WO2020134206A1 - 量子点发光二极管的制备方法 - Google Patents

量子点发光二极管的制备方法 Download PDF

Info

Publication number
WO2020134206A1
WO2020134206A1 PCT/CN2019/106141 CN2019106141W WO2020134206A1 WO 2020134206 A1 WO2020134206 A1 WO 2020134206A1 CN 2019106141 W CN2019106141 W CN 2019106141W WO 2020134206 A1 WO2020134206 A1 WO 2020134206A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
quantum dot
dot light
substrate
emitting diode
Prior art date
Application number
PCT/CN2019/106141
Other languages
English (en)
French (fr)
Inventor
张节
向超宇
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US17/419,670 priority Critical patent/US20220073818A1/en
Publication of WO2020134206A1 publication Critical patent/WO2020134206A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present application relates to the field of display technology, and in particular to a method for manufacturing a quantum dot light emitting diode.
  • Quantum dots also known as semiconductor nanocrystals, whose three-dimensional dimensions are in the nanometer range (l-100nm), is a kind of nanoparticle theory between bulk materials and molecules.
  • Quantum dots have excellent optical properties such as high quantum yield, large molar extinction coefficient, good light stability, narrow half-width, broad excitation spectrum and controllable emission spectrum, and are very suitable for use as light-emitting materials for light-emitting devices.
  • quantum dot fluorescent materials have been widely used in the field of flat panel displays due to their advantages of high light color purity, adjustable luminous color, and long service life. They have become a promising next-generation display and solid-state lighting source.
  • Quantum dot light emitting diodes are light-emitting devices based on quantum dot materials as luminescent materials. Due to their advantages of tunable wavelength, narrow emission spectrum, high stability, high electroluminescence quantum yield, etc. A strong competitor of a generation of display technology.
  • the solution processing method is a common method for preparing QLED devices, especially with the development of technology, the use of inkjet printing technology to prepare quantum dot light-emitting layer has become routine.
  • inkjet printing technology is used to prepare the electron transport layer, the requirements for the ink in the electron transport layer are relatively high. It is necessary to ensure good printability and good solution stability.
  • the efficiency of quantum dot light-emitting diode devices and ink printability are often difficult to balance, and the efficiency of ink devices with better printability is usually not high.
  • One of the purposes of the embodiments of the present application is to provide a method for manufacturing a quantum dot light emitting diode.
  • a method for manufacturing a quantum dot light emitting diode To solve the problem of inkjet printing electron transport layer, the efficiency of quantum dot light emitting diode devices and ink printability are often difficult to balance, and the problem of low efficiency of ink devices with good printability is not.
  • a method for manufacturing a quantum dot light emitting diode including the following steps:
  • the first gas is selected from commercial amine gas, One or a combination of two or more of ester gas and organic alkali gas.
  • the commercial amine gas is selected from one or more of ammonium fluoride gas, ammonium chloride gas and ammonium iodide gas;
  • the ester gas is selected from one or more of methyl methacrylate gas, ethyl crotonate gas, ethyl acetate gas methyl benzoate gas;
  • the organic base is selected from one or more of ethanolamine gas, tetramethylammonium hydroxide gas, aniline gas and triethanolamine gas.
  • the electron transport material in the electron transport material ink is selected from ZnO, Ti0 2 , SnO 2 , Ta 2 0 3 , ZrO 2
  • NiO NiO, TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO and InSnO one or more.
  • the mole percentage content of the first gas in the overall gas atmosphere is 0.001%-20%
  • the mole percentage content of the first gas in the overall gas atmosphere is 0.005%-3%
  • the mole percentage content of the first gas in the overall gas atmosphere is 0.01%-0.1%
  • the first gas is selected from a combination of two or more of commercial amine gas, ester gas and organic alkali gas.
  • the first gas is selected from a combination of one or more ester gases and one or more organic alkali gases; or [0019] The first gas is selected from a mixed first gas composed of at least one of unsaturated fatty acids and at least one of organic bases.
  • the substrate is placed in an inert atmosphere containing a first gas, and an electron transport material ink is printed on the surface of the substrate at a temperature of 10°C to 80°C to prepare Electron transport layer.
  • the substrate is placed in an inert atmosphere containing a first gas at a temperature of 30 ° C
  • the inert atmosphere is a helium atmosphere, a neon atmosphere, an argon atmosphere, a krypton atmosphere or a nitrogen atmosphere.
  • the substrate is an anode substrate provided with a quantum dot light emitting layer, including: an anode substrate, a quantum dot light emitting layer provided on the anode substrate;
  • the electron transport layer is prepared on the surface of the anode substrate.
  • the method further includes: a step of preparing a hole functional layer on the surface of the anode, and the hole functional layer includes at least one of a hole injection layer, a hole transport layer, and an electron blocking layer Floor.
  • the substrate is a cathode substrate
  • the cathode substrate includes a substrate, and a cathode disposed on the substrate; preparing the electrons on a surface of the cathode facing away from the substrate Transport layer.
  • an electron injection layer is prepared on the cathode surface.
  • the beneficial effects of the preparation method of the quantum dot light emitting diode are as follows: changing the ink-jet printing film-forming atmosphere, preparing the electron transport layer in an inert atmosphere containing the first gas, and ensuring the electron transport material ink At the same time, the device efficiency of the quantum dot light emitting diode is improved.
  • FIG. 1 is a flowchart of a method for manufacturing a quantum dot light emitting diode according to an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of "plurality” is two or more, unless otherwise specifically limited.
  • some embodiments of the present application provide a method for manufacturing a quantum dot light emitting diode, including the following steps:
  • the substrate placing the substrate in an inert atmosphere containing a first gas, printing an electron transport material ink on the surface of the substrate to prepare an electron transport layer
  • the first gas is selected from commercial amine gas, One or a combination of two or more of ester gas and organic alkali gas.
  • the quantum dot light emitting diode is divided into a positive structure and an inverse structure.
  • the positive structure includes an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode.
  • the anode of the positive structure is disposed on the substrate, and hole transport may be provided between the anode and the quantum dot light emitting layer.
  • the hole functional layer such as a layer, a hole injection layer, and an electron blocking layer may be provided with an electron functional layer such as an electron transport layer, an electron injection layer, and a hole blocking layer between the cathode and the quantum dot light emitting layer.
  • the inversion structure includes an anode, a cathode, and a quantum dot light emitting layer disposed between the anode and the cathode.
  • the cathode of the inversion structure is disposed on the substrate, and hole transport can also be provided between the anode and the quantum dot light emitting layer.
  • the hole functional layer such as a layer, a hole injection layer, and an electron blocking layer may be provided with an electron functional layer such as an electron transport layer, an electron injection layer, and a hole blocking layer between the cathode and the quantum dot light emitting layer.
  • the substrate of the embodiments of the present application may be only a two-layer structure formed by stacking a substrate and an anode and a quantum dot light emitting layer provided on the substrate.
  • one or more hole functional layers such as a hole transport layer, a hole injection layer, and an electron blocking layer may be provided between the anode and the quantum dot light emitting layer Apply the substrate of the embodiment.
  • the substrate is an anode substrate provided with a quantum dot light emitting layer, including: an anode substrate, a quantum dot light emitting layer provided on the anode substrate.
  • the substrate may be prepared by the following method: providing an anode substrate that is an anode substrate, preparing a quantum dot light-emitting layer on the anode surface, and preparing an electron transport layer on the quantum dot light-emitting layer surface.
  • the anode substrate includes a substrate, and an anode disposed on the substrate.
  • the selection of the substrate is not strictly limited, and a rigid substrate such as a glass substrate may be used; a flexible substrate such as a polyimide substrate or a polynorbornene substrate may also be used, but it is not limited thereto.
  • the anode may use ITO, but it is not limited thereto.
  • a solution processing method is used to deposit a quantum dot solution on the anode to prepare a quantum dot light emitting layer.
  • an inkjet printing method is used to deposit quantum dot ink on the bottom electrode to prepare a quantum dot light emitting layer.
  • the quantum dots in the quantum dot light-emitting layer are conventional quantum dots in the art.
  • the thickness of the quantum dot light emitting layer is 30-50 nm
  • a step of preparing a hole functional layer (the hole functional layer is provided between the anode and the quantum dot light-emitting layer) on the surface of the anode.
  • the hole functional layer includes at least one of a hole injection layer, a hole transport layer, and an electron blocking layer.
  • the hole injection layer and the hole transport layer are used to reduce the difficulty of hole injection
  • the electron blocking layer is used to block excess electrons so that the excess electrons cannot reach the anode to form a leakage current, thereby improving the quantum dot light emitting diode Current efficiency.
  • the method when the anode is provided on the substrate to form the anode substrate, before preparing the quantum dot light emitting layer, the method further includes: preparing a hole injection layer on the anode surface of the substrate, and injecting the hole The step of preparing a hole transport layer on the side of the layer facing away from the anode.
  • the material of the hole injection layer may be a conventional hole injection material, including but not limited to PEDOT:PSS.
  • the material of the hole transport layer may be a conventional hole transport material, including but not limited to organic materials such as NPB and TFB, and inorganic materials such as NiO and MoO 3 and their composites, and the thickness of the hole transport layer is KMOOnm.
  • the substrate of the embodiments of the present application may be only a substrate and a cathode provided on the substrate.
  • an electron injection layer may be further provided between the cathode and the electron transport layer.
  • the substrate is a cathode substrate
  • the cathode substrate includes a substrate, and a cathode electrode disposed on the substrate.
  • the selection of the substrate is as described above.
  • the cathode may use metal electrodes, including but not limited to silver electrodes and aluminum electrodes.
  • the thickness of the cathode is 60-120 nm, specifically 100 nm.
  • an electron injection layer is prepared on the cathode surface.
  • the electron injection layer and the electron transport layer are used to reduce the difficulty of electron injection, and the hole blocking layer is used to block excess holes, so that the excess holes cannot reach the cathode to form a leakage current, thereby improving the quantum dot light emitting diode Current efficiency.
  • the method before preparing the electron transport layer, the method further includes: preparing an electron injection layer on the cathode surface.
  • the material of the electron injection layer may use conventional electron hole injection materials, including but not limited to LiF and CsF, and the thickness of the electron transport layer is 10-100 nm.
  • the material of the electron transport layer can be a conventional electron transport material, including but not limited to the electron transport material.
  • the electron transport material in the ink is selected from ZnO, Ti0 2 , Sn0 2 , Ta 2 0 3 , ZrO 2 , NiO, One or more of TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO, and InSnO are preferably zinc oxide, and the thickness of the electron transport layer is 10-100 nm.
  • the substrate is placed in an inert atmosphere containing a first gas, the inkjet printing film formation atmosphere is changed, and the electron transport layer is prepared in the inert atmosphere containing the first gas, which can ensure the printability of the electron transport material ink At the same time, the device efficiency of the quantum dot light emitting diode is improved.
  • the first gas is selected from one or a combination of two or more of commercial amine gas, ester gas, and organic alkali gas.
  • the commercial amine gas is selected from one or more of ammonium fluoride gas, ammonium chloride gas, and ammonium iodide gas.
  • the ester is selected from one or more of methyl methacrylate gas, ethyl methacrylate gas, ethyl acetate gas, and methyl benzoate gas.
  • the organic alkali gas is selected from one or more of ethanolamine gas, tetramethylammonium hydroxide gas, aniline, and triethanolamine gas.
  • the first gas is selected from a combination of two or more of commercial amine gas, ester gas and organic alkali gas. In some embodiments, the first gas is selected from a mixed first gas composed of at least one unsaturated fatty acid and at least one organic base. [0050] On the basis of the foregoing embodiment, the first gas accounts for 0.001%-20% of the mole percentage content of the overall gas atmosphere. If the content of the first gas is too high, higher than 20%, it will affect the material properties of the electron transport layer.
  • the first gas accounts for 0.005%-3% of the mole percentage of the overall gas atmosphere, so that the electron transport layer prepared by inkjet printing has both good printability and luminous performance . In some embodiments of the present application, the first gas accounts for less than 0.01%-0.1% of the mole percentage of the overall gas atmosphere.
  • the method of printing the electron transport material ink on the surface of the substrate uses a conventional inkjet printing method, and the electron transport material ink uses the conventional electron transport material ink, which is not limited herein.
  • the substrate is placed in an inert atmosphere containing a first gas, and the step of preparing an electron transport layer on the surface of the substrate with an electron transport material ink is performed under the condition of a temperature of 10°C-80°C.
  • the effect of improving the carrier transport performance of the electron transport layer by the first gas can be improved.
  • the temperature for preparing the electron transport layer is determined according to the selected first gas type. The higher the boiling point of the first gas, the higher the temperature for preparing the quantum dot light-emitting layer.
  • an electron transport material ink is printed on the surface of the substrate to prepare an electron transport layer, and a better improved current carrying current of the electron transport layer can be obtained The effect of sub-transmission performance.
  • the inert atmosphere is a helium atmosphere, a neon atmosphere, an argon atmosphere, a krypton atmosphere, or a nitrogen atmosphere.
  • step S03 another film layer is prepared on the electron transport layer to prepare a quantum dot light-emitting diode, and the quantum dot light-emitting diode includes at least the following structure: an anode and a cathode that are oppositely disposed are provided in the The quantum dot light-emitting layer between the anode and the cathode is provided in the electron transport layer between the quantum dot light-emitting layer and the cathode.
  • the substrate includes: an anode substrate, a quantum dot light-emitting layer provided on the anode substrate, after preparing the electron transport layer, the electron transport layer faces away from the anode On one side.
  • the selection of the cathode is as described above.
  • an electron injection layer is prepared on the side of the electron transport layer facing away from the anode, and the selection of the electron injection layer is as described above.
  • the substrate when the substrate includes a cathode substrate, after preparing the electron transport layer A quantum dot light emitting layer is prepared on the side of the electron transport layer facing away from the cathode, and an anode is prepared on the surface of the quantum dot light emitting layer facing away from the cathode.
  • the selection of the quantum dot light emitting layer and the anode is as described above.
  • a quantum dot light emitting layer is prepared.
  • the selection of the hole blocking layer is as described above.
  • an anode is prepared.
  • the selection of the hole functional layer is as described above.
  • a method for manufacturing a quantum dot light emitting diode includes the following steps:
  • a glass substrate provided with an anode (ITO) is provided, and a hole injection layer (PEDOT:
  • a hole transport layer (TFB) is prepared on the side of the hole injection layer facing away from the anode, and a quantum dot light emitting layer (CdSe/ZnS QDs) is prepared on the side of the hole transport layer facing away from the anode;
  • the substrate is placed in an inert atmosphere containing methyl methacrylate, under the condition of an ambient temperature of 40 ° C, an electron transport material ink is printed on the surface of the quantum dot light emitting layer to prepare an electron transport layer (ZnO) ;
  • an electron transport layer ZnO
  • the molar percentage of methyl methacrylate is 0.1%;
  • An electron injection layer (LiF) is prepared on the surface of the electron transport layer facing away from the anode, and an aluminum cathode is prepared on the surface of the electron injection layer facing away from the anode.
  • a method for preparing a quantum dot light-emitting diode is different from Example 1 in that the molar percentage of methyl methacrylate is 0.05%.
  • a method for preparing a quantum dot light-emitting diode is different from Example 1 in that the molar percentage of methyl methacrylate is 0.025%.
  • a method for preparing a quantum dot light emitting diode which is different from Example 1 in that: an electron transport material ink is directly printed on the surface of a quantum dot light emitting layer under an ambient temperature of 40° C. to prepare an electron transport Layer (ZnO), which does not contain "Place the substrate in an inert atmosphere containing methyl methacrylate, The condition that the molar percentage of methyl methacrylate is 0.1%".
  • ZnO electron transport Layer
  • a method for manufacturing a quantum dot light emitting diode includes the following steps:
  • a glass substrate provided with an anode (ITO) is provided, and a hole injection layer (PEDOT:
  • a hole transport layer (TFB) is prepared on the side of the hole injection layer facing away from the anode, and a quantum dot light emitting layer (CdSe/ZnS QDs) is prepared on the side of the hole transport layer facing away from the anode;
  • the substrate is placed in an inert atmosphere containing methyl methacrylate, and the electron transport material ink is printed on the surface of the quantum dot light emitting layer under the condition of an ambient temperature of 30° C. to prepare an electron transport layer (ZnO) ;
  • ZnO electron transport layer
  • the molar percentage of methyl methacrylate is 0.05%;
  • An electron injection layer (LiF) is prepared on the surface of the electron transport layer facing away from the anode, and an aluminum cathode is prepared on the surface of the electron injection layer facing away from the anode.
  • a method for preparing a quantum dot light emitting diode the difference from Example 4 lies in: at ambient temperature Under the condition of 40°C, the electron transport material ink is printed on the surface of the quantum dot light emitting layer to prepare an electron transport layer (ZnO); wherein, the molar percentage of methyl methacrylate is 0.05%.
  • a method for preparing a quantum dot light-emitting diode is different from Example 4 in that: under the condition of an ambient temperature of 50° C., an electron transport material ink is printed on the surface of the quantum dot light-emitting layer to prepare an electron transport layer (ZnO); where, the molar percentage of methyl methacrylate is 0.05%.
  • a method for preparing a quantum dot light-emitting diode is different from Example 4 in that: under the condition of an ambient temperature of 60° C., an electron transport material ink is printed on the surface of the quantum dot light-emitting layer to prepare an electron transport layer (ZnO); where, the molar percentage of methyl methacrylate is 0.05%.
  • a method for preparing a quantum dot light emitting diode which is different from Example 4 in that: under the condition of an ambient temperature of 70° C., an electron transport material ink is printed on the surface of the quantum dot light emitting layer to prepare an electron transport layer (ZnO); where, the molar percentage of methyl methacrylate is 0.05%.
  • a method for preparing a quantum dot light emitting diode includes the following steps:
  • a glass substrate provided with an anode (ITO) is provided, and a hole injection layer is prepared on the anode (PEDOT:
  • a hole transport layer (TFB) is prepared on the side of the hole injection layer facing away from the anode.
  • a quantum dot light emitting layer (CdSe/ZnS QDs) is prepared on the side of the hole transport layer facing away from the anode.
  • the electron transport material ink is printed on the surface of the quantum dot light emitting layer to prepare an electron transport layer (ZnO);
  • An electron injection layer (LiF) was prepared on the surface of the electron transport layer facing away from the anode, and an aluminum cathode was prepared on the surface of the electron injection layer facing away from the anode.
  • a method for preparing a quantum dot light-emitting diode which is different from Comparative Example 2 in that: under an ambient temperature of 40° C., an electron transport material ink is printed on the surface of the quantum dot light-emitting layer to prepare an electron transport layer
  • Comparative Example 4 A preparation method of a quantum dot light-emitting diode is different from that of Comparative Example 2 in that: under an ambient temperature of 50° C., an electron transport material ink is printed on the surface of the quantum dot light-emitting layer to prepare an electron transport layer
  • a preparation method of a quantum dot light-emitting diode is different from that of Comparative Example 2 in that: under an ambient temperature of 60° C., an electron transport material ink is printed on the surface of the quantum dot light-emitting layer to prepare an electron transport layer
  • a method for preparing a quantum dot light-emitting diode is different from Comparative Example 2 in that: under the condition of an ambient temperature of 70° C., an electron transport material ink is printed on the surface of the quantum dot light-emitting layer to prepare an electron transport layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点发光二极管的制备方法,包括以下步骤:提供基板,基板为阴极基板;或基板为设置有量子点发光层的阳极基板,且量子点发光层设置在阳极基板的阳极表面;将基板置于含有第一气体的惰性气氛中,在基板表面打印电子传输材料墨水,制备电子传输层;在电子传输层上制备其它膜层,制备得到量子点发光二极管。量子点发光二极管至少包括以下结构:相对设置的阳极和阴极,设置在阳极和阴极之间的量子点发光层,设置在量子点发光层与阴极之间的电子传输层。

Description

量子点发光二极管的制备方法
[0001] 本申请要求于 2018年 12月 29日在中国专利局提交的、 申请号为 201811635964.8 、 申请名称为“量子点发光二极管的制备方法”的中囯专利申请的优先权, 其全部 内容通过引用结合在本申请中。
技术领域
[0002] 本申请涉及显示技术领域, 具体涉及一种量子点发光二极管的制备方法。
背景技术
[0003] 量子点 (quantum
dots) , 又称半导体纳米晶, 其三维尺寸均在纳米范围内 (l-100nm) , 是一种 介于体相材料和分子间的纳米颗粒论。 量子点具有量子产率高、 摩尔消光系数 大、 光稳定性好、 窄半峰宽、 宽激发光谱和发射光谱可控等优异的光学性能, 非常适合用作发光器件的发光材料。 近年来, 量子点荧光材料由于其光色纯度 高、 发光颜色可调、 使用寿命长等优点, 广泛被看好用于平板显示领域, 成为 极具潜力的下一代显示和固态照明光源。 量子点发光二极管 (Quantum Dot Light Emitting Diodes QLED)是基于量子点材料作为发光材料的发光器件, 由于其具有 波长可调、 发射光谱窄、 稳定性高、 电致发光量子产率高等优点, 成为下一代 显示技术的有力竞争者。
[0004] 然而, 目前的量子点发光二极管的制备方法, 仍有待改进。
发明概述
技术问题
[0005] 发明人发现, 溶液加工法是制备 QLED器件的常见方法, 特别是随着技术的发 展, 采用喷墨打印技术制备量子点发光层变得常规。 喷墨打印技术制备电子传 输层时, 对电子传输层墨水的要求较高, 既要保证其具有较好的可打印性, 还 要具有较好的溶液稳定性。 但是, 量子点发光二极管器件效率和墨水打印性常 常难以兼顾, 打印性较好的墨水器件效率通常不高。
[0006] 本申请实施例的目的之一在于: 提供一种量子点发光二极管的制备方法, 旨在 解决喷墨打印电子传输层吋, 量子点发光二极管器件效率和墨水打印性常常难 以兼顾, 打印性较好的墨水器件效率不高的问题。
问题的解决方案
技术解决方案
[0007] 为解决上述技术问题, 本申请实施例采用的技术方案是:
[0008] 第一方面, 提供了一种量子点发光二极管的制备方法, 包括以下步骤:
[0009] 提供基板, 将所述基板置于含有第一气体的惰性气氛环境中, 在所述基板表面 打印电子传输材料墨水, 制备电子传输层, 所述第一气体选自商化胺气体、 酯 类气体和有机碱气体中的一种或两种以上的组合。
[0010] 在一个实施例中, 所述商化胺气体选自氟化铵气体、 氯化铵气体和碘化铵气体 中的一种或多种;
[0011] 所述酯类气体选自甲基丙烯酸甲酯气体、 丁烯酸乙酯气体、 乙酸乙酯气体苯甲 酸甲酯气体中的一种或多种;
[0012] 所述有机碱选自乙醇胺气体、 四甲基氢氧化铵气体、 苯胺气体和三乙醇胺气体 中的一种或多种。
[0013] 在一个实施例中, 所述电子传输材料墨水中的电子传输材料选自 ZnO、 Ti0 2 、 SnO 2、 Ta 20 3、 ZrO 2
、 NiO、 TiLiO、 ZnAlO、 ZnMgO、 ZnSnO、 ZnLiO和 InSnO中的一种或多种。
[0014] 在一个实施例中, 所述第一气体占整体气体气氛的摩尔百分含量为 0.001%-20%
[0015] 在一个实施例中, 所述第一气体占整体气体气氛的摩尔百分含量为 0.005%-3%
[0016] 在一个实施例中, 所述第一气体占整体气体气氛的摩尔百分含量为 0.01%-0.1%
[0017] 在一个实施例中, 其特征在于, 所述第一气体选自商化胺气体、 酯类气体和有 机碱气体中两种以上的组合。
[0018] 在一个实施例中, 所述第一气体选自一种或多种酯类气体和一种或多种有机碱 气体的组合; 或 [0019] 所述第一气体选自不饱和脂肪酸中的至少一种与有机碱中的至少一种组成的混 合第一气体。
[0020] 在一个实施例中, 将所述基板置于含有第一气体的惰性气氛中, 在温度为 10°C -80°C的条件下, 在所述基板表面打印电子传输材料墨水, 制备电子传输层。
[0021] 在一个实施例中, 将所述基板置于含有第一气体的惰性气氛中, 在温度为 30°C
-50°C的条件下, 在所述基板表面打印电子传输材料墨水, 制备电子传输层。
[0022] 在一个实施例中, 所述惰性气氛为氦气气氛、 氖气气氛、 氩气气氛、 氪气气氛 或氮气气氛。
[0023] 在一个实施例中, 所述基板为设置有量子点发光层的阳极基板, 包括: 阳极基 板, 设置在所述阳极基板上的量子点发光层; 在所述量子点发光层背离所述阳 极基板的表面制备所述电子传输层。
[0024] 在一个实施例中, 还包括: 在所述阳极表面制备空穴功能层的步骤, 且所述空 穴功能层包括空穴注入层、 空穴传输层、 电子阻挡层中的至少一层。
[0025] 在一个实施例中, 所述基板为阴极基板, 所述阴极基板包括衬底, 以及设置在 所述衬底上的阴极; 在所述阴极背离所述衬底的表面制备所述电子传输层。
[0026] 在一个实施例中, 在制备所述电子传输层之前, 在所述阴极表面制备电子注入 层。
[0027] 本申请实施例提供的量子点发光二极管的制备方法的有益效果在于: 改变喷墨 打印成膜氛围, 在含有第一气体的惰性气氛中制备电子传输层, 可以在保证电 子传输材料墨水打印性的同吋, 提高量子点发光二极管的器件效率。
发明的有益效果
对附图的简要说明
附图说明
[0028] 为了更清楚地说明本申请实施例中的技术方案, 下面将对实施例或示范性技术 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其它的附图。
[0029] 图 1是本申请一实施例提供的量子点发光二极管的制备方法流程图。 发明实施例
本发明的实施方式
[0030] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本申请进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以 解释本申请, 并不用于限定本申请。
[0031] 需说明的是, 术语“第一”、 “第二”仅用于描述目的, 而不能理解为指示或暗示 相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有“第一”、 “第 二”的特征可以明示或者隐含地包括一个或者更多个该特征。 在本申请的描述中 , “多个”的含义是两个或两个以上, 除非另有明确具体的限定。
[0032] 为了说明本申请所述的技术方案, 以下结合具体附图及实施例进行详细说明。
[0033] 如图 1所示, 本申请一些实施例提供一种量子点发光二极管的制备方法, 包括 以下步骤:
[0034] 提供基板, 将所述基板置于含有第一气体的惰性气氛环境中, 在所述基板表面 打印电子传输材料墨水, 制备电子传输层, 所述第一气体选自商化胺气体、 酯 类气体和有机碱气体中的一种或两种以上的组合。
[0035] 具体的, 量子点发光二极管分正型结构和反型结构。 正型结构包括层叠设置的 阳极、 阴极和设置在阳极和阴极之间的量子点发光层, 正型结构的阳极设置在 衬底上, 在阳极和量子点发光层之间还可以设置空穴传输层、 空穴注入层和电 子阻挡层等空穴功能层, 在阴极和量子点发光层之间还可以设置电子传输层、 电子注入层和空穴阻挡层等电子功能层。 反型结构包括层叠设置的阳极、 阴极 和设置在阳极和阴极之间的量子点发光层, 反型结构的阴极设置在衬底上, 在 阳极和量子点发光层之间还可以设置空穴传输层、 空穴注入层和电子阻挡层等 空穴功能层, 在阴极和量子点发光层之间还可以设置电子传输层、 电子注入层 和空穴阻挡层等电子功能层。
[0036] 对于正型器件而言, 本申请的实施例的基板可以仅为衬底和设置在衬底上的阳 极和量子点发光层层叠形成的两层结构。 本申请的一些实施例中, 在一些实施 方式中还可以在阳极和量子点发光层之间设置空穴传输层、 空穴注入层和电子 阻挡层等一层或多层空穴功能层形成本申请实施例的基板。 [0037] 具体地, 在一种实施方式中, 所述基板为设置有量子点发光层的阳极基板, 包 括: 阳极基板, 设置在所述阳极基板上的量子点发光层。 此时, 所述基板可以 通过下述方法制备: 提供设置有阳极的基板即阳极基板, 在所述阳极表面制备 量子点发光层, 在所述量子点发光层表面制备电子传输层。
[0038] 其中, 所述阳极基板包括衬底, 以及设置在所述衬底上的阳极。 所述衬底的选 择没有严格限制, 可以采用硬质衬底, 如玻璃衬底; 也可以采用柔性衬底, 如 聚酰亚胺衬底、 聚降冰片烯衬底, 但不限于此。 在一些实施例中, 所述阳极可 以选用 ITO , 但不限于此。
[0039] 在一些实施例中, 采用溶液加工法在所述阳极上沉积量子点溶液, 制备量子点 发光层。 本申请的一些实施例中, 采用喷墨打印方法在所述底电极上沉积量子 点墨水, 制备量子点发光层。 本申请实施例中, 所述量子点发光层中的量子点 为本领域常规的量子点。 在一些实施例中, 所述量子点发光层的厚度为 30-50nm
[0040] 在上述实施例的基础上, 为了获得更佳的器件性能, 可以引入其他功能层。
[0041] 在一些实施例中, 在所述阳极表面制备空穴功能层 (所述空穴功能层设置在所 述阳极与所述量子点发光层之间) 的步骤。 所述空穴功能层包括空穴注入层、 空穴传输层、 电子阻挡层中的至少一层。 其中, 所述空穴注入层、 空穴传输层 用于降低空穴注入难度, 所述电子阻挡层用于阻挡过量的电子, 使过量的电子 不能到达阳极形成漏电流, 从而提高量子点发光二极管的电流效率。 在本申请 一些实施例中, 当阳极设置所述基板上形成阳极基板吋, 在制备量子点发光层 之前, 还包括: 在所述基板的阳极表面制备空穴注入层, 在所述空穴注入层背 离所述阳极的一侧制备空穴传输层的步骤。 其中, 所述空穴注入层的材料可以 采用常规的空穴注入材料, 包括但不限于 PEDOT:PSS。 所述空穴传输层的材料 可以采用常规的空穴传输材料, 包括但不限于 NPB、 TFB等有机材料, 以及 NiO 、 Mo0 3等无机材料及其复合物, 所述空穴传输层的厚度为 KMOOnm。
[0042] 当制备的所述量子点发光二极管为反型器件时, 本申请的实施例的基板可以仅 衬底和设置在衬底上的阴极。 本申请的一些实施例中, 在所述阴极和电子传输 层之间还可以设置电子注入层。 [0043] 具体的, 所述基板为阴极基板, 所述阴极基板包括衬底, 以及设置在所述衬底 上的阴极极。 所述衬底的选择如上文所述。 在一些实施例中, 所述阴极可以选 用金属电极, 包括但不限于银电极、 铝电极。 所述阴极的厚度为 60-120nm, 具 体为 100nm。
[0044] 在上述实施例的基础上, 为了获得更佳的器件性能, 可以引入其他功能层。
[0045] 在一些实施例中, 在制备电子传输层之前, 在所述阴极表面制备电子注入层。
其中, 所述电子注入层、 电子传输层用于降低电子注入难度, 所述空穴阻挡层 用于阻挡过量的空穴, 使过量的空穴不能到达阴极形成漏电流, 从而提高量子 点发光二极管的电流效率。 在本申请一些实施例中, 在制备电子传输层之前, 还包括: 在所述阴极表面制备电子注入层。 所述电子注入层的材料可以采用常 规的电子穴注入材料, 包括但不限于 LiF、 CsF, 所述电子传输层的厚度为 10-100 nm。 所述电子传输层的材料可以采用常规的电子传输材料, 包括但不限于所述 电子传输材料墨水中的电子传输材料选自 ZnO、 Ti0 2、 Sn0 2、 Ta 20 3、 ZrO 2 、 NiO、 TiLiO、 ZnAlO、 ZnMgO、 ZnSnO、 ZnLiO和 InSnO中的一种或多种, 优 选为氧化锌, 所述电子传输层的厚度为 10-100nm。
[0046] 将所述基板置于含有第一气体的惰性气氛中, 改变喷墨打印成膜氛围, 在含有 第一气体的惰性气氛中制备电子传输层, 可以在保证电子传输材料墨水打印性 的同吋, 提高量子点发光二极管的器件效率。
[0047] 在一些实施例中, 所述第一气体选自商化胺气体、 酯类气体、 有机碱气体中的 一种或两种以上的组合。
[0048] 在一些实施例中, 所述商化胺气体选自氟化铵气体、 氯化铵气体和碘化铵气体 中的一种或多种。 在一些实施例中, 所述酯类选自甲基丙烯酸甲酯气体、 丁烯 酸乙酯气体、 乙酸乙酯气体和苯甲酸甲酯气体中的一种或多种。 在一些实施例 中, 所述有机碱气体选自乙醇胺气体、 四甲基氢氧化铵气体、 苯胺和三乙醇胺 气体中的一种或多种。
[0049] 在一些实施例中, 所述第一气体选自商化胺气体、 酯类气体和有机碱气体中两 种以上的组合。 在一些实施例中, 所述第一气体选自不饱和脂肪酸中的至少一 种与有机碱中的至少一种组成的混合第一气体。 [0050] 在上述实施例的基础上, 所述第一气体占整体气体气氛的摩尔百分含量的 0.001 %-20%。 若所述第一气体的含量过高, 高于 20%, 会导致影响电子传输层材料性 會 g, 此外, 当基板上已经趁机由量子点发光层时, 在高第一气体含量条件下, 量子点发光层中的量子点淬灭, 影响量子点发光性能。 本申请的一些实施例中 , 所述第一气体占整体气体气氛的摩尔百分含量的 0.005%-3%以下, 从而使得喷 墨打印制备的电子传输层兼具较好的打印性和发光性能。 本申请的一些实施例 中, 所述第一气体占整体气体气氛的摩尔百分含量的 0.01 %-0.1 %以下。
[0051] 本申请实施例中, 在所述基板表面打印电子传输材料墨水的方法采用常规的喷 墨打印法, 电子传输材料墨水采用常规的电子传输材料墨水, 此处不作限定。
[0052] 将所述基板置于含有第一气体的惰性气氛中, 在所述基板表面电子传输材料墨 水, 制备电子传输层的步骤, 在温度为 10°C-80°C的条件下进行, 可以提高第一 气体改善电子传输层载流子传输性能的效果。 具体的, 制备电子传输层的温度 , 根据所选择的第一气体的类型来确定。 所述第一气体的沸点越高, 制备量子 点发光层的温度相对越高。 本申请的一些实施例中, 在温度为 30°C-50°C的条件 下进行, 在所述基板表面打印电子传输材料墨水, 制备电子传输层, 可以获得 较佳的改善电子传输层载流子传输性能的效果。
[0053] 本申请实施例中, 所述惰性气氛为氦气气氛、 氖气气氛、 氩气气氛、 氪气气氛 或氮气气氛。
[0054] 上述步骤 S03中, 在所述电子传输层上制备其它膜层, 制备量子点发光二极管 , 且使得所述量子点发光二极管至少包括以下结构: 相对设置的阳极和阴极, 设置在所述阳极和所述阴极之间的量子点发光层, 设置在所述量子点发光层与 所述阴极之间的电子传输层。
[0055] 作为一种实施方法, 当所述基板包括: 阳极基板, 设置在所述阳极基板上的量 子点发光层吋, 在制备完电子传输层后, 在所述电子传输层背离所述阳极的一 侧制备阴极。 所述阴极的选择如前文所述。
[0056] 本申请的一些实施例中, 在制备阴极之前, 在所述电子传输层背离所述阳极的 一侧制备电子注入层, 所述电子注入层的选择如前文所述。
[0057] 作为另一种实施方式, 当所述基板包括为阴极基板吋, 在制备完电子传输层后 , 在所述电子传输层背离所述阴极的一侧制备量子点发光层, 在所述量子点发 光层背离所述阴极的表面制备阳极。 所述量子点发光层、 所述阳极的选择如前 文所示。
[0058] 在一些实施例中, 在所述电子传输层背离所述阴极的一侧制备空穴阻挡层后, 制备量子点发光层。 所述空穴阻挡层的选择如前文所述。
[0059] 在一些实施例中, 在所述量子点发光层背离所述阴极的表面制备空穴功能层后 , 制备阳极。 所述空穴功能层的选择如前文所述。
[0060] 下面结合具体实施例进行说明。
[0061] 实施例 1
[0062] 一种量子点发光二极管的制备方法, 包括以下步骤:
[0063] 提供设置有阳极 (ITO) 的玻璃基板, 在所述阳极上制备空穴注入层 (PEDOT:
PSS) , 在空穴注入层背离阳极一侧制备空穴传输层 (TFB) , 在空穴传输层背 离阳极一侧制备量子点发光层 (CdSe/ZnS QDs) ;
[0064] 将所述基板置于含有甲基丙烯酸甲酯的惰性气氛中, 在环境温度为 40°C的条件 下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层 (ZnO) ; 其 中, 甲基丙烯酸甲酯的摩尔百分含量为 0.1% ;
[0065] 在电子传输层背离所述阳极的表面制备电子注入层 (LiF) , 电子注入层背离 所述阳极的表面制备铝阴极。
[0066] 实施例 2
[0067] 一种量子点发光二极管的制备方法, 与实施例 1的不同之处在于: 甲基丙烯酸 甲酯的摩尔百分含量为 0.05%。
[0068] 实施例 3
[0069] 一种量子点发光二极管的制备方法, 与实施例 1的不同之处在于: 甲基丙烯酸 甲酯的摩尔百分含量为 0.025%。
[0070] 对比例 1
[0071] 一种量子点发光二极管的制备方法, 与实施例 1的不同之处在于: 直接在环境 温度为 40°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传 输层 (ZnO) , 即不含有“将所述基板置于含有甲基丙烯酸甲酯的惰性气氛中, 甲基丙烯酸甲酯的摩尔百分含量为 0.1%”的条件。
[0072] 分别检测实施例 1-3、 对比例 1制备的量子点发光二极管通电熟化后的外量子效 率变化(%), 结果如下表 1所不。
[0073] 表 1
[]
[] [表 1]
Figure imgf000011_0001
[0074] 由上表 1可以看到, 相比对比例 1中在喷墨打印制备量子点发光二极管时, 未经 甲基丙烯酸甲酯第一气体处理的量子点发光二极管器件, 本申请实施例 1-3经过 甲基丙烯酸甲酯处理的器件外量子效率普遍有效提高, 当甲基丙烯酸甲酯在整 体氛围中的摩尔比分别为 0.05%时, 外量子效率提高最大。
[0075] 实施例 4
[0076] 一种量子点发光二极管的制备方法, 包括以下步骤:
[0077] 提供设置有阳极 (ITO) 的玻璃基板, 在所述阳极上制备空穴注入层 (PEDOT:
PSS) , 在空穴注入层背离阳极一侧制备空穴传输层 (TFB) , 在空穴传输层背 离阳极一侧制备量子点发光层 (CdSe/ZnS QDs) ;
[0078] 将所述基板置于含有甲基丙烯酸甲酯的惰性气氛中, 在环境温度为 30°C的条件 下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层 (ZnO) ; 其 中, 甲基丙烯酸甲酯的摩尔百分含量为 0.05%;
[0079] 在电子传输层背离所述阳极的表面制备电子注入层 (LiF) , 电子注入层背离 所述阳极的表面制备铝阴极。
[0080] 实施例 5
[0081] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 40°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层 (ZnO) ; 其中, 甲基丙烯酸甲酯的摩尔百分含量为 0.05%。
[0082] 实施例 6
[0083] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 50°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层 (ZnO) ; 其中, 甲基丙烯酸甲酯的摩尔百分含量为 0.05%。
[0084] 实施例 7
[0085] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 60°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层 (ZnO) ; 其中, 甲基丙烯酸甲酯的摩尔百分含量为 0.05%。
[0086] 实施例 8
[0087] 一种量子点发光二极管的制备方法, 与实施例 4的不同之处在于: 在环境温度 为 70°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层 (ZnO) ; 其中, 甲基丙烯酸甲酯的摩尔百分含量为 0.05%。
[0088] 对比例 2
[0089] 一种量子点发光二极管的制备方法, 包括以下步骤:
[0090] 提供设置有阳极 (ITO) 的玻璃基板, 在所述阳极上制备空穴注入层 (PEDOT:
PSS) 在空穴注入层背离阳极一侧制备空穴传输层 (TFB) 在空穴传输层背 离阳极一侧制备量子点发光层 (CdSe/ZnS QDs) ;
[0091] 在环境温度为 30°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制 备电子传输层 (ZnO) ;
[0092] 在电子传输层背离所述阳极的表面制备电子注入层 (LiF) 电子注入层背离 所述阳极的表面制备铝阴极。
[0093] 对比例 3
[0094] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 40°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层
(ZnO) 。
[0095] 对比例 4 [0096] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 50°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层
(ZnO) - [0097] 对比例 5
[0098] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 60°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层
(ZnO)
[0099] 对比例 6
[0100] 一种量子点发光二极管的制备方法, 与对比例 2的不同之处在于: 在环境温度 为 70°C的条件下, 在量子点发光层表面打印电子传输材料墨水, 制备电子传输层
(ZnO)
[0101] 分别测试实施例 4-8、 对比例 2-6的量子点发光二极管的器件寿命 (T50@ lOOnits- hrs) , 如下表 2所示。
[0102] 表 2
[]
[]
[表 2]
Figure imgf000014_0001
[0103] 由上表 2可见, 在相同的温度条件下, 采用相同的喷墨打印方法制备电子传输 层时, 经甲基丙烯酸甲酯第一气体处理的量子点发光二极管器件寿命提高。 而 实施例 4-8中, 在 40°C低温干燥时, 器件寿命较长。
[0104] 以上仅为本申请的可选实施例而已, 并不用于限制本申请。 对于本领域的技术 人员来说, 本申请可以有各种更改和变化。 凡在本申请的精神和原则之内, 所 作的任何修改、 等同替换、 改进等, 均应包含在本申请的权利要求范围之内。

Claims

权利要求书
[权利要求 1] 量子点发光二极管的制备方法, 其特征在于, 包括以下步骤:
提供基板, 将所述基板置于含有第一气体的惰性气氛环境中, 在所述 基板表面打印电子传输材料墨水, 制备电子传输层, 所述第一气体选 自卤化胺气体、 酯类气体和有机碱气体中的一种或两种以上的组合。
[权利要求 2] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述南化胺气体选自氟化铵气体、 氯化铵气体和碘化铵气体中的一种 或多种。
[权利要求 3] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述酯类气体选自甲基丙烯酸甲酯气体、 丁烯酸乙酯气体、 乙酸乙酯 气体苯甲酸甲酯气体中的一种或多种。
[权利要求 4] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述有机碱选自乙醇胺气体、 四甲基氢氧化铵气体、 苯胺气体和三乙 醇胺气体中的一种或多种。
[权利要求 5] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述电子传输材料墨水中的电子传输材料选自 ZnO、 TiO 2、 Sn0 2 、 Ta 20 3、 ZrO 2
、 NiO、 TiLiO、 ZnAlO、 ZnMgO、 ZnSnO、 ZnLiO和 InSnO中的一种 或多种。
[权利要求 6] 根据权利要求 1所述的量子点发光二极管的制备方法, 其特征在于, 所述第一气体占整体气体气氛的摩尔百分含量为 0.001%-20%。
[权利要求 7] 根据权利要求 6所述的量子点发光二极管的制备方法, 其特征在于, 所述第一气体占整体气体气氛的摩尔百分含量为 0.005%-3%。
[权利要求 8] 根据权利要求 7所述的量子点发光二极管的制备方法, 其特征在于, 所述第一气体占整体气体气氛的摩尔百分含量为 0.01 %-0.1 %。
[权利要求 9] 根据权利要求 1至 8任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述第一气体选自商化胺气体、 醋类气体和有机碱气体中两 种以上的组合。
[权利要求 10] 根据权利要求 9所述的量子点发光二极管的制备方法, 其特征在于, 所述第一气体选自一种或多种酯类气体和一种或多种有机碱气体的组 合。
[权利要求 11] 根据权利要求 9所述的量子点发光二极管的制备方法, 其特征在于, 所述第一气体选自不饱和脂肪酸中的至少一种与有机碱中的至少一种 组成的混合第一气体。
[权利要求 12] 根据权利要求 1至 8任一项所述的量子点发光二极管的制备方法, 其特 征在于, 将所述基板置于含有第一气体的惰性气氛中, 在温度为 10°C -80°C的条件下, 在所述基板表面打印电子传输材料墨水, 制备电子 传输层。
[权利要求 13] 根据权利要求 12所述的量子点发光二极管的制备方法, 其特征在于 , 将所述基板置于含有第一气体的惰性气氛中, 在温度为 30°C-50°C 的条件下, 在所述基板表面打印电子传输材料墨水, 制备电子传输层
[权利要求 14] 根据权利要求 1至 8任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述惰性气氛为氮气气氛、 氖气气氛、 氩气气氛、 氯气气氛 或氮气气氛。
[权利要求 15] 根据权利要求 1至 8任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述基板为设置有量子点发光层的阳极基板, 包括: 阳极基 板, 设置在所述阳极基板上的量子点发光层; 在所述量子点发光层背 离所述阳极基板的表面制备所述电子传输层。
[权利要求 16] 根据权利要求 15所述的量子点发光二极管的制备方法, 其特征在于, 还包括: 在所述阳极表面制备空穴功能层的步骤, 且所述空穴功能层 包括空穴注入层、 空穴传输层、 电子阻挡层中的至少一层。
[权利要求 17] 根据权利要求 1至 8任一项所述的量子点发光二极管的制备方法, 其特 征在于, 所述基板为阴极基板, 所述阴极基板包括衬底, 以及设置在 所述衬底上的阴极; 在所述阴极背离所述衬底的表面制备所述电子传 输层。 [权利要求 18] 根据权利要求 17所述的量子点发光二极管的制备方法, 其特征在于, 在制备所述电子传输层之前, 在所述阴极表面制备电子注入层。
PCT/CN2019/106141 2018-12-29 2019-09-17 量子点发光二极管的制备方法 WO2020134206A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/419,670 US20220073818A1 (en) 2018-12-29 2019-09-17 Method for preparing quantum dot light-emitting diodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811635964.8A CN111384306B (zh) 2018-12-29 2018-12-29 量子点发光二极管的制备方法
CN201811635964.8 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134206A1 true WO2020134206A1 (zh) 2020-07-02

Family

ID=71127571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106141 WO2020134206A1 (zh) 2018-12-29 2019-09-17 量子点发光二极管的制备方法

Country Status (3)

Country Link
US (1) US20220073818A1 (zh)
CN (1) CN111384306B (zh)
WO (1) WO2020134206A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728413A (zh) * 2004-12-21 2006-02-01 中国科学院长春光学精密机械与物理研究所 有机微腔白色发光二极管
US20080238294A1 (en) * 2007-03-30 2008-10-02 The Penn State Research Foundation Mist fabrication of quantum dot devices
US20150287927A1 (en) * 2012-10-10 2015-10-08 Konica Minolta, Inc. Electroluminescence element
CN106281311A (zh) * 2016-08-27 2017-01-04 厦门世纳芯科技有限公司 一种合金量子点及其制备方法、电致发光二极管和光致发光二极管
CN107083238A (zh) * 2017-06-12 2017-08-22 广州琉芯光电科技有限公司 一种多元量子点及其制备方法以及柔性显示器件
US20180073702A1 (en) * 2016-09-15 2018-03-15 Nanosys, Inc. Architectural Window with Built-In QLED Lighting

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995371B1 (ko) * 2008-04-03 2019-07-02 삼성 리서치 아메리카 인코포레이티드 양자점들을 포함하는 발광 소자
DE102008064200A1 (de) * 2008-12-22 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
CN101540379A (zh) * 2009-04-24 2009-09-23 电子科技大学 一种有机电致发光器件的制备方法
JP5758647B2 (ja) * 2011-02-17 2015-08-05 日東電工株式会社 光学用粘着シート
CN103772872B (zh) * 2013-12-27 2016-06-01 Tcl集团股份有限公司 量子点/丙烯酸酯聚合物纳米晶体复合物及制备方法和彩色转化膜
CN104409661A (zh) * 2014-11-07 2015-03-11 南京邮电大学 一种互补色磷光白光oled器件及其制备方法
JP2017079319A (ja) * 2015-03-19 2017-04-27 宇部興産株式会社 ベンゾビス(チアジアゾール)誘導体を用いた有機トランジスタ、及びそれを用いた有機エレクトロニクスデバイス
CN108474115B (zh) * 2015-12-24 2021-04-23 株式会社Flosfia 成膜方法
CN106299159B (zh) * 2016-08-25 2018-11-09 纳晶科技股份有限公司 金属氧化物纳米颗粒的制备方法及量子点电致发光器件
CN106565781B (zh) * 2016-10-20 2020-04-24 中山大学 含有膦的二苯酮类有机发光材料及其合成方法与应用
CN106384768B (zh) * 2016-11-18 2019-04-16 Tcl集团股份有限公司 一种ZnON、QLED器件及其制备方法
CN108767125B (zh) * 2018-05-21 2019-07-05 电子科技大学 一种qd-3d-qd发光层钙钛矿发光二极管及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728413A (zh) * 2004-12-21 2006-02-01 中国科学院长春光学精密机械与物理研究所 有机微腔白色发光二极管
US20080238294A1 (en) * 2007-03-30 2008-10-02 The Penn State Research Foundation Mist fabrication of quantum dot devices
US20150287927A1 (en) * 2012-10-10 2015-10-08 Konica Minolta, Inc. Electroluminescence element
CN106281311A (zh) * 2016-08-27 2017-01-04 厦门世纳芯科技有限公司 一种合金量子点及其制备方法、电致发光二极管和光致发光二极管
US20180073702A1 (en) * 2016-09-15 2018-03-15 Nanosys, Inc. Architectural Window with Built-In QLED Lighting
CN107083238A (zh) * 2017-06-12 2017-08-22 广州琉芯光电科技有限公司 一种多元量子点及其制备方法以及柔性显示器件

Also Published As

Publication number Publication date
US20220073818A1 (en) 2022-03-10
CN111384306A (zh) 2020-07-07
CN111384306B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2018218741A1 (zh) Oled显示面板的制作方法及oled显示面板
WO2019075856A1 (zh) 钙钛矿发光二极管及其制作方法
WO2018218740A1 (zh) Oled显示面板的制作方法及oled显示面板
CN109244256B (zh) 高效非掺杂超薄发光层热活化延迟荧光有机发光二极管及其制备方法
Chen et al. Interface dipole for remarkable efficiency enhancement in all-solution-processable transparent inverted quantum dot light-emitting diodes
CN111384268B (zh) 量子点发光二极管的制备方法及量子点墨水
CN105870346A (zh) Led显示屏的制造方法和led显示屏
KR20170108342A (ko) 코어쉘 구조의 나노 입자를 포함하는 발광 소자
WO2020134203A1 (zh) 量子点发光二极管及其制备方法
US11889745B2 (en) QLED manufacturing method
US11549057B2 (en) Quantum dot luminescent material an method of producing thereof
WO2020134202A1 (zh) 量子点发光二极管的制备方法
WO2020134206A1 (zh) 量子点发光二极管的制备方法
WO2021129710A1 (zh) 量子点发光二极管的制备方法
US20220089948A1 (en) Method for preparing quantum dots light-emitting diode
US11063098B2 (en) Method for fabricating display panel having carbon quantum dot layer
CN115491194B (zh) 氧化锌的前驱体溶液及其制备方法与发光器件
JP2013168501A (ja) 有機エレクトロルミネッセンス素子
JP3887269B2 (ja) 有機el表示装置
CN110707239A (zh) 显示面板及其制备方法
WO2022170870A1 (zh) 量子点发光二极管及其制备方法
CN116940150A (zh) 混合物、组合物、薄膜、发光二极管及显示装置
JP2010147275A (ja) 有機el発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902165

Country of ref document: EP

Kind code of ref document: A1