical imaging lens according to Embodiment 1 of the present application.
- 2A to 2D respectively show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the optical imaging lens of Example 1;
- FIG. 3 is a schematic structural view showing an optical imaging lens according to Embodiment 2 of the present application.
- 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 2;
- FIG. 5 is a schematic structural view showing an optical imaging lens according to Embodiment 3 of the present application.
- 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
- FIG. 7 is a schematic structural view showing an optical imaging lens according to Embodiment 4 of the present application.
- 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
- FIG. 9 is a schematic structural view showing an optical imaging lens according to Embodiment 5 of the present application.
- 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
- FIG. 11 is a schematic structural view showing an optical imaging lens according to Embodiment 6 of the present application.
- 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
- FIG. 13 is a schematic structural view showing an optical imaging lens according to Embodiment 7 of the present application.
- 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 7;
- FIG. 15 is a schematic structural view showing an optical imaging lens according to Embodiment 8 of the present application.
- 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 8;
- FIG. 17 is a schematic structural view showing an optical imaging lens according to Embodiment 9 of the present application.
- 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 9;
- FIG. 19 is a schematic structural view showing an optical imaging lens according to Embodiment 10 of the present application.
- 20A to 20D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 10.
- FIG. 21 is a schematic structural view showing an optical imaging lens according to Embodiment 11 of the present application.
- 22A to 22D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 11;
- FIG. 23 is a schematic structural view showing an optical imaging lens according to Embodiment 12 of the present application.
- 24A to 24D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 12.
- FIG. 25 is a schematic structural view showing an optical imaging lens according to Embodiment 13 of the present application.
- 26A to 26D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 13.
- first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
- first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
- the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
- the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
- the drawings are only examples and are not to scale.
- the paraxial region refers to a region near the optical axis.
- the first lens is the lens closest to the object and the eighth lens is the lens closest to the photosensitive element.
- the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
- the optical imaging lens has, for example, eight lenses, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an eighth lens.
- the eight lenses are sequentially arranged from the object side to the image side along the optical axis.
- the first lens, the second lens, the fifth lens, the seventh lens, and the eighth lens may have positive or negative power, respectively; and the third lens and the sixth lens may have positive power
- the fourth lens can have a negative power; by properly controlling the positive and negative distribution of the power of each lens, not only can the low-order aberration of the control system be effectively balanced, so that the optical imaging lens obtains superior imaging quality. Moreover, the characteristics of ultra-thin large aperture can be achieved.
- the effective focal length f of the optical imaging lens and the combined focal length f34 of the third lens and the fourth lens may satisfy: 0.5 ⁇ f / f34 ⁇ 1.0, and more specifically, may further satisfy 0.53 ⁇ f / F34 ⁇ 0.74.
- the distance TTL between the side of the first lens object and the imaging surface of the optical imaging lens on the optical axis is equal to half the ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens: TTL/ ImgH ⁇ 1.7.
- the effective focal length f of the optical imaging lens and the effective focal length f6 of the sixth lens may satisfy: 0 ⁇ f / f6 ⁇ 0.5, and more specifically, may further satisfy 0.31 ⁇ f / f6 ⁇ 0.41.
- the sixth lens assumes a small positive power, which can help control the volume of the lens, improve the space utilization of the lens, and ensure that the system is miniaturized.
- the effective focal length f of the optical imaging lens and the combined focal length f12 of the first lens and the second lens may satisfy: 0 ⁇ f / f12 ⁇ 0.5, and more specifically, may further satisfy 0.05 ⁇ f / F12 ⁇ 0.23.
- the effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy:
- the first lens assumes a small power, thereby mainly utilizing its aspherical features, which can be advantageous for increasing the aperture and correcting the edge field aberration.
- the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R4 of the side surface of the second lens image may satisfy: 0.6 ⁇ R3/R4 ⁇ 1.2, and more specifically, may further satisfy 0.88 ⁇ R3/ R4 ⁇ 1.07.
- the center thickness CT2 of the second lens on the optical axis and the center thickness CT3 of the third lens on the optical axis may satisfy: 0.5 ⁇ CT2/CT3 ⁇ 0.8, and more specifically, may further satisfy 0.66 ⁇ CT2 / CT3 ⁇ 0.69.
- the lens group has a more reasonable space utilization rate, and meets the assembly process requirements, and reduces the assembly sensitivity of the second lens.
- the radius of curvature R7 of the side surface of the fourth lens object and the radius of curvature R8 of the side surface of the fourth lens image may satisfy: 0 ⁇ (R7-R8)/(R7+R8) ⁇ 1.0, more specifically Further, 0.46 ⁇ (R7-R8) / (R7 + R8) ⁇ 0.54 can be satisfied. Under the premise that the imaging surface meets the specifications, the reasonable incident radius of the fourth lens object side and the image side can be reasonably reduced, thereby reducing the system sensitivity and ensuring the stability of the assembly.
- the effective focal length f of the optical imaging lens and the effective focal length f5 of the fifth lens may satisfy:
- the fifth lens assumes a small power, thereby mainly utilizing its aspherical features, which can effectively reduce the deflection angle of the light and reduce the sensitivity of the optical imaging lens.
- the effective focal length f of the optical imaging lens and the radius of curvature R11 of the sixth lens object side may satisfy: 0.5 ⁇ f / R11 ⁇ 1.0, and more specifically, may further satisfy 0.65 ⁇ f / R11 ⁇ 0.85.
- the center thickness CT6 of the sixth lens on the optical axis and the center thickness CT7 of the seventh lens on the optical axis may satisfy: 0.7 ⁇ CT6/CT7 ⁇ 1.2, and more specifically, may further satisfy 0.82 ⁇ CT6 / CT7 ⁇ 1.03.
- the lens group has a more reasonable space utilization ratio and meets the assembly process requirements, and the assembly sensitivity of the sixth lens and the seventh lens is lowered.
- the effective focal length f of the optical imaging lens and the combined focal length f78 of the seventh lens and the eighth lens may satisfy: -0.5 ⁇ f / f78 ⁇ 0, and more specifically, may further satisfy -0.38 ⁇ f/f78 ⁇ -0.25.
- the refractive power of the lens group can be balanced to improve the image quality.
- the radius of curvature R13 of the side surface of the seventh lens object and the radius of curvature R14 of the side surface of the seventh lens image may satisfy:
- the effective radius of the side surface and the image side of the seventh lens object can be reasonably selected, and the light exit angle can be reasonably adjusted to better match the sensor.
- the radius of curvature R15 of the side surface of the eighth lens object and the radius of curvature R16 of the side surface of the eighth lens image may satisfy: 1 ⁇ R15/R16 ⁇ 1.5, and more specifically, may further satisfy 1.08 ⁇ R15/ R16 ⁇ 1.4.
- the system can achieve a smaller axial chromatic aberration.
- the effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy: f/EPD ⁇ 1.8, and more specifically, f/EPD ⁇ 1.73 may be further satisfied.
- f/EPD ⁇ 1.8 f/EPD ⁇ 1.73 may be further satisfied.
- the optical imaging lens may also be provided with an aperture STO for limiting the beam, adjusting the amount of incoming light, and improving the imaging quality.
- the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the eight sheets described above. By properly distributing the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses, the aperture of the optical imaging lens can be effectively expanded, the system sensitivity can be reduced, and the lens can be miniaturized and improved.
- the imaging quality makes the optical imaging lens more advantageous for production processing and can be applied to portable electronic products.
- at least one of the mirror faces of each lens is an aspherical mirror.
- Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality. In addition, the use of aspherical lenses can also effectively reduce the number of lenses in an optical system.
- optical imaging lens is not limited to including eight lenses.
- the optical imaging lens can also include other numbers of lenses if desired.
- FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
- the optical imaging lens includes eight lenses E1-E8 sequentially arranged from the object side to the imaging side along the optical axis.
- the first lens E1 has an object side surface S1 and an image side surface S2; the second lens E2 has an object side surface S3 and an image side surface S4; the third lens E3 has an object side surface S5 and an image side surface S6; and the fourth lens E4 has an object side surface S7 and an image side surface S8; the fifth lens E5 has an object side surface S9 and an image side surface S10; the sixth lens E6 has an object side surface S11 and an image side surface S12, the seventh lens E7 has an object side surface S13 and an image side surface S14, and the eighth lens E8 has an object side surface S15 and Like the side S16.
- the first lens, the second lens, the third lens, the fifth lens, and the sixth lens each have a positive power; the fourth lens, the seventh lens, and the eighth lens each have a negative power.
- an aperture STO for limiting the light beam is further included.
- the optical imaging lens according to Embodiment 1 may include a filter E9 having an object side surface S17 and an image side surface S18, and the filter sheet E9 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
- Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1.
- each lens is used as an example.
- the aperture of the lens is effectively enlarged, the total length of the lens is shortened, the large aperture and miniaturization of the lens are ensured, and various aberrations are corrected at the same time.
- the resolution and image quality of the lens is defined by the following formula:
- x is the position of the aspherical surface at height h in the direction of the optical axis, and the distance from the aspherical vertex is high;
- k is the conic coefficient (given in Table 1 above);
- Ai is the correction coefficient of the a-th order of the aspheric surface.
- Table 2 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each of the mirror faces S1 - S16 in Embodiment 1.
- Table 3 shown below gives the effective focal lengths f1 to f8 of the lenses of Embodiment 1, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens, HFOV, and the first lens E1.
- 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
- 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
- 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the optical imaging lens.
- the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
- An optical imaging lens according to Embodiment 2 of the present application is described below with reference to FIGS. 3 to 4D.
- the optical imaging lens described in each embodiment is the same as the optical imaging lens described in Embodiment 1. For the sake of brevity, a description similar to that of Embodiment 1 will be omitted.
- FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
- the optical imaging lens according to Embodiment 2 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, the fifth lens, and the sixth lens each have a positive power; the fourth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 4 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 2.
- Table 5 shows the high order term coefficients of the respective aspherical mirrors in Example 2.
- Table 6 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 2, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
- 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
- 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens.
- the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
- FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
- the optical imaging lens according to Embodiment 3 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, the fifth lens, the sixth lens, and the eighth lens each have a positive power; the fourth lens and the seventh lens each have a negative power.
- Table 7 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3.
- Table 8 shows the high order term coefficients of the respective aspherical mirrors in the third embodiment.
- Table 9 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 3, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
- FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
- the optical imaging lens according to Embodiment 4 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, the sixth lens, and the eighth lens each have a positive power; the fourth lens, the fifth lens, and the seventh lens each have a negative power.
- Table 10 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4.
- Table 11 shows the high order term coefficients of the respective aspherical mirrors in Example 4.
- Table 12 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 4, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
- FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
- the optical imaging lens according to Embodiment 5 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, the sixth lens, and the seventh lens each have a positive power; the fourth lens, the fifth lens, and the eighth lens each have a negative power.
- Table 13 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 5.
- Table 14 shows the high order term coefficients of the respective aspherical mirrors in Example 5.
- Table 15 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 5, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
- Fig. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
- the optical imaging lens according to Embodiment 6 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, the fifth lens, and the sixth lens each have a positive power; the fourth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 16 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6.
- Table 17 shows the high order term coefficients of the respective aspherical mirrors in Example 6.
- Table 18 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 6, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
- Fig. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
- the optical imaging lens according to Embodiment 7 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the second lens, the third lens, the fifth lens, and the sixth lens each have a positive power; the first lens, the fourth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 19 below shows the surface type, curvature radius, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7.
- Table 20 shows the high order term coefficients of the respective aspherical mirrors in Example 7.
- Table 21 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 7, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
- Fig. 15 is a view showing the configuration of an optical imaging lens according to Embodiment 8 of the present application.
- the optical imaging lens according to Embodiment 8 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the second lens, the third lens, the fifth lens, and the sixth lens each have a positive power; the first lens, the fourth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 22 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 8.
- Table 23 shows the high order term coefficients of the respective aspherical mirrors in Example 8.
- Table 24 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 8, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 16A shows an axial chromatic aberration curve of the optical imaging lens of Example 8, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 16B shows an astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 16C shows a distortion curve of the optical imaging lens of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 16D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
- the optical imaging lens given in Embodiment 8 can achieve good imaging quality.
- Fig. 17 is a view showing the configuration of an optical imaging lens according to Embodiment 9 of the present application.
- the optical imaging lens according to Embodiment 9 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, and the sixth lens each have a positive power; the fourth lens, the fifth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 25 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 9.
- Table 26 shows the high order term coefficients of the respective aspherical mirrors in the ninth embodiment.
- Table 27 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 9, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 18A shows an axial chromatic aberration curve of the optical imaging lens of Example 9, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 18B shows an astigmatism curve of the optical imaging lens of Example 9, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 18C shows a distortion curve of the optical imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 18D shows a magnification chromatic aberration curve of the optical imaging lens of Example 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens.
- the optical imaging lens given in Embodiment 9 can achieve good imaging quality.
- Fig. 19 is a view showing the configuration of an optical imaging lens according to Embodiment 10 of the present application.
- the optical imaging lens according to Embodiment 10 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, and the sixth lens each have a positive power; the fourth lens, the fifth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 28 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 10.
- Table 29 shows the high order term coefficients of the respective aspherical mirrors in Example 10.
- Table 30 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 10, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 20A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 10, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 20B shows an astigmatism curve of the optical imaging lens of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 20C shows a distortion curve of the optical imaging lens of Embodiment 10, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 20D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 10, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens. According to Figs. 20A to 20D, the optical imaging lens given in the embodiment 10 can achieve good image quality.
- Fig. 21 is a view showing the configuration of an optical imaging lens according to Embodiment 11 of the present application.
- the optical imaging lens according to Embodiment 11 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the third lens, and the sixth lens each have a positive power; the second lens, the fourth lens, the fifth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 31 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 11.
- Table 32 shows the high order term coefficients of the respective aspheric mirrors in Example 11.
- Table 33 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 11, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 22A shows an axial chromatic aberration curve of the optical imaging lens of Example 11, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 22B shows an astigmatism curve of the optical imaging lens of Example 11, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 22C shows a distortion curve of the optical imaging lens of Embodiment 11, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 22D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 11, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens. 22A to 22D, the optical imaging lens given in Embodiment 11 can achieve good imaging quality.
- Fig. 23 is a view showing the configuration of an optical imaging lens according to Embodiment 12 of the present application.
- the optical imaging lens according to Embodiment 12 includes first to eighth lenses E1-E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, the fifth lens, and the sixth lens each have a positive power; the fourth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 34 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 12.
- Table 35 shows the high order term coefficients of the respective aspherical mirrors in Example 12.
- Table 36 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 12, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 24A shows an axial chromatic aberration curve of the optical imaging lens of Example 12, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical imaging lens.
- Fig. 24B shows an astigmatism curve of the optical imaging lens of Example 12, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 24C shows a distortion curve of the optical imaging lens of Embodiment 12, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 24D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 12, which shows deviations of different image heights on the imaging plane after the light passes through the optical imaging lens.
- the optical imaging lens given in Embodiment 12 can achieve good imaging quality.
- Fig. 25 is a view showing the configuration of an optical imaging lens according to Embodiment 13 of the present application.
- the optical imaging lens according to Embodiment 13 includes first to eighth lenses E1 to E8 having an object side and an image side, respectively.
- the first lens, the second lens, the third lens, the fifth lens, and the sixth lens each have a positive power; the fourth lens, the seventh lens, and the eighth lens each have a negative power.
- Table 37 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 13.
- Table 38 shows the high order term coefficients of the respective aspherical mirrors in Example 13.
- Table 39 shows the effective focal lengths f1 to f8 of the lenses of Embodiment 13, the effective focal length f of the imaging lens of the optical imaging lens, half of the maximum angle of view of the optical imaging lens HFOV, and the object side S1 of the first lens L1 to The distance TTL of the imaging surface S19 of the optical imaging lens on the optical axis.
- each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
- Fig. 26A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 13, which indicates that light rays of different wavelengths are deviated from a focus point after passing through the optical imaging lens.
- Fig. 26B shows an astigmatism curve of the optical imaging lens of Embodiment 13, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 26C shows a distortion curve of the optical imaging lens of Embodiment 13, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 26D shows a magnification chromatic aberration curve of the optical imaging lens of Example 13, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging lens. 26A to 26D, the optical imaging lens given in Embodiment 13 can achieve good imaging quality.
- Embodiments 1 to 13 respectively satisfy the relationships shown in Table 40 below.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学成像镜头,沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜。其中,第一透镜、第二透镜、第五透镜、第七透镜和第八透镜可分别具有正光焦度或负光焦度;第三透镜和第四透镜的组合光焦度为正光焦度;第六透镜可具有正光焦度;以及光学成像镜头的有效焦距f与第三透镜和第四透镜的组合焦距f34之间满足:0.5≤f/f34<1.0。
Description
相关申请的交叉引用
本申请要求于2017年7月5日提交于中国国家知识产权局(SIPO)的、第201710542434.8号以及第201720806420.8号中国专利申请的优先权和权益,这两个中国专利申请的全部内容通过引用并入本文。
本申请涉及一种光学成像镜头,更具体地,涉及一种由八片镜片组成的光学成像镜头。
随着科技的发展,半导体工艺技术不断精进,因此,高品质成像镜头逐渐成为市场主流趋势。随着手机、平板电脑等便携式电子产品的日益发展而变得越来越薄、体积越来越小,特别是目前市场越来越大的360环视应用,对光学成像镜头的小型化、轻量化及成像质量等性能提出了进一步更高的要求。
为了满足小型化、高品质的要求,智能手机等便携式电子产品的不断发展,对成像镜头提出了更高的要求,特别是针对光线不足等环境如阴雨天、傍晚、夜景、星空等情况,故此2.0或2.0以上的F数已经无法满足更高阶的成像要求,为了获得更大的进光量,需要F数更小的成像镜头。为了满足更高的成像质量,为用户带来更加的成像体验,需要更多的镜片数量来实现,多片数的镜头成为高端市场领域的主流产品。
因此,本申请提出了一种可适用于便携式电子产品,具有多片式超薄大孔径,小型化,并且良好的成像质量的光学特性的光学成像镜头。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜。其中,第一透镜、第二透镜、第五透镜、第七透镜和第八透镜可分别具有正光焦度或负光焦度;第三透镜和第四透镜的组合光焦度为正光焦度;第六透镜可具有正光焦度;以及光学成像镜头的有效焦距f与第三透镜和第四透镜的组合焦距f34之间可满足:0.5≤f/f34<1.0,例如,0.53≤f/f34<0.74。
根据本申请的另一个方面,还提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜。其中,第一透镜、第二透镜和第五透镜可分别具有正光焦度或负光焦度;第三透镜和第六透镜可具有正光焦度;第四透镜可具有负光焦度;第七透镜和第八透镜的组合光焦度为负光焦度;以及光学成像镜头的有效焦距f与第七透镜和第八透镜的组合焦距f78之间满足:-0.5<f/f78<0。
在一个实施方式中,第三透镜和第四透镜的组合光焦度为正光焦度。
在一个实施方式中,第三透镜可具有正光焦度,第四透镜可具有负光焦度。
在一个实施方式中,第七透镜和第八透镜的组合光焦度为负光焦度。
在一个实施方式中,第七透镜和第八透镜中的至少一个具有负光焦度。
在一个实施方式中,光学成像镜头的有效焦距f与第三透镜和第四透镜的组合焦距f34之间可满足:0.5≤f/f34<1.0。
在一个实施方式中,第一透镜物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头成像面上有效像素区域对角线长的 一半ImgH之间可满足:TTL/ImgH≤1.7。
在一个实施方式中,光学成像镜头的有效焦距f与第六透镜的有效焦距f6之间可满足:0<f/f6<0.5,例如,0.31≤f/f6≤0.41。
在一个实施方式中,光学成像镜头的有效焦距f与第一透镜和第二透镜的组合焦距f12之间可满足:0<f/f12<0.5,例如,0.05≤f/f12≤0.23。
在一个实施方式中,光学成像镜头的有效焦距f与第一透镜的有效焦距f1之间可满足:|f/f1|≤0.1,例如,|f/f1|≤0.05。
在一个实施方式中,第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4之间可满足:0.6<R3/R4<1.2,例如,0.88≤R3/R4≤1.07。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第三透镜在光轴上的中心厚度CT3之间可满足:0.5<CT2/CT3<0.8,例如,0.66≤CT2/CT3≤0.69。
在一个实施方式中,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间可满足:0<(R7-R8)/(R7+R8)<1.0,例如,0.46≤(R7-R8)/(R7+R8)≤0.54。
在一个实施方式中,光学成像镜头的有效焦距f与第五透镜的有效焦距f5之间可满足:|f/f5|≤0.1,例如,|f/f5|≤0.06。
在一个实施方式中,光学成像镜头的有效焦距f与第六透镜物侧面的曲率半径R11之间可满足:0.5<f/R11<1.0,例如,0.65≤f/R11≤0.85。
在一个实施方式中,第六透镜在光轴上的中心厚度CT6与第七透镜在光轴上的中心厚度CT7之间可满足:0.7<CT6/CT7<1.2,例如,0.82≤CT6/CT7≤1.03。
在一个实施方式中,光学成像镜头的有效焦距f与第七透镜和第八透镜的组合焦距f78之间可满足:-0.5<f/f78<0,例如,-0.38≤f/f78≤-0.25。
在一个实施方式中,第七透镜物侧面的曲率半径R13与第七透镜像侧面的曲率半径R14之间可满足:|(R13-R14)/(R13+R14)|≤0.5,例 如,|(R13-R14)/(R13+R14)|≤0.43。
在一个实施方式中,第八透镜物侧面的曲率半径R15与第八透镜像侧面的曲率半径R16之间可满足:1≤R15/R16<1.5,例如,1.08≤R15/R16≤1.4。
在一个实施方式中,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间可满足:f/EPD≤1.8,例如,f/EPD≤1.73。
通过上述配置的光学成像镜头,还可进一步具有多片式、超薄化、小型化、高成像品质、低敏感度、平衡像差等至少一个有益效果。
通过参照以下附图所作出的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1为示出根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图3为示出根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图5为示出根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图7为示出根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图9为示出根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11为示出根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差 曲线、象散曲线、畸变曲线和倍率色差曲线;
图13为示出根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图15为示出根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图17为示出根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图19为示出根据本申请实施例10的光学成像镜头的结构示意图;
图20A至图20D分别示出了实施例10的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21为示出根据本申请实施例11的光学成像镜头的结构示意图;
图22A至图22D分别示出了实施例11的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图23为示出根据本申请实施例12的光学成像镜头的结构示意图;
图24A至图24D分别示出了实施例12的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图25为示出根据本申请实施例13的光学成像镜头的结构示意图;
图26A至图26D分别示出了实施例13的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征 与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
此外,近轴区域是指光轴附近的区域。第一透镜是最靠近物体的透镜而第八透镜是最靠近感光元件的透镜。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下结合具体实施例进一步描述本申请。
根据本申请示例性实施方式的光学成像镜头具有例如八个透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。这八个透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,第一透镜、第二透镜、第五透镜、第七透镜和第八透镜可分别具有正光焦度或负光焦度;第三透镜和第六透镜可具有正光焦度;第四透镜可具有负光焦度;通过合理的控制各个透镜的光焦度的正负分配,不仅可有效地平衡控制系统的低阶像差,使得光学成像镜头获得较优的成像品质,而且可实现超薄大孔径的特性。
在示例性实施方式中,光学成像镜头的有效焦距f与第三透镜和第四透镜的组合焦距f34之间可满足:0.5≤f/f34<1.0,更具体地,可进一步满足0.53≤f/f34<0.74。通过合理配置第三透镜和第四透镜的组合焦距,可有助于缩短光学成像镜头系统的总长度,同时有效矫正像散。
在示例性实施方式中,第一透镜物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间可满足:TTL/ImgH≤1.7。通过这样的配置,可减小边缘视场的像差,有效地压缩了光学成像镜头系统的尺寸,保证镜头的超薄特性和小型化需求。
在示例性实施方式中,光学成像镜头的有效焦距f与第六透镜的有效焦距f6之间可满足:0<f/f6<0.5,更具体地,可进一步满足0.31≤f/f6≤0.41。通过这样的配置,第六透镜承担较小的正光焦度,可有助于控制镜片的体积,提高镜片的空间利用率,保证满足系统小型化的需求。
在示例性实施方式中,光学成像镜头的有效焦距f与第一透镜和第二透镜的组合焦距f12之间可满足:0<f/f12<0.5,更具体地,可进一步满足0.05≤f/f12≤0.23。通过合理配置第一和第二透镜的组合焦距,可有助于缩短光学成像镜头系统的场曲,减小轴上球差。
在示例性实施方式中,光学成像镜头的有效焦距f与第一透镜的有效焦距f1之间可满足:|f/f1|≤0.1,更具体地,可进一步满足|f/f1| ≤0.05。通过这样的配置,第一透镜承担较小的光焦度,从而主要利用其非球面的特征,可有利于增大光圈,修正边缘视场像差。
在示例性实施方式中,第二透镜物侧面的曲率半径R3与第二透镜像侧面的曲率半径R4之间可满足:0.6<R3/R4<1.2,更具体地,可进一步满足0.88≤R3/R4≤1.07。通过合理的控制第二透镜的曲率半径,可以更好的汇聚物侧光线,降低光学成像镜头系统的垂轴色差。
在示例性实施方式中,第二透镜在光轴上的中心厚度CT2与第三透镜在光轴上的中心厚度CT3之间可满足:0.5<CT2/CT3<0.8,更具体地,可进一步满足0.66≤CT2/CT3≤0.69。通过这样的配置,使得镜片组有更合理的空间利用率,并满足组装工艺需求,降低第二透镜的组装敏感度。
在示例性实施方式中,第四透镜物侧面的曲率半径R7与第四透镜像侧面的曲率半径R8之间可满足:0<(R7-R8)/(R7+R8)<1.0,更具体地,可进一步满足0.46≤(R7-R8)/(R7+R8)≤0.54。在成像面满足规格的前提下,通过合理选择第四透镜物侧面和像侧面的有效半径,能合理地减小光线入射角,从而降低系统敏感性,并且保证组装的稳定性。
在示例性实施方式中,光学成像镜头的有效焦距f与第五透镜的有效焦距f5之间可满足:|f/f5|≤0.1,更具体地,可进一步满足|f/f5|≤0.06。通过这样的配置,第五透镜承担较小的光焦度,从而主要利用其非球面的特征,可有效减小光线的偏转角,降低光学成像镜头的敏感性。
在示例性实施方式中,光学成像镜头的有效焦距f与第六透镜物侧面的曲率半径R11之间可满足:0.5<f/R11<1.0,更具体地,可进一步满足0.65≤f/R11≤0.85。通过将第六透镜的曲率半径约束在合理的范围,可有助于调整成像边缘的场曲和像散,满足周边的成像品质。
在示例性实施方式中,第六透镜在光轴上的中心厚度CT6与第七透镜在光轴上的中心厚度CT7之间可满足:0.7<CT6/CT7<1.2,更具体地,可进一步满足0.82≤CT6/CT7≤1.03。通过这样的配置,使得镜片组有更合理的空间利用率,并满足组装工艺要求,降低第六透镜和 第七透镜的组装敏感度。
在示例性实施方式中,光学成像镜头的有效焦距f与第七透镜和第八透镜的组合焦距f78之间可满足:-0.5<f/f78<0,更具体地,可进一步满足-0.38≤f/f78≤-0.25。通过合理配置第七透镜和第八透镜的组合焦距,使其承担较小的负光焦度,可以平衡透镜组的屈折力变化,提升成像品质。
在示例性实施方式中,第七透镜物侧面的曲率半径R13与第七透镜像侧面的曲率半径R14之间可满足:|(R13-R14)/(R13+R14)|≤0.5,更具体地,可进一步满足|(R13-R14)/(R13+R14)|≤0.43。在成像面满足规格的前提下,挺好合理选择第七透镜物侧面和像侧面的有效半径,能合理地调整光线出射角,更好的匹配的传感器。
在示例性实施方式中,第八透镜物侧面的曲率半径R15与第八透镜像侧面的曲率半径R16之间可满足:1≤R15/R16<1.5,更具体地,可进一步满足1.08≤R15/R16≤1.4。通过合理分配第八透镜的曲率半径,可以使得系统获得更小的轴上色差。
在示例性实施方式中,光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间可满足:f/EPD≤1.8,更具体地,可进一步满足f/EPD≤1.73。通过这样的配置,能够满足光学成像镜头系统拥有更充足的进光量,进而提升成像品质。
在示例性实施方式中,光学成像镜头还可设置有用于限制光束的光圈STO,调节进光量,提高成像品质。根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的八片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效扩大光学成像镜头的孔径、降低系统敏感度、保证镜头的小型化并提高成像质量,从而使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:曲率从透镜中心到周边是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透 镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以八个透镜为例进行了描述,但是该光学成像镜头不限于包括八个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。
图1示出了根据本申请实施例1的光学成像镜头的结构示意图。如图1所示,光学成像镜头沿着光轴包括从物侧至成像侧依序排列的八个透镜E1-E8。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12、第七透镜E7具有物侧面S13和像侧面S14以及第八透镜E8具有物侧面S15和像侧面S16。
在该实施例中,第一透镜、第二透镜、第三透镜、第五透镜和第六透镜均具有正光焦度;第四透镜、第七透镜和第八透镜均具有负光焦度。
在本实施例的光学成像镜头中,还包括用于限制光束的光圈STO。根据实施例1的光学成像镜头可包括具有物侧面S17和像侧面S18的滤光片E9,滤光片E9可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。
表1
由表1可得,第二透镜E2物侧面S3的曲率半径R3与第二透镜E2像侧面S4的曲率半径R4之间满足R3/R4=0.89;第二透镜E2在光轴上的中心厚度CT2与第三透镜E3在光轴上的中心厚度CT3之间满足CT2/CT3=0.66;第四透镜E4物侧面S7的曲率半径R7与第四透镜E4像侧面S8的曲率半径R8之间满足(R7-R8)/(R7+R8)=0.53;第六透镜E6在光轴上的中心厚度CT6与第七透镜E7在光轴上的中心厚度CT7之间满足CT6/CT7=0.94;第七透镜E7物侧面S13的曲率半径R13与第七透镜E7像侧面S14的曲率半径R14之间满足|(R13-R14)/(R13+R14)|=0.22;以及第八透镜E8物侧面S15的曲率半径R15与第八透镜E8像侧面S16的曲率半径R16之间满足R15/R16=1.26。
本实施例采用了八片透镜作为示例,通过合理分配各镜片的焦距与面型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的大孔径 与小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了实施例1中可用于各镜面S1-S16的高次项系数A
4、A
6、A
8、A
10、A
12、A
14、A
16、A
18和A
20。
表2
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.6544E-02 | -1.8273E-02 | -1.0185E-01 | 3.2971E-01 | -4.6198E-01 | 3.6847E-01 | -1.7207E-01 | 4.3737E-02 | -4.6680E-03 |
S2 | 4.7143E-02 | -1.8248E-01 | 2.2519E-01 | 4.8389E-02 | -4.7633E-01 | 6.1917E-01 | -3.9380E-01 | 1.2789E-01 | -1.6922E-02 |
S3 | 2.6035E-01 | -6.0092E-01 | 9.9496E-01 | -1.1345E+00 | 8.0539E-01 | -3.4969E-01 | 9.0578E-02 | -1.2872E-02 | 7.7300E-04 |
S4 | 5.2480E-02 | -3.1857E-01 | 5.1288E-01 | -6.6276E-01 | 6.2381E-01 | -3.5919E-01 | 1.1872E-01 | -2.0768E-02 | 1.4931E-03 |
S5 | 1.8194E-02 | -1.8904E-01 | 3.0565E-01 | -4.9328E-01 | 6.5985E-01 | -4.8956E-01 | 1.8504E-01 | -3.2236E-02 | 1.8178E-03 |
S6 | -9.5318E-02 | 2.7730E-01 | -8.3348E-01 | 1.3347E+00 | -1.2095E+00 | 6.4252E-01 | -1.9785E-01 | 3.2679E-02 | -2.2402E-03 |
S7 | -7.7286E-02 | 2.2631E-01 | -4.8940E-01 | 2.0659E-01 | 7.3584E-01 | -1.3269E+00 | 9.7920E-01 | -3.4779E-01 | 4.8603E-02 |
S8 | 6.7695E-02 | -5.9921E-02 | 2.5621E-01 | -8.5846E-01 | 1.4562E+00 | -1.3647E+00 | 7.2452E-01 | -2.0169E-01 | 2.2671E-02 |
S9 | -6.6859E-02 | 7.4114E-02 | -1.4553E-01 | 2.8475E-01 | -3.7173E-01 | 2.9133E-01 | -1.3033E-01 | 3.0519E-02 | -2.8974E-03 |
S10 | -9.6113E-02 | 2.0071E-02 | -3.3310E-02 | 2.8657E-02 | 1.9385E-02 | -5.0447E-02 | 3.6123E-02 | -1.1211E-02 | 1.2885E-03 |
S11 | 1.0949E-02 | 9.1659E-02 | -2.8265E-01 | 3.4490E-01 | -2.8517E-01 | 1.5988E-01 | -5.7875E-02 | 1.2090E-02 | -1.0883E-03 |
S12 | 3.6830E-02 | -3.2221E-03 | -4.1848E-02 | 8.0258E-03 | 1.0963E-02 | -6.3453E-03 | 1.4316E-03 | -1.5162E-04 | 6.2634E-06 |
S13 | 1.9386E-01 | -4.0640E-01 | 4.4838E-01 | -3.9587E-01 | 2.3226E-01 | -8.4347E-02 | 1.8427E-02 | -2.2330E-03 | 1.1564E-04 |
S14 | 9.5593E-02 | -1.0860E-01 | 1.7447E-02 | 1.4693E-02 | -9.1221E-03 | 2.4379E-03 | -3.5726E-04 | 2.7758E-05 | -8.9215E-07 |
S15 | -2.2838E-01 | 7.1654E-02 | 5.8030E-04 | -5.4569E-03 | 1.5220E-03 | -2.0784E-04 | 1.5452E-05 | -5.8039E-07 | 8.1372E-09 |
S16 | -1.6490E-01 | 8.5549E-02 | -3.1552E-02 | 8.3826E-03 | -1.5611E-03 | 1.9384E-04 | -1.5028E-05 | 6.5001E-07 | -1.1868E-08 |
以下所示出的表3给出实施例1的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜E1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。
表3
f1(mm) | 419.80 | f7(mm) | -22.06 |
f2(mm) | 19.79 | f8(mm) | -27.35 |
f3(mm) | 3.62 | f(mm | 3.86 |
f4(mm) | -6.24 | TTL(mm) | 5.26 |
f5(mm) | 113.69 | HFOV(°) | 40.4 |
f6(mm) | 10.69 |
根据表3,光学成像镜头的有效焦距f与第一透镜E1的有效焦距f1之间满足|f/f1|=0.01;光学成像镜头的有效焦距f与第五透镜E5的有效焦距f5之间满足|f/f5|=0.03;以及光学成像镜头的有效焦距f与第六透镜E6的有效焦距f6之间满足f/f6=0.36。
在该实施例中,光学成像镜头的有效焦距f与第一透镜E1和第二透镜E2的组合焦距f12之间满足f/f12=0.2;光学成像镜头的有效焦距f与第三透镜E3和第四透镜E4的组合焦距f34之间满足f/f34=0.54;光学成像镜头的有效焦距f与第六透镜E6物侧面S11的曲率半径R11之间满足f/R11=0.65;光学成像镜头的有效焦距f与第七透镜E7和第八透镜E8的组合焦距f78之间满足f/f78=-0.34;光学成像镜头的有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD=1.67;以及第一透镜物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH=1.59。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的光学成像镜头。除了光学成像镜头的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的光学成像镜头与实施例1中描述的光学成像镜头的布置结构相同。为简洁起见,将省略部分与实施例1相似的描述。
图3示出了根据本申请实施例2的光学成像镜头的结构示意图。如图3所示,根据实施例2的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜、第五透镜和第六透镜均具有正光焦度;第四透镜、第七透镜和第八透镜均具有负光焦度。
下表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表5示出了实施例2中各非球面镜面的高次项系数。表6示出了实施例2的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表4
表5
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.8300E-02 | -2.5888E-02 | -7.9868E-02 | 2.8215E-01 | -3.9487E-01 | 3.1033E-01 | -1.4234E-01 | 3.5516E-02 | -3.7207E-03 |
S2 | 5.1242E-02 | -2.0409E-01 | 2.8079E-01 | -5.8822E-02 | -3.2140E-01 | 4.6865E-01 | -3.0403E-01 | 9.8483E-02 | -1.2886E-02 |
S3 | 2.6033E-01 | -6.0465E-01 | 9.9339E-01 | -1.1148E+00 | 7.8101E-01 | -3.3597E-01 | 8.6468E-02 | -1.2230E-02 | 7.3171E-04 |
S4 | 4.9951E-02 | -3.0317E-01 | 4.6128E-01 | -5.6186E-01 | 5.1424E-01 | -2.9235E-01 | 9.5839E-02 | -1.6658E-02 | 1.1911E-03 |
S5 | 1.5209E-02 | -1.7425E-01 | 2.4925E-01 | -3.6240E-01 | 4.8655E-01 | -3.5944E-01 | 1.3068E-01 | -2.0548E-02 | 8.1950E-04 |
S6 | -1.0520E-01 | 3.1080E-01 | -8.7298E-01 | 1.3465E+00 | -1.1900E+00 | 6.1977E-01 | -1.8763E-01 | 3.0523E-02 | -2.0633E-03 |
S7 | -8.5516E-02 | 2.5363E-01 | -5.2549E-01 | 2.5802E-01 | 6.2919E-01 | -1.1726E+00 | 8.5757E-01 | -2.9990E-01 | 4.1209E-02 |
S8 | 6.4465E-02 | -3.2827E-02 | 1.2733E-01 | -5.0498E-01 | 8.7832E-01 | -7.9343E-01 | 3.9165E-01 | -9.7230E-02 | 9.1233E-03 |
S9 | -6.5972E-02 | 7.4116E-02 | -1.5307E-01 | 3.0262E-01 | -3.9479E-01 | 3.0807E-01 | -1.3684E-01 | 3.1758E-02 | -2.9854E-03 |
S10 | -8.9412E-02 | -3.3205E-03 | 3.3797E-02 | -8.4890E-02 | 1.3622E-01 | -1.2479E-01 | 6.4333E-02 | -1.7013E-02 | 1.7842E-03 |
S11 | 1.2588E-02 | 7.2812E-02 | -2.3776E-01 | 2.9179E-01 | -2.4574E-01 | 1.4155E-01 | -5.2895E-02 | 1.1384E-02 | -1.0490E-03 |
S12 | 4.1499E-02 | -1.2942E-02 | -3.4339E-02 | 7.4838E-03 | 8.8427E-03 | -5.1674E-03 | 1.1542E-03 | -1.2037E-04 | 4.8832E-06 |
S13 | 1.9201E-01 | -4.0124E-01 | 4.4107E-01 | -3.8966E-01 | 2.2942E-01 | -8.3675E-02 | 1.8353E-02 | -2.2311E-03 | 1.1580E-04 |
S14 | 9.0589E-02 | -1.0264E-01 | 1.4450E-02 | 1.5557E-02 | -9.2215E-03 | 2.4166E-03 | -3.4831E-04 | 2.6631E-05 | -8.4260E-07 |
S15 | -2.2964E-01 | 7.1032E-02 | 2.2913E-04 | -4.7544E-03 | 1.2136E-03 | -1.4220E-04 | 7.8402E-06 | -1.1729E-07 | -3.4554E-09 |
S16 | -1.6785E-01 | 8.7785E-02 | -3.2789E-02 | 8.8755E-03 | -1.6897E-03 | 2.1503E-04 | -1.7106E-05 | 7.5890E-07 | -1.4197E-08 |
表6
f1(mm) | 293.99 | f7(mm) | -21.68 |
f2(mm) | 19.45 | f8(mm) | -25.50 |
f3(mm) | 3.65 | f(mm) | 3.89 |
f4(mm) | -6.20 | TTL(mm) | 5.30 |
f5(mm) | 128.63 | HFOV(°) | 40.1 |
f6(mm) | 10.43 |
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示 不同波长的光线经由光学成像镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。
图5示出了根据本申请实施例3的光学成像镜头的结构示意图。如图5所示,根据实施例3的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜、第五透镜、第六透镜和第八透镜均具有正光焦度;第四透镜和第七透镜均具有负光焦度。
下表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表8示出了实施例3中各非球面镜面的高次项系数。表9示出了实施例3的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
表8
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.9336E-02 | -3.1201E-02 | -5.7429E-02 | 2.2347E-01 | -3.0713E-01 | 2.3366E-01 | -1.0348E-01 | 2.4928E-02 | -2.5220E-03 |
S2 | 5.1110E-02 | -2.0614E-01 | 2.9430E-01 | -1.1557E-01 | -1.9910E-01 | 3.2604E-01 | -2.1160E-01 | 6.7069E-02 | -8.5181E-03 |
S3 | 2.5482E-01 | -5.8544E-01 | 9.4425E-01 | -1.0354E+00 | 7.1106E-01 | -3.0112E-01 | 7.6522E-02 | -1.0707E-02 | 6.3430E-04 |
S4 | 4.6132E-02 | -2.7631E-01 | 3.8108E-01 | -4.2231E-01 | 3.7294E-01 | -2.0970E-01 | 6.8344E-02 | -1.1824E-02 | 8.4223E-04 |
S5 | 1.3104E-02 | -1.5971E-01 | 2.0283E-01 | -2.6928E-01 | 3.7272E-01 | -2.8112E-01 | 1.0231E-01 | -1.5845E-02 | 5.9333E-04 |
S6 | -1.0760E-01 | 3.1023E-01 | -8.2753E-01 | 1.2370E+00 | -1.0665E+00 | 5.4288E-01 | -1.6079E-01 | 2.5606E-02 | -1.6956E-03 |
S7 | -8.8603E-02 | 2.5218E-01 | -5.0298E-01 | 2.6932E-01 | 4.9109E-01 | -9.4198E-01 | 6.7995E-01 | -2.3311E-01 | 3.1346E-02 |
S8 | 6.2704E-02 | -1.4998E-02 | 2.3099E-02 | -1.9239E-01 | 3.5441E-01 | -2.7665E-01 | 9.4312E-02 | -5.4135E-03 | -2.5824E-03 |
S9 | -6.3786E-02 | 7.1626E-02 | -1.5292E-01 | 3.0005E-01 | -3.8564E-01 | 2.9633E-01 | -1.2951E-01 | 2.9555E-02 | -2.7309E-03 |
S10 | -8.4667E-02 | -1.5971E-02 | 6.8408E-02 | -1.3859E-01 | 1.8547E-01 | -1.5179E-01 | 7.2673E-02 | -1.8284E-02 | 1.8506E-03 |
S11 | 1.3497E-02 | 6.7121E-02 | -2.3444E-01 | 3.0644E-01 | -2.6963E-01 | 1.5868E-01 | -5.9520E-02 | 1.2700E-02 | -1.1524E-03 |
S12 | 6.2265E-02 | -6.1782E-02 | 1.6058E-02 | -1.9614E-02 | 1.6635E-02 | -6.2776E-03 | 1.1978E-03 | -1.1428E-04 | 4.3507E-06 |
S13 | 1.9647E-01 | -4.0935E-01 | 4.4367E-01 | -3.8332E-01 | 2.2279E-01 | -8.0874E-02 | 1.7735E-02 | -2.1599E-03 | 1.1239E-04 |
S14 | 7.5709E-02 | -8.9808E-02 | 9.8010E-03 | 1.6184E-02 | -9.0853E-03 | 2.3341E-03 | -3.3129E-04 | 2.4963E-05 | -7.7861E-07 |
S15 | -2.0415E-01 | 4.4857E-02 | 1.3165E-02 | -8.5048E-03 | 1.8974E-03 | -2.2196E-04 | 1.3641E-05 | -3.5795E-07 | 9.1772E-10 |
S16 | -1.6916E-01 | 8.7763E-02 | -3.3253E-02 | 9.2151E-03 | -1.7940E-03 | 2.3248E-04 | -1.8754E-05 | 8.4109E-07 | -1.5873E-08 |
表9
f1(mm) | 207.81 | f7(mm) | -12.97 |
f2(mm) | 18.74 | f8(mm) | 281.29 |
f3(mm) | 3.69 | f(mm) | 3.94 |
f4(mm) | -6.16 | TTL(mm) | 5.35 |
f5(mm) | 151.57 | HFOV(°) | 39.7 |
f6(mm) | 11.07 |
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。
图7示出了根据本申请实施例4的光学成像镜头的结构示意图。如图7所示,根据实施例4的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜、第六透镜和第八透镜均具有正光焦度;第四透镜、第五透镜和第七透镜均具有负光焦度。
下表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表11示出了实施例4中各非球面镜面的高次项系数。表12示出了实施例4的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表10
表11
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.1831E-02 | -2.4531E-02 | -4.2902E-02 | 1.6664E-01 | -2.2075E-01 | 1.6133E-01 | -6.8883E-02 | 1.6092E-02 | -1.5889E-03 |
S2 | 6.6925E-02 | -2.5085E-01 | 4.1083E-01 | -3.5810E-01 | 1.4917E-01 | 9.4079E-03 | -3.9129E-02 | 1.5889E-02 | -2.1672E-03 |
S3 | 2.4449E-01 | -5.5151E-01 | 8.4199E-01 | -8.7585E-01 | 5.7469E-01 | -2.3295E-01 | 5.6632E-02 | -7.5735E-03 | 4.2869E-04 |
S4 | 5.1225E-02 | -2.3457E-01 | 2.0072E-01 | -1.4196E-01 | 1.5474E-01 | -1.1666E-01 | 4.6614E-02 | -9.2927E-03 | 7.3468E-04 |
S5 | 1.0290E-02 | -1.1658E-01 | 6.3851E-02 | -8.3207E-02 | 2.5259E-01 | -2.5696E-01 | 1.1532E-01 | -2.3639E-02 | 1.7551E-03 |
S6 | -1.0737E-01 | 1.6516E-01 | -2.9449E-01 | 3.7231E-01 | -2.9087E-01 | 1.3638E-01 | -3.7253E-02 | 5.4626E-03 | -3.3280E-04 |
S7 | -1.0323E-01 | 1.5921E-01 | -2.3953E-01 | 2.1279E-01 | -6.1339E-02 | -7.1783E-02 | 8.6799E-02 | -3.7005E-02 | 5.7623E-03 |
S8 | 4.5794E-02 | 5.1733E-03 | -9.1739E-02 | 2.4047E-01 | -4.0301E-01 | 4.3977E-01 | -2.8534E-01 | 9.9860E-02 | -1.4373E-02 |
S9 | -5.8318E-02 | 9.2929E-02 | -2.1623E-01 | 3.5547E-01 | -3.7517E-01 | 2.4292E-01 | -9.1708E-02 | 1.8405E-02 | -1.5139E-03 |
S10 | -1.0926E-01 | 1.1848E-01 | -2.2035E-01 | 2.5554E-01 | -1.7132E-01 | 5.9550E-02 | -5.8662E-03 | -1.8045E-03 | 3.7446E-04 |
S11 | -3.1611E-02 | 1.7486E-01 | -3.5440E-01 | 3.6707E-01 | -2.5064E-01 | 1.1574E-01 | -3.5419E-02 | 6.4820E-03 | -5.2632E-04 |
S12 | 2.5543E-02 | 1.8013E-02 | -1.0077E-01 | 8.8172E-02 | -4.1290E-02 | 1.1775E-02 | -2.0218E-03 | 1.9079E-04 | -7.5647E-06 |
S13 | 1.9604E-01 | -3.5758E-01 | 3.4727E-01 | -2.7071E-01 | 1.4393E-01 | -4.8080E-02 | 9.6945E-03 | -1.0818E-03 | 5.1402E-05 |
S14 | 8.4834E-02 | -1.0223E-01 | 3.4104E-02 | -4.2292E-03 | -2.5566E-04 | 1.5345E-04 | -2.1283E-05 | 1.3993E-06 | -3.7699E-08 |
S15 | -1.6140E-01 | 2.0188E-02 | 1.6084E-02 | -6.9677E-03 | 1.2238E-03 | -1.0239E-04 | 2.4540E-06 | 1.7964E-07 | -9.4393E-09 |
S16 | -1.4815E-01 | 6.7781E-02 | -2.3101E-02 | 6.0271E-03 | -1.1403E-03 | 1.4517E-04 | -1.1509E-05 | 5.0565E-07 | -9.3109E-09 |
表12
f1(mm) | 92.59 | f7(mm) | -9.61 |
f2(mm) | 39.72 | f8(mm) | 25.46 |
f3(mm) | 3.77 | f(mm) | 4.11 |
f4(mm) | -7.41 | TTL(mm) | 5.53 |
f5(mm) | -652.32 | HFOV(°) | 38.9 |
f6(mm) | 11.91 |
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。
图9示出了根据本申请实施例5的光学成像镜头的结构示意图。如图9所示,根据实施例5的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜、第六透镜和第七透镜均具有正光焦度;第四透镜、第五透镜和第八透镜均具有负光焦度。
下表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表14示出了实施例5中各非球面镜面的高次项系数。表15示出了实施例5的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表13
表14
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.5905E-02 | -3.8154E-02 | -3.2506E-02 | 1.9625E-01 | -2.9503E-01 | 2.3460E-01 | -1.0698E-01 | 2.6428E-02 | -2.7452E-03 |
S2 | 7.2785E-02 | -3.0145E-01 | 5.5459E-01 | -5.5965E-01 | 3.0162E-01 | -4.7517E-02 | -3.5843E-02 | 2.0332E-02 | -3.2042E-03 |
S3 | 2.4722E-01 | -6.0521E-01 | 1.0015E+00 | -1.1019E+00 | 7.5323E-01 | -3.1571E-01 | 7.9033E-02 | -1.0854E-02 | 6.2968E-04 |
S4 | 8.4937E-02 | -3.7337E-01 | 4.3955E-01 | -3.7703E-01 | 3.0285E-01 | -1.7795E-01 | 6.2715E-02 | -1.1715E-02 | 8.9268E-04 |
S5 | 2.6568E-02 | -1.6171E-01 | 8.1893E-02 | -1.8719E-02 | 1.6417E-01 | -2.1179E-01 | 1.0559E-01 | -2.3164E-02 | 1.8231E-03 |
S6 | -1.1895E-01 | 2.2023E-01 | -4.3880E-01 | 5.9609E-01 | -5.0186E-01 | 2.5476E-01 | -7.5513E-02 | 1.2021E-02 | -7.9453E-04 |
S7 | -1.0653E-01 | 1.9760E-01 | -3.2580E-01 | 2.6992E-01 | 1.8474E-02 | -2.5959E-01 | 2.3987E-01 | -9.4912E-02 | 1.4219E-02 |
S8 | 4.4553E-02 | 1.1975E-02 | -9.3798E-02 | 2.0072E-01 | -3.0349E-01 | 3.2530E-01 | -2.1397E-01 | 7.6702E-02 | -1.1320E-02 |
S9 | -6.2612E-02 | 9.7560E-02 | -2.3491E-01 | 4.0744E-01 | -4.5176E-01 | 3.0674E-01 | -1.2146E-01 | 2.5574E-02 | -2.2073E-03 |
S10 | -1.0104E-01 | 8.3646E-02 | -1.5243E-01 | 1.6955E-01 | -9.9552E-02 | 2.0465E-02 | 7.5529E-03 | -4.4315E-03 | 5.9633E-04 |
S11 | -1.1823E-02 | 9.1324E-02 | -2.0684E-01 | 2.0499E-01 | -1.3897E-01 | 6.6955E-02 | -2.2458E-02 | 4.6324E-03 | -4.2320E-04 |
S12 | -8.2278E-03 | 4.4702E-02 | -9.2580E-02 | 6.1770E-02 | -2.3092E-02 | 5.5585E-03 | -8.6524E-04 | 7.8700E-05 | -3.1275E-06 |
S13 | 1.5853E-01 | -2.7508E-01 | 2.4197E-01 | -1.8442E-01 | 9.8714E-02 | -3.3101E-02 | 6.6768E-03 | -7.4593E-04 | 3.5615E-05 |
S14 | 1.1264E-01 | -1.3410E-01 | 4.8345E-02 | -6.5159E-03 | -7.1234E-04 | 4.3841E-04 | -7.6366E-05 | 6.3279E-06 | -2.0919E-07 |
S15 | -1.9049E-01 | 4.5272E-02 | 3.1217E-03 | -2.3355E-03 | 1.0529E-04 | 7.3348E-05 | -1.4600E-05 | 1.1025E-06 | -3.0651E-08 |
S16 | -1.4297E-01 | 6.5908E-02 | -2.0948E-02 | 4.8272E-03 | -8.0119E-04 | 9.1557E-05 | -6.6993E-06 | 2.7737E-07 | -4.8739E-09 |
表15
f1(mm) | 82.43 | f7(mm) | 255.86 |
f2(mm) | 175.42 | f8(mm) | -11.32 |
f3(mm) | 3.57 | f(mm) | 4.07 |
f4(mm) | -7.65 | TTL(mm) | 5.52 |
f5(mm) | -104.91 | HFOV(°) | 39.1 |
f6(mm) | 10.49 |
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。
图11示出了根据本申请实施例6的光学成像镜头的结构示意图。如图11所示,根据实施例6的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜、第五透镜和第六透镜均具有正光焦度;第四透镜、第七透镜和第八透镜均具有负光焦度。
下表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表17示出了实施例6中各非球面镜面的高次项系数。表18示出了实施例6的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的 一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表16
表17
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -1.4315E-05 | 4.3414E-05 | 8.8702E-06 | 7.3556E-05 | -5.2208E-05 | 3.6653E-05 | -1.3273E-05 | 3.0258E-06 | -1.8212E-07 |
S2 | -8.3651E-05 | -4.6587E-05 | 4.5647E-05 | -1.3876E-04 | 1.9039E-04 | -1.4564E-04 | 7.4008E-05 | -1.5966E-05 | 1.9826E-06 |
S3 | 2.3351E-01 | -4.4367E-01 | 6.4491E-01 | -7.4023E-01 | 5.4436E-01 | -2.4299E-01 | 6.4044E-02 | -9.1931E-03 | 5.5528E-04 |
S4 | 1.0760E-01 | -4.7144E-01 | 6.9649E-01 | -8.2470E-01 | 7.6223E-01 | -4.4899E-01 | 1.5347E-01 | -2.7779E-02 | 2.0615E-03 |
S5 | 4.9437E-02 | -1.8191E-01 | 2.4211E-02 | 7.5848E-02 | 1.6479E-01 | -2.8622E-01 | 1.5647E-01 | -3.6462E-02 | 3.0331E-03 |
S6 | -4.8348E-02 | 6.0300E-02 | -3.7793E-01 | 7.9430E-01 | -8.3196E-01 | 4.8548E-01 | -1.5991E-01 | 2.7811E-02 | -1.9876E-03 |
S7 | -7.2673E-02 | 3.3108E-01 | -1.2231E+00 | 2.3396E+00 | -2.6285E+00 | 1.7291E+00 | -6.1343E-01 | 9.4570E-02 | -2.1634E-03 |
S8 | 7.4585E-02 | -1.0074E-01 | 5.7027E-01 | -1.9219E+00 | 3.4017E+00 | -3.4681E+00 | 2.0519E+00 | -6.4860E-01 | 8.4285E-02 |
S9 | -8.0998E-02 | 1.3904E-01 | -3.4997E-01 | 6.8943E-01 | -8.3819E-01 | 6.0703E-01 | -2.5539E-01 | 5.7495E-02 | -5.3488E-03 |
S10 | -1.2764E-01 | 1.0513E-01 | -3.0212E-01 | 5.4144E-01 | -5.5551E-01 | 3.4223E-01 | -1.2335E-01 | 2.3925E-02 | -1.9318E-03 |
S11 | 1.6904E-02 | 1.6715E-01 | -5.7016E-01 | 8.1311E-01 | -7.3014E-01 | 4.1825E-01 | -1.4717E-01 | 2.8897E-02 | -2.4131E-03 |
S12 | 7.0872E-02 | -9.9267E-02 | 9.2306E-02 | -1.0060E-01 | 6.3445E-02 | -2.1691E-02 | 4.0899E-03 | -4.0229E-04 | 1.6167E-05 |
S13 | 2.3838E-01 | -5.1715E-01 | 5.1432E-01 | -3.5456E-01 | 1.5879E-01 | -4.3783E-02 | 7.1777E-03 | -6.4872E-04 | 2.5431E-05 |
S14 | 1.5805E-01 | -2.6180E-01 | 1.7629E-01 | -7.6645E-02 | 2.2396E-02 | -4.2112E-03 | 4.7976E-04 | -2.9853E-05 | 7.7317E-07 |
S15 | -2.4498E-01 | 1.2960E-01 | -4.8551E-02 | 1.4960E-02 | -3.3754E-03 | 5.0338E-04 | -4.6250E-05 | 2.3602E-06 | -5.1039E-08 |
S16 | -1.6426E-01 | 9.4435E-02 | -3.7604E-02 | 1.0043E-02 | -1.7708E-03 | 2.0060E-04 | -1.3958E-05 | 5.4045E-07 | -8.8752E-09 |
表18
f1(mm) | 14632.00 | f7(mm) | -17.87 |
f2(mm) | 27.13 | f8(mm) | -65.83 |
f3(mm) | 3.39 | f(mm) | 3.74 |
f4(mm) | -6.10 | TTL(mm) | 5.22 |
f5(mm) | 69.46 | HFOV(°) | 41.3 |
f6(mm) | 11.94 |
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。
图13示出了根据本申请实施例7的光学成像镜头的结构示意图。如图13所示,根据实施例7的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第二透镜、第三透镜、第五透镜和第六透镜均具有正光焦度;第一透镜、第四透镜、第七透镜和第八透镜均具有负光焦度。
下表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲 率半径、厚度、材料及圆锥系数。表20示出了实施例7中各非球面镜面的高次项系数。表21示出了实施例7的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表19
表20
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.8679E-03 | -2.7328E-03 | 7.3471E-03 | -2.5475E-02 | 3.7929E-02 | -2.7071E-02 | 9.7317E-03 | -1.6082E-03 | 8.2029E-05 |
S2 | 9.2908E-03 | -7.9700E-02 | 3.1895E-01 | -7.1719E-01 | 9.5674E-01 | -7.7349E-01 | 3.7268E-01 | -9.8619E-02 | 1.1052E-02 |
S3 | 2.3500E-01 | -4.6649E-01 | 7.1655E-01 | -8.3982E-01 | 6.2008E-01 | -2.7685E-01 | 7.2950E-02 | -1.0470E-02 | 6.3243E-04 |
S4 | 1.0964E-01 | -4.9746E-01 | 7.8106E-01 | -9.4730E-01 | 8.5788E-01 | -4.9199E-01 | 1.6460E-01 | -2.9314E-02 | 2.1484E-03 |
S5 | 5.7574E-02 | -2.4028E-01 | 2.0219E-01 | -2.2672E-01 | 4.7538E-01 | -4.8194E-01 | 2.3025E-01 | -5.1694E-02 | 4.3551E-03 |
S6 | -4.2826E-02 | 3.4033E-02 | -3.3277E-01 | 7.5525E-01 | -8.1264E-01 | 4.7972E-01 | -1.5885E-01 | 2.7697E-02 | -1.9816E-03 |
S7 | -6.6061E-02 | 2.8224E-01 | -1.0576E+00 | 2.0063E+00 | -2.2026E+00 | 1.3841E+00 | -4.4338E-01 | 4.8315E-02 | 3.1408E-03 |
S8 | 7.1167E-02 | -8.2417E-02 | 5.1164E-01 | -1.7987E+00 | 3.2405E+00 | -3.3399E+00 | 1.9916E+00 | -6.3314E-01 | 8.2616E-02 |
S9 | -8.1739E-02 | 1.3562E-01 | -3.3073E-01 | 6.4942E-01 | -7.9406E-01 | 5.7937E-01 | -2.4556E-01 | 5.5655E-02 | -5.2089E-03 |
S10 | -1.2678E-01 | 9.7383E-02 | -2.7256E-01 | 4.8491E-01 | -4.9417E-01 | 3.0244E-01 | -1.0807E-01 | 2.0727E-02 | -1.6509E-03 |
S11 | 1.5810E-02 | 1.7913E-01 | -6.0971E-01 | 8.7888E-01 | -7.9236E-01 | 4.5304E-01 | -1.5856E-01 | 3.0919E-02 | -2.5639E-03 |
S12 | 7.7993E-02 | -1.1463E-01 | 1.0827E-01 | -1.1064E-01 | 6.7440E-02 | -2.2701E-02 | 4.2467E-03 | -4.1589E-04 | 1.6671E-05 |
S13 | 2.4546E-01 | -5.4265E-01 | 5.6100E-01 | -4.0484E-01 | 1.9104E-01 | -5.6199E-02 | 9.9906E-03 | -9.9430E-04 | 4.3188E-05 |
S14 | 1.5630E-01 | -2.5781E-01 | 1.7334E-01 | -7.5674E-02 | 2.2257E-02 | -4.2094E-03 | 4.8160E-04 | -3.0051E-05 | 7.7968E-07 |
S15 | -2.4625E-01 | 1.3189E-01 | -5.0898E-02 | 1.6168E-02 | -3.7202E-03 | 5.6126E-04 | -5.1966E-05 | 2.6676E-06 | -5.7985E-08 |
S16 | -1.6300E-01 | 9.2717E-02 | -3.6850E-02 | 9.8549E-03 | -1.7366E-03 | 1.9617E-04 | -1.3592E-05 | 5.2374E-07 | -8.5593E-09 |
表21
f1(mm) | -1338.65 | f7(mm) | -19.20 |
f2(mm) | 26.90 | f8(mm) | -45.33 |
f3(mm) | 3.40 | f(mm) | 3.80 |
f4(mm) | -6.01 | TTL(mm) | 5.24 |
f5(mm) | 62.17 | HFOV(°) | 38.2 |
f6(mm) | 12.13 |
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。
图15示出了根据本申请实施例8的光学成像镜头的结构示意图。如图15所示,根据实施例8的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第二透镜、第三透镜、第五透镜和第六透镜均具 有正光焦度;第一透镜、第四透镜、第七透镜和第八透镜均具有负光焦度。
下表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表23示出了实施例8中各非球面镜面的高次项系数。表24示出了实施例8的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表22
表23
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -1.5540E-03 | 2.1830E-02 | -6.7818E-02 | 1.0021E-01 | -8.7804E-02 | 5.0448E-02 | -1.9215E-02 | 4.4113E-03 | -4.5409E-04 |
S2 | 6.4635E-03 | -5.4902E-02 | 2.2879E-01 | -5.3931E-01 | 7.4802E-01 | -6.2398E-01 | 3.0864E-01 | -8.3575E-02 | 9.5623E-03 |
S3 | 2.3665E-01 | -4.7494E-01 | 7.3577E-01 | -8.6357E-01 | 6.3732E-01 | -2.8440E-01 | 7.4919E-02 | -1.0752E-02 | 6.4941E-04 |
S4 | 1.0818E-01 | -4.9029E-01 | 7.6414E-01 | -9.2541E-01 | 8.4140E-01 | -4.8456E-01 | 1.6263E-01 | -2.9031E-02 | 2.1314E-03 |
S5 | 6.0289E-02 | -2.5774E-01 | 2.5335E-01 | -3.0848E-01 | 5.5217E-01 | -5.2565E-01 | 2.4514E-01 | -5.4498E-02 | 4.5808E-03 |
S6 | -4.2433E-02 | 2.7444E-02 | -3.1158E-01 | 7.2476E-01 | -7.8849E-01 | 4.6844E-01 | -1.5575E-01 | 2.7230E-02 | -1.9520E-03 |
S7 | -6.4213E-02 | 2.6477E-01 | -9.8113E-01 | 1.8228E+00 | -1.9466E+00 | 1.1713E+00 | -3.3963E-01 | 2.0923E-02 | 6.1627E-03 |
S8 | 6.8864E-02 | -6.8762E-02 | 4.8256E-01 | -1.7711E+00 | 3.2301E+00 | -3.3403E+00 | 1.9924E+00 | -6.3295E-01 | 8.2511E-02 |
S9 | -8.0341E-02 | 1.2533E-01 | -3.0127E-01 | 6.0571E-01 | -7.5613E-01 | 5.5926E-01 | -2.3911E-01 | 5.4504E-02 | -5.1206E-03 |
S10 | -1.2823E-01 | 1.1023E-01 | -3.1241E-01 | 5.4365E-01 | -5.4197E-01 | 3.2510E-01 | -1.1426E-01 | 2.1617E-02 | -1.7018E-03 |
S11 | 1.3186E-02 | 1.9522E-01 | -6.4617E-01 | 9.2488E-01 | -8.2796E-01 | 4.7025E-01 | -1.6361E-01 | 3.1741E-02 | -2.6207E-03 |
S12 | 7.7832E-02 | -1.1835E-01 | 1.1423E-01 | -1.1519E-01 | 6.9470E-02 | -2.3253E-02 | 4.3371E-03 | -4.2407E-04 | 1.6985E-05 |
S13 | 2.4636E-01 | -5.3889E-01 | 5.5160E-01 | -3.9486E-01 | 1.8512E-01 | -5.4100E-02 | 9.5485E-03 | -9.4321E-04 | 4.0691E-05 |
S14 | 1.5464E-01 | -2.5524E-01 | 1.7135E-01 | -7.4787E-02 | 2.2012E-02 | -4.1663E-03 | 4.7692E-04 | -2.9765E-05 | 7.7216E-07 |
S15 | -2.4310E-01 | 1.2670E-01 | -4.7140E-02 | 1.4682E-02 | -3.3739E-03 | 5.1223E-04 | -4.7806E-05 | 2.4728E-06 | -5.4109E-08 |
S16 | -1.6356E-01 | 9.2091E-02 | -3.6730E-02 | 9.8358E-03 | -1.7331E-03 | 1.9575E-04 | -1.3566E-05 | 5.2307E-07 | -8.5562E-09 |
表24
f1(mm) | -1369.05 | f7(mm) | -26.94 |
f2(mm) | 27.14 | f8(mm) | -40.52 |
f3(mm) | 3.40 | f(mm) | 3.71 |
f4(mm) | -6.03 | TTL(mm) | 5.21 |
f5(mm) | 63.59 | HFOV(°) | 38.8 |
f6(mm) | 12.11 |
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。
图17示出了根据本申请实施例9的光学成像镜头的结构示意图。 如图17所示,根据实施例9的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜和第六透镜均具有正光焦度;第四透镜、第五透镜、第七透镜和第八透镜均具有负光焦度。
下表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表26示出了实施例9中各非球面镜面的高次项系数。表27示出了实施例9的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表25
表26
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.7563E-02 | -4.1324E-02 | -1.9520E-02 | 1.6542E-01 | -2.5608E-01 | 2.0598E-01 | -9.4476E-02 | 2.3380E-02 | -2.4240E-03 |
S2 | 6.4070E-02 | -2.5446E-01 | 4.1175E-01 | -2.8507E-01 | -5.1954E-02 | 2.5070E-01 | -1.9187E-01 | 6.5962E-02 | -8.8907E-03 |
S3 | 2.4539E-01 | -5.9378E-01 | 9.8806E-01 | -1.1066E+00 | 7.7081E-01 | -3.2883E-01 | 8.3689E-02 | -1.1675E-02 | 6.8759E-04 |
S4 | 8.6771E-02 | -3.9914E-01 | 5.3065E-01 | -5.2486E-01 | 4.3320E-01 | -2.4432E-01 | 8.2229E-02 | -1.4794E-02 | 1.0947E-03 |
S5 | 2.7897E-02 | -1.9911E-01 | 2.0658E-01 | -2.1720E-01 | 3.5813E-01 | -3.3432E-01 | 1.5355E-01 | -3.3558E-02 | 2.7666E-03 |
S6 | -9.3678E-02 | 1.1945E-01 | -2.4259E-01 | 3.8621E-01 | -3.7270E-01 | 2.0845E-01 | -6.6160E-02 | 1.1076E-02 | -7.6106E-04 |
S7 | -7.7141E-02 | 1.0345E-01 | -2.0200E-01 | 2.4934E-01 | -1.4063E-01 | -3.8830E-02 | 1.0605E-01 | -5.5470E-02 | 9.6295E-03 |
S8 | 6.0144E-02 | -2.6193E-02 | -3.6120E-02 | 1.1705E-01 | -1.9787E-01 | 2.3364E-01 | -1.6637E-01 | 6.3737E-02 | -9.9263E-03 |
S9 | -5.8787E-02 | 8.1722E-02 | -1.9929E-01 | 3.6252E-01 | -4.2091E-01 | 2.9709E-01 | -1.2147E-01 | 2.6278E-02 | -2.3223E-03 |
S10 | -9.8595E-02 | 7.0185E-02 | -1.3628E-01 | 1.6146E-01 | -9.9811E-02 | 2.2202E-02 | 7.2487E-03 | -4.5608E-03 | 6.2953E-04 |
S11 | 7.2842E-04 | 7.4297E-02 | -2.1416E-01 | 2.4729E-01 | -1.9477E-01 | 1.0587E-01 | -3.7917E-02 | 7.9247E-03 | -7.1399E-04 |
S12 | 2.0322E-02 | -7.7719E-03 | -3.7627E-02 | 2.1908E-02 | -4.3083E-03 | 1.1834E-04 | 6.1111E-05 | -6.1696E-06 | 9.6751E-08 |
S13 | 1.6427E-01 | -3.1141E-01 | 3.0194E-01 | -2.4080E-01 | 1.3079E-01 | -4.4335E-02 | 9.0703E-03 | -1.0324E-03 | 5.0421E-05 |
S14 | 9.3328E-02 | -1.0844E-01 | 3.0891E-02 | 1.0110E-03 | -2.8962E-03 | 8.6383E-04 | -1.2891E-04 | 9.9902E-06 | -3.1795E-07 |
S15 | -2.0529E-01 | 6.0889E-02 | -3.9120E-03 | -6.7825E-04 | -8.8509E-05 | 7.8776E-05 | -1.3477E-05 | 9.8671E-07 | -2.7306E-08 |
S16 | -1.5343E-01 | 7.6234E-02 | -2.6840E-02 | 6.9138E-03 | -1.2654E-03 | 1.5603E-04 | -1.2080E-05 | 5.2242E-07 | -9.5248E-09 |
表27
f1(mm) | 83.45 | f7(mm) | -23.92 |
f2(mm) | 162.03 | f8(mm) | -23.65 |
f3(mm) | 3.50 | f(mm) | 4.07 |
f4(mm) | -7.26 | TTL(mm) | 5.50 |
f5(mm) | -127.78 | HFOV(°) | 39.2 |
f6(mm) | 9.88 |
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像镜头。
图19示出了根据本申请实施例10的光学成像镜头的结构示意图。如图19所示,根据实施例10的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜和第六透镜均具有正光焦度;第四透镜、第五透镜、第七透镜和第八透镜均具有负光焦度。
下表28示出了实施例10的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表29示出了实施例10中各非球面镜面的高次项系数。表30示出了实施例10的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表28
表29
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.2972E-02 | -2.6497E-02 | -6.0451E-02 | 2.3476E-01 | -3.2664E-01 | 2.5032E-01 | -1.1151E-01 | 2.7085E-02 | -2.7763E-03 |
S2 | 7.3501E-02 | -2.9354E-01 | 5.1065E-01 | -4.6812E-01 | 1.9704E-01 | 2.5036E-02 | -6.6396E-02 | 2.7520E-02 | -3.9291E-03 |
S3 | 2.5372E-01 | -6.1523E-01 | 1.0006E+00 | -1.0871E+00 | 7.3711E-01 | -3.0728E-01 | 7.6628E-02 | -1.0495E-02 | 6.0773E-04 |
S4 | 7.9193E-02 | -3.4104E-01 | 3.6969E-01 | -2.9686E-01 | 2.4928E-01 | -1.5639E-01 | 5.7562E-02 | -1.1041E-02 | 8.5561E-04 |
S5 | 2.5356E-02 | -1.7132E-01 | 1.4746E-01 | -1.8032E-01 | 3.7209E-01 | -3.6509E-01 | 1.7063E-01 | -3.7903E-02 | 3.2041E-03 |
S6 | -1.1565E-01 | 2.0086E-01 | -3.7970E-01 | 5.0151E-01 | -4.1305E-01 | 2.0530E-01 | -5.9591E-02 | 9.2918E-03 | -6.0176E-04 |
S7 | -1.0359E-01 | 1.7685E-01 | -2.7961E-01 | 2.3013E-01 | 2.9488E-04 | -1.8871E-01 | 1.7745E-01 | -7.0671E-02 | 1.0647E-02 |
S8 | 4.9278E-02 | -1.4961E-02 | -1.2326E-02 | 3.9778E-02 | -9.6895E-02 | 1.6010E-01 | -1.3570E-01 | 5.6930E-02 | -9.3069E-03 |
S9 | -6.0144E-02 | 9.0133E-02 | -2.2371E-01 | 3.9423E-01 | -4.3935E-01 | 2.9848E-01 | -1.1802E-01 | 2.4790E-02 | -2.1335E-03 |
S10 | -1.0172E-01 | 8.5355E-02 | -1.5800E-01 | 1.7715E-01 | -1.0482E-01 | 2.2535E-02 | 7.1167E-03 | -4.3970E-03 | 5.9749E-04 |
S11 | -1.7438E-02 | 1.1562E-01 | -2.5074E-01 | 2.5363E-01 | -1.7508E-01 | 8.5041E-02 | -2.8236E-02 | 5.6763E-03 | -5.0337E-04 |
S12 | -8.9633E-03 | 6.7182E-02 | -1.2894E-01 | 8.9728E-02 | -3.5408E-02 | 8.8093E-03 | -1.3722E-03 | 1.2171E-04 | -4.6565E-06 |
S13 | 1.6616E-01 | -2.9294E-01 | 2.6772E-01 | -2.1156E-01 | 1.1662E-01 | -4.0166E-02 | 8.2981E-03 | -9.4561E-04 | 4.5820E-05 |
S14 | 1.1786E-01 | -1.4144E-01 | 5.4122E-02 | -9.3723E-03 | 1.9110E-04 | 2.5544E-04 | -5.3462E-05 | 4.7219E-06 | -1.6119E-07 |
S15 | -1.8740E-01 | 4.2442E-02 | 4.5537E-03 | -2.9083E-03 | 2.7272E-04 | 4.2136E-05 | -1.1167E-05 | 9.0020E-07 | -2.5741E-08 |
S16 | -1.4171E-01 | 6.4567E-02 | -2.0532E-02 | 4.8460E-03 | -8.3611E-04 | 9.9359E-05 | -7.5022E-06 | 3.1775E-07 | -5.6740E-09 |
表30
f1(mm) | 86.81 | f7(mm) | -151.56 |
f2(mm) | 92.89 | f8(mm) | -11.40 |
f3(mm) | 3.61 | f(mm) | 4.07 |
f4(mm) | -7.78 | TTL(mm) | 5.50 |
f5(mm) | -111.57 | HFOV(°) | 39.1 |
f6(mm) | 10.16 |
图20A示出了实施例10的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图20B示出了实施例10的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20D示出了实施例10的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给 出的光学成像镜头能够实现良好的成像品质。
实施例11
以下参照图21至图22D描述了根据本申请实施例11的光学成像镜头。
图21示出了根据本申请实施例11的光学成像镜头的结构示意图。如图21所示,根据实施例11的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第三透镜和第六透镜均具有正光焦度;第二透镜、第四透镜、第五透镜、第七透镜和第八透镜均具有负光焦度。
下表31示出了实施例11的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表32示出了实施例11中各非球面镜面的高次项系数。表33示出了实施例11的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表31
表32
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.5660E-02 | -3.6702E-02 | -3.8571E-02 | 2.1345E-01 | -3.2392E-01 | 2.6283E-01 | -1.2278E-01 | 3.1132E-02 | -3.3235E-03 |
S2 | 7.0396E-02 | -2.8436E-01 | 4.9470E-01 | -4.3186E-01 | 1.2795E-01 | 1.0121E-01 | -1.1297E-01 | 4.2377E-02 | -5.8670E-03 |
S3 | 2.4312E-01 | -5.9282E-01 | 9.8224E-01 | -1.0859E+00 | 7.4551E-01 | -3.1349E-01 | 7.8661E-02 | -1.0822E-02 | 6.2859E-04 |
S4 | 8.6926E-02 | -3.8350E-01 | 4.5240E-01 | -3.8161E-01 | 3.0122E-01 | -1.7635E-01 | 6.2333E-02 | -1.1695E-02 | 8.9516E-04 |
S5 | 3.0272E-02 | -1.7981E-01 | 1.1630E-01 | -5.6663E-02 | 1.9814E-01 | -2.3699E-01 | 1.1775E-01 | -2.6277E-02 | 2.1404E-03 |
S6 | -1.1111E-01 | 1.8721E-01 | -3.7027E-01 | 5.1764E-01 | -4.5112E-01 | 2.3616E-01 | -7.1824E-02 | 1.1683E-02 | -7.8661E-04 |
S7 | -1.0251E-01 | 1.9490E-01 | -3.9944E-01 | 5.6242E-01 | -5.0459E-01 | 2.5700E-01 | -4.8304E-02 | -1.0204E-02 | 4.0405E-03 |
S8 | 4.4956E-02 | 1.6072E-02 | -1.2292E-01 | 2.7568E-01 | -4.0994E-01 | 4.1751E-01 | -2.6248E-01 | 9.0970E-02 | -1.3117E-02 |
S9 | -6.1389E-02 | 9.5492E-02 | -2.2769E-01 | 3.9449E-01 | -4.4044E-01 | 3.0184E-01 | -1.2058E-01 | 2.5591E-02 | -2.2241E-03 |
S10 | -1.0607E-01 | 1.0349E-01 | -2.0175E-01 | 2.4589E-01 | -1.7386E-01 | 6.5443E-02 | -8.7200E-03 | -1.2242E-03 | 3.3199E-04 |
S11 | -1.4512E-02 | 1.0552E-01 | -2.4050E-01 | 2.4649E-01 | -1.7047E-01 | 8.2268E-02 | -2.7086E-02 | 5.4198E-03 | -4.8063E-04 |
S12 | -2.4107E-03 | 4.3092E-02 | -9.9079E-02 | 6.8377E-02 | -2.6074E-02 | 6.3205E-03 | -9.7991E-04 | 8.8253E-05 | -3.4694E-06 |
S13 | 1.6185E-01 | -2.9198E-01 | 2.7043E-01 | -2.1172E-01 | 1.1418E-01 | -3.8306E-02 | 7.7026E-03 | -8.5567E-04 | 4.0560E-05 |
S14 | 9.2977E-02 | -1.0846E-01 | 3.0730E-02 | 1.4338E-03 | -3.1085E-03 | 9.0670E-04 | -1.3265E-04 | 1.0085E-05 | -3.1543E-07 |
S15 | -1.9305E-01 | 4.8614E-02 | 2.0910E-03 | -2.5266E-03 | 2.6756E-04 | 3.7356E-05 | -1.0741E-05 | 8.9701E-07 | -2.6301E-08 |
S16 | -1.4238E-01 | 6.5559E-02 | -2.0921E-02 | 4.8076E-03 | -7.8694E-04 | 8.7685E-05 | -6.2092E-06 | 2.4813E-07 | -4.2104E-09 |
表33
f1(mm) | 81.03 | f7(mm) | -34.35 |
f2(mm) | -662.87 | f8(mm) | -16.73 |
f3(mm) | 3.48 | f(mm) | 4.10 |
f4(mm) | -7.59 | TTL(mm) | 5.53 |
f5(mm) | -132.63 | HFOV(°) | 39.0 |
f6(mm) | 10.02 |
图22A示出了实施例11的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图22B示出了实施例11的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图22C示出了实施例11的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图22D示出了实施例11的光学 成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图22A至图22D可知,实施例11所给出的光学成像镜头能够实现良好的成像品质。
实施例12
以下参照图23至图24D描述了根据本申请实施例12的光学成像镜头。
图23示出了根据本申请实施例12的光学成像镜头的结构示意图。如图23所示,根据实施例12的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜、第五透镜和第六透镜均具有正光焦度;第四透镜、第七透镜和第八透镜均具有负光焦度。
下表34示出了实施例12的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表35示出了实施例12中各非球面镜面的高次项系数。表36示出了实施例12的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表34
表35
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 9.6173E-03 | -1.2341E-02 | -4.2005E-02 | 1.4639E-01 | -2.1037E-01 | 1.7172E-01 | -8.1696E-02 | 2.0986E-02 | -2.2438E-03 |
S2 | 2.5280E-02 | -1.1530E-01 | 2.3148E-01 | -2.7087E-01 | 1.8363E-01 | -5.5768E-02 | -6.4195E-03 | 8.7647E-03 | -1.6330E-03 |
S3 | 2.5128E-01 | -5.5100E-01 | 9.1058E-01 | -1.0730E+00 | 7.8328E-01 | -3.4599E-01 | 9.0453E-02 | -1.2908E-02 | 7.7610E-04 |
S4 | 8.1715E-02 | -4.3102E-01 | 7.4698E-01 | -9.9291E-01 | 9.2853E-01 | -5.3239E-01 | 1.7641E-01 | -3.1064E-02 | 2.2522E-03 |
S5 | 4.4977E-02 | -2.6938E-01 | 4.4957E-01 | -7.3056E-01 | 9.8246E-01 | -7.6929E-01 | 3.2315E-01 | -6.7587E-02 | 5.4595E-03 |
S6 | -4.2475E-02 | 2.4577E-02 | -2.8406E-01 | 6.6206E-01 | -7.2189E-01 | 4.2996E-01 | -1.4328E-01 | 2.5096E-02 | -1.8017E-03 |
S7 | -4.7652E-02 | 1.2301E-01 | -4.5845E-01 | 6.6313E-01 | -3.3003E-01 | -2.2789E-01 | 3.8537E-01 | -1.8448E-01 | 3.0599E-02 |
S8 | 7.5556E-02 | -1.3351E-01 | 6.5809E-01 | -2.0012E+00 | 3.3563E+00 | -3.2832E+00 | 1.8721E+00 | -5.7217E-01 | 7.2110E-02 |
S9 | -8.0236E-02 | 1.0891E-01 | -1.9873E-01 | 3.4228E-01 | -3.9964E-01 | 2.8831E-01 | -1.2252E-01 | 2.7934E-02 | -2.6264E-03 |
S10 | -1.2662E-01 | 9.0640E-02 | -2.0689E-01 | 3.1876E-01 | -2.8241E-01 | 1.4724E-01 | -4.2346E-02 | 5.8503E-03 | -2.6090E-04 |
S11 | 2.0994E-02 | 1.0337E-01 | -3.6713E-01 | 4.8651E-01 | -4.1840E-01 | 2.3542E-01 | -8.3063E-02 | 1.6643E-02 | -1.4344E-03 |
S12 | 5.6591E-02 | -5.8177E-02 | 3.0218E-02 | -4.9463E-02 | 3.9259E-02 | -1.4889E-02 | 2.9630E-03 | -3.0060E-04 | 1.2309E-05 |
S13 | 2.1561E-01 | -4.5414E-01 | 4.7082E-01 | -3.7664E-01 | 2.0498E-01 | -7.0610E-02 | 1.4851E-02 | -1.7524E-03 | 8.9204E-05 |
S14 | 1.3052E-01 | -1.7802E-01 | 8.0673E-02 | -1.9010E-02 | 1.9391E-03 | 2.0227E-04 | -8.8230E-05 | 1.0184E-05 | -4.1489E-07 |
S15 | -2.2970E-01 | 9.7637E-02 | -2.3515E-02 | 4.6698E-03 | -8.9438E-04 | 1.4024E-04 | -1.4518E-05 | 8.3810E-07 | -2.0209E-08 |
S16 | -1.5188E-01 | 7.5246E-02 | -2.6052E-02 | 6.4012E-03 | -1.1046E-03 | 1.2761E-04 | -9.2305E-06 | 3.7327E-07 | -6.3835E-09 |
表36
f1(mm) | 1705.58 | f7(mm) | -30.39 |
f2(mm) | 21.44 | f8(mm) | -23.61 |
f3(mm) | 3.53 | f(m) | 3.80 |
f4(mm) | -6.18 | TTL(mm) | 5.19 |
f5(mm) | 82.30 | HFOV(°) | 40.8 |
f6(mm) | 11.53 |
图24A示出了实施例12的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图24B示出 了实施例12的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24C示出了实施例12的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图24D示出了实施例12的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图24A至图24D可知,实施例12所给出的光学成像镜头能够实现良好的成像品质。
实施例13
以下参照图25至图26D描述了根据本申请实施例13的光学成像镜头。
图25示出了根据本申请实施例13的光学成像镜头的结构示意图。如图25所示,根据实施例13的光学成像镜头包括分别具有物侧面和像侧面的第一至第八透镜E1-E8。
在该实施例中,第一透镜、第二透镜、第三透镜、第五透镜和第六透镜均具有正光焦度;第四透镜、第七透镜和第八透镜均具有负光焦度。
下表37示出了实施例13的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表38示出了实施例13中各非球面镜面的高次项系数。表39示出了实施例13的各透镜的有效焦距f1至f8、光学成像镜头的成像镜头的有效焦距f、光学成像镜头的最大视场角的一半HFOV以及第一透镜L1的物侧面S1至光学成像镜头的成像面S19在光轴上的距离TTL。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表37
表38
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.9155E-02 | -3.0281E-02 | -6.2878E-02 | 2.3954E-01 | -3.3188E-01 | 2.5534E-01 | -1.1440E-01 | 2.7876E-02 | -2.8524E-03 |
S2 | 5.2242E-02 | -2.1047E-01 | 3.0123E-01 | -1.1372E-01 | -2.2163E-01 | 3.5965E-01 | -2.3530E-01 | 7.5409E-02 | -9.6940E-03 |
S3 | 2.5856E-01 | -5.9925E-01 | 9.7569E-01 | -1.0807E+00 | 7.4872E-01 | -3.1934E-01 | 8.1641E-02 | -1.1484E-02 | 6.8371E-04 |
S4 | 4.7956E-02 | -2.8853E-01 | 4.1652E-01 | -4.8263E-01 | 4.3311E-01 | -2.4452E-01 | 7.9831E-02 | -1.3829E-02 | 9.8599E-04 |
S5 | 1.3837E-02 | -1.6720E-01 | 2.2831E-01 | -3.1904E-01 | 4.3110E-01 | -3.2020E-01 | 1.1633E-01 | -1.8203E-02 | 7.1709E-04 |
S6 | -1.0815E-01 | 3.1744E-01 | -8.6226E-01 | 1.3033E+00 | -1.1341E+00 | 5.8255E-01 | -1.7408E-01 | 2.7969E-02 | -1.8683E-03 |
S7 | -8.7997E-02 | 2.5637E-01 | -5.1679E-01 | 2.5530E-01 | 5.8093E-01 | -1.0765E+00 | 7.7702E-01 | -2.6795E-01 | 3.6312E-02 |
S8 | 6.3815E-02 | -2.1740E-02 | 6.4124E-02 | -3.2217E-01 | 5.7648E-01 | -4.9615E-01 | 2.1965E-01 | -4.3639E-02 | 2.2187E-03 |
S9 | -6.5665E-02 | 7.7273E-02 | -1.6052E-01 | 3.0877E-01 | -3.9477E-01 | 3.0352E-01 | -1.3305E-01 | 3.0492E-02 | -2.8311E-03 |
S10 | -8.7564E-02 | -1.2716E-02 | 6.5301E-02 | -1.3739E-01 | 1.8767E-01 | -1.5576E-01 | 7.5414E-02 | -1.9151E-02 | 1.9542E-03 |
S11 | 1.7679E-02 | 5.2170E-02 | -2.0525E-01 | 2.6700E-01 | -2.3510E-01 | 1.3937E-01 | -5.2957E-02 | 1.1488E-02 | -1.0605E-03 |
S12 | 6.5439E-02 | -7.2445E-02 | 3.2449E-02 | -3.3709E-02 | 2.3808E-02 | -8.4522E-03 | 1.5819E-03 | -1.5072E-04 | 5.7844E-06 |
S13 | 1.9592E-01 | -4.0604E-01 | 4.2815E-01 | -3.5988E-01 | 2.0495E-01 | -7.3264E-02 | 1.5898E-02 | -1.9257E-03 | 1.0014E-04 |
S14 | 8.6989E-02 | -1.1058E-01 | 2.8620E-02 | 6.3480E-03 | -5.9882E-03 | 1.7428E-03 | -2.6466E-04 | 2.0906E-05 | -6.7619E-07 |
S15 | -2.0609E-01 | 4.7439E-02 | 1.1876E-02 | -8.1997E-03 | 1.8684E-03 | -2.2369E-04 | 1.4318E-05 | -4.1772E-07 | 2.7481E-09 |
S16 | -1.6889E-01 | 8.8233E-02 | -3.3530E-02 | 9.2292E-03 | -1.7715E-03 | 2.2574E-04 | -1.7918E-05 | 7.9209E-07 | -1.4763E-08 |
表39
f1(mm) | 238.25 | f7(mm) | -15.99 |
f2(mm) | 19.08 | f8(mm) | -64.71 |
f3(mm) | 3.67 | f(mm) | 3.92 |
f4(mm) | -6.15 | TTL(mm) | 5.33 |
f5(mm) | 131.18 | HFOV(°) | 39.9 |
f6(mm) | 10.79 |
图26A示出了实施例13的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由光学成像镜头后的会聚焦点偏离。图26B示出了实施例13的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图26C示出了实施例13的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图26D示出了实施例13的光学成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同的像高的偏差。根据图26A至图26D可知,实施例13所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例13分别满足以下表40所示的关系。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (34)
- 光学成像镜头,沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜,其特征在于,所述第一透镜、所述第二透镜、所述第五透镜、所述第七透镜和所述第八透镜分别具有正光焦度或负光焦度;所述第三透镜和所述第四透镜的组合光焦度为正光焦度;第六透镜具有正光焦度;以及所述光学成像镜头的有效焦距f与所述第三透镜和所述第四透镜的组合焦距f34之间满足:0.5≤f/f34<1.0。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第六透镜的有效焦距f6之间满足:0<f/f6<0.5。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜具有正光焦度,所述第四透镜具有负光焦度。
- 根据权利要求3所述的光学成像镜头,其特征在于,所述第四透镜物侧面的曲率半径R7与所述第四透镜像侧面的曲率半径R8之间满足:0<(R7-R8)/(R7+R8)<1.0。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间满足:TTL/ImgH≤1.7。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于, 所述光学成像镜头的所述有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12之间满足:0<f/f12<0.5。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第一透镜的有效焦距f1之间满足:|f/f1|≤0.1。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半径R4之间满足:0.6<R3/R4<1.2。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3之间满足:0.5<CT2/CT3<0.8。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第五透镜的有效焦距f5之间满足:|f/f5|≤0.1。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第六透镜物侧面的曲率半径R11之间满足:0.5<f/R11<1.0。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第七透镜在所述光轴上的中心厚度CT7之间满足:0.7<CT6/CT7<1.2。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述第七透镜和所述第八透镜的组合焦度为负光焦度。
- 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第七透镜和所述第八透镜的组合焦距f78之间满足:-0.5<f/f78<0。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述第七透镜物侧面的曲率半径R13与所述第七透镜像侧面的曲率半径R14之间满足:|(R13-R14)/(R13+R14)|≤0.5。
- 根据权利要求1-5中任一项所述的光学成像镜头,其特征在于,所述第八透镜物侧面的曲率半径R15与所述第八透镜像侧面的曲率半径R16之间满足:1≤R15/R16<1.5。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述光学成像镜头的入瞳直径EPD之间满足:f/EPD≤1.8。
- 光学成像镜头,沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜以及第八透镜,其特征在于,所述第一透镜、所述第二透镜和所述第五透镜分别具有正光焦度或负光焦度;所述第三透镜和所述第六透镜均具有正光焦度;所述第四透镜具有负光焦度;所述第七透镜和所述第八透镜的组合光焦度为负光焦度;以及所述光学成像镜头的有效焦距f与所述第七透镜和所述第八透镜的组合焦距f78之间满足:-0.5<f/f78<0。
- 根据权利要求18所述的光学成像镜头,其特征在于,所述第七透镜和所述第八透镜中的至少一个具有负光焦度。
- 根据权利要求18所述的光学成像镜头,其特征在于,所述第三透镜和所述第四透镜的组合光焦度为正光焦度。
- 根据权利要求20所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第三透镜和所述第四透镜的组合焦距f34之间满足:0.5≤f/f34<1.0。
- 根据权利要求18所述的光学成像镜头,其特征在于,所述第一透镜物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间满足:TTL/ImgH≤1.7。
- 根据权利要求22所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述光学成像镜头的入瞳直径EPD之间满足:f/EPD≤1.8。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第六透镜的有效焦距f6之间满足:0<f/f6<0.5。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12之间满足:0<f/f12<0.5。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第一透镜的有效焦距f1之间满足:|f/f1|≤0.1。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述第 二透镜物侧面的曲率半径R3与所述第二透镜像侧面的曲率半径R4之间满足:0.6<R3/R4<1.2。
- 根据权利要求27所述的光学成像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3之间满足:0.5<CT2/CT3<0.8。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述第四透镜物侧面的曲率半径R7与所述第四透镜像侧面的曲率半径R8之间满足:0<(R7-R8)/(R7+R8)<1.0。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第五透镜的有效焦距f5之间满足:|f/f5|≤0.1。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述光学成像镜头的所述有效焦距f与所述第六透镜物侧面的曲率半径R11之间满足:0.5<f/R11<1.0。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第七透镜在所述光轴上的中心厚度CT7之间满足:0.7<CT6/CT7<1.2。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述第七透镜物侧面的曲率半径R13与所述第七透镜像侧面的曲率半径R14之间满足:|(R13-R14)/(R13+R14)|≤0.5。
- 根据权利要求23所述的光学成像镜头,其特征在于,所述第八透镜物侧面的曲率半径R15与所述第八透镜像侧面的曲率半径R16之间满足:1≤R15/R16<1.5。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/211,696 US10976520B2 (en) | 2017-07-05 | 2018-12-06 | Optical imaging lens assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720806420.8 | 2017-07-05 | ||
CN201710542434.8 | 2017-07-05 | ||
CN201720806420.8U CN207037198U (zh) | 2017-07-05 | 2017-07-05 | 光学成像镜头 |
CN201710542434.8A CN107085285B (zh) | 2017-07-05 | 2017-07-05 | 光学成像镜头 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/211,696 Continuation US10976520B2 (en) | 2017-07-05 | 2018-12-06 | Optical imaging lens assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019007030A1 true WO2019007030A1 (zh) | 2019-01-10 |
Family
ID=64949719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/072776 WO2019007030A1 (zh) | 2017-07-05 | 2018-01-16 | 光学成像镜头 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10976520B2 (zh) |
WO (1) | WO2019007030A1 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI636279B (zh) | 2017-08-18 | 2018-09-21 | 大立光電股份有限公司 | 影像擷取光學系統組、取像裝置及電子裝置 |
US10935759B2 (en) * | 2017-11-08 | 2021-03-02 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
TWI664468B (zh) * | 2018-05-21 | 2019-07-01 | 大立光電股份有限公司 | 攝像光學鏡頭、取像裝置及電子裝置 |
TWI699574B (zh) | 2018-10-24 | 2020-07-21 | 大立光電股份有限公司 | 成像透鏡系統、取像裝置及電子裝置 |
JP7347970B2 (ja) * | 2019-06-20 | 2023-09-20 | 東京晨美光学電子株式会社 | 撮像レンズ |
KR102449626B1 (ko) * | 2019-11-21 | 2022-09-30 | 삼성전기주식회사 | 촬상 광학계 |
TWI714368B (zh) | 2019-11-27 | 2020-12-21 | 大立光電股份有限公司 | 攝像用光學系統、取像裝置及電子裝置 |
CN110908083B (zh) * | 2019-12-23 | 2021-10-01 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN112014953B (zh) * | 2020-10-13 | 2021-01-01 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112014952B (zh) * | 2020-10-13 | 2020-12-29 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112230372B (zh) * | 2020-10-30 | 2021-10-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN112230375B (zh) * | 2020-10-30 | 2021-10-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN112230376B (zh) * | 2020-10-30 | 2021-10-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN112099202B (zh) * | 2020-11-02 | 2021-01-29 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112099201B (zh) * | 2020-11-02 | 2021-01-26 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
CN112099200B (zh) * | 2020-11-02 | 2021-01-29 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101762864A (zh) * | 2008-12-25 | 2010-06-30 | 大立光电股份有限公司 | 取像光学系统 |
CN204314534U (zh) * | 2015-01-07 | 2015-05-06 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN205229553U (zh) * | 2013-03-26 | 2016-05-11 | 富士胶片株式会社 | 摄像透镜以及具备摄像透镜的摄像装置 |
JP6037221B2 (ja) * | 2012-11-16 | 2016-12-07 | 株式会社リコー | 広角レンズ、撮像レンズユニット、撮像装置および情報装置 |
CN106338815A (zh) * | 2016-10-28 | 2017-01-18 | 浙江舜宇光学有限公司 | 摄像镜头及装配有该摄像镜头的摄像装置 |
CN107085285A (zh) * | 2017-07-05 | 2017-08-22 | 浙江舜宇光学有限公司 | 光学成像镜头 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6037221B2 (ja) | 1981-11-09 | 1985-08-24 | 株式会社 タカトリ機械製作所 | 靴下仕上機における足型への靴下着装方法及び装置 |
JP5287326B2 (ja) * | 2009-02-16 | 2013-09-11 | セイコーエプソン株式会社 | 投射用ズームレンズ及び投射型画像表示装置 |
US20150036230A1 (en) * | 2013-07-31 | 2015-02-05 | Genius Electronic Optical Co., Ltd. | Optical imaging lens |
-
2018
- 2018-01-16 WO PCT/CN2018/072776 patent/WO2019007030A1/zh active Application Filing
- 2018-12-06 US US16/211,696 patent/US10976520B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101762864A (zh) * | 2008-12-25 | 2010-06-30 | 大立光电股份有限公司 | 取像光学系统 |
JP6037221B2 (ja) * | 2012-11-16 | 2016-12-07 | 株式会社リコー | 広角レンズ、撮像レンズユニット、撮像装置および情報装置 |
CN205229553U (zh) * | 2013-03-26 | 2016-05-11 | 富士胶片株式会社 | 摄像透镜以及具备摄像透镜的摄像装置 |
CN204314534U (zh) * | 2015-01-07 | 2015-05-06 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN106338815A (zh) * | 2016-10-28 | 2017-01-18 | 浙江舜宇光学有限公司 | 摄像镜头及装配有该摄像镜头的摄像装置 |
CN107085285A (zh) * | 2017-07-05 | 2017-08-22 | 浙江舜宇光学有限公司 | 光学成像镜头 |
Also Published As
Publication number | Publication date |
---|---|
US10976520B2 (en) | 2021-04-13 |
US20190107690A1 (en) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107085285B (zh) | 光学成像镜头 | |
WO2019007030A1 (zh) | 光学成像镜头 | |
WO2019105139A1 (zh) | 光学成像镜头 | |
WO2019101052A1 (zh) | 光学成像镜头 | |
WO2020119172A1 (zh) | 光学成像镜头 | |
WO2019233160A1 (zh) | 光学成像镜片组 | |
WO2018090609A1 (zh) | 光学成像系统及摄像装置 | |
WO2020007080A1 (zh) | 摄像镜头 | |
WO2019192180A1 (zh) | 光学成像镜头 | |
WO2020024634A1 (zh) | 光学成像镜片组 | |
WO2019100768A1 (zh) | 光学成像镜头 | |
WO2020119171A1 (zh) | 光学成像镜头 | |
WO2019091170A1 (zh) | 摄像透镜组 | |
WO2020019794A1 (zh) | 光学成像镜头 | |
WO2020119146A1 (zh) | 光学成像镜头 | |
WO2020073702A1 (zh) | 光学成像镜片组 | |
WO2019196572A1 (zh) | 光学成像系统 | |
WO2020191951A1 (zh) | 光学成像镜头 | |
WO2019080554A1 (zh) | 光学成像镜头 | |
WO2018126587A1 (zh) | 摄远镜头以及摄像装置 | |
WO2020029613A1 (zh) | 光学成像镜头 | |
WO2019095865A1 (zh) | 光学成像镜头 | |
WO2020024635A1 (zh) | 光学成像镜头 | |
WO2019056776A1 (zh) | 光学成像镜头 | |
WO2019169856A1 (zh) | 摄像镜头组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18827687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18827687 Country of ref document: EP Kind code of ref document: A1 |