WO2018218740A1 - Oled显示面板的制作方法及oled显示面板 - Google Patents

Oled显示面板的制作方法及oled显示面板 Download PDF

Info

Publication number
WO2018218740A1
WO2018218740A1 PCT/CN2017/092680 CN2017092680W WO2018218740A1 WO 2018218740 A1 WO2018218740 A1 WO 2018218740A1 CN 2017092680 W CN2017092680 W CN 2017092680W WO 2018218740 A1 WO2018218740 A1 WO 2018218740A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
nanoparticles
display panel
metal nano
Prior art date
Application number
PCT/CN2017/092680
Other languages
English (en)
French (fr)
Inventor
张育楠
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/557,132 priority Critical patent/US10505154B2/en
Publication of WO2018218740A1 publication Critical patent/WO2018218740A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating an OLED display panel and an OLED display panel.
  • OLED Organic Light Emitting Display
  • OLED has self-illumination, low driving voltage, high luminous efficiency, short response time, high definition and contrast ratio, near 180° viewing angle, wide temperature range, and flexible display.
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • the OLED device generally includes a substrate, an anode disposed on the substrate, a hole injection layer disposed on the anode, a hole transport layer disposed on the hole injection layer, and a light-emitting layer disposed on the hole transport layer.
  • the principle of illumination of OLED devices is that semiconductor materials and organic luminescent materials are driven by electric fields, causing luminescence by carrier injection and recombination.
  • an OLED device generally uses an ITO pixel electrode and a metal electrode as anodes and cathodes of the device, respectively.
  • electrons and holes are injected from the cathode and the anode to the electron transport layer and the hole transport layer, respectively, and electrons and holes.
  • the holes migrate to the light-emitting layer through the electron transport layer and the hole transport layer, respectively, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • IJP Ink-jet printing
  • IJP technology has the advantages of high material utilization rate and is the key technology to solve the cost problem of large-size OLED display.
  • IJP technology is compared with traditional vacuum evaporation in the preparation of OLED device luminescent layer.
  • the process has many advantages such as saving materials, mild process conditions, and more uniform film formation, so it has more application potential.
  • a plurality of nozzles are used to drop the functional material ink into a predetermined pixel area, and the solvent is evaporated to form a desired pattern.
  • Metal nanoparticles provide a number of excellent optical and electrical properties with their special volumetric effects, quantum size effects, surface effects, and macroscopic quantum tunneling.
  • An object of the present invention is to provide a method for fabricating an OLED display panel, which can effectively improve the overall performance of the OLED device, and has a simple manufacturing method.
  • Another object of the present invention is to provide an OLED display panel, which can effectively improve the overall performance of the OLED device, and has a simple manufacturing method.
  • the present invention provides a method for fabricating an OLED display panel, the OLED display panel comprising a substrate substrate, and a plurality of OLED devices disposed on the substrate substrate, the OLED device comprising An anode, a light-emitting layer, and a cathode disposed in sequence, a metal nano-self-assembled layer is disposed between the anode and the light-emitting layer, and a hole injection layer and a hole are disposed between the metal nano-self-assembled layer and the light-emitting layer At least one of the transport layers;
  • the manufacturing method of the metal nano self-assembled layer is:
  • the metal nanoprinting liquid comprising metal nanoparticles, a surface tension modifier, and a viscosity modifier, wherein the metal nanoparticles are surface modified metal nanoparticles to inhibit metal nanoparticles
  • the metal nano printing liquid is coated on the anode by inkjet printing to form a metal nano self-assembled layer.
  • the metal nanoparticles are gold nanoparticles, silver nanoparticles, or copper nanoparticles;
  • the metal nanoparticles are organic amine modified metal nanoparticles.
  • the surface tension adjusting agent is a combination of a cosolvent, a surfactant, imidazole and a derivative thereof, phenol, hydroquinone or a combination thereof;
  • the viscosity modifier is one or a combination of an alcohol, an ether, an ester, a phenol, an amine.
  • At least one of an electron injection layer and an electron transport layer is provided between the cathode and the light-emitting layer.
  • the method for fabricating the OLED display panel specifically includes the following steps:
  • Step S1 providing a substrate, forming a pixel defining layer on the substrate, wherein the pixel defining layer is provided with a plurality of through holes spaced apart; and forming a plurality of anodes in the plurality of through holes ;
  • Step S2 providing a metal nano printing liquid, coating the metal nano printing liquid on the plurality of anodes by inkjet printing, respectively obtaining a plurality of metal nano self-assembled layers;
  • Step S3 forming a plurality of hole injection layers on the plurality of metal nano-self-assembled layers, forming a plurality of light-emitting layers on the plurality of hole injection layers, respectively forming on the plurality of light-emitting layers a plurality of electron injection layers; a plurality of cathodes are respectively formed on the plurality of electron injection layers; thereby forming a plurality of OLED devices in the plurality of via holes on the pixel definition layer.
  • the anode is formed by magnetron sputtering, and the material of the anode is a transparent conductive metal oxide;
  • the hole injection layer and the light-emitting layer are formed by inkjet printing, and the material of the hole injection layer is PEDOT:PSS; the material of the light-emitting layer includes poly(9,9-two) Xin Base ⁇ -2,7-diyl);
  • the electron injecting layer and the cathode are formed by vacuum evaporation; the material of the electron injecting layer includes lithium fluoride; and the material of the cathode includes aluminum.
  • the present invention also provides an OLED display panel comprising a substrate substrate and a plurality of OLED devices disposed on the substrate substrate, the OLED device comprising an anode, a light emitting layer, and a cathode disposed in order from bottom to top.
  • a metal nano self-assembled layer is disposed between the anode and the light-emitting layer, and at least one of a hole injection layer and a hole transport layer is disposed between the metal nano self-assembled layer and the light-emitting layer;
  • the metal nano-self-assembled layer is formed by a metal nano printing liquid by inkjet printing, and the metal nano printing liquid comprises metal nanoparticles, a surface tension adjusting agent, and a viscosity modifier, wherein the metal nanoparticles are Surface modified metal nanoparticles to inhibit agglomeration between metal nanoparticles and enhance the solubility of metal nanoparticles.
  • the metal nanoparticles are gold nanoparticles, silver nanoparticles, or copper nanoparticles;
  • the metal nanoparticles are organic amine modified metal nanoparticles
  • the surface tension adjusting agent is a combination of a cosolvent, a surfactant, imidazole and a derivative thereof, phenol, hydroquinone or a combination thereof;
  • the viscosity modifier is one or a combination of an alcohol, an ether, an ester, a phenol, an amine.
  • the OLED display panel further includes a pixel defining layer disposed on the substrate, wherein the pixel defining layer is provided with a plurality of via holes spaced apart, and the plurality of OLED devices are respectively disposed on the number Within a through hole;
  • the OLED device specifically includes an anode, a metal nano self-assembled layer, a hole injection layer, a light emitting layer, an electron injection layer, and a cathode which are disposed in this order from bottom to top.
  • the material of the anode is a transparent conductive metal oxide; the material of the hole injection layer is PEDOT:PSS; and the material of the light-emitting layer comprises poly(9,9-dioctylfluorene-2,7-diyl)
  • the material of the electron injecting layer includes lithium fluoride; and the material of the cathode includes aluminum.
  • the present invention also provides a method for fabricating an OLED display panel, the OLED display panel comprising a substrate substrate, and a plurality of OLED devices disposed on the substrate substrate, the OLED device comprising an anode disposed in order from bottom to top a light-emitting layer, and a cathode, wherein a metal nano-self-assembled layer is disposed between the anode and the light-emitting layer, and at least a hole injection layer and a hole transport layer are disposed between the metal nano-self-assembled layer and the light-emitting layer One type;
  • the manufacturing method of the metal nano self-assembled layer is:
  • a metal nanoprinting liquid comprising metal nanoparticles, a surface tension modifier, and a viscosity modifier, wherein the metal nanoparticles are surface modified Metal nanoparticles, in order to inhibit agglomeration between the metal nanoparticles, and enhance the solubility of the metal nanoparticles, the metal nano printing liquid is coated on the anode by inkjet printing to form a metal nano self-assembled layer;
  • metal nanoparticles are gold nanoparticles, silver nanoparticles, or copper nanoparticles;
  • the metal nanoparticles are organic amine modified metal nanoparticles
  • the surface tension adjusting agent is a combination of a cosolvent, a surfactant, imidazole and a derivative thereof, phenol, hydroquinone or a combination thereof;
  • the viscosity modifier is one or a combination of an alcohol, an ether, an ester, a phenol, and an amine;
  • At least one of an electron injection layer and an electron transport layer is disposed between the cathode and the light-emitting layer;
  • the specific steps include the following steps:
  • Step S1 providing a substrate, forming a pixel defining layer on the substrate, wherein the pixel defining layer is provided with a plurality of through holes spaced apart; and forming a plurality of anodes in the plurality of through holes ;
  • Step S2 providing a metal nano printing liquid, coating the metal nano printing liquid on the plurality of anodes by inkjet printing, respectively obtaining a plurality of metal nano self-assembled layers;
  • Step S3 forming a plurality of hole injection layers on the plurality of metal nano-self-assembled layers, forming a plurality of light-emitting layers on the plurality of hole injection layers, respectively forming on the plurality of light-emitting layers a plurality of electron injection layers; a plurality of cathodes are respectively formed on the plurality of electron injection layers; thereby forming a plurality of OLED devices in the plurality of via holes on the pixel definition layer.
  • the invention provides a method for fabricating an OLED display panel, which comprises a metal nano-printing liquid for fabricating a metal nano-self-assembled layer by using an inkjet printing technique, the metal nano printing liquid comprising metal nanoparticles and surface tension adjustment And a viscosity modifier, wherein the metal nanoparticle is a surface modified metal nanoparticle, which can inhibit agglomeration between metal nanoparticles and enhance the solubility of the metal nanoparticle, by applying the metal nano self-assembled layer to Among the OLED devices, the overall performance of the OLED device can be effectively improved, and the manufacturing method is simple.
  • a metal nano self-assembled layer is formed between the anode and the light emitting layer of the OLED device, and the metal nano self-assembled layer is formed by a metal nano printing liquid by inkjet printing, and the metal nanometer is formed.
  • the printing liquid comprises surface-modified metal nanoparticles, a surface tension adjusting agent, and a viscosity modifier.
  • FIG. 1 is a flow chart of a preferred embodiment of a method of fabricating an OLED display panel of the present invention
  • step S1 is a schematic diagram of step S1 of a preferred embodiment of a method for fabricating an OLED display panel of the present invention
  • step S2 of a preferred embodiment of a method for fabricating an OLED display panel of the present invention
  • FIG. 4 is a schematic view showing a step S3 of a preferred embodiment of the method for fabricating an OLED display panel of the present invention and a schematic structural view of a preferred embodiment of the OLED display panel of the present invention.
  • the present invention firstly provides a method for fabricating an OLED display panel.
  • the OLED display panel includes a substrate substrate 10 and a plurality of OLED devices 30 disposed on the substrate substrate 10.
  • the OLED device 30 includes a bottom-up An anode 31, a light-emitting layer 32, and a cathode 33 are disposed in sequence, and a metal nano-self-assembled layer 34 is disposed between the anode 31 and the light-emitting layer 32, and an empty space is disposed between the metal nano-self-assembled layer 34 and the light-emitting layer 32.
  • the manufacturing method of the metal nano self-assembled layer 34 is as follows:
  • the metal nanoprinting liquid comprising metal nanoparticles, a surface tension modifier, and a viscosity modifier, wherein the metal nanoparticles are surface modified metal nanoparticles to inhibit metal nanoparticles
  • the metal nanoprinting liquid is coated on the anode 31 by inkjet printing to form a metal nano self-assembled layer 34.
  • the metal in the metal nanoparticle is gold, silver, or copper, that is, the metal nanoparticle is gold nanoparticle, silver nanoparticle, or copper nanoparticle;
  • the surface of the metal nanoparticle has an organic amine ligand, that is, the metal nanoparticle is an organic amine modified metal nanoparticle, and the long-chain organic amine ligand can effectively inhibit the metal. Agglomeration between nanoparticles, thereby reducing carrier traps on metal nanoparticles while attenuating the dissociation of excitons on metal nanoparticles; on the other hand, organic The introduction of amine ligands can enhance the solubility of metal nanoparticles in common organic solvents, so that the prepared metal nanoparticles can be better applied in the solution processing process.
  • the organic amine is a long chain alkylamine having a carbon chain length of greater than or equal to 16.
  • the surface tension adjusting agent is a combination of a cosolvent, a surfactant, imidazole and a derivative thereof, phenol, hydroquinone, or a combination thereof;
  • the viscosity modifier is one or a combination of an alcohol, an ether, an ester, a phenol, and an amine.
  • the viscosity modifier is a polyhydric alcohol or a glycol ether.
  • At least one of an electron injection layer and an electron transport layer is disposed between the cathode 33 and the light-emitting layer 32.
  • a preferred embodiment of a method for fabricating an OLED display panel of the present invention includes the following steps:
  • Step S1 as shown in FIG. 2, a substrate substrate 10 is provided, and a pixel defining layer 20 is formed on the substrate substrate 10, and the pixel defining layer 20 is provided with a plurality of through holes 21 disposed at intervals; A plurality of anodes 31 are formed in the plurality of through holes 21, respectively.
  • the base substrate 10 is a substrate with a TFT array.
  • the anode 31 is formed by magnetron sputtering, and the material of the anode 31 is a transparent conductive metal oxide, preferably Indium Tin Oxide (ITO).
  • ITO Indium Tin Oxide
  • the anode 31 has a thickness of 20 nm to 200 nm.
  • Step S2 as shown in FIG. 3, a metal nanoprinting liquid is provided, and the metal nanoprinting liquid is applied by inkjet printing on the plurality of anodes 31 to obtain a plurality of metal nano self-assembled layers 34, respectively.
  • the metal nano self-assembled layer 34 has a thickness of 1-100 nm.
  • the metal nanoparticles in the metal nano self-assembled layer 34 in the step S2 are gold nanoparticles.
  • the specific preparation process of the metal nano printing liquid is:
  • a surface tension adjusting agent and a viscosity modifier are added to the gold nanoparticle solution prepared above to adjust the physical properties thereof to be suitable for inkjet printing to obtain a metal nanoprinting liquid.
  • Step S3 as shown in FIG. 4, forming numbers on the plurality of metal nano self-assembled layers 34, respectively.
  • a plurality of light-emitting layers 32 are formed on the plurality of hole-injecting layers 35, and a plurality of electron-injecting layers 36 are formed on the plurality of light-emitting layers 32;
  • a plurality of cathodes 33 are formed on the injection layer 36, respectively, so that a plurality of OLED devices 30 are formed in the plurality of via holes 21 on the pixel defining layer 20, respectively.
  • the hole injection layer 35 and the light emitting layer 32 are formed by a method of inkjet printing, and the material of the hole injection layer 35 is PEDOT:PSS; the material of the light emitting layer 32 includes Poly(9,9-di-noctylfluorenyl-2,7-diyl), PFO); the poly(9,9-dioctyl) ⁇ -2,7-diyl) is a blue luminescent material; wherein the method for preparing the hole injection layer 35 is specifically: providing a PEDOT:PSS aqueous solution, and coating the PEDOT:PSS aqueous solution by inkjet printing The hole injection layer 35 is formed on the surface of the metal nano self-assembled layer 34 after the water is volatilized.
  • the hole injection layer 35 has a thickness of 1 nm to 100 nm; and the light-emitting layer 32 has a thickness of 1 nm to 100 nm.
  • the electron injection layer 36 and the cathode 33 are formed by vacuum evaporation; the material of the electron injection layer 36 includes lithium fluoride (LiF); the cathode 33 Materials include aluminum.
  • the electron injecting layer 36 has a thickness of 0.5 nm to 10 nm
  • the cathode 33 has a thickness of 50 nm to 1000 nm.
  • the method for fabricating the OLED display panel of the present invention uses the inkjet printing technology to fabricate the metal nano self-assembled layer 34 and applies it to the OLED device 30.
  • the optical and electrical effects of the metal nanoparticles can improve the overall performance of the OLED device 30.
  • the main mechanisms for these performance enhancements include surface-enhanced fluorescence, plasmon light trapping, energy transfer, electrical effects, and scattering effects.
  • the method for fabricating the OLED display panel of the present invention is mainly for the following three aspects of the setting of the metal nano self-assembled layer 34:
  • the strong local electric field generated by surface plasmon resonance can enhance the electron injection efficiency, thereby improving the performance of the OLED device 30.
  • the surface plasmon resonance wavelength of the metal nanoparticles corresponds to the luminescence wavelength, and the larger the spectral overlap, the more obvious the coupling effect.
  • an appropriate distance should be selected between the metal nanoparticles and the light-emitting layer 32. If the distance from the light-emitting layer 32 is too far, the surface plasmon resonance coupling characteristics do not affect the excitons in the light-emitting layer 32, and the coupling effect is not obvious; the distance light-emitting layer 32 Too close, the surface of the metal nanoparticles will cause exciton non-radiation quenching to be more serious, reducing device performance.
  • the metal nanoparticles By adjusting the surface plasmon resonance wavelength of the metal nanoparticles and the distance between the metal nanoparticles and the luminescence 32, the metal nanoparticles can be obtained.
  • the metal nano-self-assembled layer 34 can improve the radiant luminous efficiency of the luminescent excitons.
  • the surface plasmon resonance characteristics of metal nanoparticles can affect excitons, especially triplet excitons, by coupling effects with excitons, reducing the non-radiative decay of excitons (triplet-triplet quenching, triplet-polarization The exciton lifetime caused by sub-quenching is reduced, thereby improving the efficiency of the phosphorescent device roll-off.
  • the present invention further provides an OLED display panel, which is manufactured by the method for fabricating an OLED display panel as described above, and includes a substrate substrate 10 and a substrate substrate 10 disposed thereon.
  • a plurality of OLED devices 30, the OLED device 30 includes an anode 31, a light-emitting layer 32, and a cathode 33 disposed in this order from bottom to top, and a metal nano-self-assembled layer 34 is disposed between the anode 31 and the light-emitting layer 32.
  • a metal nano-self-assembled layer 34 is disposed between the anode 31 and the light-emitting layer 32.
  • the metal nano self-assembled layer 34 is formed by a method of inkjet printing of a metal nanoprinting liquid comprising surface-modified metal nanoparticles, a surface tension adjusting agent, and a viscosity modifier.
  • the metal in the metal nanoparticle is gold, silver, or copper, that is, the metal nanoparticle is a gold nanoparticle, a silver nanoparticle, or a copper nanoparticle.
  • the surface of the metal nanoparticle has an organic amine ligand, that is, the metal nanoparticle is an organic amine modified metal nanoparticle to inhibit agglomeration between metal nanoparticles, and The solubility of the metal nanoparticles is enhanced; preferably, the organic amine is a long chain alkylamine having a carbon chain length of greater than or equal to 16.
  • the surface tension adjusting agent is a combination of a cosolvent, a surfactant, imidazole and a derivative thereof, phenol, hydroquinone, or a combination thereof;
  • the viscosity modifier is one or a combination of an alcohol, an ether, an ester, a phenol, an amine, for example, a polyhydric alcohol, or a glycol ether.
  • a preferred embodiment of the OLED display panel of the present invention includes a substrate substrate 10, a plurality of OLED devices 30 disposed on the substrate substrate 10, and a substrate disposed on the substrate.
  • the OLED device 30 specifically includes an anode 31, a metal nano self-assembled layer 34, a hole injection layer 35, a light-emitting layer 32, an electron injection layer 36, and a cathode 33 which are disposed in this order from bottom to top.
  • the material of the anode 31 is a transparent conductive metal oxide
  • the material of the hole injection layer 35 is PEDOT:PSS
  • the material of the light-emitting layer 32 includes poly(9,9-dioctylfluorene-2) , 7-diyl)
  • the material of the electron injecting layer 36 includes lithium fluoride
  • the material of the cathode 33 includes aluminum.
  • a metal nano self-assembled layer 34 is formed between the metal nano-printing liquids by inkjet printing, the metal nano printing liquid includes surface-modified metal nanoparticles, and surface tension adjustment
  • the agent and the viscosity modifier can effectively improve the overall performance of the OLED device 30 by applying the metal nano self-assembled layer 34 to the OLED device 30, and the manufacturing method is simple.
  • the method for fabricating an OLED display panel of the present invention uses a inkjet printing technique to fabricate a metal nano-self-assembled layer from a metal nanoprinting liquid, the metal nanoprinting liquid comprising metal nanoparticles, a surface tension adjusting agent, and a viscosity.
  • a regulator wherein the metal nanoparticle is a surface-modified metal nanoparticle, which can inhibit agglomeration between metal nanoparticles and enhance the solubility of the metal nanoparticle, and apply the metal nano self-assembled layer to the OLED device,
  • the overall performance of the OLED device can be effectively improved, and the manufacturing method is simple.
  • a metal nano self-assembled layer is formed between the anode and the light emitting layer of the OLED device, and the metal nano self-assembled layer is formed by a metal nano printing liquid by inkjet printing, and the metal nanometer is formed.
  • the printing liquid comprises surface-modified metal nanoparticles, a surface tension adjusting agent, and a viscosity modifier.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示面板的制作方法及OLED显示面板。该OLED显示面板的制作方法包括采用喷墨打印技术由金属纳米打印液制作金属纳米自组装层(34),该金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,该金属纳米粒子为表面经过修饰的金属纳米粒子,可以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,通过将金属纳米自组装层(34)应用到OLED器件当中,可以有效提升OLED器件的综合性能,制作方法简单。

Description

OLED显示面板的制作方法及OLED显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示面板的制作方法及OLED显示面板。
背景技术
有机发光二极管显示装置(Organic Light Emitting Display,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED器件通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层、及设于电子注入层上的阴极。OLED器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。具体的,OLED器件通常采用ITO像素电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
喷墨打印(Ink-jet Printing,IJP)技术具有材料利用率高等优点,是解决大尺寸OLED显示器成本问题的关键技术,IJP技术在OLED器件发光层的制备中,相比于传统的真空蒸镀工艺,具有节省材料、制程条件温和、成膜更均匀等诸多优点,所以更具应用潜力。此方法是利用多个喷嘴将功能材料墨水滴入预定的像素区域,待溶剂挥发后形成所需图案。
金属纳米粒子以其特殊的体积效应、量子尺寸效应、表面效应和宏观量子隧道效应提供了诸多优异的光学和电学性能。
发明内容
本发明的目的在于提供一种OLED显示面板的制作方法,可以有效提升OLED器件的综合性能,且制作方法简单。
本发明的目的还在于提供一种OLED显示面板,可以有效提升OLED器件的综合性能,且制作方法简单。
为实现上述目的,本发明提供了一种OLED显示面板的制作方法,所述OLED显示面板包括衬底基板、及设于所述衬底基板上的数个OLED器件,所述OLED器件包括由下至上依次设置的阳极、发光层、及阴极,所述阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层与发光层之间设有空穴注入层、及空穴传输层中的至少一种;
所述金属纳米自组装层的制作方法为:
提供金属纳米打印液,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,采用喷墨打印的方式将所述金属纳米打印液涂布在阳极上,形成金属纳米自组装层。
所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子;
所述金属纳米打印液中,所述金属纳米粒子为有机胺修饰的金属纳米粒子。
所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合。
所述OLED器件中,所述阴极与发光层之间设有电子注入层、及电子传输层中的至少一种。
在本发明的一优选实施例中,所述的OLED显示面板的制作方法,具体包括如下步骤:
步骤S1、提供一衬底基板,在所述衬底基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔;在所述数个通孔中分别形成数个阳极;
步骤S2、提供金属纳米打印液,在所述数个阳极上采用喷墨打印的方式涂布所述金属纳米打印液,分别得到数个金属纳米自组装层;
步骤S3、在所述数个金属纳米自组装层上分别形成数个空穴注入层,在所述数个空穴注入层上分别形成数个发光层;在所述数个发光层上分别形成数个电子注入层;在所述数个电子注入层上分别形成数个阴极;从而在所述像素定义层上的数个通孔内分别形成数个OLED器件。
所述步骤S1中,采用磁控溅射的方法形成所述阳极,所述阳极的材料为透明导电金属氧化物;
所述步骤S3中,采用喷墨打印的方法形成所述空穴注入层与发光层,所述空穴注入层的材料为PEDOT:PSS;所述发光层的材料包括聚(9,9-二辛 基芴-2,7-二基);
所述步骤S3中,采用真空蒸镀的方法形成所述电子注入层与阴极;所述电子注入层的材料包括氟化锂;所述阴极的材料包括铝。
本发明还提供一种OLED显示面板,包括衬底基板、及设于所述衬底基板上的数个OLED器件,所述OLED器件包括由下至上依次设置的阳极、发光层、及阴极,所述阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层与发光层之间设有空穴注入层、及空穴传输层中的至少一种;
所述金属纳米自组装层由金属纳米打印液通过喷墨打印的方法制作形成,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度。
所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子;
所述金属纳米打印液中,所述金属纳米粒子为有机胺修饰的金属纳米粒子;
所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合。
所述的OLED显示面板,还包括设于所述衬底基板上的像素定义层,所述像素定义层上设有间隔设置的数个通孔,所述数个OLED器件分别设于所述数个通孔内;
所述OLED器件具体包括由下至上依次设置的阳极、金属纳米自组装层、空穴注入层、发光层、电子注入层、及阴极。
所述阳极的材料为透明导电金属氧化物;所述空穴注入层的材料为PEDOT:PSS;所述发光层的材料包括聚(9,9-二辛基芴-2,7-二基);所述电子注入层的材料包括氟化锂;所述阴极的材料包括铝。
本发明还提供一种OLED显示面板的制作方法,所述OLED显示面板包括衬底基板、及设于所述衬底基板上的数个OLED器件,所述OLED器件包括由下至上依次设置的阳极、发光层、及阴极,所述阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层与发光层之间设有空穴注入层、及空穴传输层中的至少一种;
所述金属纳米自组装层的制作方法为:
提供金属纳米打印液,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的 金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,采用喷墨打印的方式将所述金属纳米打印液涂布在阳极上,形成金属纳米自组装层;
其中,所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子;
所述金属纳米打印液中,所述金属纳米粒子为有机胺修饰的金属纳米粒子;
其中,所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合;
其中,所述OLED器件中,所述阴极与发光层之间设有电子注入层、及电子传输层中的至少一种;
其中,具体包括如下步骤:
步骤S1、提供一衬底基板,在所述衬底基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔;在所述数个通孔中分别形成数个阳极;
步骤S2、提供金属纳米打印液,在所述数个阳极上采用喷墨打印的方式涂布所述金属纳米打印液,分别得到数个金属纳米自组装层;
步骤S3、在所述数个金属纳米自组装层上分别形成数个空穴注入层,在所述数个空穴注入层上分别形成数个发光层;在所述数个发光层上分别形成数个电子注入层;在所述数个电子注入层上分别形成数个阴极;从而在所述像素定义层上的数个通孔内分别形成数个OLED器件。
本发明的有益效果:本发明提供的一种OLED显示面板的制作方法,采用喷墨打印技术由金属纳米打印液制作金属纳米自组装层,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,可以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,通过将金属纳米自组装层应用到OLED器件当中,可以有效提升OLED器件的综合性能,制作方法简单。本发明的OLED显示面板,其OLED器件的阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层由金属纳米打印液通过喷墨打印的方法制作形成,所述金属纳米打印液包括表面修饰的金属纳米粒子、表面张力调节剂、及粘度调节剂,通过将金属纳米自组装层应用到OLED器件当中,可以有效提升OLED器件的综合性能,且制作方法简单。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发 明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的OLED显示面板的制作方法的优选实施例的流程图;
图2为本发明的OLED显示面板的制作方法的优选实施例的步骤S1的示意图;
图3为本发明的OLED显示面板的制作方法的优选实施例的步骤S2的示意图;
图4为本发明的OLED显示面板的制作方法的优选实施例的步骤S3的示意图暨本发明的OLED显示面板的优选实施例的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明首先提供一种OLED显示面板的制作方法,所述OLED显示面板包括衬底基板10、及设于所述衬底基板10上的数个OLED器件30,所述OLED器件30包括由下至上依次设置的阳极31、发光层32、及阴极33,所述阳极31与发光层32之间设有金属纳米自组装层34,所述金属纳米自组装层34与发光层32之间设有空穴注入层、及空穴传输层中的至少一种;
所述金属纳米自组装层34的制作方法为:
提供金属纳米打印液,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,采用喷墨打印的方式将所述金属纳米打印液涂布在阳极31上,形成金属纳米自组装层34。
具体地,所述金属纳米粒子中的金属为金、银、或铜,即所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子;
所述金属纳米打印液中,所述金属纳米粒子的表面具有有机胺配体,即所述金属纳米粒子为有机胺修饰得金属纳米粒子,一方面长链的有机胺配体可以有效地抑制金属纳米粒子之间的团聚,从而减少金属纳米粒子上的载流子陷阱,同时减弱激子在金属纳米粒子上的解离;另一方面,有机 胺配体的引入,能够增强金属纳米粒子在常见有机溶剂中的溶解度,使得制备的金属纳米粒子能够更好的应用于溶液加工制程当中。优选地,所述有机胺为长链烷基胺,其碳链长度大于等于16。
具体地,所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合,例如,所述粘度调节剂为多羟基醇、或二醇醚。
具体地,所述OLED器件30中,所述阴极33与发光层32之间设有电子注入层、及电子传输层中的至少一种。
具体地,如图1所示,为本发明的OLED显示面板的制作方法的优选实施例,包括如下步骤:
步骤S1、如图2所示,提供一衬底基板10,在所述衬底基板10上形成像素定义层20,所述像素定义层20上设有间隔设置的数个通孔21;在所述数个通孔21中分别形成数个阳极31。
具体的,所述衬底基板10为带有TFT阵列的基板。
具体地,所述步骤S1中,采用磁控溅射的方法形成所述阳极31,所述阳极31的材料为透明导电金属氧化物,优选为氧化铟锡(Indium Tin Oxide,ITO)。
具体地,所述阳极31的厚度为20nm-200nm。
步骤S2、如图3所示,提供金属纳米打印液,在所述数个阳极31上采用喷墨打印的方式涂布所述金属纳米打印液,分别得到数个金属纳米自组装层34。
具体地,所述金属纳米自组装层34的厚度为1-100nm。
具体地,所述步骤S2中金属纳米自组装层34中的金属纳米粒子为金纳米粒子。所述金属纳米打印液的具体制备过程为:
1、有机胺修饰的金纳米粒子及其溶液的制备:
1.1、将氯化金(AuCl3)溶解在烷基胺的溶剂中。
1.2、对体系先抽真空然后通氮气,反复操作三次,除掉体系中的水和氧气。
1.3、升温至体系回流,加热搅拌至反应完全,冷却至室温,即得到有机胺修饰的金纳米粒子及其溶液。
2、在上述制得的金纳米粒子溶液中加入表面张力调节剂、及粘度调节剂,调节其物理性质使其适用于喷墨打印,得到金属纳米打印液。
步骤S3、如图4所示,在所述数个金属纳米自组装层34上分别形成数 个空穴注入层35,在所述数个空穴注入层35上分别形成数个发光层32;在所述数个发光层32上分别形成数个电子注入层36;在所述数个电子注入层36上分别形成数个阴极33;从而在所述像素定义层20上的数个通孔21内分别形成数个OLED器件30。
具体地,所述步骤S3中,采用喷墨打印的方法形成所述空穴注入层35与发光层32,所述空穴注入层35的材料为PEDOT:PSS;所述发光层32的材料包括聚(9,9-二辛基芴-2,7-二基)(Poly(9,9-di-noctylfluorenyl-2,7-diyl),PFO);所述聚(9,9-二辛基芴-2,7-二基)为蓝色发光材料;其中,所述空穴注入层35的制备方法具体为:提供PEDOT:PSS水溶液,将所述PEDOT:PSS水溶液通过喷墨打印的方式涂布于所述金属纳米自组装层34的表面,待水分挥发后,形成空穴注入层35。
具体地,所述空穴注入层35的厚度为1nm-100nm;所述发光层32的厚度为1nm-100nm。
具体地,所述步骤S3中,采用真空蒸镀的方法形成所述电子注入层36与阴极33;所述电子注入层36的材料包括氟化锂(Lithium Fluoride,LiF);所述阴极33的材料包括铝。
具体地,所述电子注入层36的厚度为0.5nm-10nm,所述阴极33的厚度为50nm-1000nm。
本发明的OLED显示面板的制作方法,采用喷墨打印技术制作金属纳米自组装层34,并将其应用到OLED器件30当中,利用金属纳米粒子的光学和电学效应可以提升OLED器件30的综合性能,这些性能提升的主要机理包括表面增强荧光、等离激元光捕获、能量转移、电学效应、散射效应等。本发明的OLED显示面板的制作方法,对于金属纳米自组装层34的设置主要是出于以下三方面的考虑:
首先,将金属纳米粒子引入到电极和有机层之间,利用表面等离子共振所产生的强大的局部电场,可以增强电子的注入效率,从而改善OLED器件30的性能。
其次,金属纳米粒子能够改善发光材料的发光性能存在两个条件:一是金属纳米粒子的表面等离子体共振波长与发光波长相对应,光谱重叠越大耦合效果越明显。二是金属纳米粒子与发光层32之间应选择合适的距离,距离发光层32太远则表面等离子体共振耦合特性影响不到发光层32中的激子,耦合效果不明显;距离发光层32太近则金属纳米粒子表面会使激子非辐射猝灭比较严重,降低器件性能。通过调整金属纳米粒子的表面等离子共振波长、及金属纳米粒子与发光32之间的距离,可使具有金属纳米粒 子的金属纳米自组装层34能够提高发光激子的辐射发光效率。
最后,金属纳米粒子的表面等离子共振特性可以通过与激子的耦合效应影响激子,特别是三线态激子,减少激子的非辐射衰减(三线态-三线态猝灭、三线态-极化子猝灭)所导致的激子寿命降低,从而改善磷光器件效率滚降的问题。
基于上述的OLED显示面板的制作方法,本发明还提供一种OLED显示面板,采用如上所述的OLED显示面板的制作方法制得,包括衬底基板10及设于所述衬底基板10上的数个OLED器件30,所述OLED器件30包括由下至上依次设置的阳极31、发光层32、及阴极33,所述阳极31与发光层32之间设有金属纳米自组装层34,所述金属纳米自组装层34与发光层32之间设有空穴注入层、及空穴传输层中的至少一种;
所述金属纳米自组装层34由金属纳米打印液通过喷墨打印的方法制作形成,所述金属纳米打印液包括表面修饰的金属纳米粒子、表面张力调节剂、及粘度调节剂。
具体地,所述金属纳米粒子中的金属为金、银、或铜,即所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子。
具体地,所述金属纳米打印液中,所述金属纳米粒子的表面具有有机胺配体,即所述金属纳米粒子为有机胺修饰的金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度;优选地,所述有机胺为长链烷基胺,其碳链长度大于等于16。
具体地,所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合,例如,多羟基醇、或二醇醚。
具体地,如图4所示,为本发明的OLED显示面板的优选实施例,包括衬底基板10、设于所述衬底基板10上的数个OLED器件30、及设于所述衬底基板10上的像素定义层20,所述像素定义层20上设有间隔设置的数个通孔21,所述数个OLED器件30分别设于所述数个通孔21内;所述OLED器件30具体包括由下至上依次设置的阳极31、金属纳米自组装层34、空穴注入层35、发光层32、电子注入层36、及阴极33。
具体地,所述阳极31的材料为透明导电金属氧化物;所述空穴注入层35的材料为PEDOT:PSS;所述发光层32的材料包括聚(9,9-二辛基芴-2,7-二基);所述电子注入层36的材料包括氟化锂;所述阴极33的材料包括铝。
本发明的OLED显示面板,其OLED器件30的阳极31与发光层32 之间设有金属纳米自组装层34,所述金属纳米自组装层34由金属纳米打印液通过喷墨打印的方法制作形成,所述金属纳米打印液包括表面修饰的金属纳米粒子、表面张力调节剂、及粘度调节剂,通过将金属纳米自组装层34应用到OLED器件30当中,可以有效提升OLED器件30的综合性能,且制作方法简单。
综上所述,本发明的OLED显示面板的制作方法,采用喷墨打印技术由金属纳米打印液制作金属纳米自组装层,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,可以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,通过将金属纳米自组装层应用到OLED器件当中,可以有效提升OLED器件的综合性能,制作方法简单。本发明的OLED显示面板,其OLED器件的阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层由金属纳米打印液通过喷墨打印的方法制作形成,所述金属纳米打印液包括表面修饰的金属纳米粒子、表面张力调节剂、及粘度调节剂,通过将金属纳米自组装层应用到OLED器件当中,可以有效提升OLED器件的综合性能,且制作方法简单。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (12)

  1. 一种OLED显示面板的制作方法,所述OLED显示面板包括衬底基板、及设于所述衬底基板上的数个OLED器件,所述OLED器件包括由下至上依次设置的阳极、发光层、及阴极,所述阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层与发光层之间设有空穴注入层、及空穴传输层中的至少一种;
    所述金属纳米自组装层的制作方法为:
    提供金属纳米打印液,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,采用喷墨打印的方式将所述金属纳米打印液涂布在阳极上,形成金属纳米自组装层。
  2. 如权利要求1所述的OLED显示面板的制作方法,其中,所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子;
    所述金属纳米打印液中,所述金属纳米粒子为有机胺修饰的金属纳米粒子。
  3. 如权利要求1所述的OLED显示面板的制作方法,其中,所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
    所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合。
  4. 如权利要求1所述的OLED显示面板的制作方法,其中,所述OLED器件中,所述阴极与发光层之间设有电子注入层、及电子传输层中的至少一种。
  5. 如权利要求1所述的OLED显示面板的制作方法,其中,具体包括如下步骤:
    步骤S1、提供一衬底基板,在所述衬底基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔;在所述数个通孔中分别形成数个阳极;
    步骤S2、提供金属纳米打印液,在所述数个阳极上采用喷墨打印的方式涂布所述金属纳米打印液,分别得到数个金属纳米自组装层;
    步骤S3、在所述数个金属纳米自组装层上分别形成数个空穴注入层,在所述数个空穴注入层上分别形成数个发光层;在所述数个发光层上分别 形成数个电子注入层;在所述数个电子注入层上分别形成数个阴极;从而在所述像素定义层上的数个通孔内分别形成数个OLED器件。
  6. 如权利要求5所述的OLED显示面板的制作方法,其中,所述步骤S1中,采用磁控溅射的方法形成所述阳极,所述阳极的材料为透明导电金属氧化物;
    所述步骤S3中,采用喷墨打印的方法形成所述空穴注入层与发光层,所述空穴注入层的材料为PEDOT:PSS;所述发光层的材料包括聚(9,9-二辛基芴-2,7-二基);
    所述步骤S3中,采用真空蒸镀的方法形成所述电子注入层与阴极;所述电子注入层的材料包括氟化锂;所述阴极的材料包括铝。
  7. 一种OLED显示面板,包括衬底基板、及设于所述衬底基板上的数个OLED器件,所述OLED器件包括由下至上依次设置的阳极、发光层、及阴极,所述阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层与发光层之间设有空穴注入层、及空穴传输层中的至少一种;
    所述金属纳米自组装层由金属纳米打印液通过喷墨打印的方法制作形成,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度。
  8. 如权利要求7所述的OLED显示面板,其中,所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子;
    所述金属纳米打印液中,所述金属纳米粒子为有机胺修饰的金属纳米粒子;
    所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
    所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合。
  9. 如权利要求7所述的OLED显示面板,还包括设于所述衬底基板上的像素定义层,所述像素定义层上设有间隔设置的数个通孔,所述数个OLED器件分别设于所述数个通孔内;
    所述OLED器件具体包括由下至上依次设置的阳极、金属纳米自组装层、空穴注入层、发光层、电子注入层、及阴极。
  10. 如权利要求9所述的OLED显示面板,其中,所述阳极的材料为透明导电金属氧化物;所述空穴注入层的材料为PEDOT:PSS;所述发光层的材料包括聚(9,9-二辛基芴-2,7-二基);所述电子注入层的材料包括氟化锂;所述阴极的材料包括铝。
  11. 一种OLED显示面板的制作方法,所述OLED显示面板包括衬底基板、及设于所述衬底基板上的数个OLED器件,所述OLED器件包括由下至上依次设置的阳极、发光层、及阴极,所述阳极与发光层之间设有金属纳米自组装层,所述金属纳米自组装层与发光层之间设有空穴注入层、及空穴传输层中的至少一种;
    所述金属纳米自组装层的制作方法为:
    提供金属纳米打印液,所述金属纳米打印液包括金属纳米粒子、表面张力调节剂、及粘度调节剂,其中,所述金属纳米粒子为表面经过修饰的金属纳米粒子,以抑制金属纳米粒子之间的团聚,并增强金属纳米粒子的溶解度,采用喷墨打印的方式将所述金属纳米打印液涂布在阳极上,形成金属纳米自组装层;
    其中,所述金属纳米粒子为金纳米粒子、银纳米粒子、或铜纳米粒子;
    所述金属纳米打印液中,所述金属纳米粒子为有机胺修饰的金属纳米粒子;
    其中,所述表面张力调节剂为共溶剂、表面活性剂、咪唑及其衍生物、苯酚、对苯二酚中的一种或几种的组合;
    所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种的组合;
    其中,所述OLED器件中,所述阴极与发光层之间设有电子注入层、及电子传输层中的至少一种;
    其中,具体包括如下步骤:
    步骤S1、提供一衬底基板,在所述衬底基板上形成像素定义层,所述像素定义层上设有间隔设置的数个通孔;在所述数个通孔中分别形成数个阳极;
    步骤S2、提供金属纳米打印液,在所述数个阳极上采用喷墨打印的方式涂布所述金属纳米打印液,分别得到数个金属纳米自组装层;
    步骤S3、在所述数个金属纳米自组装层上分别形成数个空穴注入层,在所述数个空穴注入层上分别形成数个发光层;在所述数个发光层上分别形成数个电子注入层;在所述数个电子注入层上分别形成数个阴极;从而在所述像素定义层上的数个通孔内分别形成数个OLED器件。
  12. 如权利要求11所述的OLED显示面板的制作方法,其中,所述步骤S1中,采用磁控溅射的方法形成所述阳极,所述阳极的材料为透明导电金属氧化物;
    所述步骤S3中,采用喷墨打印的方法形成所述空穴注入层与发光层,所述空穴注入层的材料为PEDOT:PSS;所述发光层的材料包括聚(9,9-二辛 基芴-2,7-二基);
    所述步骤S3中,采用真空蒸镀的方法形成所述电子注入层与阴极;所述电子注入层的材料包括氟化锂;所述阴极的材料包括铝。
PCT/CN2017/092680 2017-05-27 2017-07-13 Oled显示面板的制作方法及oled显示面板 WO2018218740A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/557,132 US10505154B2 (en) 2017-05-27 2017-07-13 Manufacturing method of organic light emitting diode display panel and organic light emitting diode display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710393572.4 2017-05-27
CN201710393572.4A CN107230747A (zh) 2017-05-27 2017-05-27 Oled显示面板的制作方法及oled显示面板

Publications (1)

Publication Number Publication Date
WO2018218740A1 true WO2018218740A1 (zh) 2018-12-06

Family

ID=59933935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092680 WO2018218740A1 (zh) 2017-05-27 2017-07-13 Oled显示面板的制作方法及oled显示面板

Country Status (2)

Country Link
CN (1) CN107230747A (zh)
WO (1) WO2018218740A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112311A (zh) * 2019-05-10 2019-08-09 武汉华星光电半导体显示技术有限公司 一种显示面板及显示模组

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004006B (zh) * 2018-07-27 2021-10-22 京东方科技集团股份有限公司 有机发光显示基板及其制作方法、显示装置
CN109232864B (zh) 2018-09-17 2021-01-22 京东方科技集团股份有限公司 聚合物、电子注入层、oled器件及显示装置
CN110943175A (zh) * 2018-09-25 2020-03-31 湖北工业大学 一种金纳米颗粒和氧化石墨烯复合结构修饰的有机发光二极管及其制备方法
CN110299388B (zh) * 2019-06-24 2021-07-06 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN112071997B (zh) * 2020-09-09 2021-08-06 Tcl华星光电技术有限公司 显示装置及显示装置的制备方法
US20240188394A1 (en) * 2021-04-25 2024-06-06 Beijing Boe Technology Development Co., Ltd. Light-emitting element and method for manufacturing the same
CN113380966A (zh) * 2021-06-08 2021-09-10 安徽熙泰智能科技有限公司 一种oled器件结构及其制备方法
CN113881284B (zh) * 2021-09-28 2022-08-02 惠科股份有限公司 纳米石墨打印液及其制备方法、有机发光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400106A (zh) * 2001-08-03 2003-03-05 中国科学院金属研究所 喷墨打印制备金属薄膜的方法
CN101132055A (zh) * 2007-09-28 2008-02-27 天津理工大学 一种能提高有机电致发光器件亮度和效率的器件及制法
US20120313129A1 (en) * 2009-11-27 2012-12-13 Osaka University Organic electroluminescent element, and method for manufacturing organic electroluminescent element
CN104724660A (zh) * 2013-12-19 2015-06-24 Sk新技术株式会社 可挠性纳米结构
CN105047827A (zh) * 2015-09-02 2015-11-11 上海和辉光电有限公司 一种顶发射型有机电致发光器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0313617D0 (en) * 2003-06-12 2003-07-16 Patterning Technologies Ltd Transparent conducting structures and methods of production
CN101132054A (zh) * 2007-09-28 2008-02-27 天津理工大学 一种新型结构的有机电致发光器件及其制备方法
CN101547567B (zh) * 2008-03-28 2011-03-02 富葵精密组件(深圳)有限公司 导电线路的制作方法
JP2014519206A (ja) * 2011-06-30 2014-08-07 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド トップエミッション型の有機エレクトロルミネッセンスデバイス及びその製造方法。
CN104987774B (zh) * 2015-07-23 2017-09-29 中国地质大学(武汉) 一种ZnO基纳米材料喷墨打印水性墨水的制备方法
CN104993065B (zh) * 2015-08-04 2018-04-27 京东方科技集团股份有限公司 一种oled发光器件及其制备方法、显示装置
CN105788756B (zh) * 2016-01-08 2018-03-09 浙江大学 一种透明金属导电膜及其制备方法
CN106340533B (zh) * 2016-11-29 2019-04-30 深圳市华星光电技术有限公司 Oled显示面板及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400106A (zh) * 2001-08-03 2003-03-05 中国科学院金属研究所 喷墨打印制备金属薄膜的方法
CN101132055A (zh) * 2007-09-28 2008-02-27 天津理工大学 一种能提高有机电致发光器件亮度和效率的器件及制法
US20120313129A1 (en) * 2009-11-27 2012-12-13 Osaka University Organic electroluminescent element, and method for manufacturing organic electroluminescent element
CN104724660A (zh) * 2013-12-19 2015-06-24 Sk新技术株式会社 可挠性纳米结构
CN105047827A (zh) * 2015-09-02 2015-11-11 上海和辉光电有限公司 一种顶发射型有机电致发光器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112311A (zh) * 2019-05-10 2019-08-09 武汉华星光电半导体显示技术有限公司 一种显示面板及显示模组
US11258033B2 (en) 2019-05-10 2022-02-22 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display module

Also Published As

Publication number Publication date
CN107230747A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2018218740A1 (zh) Oled显示面板的制作方法及oled显示面板
WO2018218741A1 (zh) Oled显示面板的制作方法及oled显示面板
US10505154B2 (en) Manufacturing method of organic light emitting diode display panel and organic light emitting diode display panel
WO2019061753A1 (zh) 全溶液oled器件及其制作方法
WO2016058223A1 (zh) Oled器件的制备方法及其制得的oled器件
US20050285517A1 (en) Methods for producing full-color organic electroluminescent devices
WO2016058224A1 (zh) Oled器件的制备方法及其制得的oled器件
WO2019075866A1 (zh) 电子传输层喷墨打印墨水及其制备方法
CN109888083B (zh) 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法
US7749037B2 (en) Process for fabricating an organic electronic device using liquid deposition and devices made by the process
CN101373816B (zh) 一种有机电致发光器件的制备方法
Zeng et al. Efficient larger size white quantum dots light emitting diodes using blade coating at ambient conditions
KR20130062143A (ko) 전기 분무법을 이용한 유기 다층 박막의 제조방법
Son et al. Highly efficient and eco-friendly InP-based quantum dot light-emitting diodes with a synergetic combination of a liquid metal cathode and size-controlled ZnO nanoparticles
JP2019164973A (ja) 熱転写フィルムの利用による有機発光ダイオードの準備方法
EP1628353A2 (en) Organic electroluminescent device, manufacturing method thereof, and electronic apparatus
US11549057B2 (en) Quantum dot luminescent material an method of producing thereof
CN114242923A (zh) 一种硫醇类化合物界面修饰磷化铟量子点提高电致发光器件性能的方法
CN109713152B (zh) 一种薄膜及其制备方法与qled器件
TWI816350B (zh) 用於在表面上圖案化塗層之方法及包括經圖案化的塗層之裝置
WO2020134202A1 (zh) 量子点发光二极管的制备方法
JP2019186185A (ja) 熱転写フィルムの利用による有機発光ダイオードの連続的準備方法
TWI410162B (zh) 含奈米點之有機發光二極體裝置結構
JP2019160771A (ja) 有機発光ダイオードの準備のための熱転写フィルムおよび同フィルムの準備方法
US11063098B2 (en) Method for fabricating display panel having carbon quantum dot layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15557132

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911829

Country of ref document: EP

Kind code of ref document: A1