WO2018090609A1 - 光学成像系统及摄像装置 - Google Patents

光学成像系统及摄像装置 Download PDF

Info

Publication number
WO2018090609A1
WO2018090609A1 PCT/CN2017/088355 CN2017088355W WO2018090609A1 WO 2018090609 A1 WO2018090609 A1 WO 2018090609A1 CN 2017088355 W CN2017088355 W CN 2017088355W WO 2018090609 A1 WO2018090609 A1 WO 2018090609A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
shows
focal length
Prior art date
Application number
PCT/CN2017/088355
Other languages
English (en)
French (fr)
Inventor
吕赛锋
戴付建
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/076,191 priority Critical patent/US11402611B2/en
Publication of WO2018090609A1 publication Critical patent/WO2018090609A1/zh
Priority to US17/833,802 priority patent/US20220308318A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an optical imaging system and an imaging apparatus equipped with the optical imaging system.
  • the photosensitive element of a conventional electronic imaging device is generally a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor).
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the patent application CN201310472840.3 provides an optical imaging system which ensures that the optical imaging system has good imaging quality and the optical imaging system has a short length.
  • higher requirements have been placed on optical imaging systems, especially for insufficient light (such as rainy days, dusk, etc.) and hand shake.
  • the application provides an optical imaging system.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis, a first lens having a positive power, the image side of which Moving away from the optical axis, gradually changing from a paraxial concave surface to an edge convex surface; a second lens having positive refractive power, the object side is convex, the image side is convex; the third lens having negative power; and having positive power a fourth lens having a negative power; and a fifth lens having a positive power or a negative power, the object side being convex at a paraxial shape and the image side being concave at a near axis, wherein the fourth The combined power of the lens and the fifth lens is a negative power.
  • the entrance pupil diameter EPD of the optical imaging system and the total effective focal length f of the optical imaging system satisfy f/EPD ⁇ 2.0.
  • a distance T34 between the third lens and the fourth lens on the optical axis and an axial distance from an object side of the first lens to an imaging surface of the optical imaging system The TTL satisfies T34/TTL ⁇ 0.2.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging system satisfy 0.3 ⁇ f / f1 ⁇ 0.5.
  • the effective focal length f2 of the second lens and the radius of curvature R4 of the image side of the second lens satisfy f2/
  • the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface satisfy 0 ⁇ (R5-R6)/(R5+R6) ⁇ 0.5.
  • the radius of curvature R4 of the image side surface of the second lens and the radius of curvature R5 of the object side surface of the third lens satisfy ⁇ 1.2 ⁇ R5/R4 ⁇ 0.
  • the dispersion coefficient V3 of the third lens and the dispersion coefficient V4 of the fourth lens satisfy
  • the radius of curvature R7 of the object side of the fourth lens and the total effective focal length f of the optical imaging system satisfy f/
  • the center thickness CT3 of the third lens and the center thickness CT4 of the fourth lens satisfy CT3/CT4 ⁇ 0.4.
  • the combined focal length f12 of the first lens and the second lens and the effective focal length f3 of the third lens satisfy ⁇ 0.5 ⁇ f12/f3 ⁇ 0.
  • the combined focal length f45 of the fourth lens and the fifth lens and the total effective focal length f of the optical imaging system satisfy -0.5 ⁇ f / f45 ⁇ 0.
  • the present application provides an optical imaging system.
  • the optical imaging system sequentially includes a first lens group having positive power and negative light from the object side to the image side along the optical axis A second lens group and at least one subsequent lens group.
  • the first lens group includes a first lens and a second lens having a positive power
  • the second lens group includes a third lens having a negative power
  • an image side of the first lens is away from the light
  • the axis gradually becomes a convex surface from the concave surface.
  • the combined focal length f12 of the first lens and the second lens and the effective focal length f3 of the third lens satisfy ⁇ 0.5 ⁇ f12/f3 ⁇ 0.
  • the object side surface and the image side surface of the second lens are both convex surfaces.
  • the entrance pupil diameter EPD of the optical imaging system and the total effective focal length f of the optical imaging system satisfy f/EPD ⁇ 2.0.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging system satisfy 0.3 ⁇ f / f1 ⁇ 0.5.
  • the effective focal length f2 of the second lens and the radius of curvature R4 of the image side of the second lens satisfy f2/
  • the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface satisfy 0 ⁇ (R5-R6)/(R5+R6) ⁇ 0.5.
  • the radius of curvature R4 of the image side surface of the second lens and the radius of curvature R5 of the object side surface of the third lens satisfy ⁇ 1.2 ⁇ R5/R4 ⁇ 0.
  • the at least one subsequent lens group includes a third lens group having a negative power, and the third lens group includes a fourth lens having a power.
  • the dispersion coefficient V3 of the third lens and the dispersion coefficient V4 of the fourth lens satisfy
  • the radius of curvature R7 of the object side of the fourth lens and the total effective focal length f of the optical imaging system satisfy f/
  • a distance T34 between the third lens and the fourth lens on the optical axis and an axial distance from an object side of the first lens to an imaging surface of the optical imaging system The TTL satisfies T34/TTL ⁇ 0.2.
  • the center thickness CT3 of the third lens and the center thickness CT4 of the fourth lens satisfy CT3/CT4 ⁇ 0.4.
  • the third lens group further includes a fifth lens having a power, wherein an object side of the fifth lens is convex at a paraxial, the fifth lens The image side is concave at the paraxial axis.
  • the combined focal length f45 of the fourth lens and the fifth lens and the total effective focal length f of the optical imaging system satisfy -0.5 ⁇ f / f45 ⁇ 0.
  • the present application provides an image pickup apparatus equipped with the above-described optical imaging system.
  • the optical imaging system and the imaging device provided by the present application reduce the aberration of the edge field of view while increasing the amount of light passing through.
  • the positive power is dispersed, the excessive concentration of the power is avoided, and the spherical aberration and the axial chromatic aberration are effectively reduced.
  • FIG. 1 is a schematic structural view showing an optical imaging system according to Embodiment 1 of the present application.
  • FIG. 2A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 1;
  • 2D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 1;
  • FIG. 3 is a schematic structural view showing an optical imaging system according to Embodiment 2 of the present application.
  • 4A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 2;
  • 4D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 2;
  • FIG. 5 is a schematic structural view showing an optical imaging system according to Embodiment 3 of the present application.
  • 6A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 3.
  • 6B shows an astigmatism curve of the optical imaging system of Embodiment 3.
  • 6C shows a distortion curve of the optical imaging system of Embodiment 3.
  • 6D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 3.
  • FIG. 7 is a schematic structural view showing an optical imaging system according to Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural view showing an optical imaging system according to Embodiment 5 of the present application.
  • 10A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 5;
  • Figure 10B shows an astigmatism curve of the optical imaging system of Example 5.
  • FIG. 10C shows a distortion curve of the optical imaging system of Embodiment 5.
  • 10D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 5;
  • FIG. 11 is a schematic structural view showing an optical imaging system according to Embodiment 6 of the present application.
  • Figure 12B shows an astigmatism curve of the optical imaging system of Example 6
  • FIG. 13 is a schematic structural view showing an optical imaging system according to Embodiment 7 of the present application.
  • Figure 14B shows an astigmatism curve of the optical imaging system of Example 7.
  • FIG. 15 is a schematic structural view showing an optical imaging system according to Embodiment 8 of the present application.
  • Figure 16A shows an axial chromatic aberration curve of the optical imaging system of Example 8.
  • Figure 16B shows an astigmatism curve of the optical imaging system of Example 8.
  • 16C shows a distortion curve of the optical imaging system of Embodiment 8.
  • 16D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 8.
  • FIG. 17 is a schematic structural view showing an optical imaging system according to Embodiment 9 of the present application.
  • Figure 18A shows an axial chromatic aberration curve of the optical imaging system of Example 9
  • Figure 18B shows an astigmatism curve of the optical imaging system of Example 9
  • Figure 18C shows a distortion curve of the optical imaging system of Example 9
  • Figure 18D shows a magnification chromatic aberration curve of the optical imaging system of Example 9
  • FIG. 19 is a schematic structural view showing an optical imaging system according to Embodiment 10 of the present application.
  • FIG. 21 is a schematic structural view showing an optical imaging system according to Embodiment 11 of the present application.
  • Figure 22B shows an astigmatism curve of the optical imaging system of Example 11
  • FIG. 23 is a schematic structural view showing an optical imaging system according to Embodiment 12 of the present application.
  • 24A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 12;
  • Figure 24B shows an astigmatism curve of the optical imaging system of Example 12
  • 24D shows a magnification color difference curve of the optical imaging system of Embodiment 12.
  • FIG. 25 is a schematic structural view showing an optical imaging system according to Embodiment 13 of the present application.
  • 26A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 13;
  • Figure 26B shows an astigmatism curve of the optical imaging system of Example 13
  • 26C shows a distortion curve of the optical imaging system of Embodiment 13
  • Fig. 26D shows a magnification chromatic aberration curve of the optical imaging system of Example 13.
  • first, second, etc. may be used herein to describe various elements, components, regions, layers and/or segments, these elements, components, regions, layers and/or segments should not be These terms are limited. These terms are only used to distinguish one element, component, region, layer or layer from another element, component, region, layer or layer. Thus, a first element, a first component, a first region, a first layer, or a first segment discussed below could be termed a second component, a second component, or a second, without departing from the teachings of the present application. Zone, second or second segment.
  • spatially relative terms may be used herein for convenience of description to describe the relationship of one element or feature to another element (additional element) or another feature (additional features). It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or in operation. For example, elements in the “following” or “beneath” or “the” Thus, the exemplary term “below” can be used in both the ⁇ RTIgt;
  • the optical imaging system sequentially includes a first lens group having positive power, a second lens group having negative power, and at least one subsequent lens group from the object side to the image side along the optical axis.
  • the first lens group may include a first lens E1 and a second lens E2 having positive power.
  • a first lens E1 By providing two lenses with positive power, it is advantageous to disperse the positive power, avoid excessive concentration of the power, and effectively reduce the chromatic aberration and axial chromatic aberration.
  • the image side surface S2 of the first lens E1 may gradually become a convex surface from the concave surface as moving away from the optical axis, and such a structure can reduce the aberration of the edge field of view while increasing the amount of light passing through.
  • the second lens group may include a third lens E3 having a negative power. As shown in FIG. 1, the object side surface S3 and the image side surface S4 of the second lens in the first embodiment are both convex surfaces.
  • Appropriate allocation of the above two powers can effectively reduce the aberration of the whole system and reduce the system sensitivity.
  • the focal length setting of each lens in the above lens group will be described below with reference to Table 3.
  • At least one subsequent lens group may include a third lens group having negative power.
  • the third lens group may include a fourth lens E4 having a power and a fifth lens E5 having a power, wherein the object side surface S9 of the fifth lens E5 is convex at the paraxial shape, and the image side surface S10 is near The shaft is concave.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • At least one of the mirror surfaces S1-S10 is an aspherical mirror surface.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike a spherical lens having a certain curvature from the center of the lens to the periphery, the aspherical lens has a better curvature radius characteristic, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 1.
  • each mirror is defined by the following formula:
  • Table 3 shown below gives the effective focal lengths f1 to f5 of the lenses of Embodiment 1, the total effective focal length f of the optical imaging system, the total length TTL of the optical imaging system, and the half field of view (diagonal) angle HFOV.
  • the effective focal length f2 of the second lens E2 and the curvature radius R4 of the image side surface S4 of the second lens E2 satisfy f2/
  • 0.33.
  • the radius of curvature R7 of the object side surface S7 of the fourth lens E4 and the total effective focal length f of the optical imaging system satisfy f/
  • 0.46.
  • the system edge aberration can be adjusted by adjusting the radius of curvature of the object side S7 of the fourth lens E4.
  • the third lens E3 and the fourth lens E4 are configured such that their respective dispersion coefficients V3 and V4 satisfy
  • 3.10.
  • This can be beneficial to ensure lens molding processability and assembly stability, and the fourth lens is used to compensate for the correction effect of the third lens high-order aberration.
  • 2A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates that light of different wavelengths is deflected by a focus point after passing through the optical system.
  • 2B shows an astigmatism curve of the optical imaging system of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging system of Embodiment 1, which represents distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 1, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • the optical imaging system given in Embodiment 1 achieves good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging system according to Embodiment 2 of the present application.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 2.
  • Table 5 shows the high order term coefficients of the respective mirror faces in Example 2.
  • Table 6 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 2, the total effective focal length f of the optical imaging system, the total length TTL of the image pickup lens, and the half angle of view HFOV.
  • 4A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 2, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • 4B shows an astigmatism curve of the optical imaging system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging system of Embodiment 2, which represents the distortion magnitude value in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 2, which shows that the light rays are different on the imaging plane after passing through the optical imaging system.
  • the optical imaging system given in Embodiment 2 achieves good imaging quality.
  • FIG. 5 is a view showing the configuration of an optical imaging system of Embodiment 3.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 3.
  • Table 8 shows the high order term coefficients of the respective mirror faces in Example 3.
  • Table 9 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 3, the total effective focal length f of the optical imaging system, the total length TTL of the imaging lens, and the half angle of view HFOV.
  • 6A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 3, which shows that light of different wavelengths is deflected by a focus point after passing through the optical system.
  • Fig. 6B shows an astigmatism curve of the optical imaging system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging system of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • 6D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 3, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • 6A to 6D the optical imaging system given in Embodiment 3 achieves good imaging quality.
  • FIG. 7 is a view showing the configuration of an optical imaging system of Embodiment 4.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4; and
  • the third lens E3 has an object side surface S5 and The image side S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 4.
  • Table 11 shows the high order term coefficients of the respective mirror faces in Example 4.
  • Table 12 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 4, the total effective focal length f of the optical imaging system, the total length TTL of the image pickup lens, and the half angle of view HFOV.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8B shows an astigmatism curve of the optical imaging system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging system of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 4, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system. 8A to 8D, the optical imaging system given in Embodiment 4 achieves good image quality.
  • FIG. 9 is a view showing the configuration of an optical imaging system of Embodiment 5.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 5.
  • Table 14 shows the high order term coefficients of the respective mirror faces in Example 5.
  • Table 15 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 5, the total effective focal length f of the optical imaging system, the total length TTL of the image pickup lens, and the half angle of view HFOV.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 5, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 10B shows an astigmatism curve of the optical imaging system of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • FIG. 10C shows a distortion curve of the optical imaging system of Embodiment 5, which shows that The magnitude of the distortion in the case of the viewing angle.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 5, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system. 10A to 10D, the optical imaging system given in Embodiment 5 achieves good image quality.
  • FIG. 11 is a view showing the configuration of an optical imaging system of Embodiment 6.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 6.
  • Table 17 shows the high order term coefficients of the respective mirror faces in Example 6.
  • Table 18 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 6, the total effective focal length f of the optical imaging system, the total length TTL of the imaging lens, and the half angle of view HFOV.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging system of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 12B shows an astigmatism curve of the optical imaging system of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging system of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging system of Example 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system. 12A to 12D, the optical imaging system given in Embodiment 6 achieves good imaging quality.
  • FIG. 13 is a view showing the configuration of an optical imaging system of Embodiment 7.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side S1 and an image side S2;
  • the lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10 .
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 7.
  • Table 20 shows the high order term coefficients of the respective mirror faces in Example 7.
  • Table 21 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 7, the total effective focal length f of the optical imaging system, the total length TTL of the image pickup lens, and the half angle of view HFOV.
  • FIG. 14A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 14B shows an astigmatism curve of the optical imaging system of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging system of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 14D shows a rate chromatic aberration curve for the optical imaging system of Example 7, which shows the deviation of the different image heights on the imaging surface after the light passes through the optical imaging system. 14A to 14D, the optical imaging system given in Embodiment 7 achieves good image quality.
  • FIG. 15 is a view showing the configuration of an optical imaging system of Embodiment 8.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 8.
  • Table 23 shows the high order term coefficients of the respective mirror faces in Example 8.
  • Table 24 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 8, the total effective focal length f of the optical imaging system, the total length TTL of the imaging lens, and the half angle of view HFOV.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging system of Example 8, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • 16B shows an astigmatism curve of the optical imaging system of Embodiment 8, which shows meridional field curvature and sagittal curvature of field. song.
  • Fig. 16C shows a distortion curve of the optical imaging system of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 8, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system.
  • 16A to 16D the optical imaging system given in Embodiment 8 achieves good image quality.
  • FIG. 17 is a view showing the configuration of an optical imaging system of Embodiment 9.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 9.
  • Table 26 shows the high order term coefficients of the respective mirror faces in Example 9.
  • Table 27 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 9, the total effective focal length f of the optical imaging system, the total length TTL of the image pickup lens, and the half angle of view HFOV.
  • Fig. 18A shows an axial chromatic aberration curve of the optical imaging system of Example 9, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 18B shows an astigmatism curve of the optical imaging system of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the optical imaging system of Embodiment 9, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 18D shows a rate chromatic aberration curve for the optical imaging system of Example 9, which shows the deviation of the different image heights on the imaging surface after the light passes through the optical imaging system.
  • the optical imaging system given in Embodiment 9 achieves good image quality.
  • FIG. 19 is a view showing the configuration of an optical imaging system of Embodiment 10.
  • the optical imaging system includes sequentially along the optical axis from the object side to the imaging side.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 28 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 10.
  • Table 29 shows the high order term coefficients of the respective mirror faces in Example 10.
  • Table 30 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 10, the total effective focal length f of the optical imaging system, the total length TTL of the imaging lens, and the half angle of view HFOV.
  • Fig. 20A shows an axial chromatic aberration curve of the optical imaging system of Embodiment 10, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 20B shows an astigmatism curve of the optical imaging system of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 20C shows a distortion curve of the optical imaging system of Embodiment 10, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 20D shows a rate chromatic aberration curve for the optical imaging system of Example 10, which shows the deviation of the different image heights on the imaging surface after the light passes through the optical imaging system.
  • the optical imaging system given in Embodiment 10 achieves good image quality.
  • FIG. 21 is a view showing the configuration of an optical imaging system of Embodiment 11.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 31 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 11.
  • Table 32 shows the high order term coefficients of the respective mirror faces in Example 11.
  • Table 33 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 11, the total effective focal length f of the optical imaging system, the total length TTL of the imaging lens, and the half angle of view HFOV.
  • Fig. 22A shows an axial chromatic aberration curve of the optical imaging system of Example 11, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • 22B shows an astigmatism curve of the optical imaging system of Embodiment 11, which shows a meridional field curvature and a sagittal image plane. bending.
  • Fig. 22C shows a distortion curve of the optical imaging system of Embodiment 11, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 22D shows a magnification chromatic aberration curve of the optical imaging system of Example 11, which shows the deviation of the different image heights on the imaging plane after the light passes through the optical imaging system. 22A to 22D, the optical imaging system given in Embodiment 11 achieves good image quality.
  • FIG. 23 is a view showing the configuration of an optical imaging system of Embodiment 12.
  • the optical imaging system includes five lenses E1-E5 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 34 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 12.
  • Table 35 shows the high order term coefficients of the respective mirror faces in Example 12.
  • Table 36 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 12, the total effective focal length f of the optical imaging system, the total length TTL of the image pickup lens, and the half angle of view HFOV.
  • Fig. 24A shows an axial chromatic aberration curve of the optical imaging system of Example 12, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 24B shows an astigmatism curve of the optical imaging system of Embodiment 12, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24C shows a distortion curve of the optical imaging system of Embodiment 12, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 24D shows a magnification chromatic aberration curve of the optical imaging system of Example 12, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system. According to FIGS. 24A to 24D, the optical imaging system given in Embodiment 12 achieves good imaging quality.
  • FIG. 25 is a view showing the configuration of an optical imaging system of Embodiment 13.
  • the optical imaging system includes sequentially along the optical axis from the object side to the imaging side.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10.
  • the optical imaging system may further include a color filter E6 having an object side S11 and an image side surface S12 and used to filter out infrared light.
  • an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 37 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of Example 13.
  • Table 38 shows the high order term coefficients of the respective mirror faces in Example 13.
  • Table 39 shows the effective focal lengths f1 to f5 of the lenses of Embodiment 13, the total effective focal length f of the optical imaging system, the total length TTL of the image pickup lens, and the half angle of view HFOV.
  • Fig. 26A shows an axial chromatic aberration curve of the optical imaging system of Example 13, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 26B shows an astigmatism curve of the optical imaging system of Example 13, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 26C shows a distortion curve of the optical imaging system of Embodiment 13, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 26D shows a magnification chromatic aberration curve of the optical imaging system of Example 13, which shows the deviation of different image heights on the imaging plane after the light passes through the optical imaging system. 26A to 26D, the optical imaging system given in Embodiment 13 achieves good image quality.
  • Embodiments 1 to 13 respectively satisfy the relationships shown in Table 40 below.
  • the present application also provides an image pickup device whose photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or may be integrated in a mobile electronic device such as a mobile phone. A camera module is available.
  • the camera device is equipped with the optical imaging system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统及装备有光学成像系统的摄像装置。光学成像系统沿着光轴由物侧至像侧依序包括:具有正光焦度的第一透镜(E1),其像侧面(S2)随着远离光轴,逐渐由近轴凹面转变为边缘凸面;具有正光焦度的第二透镜(E2),其物侧面(S3)为凸面,像侧面(S4)为凸面;具有负光焦度的第三透镜(E3);以及具有正光焦度或负光焦度的第四透镜(E4);以及具有正光焦度或负光焦度的第五透镜(E5),其物侧面(S9)在近轴处为凸面,像侧面(S10)在近轴处为凹面,其中,第四透镜和第五透镜的合成光焦度为负光焦度。

Description

光学成像系统及摄像装置
相关申请的交叉引用
本申请要求于2016年11月15日提交于中国国家知识产权局(SIPO)的、专利申请号为201611030125.4的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学成像系统及装配有该光学成像系统的摄像装置。
背景技术
常规电子摄像装置的感光元件一般为CCD(Charge-Coupled Device,感光耦合元件)或CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体元件)。随着CCD与COMS元件性能的提高及尺寸的减小,对于摄像装置所配备的光学成像系统的小型化与成像优质化提出了更高的要求。
为了满足小型化的要求,申请号为CN201310472840.3的专利提供了一种光学成像系统,其保证光学成像系统具有良好的成像质量且光学成像系统长度较短。但是随着智能手机等便携式电子产品的不断发展,对光学成像系统提出了更高的要求,特别是针对光线不足(如阴雨天、黄昏等),手抖等情况。
因此,需要一种可适用于便携式电子产品的具有大孔径和良好的成像质量且敏感度较低的光学成像系统。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
一方面,本申请提供了一种光学成像系统。该光学成像系统沿着光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其像侧面随 着远离光轴,逐渐由近轴凹面转变为边缘凸面;具有正光焦度的第二透镜,其物侧面为凸面,像侧面为凸面;具有负光焦度的第三透镜;以及具有正光焦度或负光焦度的第四透镜;以及具有正光焦度或负光焦度的第五透镜,其物侧面在近轴处为凸面,像侧面在近轴处为凹面,其中,所述第四透镜和所述第五透镜的合成光焦度为负光焦度。
根据本申请实施方式,所述光学成像系统的入瞳直径EPD和所述光学成像系统的总有效焦距f满足f/EPD≤2.0。
根据本申请实施方式,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与从所述第一透镜的物侧面至所述光学成像系统的成像面的轴上距离TTL满足T34/TTL<0.2。
根据本申请实施方式,所述第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足0.3≤f/f1≤0.5。
根据本申请实施方式,所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径R4满足f2/|R4|≤0.6。
根据本申请实施方式,所述第三透镜的物侧面的曲率半径R5和像侧面的曲率半径R6满足0<(R5-R6)/(R5+R6)<0.5。
根据本申请实施方式,所述第二透镜的像侧面的曲率半径R4与所述第三透镜的物侧面的曲率半径R5满足-1.2<R5/R4<0。
根据本申请实施方式,所述第三透镜的色散系数V3与所述第四透镜的色散系数V4满足|V3-V4|≤10。
根据本申请实施方式,所述第四透镜的物侧面的曲率半径R7与所述光学成像系统的总有效焦距f满足f/|R7|≤0.6。
根据本申请实施方式,所述第三透镜的中心厚度CT3与所述第四透镜的中心厚度CT4满足CT3/CT4≤0.4。
根据本申请实施方式,所述第一透镜和所述第二透镜的合成焦距f12与所述第三透镜的有效焦距f3满足-0.5<f12/f3<0。
根据本申请实施方式,所述第四透镜和所述第五透镜的合成焦距f45与所述光学成像系统的总有效焦距f满足-0.5<f/f45<0。
另一方面,本申请提供了一种光学成像系统。该光学成像系统沿着光轴从物侧至像侧依序包括具有正光焦度的第一透镜组、具有负光 焦度第二透镜组和至少一个后续透镜组。所述第一透镜组包括具有正光焦度的第一透镜和第二透镜,所述第二透镜组包括具有负光焦度的第三透镜,以及所述第一透镜的像侧面随着远离光轴而由凹面逐渐变为凸面。
根据本申请实施方式,所述第一透镜和所述第二透镜的合成焦距f12与所述第三透镜的有效焦距f3满足-0.5<f12/f3<0。
根据本申请实施方式,所述第二透镜的物侧面和像侧面均为凸面。
根据本申请实施方式,所述光学成像系统的入瞳直径EPD和所述光学成像系统的总有效焦距f满足f/EPD≤2.0。
根据本申请实施方式,所述第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足0.3≤f/f1≤0.5。
根据本申请实施方式,所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径R4满足f2/|R4|≤0.6。
根据本申请实施方式,所述第三透镜的物侧面的曲率半径R5和像侧面的曲率半径R6满足0<(R5-R6)/(R5+R6)<0.5。
根据本申请实施方式,所述第二透镜的像侧面的曲率半径R4与所述第三透镜的物侧面的曲率半径R5满足-1.2<R5/R4<0。
根据本申请实施方式,所述至少一个后续透镜组包括具有负光焦度的第三透镜组,所述第三透镜组包括具有光焦度的第四透镜。
根据本申请实施方式,所述第三透镜的色散系数V3与所述第四透镜的色散系数V4满足|V3-V4|≤10。
根据本申请实施方式,所述第四透镜的物侧面的曲率半径R7与所述光学成像系统的总有效焦距f满足f/|R7|≤0.6。
根据本申请实施方式,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与从所述第一透镜的物侧面至所述光学成像系统的成像面的轴上距离TTL满足T34/TTL<0.2。
根据本申请实施方式,所述第三透镜的中心厚度CT3与所述第四透镜的中心厚度CT4满足CT3/CT4≤0.4。
根据本申请实施方式,所述第三透镜组还包括具有光焦度的第五透镜,其中,所述第五透镜的物侧面在近轴处为凸面,所述第五透镜 的像侧面在近轴处为凹面。
根据本申请实施方式,所述第四透镜和所述第五透镜的合成焦距f45与所述光学成像系统的总有效焦距f满足-0.5<f/f45<0。
另一方面,本申请提供了一种摄像装置,所述摄像装置装配有上述光学成像系统。
本申请所提供的光学成像系统及摄像装置在加大了通光量的同时减小了边缘视场的像差。另外,通过合理地排布透镜,分散了正光焦度,避免了光焦度过度集中,同时可有效减小球色差以及轴向色差。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为示出根据本申请实施例1的光学成像系统的结构示意图;
图2A示出了实施例1的光学成像系统的轴上色差曲线;
图2B示出了实施例1的光学成像系统的象散曲线;
图2C示出了实施例1的光学成像系统的畸变曲线;
图2D示出了实施例1的光学成像系统的倍率色差曲线;
图3为示出根据本申请实施例2的光学成像系统的结构示意图;
图4A示出了实施例2的光学成像系统的轴上色差曲线;
图4B示出了实施例2的光学成像系统的象散曲线;
图4C示出了实施例2的光学成像系统的畸变曲线;
图4D示出了实施例2的光学成像系统的倍率色差曲线;
图5为示出根据本申请实施例3的光学成像系统的结构示意图;
图6A示出了实施例3的光学成像系统的轴上色差曲线;
图6B示出了实施例3的光学成像系统的象散曲线;
图6C示出了实施例3的光学成像系统的畸变曲线;
图6D示出了实施例3的光学成像系统的倍率色差曲线;
图7为示出根据本申请实施例4的光学成像系统的结构示意图;
图8A示出了实施例4的光学成像系统的轴上色差曲线;
图8B示出了实施例4的光学成像系统的象散曲线;
图8C示出了实施例4的光学成像系统的畸变曲线;
图8D示出了实施例4的光学成像系统的倍率色差曲线;
图9为示出根据本申请实施例5的光学成像系统的结构示意图;
图10A示出了实施例5的光学成像系统的轴上色差曲线;
图10B示出了实施例5的光学成像系统的象散曲线;
图10C示出了实施例5的光学成像系统的畸变曲线;
图10D示出了实施例5的光学成像系统的倍率色差曲线;
图11为示出根据本申请实施例6的光学成像系统的结构示意图;
图12A示出了实施例6的光学成像系统的轴上色差曲线;
图12B示出了实施例6的光学成像系统的象散曲线;
图12C示出了实施例6的光学成像系统的畸变曲线;
图12D示出了实施例6的光学成像系统的倍率色差曲线;
图13为示出根据本申请实施例7的光学成像系统的结构示意图;
图14A示出了实施例7的光学成像系统的轴上色差曲线;
图14B示出了实施例7的光学成像系统的象散曲线;
图14C示出了实施例7的光学成像系统的畸变曲线;
图14D示出了实施例7的光学成像系统的倍率色差曲线;
图15为示出根据本申请实施例8的光学成像系统的结构示意图;
图16A示出了实施例8的光学成像系统的轴上色差曲线;
图16B示出了实施例8的光学成像系统的象散曲线;
图16C示出了实施例8的光学成像系统的畸变曲线;
图16D示出了实施例8的光学成像系统的倍率色差曲线;
图17为示出根据本申请实施例9的光学成像系统的结构示意图;
图18A示出了实施例9的光学成像系统的轴上色差曲线;
图18B示出了实施例9的光学成像系统的象散曲线;
图18C示出了实施例9的光学成像系统的畸变曲线;
图18D示出了实施例9的光学成像系统的倍率色差曲线;
图19为示出根据本申请实施例10的光学成像系统的结构示意图;
图20A示出了实施例10的光学成像系统的轴上色差曲线;
图20B示出了实施例10的光学成像系统的象散曲线;
图20C示出了实施例10的光学成像系统的畸变曲线;
图20D示出了实施例10的光学成像系统的倍率色差曲线;
图21为示出根据本申请实施例11的光学成像系统的结构示意图;
图22A示出了实施例11的光学成像系统的轴上色差曲线;
图22B示出了实施例11的光学成像系统的象散曲线;
图22C示出了实施例11的光学成像系统的畸变曲线;
图22D示出了实施例11的光学成像系统的倍率色差曲线;
图23为示出根据本申请实施例12的光学成像系统的结构示意图;
图24A示出了实施例12的光学成像系统的轴上色差曲线;
图24B示出了实施例12的光学成像系统的象散曲线;
图24C示出了实施例12的光学成像系统的畸变曲线;
图24D示出了实施例12的光学成像系统的倍率色差曲线;
图25为示出根据本申请实施例13的光学成像系统的结构示意图;
图26A示出了实施例13的光学成像系统的轴上色差曲线;
图26B示出了实施例13的光学成像系统的象散曲线;
图26C示出了实施例13的光学成像系统的畸变曲线;以及
图26D示出了实施例13的光学成像系统的倍率色差曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、第一部件、第一区域、第一层或第一段可被称作第二元件、第二部件、第二区域、第二层或第二段。
诸如“在...之下(beneath)”、“在...下方(below)”、“下(lower)”、“在...之上(above)”、“上(upper)”等空间相对用语可在本文中为了描述便利而使用,以描述如附图中所示的一个元件或特征与另一个元件(另外多个元件)或另一个特征(另外多个特征)的关系。应理解的是,除了附图中描绘的方向之外,空间相对用语还意在涵盖装置在使用中或操作中的不同的方向。例如,如果附图中的装置翻转,则描述为在其它元件或特征“下方”或“之下”的元件将定向为在其它元件或特征“之上”。因此,示例性用语“在...下方”可包含在...之上和在...下方两个方向。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学 用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图2D描述根据本申请实施例1的光学成像系统。
图1为示出根据本申请实施例1的光学成像系统的结构示意图。光学成像系统沿着光轴从物侧至像侧依序包括具有正光焦度的第一透镜组、具有负光焦度第二透镜组和至少一个后续透镜组。
如图1所示,第一透镜组可包括具有正光焦度的第一透镜E1和第二透镜E2。通过设置两个具有正光焦度的透镜,可有利于分散正光焦度,避免光焦度过度集中,同时可有效减小色球差以及轴向色差。第一透镜E1的像侧面S2可随着远离光轴而由凹面逐渐变为凸面,这样的结构可在加大通光量的同时减小边缘视场的像差。
第二透镜组可包括具有负光焦度的第三透镜E3。如图1所示,实施例1中的第二透镜的物侧面S3和像侧面S4均为凸面。
第一透镜E1和第二透镜E2的合成焦距f12与第三透镜E3的有效焦距f3满足-0.5<f12/f3<0,例如-0.46≤f12/f3≤-0.32,在本实施例中f12/f3=-0.34。适当分配上述两项的光焦度,可有效减小整个系统的像差,降低系统敏感性。上述透镜组中的各透镜的焦距设置将在下面参照表3进行描述。
在实施例1的光学成像系统中,至少一个后续透镜组可包括具有负光焦度的第三透镜组。第三透镜组可包括具有光焦度的第四透镜E4和具有光焦度的第五透镜E5,其中,第五透镜E5的物侧面S9在近轴处为凸面,而其像侧面S10在近轴处为凹面。
可选地,光学成像系统还可包括具有物侧面S11和像侧面S12的滤色片E6以滤除红外光。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
在本实施例中,各镜面S1-S10中的至少一个镜面为非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有一定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
0BJ 球面 无穷 无穷    
ST0 球面 无穷 -0.2268    
S1 非球面 1.4577 0.3728 1.54,56.1 -7.4543
S2 非球面 1.8921 0.2712   -9.5668
S3 非球面 2.3515 0.5564 1.54,56.1 -16.2059
S4 非球面 -11.0356 0.0300   -87.6338
S5 非球面 4.2108 0.2200 1.66,20.4 12.1294
S6 非球面 2.3324 0.5281   -11.5902
S7 非球面 -7.4438 0.7003 1.64,23.5 13.3405
S8 非球面 -6.6776 0.0300   -99.0000
S9 非球面 1.2572 0.4565 1.54,56.1 -5.5775
S10 非球面 0.9848 0.4953   -2.1314
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.4095    
S13 球面 无穷      
表1
由表1可得,第三透镜E3的物侧面S5的曲率半径R5和像侧面S6的曲率半径R6满足0<(R5-R6)/(R5+R6)<0.5,例如0.27≤(R5-R6)/(R5+R6)≤0.45,在本实施例中,(R5-R6)/(R5+R6)=0.29。通过合理配置第三透镜E3的两个镜面的曲率半径,有助于修正系统整体像差。另外,第二透镜E2的像侧面S4的曲率半径R4与第三透镜E3的物侧面S5的曲率半径R5满足-1.2<R5/R4<0,例如-1.06≤R5/R4≤ -0.35,在本实施例中,R5/R4=-0.38。通过合理配置第二透镜E2和第三透镜E3的相邻镜面,可有助于减少球差以及象散的产生。
本实施例采用了5片透镜作为示例,通过合理分配各透镜的焦距与面型,有效改善了光学成像系统的像差,实现了优良的解像力性能,同时保证光学成像系统的小型化。各个镜面的面型由以下公式限定:
Z=ch2/[1+{1-(1+k)c2h2}+1/2]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16
其中,Z为距镜面顶点的切平面的距离,c为镜面的近轴曲率,h为距主光轴的高度,k为圆锥系数,A4至A16分别为相应高次项系数。下表2示出了实施例1中可用于各镜面S1-S10的高次项系数A4、A6、A8、A10、A12和A16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.5194E-01 -3.3286E-01 2.9528E-01 -1.7295E-01 5.4403E-03 -1.9388E-02 3.4376E-02 0 0
S2 1.0156E-01 -1.9576E-01 -1.2786E-01 6.9111E-01 -1.2860E+00 1.0939E+00 -3.2669E-01 0 0
S3 8.4974E-02 -2.0137E-01 -7.6010E-02 6.1328E-01 -1.4822E+00 1.6365E+00 -6.1561E-01 0 0
S4 -9.9138E-02 -1.3653E-01 6.3065E-01 -1.5621E+00 1.9594E+00 -1.1603E+00 2.5963E-01 0 0
S5 -7.8660E-02 -4.9362E-02 2.7129E-01 -3.2839E-01 -3.6632E-02 3.5251E-01 -2.1625E-01 0 0
S6 1.4071E-01 -2.5092E-01 6.1308E-01 -9.7487E-01 9.7396E-01 -5.6426E-01 1.3724E-01 0 0
S7 1.4999E-01 -3.1029E-01 1.3286E-01 7.0166E-01 -2.2309E+00 3.1095E+00 -2.3347E+00 8.9539E-01 -1.3593E-01
S8 -1.6932E-01 4.7807E-01 -7.4161E-01 6.6720E-01 -3.8025E-01 1.3811E-01 -3.0798E-02 3.8211E-03 -2.0104E-04
S9 -3.4188E-01 3.6883E-01 -3.3704E-01 2.0093E-01 -7.2937E-02 1.6239E-02 -2.1810E-03 1.6288E-04 -5.2101E-06
S10 -3.4386E-01 3.1019E-01 -2.1184E-01 1.0068E-01 -3.2771E-02 7.0891E-03 -9.6065E-04 7.3094E-05 -2.3702E-06
表2
以下所示出的表3给出实施例1的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、光学成像系统的总长度TTL以及半视场(对角线)角度HFOV。
f1(mm) 8.93 f(mm) 3.39
f2(mm) 3.60 TTL(mm) 4.28
f3(mm) -8.23 HFOV(deg) 41.1
f4(mm) 74.10    
f5(mm) -20.40    
表3
根据表3,第一透镜E1的有效焦距f1与光学成像系统的总有效 焦距f满足0.3≤f/f1≤0.5,例如0.34≤f/f1≤0.46,在本实施例中,f/f1=0.38。通过合理地配置第一透镜E1的有效焦距f1与光学成像系统的总有效焦距f之间的关系,可有助于缩短系统总长,同时矫正球差。根据表1和表3,第二透镜E2的有效焦距f2与第二透镜E2的像侧面S4的曲率半径R4满足f2/|R4|≤0.6,例如,f2/|R4|≤0.56,在本实施例中f2/|R4|=0.33。通过合理地配置第二透镜E2的有效焦距和镜面参数,可有助于矫正球差以及象散,快速修正近轴像差,提升中心区域的成像品质。另外,第四透镜E4的物侧面S7的曲率半径R7与光学成像系统的总有效焦距f满足f/|R7|≤0.6,例如f/|R7|≤0.59,在本实施例中,f/|R7|=0.46。
可通过调整第四透镜E4物侧面S7的曲率半径来调整系统边缘像差。
本光学成像系统的总有效焦距f与入瞳直径EPD满足f/EPD≤2.0,例如在本实施中,f/EPD=1.78。这可有利于加大通光量,使系统具有大光圈优势,增强暗环境下的成像效果。
另外,第三透镜E3和第四透镜E4配置为使得其各自的色散系数V3和V4满足|V3-V4|≤10,例如,在本实施例中,|V3-V4|=3.10。通过合理配置第三透镜E3和第四透镜E4的色散系数,可有效修正色差,平衡高级像差,提升成像品质。
在实施例1中,第三透镜E3和第四透镜E4在光轴上的间隔距离T34与从第一透镜E1的物侧面S1到光学成像系统的成像面S13的轴上距离TTL满足T34/TTL<0.2,例如T34/TTL≤0.18,在本实施例中T34/TTL=0.12。通过合理地布置透镜间距以及光学系统的总长,可有助于缓和系统边缘光线走势,降低高级像差,同时降低系统敏感性。另外,第三透镜E3的中心厚度CT3与第四透镜E4的中心厚度CT4满足CT3/CT4≤0.4,例如,CT3/CT4≤0.36,在本实施例中,CT3/CT4=0.31。这可有利于保证镜片成型工艺性以及组装稳定性,用第四透镜来弥补第三透镜高级像差的矫正效果。第四透镜E4和第五透镜E5的合成焦距f45与光学成像系统的总有效焦距f满足-0.5<f/f45<0,例如,-0.39≤f/f45≤-0.12,在本实施例中,f/f45=-0.12。 这样可有助于调配第四透镜和第五透镜的光焦度分配,降低公差敏感性,并维持系统小型化。
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像系统的实现了良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表4示出了实施例2的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表5示出了实施例2中各镜面的高次项系数。表6示出了实施例2的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2262    
S1 非球面 1.4398 0.3721 1.54,56.1 -7.1473
S2 非球面 1.8608 0.2603   -8.3408
S3 非球面 2.3367 0.5532 1.54,56.1 -16.2416
S4 非球面 -11.6118 0.0300   -87.6338
S5 非球面 4.0466 0.2200 1.66,20.4 10.6616
S6 非球面 2.3138 0.5312   -11.4443
S7 非球面 -6.7506 0.7160 1.64,23.5 13.3405
S8 非球面 -5.9148 0.0300   -99.0000
S9 非球面 1.3147 0.4565 1.54,56.1 -4.8829
S10 非球面 1.0002 0.4933   -2.1594
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.4074    
S13 球面 无穷      
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.5366E-01 -3.4296E-01 3.7582E-01 -4.0200E-01 3.4227E-01 -2.7918E-01 1.1855E-01 0 0
S2 8.5487E-02 -1.4297E-01 -2.8923E-01 1.0692E+00 -1.8554E+00 1.5553E+00 -4.6894E-01 0 0
S3 8.4907E-02 -2.1083E-01 -1.0188E-01 7.5947E-01 -1.8130E+00 2.0102E+00 -7.6775E-01 0 0
S4 -1.4202E-01 -3.0423E-02 3.7937E-01 -1.1023E+00 1.4449E+00 -8.4179E-01 1.7435E-01 0 0
S5 -1.0953E-01 4.3800E-02 2.3874E-03 2.8070E-01 -8.6907E-01 9.6881E01 -4.1343E-01 0 0
S6 1.4443E-01 -2.5310E-01 6.0871E-01 -9.6161E-01 9.7838E-01 -5.9028E-01 1.5023E-01 0 0
S7 1.3391E-01 -2.6292E-01 -8.2326E-02 1.3416E+00 -3.4688E+00 4.6191E+00 -3.4479E+00 1.3398E+00 -2.0830E-01
S8 -1.5228E-01 3.8527E-01 -5.8336E-01 5.0978E-01 -2.8014E-01 9.6825E-02 -2.0090E-02 2.2378E-03 -9.9999E-05
S9 -3.5589E-01 3.6124E-01 -3.1812E-01 1.8864E-01 -6.8747E-02 1.5392E-02 -2.0781E03 1.5587E-04 -5.0030E-06
S10 -3.3214E-01 2.8993E-01 -1.9309E-01 8.9979E-02 -2.8773E-02 6.1284E-03 -8.2002E-04 6.1780E-05 -1.9882E-06
表5
f1(mm) 8.92 f(mm) 3.44
f2(mm) 3.63 TTL(mm) 4.28
f3(mm) -8.61 HFOV(deg) 40.8
f4(mm) 55.97    
f5(mm) -15.72    
表6
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的 像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像系统的实现了良好的成像品质。
实施例3
以下参照图5至图6D描述根据本申请实施例3的光学成像系统。图5示出了实施例3的光学成像系统的结构示意图。
如图5所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表7示出了实施例3的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表8示出了实施例3中各镜面的高次项系数。表9示出了实施例3的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.1901    
S1 非球面 1.7681 0.4815 1.54,56.1 -10.7358
S2 非球面 2.6721 0.2079   -15.9834
S3 非球面 3.0892 0.4246 1.54,56.1 -8.5047
S4 非球面 -7.2494 0.0300   -87.6338
S5 非球面 5.6429 0.2200 1.66,20.4 20.5288
S6 非球面 2.5886 0.8467   -22.9198
S7 非球面 349.0447 0.7162 1.64,23.5 13.3405
S8 非球面 无穷 0.0656   -99.0000
S9 非球面 1.3290 0.4565 1.54,56.1 -5.6964
S10 非球面 1.0790 0.5066   -2.9875
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.4209    
S13 球面 无穷      
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.9927E-01 -2.8698E-01 2.4891E-01 -1.2762E-01 -4.8139E-02 7.8100E-02 -2.1057E-02 0 0
S2 4.5990E-02 -1.4581E-01 -6.2183E-02 2.2374E-01 -2.4153E-01 1.6976E-01 -5.0103E-02 0 0
S3 2.6786E-02 -6.6204E-02 -2.9247E-02 -2.2831E-01 5.6674E-01 -3.5727E-01 6.5732E-02 0 0
S4 7.7880E-02 -4.2581E-01 4.8800E-01 -1.4334E-01 -1.2058E-01 1.2486E-01 -3.9529E-02 0 0
S5 3.2839E-03 -1.9421E-01 -2.5229E-01 1.6528E+00 -2.4389E+00 1.5817E+00 -4.0509E-01 0 0
S6 1.0799E-01 -9.7881E-02 -2.1254E-01 9.7199E-01 -1.3373E+00 8.5158E-01 -2.1203E-01 0 0
S7 5.3512E-02 1.1878E-02 -5.0219E-01 1.3182E+00 -1.9143E+00 1.6777E+00 -8.7882E-01 2.5046E-01 -2.9571E-02
S8 -7.4200E-02 2.1366E-01 -3.9144E-01 3.9038E-01 -2.4014E-01 9.3205E-02 -2.2200E-02 2.9583E-03 -1.6865E-04
S9 -1.8569E-01 1.1229E-01 -1.6155E-01 1.3823E-01 -6.1261E-02 1.5488E-02 -2.2824E-03 1.8358E-04 -6.2497E-06
S10 -1.4378E-01 5.7732E-02 -2.2325E-02 8.2929E-03 -2.4596E-03 5.2056E-04 -7.0351E-05 5.2660E-06 -1.6387E-07
表8
f1(mm) 8.09 f(mm) 3.75
f2(mm) 4.04 TTL(mm) 4.59
f3(mm) -7.45 HFOV(deg) 38.4
f4(mm) 545.61    
f5(mm) -29.55    
表9
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像系统的实现了良好的成像品质。
实施例4
以下参照图7至图8D描述根据本申请实施例4的光学成像系统。图7示出了实施例4的光学成像系统的结构示意图。
如图7所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和 像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表10示出了实施例4的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表11示出了实施例4中各镜面的高次项系数。表12示出了实施例4的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2406    
S1 非球面 1.5777 0.3665 1.54,56.1 -7.7312
S2 非球面 1.9840 0.3312   -7.6375
S3 非球面 2.1835 0.7463 1.54,56.1 -8.4304
S4 非球面 -7.0115 0.0300   -87.6338
S5 非球面 6.0881 0.2200 1.66,20.4 18.9638
S6 非球面 2.5129 0.5605   -12.6757
S7 非球面 -15.2029 0.8568 1.64,23.5 13.3405
S8 非球面 -78.3903 0.0300   -99.0000
S9 非球面 1.3989 0.4565 1.54,56.1 -9.0401
S10 非球面 1.0720 0.4336   -2.2090
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.3461    
S13 球面 无穷      
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0832E-01 -2.8777E-01 3.3430E-01 -3.5100E-01 2.3471E-01 -1.0216E-01 2.4546E-02 0 0
S2 5.8790E-02 -9.3000E-02 -8.3264E-02 2.4904E-01 -3.3114E-01 2.2239E-01 -5.2153E-02 0 0
S3 6.0329E-02 -9.6545E-02 -1.0330E-02 1.3952E-01 -3.1951E-01 3.1965E-01 -1.0296E-01 0 0
S4 -9.5909E-02 -1.1665E-01 4.2196E-01 -8.0938E-01 8.8250E-01 -4.9062E-01 1.1241E-01 0 0
S5 -4.8018E-02 -1.4908E-01 5.1044E-01 -8.3444E-01 7.8591E-01 -3.7949E-01 6.4978E-02 0 0
S6 1.2274E-01 -1.8613E-01 4.3063E-01 -6.3683E-01 5.9202E-01 -3.1057E-01 6.6826E-02 0 0
S7 6.4058E-02 -1.6739E-01 1.1116E-02 5.2896E-01 -1.2973E+00 1.5222E+00 -9.7520E-01 3.2014E-01 -4.1674E-02
S8 -1.8559E-01 3.9974E-01 -5.5907E-01 5.1278E-01 -3.2673E-01 1.4055E-01 -3.8524E-02 6.0212E-03 -4.0512E-04
S9 -2.6660E-01 1.0796E-01 4.0381E-02 -9.3402E-02 5.8864E-02 -1.8936E-02 3.3742E-03 -3.1750E-04 1.2337E-05
S10 -3.0715E-01 2.3589E-01 -1.3468E-01 5.4606E-02 -1.5879E-02 3.2327E-03 -4.2879E-04 3.2561E-05 -1.0564E-06
表11
f1(mm) 10.74 f(mm) 3.67
f2(mm) 3.15 TTL(mm) 4.59
f3(mm) -6.64 HFOV(deg) 39.0
f4(mm) -29.64    
f5(mm) -16.61    
表12
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像系统的实现了良好的成像品质。
实施例5
以下参照图9至图10D描述根据本申请实施例5的光学成像系统。图9示出了实施例5的光学成像系统的结构示意图。
如图9所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表13示出了实施例5的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表14示出了实施例5中各镜面的高次项系数。表15示出了实施例5的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2435    
S1 非球面 1.5722 0.3679 1.54,56.1 -7.6074
S2 非球面 1.9772 0.3289   -7.5925
S3 非球面 2.1935 0.7480 1.54,56.1 -8.5126
S4 非球面 -6.2882 0.0300   -87.6338
S5 非球面 6.6474 0.2200 1.66,20.4 21.9012
S6 非球面 2.5267 0.5599   -12.7112
S7 非球面 -14.9943 0.8560 1.64,23.5 13.3405
S8 非球面 45.3545 0.0300   -99.0000
S9 非球面 1.3208 0.4565 1.54,56.1 -8.0832
S10 非球面 1.0695 0.4339   -2.1221
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.3464    
S13 球面 无穷      
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0775E-01 -2.8576E-01 3.4957E-01 -4.1160E-01 3.3065E-01 -1.7355E-01 4.4847E-02 0 0
S2 6.0168E-02 -8.7148E-02 -1.1149E-01 3.1421E-01 -4.1377E-01 2.7394E-01 -6.4539E-02 0 0
S3 5.9991E-02 -9.9593E-02 4.4989E-03 1.0155E-01 -2.7225E-01 2.8831E-01 -9.4067E-02 0 0
S4 -7.6548E-02 -1.9494E-01 6.1165E-01 -1.1020E+00 1.1530E+00 -6.2699E-01 1.4108E-01 0 0
S5 -2.0220E-02 -2.1972E-01 6.5643E-01 -1.0428E+00 9.7065E-01 -4.6918E-01 8.3149E-02 0 0
S6 1.2448E-01 -1.9219E-01 4.4879E-01 -6.7188E-01 6.2858E-01 -3.2966E-01 7.0767E-02 0 0
S7 6.7260E-02 -1.9190E-01 9.7890E-02 3.3451E-01 -1.0229E+00 1.2817E+00 -8.4929E-01 2.8423E-01 -3.7406E-02
S8 -2.3694E-01 5.1077E-01 -7.1276E-01 6.4595E-01 -4.0052E-01 1.6679E-01 -4.4319E-02 6.7435E-03 -4.4383E-04
S9 -3.0337E-01 1.9230E-01 -6.5143E-02 -1.7946E-02 2.6406E-02 -1.0369E-02 2.0151E-03 -1.9862E-04 7.9348E-06
S10 -3.1430E-01 2.4087E-01 -1.3715E-01 5.5171E-02 -1.5824E-02 3.1692E-03 -4.1369E-04 3.0927E-05 -9.8630E-07
表14
f1(mm) 10.64 f(mm) 3.66
f2(mm) 3.07 TTL(mm) 4.59
f3(mm) -6.25 HFOV(deg) 39.0
f4(mm) -17.39    
f5(mm) -28.69    
表15
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同 视角情况下的畸变大小值。图10D示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像系统的实现了良好的成像品质。
实施例6
以下参照图11至图12D描述根据本申请实施例6的光学成像系统。图11示出了实施例6的光学成像系统的结构示意图。
如图11所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表16示出了实施例6的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表17示出了实施例6中各镜面的高次项系数。表18示出了实施例6的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2617    
S1 非球面 1.5541 0.3808 1.54,56.1 -7.1105
S2 非球面 2.0177 0.3634   -7.2839
S3 非球面 2.2081 0.6325 1.54,56.1 -8.5651
S4 非球面 -6.9880 0.0300   -87.6338
S5 非球面 5.9103 0.2200 1.66,20.4 19.1848
S6 非球面 2.2931 0.5907   -13.3970
S7 非球面 -17.5758 0.8036 1.64,23.5 13.3405
S8 非球面 11.6138 0.1052   -99.0000
S9 非球面 1.1346 0.4565 1.54,56.1 -5.9577
S10 非球面 1.0168 0.4411   -3.1894
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.3537    
S13 球面 无穷      
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0491E-01 -2.6182E-01 3.2306E-01 -4.0586E-01 3.5702E-01 -2.0390E-01 5.3974E-02 0 0
S2 5.9853E-02 -7.1530E-02 -1.2305E-01 3.1261E-01 -4.0362E-01 2.5828E-01 -5.8679E-02 0 0
S3 6.3174E-02 -9.3394E-02 -2.8580E-02 1.8689E-01 -4.0939E-01 3.8637E-01 -1.1791E-01 0 0
S4 -5.4622E-02 -1.1793E-01 3.4167E-01 -6.9098E-01 7.7396E-01 -4.2809E-01 9.8000E-02 0 0
S5 -4.1835E-02 -6.5638E-02 2.5261E-01 -4.1949E-01 3.7182E-01 -1.4301E-01 6.4579E-03 0 0
S6 1.3004E-01 -1.7634E-01 3.9622E-01 -5.9994E-01 5.6948E-01 -3.0319E-01 6.5829E-02 0 0
S7 4.6319E-02 -3.1050E-01 1.0349E+00 -2.8552E+00 5.1317E+00 -5.9036E+00 4.1751E+00 -1.6558E+00 2.8102E-01
S8 -3.6444E-01 8.3121E-01 -1.2448E+00 1.2067E+00 -7.8913E-01 3.4431E-01 -9.5853E-02 1.5354E-02 -1.0723E-03
S9 -3.9306E-01 4.1560E-01 -3.3760E-01 1.7376E-01 -5.5810E-02 1.1572E-02 -1.5563E-03 1.2675E-04 -4.8054E-06
S10 -2.3714E-01 1.8533E-01 -1.0678E-01 4.1159E-02 -1.0788E-02 1.9591E-03 -2.4034E-04 1.7946E-05 -6.0942E-07
表17
f1(mm) 9.64 f(mm) 3.73
f2(mm) 3.16 TTL(mm) 4.59
f3(mm) -5.81 HFOV(deg) 38.5
f4(mm) -10.82    
f5(mm) 49.29    
表18
图12A示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图12B示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像系统的实现了良好的成像品质。
实施例7
以下参照图13至图14D描述根据本申请实施例7的光学成像系统。图13示出了实施例7的光学成像系统的结构示意图。
如图13所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二 透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表19示出了实施例7的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表20示出了实施例7中各镜面的高次项系数。表21示出了实施例7的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2222    
S1 非球面 1.6348 0.4529 1.54,56.1 -8.6908
S2 非球面 2.1318 0.2884   -11.9613
S3 非球面 2.4424 0.6727 1.54,56.1 -13.4279
S4 非球面 -9.0840 0.0300   -87.6338
S5 非球面 4.8178 0.2643 1.66,20.4 16.0520
S6 非球面 2.4204 0.5808   -12.8529
S7 非球面 -334.3239 0.7393 1.64,23.5 13.3405
S8 非球面 9.5878 0.0300   -99.0000
S9 非球面 1.3081 0.4565 1.54,56.1 -7.0390
S10 非球面 1.1906 0.4743   -2.0554
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.3884    
S13 球面 无穷      
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0417E-01 -2.8615E-01 3.0181E-01 -2.8030E-01 1.6974E-01 -7.7751E-02 2.2056E-02 0 0
S2 7.4393E-02 -2.0980E-01 1.3787E-01 -9.0528E-02 4.0510E-03 5.4618E-02 -2.1166E-02 0 0
S3 5.6547E-02 -1.5774E-01 1.2312E-01 -1.7358E-01 9.2043E-02 9.6567E-02 -6.5875E-02 0 0
S4 -9.5745E-02 1.3950E-01 -3.6205E-01 3.5479E-01 -9.1510E-02 -3.1785E-02 1.2314E-02 0 0
S5 -1.0274E-01 2.7135E-01 -6.7818E-01 1.0409E+00 -1.0338E+00 6.1491E-01 -1.7400E-01 0 0
S6 9.1242E-02 -5.4053E-02 1.5367E-01 -3.1256E-01 3.4714E-01 -2.0341E-01 4.7063E-02 0 0
S7 7.6380E-02 -2.8122E-01 5.5266E-01 -1.1190E+00 1.7618E+00 -1.9347E+00 1.3454E+00 -5.3030E-01 8.9529E-02
S8 -1.2244E-01 2.3567E-01 -3.6808E-01 3.5119E-01 -2.1580E-01 8.4823E-02 -2.0510E-02 2.7589E-03 -1.5638E-04
S9 -1.8655E-01 4.3349E-02 -2.9365E-02 3.6650E-02 -1.9139E-02 5.1589E-03 -7.7530E-04 6.2200E-05 -2.0896E-06
S10 -2.4216E-01 1.2785E-01 -5.1875E-02 1.4504E-02 -2.5763E-03 3.1009E-04 -3.0922E-05 2.5568E-06 -1.0741E-07
表20
f1(mm) 9.76 f(mm) 3.70
f2(mm) 3.61 TTL(mm) 4.59
f3(mm) -7.70 HFOV(deg) 38.9
f4(mm) -14.56    
f5(mm) 65.96    
表21
图14A示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图14B示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像系统的实现了良好的成像品质。
实施例8
以下参照图15至图16D描述根据本申请实施例8的光学成像系统。图15示出了实施例8的光学成像系统的结构示意图。
如图15所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表22示出了实施例8的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表23示出了实施例8中各镜面的高次项系数。表24示出了实施例8的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2218    
S1 非球面 1.6349 0.4525 1.54,56.1 -8.6923
S2 非球面 2.1317 0.2883   -11.9591
S3 非球面 2.4419 0.6721 1.54,56.1 -13.4329
S4 非球面 -9.0850 0.0300   -87.6338
S5 非球面 4.8175 0.2640 1.66,20.4 16.0535
S6 非球面 2.4168 0.5799   -12.8602
S7 非球面 1434.2319 0.7386 1.64,23.5 13.3405
S8 非球面 9.3705 0.0301   -99.0000
S9 非球面 1.3081 0.4565 1.54,56.1 -7.0530
S10 非球面 1.1906 0.4741   -2.0563
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.3883    
S13 球面 无穷     
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0436E-01 -2.8806E-01 3.0977E-01 -2.9737E-01 1.8929E-01 -8.9088E-02 2.4670E-02 0 0
S2 7.4570E-02 -2.1148E-01 1.4412E-01 -1.0285E-01 1.7433E-02 4.7227E-02 -1.9560E-02 0 0
S3 5.6727E-02 -1.5841E-01 1.2398E-01 -1.7431E-01 9.2481E-02 9.6510E-02 -6.5922E-02 0 0
S4 -9.5832E-02 1.3972E-01 -3.5967E-01 3.4525E-01 -7.7568E-02 -4.1011E-02 1.4640E-02 0 0
S5 -1.0270E-01 2.7028E-01 -6.7378E-01 1.0329E+00 -1.0264E+00 6.1148E-01 -1.7338E-01 0 0
S6 9.1751E-02 -5.7286E-02 1.6147E-01 -3.2239E-01 3.5384E-01 -2.0570E-01 4.7359E-02 0 0
S7 7.4998E-02 -2.7739E-01 5.4776E-01 -1.1214E+00 1.7800E+00 -1.9615E+00 1.3647E+00 -5.3720E-01 9.0500E-02
S8 -1.2218E-01 2.3583E-01 -3.6863E-01 3.5187E-01 -2.1629E-01 8.5039E-02 -2.0566E-02 2.7669E-03 -1.5686E-04
S9 -1.8679E-01 4.2939E-02 -2.8787E-02 3.6355E-02 -1.9055E-02 5.1440E-03 -7.7364E-04 6.2092E-05 -2.0864E-06
S10 -2.4265E-01 1.2847E-01 -5.2332E-02 1.4728E-02 -2.6496E-03 3.2582E-04 -3.3050E-05 2.7214E-06 -1.1293E-07
表23
f1(mm) 9.76 f(mm) 3.69
f2(mm) 3.61 TTL(mm) 4.58
f3(mm) -7.68 HFOV(deg) 38.9
f4(mm) -14.75    
f5(mm) 65.96    
表24
图16A示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图16B示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯 曲。图16C示出了实施例8的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像系统的实现了良好的成像品质。
实施例9
以下参照图17至图18D描述根据本申请实施例9的光学成像系统。图17示出了实施例9的光学成像系统的结构示意图。
如图17所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表25示出了实施例9的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表26示出了实施例9中各镜面的高次项系数。表27示出了实施例9的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2233    
S1 非球面 1.4394 0.3713 1.54,56.1 -7.1410
S2 非球面 1.8621 0.2607   -8.3499
S3 非球面 2.3402 0.5548 1.54,56.1 -16.2309
S4 非球面 -11.5934 0.0301   -87.6338
S5 非球面 4.0494 0.2201 1.66,20.4 10.6492
S6 非球面 2.3104 0.5332   -11.4374
S7 非球面 -6.7193 0.7136 1.64,23.5 13.3405
S8 非球面 -5.9244 0.0300   -99.0000
S9 非球面 1.3168 0.4565 1.54,56.1 -4.8871
S10 非球面 1.0005 0.4928   -2.1625
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.4069    
S13 球面 无穷      
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.5612E-01 -3.5916E-01 4.3850E-01 -5.3613E-01 4.9658E-01 -3.6935E-01 1.3966E-01 0 0
S2 8.4419E-02 -1.3685E-01 -2.9156E-01 1.0233E+00 -1.7578E+00 1.4816E+00 -4.4974E-01 0 0
S3 8.6596E-02 -2.2438E-01 -4.2235E-02 6.1738E-01 -1.6399E+00 1.9093E+00 -7.4564E-01 0 0
S4 -1.4457E-01 -7.8704E-03 2.9381E-01 -9.0874E-01 1.1710E+00 -6.2341E-01 1.0094E-01 0 0
S5 -1.0725E-01 1.5467E-02 1.3955E-01 -6.1606E-02 -4.0483E-01 6.4526E-01 -3.2315E-01 0 0
S6 1.4605E-01 -2.6731E-01 6.5864E-01 -1.0551E+00 1.0787E+00 -6.4786E-01 1.6378E-01 0 0
S7 1.3210E-01 -2.5294E-01 -1.0675E-01 1.3802E+00 -3.5151E+00 4.6635E+00 -3.4796E+00 1.3533E+00 -2.1069E-01
S8 -1.5475E-01 3.9676E-01 -6.0362E-01 5.3038E-01 -2.9308E-01 1.0186E-01 -2.1270E-02 2.3894E-03 -1.0822E-04
S9 -3.5559E-01 3.5938E-01 -3.1576E-01 1.8717E-01 -6.8207E-02 1.5271E-02 -2.0618E-03 1.5466E-04 -4.9648E-06
S10 -3.3079E-01 2.8664E-01 -1.9011E-01 8.8490E-02 -2.8338E-02 6.0550E-03 -8.1338E-04 6.1526E-05 -1.9877E-06
表26
f1(mm) 8.90 f(mm) 3.46
f2(mm) 3.63 TTL(mm) 4.28
f3(mm) -8.57 HFOV(deg) 40.8
f4(mm) 57.98   
f5(mm) -15.58    
表27
图18A示出了实施例9的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18B示出了实施例9的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像系统的实现了良好的成像品质。
实施例10
以下参照图19至图20D描述根据本申请实施例10的光学成像系统。图19示出了实施例10的光学成像系统的结构示意图。
如图19所示,光学成像系统沿着光轴包括从物侧至成像侧依序排 列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表28示出了实施例10的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表29示出了实施例10中各镜面的高次项系数。表30示出了实施例10的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2000    
S1 非球面 1.4178 0.3560 1.54,56.1 -7.1760
S2 非球面 1.8031 0.2462   -8.4355
S3 非球面 2.2897 0.5530 1.54,56.1 -16.5379
S4 非球面 -11.6042 0.0300   -87.6338
S5 非球面 4.0327 0.2343 1.66,20.4 10.5087
S6 非球面 2.3205 0.5410   -10.6291
S7 非球面 -5.8707 0.7216 1.64,23.5 13.3405
S8 非球面 -5.4995 0.0310   -99.0000
S9 非球面 1.3580 0.4565 1.54,56.1 -4.8914
S10 非球面 1.0162 0.4931   -2.1508
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.4072    
S13 球面 无穷      
表28
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.6946E-01 -4.1326E-01 6.0840E-01 -9.5835E-01 1.1465E+00 -9.5043E-01 3.7043E-01 0 0
S2 9.8398E-02 -2.1966E-01 -2.7822E-02 4.1105E-01 -9.6568E-01 9.4958E-01 -2.6590E-01 0 0
S3 9.3125E-02 -2.6333E-01 -2.7208E-02 7.6995E-01 -2.2043E+00 2.7197E+00 -1.1124E+00 0 0
S4 -1.6986E-01 2.0811E-02 2.9860E-01 -1.1343E+00 1.7134E+00 -1.1246E+00 2.7310E-01 0 0
S5 -1.1470E-01 5.1097E-02 8.7926E-02 -8.1169E-02 -2.9758E-01 5.8355E-01 -3.3647E-01 0 0
S6 1.4664E-01 -2.4917E-01 6.5223E-01 -1.1319E+00 1.2473E+00 -7.9730E-01 2.1226E-01 0 0
S7 1.3890E-01 -4.6188E-01 1.1752E+00 -3.1455E+00 6.1908E+00 -8.2700E+00 6.9853E+00 -3.3652E+00 6.9914E-01
S8 -1.3200E-01 3.1629E-01 -4.8370E-01 4.1603E-01 -2.2077E-01 7.1604E-02 -1.3143E-02 1.1065E-03 -1.6863E-05
S9 -3.2273E-01 3.0593E-01 -2.6262E-01 1.5424E-01 -5.5618E-02 1.2295E-02 -1.6372E-03 1.2109E-04 -3.8348E-06
S10 -3.2313E-01 2.7873E-01 -1.8557E-01 8.6703E-02 2.7768E-02 5.9140E-03 -7.9065E-04 5.9498E-05 -1.9122E-06
表29
f1(mm) 9.20 f(mm) 3.49
f2(mm) 3.56 TTL(mm) 4.28
f3(mm) -8.75 HFOV(deg) 40.5
f4(mm) 77.31    
f5(mm) -14.01    
表30
图20A示出了实施例10的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图20B示出了实施例10的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图20D示出了实施例10的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像系统的实现了良好的成像品质。
实施例11
以下参照图21至图22D描述根据本申请实施例11的光学成像系统。图21示出了实施例11的光学成像系统的结构示意图。
如图21所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表31示出了实施例11的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表32示出了实施例11中各镜面的高次项系数。表33示出了实施例11的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2393    
S1 非球面 1.5764 0.3662 1.54,56.1 -7.7699
S2 非球面 1.9894 0.3293   -7.6437
S3 非球面 2.1863 0.7502 1.54,56.1 -8.4743
S4 非球面 -7.2799 0.0300   -87.6338
S5 非球面 5.9212 0.2200 1.66,20.4 18.1750
S6 非球面 2.5388 0.5601   -12.6911
S7 非球面 -15.6695 0.8631 1.64,23.5 13.3405
S8 非球面 -17.1950 0.0300   -99.0000
S9 非球面 1.5879 0.4565 1.54,56.1 -9.0721
S10 非球面 1.1008 0.4298   -2.2362
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.3424    
S13 球面 无穷      
表31
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0542E-01 -2.5890E-01 2.2717E-01 -1.4904E-01 2.7159E-02 7.6326E-03 1.2753E-03 0 0
S2 6.1603E-02 -1.1470E-01 -1.8012E-02 1.4104E-01 -2.3263E-01 1.7634E-01 -4.3443E-02 0 0
S3 5.6650E-02 -7.4564E-02 -7.9394E-02 2.5862E-01 -4.3350E-01 3.7754E-01 -1.1520E-01 0 0
S4 -1.0543E-01 -8.3562E-02 3.6122E-01 -7.5594E-01 8.6964E-01 -5.0022E-01 1.1716E-01 0 0
S5 -6.4200E-02 -7.0035E-02 3.0643E-01 -5.3762E-01 5.3490E-01 -2.6381E-01 4.2170E-02 0 0
S6 1.1897E-01 -1.6468E-01 3.8615E-01 -5.9137E-01 5.7067E-01 -3.0829E-01 6.7648E-02 0 0
S7 5.2063E-02 -1.1033E-01 -1.7695E-01 9.0892E-01 -1.7766E+00 1.9007E+00 -1.1570E+00 3.6859E-01 -4.7140E-02
S8 -8.7205E-02 1.6430E-01 -2.3163E-01 2.1826E-01 -1.4956E-01 6.9828E-02 -2.0586E-02 3.4125E-03 -2.3999E-04
S9 -2.4204E-01 4.5527E-02 9.9223E-02 -1.2240E-01 6.7396E-02 -2.0534E-02 3.5683E-03 -3.3201E-04 1.2853E-05
S10 -2.9823E-01 2.2592E-01 -1.2986E-01 5.3589E-02 -1.5865E-02 3.2703E-03 -4.3673E-04 3.3258E-05 -1.0798E-06
表32
f1(mm) 10.63 f(mm) 3.67
f2(mm) 3.18 TTL(mm) 4.59
f3(mm) -6.91 HFOV(deg) 39.0
f4(mm) -354.29    
f5(mm) -9.85    
表33
图22A示出了实施例11的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图22B示出了实施例11的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面 弯曲。图22C示出了实施例11的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图22D示出了实施例11的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图22A至图22D可知,实施例11所给出的光学成像系统的实现了良好的成像品质。
实施例12
以下参照图23至图24D描述根据本申请实施例12的光学成像系统。图23示出了实施例12的光学成像系统的结构示意图。
如图23所示,光学成像系统沿着光轴包括从物侧至成像侧依序排列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表34示出了实施例12的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表35示出了实施例12中各镜面的高次项系数。表36示出了实施例12的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2166    
S1 非球面 1.6324 0.4445 1.54,56.1 -8.8932
S2 非球面 2.1214 0.2804   -12.3312
S3 非球面 2.4447 0.6490 1.54,56.1 -13.4936
S4 非球面 -8.9697 0.0300   -87.6338
S5 非球面 4.8581 0.2675 1.66,20.4 16.2009
S6 非球面 2.3890 0.5877   -13.2263
S7 非球面 -24.7135 0.7409 1.64,23.5 13.3405
S8 非球面 无穷 0.0300   -99.0000
S9 非球面 1.3012 0.4565 1.54,56.1 -6.3124
S10 非球面 1.0885 0.4884   -1.9965
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.4025    
S13 球面 无穷      
表34
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.1093E-01 -3.0439E-01 3.2918E-01 -3.1678E-01 2.0401E-01 -9.9588E-02 2.8880E-02 0 0
S2 8.2839E-02 -2.4443E-01 2.1314E-01 -2.3789E-01 1.8178E-01 -5.4025E-02 5.3547E-03 0 0
S3 6.1933E-02 -1.8383E-01 1.9610E-01 -3.5505E-01 3.4044E-01 -5.6513E-02 -3.2198E-02 0 0
S4 -3.5969E-02 -1.9573E-01 4.9080E-01 -8.8766E-01 1.0049E+00 -5.7210E-01 1.2410E-01 0 0
S5 -4.9678E-02 -3.5334E-02 9.8907E-03 2.0164E-01 -4.2264E-01 3.6455E-01 -1.3268E-01 0 0
S6 1.1097E-01 -1.2268E-01 2.1733E-01 -2.8842E-01 2.7430E-01 -1.6395E-01 4.0616E-02 0 0
S7 8.7998E-02 -1.9587E-01 4.6556E-02 4.0447E-01 -1.0028E+00 1.1603E+00 -7.4096E-01 2.4572E-01 -3.2579E-02
S8 -1.2844E-01 2.9529E-01 -4.6552E-01 4.3881E-01 -2.6670E-01 1.0464E-01 -2.5543E-02 3.5186E-03 -2.0838E-04
S9 -2.4041E-01 1.5186E-01 -1.3115E-01 9.1713E-02 -3.7603E-02 9.0739E-03 -1.2880E-03 1.0014E-04 -3.3040E-06
S10 -2.8200E-01 1.9086E-01 -1.0195E-01 3.9366E-02 -1.0573E-02 1.9464E-03 -2.3446E-04 1.6513E-05 -5.1069E-07
表35
f1(mm) 9.86 f(mm) 3.69
f2(mm) 3.60 TTL(mm) 4.59
f3(mm) -7.43 HFOV(deg) 39.0
f4(mm) -38.63    
f5(mm) -50.16    
表36
图24A示出了实施例12的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图24B示出了实施例12的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24C示出了实施例12的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图24D示出了实施例12的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图24A至图24D可知,实施例12所给出的光学成像系统的实现了良好的成像品质。
实施例13
以下参照图25至图26D描述根据本申请实施例13的光学成像系统。图25示出了实施例13的光学成像系统的结构示意图。
如图25所示,光学成像系统沿着光轴包括从物侧至成像侧依序排 列的五个透镜E1-E5。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;以及第五透镜E5具有物侧面S9和像侧面S10。可选地,光学成像系统还可包括具有物侧面S11和像侧面S12并用于滤除红外光的滤色片E6。在本实施例的光学成像系统中,还可设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S12并最终成像在成像表面S13上。
表37示出了实施例13的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。表38示出了实施例13中各镜面的高次项系数。表39示出了实施例13的各透镜的有效焦距f1至f5、光学成像系统的总有效焦距f、摄像透镜的总长度TTL以及半视场角度HFOV。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.2237    
S1 非球面 1.6392 0.4281 1.54,56.1 -8.5406
S2 非球面 2.1277 0.3075   -10.9315
S3 非球面 2.3988 0.7152 1.54,56.1 -13.7887
S4 非球面 -9.0892 0.0300   -87.6338
S5 非球面 4.8299 0.2227 1.66,20.4 15.3814
S6 非球面 2.4195 0.5985   -11.8684
S7 非球面 1434.2319 0.7234 1.64,23.5 13.3405
S8 非球面 29.8979 0.0300   -99.0000
S9 非球面 1.3984 0.4565 1.54,56.1 -8.1341
S10 非球面 1.1240 0.4758   -1.9983
S11 球面 无穷 0.2100 1.52,64.2  
S12 球面 无穷 0.3899    
S13 球面 无穷      
表37
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.9953E-01 -2.8100E-01 3.2037E-01 -3.4387E-01 2.6011E-01 -1.3799E-01 3.7594E-02 0 0
S2 6.5014E-02 -1.7634E-01 1.0594E-01 -6.8994E-02 7.4156E-03 3.0303E-02 -8.7236E-03 0 0
S3 6.2523E-02 -1.5235E-01 6.8003E-02 -4.4528E-03 -1.3867E-01 2.2307E-01 -8.8085E-02 0 0
S4 -1.5655E-01 3.7190E-01 -9.1859E-01 1.1690E+00 -8.1621E-01 3.1605E-01 -5.5269E-02 0 0
S5 -1.5385E-01 4.7865E-01 -1.0643E+00 1.4394E+00 -1.2293E+00 6.2315E-01 -1.5108E-01 0 0
S6 7.2457E-02 9.6880E-03 7.2197E-02 -2.5401E-01 3.2214E-01 -1.9547E-01 4.5263E-02 0 0
S7 8.0473E-02 -2.6382E-01 5.3348E-01 -1.2335E+00 2.1824E+00 -2.5626E+00 1.8373E+00 -7.2850E-01 1.2190E-01
S8 -9.0617E-02 2.0448E-01 -4.0299E-01 4.5793E-01 -3.2742E-01 1.4809E-01 -4.1059E-02 6.3462E-03 -4.1659E-04
S9 -1.9065E-01 1.2984E-02 6.3530E-03 1.8497E-02 -1.3977E-02 4.3008E-03 -6.9637E-04 5.8947E-05 -2.0712E-06
S10 -2.8822E-01 1.8648E-01 -9.5224E-02 3.5437E-02 -9.0988E-03 1.5887E-03 -1.8255E-04 1.2480E-05 -3.8258E-07
表38
f1(mm) 10.03 f(mm) 3.69
f2(mm) 3.57 TTL(mm) 4.59
f3(mm) -7.62 HFOV(deg) 39.0
f4(mm) -47.74    
f5(mm) -25.44    
表39
图26A示出了实施例13的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图26B示出了实施例13的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图26C示出了实施例13的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图26D示出了实施例13的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。根据图26A至图26D可知,实施例13所给出的光学成像系统的实现了良好的成像品质。
综上,实施例1至实施例13分别满足以下表40所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8 9 10 11 12 13
f/EPD 1.78 1.83 1.78 1.78 1.78 1.78 1.78 1.78 1.93 2.00 1.78 1.78 1.78
f/f1 0.38 0.39 0.46 0.34 0.34 0.39 0.38 0.38 0.39 0.38 0.35 0.37 0.37
(R5-R6)/(R5+R6) 0.29 0.27 0.37 0.42 0.45 0.44 0.33 0.33 0.27 0.27 0.40 0.34 0.33
f12/f3 -0.34 -0.33 -0.40 -0.41 -0.42 -0.46 -0.38 -0.38 -0.33 -0.32 -0.39 -0.39 -0.38
|V3-V4| 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10
f2/|R4| 0.33 0.31 0.56 0.45 0.49 0.45 0.40 0.40 0.31 0.31 0.44 0.40 0.39
R5/R4 -0.38 -0.35 -0.78 -0.87 -1.06 -0.85 -0.53 -0.53 -0.35 -0.35 -0.81 -0.54 -0.53
f/|R7| 0.46 0.51 0.01 0.24 0.24 0.21 0.01 0.00 0.51 0.59 0.23 0.15 0.003
T34/TTL 0.12 0.12 0.18 0.12 0.12 0.13 0.13 0.13 0.12 0.13 0.12 0.13 0.13
CT3/CT4 0.31 0.31 0.31 0.26 0.26 0.27 0.36 0.36 0.31 0.32 0.25 0.36 0.31
f/f45 -0.12 -0.16 -0.12 -0.37 -0.37 -0.32 -0.23 -0.23 -0.16 -0.21 -0.39 -0.18 -0.23
表40
本申请还提供一种摄像装置,其感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设 备上的摄像模块。该摄像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 光学成像系统,其特征在于,所述光学成像系统沿着光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜,其像侧面随着远离光轴,逐渐由近轴凹面转变为边缘凸面;
    具有正光焦度的第二透镜,其物侧面为凸面,像侧面为凸面;
    具有负光焦度的第三透镜;以及
    具有正光焦度或负光焦度的第四透镜;以及
    具有正光焦度或负光焦度的第五透镜,其物侧面在近轴处为凸面,像侧面在近轴处为凹面,
    其中,所述第四透镜和所述第五透镜的合成光焦度为负光焦度。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的入瞳直径EPD以及所述光学成像系统的总有效焦距f满足f/EPD≤2.0。
  3. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与从所述第一透镜的物侧面至所述光学成像系统的成像面的轴上距离TTL满足T34/TTL<0.2。
  4. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足0.3≤f/f1≤0.5。
  5. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径R4满足f2/|R4|≤0.6。
  6. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第三透镜的物侧面的曲率半径R5和像侧面的曲率半径R6满足0<(R5-R6)/(R5+R6)<0.5。
  7. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第三透镜的物侧面的曲率半径R5满足-1.2<R5/R4<0。
  8. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第三透镜的色散系数V3与所述第四透镜的色散系数V4满足|V3-V4|≤10。
  9. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述光学成像系统的总有效焦距f满足f/|R7|≤0.6。
  10. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第三透镜的中心厚度CT3与所述第四透镜的中心厚度CT4满足CT3/CT4≤0.4。
  11. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第一透镜和所述第二透镜的合成焦距f12与所述第三透镜的有效焦距f3满足-0.5<f12/f3<0。
  12. 根据权利要求1或2所述的光学成像系统,其特征在于,所述第四透镜和所述第五透镜的合成焦距f45与所述光学成像系统的总有效焦距f满足-0.5<f/f45<0。
  13. 光学成像系统,所述光学成像系统沿着光轴从物侧至像侧依序包括具有正光焦度的第一透镜组、具有负光焦度第二透镜组和至少 一个后续透镜组,其特征在于,
    所述第一透镜组包括具有正光焦度的第一透镜和第二透镜,
    所述第二透镜组包括具有负光焦度的第三透镜,以及
    所述第一透镜的像侧面随着远离光轴而由凹面逐渐变为凸面。
  14. 根据权利要求13所述的光学成像系统,其特征在于,所述第一透镜和所述第二透镜的合成焦距f12与所述第三透镜的有效焦距f3满足-0.5<f12/f3<0。
  15. 根据权利要求13所述的光学成像系统,其特征在于,所述第二透镜的物侧面和像侧面均为凸面。
  16. 根据权利要求13所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f和所述光学成像系统的入瞳直径EPD满足f/EPD≤2.0。
  17. 根据权利要求13所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足0.3≤f/f1≤0.5。
  18. 根据权利要求13所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径R4满足f2/|R4|≤0.6。
  19. 根据权利要求13所述的光学成像系统,其特征在于,所述第三透镜的物侧面的曲率半径R5和像侧面的曲率半径R6满足0<(R5-R6)/(R5+R6)<0.5。
  20. 根据权利要求13所述的光学成像系统,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第三透镜的物侧面的曲率半径 R5满足-1.2<R5/R4<0。
  21. 根据权利要求13-20中任一项所述的光学成像系统,其特征在于,所述至少一个后续透镜组包括具有负光焦度的第三透镜组,所述第三透镜组包括具有光焦度的第四透镜。
  22. 根据权利要求21所述的光学成像系统,其特征在于,所述第三透镜的色散系数V3与所述第四透镜的色散系数V4满足|V3-V4|≤10。
  23. 根据权利要求21所述的光学成像系统,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述光学成像系统的总有效焦距f满足f/|R7|≤0.6。
  24. 根据权利要求21所述的光学成像系统,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与从所述第一透镜的物侧面至所述光学成像系统的成像面的轴上距离TTL满足T34/TTL<0.2。
  25. 根据权利要求21所述的光学成像系统,其特征在于,所述第三透镜的中心厚度CT3与所述第四透镜的中心厚度CT4满足CT3/CT4≤0.4。
  26. 根据权利要求21所述的光学成像系统,其特征在于,所述第三透镜组还包括具有光焦度的第五透镜,
    其中,所述第五透镜的物侧面在近轴处为凸面,所述第五透镜的像侧面在近轴处为凹面。
  27. 根据权利要求26所述的光学成像系统,其特征在于,所述第四透镜和所述第五透镜的合成焦距f45与所述光学成像系统的总有效 焦距f满足-0.5<f/f45<0。
  28. 摄像装置,其特征在于,所述摄像装置装备有权利要求1-27中任一项所述的光学成像系统。
PCT/CN2017/088355 2016-11-15 2017-06-15 光学成像系统及摄像装置 WO2018090609A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/076,191 US11402611B2 (en) 2016-11-15 2017-06-15 Optical imaging system and camera device including five lenses of ++-+-, ++--- or ++--+ refractive powers
US17/833,802 US20220308318A1 (en) 2016-11-15 2022-06-06 Optical imaging system and camera device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611030125.4A CN106405796B (zh) 2016-11-15 2016-11-15 光学成像系统及摄像装置
CN201611030125.4 2016-11-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/076,191 A-371-Of-International US11402611B2 (en) 2016-11-15 2017-06-15 Optical imaging system and camera device including five lenses of ++-+-, ++--- or ++--+ refractive powers
US17/833,802 Continuation US20220308318A1 (en) 2016-11-15 2022-06-06 Optical imaging system and camera device

Publications (1)

Publication Number Publication Date
WO2018090609A1 true WO2018090609A1 (zh) 2018-05-24

Family

ID=58081560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088355 WO2018090609A1 (zh) 2016-11-15 2017-06-15 光学成像系统及摄像装置

Country Status (3)

Country Link
US (2) US11402611B2 (zh)
CN (1) CN106405796B (zh)
WO (1) WO2018090609A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571660B2 (en) 2017-03-22 2020-02-25 Largan Precision Co., Ltd. Imaging lens assembly, imaging apparatus and electronic device
US20210191076A1 (en) * 2019-12-24 2021-06-24 Zhejiang Sunny Optical Co., Ltd Optical Imaging Lens

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405796B (zh) * 2016-11-15 2019-08-09 浙江舜宇光学有限公司 光学成像系统及摄像装置
TWI613480B (zh) 2017-02-08 2018-02-01 大立光電股份有限公司 光學取像鏡片系統、取像裝置及電子裝置
CN106680974B (zh) * 2017-02-17 2022-06-10 浙江舜宇光学有限公司 摄像镜头
WO2018192144A1 (zh) * 2017-04-18 2018-10-25 浙江舜宇光学有限公司 摄像镜头
CN106980171B (zh) * 2017-05-26 2023-02-17 浙江舜宇光学有限公司 摄像镜头
WO2019019530A1 (zh) 2017-07-25 2019-01-31 浙江舜宇光学有限公司 光学成像镜头
CN107167900B (zh) * 2017-07-25 2022-09-06 浙江舜宇光学有限公司 光学成像镜头
TWI634360B (zh) * 2017-09-29 2018-09-01 大立光電股份有限公司 電子裝置
WO2019153696A1 (zh) * 2018-02-11 2019-08-15 浙江舜宇光学有限公司 光学成像镜头
TWI652520B (zh) * 2018-03-02 2019-03-01 大立光電股份有限公司 電子裝置
CN110261994B (zh) * 2018-03-12 2021-03-26 信泰光学(深圳)有限公司 成像镜头
TWI644140B (zh) 2018-05-11 2018-12-11 大立光電股份有限公司 成像光學鏡片組、取像裝置及電子裝置
CN108761742A (zh) * 2018-08-20 2018-11-06 浙江舜宇光学有限公司 光学成像系统
CN112666679B (zh) * 2019-10-16 2022-03-18 比亚迪股份有限公司 移动通信设备的摄像头模组和具有其的移动通信设备
WO2021102749A1 (zh) * 2019-11-27 2021-06-03 天津欧菲光电有限公司 光学成像系统、取像装置及电子设备
TWI735299B (zh) 2020-07-30 2021-08-01 大立光電股份有限公司 影像透鏡組、取像裝置及電子裝置
CN111736316B (zh) * 2020-08-25 2020-11-20 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN113933963B (zh) * 2021-10-11 2023-09-05 江西晶超光学有限公司 光学变焦系统、摄像模组及电子设备
CN113820835B (zh) * 2021-11-24 2022-04-26 江西联益光学有限公司 光学镜头及成像设备
CN114114639B (zh) * 2021-12-20 2024-02-20 浙江舜宇光学有限公司 摄影透镜组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202102166U (zh) * 2010-12-15 2012-01-04 大立光电股份有限公司 成像用光学系统
TW201326957A (zh) * 2011-10-20 2013-07-01 Konica Minolta Advanced Layers 攝像鏡頭
CN103777326A (zh) * 2013-10-11 2014-05-07 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
CN104880804A (zh) * 2014-02-27 2015-09-02 三星电机株式会社 镜头模块
WO2016003211A1 (en) * 2014-07-04 2016-01-07 Samsung Electronics Co., Ltd. Photographing lens and photographing apparatus
US20160091691A1 (en) * 2014-09-30 2016-03-31 Samsung Electro-Mechanics Co., Ltd. Optical system
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN106405796A (zh) * 2016-11-15 2017-02-15 浙江舜宇光学有限公司 光学成像系统及摄像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI437259B (zh) * 2012-07-27 2014-05-11 Largan Precision Co Ltd 光學拾像系統鏡組
KR20140035810A (ko) * 2012-09-14 2014-03-24 삼성전기주식회사 촬상 렌즈
US20150002271A1 (en) 2013-06-27 2015-01-01 Qualcomm Incorporated Variable listen duration and/or synchronized wake-up of asset tags
TWI456247B (zh) 2013-07-17 2014-10-11 Largan Precision Co Ltd 影像擷取系統鏡片組
TWI470267B (zh) * 2013-10-14 2015-01-21 Largan Precision Co Ltd 光學影像拾取系統、取像裝置以及可攜裝置
JP6278354B2 (ja) * 2014-04-15 2018-02-14 株式会社オプトロジック 撮像レンズ
CN105842827B (zh) * 2015-01-16 2018-01-09 大立光电股份有限公司 光学摄像系统、取像装置及电子装置
KR102380230B1 (ko) * 2015-03-18 2022-03-30 삼성전자주식회사 촬영 렌즈 및 이를 포함하는 촬영 장치
KR20180040262A (ko) * 2016-10-12 2018-04-20 삼성전기주식회사 촬상 광학계

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202102166U (zh) * 2010-12-15 2012-01-04 大立光电股份有限公司 成像用光学系统
TW201326957A (zh) * 2011-10-20 2013-07-01 Konica Minolta Advanced Layers 攝像鏡頭
CN103777326A (zh) * 2013-10-11 2014-05-07 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
CN104880804A (zh) * 2014-02-27 2015-09-02 三星电机株式会社 镜头模块
WO2016003211A1 (en) * 2014-07-04 2016-01-07 Samsung Electronics Co., Ltd. Photographing lens and photographing apparatus
US20160091691A1 (en) * 2014-09-30 2016-03-31 Samsung Electro-Mechanics Co., Ltd. Optical system
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN106405796A (zh) * 2016-11-15 2017-02-15 浙江舜宇光学有限公司 光学成像系统及摄像装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571660B2 (en) 2017-03-22 2020-02-25 Largan Precision Co., Ltd. Imaging lens assembly, imaging apparatus and electronic device
US11467321B2 (en) 2017-03-22 2022-10-11 Largan Precision Co., Ltd. Imaging lens assembly, imaging apparatus and electronic device
US11880048B2 (en) 2017-03-22 2024-01-23 Largan Precision Co., Ltd. Imaging lens assembly, imaging apparatus and electronic device
US20210191076A1 (en) * 2019-12-24 2021-06-24 Zhejiang Sunny Optical Co., Ltd Optical Imaging Lens
US11592647B2 (en) * 2019-12-24 2023-02-28 Zhejiang Sunny Optical Co., Ltd Optical imaging lens

Also Published As

Publication number Publication date
US20210181470A1 (en) 2021-06-17
CN106405796B (zh) 2019-08-09
CN106405796A (zh) 2017-02-15
US20220308318A1 (en) 2022-09-29
US11402611B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2018090609A1 (zh) 光学成像系统及摄像装置
WO2019105139A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019192180A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019233160A1 (zh) 光学成像镜片组
WO2018076630A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2019134602A1 (zh) 光学成像镜头
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2020010878A1 (zh) 光学成像系统
WO2020119171A1 (zh) 光学成像镜头
WO2020010879A1 (zh) 光学成像系统
WO2018153012A1 (zh) 摄像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2019007030A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2019056776A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019095865A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2019056758A1 (zh) 摄像透镜组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872182

Country of ref document: EP

Kind code of ref document: A1