WO2020134202A1 - 量子点发光二极管的制备方法 - Google Patents
量子点发光二极管的制备方法 Download PDFInfo
- Publication number
- WO2020134202A1 WO2020134202A1 PCT/CN2019/106135 CN2019106135W WO2020134202A1 WO 2020134202 A1 WO2020134202 A1 WO 2020134202A1 CN 2019106135 W CN2019106135 W CN 2019106135W WO 2020134202 A1 WO2020134202 A1 WO 2020134202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quantum dot
- dot light
- substrate
- emitting diode
- light emitting
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 169
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 128
- 239000012298 atmosphere Substances 0.000 claims abstract description 42
- 239000010410 layer Substances 0.000 claims description 174
- 239000007789 gas Substances 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 53
- 238000002347 injection Methods 0.000 claims description 47
- 239000007924 injection Substances 0.000 claims description 47
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical group NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 230000005525 hole transport Effects 0.000 claims description 20
- 239000002346 layers by function Substances 0.000 claims description 20
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 17
- 150000007530 organic bases Chemical class 0.000 claims description 12
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims description 12
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- 150000002148 esters Chemical class 0.000 claims description 9
- 150000004671 saturated fatty acids Chemical class 0.000 claims description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 6
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 6
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 claims description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 6
- 235000003441 saturated fatty acids Nutrition 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- 239000005639 Lauric acid Substances 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims description 3
- 239000012300 argon atmosphere Substances 0.000 claims description 3
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 229940095102 methyl benzoate Drugs 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 claims description 3
- UIUWNILCHFBLEQ-NSCUHMNNSA-N trans-pent-3-enoic acid Chemical compound C\C=C\CC(O)=O UIUWNILCHFBLEQ-NSCUHMNNSA-N 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 claims 1
- 238000007641 inkjet printing Methods 0.000 abstract description 11
- 238000007639 printing Methods 0.000 abstract description 9
- 230000000052 comparative effect Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 230000000903 blocking effect Effects 0.000 description 12
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- ZFDIRQKJPRINOQ-HWKANZROSA-N Ethyl crotonate Chemical compound CCOC(=O)\C=C\C ZFDIRQKJPRINOQ-HWKANZROSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 238000010129 solution processing Methods 0.000 description 2
- ZFDIRQKJPRINOQ-UHFFFAOYSA-N transbutenic acid ethyl ester Natural products CCOC(=O)C=CC ZFDIRQKJPRINOQ-UHFFFAOYSA-N 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004054 semiconductor nanocrystal Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
- H10K71/135—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G11/00—Compounds of cadmium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/08—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/811—Controlling the atmosphere during processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/157—Hole transporting layers between the light-emitting layer and the cathode
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/167—Electron transporting layers between the light-emitting layer and the anode
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
Definitions
- the present application relates to the field of display technology, and in particular to a method for manufacturing a quantum dot light emitting diode.
- Quantum dots also known as semiconductor nanocrystals, whose three-dimensional dimensions are in the nanometer range (l-100nm), is a kind of nanoparticle theory between bulk materials and molecules.
- Quantum dots have excellent optical properties such as high quantum yield, large molar extinction coefficient, good light stability, narrow half-width, broad excitation spectrum and controllable emission spectrum, and are very suitable for use as light-emitting materials for light-emitting devices.
- quantum dot fluorescent materials have been widely used in the field of flat panel displays due to their advantages of high light color purity, adjustable luminous color, and long service life. They have become a promising next-generation display and solid-state lighting source.
- Quantum dot light emitting diodes are light-emitting devices based on quantum dot materials as luminescent materials. Due to their advantages of tunable wavelength, narrow emission spectrum, high stability, high electroluminescence quantum yield, etc. A strong competitor of a generation of display technology.
- the solution processing method is a common method for preparing QLED devices, especially with the development of technology, the use of inkjet printing technology to prepare quantum dot light-emitting layer has become routine.
- the quantum dot light-emitting layer is prepared by the inkjet printing technology, the requirements for the quantum dot ink are relatively high. It is necessary to ensure its good printability and good solution stability.
- the efficiency of quantum dot light-emitting diode devices and ink printability are often difficult to balance, and the efficiency of ink devices with better printability is usually not high.
- One of the purposes of the embodiments of the present application is to provide a method for manufacturing a quantum dot light emitting diode, When solving the problem of inkjet printing of quantum dot light emitting layers, the efficiency of quantum dot light emitting diode devices and ink printability are often difficult to balance, and the problem of low efficiency of ink devices with good printability is not high.
- a method for manufacturing a quantum dot light emitting diode including the following steps:
- a substrate is provided, the substrate is placed in an inert atmosphere containing an active gas, and quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light emitting layer.
- the active gas is selected from one or a combination of two or more of saturated fatty acids, unsaturated fatty acids, esters, and organic bases.
- the saturated fatty acid is selected from butyric acid, octanoic acid, lauric acid, stearic acid;
- the unsaturated fatty acid is selected from acrylic acid, crotonic acid, methacrylic acid, 3-pentenoic acid;
- the ester is selected from methyl methacrylate, ethyl crotonate, ethyl acetate, methyl benzoate;
- the organic base is selected from ethanolamine, tetramethylammonium hydroxide, aniline, triethanolamine.
- the active gas accounts for 0.01%-20% of the mole percentage of the overall gas atmosphere
- the active gas accounts for 0.01%-15% of the mole percentage of the overall gas atmosphere
- the active gas accounts for 0.1%-3% of the mole percentage of the overall gas atmosphere.
- the active gas is selected from a combination of two or more of saturated fatty acids, unsaturated fatty acids, esters, and organic bases.
- the active gas is selected from a mixed active gas composed of at least one unsaturated fatty acid and at least one organic base.
- the substrate is placed in an inert atmosphere containing an active gas, and a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer at a temperature of 10°C-80° C conditions.
- the substrate is placed in an inert atmosphere containing an active gas, and a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light emitting layer at a temperature of 30°C-50° Under the condition of C Row.
- the inert atmosphere is a nitrogen atmosphere, a neon atmosphere, an argon atmosphere, a krypton atmosphere, or a nitrogen atmosphere.
- the substrate is an anode substrate, and before preparing the quantum dot light emitting layer, a step of preparing a hole function layer on the anode surface of the substrate is further included.
- the substrate is an anode substrate
- the method further includes: preparing a hole injection layer on the anode surface of the substrate, where the hole injection layer is away from the The step of preparing a hole transport layer on one side of the anode.
- the substrate is a cathode substrate
- the method further includes the step of preparing an electronic functional layer on the cathode surface of the substrate.
- the substrate is a cathode substrate, before preparing the quantum dot light emitting layer, further comprising: preparing an electron injection layer on the cathode surface of the substrate, the electron injection layer facing away from the cathode The step of preparing the electron transport layer on one side.
- the beneficial effects of the preparation method of the quantum dot light emitting diode are as follows: changing the inkjet printing film forming atmosphere, preparing the quantum dot light emitting layer in an inert atmosphere containing an active gas, and ensuring the quantum dot ink printing At the same time, improve the device efficiency of quantum dot light-emitting diodes.
- FIG. 1 is a flowchart of a method for manufacturing a quantum dot light emitting diode according to an embodiment of the present application.
- an embodiment of the present application provides a method for manufacturing a quantum dot light emitting diode, including the following steps:
- S01. Provide a substrate, place the substrate in an inert atmosphere containing an active gas, and print quantum dot ink on the surface of the substrate to prepare a quantum dot light emitting layer.
- the preparation method of the quantum dot light emitting diode changes the film forming atmosphere of inkjet printing, and prepares the quantum dot light emitting layer in an inert atmosphere containing active gas, while ensuring the printability of the quantum dot ink, Improve the device efficiency of quantum dot light-emitting diodes.
- the quantum dot light emitting diode is divided into a positive structure and an inverse structure.
- the positive structure includes an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode.
- the anode of the positive structure is disposed on the substrate, and hole transport may be provided between the anode and the quantum dot light emitting layer.
- the hole functional layer such as a layer, a hole injection layer, and an electron blocking layer may be provided with an electron functional layer such as an electron transport layer, an electron injection layer, and a hole blocking layer between the cathode and the quantum dot light emitting layer.
- the inversion structure includes an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode.
- the cathode of the inversion structure is disposed on the substrate, and hole transport can also be provided between the anode and the quantum dot light emitting layer.
- the hole functional layer such as a layer, a hole injection layer, and an electron blocking layer may be provided with an electron functional layer such as an electron transport layer, an electron injection layer, and a hole blocking layer between the cathode and the quantum dot light emitting layer.
- the bottom electrode provided on the substrate is an anode.
- the substrate may be provided with a bottom electrode on the substrate;
- the substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, and a hole transport layer stacked on the surface of the substrate;
- the substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, a hole injection layer stacked on the surface of the substrate, and A hole transport layer disposed on the surface of the hole injection layer; in another embodiment of the present application, the substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, and a layer disposed on the surface of the substrate The hole injection layer, the hole transport layer stacked on the surface of the hole injection layer, and the electron blocking layer stacked on the surface of the hole transport layer.
- the bottom electrode provided on the substrate is a cathode.
- the substrate may be provided with a bottom electrode on the substrate; in another embodiment of the present application, the substrate may include a substrate, a bottom electrode stacked on the surface of the substrate, and an electron transport layer stacked on the surface of the substrate; in yet another embodiment of the present application, the substrate may include a substrate Bottom, a bottom electrode stacked on the surface of the substrate, an electron injection layer stacked on the surface of the substrate, and a hole transport layer stacked on the surface of the electron injection layer; in still another embodiment of the present application, the substrate It may include a substrate, a bottom electrode stacked on the surface of the substrate, an electron injection layer stacked on the surface of the substrate, an electron transport layer stacked on the surface of the electron injection layer, and a hole blocking layer stacked on the surface of the electron transport layer .
- the selection of the substrate is not strictly limited, and a rigid substrate such as a glass substrate may be used; a flexible substrate such as a polyimide substrate or a polynorbornene substrate may also be used, but it is not limited thereto.
- the bottom electrode is an electrode opposite to the top electrode, and the bottom electrode may be a cathode or an anode. Specifically, when the bottom electrode is an anode, the top electrode is a cathode; when the bottom electrode is a cathode, the top electrode is an anode.
- the step of laminating other functional layers is also included.
- the method further includes the steps of forming an electron transport layer on the surface of the quantum dot light emitting layer and forming a top electrode (cathode) on the surface of the electron transport layer.
- the method further includes the steps of forming a hole transport layer on the surface of the quantum dot light emitting layer and forming a top electrode (anode) on the surface of the hole transport layer.
- the anode may use ITO, but it is not limited thereto.
- the cathode may use metal electrodes, including but not limited to silver electrodes and aluminum electrodes. The thickness of the cathode is 6
- 0-120nm specifically preferably 100nm.
- the substrate is placed in an inert atmosphere containing an active gas, the inkjet printing film-forming atmosphere is changed, and the quantum dot light-emitting layer is prepared in an inert atmosphere containing an active gas, which can ensure the printability of the quantum dot ink. At this time, the device efficiency of the quantum dot light emitting diode is improved.
- the active gas is selected from one or a combination of two or more of saturated fatty acids, unsaturated fatty acids, esters, and organic bases. Due to their special structural properties, such active gases are beneficial to the improvement of the properties of the functional layer, and are an effective solution to improve the external quantum efficiency of QLED devices.
- the saturated fatty acid is selected from butyric acid, octanoic acid, lauric acid, stearic acid.
- the unsaturated fatty acid is selected from acrylic acid, crotonic acid, methacrylic acid, and 3-pentenoic acid.
- the ester is selected from methyl methacrylate, ethyl crotonate, ethyl acetate, and methyl benzoate.
- the organic base is selected from ethanolamine, tetramethylammonium hydroxide, aniline, and triethanolamine.
- the active gas is selected from a combination of two or more of saturated fatty acids, unsaturated fatty acids, esters, and organic bases. In some embodiments, the active gas is selected from a mixed active gas composed of at least one unsaturated fatty acid and at least one organic base.
- the active gas accounts for 0.001%-20% of the mole percentage of the overall gas atmosphere. If the content of the active gas is too high, higher than 20%, it will cause the quantum dots in the quantum dot light emitting layer to be extinct and affect the quantum dot light emitting performance. In some embodiments of the present application, the active gas accounts for less than 10% of the mole percentage of the overall gas atmosphere, so that the quantum dot light-emitting layer prepared by inkjet printing has both good printability and light-emitting performance.
- the active gas When the active gas is selected from two or more types of active gases of different types, all active gases account for 0.0001%-20% of the total molar percentage of the overall gas atmosphere, in some embodiments of the present application In this case, the active gas accounts for 0.01%-15% of the mole percentage of the overall gas atmosphere. In some embodiments of the present application, the active gas accounts for a mole percentage of the overall gas atmosphere Furthermore, in some embodiments of the present application, the active gas accounts for a mole percentage of the overall gas atmosphere.
- the method of printing quantum dot ink on the surface of the substrate uses a conventional inkjet printing method, and the quantum dot ink uses a conventional quantum dot ink, which is not limited herein.
- the step of placing the substrate in an inert atmosphere containing an active gas, printing quantum dot ink on the surface of the substrate, and preparing a quantum dot light-emitting layer is carried out under the condition of a temperature of 10°C-80°C,
- the effect of the active gas to improve the light emitting performance of the quantum dot light emitting layer can be improved.
- the temperature for preparing the quantum dot light-emitting layer is determined according to the type of the selected active gas. The higher the boiling point of the active gas, the preparation of quantum dots The temperature of the light-emitting layer is relatively higher.
- a better improved quantum dot light emitting layer can be obtained The effect of luminous performance.
- the inert atmosphere is a nitrogen atmosphere, a neon atmosphere, an argon atmosphere, a krypton atmosphere, or a nitrogen atmosphere.
- the top electrode is prepared on the surface of the quantum dot light-emitting layer facing away from the bottom electrode, which can be prepared by a conventional method in the art. It is worth noting that the top electrode described in the embodiment of the present application is an electrode opposite to the top electrode, and may specifically be an anode or a cathode.
- a quantum dot light-emitting diode having a basic structure including a cathode and an anode disposed oppositely, and a quantum dot light-emitting layer disposed between the cathode and the anode
- a basic structure including a cathode and an anode disposed oppositely, and a quantum dot light-emitting layer disposed between the cathode and the anode
- different functional layers can be introduced on the basic structure of the quantum dot light-emitting diode to balance carriers.
- the method when the bottom electrode is an anode, that is, the anode is provided on the substrate to form an anode substrate, before preparing the quantum dot light-emitting layer, the method further includes preparing a hole function layer on the anode surface of the substrate ( The step of providing the hole functional layer between the anode and the quantum dot light-emitting layer).
- the hole functional layer includes at least one of a hole injection layer, a hole transport layer, and an electron blocking layer.
- the hole injection layer and the hole transport layer are used to reduce the difficulty of hole injection, and the electron blocking layer is used to block excess electrons so that the excess electrons cannot reach the anode to form a leakage current, thereby improving the quantum dot light emitting diode Current efficiency.
- the method further includes: preparing a hole injection layer on the anode surface of the substrate, and forming the hole injection layer The step of preparing a hole transport layer on the side facing away from the anode.
- the material of the hole injection layer can be a conventional hole injection material, including but not limited to PEDOT:PSS.
- the material of the hole transport layer may be a conventional hole transport material, including but not limited to organic materials such as NPB and T FB, and inorganic materials such as NiO and MoO 3 and their composites, and the thickness of the hole transport layer 10-100nm.
- the bottom electrode is an anode, that is, the anode is provided on the substrate to form an anode substrate, after preparing the quantum dot light-emitting layer, and before preparing the cathode, further including diverging from the quantum dot light-emitting layer
- An electronic functional layer is prepared on one side of the anode (the electronic functional layer is provided on the cathode and the quantum Point between the light-emitting layers).
- the electron functional layer includes at least one of an electron injection layer, an electron transport layer, and a hole blocking layer.
- the electron injection layer and the electron transport layer are used to reduce the difficulty of electron injection, and the hole blocking layer is used to block excess holes, so that the excess holes cannot reach the cathode to form a leakage current, thereby improving the quantum dot light emitting diode Current efficiency.
- the method when the anode substrate is formed on the substrate to form the anode substrate, after preparing the quantum dot light-emitting layer and before preparing the cathode, the method further includes: a side of the quantum dot light-emitting layer facing away from the anode An electron transport layer is prepared, and an electron injection layer is prepared on the side of the electron injection layer facing away from the anode.
- the material of the electron injection layer may use conventional electron hole injection materials, including but not limited to LiF and CsF, and the thickness of the electron transport layer is 10-100 nm.
- the material of the electron transport layer may use conventional electron transport materials, including but not limited to n-type zinc oxide, and the thickness of the electron transport layer is HMOOnm.
- the method further includes the step of preparing an electronic functional layer on the cathode surface of the substrate .
- the electron functional layer includes at least one of an electron injection layer, an electron transport layer, and a hole blocking layer.
- the method further includes: preparing an electron injection layer on the cathode surface of the substrate, and the electron injection layer deviates from the substrate The step of preparing an electron transport layer on one side of the cathode.
- the bottom electrode is a cathode
- the cathode is provided on the substrate to form a cathode substrate
- after preparing the quantum dot light-emitting layer, and before preparing the anode, further including deviating from the quantum dot light-emitting layer The step of preparing a hole functional layer on one side of the cathode.
- the hole functional layer includes at least one of a hole injection layer, a hole transport layer, and an electron blocking layer.
- the method further includes: preparing on the side of the quantum dot light-emitting layer facing away from the cathode For the hole transport layer, a hole injection layer is prepared on the side of the hole transport layer facing away from the cathode.
- a method for manufacturing a quantum dot light emitting diode includes the following steps: [0060] providing a glass substrate provided with an anode (ITO), placing the substrate in an inert atmosphere containing acrylic acid and ethanolamine, and printing quantum dot ink on the surface of the substrate at an ambient temperature of 40°C, Preparation of quantum dot luminescent layer (CdSe/ZnS QDs); Among them, the molar percentage of acrylic acid is 0.1%, the molar percentage of ethanolamine is 0.2%;
- An electron transport layer (ZnO) is prepared on the surface of the quantum dot light emitting layer facing away from the anode
- an electron injection layer (LiF) is prepared on the surface of the electron transport layer facing away from the anode
- the electron injection layer is prepared away from the surface of the anode Aluminum cathode.
- a method for preparing a quantum dot light-emitting diode is different from Example 1 in that the molar percentage of acrylic acid is 0.05%, and the molar percentage of ethanolamine is 0.1%.
- a method for preparing a quantum dot light-emitting diode is different from Example 1 in that the molar percentage of acrylic acid is 0.025%, and the molar percentage of ethanolamine is 0.05%.
- a method for manufacturing a quantum dot light emitting diode includes the following steps:
- An electron transport layer (ZnO) is prepared on the surface of the quantum dot light emitting layer facing away from the anode
- an electron injection layer (LiF) is prepared on the surface of the electron transport layer facing away from the anode
- an electron injection layer is prepared away from the surface of the anode Aluminum cathode.
- a method for preparing a quantum dot light emitting diode includes the following steps:
- An electron transport layer (ZnO) is prepared on the surface of the quantum dot light emitting layer facing away from the anode, an electron injection layer (LiF) is prepared on the surface of the electron transport layer facing away from the anode, and an electron injection layer is prepared away from the surface of the anode Aluminum cathode.
- a method for preparing a quantum dot light-emitting diode is different from that in Example 4 in that: under the condition of an ambient temperature of 40° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer ( CdSe/ ZnS
- the molar percentage of acrylic acid is 0.05%
- the molar percentage of ethanolamine is 0.1%
- Example 6 A method for preparing a quantum dot light-emitting diode, which is different from Example 4 in that: under the condition of an ambient temperature of 50° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer ( CdSe/ ZnS)
- the molar percentage of acrylic acid is 0.05%
- the molar percentage of ethanolamine is 0.1%
- a method for preparing a quantum dot light emitting diode which is different from Example 4 in that: under the condition of an ambient temperature of 60° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light emitting layer ( CdSe/ ZnS
- the molar percentage of acrylic acid is 0.05%
- the molar percentage of ethanolamine is 0.1%
- a method for preparing a quantum dot light-emitting diode is different from that in Example 4 in that: under the condition of an ambient temperature of 70° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer ( CdSe/ ZnS
- the molar percentage of acrylic acid is 0.05%
- the molar percentage of ethanolamine is 0.1%
- a preparation method of a quantum dot light emitting diode includes the following steps:
- An electron transport layer (ZnO) is prepared on the surface of the quantum dot light emitting layer facing away from the anode, an electron injection layer (LiF) is prepared on the surface of the electron transport layer facing away from the anode, and an electron injection layer is prepared away from the surface of the anode Aluminum cathode.
- a method for preparing a quantum dot light-emitting diode is different from Comparative Example 2 in that: under the condition of an ambient temperature of 40° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer ( CdSe/ZnS QDs).
- Comparative Example 4
- a method for preparing a quantum dot light-emitting diode is different from Comparative Example 2 in that: under the condition of an ambient temperature of 50° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer ( CdSe/ZnS QDs).
- a method for preparing a quantum dot light-emitting diode is different from Comparative Example 2 in that: under the condition of an ambient temperature of 60° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer ( CdSe/ZnS QDs).
- a method for preparing a quantum dot light-emitting diode is different from Comparative Example 2 in that: under the condition of an ambient temperature of 70° C., a quantum dot ink is printed on the surface of the substrate to prepare a quantum dot light-emitting layer ( CdSe/ZnS QDs).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种量子点发光二极管的制备方法,包括以下步骤:提供基板,将基板置于含有活性气体的惰性气氛中,在基板表面打印量子点墨水,制备量子点发光层(S01)。所提供的量子点发光二极管的制备方法,改变喷墨打印成膜氛围,在含有活性气体的惰性气氛中制备量子点发光层,可以在保证量子点墨水打印性的同时,提高量子点发光二极管的器件效率。
Description
量子点发光二极管的制备方法
[0001] 本申请要求于 2018年 12月 29日在中国专利局提交的、 申请号为 201811639610.0 、 申请名称为“量子点发光二极管的制备方法”的中国专利申请的优先权, 其全部 内容通过引用结合在本申请中。
技术领域
[0002] 本申请涉及显示技术领域, 具体涉及一种量子点发光二极管的制备方法。
背景技术
[0003] 量子点 (quantum
dots) , 又称半导体纳米晶, 其三维尺寸均在纳米范围内 (l-100nm) , 是一种 介于体相材料和分子间的纳米颗粒论。 量子点具有量子产率高、 摩尔消光系数 大、 光稳定性好、 窄半峰宽、 宽激发光谱和发射光谱可控等优异的光学性能, 非常适合用作发光器件的发光材料。 近年来, 量子点荧光材料由于其光色纯度 高、 发光颜色可调、 使用寿命长等优点, 广泛被看好用于平板显示领域, 成为 极具潜力的下一代显示和固态照明光源。 量子点发光二极管 (Quantum Dot Light Emitting Diodes QLED)是基于量子点材料作为发光材料的发光器件, 由于其具有 波长可调、 发射光谱窄、 稳定性高、 电致发光量子产率高等优点, 成为下一代 显示技术的有力竞争者。
[0004] 然而, 目前的量子点发光二极管的制备方法, 仍有待改进。
发明概述
技术问题
[0005] 发明人发现, 溶液加工法是制备 QLED器件的常见方法, 特别是随着技术的发 展, 采用喷墨打印技术制备量子点发光层变得常规。 喷墨打印技术制备量子点 发光层时, 对量子点墨水的要求较高, 既要保证其具有较好的可打印性, 还要 具有较好的溶液稳定性。 但是, 量子点发光二极管器件效率和墨水打印性常常 难以兼顾, 打印性较好的墨水器件效率通常不高。
[0006] 本申请实施例的目的之一在于: 提供一种量子点发光二极管的制备方法, 旨在
解决喷墨打印量子点发光层时, 量子点发光二极管器件效率和墨水打印性常常 难以兼顾, 打印性较好的墨水器件效率不高的问题。
问题的解决方案
技术解决方案
[0007] 为解决上述技术问题, 本申请实施例采用的技术方案是:
[0008] 第一方面, 提供了一种量子点发光二极管的制备方法, 包括以下步骤:
[0009] 提供基板, 将所述基板置于含有活性气体的惰性气氛中, 在所述基板表面打印 量子点墨水, 制备量子点发光层。
[0010] 在一个实施例中, 所述活性气体选自饱和脂肪酸、 不饱和脂肪酸、 酯类、 有机 碱中的一种或两种以上的组合。
[0011] 在一个实施例中, 所述饱和脂肪酸选自丁酸、 辛酸、 月桂酸、 硬脂酸;
[0012] 所述不饱和脂肪酸选自丙烯酸、 丁烯酸、 甲基丙烯酸、 3 -戊烯酸;
[0013] 所述酯类选自甲基丙烯酸甲酯、 丁烯酸乙酯、 乙酸乙酯、 苯甲酸甲酯;
[0014] 所述有机碱选自乙醇胺、 四甲基氢氧化铵、 苯胺、 三乙醇胺。
[0015] 在一个实施例中, 所述活性气体占整体气体气氛的摩尔百分含量的 0.01%-20%
[0016] 在一个实施例中, 所述活性气体占整体气体气氛的摩尔百分含量的 0.01%-15%
[0017] 在一个实施例中, 所述活性气体占整体气体气氛的摩尔百分含量的 0.1%-3%。
[0018] 在一个实施例中, 所述活性气体选自饱和脂肪酸、 不饱和脂肪酸、 酯类、 有机 碱中两种以上的组合。
[0019] 在一个实施例中, 所述活性气体选自不饱和脂肪酸中的至少一种与有机碱中的 至少一种组成的混合活性气体。
[0020] 在一个实施例中, 将所述基板置于含有活性气体的惰性气氛中, 在所述基板表 面打印量子点墨水, 制备量子点发光层的步骤, 在温度为 10°C-80°C的条件下进 行。
[0021] 在一个实施例中, 将所述基板置于含有活性气体的惰性气氛中, 在所述基板表 面打印量子点墨水, 制备量子点发光层的步骤, 在温度为 30°C-50°C的条件下进
行。
[0022] 在一个实施例中, 所述惰性气氛为氮气气氛、 氖气气氛、 氩气气氛、 氪气气氛 或氮气气氛。
[0023] 在一个实施例中, 所述基板为阳极基板, 在制备量子点发光层之前, 还包括在 所述基板的阳极表面制备空穴功能层的步骤。
[0024] 在一个实施例中, 所述基板为阳极基板, 在制备量子点发光层之前, 还包括: 在所述基板的阳极表面制备空穴注入层, 在所述空穴注入层背离所述阳极的一 侧制备空穴传输层的步骤。
[0025] 在一个实施例中, 所述基板为阴极基板, 在制备量子点发光层之前, 还包括在 所述基板的阴极表面制备电子功能层的步骤。 。
[0026] 在一个实施例中, 所述基板为阴极基板, 在制备量子点发光层之前, 还包括: 在所述基板的阴极表面制备电子注入层, 在所述电子注入层背离所述阴极的一 侧制备电子传输层的步骤。
[0027] 本申请实施例提供的量子点发光二极管的制备方法的有益效果在于: 改变喷墨 打印成膜氛围, 在含有活性气体的惰性气氛中制备量子点发光层, 可以在保证 量子点墨水打印性的同时, 提高量子点发光二极管的器件效率。
发明的有益效果
对附图的简要说明
附图说明
[0028] 为了更清楚地说明本申请实施例中的技术方案, 下面将对实施例或示范性技术 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其它的附图。
[0029] 图 1是本申请一实施例提供的量子点发光二极管的制备方法流程图。
发明实施例
本发明的实施方式
[0030] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例
, 对本申请进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以 解释本申请, 并不用于限定本申请。
[0031] 需说明的是, 在本申请的描述中, 需要理解的是, 术语“第一”、 “第二”仅用于 描述目的, 而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特 征的数量。 由此, 限定有“第一”、 “第二”的特征可以明示或者隐含地包括一个或 者更多个该特征。 在本申请的描述中, “多个”的含义是两个或两个以上, 除非另 有明确具体的限定。
[0032] 如图 1所示, 本申请实施例提供了一种量子点发光二极管的制备方法, 包括以 下步骤:
[0033] S01.提供基板, 将所述基板置于含有活性气体的惰性气氛中, 在所述基板表面 打印量子点墨水, 制备量子点发光层。
[0034] 本申请实施例提供的量子点发光二极管的制备方法, 改变喷墨打印成膜氛围, 在含有活性气体的惰性气氛中制备量子点发光层, 可以在保证量子点墨水打印 性的同时, 提高量子点发光二极管的器件效率。
[0035] 具体的, 量子点发光二极管分正型结构和反型结构。 正型结构包括层叠设置的 阳极、 阴极和设置在阳极和阴极之间的量子点发光层, 正型结构的阳极设置在 衬底上, 在阳极和量子点发光层之间还可以设置空穴传输层、 空穴注入层和电 子阻挡层等空穴功能层, 在阴极和量子点发光层之间还可以设置电子传输层、 电子注入层和空穴阻挡层等电子功能层。 反型结构包括层叠设置的阳极、 阴极 和设置在阳极和阴极之间的量子点发光层, 反型结构的阴极设置在衬底上, 在 阳极和量子点发光层之间还可以设置空穴传输层、 空穴注入层和电子阻挡层等 空穴功能层, 在阴极和量子点发光层之间还可以设置电子传输层、 电子注入层 和空穴阻挡层等电子功能层。
[0036] 上述步骤 S01中, 对于正型器件而言, 设置在衬底上的底电极为阳极, 在本申 请的一种实施方式中, 所述基板可以为衬底上设置底电极; 在本申请的又一种 实施方式中, 所述基板可以包括衬底、 层叠设置在衬底表面的底电极和层叠设 置在衬底表面的空穴传输层; 在本申请的又一种实施方式中, 所述基板可以包 括衬底、 层叠设置在衬底表面的底电极、 层叠设置在衬底表面的空穴注入层和
层叠设置在空穴注入层表面的空穴传输层; 在本申请的还一种实施方式中, 所 述基板可以包括衬底、 层叠设置在衬底表面的底电极、 层叠设置在衬底表面的 空穴注入层、 层叠设置在空穴注入层表面的空穴传输层和层叠设置在空穴传输 层表面的电子阻挡层。
[0037] 对于反型器件而言, 设置在衬底上的底电极为阴极, 在本申请的一种实施方式 中, 所述基板可以为衬底上设置底电极; 在本申请的又一种实施方式中, 所述 基板可以包括衬底、 层叠设置在衬底表面的底电极和层叠设置在衬底表面的电 子传输层; 在本申请的又一种实施方式中, 所述基板可以包括衬底、 层叠设置 在衬底表面的底电极、 层叠设置在衬底表面的电子注入层和层叠设置在电子注 入层表面的空穴传输层; 在本申请的还一种实施方式中, 所述基板可以包括衬 底、 层叠设置在衬底表面的底电极、 层叠设置在衬底表面的电子注入层、 层叠 设置在电子注入层表面的电子传输层和层叠设置在电子传输层表面的空穴阻挡 层。
[0038] 所述衬底的选择没有严格限制, 可以采用硬质基板, 如玻璃基板; 也可以采用 柔性基板, 如聚酰亚胺基板、 聚降冰片烯基板, 但不限于此。
[0039] 所述底电极为与顶电极相对的电极, 所述底电极可为阴极, 也可为阳极。 具体 的, 当所述底电极为阳极时, 所述顶电极为阴极; 当所述底电极为阴极时, 所 述顶电极为阳极。 在完成本申请实施方式的在基板表面制备量子点发光层的步 骤后, 还包括层叠形成其它功能层的步骤。 例如, 在一种实施方式中, 对于正 型器件, 还包括在量子点发光层表面形成电子传输层, 在电子传输层表面形成 顶电极 (阴极) 的步骤。 例如, 在一种实施方式中, 对于反型器件, 还包括在 量子点发光层表面形成空穴传输层, 在空穴传输层表面形成顶电极 (阳极) 的 步骤。
[0040] 在一些实施例中, 所述阳极可以选用 ITO, 但不限于此。 在一些实施例中, 所 述阴极可以选用金属电极, 包括但不限于银电极、 铝电极。 所述阴极的厚度为 6
0-120nm, 具体优选为 100nm。
[0041] 将所述基板置于含有活性气体的惰性气氛中, 改变喷墨打印成膜氛围, 在含有 活性气体的惰性气氛中制备量子点发光层, 可以在保证量子点墨水打印性的同
时, 提高量子点发光二极管的器件效率。
[0042] 在一些实施例中, 所述活性气体选自饱和脂肪酸、 不饱和脂肪酸、 酯类、 有机 碱中的一种或两种以上的组合。 此类活性气体由于其特殊的结构性质, 有益于 功能层性质的提高, 是提升 QLED器件的外量子效率有效方案。
[0043] 在一些实施例中, 所述饱和脂肪酸选自丁酸、 辛酸、 月桂酸、 硬脂酸。 在一些 实施例中, 所述不饱和脂肪酸选自丙烯酸、 丁烯酸、 甲基丙烯酸、 3 -戊烯酸。 在 一些实施例中, 所述酯类选自甲基丙烯酸甲酯、 丁烯酸乙酯、 乙酸乙酯、 苯甲 酸甲酯。 在一些实施例中, 所述有机碱选自乙醇胺、 四甲基氢氧化铵、 苯胺、 三乙醇胺。
[0044] 在一些实施例中, 所述活性气体选自饱和脂肪酸、 不饱和脂肪酸、 酯类、 有机 碱中两种以上的组合。 在一些具体实施例中, 所述活性气体选自不饱和脂肪酸 中的至少一种与有机碱中的至少一种组成的混合活性气体。
[0045] 在上述实施例的基础上, 所述活性气体占整体气体气氛的摩尔百分含量的 0.001 %-20%。 若所述活性气体的含量过高, 高于 20%, 会导致量子点发光层中的量子 点粹灭, 影响量子点发光性能。 在本申请的一些实施例中, 所述活性气体占整 体气体气氛的摩尔百分含量的 10%以下, 从而使得喷墨打印制备的量子点发光层 兼具较好的打印性和发光性能。
[0046] 当所述活性气体选自不同类的两种或两种以上的活性气体, 所有活性气体占整 体气体气氛的总摩尔百分含量的 0.0001%-20%, 在本申请的一些实施例中, 所述 活性气体占整体气体气氛的摩尔百分含量的 0.01%-15%。 在本申请的一些实施例 中, 所述活性气体占整体气体气氛的摩尔百分含量的
更在本申请的 一些实施例中, 所述活性气体占整体气体气氛的摩尔百分含量的
[0047] 本申请实施例中, 在所述基板表面打印量子点墨水的方法采用常规的喷墨打印 法, 量子点墨水采用常规的量子点墨水, 此处不作限定。
[0048] 将所述基板置于含有活性气体的惰性气氛中, 在所述基板表面打印量子点墨水 , 制备量子点发光层的步骤, 在温度为 10°C-80°C的条件下进行, 可以提高活性 气体改善量子点发光层发光性能的效果。 具体的, 制备量子点发光层的温度, 根据所选择的活性气体的类型来确定。 所述活性气体的沸点越高, 制备量子点
发光层的温度相对越高。 在本申请的一些实施例中, 在温度为 30°C-50°C的条件 下进行, 在所述基板表面打印量子点墨水, 制备量子点发光层, 可以获得较佳 的改善量子点发光层发光性能的效果。
[0049] 本申请实施例中, 所述惰性气氛为氮气气氛、 氖气气氛、 氩气气氛、 氪气气氛 或氮气气氛。
[0050] 在所述量子点发光层背离所述底电极的表面制备顶电极, 可以采用本领域常规 方法制备获得。 值得注意的是, 本申请实施例所述顶电极为与顶电极相对的电 极, 具体可以为阳极, 也可以为阴极。
[0051] 由此, 本申请实施例制备得到具有基础结构的量子点发光二极管 (包括相对设 置的阴极和阳极, 以及设置在所述阴极和所述阳极之间的量子点发光层) 。 为 了获得更佳的器件性能, 可以在量子点发光二极管基础结构上引入不同作用的 功能层以平衡载流子。
[0052] 在一些实施例中, 当底电极为阳极, 即阳极设置所述基板上形成阳极基板时, 在制备量子点发光层之前, 还包括在所述基板的阳极表面制备空穴功能层 (所 述空穴功能层设置在所述阳极与所述量子点发光层之间) 的步骤。 所述空穴功 能层包括空穴注入层、 空穴传输层、 电子阻挡层中的至少一层。 其中, 所述空 穴注入层、 空穴传输层用于降低空穴注入难度, 所述电子阻挡层用于阻挡过量 的电子, 使过量的电子不能到达阳极形成漏电流, 从而提高量子点发光二极管 的电流效率。 作为一个具体优选实施例, 当阳极设置所述基板上形成阳极基板 时, 在制备量子点发光层之前, 还包括: 在所述基板的阳极表面制备空穴注入 层, 在所述空穴注入层背离所述阳极的一侧制备空穴传输层的步骤。 其中, 所 述空穴注入层的材料可以采用常规的空穴注入材料, 包括但不限于 PEDOT:PSS 。 所述空穴传输层的材料可以采用常规的空穴传输材料, 包括但不限于 NPB、 T FB等有机材料, 以及 NiO、 Mo0 3等无机材料及其复合物, 所述空穴传输层的厚 度为 10-100nm。
[0053] 在一些实施例中, 当底电极为阳极, 即阳极设置所述基板上形成阳极基板时, 在制备量子点发光层之后, 在制备阴极之前, 还包括在所述量子点发光层背离 所述阳极的一侧制备电子功能层 (所述电子功能层设置在所述阴极与所述量子
点发光层之间) 的步骤。 所述电子功能层包括电子注入层、 电子传输层、 空穴 阻挡层中的至少一层。 其中, 所述电子注入层、 电子传输层用于降低电子注入 难度, 所述空穴阻挡层用于阻挡过量的空穴, 使过量的空穴不能到达阴极形成 漏电流, 从而提高量子点发光二极管的电流效率。 作为一个具体优选实施例, 在当阳极设置所述基板上形成阳极基板时, 在制备量子点发光层之后, 在制备 阴极之前, 还包括: 在所述量子点发光层背离所述阳极的一侧制备电子传输层 , 在电子注入层背离所述阳极的一侧制备电子注入层。 其中, 所述电子注入层 的材料可以采用常规的电子穴注入材料, 包括但不限于 LiF、 CsF, 所述电子传 输层的厚度为 10- 100nm。 所述电子传输层的材料可以采用常规的电子传输材料 , 包括但不限于 n型氧化锌, 所述电子传输层的厚度为 HMOOnm。
[0054] 在一些实施例中, 当底电极为阴极, 即阴极设置所述基板上形成阴极基板时, 在制备量子点发光层之前, 还包括在所述基板的阴极表面制备电子功能层的步 骤。 所述电子功能层包括电子注入层、 电子传输层、 空穴阻挡层中的至少一层 。 作为一个具体优选实施例, 当阴极设置所述基板上形成阴极基板时, 在制备 量子点发光层之前, 还包括: 在所述基板的阴极表面制备电子注入层, 在所述 电子注入层背离所述阴极的一侧制备电子传输层的步骤。
[0055] 在一些实施例中, 当底电极为阴极, 即阴极设置所述基板上形成阴极基板时, 在制备量子点发光层之后, 在制备阳极之前, 还包括在所述量子点发光层背离 所述阴极的一侧制备空穴功能层的步骤。 所述空穴功能层包括空穴注入层、 空 穴传输层、 电子阻挡层中的至少一层。 作为一个具体优选实施例, 当阴极设置 所述基板上形成阴极基板时, 在制备量子点发光层之后, 在制备阳极之前, 还 包括: 在所述量子点发光层背离所述阴极的一侧制备空穴传输层, 在空穴传输 层背离所述阴极的一侧制备空穴注入层。
[0056] 上述电子功能层、 空穴功能层的制备, 参考本领域常规方法制备。 在本申请的 一些实施例中, 采用溶液加工法在制备获得。
[0057] 下面结合具体实施例进行说明。
[0058] 实施例 1
[0059] 一种量子点发光二极管的制备方法, 包括以下步骤:
[0060] 提供设置有阳极 (ITO) 的玻璃基板, 将所述基板置于含有丙烯酸和乙醇胺的 惰性气氛中, 在环境温度为 40°C的条件下, 在所述基板表面打印量子点墨水, 制 备量子点发光层 (CdSe/ZnS QDs) ; 其中, 丙烯酸的摩尔百分含量为 0.1%, 乙 醇胺的摩尔百分含量为 0.2% ;
[0061] 在量子点发光层背离所述阳极的表面制备电子传输层 (ZnO) , 在电子传输层 背离所述阳极的表面制备电子注入层 (LiF) , 电子注入层背离所述阳极的表面 制备铝阴极。
[0062] 实施例 2
[0063] 一种量子点发光二极管的制备方法, 与实施例 1的不同之处在于: 丙烯酸的摩 尔百分含量为 0.05%, 乙醇胺的摩尔百分含量为 0.1%。
[0064] 实施例 3
[0065] 一种量子点发光二极管的制备方法, 与实施例 1的不同之处在于: 丙烯酸的摩 尔百分含量为 0.025%, 乙醇胺的摩尔百分含量百分含量为 0.05%。
[0066] 对比例 1
[0067] 一种量子点发光二极管的制备方法, 包括以下步骤:
[0068] 提供设置有阳极 (ITO) 的玻璃基板, 在环境温度为 40°C的条件下, 在所述基 板表面打印量子点墨水, 制备量子点发光层 (CdSe/ZnS QDs) ;
[0069] 在量子点发光层背离所述阳极的表面制备电子传输层 (ZnO) , 在电子传输层 背离所述阳极的表面制备电子注入层 (LiF) , 电子注入层背离所述阳极的表面 制备铝阴极。
[0070] 分别检测实施例 1-3、 对比例 1制备的量子点发光二极管通电熟化后的外量子效 率变化(%), 结果如下表 1所不。
[0071] 表 1
[]
[表 1]
[0072] 由上表 1可以看到, 相比对比例 1中在喷墨打印制备量子点发光二极管时, 未经 丙烯酸和乙醇胺活性气体处理的量子点发光二极管器件, 本申请实施例 1-3经过 丙烯酸和乙醇胺处理的器件外量子效率普遍有效提高, 当丙烯酸和乙醇胺在整 体氛围中的摩尔比分别为 0.05%和 0.1%时, 外量子效率提高最大。
[0073] 实施例 4
[0074] 一种量子点发光二极管的制备方法, 包括以下步骤:
[0075] 提供设置有阳极 (ITO) 的玻璃基板, 将所述基板置于含有丙烯酸和乙醇胺的 惰性气氛中, 在环境温度为 30°C的条件下, 在所述基板表面打印量子点墨水, 制 备量子点发光层 (CdSe/ZnS QDs) ; 其中, 丙烯酸的摩尔百分含量为 0.05%, 乙 醇胺的摩尔百分含量为 0.1 % ;
[0076] 在量子点发光层背离所述阳极的表面制备电子传输层 (ZnO) , 在电子传输层 背离所述阳极的表面制备电子注入层 (LiF) , 电子注入层背离所述阳极的表面 制备铝阴极。
[0077] 实施例 5
[0078] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 40°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS
QDs) ; 其中, 丙烯酸的摩尔百分含量为 0.05%, 乙醇胺的摩尔百分含量为 0.1%
[0079] 实施例 6
[0080] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 50°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS
QDs) ; 其中, 丙烯酸的摩尔百分含量为 0.05%, 乙醇胺的摩尔百分含量为 0.1%
[0081] 实施例 7
[0082] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 60°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS
QDs) ; 其中, 丙烯酸的摩尔百分含量为 0.05%, 乙醇胺的摩尔百分含量为 0.1%
[0083] 实施例 8
[0084] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 70°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS
QDs) ; 其中, 丙烯酸的摩尔百分含量为 0.05%, 乙醇胺的摩尔百分含量为 0.1%
[0085] 对比例 2
[0086] 一种量子点发光二极管的制备方法, 包括以下步骤:
[0087] 提供设置有阳极 (ITO) 的玻璃基板, 在环境温度为 30°C的条件下, 在所述基 板表面打印量子点墨水, 制备量子点发光层 (CdSe/ZnS QDs) ;
[0088] 在量子点发光层背离所述阳极的表面制备电子传输层 (ZnO) , 在电子传输层 背离所述阳极的表面制备电子注入层 (LiF) , 电子注入层背离所述阳极的表面 制备铝阴极。
[0089] 对比例 3
[0090] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 40°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS QDs) 。
[0091] 对比例 4
[0092] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 50°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS QDs) 。
[0093] 对比例 5
[0094] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 60°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS QDs) 。
[0095] 对比例 6
[0096] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 70°C的条件下, 在所述基板表面打印量子点墨水, 制备量子点发光层 (CdSe/ ZnS QDs) 。
[0097] 分别测试实施例 4-8、 对比例 2-6的量子点发光二极管的器件寿命 (T50@ lOOnits- hrs), 如下表 2所示。
[0098] 表 2
[]
[表 2]
[0099] 由上表 2可见, 在相同的温度条件下, 采用相同的喷墨打印方法制备量子点发 光层时, 经丙烯酸和乙醇胺活性气体处理的量子点发光二极管器件寿命提高。 而实施例 4-8中, 在 40°C低温干燥时, 器件寿命较长。
[0100] 以上仅为本申请的可选实施例而已, 并不用于限制本申请。 对于本领域的技术 人员来说, 本申请可以有各种更改和变化。 凡在本申请的精神和原则之内, 所 作的任何修改、 等同替换、 改进等, 均应包含在本申请的权利要求范围之内。
Claims
[权利要求 1] 量子点发光二极管的制备方法, 其特征在于, 包括以下步骤:
提供基板, 将所述基板置于含有活性气体的惰性气氛中, 在所述基板 表面打印量子点墨水, 制备量子点发光层。
[权利要求 2] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述活性气体选自饱和脂肪酸、 不饱和脂肪酸、 酯类、 有机碱中的一 种或两种以上的组合。
[权利要求 3] 根据权利要求 2所述的量子点发光二极管的制备方法, 其特征在于, 所述饱和脂肪酸选自丁酸、 辛酸、 月桂酸、 硬脂酸。
[权利要求 4] 根据权利要求 2所述的量子点发光二极管的制备方法, 其特征在于, 所述不饱和脂肪酸选自丙烯酸、 丁烯酸、 甲基丙烯酸、 3 -戊烯酸。
[权利要求 5] 根据权利要求 2所述的量子点发光二极管的制备方法, 其特征在于, 所述酯类选自甲基丙烯酸甲酯、 丁烯酸乙酯、 乙酸乙酯、 苯甲酸甲酯
[权利要求 6] 根据权利要求 2所述的量子点发光二极管的制备方法, 其特征在于, 所述有机碱选自乙醇胺、 四甲基氢氧化铵、 苯胺、 三乙醇胺。
[权利要求 7] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述活性气体占整体气体气氛的摩尔百分含量的 0.01 %-20%。
[权利要求 8] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述活性气体占整体气体气氛的摩尔百分含量的 0.01 %- 15%。
[权利要求 9] 根据权利要求 8所述的量子点发光二极管的制备方法, 其特征在于, 所述活性气体占整体气体气氛的摩尔百分含量的 0.1 %-3%。
[权利要求 10] 根据权利要求 1至 9任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述活性气体选自饱和脂肪酸、 不饱和脂肪酸、 酯类、 有机 碱中两种以上的组合。
[权利要求 11] 根据权利要求 10所述的量子点发光二极管的制备方法, 其特征在于, 所述活性气体选自不饱和脂肪酸中的至少一种与有机碱中的至少一种 组成的混合活性气体。
[权利要求 12] 根据权利要求 1至 9任一项所述的量子点发光二极管的制备方法, 其特 征在于, 将所述基板置于含有活性气体的惰性气氛中, 在所述基板表 面打印量子点墨水, 制备量子点发光层的步骤, 在温度为 10°C-80°C 的条件下进行。
[权利要求 13] 根据权利要求 12所述的量子点发光二极管的制备方法, 其特征在于, 将所述基板置于含有活性气体的惰性气氛中, 在所述基板表面打印量 子点墨水, 制备量子点发光层的步骤, 在温度为 30°C-50°C的条件下 进行。
[权利要求 14] 根据权利要求 1至 9任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述惰性气氛为氮气气氛、 氖气气氛、 氩气气氛、 氯气气氛 或氮气气氛。
[权利要求 15] 根据权利要求 1至 9任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述基板为阳极基板, 在制备量子点发光层之前, 还包括在 所述基板的阳极表面制备空穴功能层的步骤。
[权利要求 16] 根据权利要求 15所述的量子点发光二极管的制备方法, 其特征在于, 所述基板为阳极基板, 在制备量子点发光层之前, 还包括: 在所述基 板的阳极表面制备空穴注入层, 在所述空穴注入层背离所述阳极的一 侧制备空穴传输层的步骤。
[权利要求 17] 根据权利要求 1至 9任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述基板为阴极基板, 在制备量子点发光层之前, 还包括在 所述基板的阴极表面制备电子功能层的步骤。
[权利要求 18] 根据权利要求 17所述的量子点发光二极管的制备方法, 其特征在于, 所述基板为阴极基板, 在制备量子点发光层之前, 还包括: 在所述基 板的阴极表面制备电子注入层, 在所述电子注入层背离所述阴极的一 侧制备电子传输层的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/419,694 US11997911B2 (en) | 2018-12-29 | 2019-09-17 | Method for preparing quantum dots light-emitting diode |
EP19903010.7A EP3905360B1 (en) | 2018-12-29 | 2019-09-17 | Preparation method for quantum dot light emitting diode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811639610.0 | 2018-12-29 | ||
CN201811639610.0A CN111384270B (zh) | 2018-12-29 | 2018-12-29 | 量子点发光二极管的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020134202A1 true WO2020134202A1 (zh) | 2020-07-02 |
Family
ID=71128562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/106135 WO2020134202A1 (zh) | 2018-12-29 | 2019-09-17 | 量子点发光二极管的制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11997911B2 (zh) |
EP (1) | EP3905360B1 (zh) |
CN (1) | CN111384270B (zh) |
WO (1) | WO2020134202A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116018033A (zh) * | 2021-10-20 | 2023-04-25 | Tcl科技集团股份有限公司 | Qled器件的制备方法及显示基板、显示装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9293645B2 (en) * | 2013-05-22 | 2016-03-22 | Samsung Display Co., Ltd. | Deposition apparatus, method thereof and method for forming quantum-dot layer using the same |
US20170037314A1 (en) * | 2015-08-07 | 2017-02-09 | Samsung Display Co., Ltd. | Method for manufacturing quantum dots |
CN106654016A (zh) * | 2016-12-16 | 2017-05-10 | 深圳大学 | 一种有机光电器件及其制备方法和具有空穴传输性能的组合物 |
CN106803546A (zh) * | 2017-02-20 | 2017-06-06 | 厦门世纳芯科技有限公司 | 一种量子点发光二极管及其制备方法 |
CN107238973A (zh) * | 2017-07-19 | 2017-10-10 | 苏州星烁纳米科技有限公司 | 量子点膜及其制备方法 |
CN107652776A (zh) * | 2017-09-22 | 2018-02-02 | 纳晶科技股份有限公司 | 量子点组合物及其制备方法、和应用 |
CN107761052A (zh) * | 2016-08-15 | 2018-03-06 | 张家港康得新光电材料有限公司 | 量子点膜层及其制作方法及在线连续制作量子点膜层的系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1561589B1 (en) * | 2002-11-12 | 2008-04-30 | Nippon Paper Industries Co., Ltd. | Ink-jet recording medium and process for producing the same |
CN101413209B (zh) * | 2008-11-12 | 2012-03-21 | 东华大学 | 等离子体处理涂覆纳米溶胶的碳纤维表面改性的方法 |
CN101428844B (zh) * | 2008-12-04 | 2010-11-17 | 东华大学 | 纳米氧化锌表面大气压、常温等离子体改性处理方法 |
JP5482322B2 (ja) * | 2010-03-12 | 2014-05-07 | 株式会社リコー | 金属フィルター、それを有する画像形成装置 |
CN101882665A (zh) * | 2010-06-24 | 2010-11-10 | 电子科技大学 | 一种有机光电器件及其制备方法 |
CN102417202B (zh) * | 2011-09-02 | 2013-10-02 | 中国日用化学工业研究院 | 一种气相法改性纳米氧化锌的方法 |
WO2014119543A1 (ja) * | 2013-01-31 | 2014-08-07 | リンテック株式会社 | 電子デバイス用フィルム状封止材、電子デバイス用封止シートおよび電子デバイス |
CN105960684B (zh) * | 2014-03-12 | 2017-11-14 | 东丽薄膜先端加工股份有限公司 | 导电层合体、导电层合体的制造方法、触摸面板及触摸开关 |
CN106299159B (zh) * | 2016-08-25 | 2018-11-09 | 纳晶科技股份有限公司 | 金属氧化物纳米颗粒的制备方法及量子点电致发光器件 |
CN110709736A (zh) * | 2017-06-08 | 2020-01-17 | Dnp精细化工股份有限公司 | 含量子点固化性组合物、含量子点固化物、光学构件的制造方法及显示设备的制造方法 |
CN108681140B (zh) * | 2018-05-18 | 2021-10-15 | 京东方科技集团股份有限公司 | 彩膜基板及其制造方法 |
-
2018
- 2018-12-29 CN CN201811639610.0A patent/CN111384270B/zh active Active
-
2019
- 2019-09-17 EP EP19903010.7A patent/EP3905360B1/en active Active
- 2019-09-17 WO PCT/CN2019/106135 patent/WO2020134202A1/zh active Application Filing
- 2019-09-17 US US17/419,694 patent/US11997911B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9293645B2 (en) * | 2013-05-22 | 2016-03-22 | Samsung Display Co., Ltd. | Deposition apparatus, method thereof and method for forming quantum-dot layer using the same |
US20170037314A1 (en) * | 2015-08-07 | 2017-02-09 | Samsung Display Co., Ltd. | Method for manufacturing quantum dots |
CN107761052A (zh) * | 2016-08-15 | 2018-03-06 | 张家港康得新光电材料有限公司 | 量子点膜层及其制作方法及在线连续制作量子点膜层的系统 |
CN106654016A (zh) * | 2016-12-16 | 2017-05-10 | 深圳大学 | 一种有机光电器件及其制备方法和具有空穴传输性能的组合物 |
CN106803546A (zh) * | 2017-02-20 | 2017-06-06 | 厦门世纳芯科技有限公司 | 一种量子点发光二极管及其制备方法 |
CN107238973A (zh) * | 2017-07-19 | 2017-10-10 | 苏州星烁纳米科技有限公司 | 量子点膜及其制备方法 |
CN107652776A (zh) * | 2017-09-22 | 2018-02-02 | 纳晶科技股份有限公司 | 量子点组合物及其制备方法、和应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3905360A4 |
Also Published As
Publication number | Publication date |
---|---|
US11997911B2 (en) | 2024-05-28 |
CN111384270A (zh) | 2020-07-07 |
EP3905360A1 (en) | 2021-11-03 |
EP3905360A4 (en) | 2022-02-09 |
EP3905360B1 (en) | 2024-02-07 |
US20220085343A1 (en) | 2022-03-17 |
CN111384270B (zh) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018218741A1 (zh) | Oled显示面板的制作方法及oled显示面板 | |
US9570425B2 (en) | Display comprising ultra-small LEDs and method for manufacturing same | |
US20160148911A1 (en) | Ultra-small led electrode assembly and method for manufacturing same | |
WO2018218740A1 (zh) | Oled显示面板的制作方法及oled显示面板 | |
CN109244256B (zh) | 高效非掺杂超薄发光层热活化延迟荧光有机发光二极管及其制备方法 | |
WO2019114370A1 (zh) | 电致发光器件及其制备方法、显示面板、显示装置 | |
KR20170108342A (ko) | 코어쉘 구조의 나노 입자를 포함하는 발광 소자 | |
CN111384268B (zh) | 量子点发光二极管的制备方法及量子点墨水 | |
Yin et al. | Efficient and angle-stable white top-emitting organic light emitting devices with patterned quantum dots down-conversion films | |
WO2020134203A1 (zh) | 量子点发光二极管及其制备方法 | |
WO2014034423A1 (ja) | 電界電子放出膜、電界電子放出素子、発光素子およびそれらの製造方法 | |
WO2020134202A1 (zh) | 量子点发光二极管的制备方法 | |
US11889745B2 (en) | QLED manufacturing method | |
TW200415935A (en) | Electroluminescent device with a color filter | |
US20220089948A1 (en) | Method for preparing quantum dots light-emitting diode | |
WO2020134206A1 (zh) | 量子点发光二极管的制备方法 | |
CN114242923A (zh) | 一种硫醇类化合物界面修饰磷化铟量子点提高电致发光器件性能的方法 | |
JP6130157B2 (ja) | 電界電子放出素子およびそれを用いた発光素子の製造方法 | |
WO2020134207A1 (zh) | 量子点发光二极管的后处理方法 | |
Kovác et al. | Advanced light emitting devices for optoelectronic applications | |
TWI220852B (en) | An organic light emitting diode structure | |
US11063098B2 (en) | Method for fabricating display panel having carbon quantum dot layer | |
JP2008034199A (ja) | 分散型電界発光素子 | |
Mallem et al. | 28‐4: Positive Aging Resulted in Highly Efficient Blue Quantum Rod Light Emitting Diodes | |
CN116940150A (zh) | 混合物、组合物、薄膜、发光二极管及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19903010 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019903010 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019903010 Country of ref document: EP Effective date: 20210729 |