WO2019153696A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019153696A1
WO2019153696A1 PCT/CN2018/100482 CN2018100482W WO2019153696A1 WO 2019153696 A1 WO2019153696 A1 WO 2019153696A1 CN 2018100482 W CN2018100482 W CN 2018100482W WO 2019153696 A1 WO2019153696 A1 WO 2019153696A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
object side
image side
curvature
Prior art date
Application number
PCT/CN2018/100482
Other languages
English (en)
French (fr)
Inventor
张凯元
李明
宋博
徐标
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810143040.XA external-priority patent/CN108254880B/zh
Priority claimed from CN201820246605.2U external-priority patent/CN207780342U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019153696A1 publication Critical patent/WO2019153696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens including five lenses.
  • the invention proposes a five-piece ultra-thin aspherical camera lens group with a high screen ratio.
  • the present application provides an optical imaging lens that can be adapted for use in a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • the present application provides an optical imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface, the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy 3.5 ⁇ CT5/CT
  • the effective half-diameter DT11 of the object side of the first lens, the effective half-diameter DT22 of the image side of the second lens, and the effective half-diameter DT32 of the image side of the third lens can satisfy 1.5 ⁇ DT22/DT11+DT32 /DT11 ⁇ 2.
  • the radius of curvature R1 of the object side surface of the first lens and the curvature radius R2 of the image side surface of the first lens may satisfy 9 ⁇ (R1+R2)/(R1-R2) ⁇ 10.
  • the radius of curvature R3 of the object side surface of the second lens, the radius of curvature R4 of the image side surface of the second lens, the radius of curvature R9 of the object side surface of the fifth lens, and the radius of curvature R10 of the image side surface of the fifth lens may be Satisfy 3 ⁇
  • the total effective focal length f of the optical imaging lens, the radius of curvature R5 of the object side of the third lens, and the radius of curvature R6 of the image side of the third lens may satisfy -1 ⁇ f/R5-f/R6 ⁇ 1 .
  • the effective focal length f4 of the fourth lens and the radius of curvature R8 of the image side of the fourth lens may satisfy
  • the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f5 of the fifth lens, and the total effective focal length f of the optical imaging lens can satisfy 6.5 ⁇
  • the combined focal length f34 of the third lens and the fourth lens and the combined focal length f12 of the first lens and the second lens may satisfy 6.5 ⁇
  • the maximum effective half aperture DT41 of the object side of the fourth lens and the maximum effective half aperture DT31 of the object side of the third lens may satisfy 1 ⁇ DT41/DT31 ⁇ 1.5.
  • the distance between the center of the object side of the first lens and the imaging surface of the optical imaging lens on the optical axis is half the length of the effective pixel area of the imaging surface of the optical imaging lens, and the ImgH can satisfy the TTL. /ImgH ⁇ 1.5.
  • the distance T34 from the fourth lens on the optical axis can satisfy 6 ⁇ ⁇ AT / (T12 + T34) ⁇ 9.5.
  • the present application provides an optical imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface, the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the combined focal length f34 of the third lens and the fourth lens and the combined focal length f12 of the first lens and the second lens may satisfy 6.5 ⁇
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the distance TTL between the center of the object side of the first lens and the imaging surface of the optical imaging lens on the optical axis is half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, and the ImgH can satisfy TTL/ImgH ⁇ 1.5. .
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface, the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the maximum effective half aperture DT41 of the object side surface of the fourth lens and the maximum effective half aperture DT31 of the object side surface of the third lens may satisfy 1 ⁇ DT
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface, the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the radius of curvature R1 of the object side surface of the first lens and the curvature radius R2 of the image side surface of the first lens may satisfy 9 ⁇ (R
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f5 of the fifth lens, and the total effective focal length f of the optical imaging lens can satisfy 6.5 ⁇
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the radius of curvature R3 of the object side surface of the second lens, the radius of curvature R4 of the image side surface of the second lens, the radius of curvature R9 of the object side surface of the fifth lens, and the curvature radius R10 of the image side surface of the fifth lens may satisfy 3 ⁇
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the separation distance T34 on the optical axis can satisfy 6 ⁇ ⁇ AT / (T12 + T34) ⁇ 9.5.
  • the present application also provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens may have a negative refractive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has a positive power or a negative optical focus Degree
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the effective half-diameter DT11 of the object side of the first lens, the effective half-diameter DT22 of the image side of the second lens, and the effective half-diameter DT32 of the image side of the third lens can satisfy 1.5 ⁇ DT22/DT11+DT32/DT11 ⁇ 2 .
  • the present application employs a plurality of (for example, five) lenses, and the imaging system has a large aperture advantage by appropriately distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. , thereby enhancing the imaging effect of the optical imaging lens.
  • the optical imaging lens configured by the above configuration can have at least one advantageous effect such as ultra-thinness, miniaturization, high resolution, and the like.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens may include, for example, five lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the third lens has Positive or negative power
  • the object side may be a concave surface
  • the image side may be a convex surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens may have a negative power
  • the object side may be The convex surface, like the side surface, can be concave.
  • the image side of the fourth lens may be convex.
  • the optical imaging lens of the present application may satisfy the conditional formula: 3.5 ⁇ CT5/CT1 ⁇ 5, where CT5 is the center thickness of the fifth lens on the optical axis, and CT1 is the first lens on the optical axis. Center thickness. More specifically, CT5 and CT1 can further satisfy 3.51 ⁇ CT5 / CT1 ⁇ 4.58. The high-resolution imaging characteristics of the optical imaging lens are facilitated by rationally distributing the power of each lens, the center thickness, and the size of the clear aperture.
  • the optical imaging lens of the present application can satisfy the conditional expression 1.5 ⁇ DT22/DT11+DT32/DT11 ⁇ 2, where DT22 is the effective half diameter of the image side of the second lens, and DT11 is the first lens.
  • the effective half diameter of the side of the object, DT32 is the effective half diameter of the image side of the third lens. More specifically, DT22, DT11, and DT32 can further satisfy 1.61 ⁇ DT22 / DT11 + DT32 / DT11 ⁇ 1.91.
  • the light path of the three lenses is as close as possible, so that the optical imaging lens has an outer structure depth of less than 1 mm and an external size of less than 4 mm, which facilitates the optical characteristics of the lens high screen ratio.
  • the optical imaging lens of the present application can satisfy the conditional TTL / ImgH ⁇ 1.5, wherein TTL is the distance from the center of the object side of the first lens to the imaging plane of the optical imaging lens on the optical axis, ImgH is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens. More specifically, TTL and ImgH can further satisfy 1.46 ⁇ TTL / ImgH ⁇ 1.50. By constraining the ratio of TTL to ImgH, it is advantageous to realize the ultra-thin characteristics of the optical imaging system.
  • the optical imaging lens of the present application may satisfy Conditional Formula 1 ⁇ DT41 / DT31 ⁇ 1.5, wherein DT41 is the maximum effective half aperture of the object side of the fourth lens, and DT31 is the object side of the third lens. Maximum effective half diameter. More specifically, DT41 and DT31 can further satisfy 1.1 ⁇ DT41 / DT31 ⁇ 1.4, for example, 1.21 ⁇ DT41 / DT31 ⁇ 1.33. By constraining the effective half diameter of the object side of the third lens and the effective half diameter of the object side of the fourth lens, it is possible to reasonably control the height variation of the light of the edge field of view on the third lens and the fourth lens, thereby controlling the edge view. The sensitivity of the field.
  • the optical imaging lens of the present application may satisfy conditional formula 6.5 ⁇
  • the optical imaging lens of the present application may satisfy the conditional expression 9 ⁇ (R1+R2)/(R1-R2) ⁇ 10, where R1 is the radius of curvature of the object side of the first lens, and R2 is the first The radius of curvature of the image side of a lens. More specifically, R1 and R2 may further satisfy 9.0 ⁇ (R1 + R2) / (R1 - R2) ⁇ 9.5, for example, 9.04 ⁇ (R1 + R2) / (R1 - R2) ⁇ 9.38.
  • the spherical aberration contribution amount of the first lens can be controlled by constraining the range of the radius of curvature of the object side surface and the image side surface of the first lens.
  • the contribution of spherical aberration is mainly concentrated on the first lens. Therefore, reasonable control of the spherical aberration contribution of the first lens helps to properly control the spherical aberration of the optical imaging system.
  • the optical imaging lens of the present application may satisfy the conditional expression 6.5 ⁇
  • the optical imaging lens may further include at least one aperture to enhance the imaging quality of the lens.
  • the diaphragm may be disposed between the second lens and the third lens.
  • the optical imaging lens of the present application may satisfy the conditional expression -1 ⁇ f/R5-f/R6 ⁇ 1, where f is the total effective focal length of the optical imaging lens, and R5 is the object side of the third lens.
  • the radius of curvature, R6 is the radius of curvature of the image side of the third lens. More specifically, f, R5 and R6 may further satisfy -0.80 ⁇ f / R5 - f / R6 ⁇ 0.70.
  • the optical imaging lens of the present application may satisfy the conditional expression
  • the optical imaging lens of the present application may satisfy the conditional expression 3 ⁇
  • the third-order and fifth-order spherical aberration of the imaging system can be reasonable.
  • the balance makes the image quality of the central field of view of the imaging system effectively improved.
  • the optical imaging lens of the present application may satisfy conditional expression 6 ⁇ AT/(T12+T34) ⁇ 9.5, wherein ⁇ AT is any adjacent two lenses of the first to fifth lenses in the light
  • ⁇ AT is any adjacent two lenses of the first to fifth lenses in the light
  • T12 is the separation distance of the first lens and the second lens on the optical axis
  • T34 is the separation distance of the third lens and the fourth lens on the optical axis.
  • ⁇ AT, T12, and T34 can further satisfy 6.13 ⁇ ⁇ AT / (T12 + T34) ⁇ 9.29.
  • the imaging can be performed.
  • the distortion of the edge field of view of the system is effectively adjusted, so that the distortion of the edge field of view is within a reasonable range.
  • the above optical imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the five sheets described above.
  • a plurality of lenses such as the five sheets described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging lens is made more advantageous for production processing and can be applied to portable electronic products.
  • the optical imaging lens of the above configuration can also have advantageous effects such as ultra-thin, large aperture, large aperture, high image quality, and the like.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging lens is not limited to including five lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S10 in the embodiment 1. .
  • Table 3 gives the effective focal lengths f1 to f5 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging lens, and the optical total length TTL (i.e., from the center of the object side surface S1 of the first lens E1 to the imaging surface S11 in the light The distance on the axis) and the half of the diagonal length of the effective pixel area on the imaging plane S11, ImgH.
  • the optical imaging lens of Embodiment 1 satisfies:
  • CT5/CT1 3.51, where CT5 is the center thickness of the fifth lens E5 on the optical axis, and CT1 is the center thickness of the first lens E1 on the optical axis;
  • DT22/DT11+DT32/DT11 1.91, where DT22 is the effective half diameter of the image side surface S4 of the second lens E2, DT11 is the effective half diameter of the object side surface S1 of the first lens E1, and DT32 is the image of the third lens E3. Effective half diameter of side S6;
  • TTL / ImgH 1.46, wherein TTL is the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and ImgH is half the diagonal length of the effective pixel area on the imaging surface S11;
  • DT41 / DT31 1.32, wherein DT41 is the maximum effective half diameter of the object side surface S7 of the fourth lens E4, and DT31 is the maximum effective half diameter of the object side surface S5 of the third lens E3;
  • R1+R2)/(R1-R2) 9.38, where R1 is the radius of curvature of the object side surface S1 of the first lens E1, and R2 is the radius of curvature of the image side surface S2 of the first lens E1;
  • f/R5-f/R6 -0.80, where f is the total effective focal length of the optical imaging lens, R5 is the radius of curvature of the object side surface S5 of the third lens E3, and R6 is the radius of curvature of the image side surface R6 of the third lens E3. ;
  • R3 is the radius of curvature of the object side surface R3 of the second lens E2
  • R4 is the radius of curvature of the image side surface R4 of the second lens E2
  • R9 is the fifth a radius of curvature of the object side surface R9 of the lens E5
  • R10 is a radius of curvature of the image side surface R10 of the fifth lens E5;
  • ⁇ AT/(T12+T34) 8.52
  • ⁇ AT is the sum of the separation distances of any two adjacent lenses of the first lens E1 to the fifth lens E5 on the optical axis
  • T12 is the first lens E1 and the second The separation distance of the lens E2 on the optical axis
  • T34 is the separation distance of the third lens E3 and the fourth lens E4 on the optical axis.
  • 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 4 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 2, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the effective focal lengths f1 to f5 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging lens, the optical total length TTL, and a half ImgH of the diagonal length of the effective pixel region on the imaging surface S11.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the effective focal lengths f1 to f5 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging lens, the optical total length TTL, and a half ImgH of the effective pixel region diagonal length on the imaging surface S11.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the effective focal lengths f1 to f5 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging lens, the optical total length TTL, and a half ImgH of the diagonal length of the effective pixel area on the imaging plane S11.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 5, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the effective focal lengths f1 to f5 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the half ImgH of the effective pixel area diagonal length on the imaging surface S11.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the effective focal lengths f1 to f5 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the half ImgH of the effective pixel region diagonal length on the imaging surface S11.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • Embodiments 1 to 6 respectively satisfy the relationship shown in Table 19.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)和第五透镜(E5)。第一透镜(E1)具有负光焦度,其物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(E2)具有正光焦度,其物侧面(S3)为凸面;第三透镜(E3)具有光焦度,其物侧面(S5)为凹面,像侧面(S6)为凸面;第四透镜(E4)具有光焦度;第五透镜(E5)具有负光焦度,其物侧面(S9)为凸面,像侧面(S10)为凹面。第一透镜(E1)于光轴上的中心厚度CT1与第五透镜(E5)于光轴上的中心厚度CT5满足3.5≤CT5/CT1≤5。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年2月11日提交于中国国家知识产权局(SIPO)的、专利申请号为201810143040.X的中国专利申请以及于2018年2月11日提交至SIPO的、专利申请号为201820246605.2的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括五片透镜的光学成像镜头。
背景技术
如今网络社交发展迅速,手机的拍摄功能越来越受到消费者重视,每个人都有拿起手机记录精彩瞬间的实际需求,所以对手机镜头的各种性能便有了更高的要求。对于手机前置摄像头,前端开口的大小及深度决定了手机屏幕上开口大小及美观程度。为了适应终端手机屏占比增大的趋势,本专利研究并提供了前三片可以做小的前置摄像头方案。另外,适当的手机镜头总长可以广泛地应用在现代的超薄镜头中。
本发明提出了一种高屏占比的五片超薄非球面摄像镜头组。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
一方面,本申请提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四 透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜于光轴上的中心厚度CT1与第五透镜于光轴上的中心厚度CT5可满足3.5≤CT5/CT1≤5。
在一个实施方式中,第一透镜的物侧面的有效半口径DT11、第二透镜的像侧面的有效半口径DT22和第三透镜的像侧面的有效半口径DT32可满足1.5<DT22/DT11+DT32/DT11<2。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足9≤(R1+R2)/(R1-R2)<10。
在一个实施方式中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4、第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足3<|(R3+R4)/(R9+R10)|<7。
在一个实施方式中,光学成像镜头的总有效焦距f、第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6可满足-1<f/R5-f/R6<1。
在一个实施方式中,第四透镜的有效焦距f4与第四透镜的像侧面的曲率半径R8可满足|f4/R8|<5。
在一个实施方式中,第一透镜的有效焦距f1、第二透镜的有效焦距f2、第五透镜的有效焦距f5与光学成像镜头的总有效焦距f可满足6.5<|f1/f|+|f2/f|+|f5/f|<9。
在一个实施方式中,第三透镜和第四透镜的组合焦距f34与第一透镜和第二透镜的组合焦距f12可满足6.5<|f34/f12|<10.5。
在一个实施方式中,第四透镜的物侧面的最大有效半口径DT41与第三透镜的物侧面的最大有效半口径DT31可满足1<DT41/DT31<1.5。
在一个实施方式中,第一透镜的物侧面的中心至光学成像镜头的成像面在光轴上的间隔距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.5。
在一个实施方式中,第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离之和∑AT、第一透镜和第二透镜在光轴上的间隔距离T12与第三透镜和第四透镜在光轴上的间隔距离T34可满足6<∑ AT/(T12+T34)<9.5。
另一方面,本申请提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第三透镜和第四透镜的组合焦距f34与第一透镜和第二透镜的组合焦距f12可满足6.5<|f34/f12|<10.5。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜的物侧面的中心至光学成像镜头的成像面在光轴上的间隔距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.5。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第四透镜的物侧面的最大有效半口径DT41与第三透镜的物侧面的最大有效半口径DT31可满足1<DT41/DT31<1.5。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透 镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足9≤(R1+R2)/(R1-R2)<10。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜的有效焦距f1、第二透镜的有效焦距f2、第五透镜的有效焦距f5与光学成像镜头的总有效焦距f可满足6.5<|f1/f|+|f2/f|+|f5/f|<9。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4、第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足3<|(R3+R4)/(R9+R10)|<7。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透 镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离之和∑AT、第一透镜和第二透镜在光轴上的间隔距离T12与第三透镜和第四透镜在光轴上的间隔距离T34可满足6<∑AT/(T12+T34)<9.5。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。其中,第一透镜的物侧面的有效半口径DT11、第二透镜的像侧面的有效半口径DT22和第三透镜的像侧面的有效半口径DT32可满足1.5<DT22/DT11+DT32/DT11<2。
本申请采用了多片(例如,五片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使成像系统具有大光圈优势,从而增强光学成像镜头的成像效果。同时,通过上述配置的光学成像镜头可具有超薄、小型化、高分辨率等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近 轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有正光焦度,其物侧面可为凸面;第三透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第四透镜具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第四透镜的像侧面可为凸面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式3.5≤CT5/CT1≤5,其中,CT5为第五透镜于光轴上的中心厚度,CT1为 第一透镜于光轴上的中心厚度。更具体地,CT5和CT1进一步可满足3.51≤CT5/CT1≤4.58。通过合理地分配各透镜的光焦度、中心厚度及通光孔径的大小,便于实现光学成像镜头的高分辨率成像特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<DT22/DT11+DT32/DT11<2,其中,DT22为第二透镜的像侧面的有效半口径,DT11为第一透镜的物侧面的有效半口径,DT32为第三透镜的像侧面的有效半口径。更具体地,DT22、DT11和DT32进一步可满足1.61≤DT22/DT11+DT32/DT11≤1.91。通过约束第二透镜像侧面的有效半口径和第一透镜物侧面的有效半口径的比值以及第三透镜像侧面的有效半口径和第一透镜物侧面的有效半口径的比值之和,使得前三片透镜的通光径尽可能地接近,使得光学成像镜头的外形结构深度小于1毫米,外部尺寸小于4毫米,便于实现镜头高屏占比的光学特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/ImgH≤1.5,其中,TTL为第一透镜的物侧面的中心至光学成像镜头的成像面在光轴上的间隔距离,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.46≤TTL/ImgH≤1.50。通过约束TTL和ImgH的比例,有利于实现光学成像系统的超薄特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<DT41/DT31<1.5,其中,DT41为第四透镜的物侧面的最大有效半口径,DT31为第三透镜的物侧面的最大有效半口径。更具体地,DT41和DT31进一步可满足1.1<DT41/DT31<1.4,例如,1.21≤DT41/DT31≤1.33。通过约束第三透镜的物侧面的有效半口径和第四透镜的物侧面的有效半口径,能够合理的控制边缘视场的光线在第三透镜和第四透镜上的高度变化,进而控制边缘视场的感度。
在示例性实施方式中,本申请的光学成像镜头可满足条件式6.5<|f34/f12|<10.5,其中,f34为第三透镜和第四透镜的组合焦距,f12为第一透镜和第二透镜的组合焦距。更具体地,f34和f12进一步可满足6.85≤|f34/f12|≤10.17。通过约束f34和f12的比例,能够将成像系 统的场曲控制约束在一定的合理范围内。
在示例性实施方式中,本申请的光学成像镜头可满足条件式9≤(R1+R2)/(R1-R2)<10,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足9.0≤(R1+R2)/(R1-R2)<9.5,例如,9.04≤(R1+R2)/(R1-R2)≤9.38。通过约束第一透镜的物侧面和像侧面的曲率半径的范围,能够控制第一透镜的球差贡献量。对于一个光阑前置的光学成像系统来说,球差的贡献量主要集中在第一透镜上,因此,合理控制第一透镜的球差贡献量有助于合理控制光学成像系统的球差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式6.5<|f1/f|+|f2/f|+|f5/f|<9,例如,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距,f5为第五透镜的有效焦距,f为光学成像镜头的总有效焦距。更具体地,f1、f2、f5和f进一步可满足6.89≤|f1/f|+|f2/f|+|f5/f|≤8.61。通过第一透镜、第二透镜、第五透镜的有效焦距f1、f2、f5和系统总有效焦距f的比例,能够合理的将前端和后端的各透镜所产生的场曲平衡约束在一定范围内。
在示例性实施方式中,光学成像镜头还可包括至少一个光阑,以提升镜头的成像质量。可选地,光阑可设置在第二透镜与第三透镜之间。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-1<f/R5-f/R6<1,其中,f为光学成像镜头的总有效焦距,R5为第三透镜的物侧面的曲率半径,R6为第三透镜的像侧面的曲率半径。更具体地,f、R5和R6进一步可满足-0.80≤f/R5-f/R6≤0.70。通过约束光阑附近的第三透镜的物侧面和像侧面的曲率半径,能够将瞳面球差合理控制在一定合理范围内。
在示例性实施方式中,本申请的光学成像镜头可满足条件式|f4/R8|<5,其中,f4为第四透镜的有效焦距,R8为第四透镜的像侧面的曲率半径。更具体地,f4和R8进一步可满足0.01≤|f4/R8|≤4.80。通过控制第四透镜的光焦度及第四透镜的像侧面的曲率半径,能够合理的控制其像散的贡献量,能够合理调控边缘视场的像质。
在示例性实施方式中,本申请的光学成像镜头可满足条件式3<|(R3+R4)/(R9+R10)|<7,其中,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径,R9为第五透镜的物侧面的曲率半径,R10为第五透镜的像侧面的曲率半径。更具体地,R3、R4、R9和R10进一步可满足3.14≤|(R3+R4)/(R9+R10)|≤6.76。通过对第二透镜的物侧面曲率半径和像侧面曲率半径之和与第五透镜的物侧面曲率半径与像侧面曲率半径之和进行调控,能够对成像系统的三阶和五阶球差进行合理的平衡,使得成像系统的中心视场区域的像质得到有效的提升。
在示例性实施方式中,本申请的光学成像镜头可满足条件式6<∑AT/(T12+T34)<9.5,其中,∑AT为第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离之和,T12为第一透镜和第二透镜在光轴上的间隔距离,T34为第三透镜和第四透镜在光轴上的间隔距离。更具体地,∑AT、T12和T34进一步可满足6.13≤∑AT/(T12+T34)≤9.29。通过控制第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离之和与第一、二透镜间的空气间隔和第三、四透镜间的空气间隔之和,能够对成像系统的边缘视场的畸变进行有效调控,使得边缘视场的畸变量在合理的区间范围内。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。另外,通过上述配置的光学成像镜头,还可具有例如超薄、大光圈、大孔径、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面 透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100482-appb-000001
Figure PCTCN2018100482-appb-000002
表1
由表1可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018100482-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.3813E-01 7.4204E-02 -3.8218E-01 8.6413E-01 -1.3403E+00 1.4151E+00 -9.6504E-01 3.8230E-01 -6.6887E-02
S2 -2.0975E-01 1.4992E-01 -5.1822E-01 5.3641E-01 2.3129E-02 -5.8320E-01 4.4831E-01 -6.0729E-02 -3.8833E-02
S3 -4.5330E-02 2.1702E-01 -6.8938E-01 1.6269E+00 -3.2418E+00 5.0971E+00 -5.3527E+00 3.1815E+00 -8.0625E-01
S4 -7.7428E-03 -1.2021E-01 8.7935E-01 -3.6767E+00 1.0002E+01 -1.7501E+01 1.8839E+01 -1.1306E+01 2.8739E+00
S5 -2.7041E-02 4.1898E-01 -1.6174E+00 4.8968E+00 -8.9769E+00 1.0403E+01 -7.3618E+00 2.7180E+00 -3.1846E-01
S6 -1.8215E-01 4.4609E-01 -1.7430E+00 5.4885E+00 -1.0168E+01 1.1629E+01 -8.1158E+00 3.1522E+00 -5.1973E-01
S7 -1.1324E-01 -2.3304E-02 -2.2923E-01 1.1095E+00 -2.1110E+00 2.2206E+00 -1.3705E+00 4.6735E-01 -6.8916E-02
S8 2.3242E-02 -1.0249E-01 1.0160E-01 -6.2884E-02 2.9259E-02 -1.1062E-02 3.0806E-03 -5.1727E-04 3.7468E-05
S9 -1.8040E-01 3.6595E-02 1.4250E-02 -1.0617E-02 2.8175E-03 -3.5592E-04 1.3265E-05 1.3864E-06 -1.1500E-07
S10 -6.1540E-02 -1.7893E-03 1.6770E-02 -1.0095E-02 3.2116E-03 -6.1523E-04 7.0597E-05 -4.4375E-06 1.1672E-07
表2
表3给出实施例1中各透镜的有效焦距f1至f5、光学成像镜头的 总有效焦距f、光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离)以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -13.43 f5(mm) -11.09
f2(mm) 2.57 f(mm) 3.77
f3(mm) -7.92 TTL(mm) 4.72
f4(mm) 11.01 ImgH(mm) 3.23
表3
实施例1中的光学成像镜头满足:
CT5/CT1=3.51,其中,CT5为第五透镜E5于光轴上的中心厚度,CT1为第一透镜E1于光轴上的中心厚度;
DT22/DT11+DT32/DT11=1.91,其中,DT22为第二透镜E2的像侧面S4的有效半口径,DT11为第一透镜E1的物侧面S1的有效半口径,DT32为第三透镜E3的像侧面S6的有效半口径;
TTL/ImgH=1.46,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S11在光轴上的间隔距离,ImgH为成像面S11上有效像素区域对角线长的一半;
DT41/DT31=1.32,其中,DT41为第四透镜E4的物侧面S7的最大有效半口径,DT31为第三透镜E3的物侧面S5的最大有效半口径;
|f34/f12|=10.17,其中,f34为第三透镜E3和第四透镜E4的组合焦距,f12为第一透镜E1和第二透镜E2的组合焦距;
(R1+R2)/(R1-R2)=9.38,其中,R1为第一透镜E1的物侧面S1的曲率半径,R2为第一透镜E1的像侧面S2的曲率半径;
|f1/f|+|f2/f|+|f5/f|=7.18,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距,f5为第五透镜E5的有效焦距,f为光学成像镜头的总有效焦距;
f/R5-f/R6=-0.80,其中,f为光学成像镜头的总有效焦距,R5为第三透镜E3的物侧面S5的曲率半径,R6为第三透镜E3的像侧面R6的曲率半径;
|f4/R8|=0.01,其中,f4为第四透镜E4的有效焦距,R8为第四透镜E4的像侧面R8的曲率半径;
|(R3+R4)/(R9+R10)|=3.14,其中,R3为第二透镜E2的物侧面R3的曲率半径,R4为第二透镜E2的像侧面R4的曲率半径,R9为第五透镜E5的物侧面R9的曲率半径,R10为第五透镜E5的像侧面R10的曲率半径;
∑AT/(T12+T34)=8.52,其中,∑AT为第一透镜E1至第五透镜E5中任意相邻两透镜在光轴上的间隔距离之和,T12为第一透镜E1和第二透镜E2在光轴上的间隔距离,T34为第三透镜E3和第四透镜E4在光轴上的间隔距离。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8 为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100482-appb-000004
表4
由表4可知,在实施例2中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.3544E-01 1.3661E-01 -4.7513E-01 1.0863E+00 -1.7338E+00 1.8181E+00 -1.1961E+00 4.4559E-01 -7.2181E-02
S2 -2.1221E-01 2.6338E-01 -9.7571E-01 2.6726E+00 -5.3942E+00 7.3498E+00 -6.3643E+00 3.1327E+00 -6.7199E-01
S3 -4.8683E-02 1.2997E-01 -3.0291E-01 5.6504E-01 -6.9795E-01 5.7504E-01 -3.1136E-01 1.0382E-01 -1.8228E-02
S4 -1.3447E-02 -7.1849E-02 4.7842E-01 -2.2625E+00 6.7405E+00 -1.2694E+01 1.4593E+01 -9.3392E+00 2.5422E+00
S5 3.4195E-02 -6.1435E-01 3.4010E+00 -1.4173E+01 4.3520E+01 -8.8940E+01 1.1325E+02 -8.0930E+01 2.4629E+01
S6 3.8810E-02 -1.8029E+00 8.5767E+00 -2.5893E+01 5.3458E+01 -7.2883E+01 6.2450E+01 -3.0373E+01 6.3746E+00
S7 8.4347E-03 -9.9920E-01 3.9842E+00 -9.9776E+00 1.6756E+01 -1.8561E+01 1.2899E+01 -5.0644E+00 8.5243E-01
S8 -1.4716E-01 1.7160E-01 -1.6046E-01 6.2798E-02 5.7607E-02 -1.0176E-01 6.5030E-02 -1.9974E-02 2.4180E-03
S9 -2.7871E-01 1.5277E-01 -5.1713E-02 8.3551E-03 1.3002E-03 -1.0002E-03 2.1918E-04 -2.2489E-05 9.1407E-07
S10 -1.0906E-01 5.2936E-02 -1.8181E-02 3.9157E-03 -4.1972E-04 -1.2821E-05 9.3966E-06 -1.0005E-06 3.5625E-08
表5
表6给出实施例2中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -12.77 f5(mm) -11.90
f2(mm) 2.70 f(mm) 3.98
f3(mm) -37.22 TTL(mm) 4.86
f4(mm) -256.61 ImgH(mm) 3.23
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100482-appb-000005
表7
由表7可知,在实施例3中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.3034E-01 1.2370E-01 -3.8872E-01 6.6195E-01 -5.8009E-01 2.4474E-02 3.9648E-01 -3.0799E-01 7.5723E-02
S2 -2.4313E-01 4.2315E-01 -1.7134E+00 5.0759E+00 -1.0159E+01 1.3164E+01 -1.0702E+01 4.9681E+00 -1.0136E+00
S3 -9.5646E-02 4.0419E-01 -1.7411E+00 6.0618E+00 -1.4149E+01 2.1515E+01 -2.0415E+01 1.0936E+01 -2.5246E+00
S4 -1.5199E-02 -1.0771E-01 5.5783E-01 -2.0897E+00 5.4065E+00 -9.4650E+00 1.0476E+01 -6.5231E+00 1.7131E+00
S5 5.7337E-02 -9.4343E-01 5.6184E+00 -2.2303E+01 6.0322E+01 -1.0582E+02 1.1515E+02 -7.0599E+01 1.8552E+01
S6 2.8453E-02 -1.8567E+00 8.1847E+00 -2.2421E+01 4.2050E+01 -5.2357E+01 4.1206E+01 -1.8514E+01 3.6078E+00
S7 -2.4426E-04 -1.0148E+00 3.8043E+00 -8.8062E+00 1.3670E+01 -1.4029E+01 9.0487E+00 -3.3056E+00 5.1900E-01
S8 -1.5876E-01 2.3797E-01 -3.3047E-01 3.4880E-01 -2.5312E-01 1.1810E-01 -3.2392E-02 4.3233E-03 -1.5760E-04
S9 -3.0128E-01 2.0001E-01 -1.0426E-01 4.3329E-02 -1.2885E-02 2.5377E-03 -3.1229E-04 2.1744E-05 -6.5563E-07
S10 -1.0432E-01 5.7127E-02 -2.3614E-02 6.9782E-03 -1.4353E-03 1.9569E-04 -1.6430E-05 7.5441E-07 -1.4286E-08
表8
表9给出实施例3中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -12.63 f5(mm) -13.66
f2(mm) 2.67 f(mm) 3.90
f3(mm) -13.90 TTL(mm) 4.77
f4(mm) 29.05 ImgH(mm) 3.23
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100482-appb-000006
表10
由表10可知,在实施例4中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.2575E-01 1.0997E-01 -5.2934E-01 1.5751E+00 -3.0239E+00 3.6415E+00 -2.6763E+00 1.0949E+00 -1.9148E-01
S2 -2.0815E-01 2.1327E-01 -1.0426E+00 3.8753E+00 -9.3727E+00 1.4207E+01 -1.3154E+01 6.7828E+00 -1.4998E+00
S3 -6.6387E-02 2.3496E-01 -1.1803E+00 4.6361E+00 -1.1448E+01 1.7742E+01 -1.6761E+01 8.8121E+00 -1.9805E+00
S4 -1.1601E-02 -1.0067E-01 7.0269E-01 -3.4352E+00 1.0447E+01 -1.9726E+01 2.2407E+01 -1.3992E+01 3.6728E+00
S5 4.0651E-02 -6.6886E-01 4.0419E+00 -1.6376E+01 4.6021E+01 -8.4825E+01 9.6975E+01 -6.2028E+01 1.6841E+01
S6 -5.1151E-02 -1.2858E+00 6.8146E+00 -2.0947E+01 4.1835E+01 -5.3602E+01 4.2343E+01 -1.8709E+01 3.5291E+00
S7 5.1942E-02 -1.1668E+00 4.4009E+00 -1.0446E+01 1.5995E+01 -1.5671E+01 9.3810E+00 -3.0970E+00 4.2930E-01
S8 -1.6691E-01 2.0331E-01 -2.0727E-01 1.4351E-01 -7.3114E-02 3.0990E-02 -9.7779E-03 1.8329E-03 -1.4751E-04
S9 -2.7373E-01 1.8267E-01 -1.0405E-01 4.7837E-02 -1.5399E-02 3.2409E-03 -4.2544E-04 3.1720E-05 -1.0299E-06
S10 -8.5773E-02 4.6059E-02 -2.0066E-02 6.3232E-03 -1.3876E-03 2.0146E-04 -1.8010E-05 8.8318E-07 -1.8022E-08
表11
表12给出实施例4中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -12.80 f5(mm) -12.74
f2(mm) 2.70 f(mm) 3.94
f3(mm) 7.12 TTL(mm) 4.80
f4(mm) -6.23 ImgH(mm) 3.23
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100482-appb-000007
Figure PCTCN2018100482-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.3330E-01 1.4533E-01 -5.4772E-01 1.2637E+00 -2.0012E+00 2.0737E+00 -1.3395E+00 4.8703E-01 -7.6641E-02
S2 -2.2136E-01 3.6157E-01 -1.4890E+00 4.1855E+00 -8.2538E+00 1.0749E+01 -8.7357E+00 3.9930E+00 -7.9164E-01
S3 -7.5298E-02 3.5398E-01 -1.4119E+00 4.0922E+00 -7.9494E+00 1.0015E+01 -7.7309E+00 3.2931E+00 -5.9144E-01
S4 -2.1661E-02 1.5661E-01 -1.5249E+00 7.3706E+00 -2.0958E+01 3.5958E+01 -3.6489E+01 2.0059E+01 -4.5795E+00
S5 8.2189E-02 -1.6019E+00 1.1247E+01 -4.9439E+01 1.3947E+02 -2.5197E+02 2.8347E+02 -1.8133E+02 5.0306E+01
S6 1.0378E-01 -2.1911E+00 1.1101E+01 -3.4823E+01 6.9741E+01 -8.8145E+01 6.8460E+01 -2.9973E+01 5.6615E+00
S7 2.0378E-02 -1.2904E+00 5.8916E+00 -1.5963E+01 2.6539E+01 -2.7032E+01 1.6448E+01 -5.4783E+00 7.5909E-01
S8 -1.6961E-01 7.6559E-02 2.6438E-01 -7.6098E-01 9.4195E-01 -6.3622E-01 2.4103E-01 -4.8107E-02 3.9423E-03
S9 -3.0222E-01 1.8737E-01 -9.7319E-02 4.5560E-02 -1.5967E-02 3.6932E-03 -5.2647E-04 4.1865E-05 -1.4212E-06
S10 -1.0616E-01 4.8716E-02 -1.4136E-02 1.4306E-03 4.9161E-04 -2.0898E-04 3.3759E-05 -2.6231E-06 8.0648E-08
表14
表15给出实施例5中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -12.84 f5(mm) -13.34
f2(mm) 2.68 f(mm) 3.90
f3(mm) -86.41 TTL(mm) 4.74
f4(mm) -43.21 ImgH(mm) 3.23
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018100482-appb-000009
Figure PCTCN2018100482-appb-000010
表16
由表16可知,在实施例6中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.3066E-01 1.2707E-01 -6.1277E-01 1.7708E+00 -3.1561E+00 3.4376E+00 -2.2504E+00 8.1445E-01 -1.2614E-01
S2 -1.9170E-01 1.7428E-01 -1.0460E+00 4.2751E+00 -1.0511E+01 1.5398E+01 -1.3357E+01 6.3485E+00 -1.2866E+00
S3 -4.2717E-02 1.7430E-01 -8.9363E-01 3.5532E+00 -8.7836E+00 1.3385E+01 -1.2271E+01 6.2221E+00 -1.3510E+00
S4 -1.9233E-02 4.9100E-02 -2.7543E-01 3.2877E-01 1.5737E+00 -7.0831E+00 1.2147E+01 -9.9746E+00 3.2267E+00
S5 -1.6686E-02 -4.6822E-01 4.2637E+00 -2.2327E+01 7.2850E+01 -1.4740E+02 1.8023E+02 -1.2208E+02 3.5067E+01
S6 -3.8422E-02 -1.1858E+00 6.0935E+00 -1.9334E+01 3.9771E+01 -5.1618E+01 4.0813E+01 -1.7952E+01 3.3690E+00
S7 2.0975E-03 -5.8104E-01 2.0271E+00 -4.8708E+00 7.2815E+00 -6.5260E+00 3.3047E+00 -8.2618E-01 6.9839E-02
S8 -1.3933E-01 2.5994E-01 -3.9865E-01 3.5758E-01 -1.9530E-01 6.5409E-02 -1.3071E-02 1.4301E-03 -6.6025E-05
S9 -2.7345E-01 1.9192E-01 -1.0976E-01 4.8047E-02 -1.4591E-02 2.9094E-03 -3.6284E-04 2.5688E-05 -7.9012E-07
S10 -7.5752E-02 3.5133E-02 -1.3582E-02 3.9592E-03 -8.4077E-04 1.2104E-04 -1.0731E-05 5.1600E-07 -1.0202E-08
表17
表18给出实施例6中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -12.76 f5(mm) -17.65
f2(mm) 2.67 f(mm) 3.84
f3(mm) -14.79 TTL(mm) 4.80
f4(mm) 39.79 ImgH(mm) 3.23
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。 图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例6分别满足表19中所示的关系。
Figure PCTCN2018100482-appb-000011
表19
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度,其物侧面为凸面;
    所述第三透镜具有光焦度,其物侧面为凹面,像侧面为凸面;
    所述第四透镜具有光焦度;
    所述第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第一透镜于所述光轴上的中心厚度CT1与所述第五透镜于所述光轴上的中心厚度CT5满足3.5≤CT5/CT1≤5。
  2. 根据权利要求1所述光学成像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11、所述第二透镜的像侧面的有效半口径DT22和所述第三透镜的像侧面的有效半口径DT32满足1.5<DT22/DT11+DT32/DT11<2。
  3. 根据权利要求1所述光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足9≤(R1+R2)/(R1-R2)<10。
  4. 根据权利要求1所述光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4、所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足3<|(R3+R4)/(R9+R10)|<7。
  5. 根据权利要求1所述光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足-1<f/R5-f/R6<1。
  6. 根据权利要求1所述光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第四透镜的像侧面的曲率半径R8满足|f4/R8|<5。
  7. 根据权利要求1所述光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2、所述第五透镜的有效焦距f5与所述光学成像镜头的总有效焦距f满足6.5<|f1/f|+|f2/f|+|f5/f|<9。
  8. 根据权利要求7所述光学成像镜头,其特征在于,所述第三透镜和所述第四透镜的组合焦距f34与所述第一透镜和所述第二透镜的组合焦距f12满足6.5<|f34/f12|<10.5。
  9. 根据权利要求1所述光学成像镜头,其特征在于,所述第四透镜的物侧面的最大有效半口径DT41与所述第三透镜的物侧面的最大有效半口径DT31满足1<DT41/DT31<1.5。
  10. 根据权利要求1至9中任一项所述光学成像镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜头的成像面在光轴上的间隔距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.5。
  11. 根据权利要求1至9中任一项所述光学成像镜头,其特征在于,所述第一透镜至所述第五透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT、所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足6<∑AT/(T12+T34)<9.5。
  12. 光学成像镜头,沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有正光焦度,其物侧面为凸面;
    所述第三透镜具有光焦度,其物侧面为凹面,像侧面为凸面;
    所述第四透镜具有光焦度;
    所述第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜和所述第四透镜的组合焦距f34与所述第一透镜和所述第二透镜的组合焦距f12满足6.5<|f34/f12|<10.5。
  13. 根据权利要求12所述光学成像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11、所述第二透镜的像侧面的有效半口径DT22和所述第三透镜的像侧面的有效半口径DT32满足1.5<DT22/DT11+DT32/DT11<2。
  14. 根据权利要求12所述光学成像镜头,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2、所述第五透镜的有效焦距f5与所述光学成像镜头的总有效焦距f满足6.5<|f1/f|+|f2/f|+|f5/f|<9。
  15. 根据权利要求14所述光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足9≤(R1+R2)/(R1-R2)<10。
  16. 根据权利要求14所述光学成像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4、所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足3<|(R3+R4)/(R9+R10)|<7。
  17. 根据权利要求12所述光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足-1<f/R5-f/R6<1。
  18. 根据权利要求12所述光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第四透镜的像侧面的曲率半径R8满足|f4/R8|<5。
  19. 根据权利要求17或18所述光学成像镜头,其特征在于,所述第四透镜的物侧面的最大有效半口径DT41与所述第三透镜的物侧面的最大有效半口径DT31满足1<DT41/DT31<1.5。
  20. 根据权利要求12所述光学成像镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜头的成像面在光轴上的间隔距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.5。
  21. 根据权利要求20所述光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第五透镜于所述光轴上的中心厚度CT5满足3.5≤CT5/CT1≤5。
  22. 根据权利要求20所述光学成像镜头,其特征在于,所述第一透镜至所述第五透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT、所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足6<∑AT/(T12+T34)<9.5。
PCT/CN2018/100482 2018-02-11 2018-08-14 光学成像镜头 WO2019153696A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810143040.X 2018-02-11
CN201810143040.XA CN108254880B (zh) 2018-02-11 2018-02-11 光学成像镜头
CN201820246605.2U CN207780342U (zh) 2018-02-11 2018-02-11 光学成像镜头
CN201820246605.2 2018-02-11

Publications (1)

Publication Number Publication Date
WO2019153696A1 true WO2019153696A1 (zh) 2019-08-15

Family

ID=67549218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100482 WO2019153696A1 (zh) 2018-02-11 2018-08-14 光学成像镜头

Country Status (1)

Country Link
WO (1) WO2019153696A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150128472A1 (en) * 2013-11-08 2015-05-14 Supas Ltd Scope
CN106405796A (zh) * 2016-11-15 2017-02-15 浙江舜宇光学有限公司 光学成像系统及摄像装置
CN106980171A (zh) * 2017-05-26 2017-07-25 浙江舜宇光学有限公司 摄像镜头
CN107024759A (zh) * 2017-06-13 2017-08-08 浙江舜宇光学有限公司 摄像镜头
CN107290843A (zh) * 2017-08-21 2017-10-24 浙江舜宇光学有限公司 光学成像镜头
CN108254880A (zh) * 2018-02-11 2018-07-06 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150128472A1 (en) * 2013-11-08 2015-05-14 Supas Ltd Scope
CN106405796A (zh) * 2016-11-15 2017-02-15 浙江舜宇光学有限公司 光学成像系统及摄像装置
CN106980171A (zh) * 2017-05-26 2017-07-25 浙江舜宇光学有限公司 摄像镜头
CN107024759A (zh) * 2017-06-13 2017-08-08 浙江舜宇光学有限公司 摄像镜头
CN107290843A (zh) * 2017-08-21 2017-10-24 浙江舜宇光学有限公司 光学成像镜头
CN108254880A (zh) * 2018-02-11 2018-07-06 浙江舜宇光学有限公司 光学成像镜头

Similar Documents

Publication Publication Date Title
WO2019169853A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像系统
WO2019192180A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学系统
WO2019101052A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2020119146A1 (zh) 光学成像镜头
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2020007069A1 (zh) 光学成像镜片组
WO2019100768A1 (zh) 光学成像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2018214349A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
WO2019137246A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2020042765A1 (zh) 影像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019169856A1 (zh) 摄像镜头组
WO2019218628A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904845

Country of ref document: EP

Kind code of ref document: A1