WO2022170870A1 - 量子点发光二极管及其制备方法 - Google Patents

量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2022170870A1
WO2022170870A1 PCT/CN2021/141802 CN2021141802W WO2022170870A1 WO 2022170870 A1 WO2022170870 A1 WO 2022170870A1 CN 2021141802 W CN2021141802 W CN 2021141802W WO 2022170870 A1 WO2022170870 A1 WO 2022170870A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
dot light
emitting diode
electrode
layer
Prior art date
Application number
PCT/CN2021/141802
Other languages
English (en)
French (fr)
Inventor
严怡然
敖资通
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2022170870A1 publication Critical patent/WO2022170870A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present application relates to the field of display technology, and in particular, to a quantum dot light-emitting diode and a preparation method thereof.
  • quantum dot light-emitting diodes Compared with traditional light-emitting diodes, semiconductor quantum dot light-emitting diodes (QLEDs) have the advantages of narrower half-maximum width (FWHM), controllable emission wavelength, and solution preparation and printing. better application prospects.
  • FWHM half-maximum width
  • EQE external quantum efficiency
  • the red and green quantum dot light-emitting diode devices whose external quantum efficiency has been higher than 25%, comparable to organic light-emitting Diodes (OLEDs).
  • OLEDs organic light-emitting Diodes
  • the luminous efficiency and service life of blue quantum dot light-emitting diode devices are still far from those of organic light-emitting diodes.
  • the QLED device structure usually consists of an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode. Electrons and holes are injected from the two ends, respectively, and the light-emitting layer of the quantum dots recombines and emits light.
  • the existing electron transport layer is usually composed of nano-zinc oxide particles, and the functional film layer formed by solution film formation such as spin coating, especially the functional film layer obtained after the nanoparticles are formed into a solution film, the surface of the film layer is prone to more unevenness and irregularity. Defects that affect carrier transport.
  • One of the objectives of the embodiments of the present application is to provide a quantum dot light-emitting diode and a method for preparing the same.
  • a method for preparing a quantum dot light-emitting diode comprising the following steps:
  • the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment to prepare an electron transport layer;
  • a film layer comprising a second electrode is prepared on the surface of the electron transport layer, to obtain a quantum dot light-emitting diode comprising at least a first electrode, a quantum dot light-emitting layer, an electron transport layer and a second electrode.
  • the vapor density of the organic solvent is 0.02-0.03 kg/m 3 .
  • the standing treatment time is 5-30 minutes.
  • the organic solvent is selected from at least one of alcohols, ketones, alkanes, DMF, and DMSO.
  • the alcohols include one or more of methanol, ethanol, isopropanol, butanol, and amyl alcohol.
  • the ketones include at least one of acetone and butanone.
  • the step of placing the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment, including:
  • the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an airtight container containing a liquid organic solvent, and left to stand for treatment under the condition of a gas pressure of 1 atm-1.2 atm.
  • the step of placing the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment, including:
  • the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an environment containing a gaseous organic solvent for standing treatment.
  • the organic solvent has a solubility of 100-200 mg/ml of oxide nanoparticles in the oxide nanoparticle solution.
  • the step of placing the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment, and is performed under heating conditions, And the heating temperature is lower than the solvent temperature of the oxide nanoparticle solution.
  • the prefabricated device includes a first electrode and a quantum dot light-emitting layer, the film layer including the second electrode is a second electrode, wherein the first electrode is an anode, and the second electrode is cathode.
  • the first electrode substrate is a cathode substrate
  • the film layer including the second electrode includes a quantum dot light-emitting layer and a second electrode
  • the second electrode is an anode
  • a quantum dot light-emitting diode comprising at least a cathode and an anode disposed opposite to each other, a quantum dot light-emitting layer disposed between the cathode and the anode, and a quantum dot light-emitting layer disposed between the quantum dot light-emitting layer and the cathode
  • the electron transport layer between the quantum dot light-emitting diodes is obtained by the above-mentioned preparation method of quantum dot light-emitting diodes.
  • the quantum dot light emitting diode further includes a hole functional layer disposed between the anode and the quantum dot light emitting layer.
  • the hole functional layer includes at least one of a hole injection layer, a hole transport layer, and a hole blocking layer.
  • the quantum dot light emitting diode further includes an electron injection layer disposed between the cathode and the electron transport layer.
  • the beneficial effect of the method for preparing a quantum dot light-emitting diode provided by the embodiments of the present application is that the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for static It can enhance the mobility of oxide nanoparticles in the film layer and make the microphase separation structure in the film layer more orderly, thereby improving the surface morphology of the electron transport layer, and improving the electron transport ability and stability.
  • the quantum dot light-emitting diode prepared by the method has improved device efficiency and stability.
  • the beneficial effect of the quantum dot light-emitting diode provided by the embodiments of the present application is that the electron transport layer is fabricated by the above method, so the device efficiency and stability are improved.
  • Fig. 1 is the preparation process flow chart of the quantum dot light-emitting diode provided by the embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a quantum dot light-emitting diode provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an upright quantum dot light-emitting diode provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an inverted quantum dot light-emitting diode provided by an embodiment of the present application.
  • Example 5 is an AFM topography diagram of the electron transport layer provided in Example 2 of the present application.
  • FIG. 7 is a topography diagram of the quantum dot light-emitting diode electroluminescence provided in Example 1 of the present application;
  • FIG. 8 is a topography diagram of the quantum dot light-emitting diode electroluminescence provided in Example 2 of the present application;
  • FIG. 9 is a topography diagram of the quantum dot light-emitting diode electroluminescence provided in Example 3 of the present application.
  • FIG. 10 is a topography diagram of the quantum dot light-emitting diode electric light emission provided in Example 4 of the present application.
  • FIG. 11 is a topography diagram of the quantum dot light-emitting diode electroluminescence provided in Comparative Example 1 of the present application.
  • At least one means one or more
  • plural items means two or more.
  • At least one item(s) below” or similar expressions refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (one) of a, b, or c or “at least one (one) of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.
  • first and second are used for descriptive purposes only, to distinguish objects such as substances, interfaces, messages, requests and terminals from each other, and should not be understood as indicating or implying relative importance or implying that the number of technical characteristics.
  • first XX may also be referred to as the second XX
  • second XX may also be referred to as the first XX.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • the weight of the relevant components mentioned in the description of the examples of this application can not only refer to the specific content of each component, but also can represent the proportional relationship between the weights of the components. It is within the scope disclosed in the description of the embodiments of the present application that the content of the ingredients is scaled up or down.
  • the mass described in the description of the embodiments of the present application may be a mass unit known in the chemical field, such as ⁇ g, mg, g, and kg.
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • AFM Atomic Force Microscope
  • the electron transport layer obtained by the solution method will have uneven surface and defects, which will affect the carrier transport.
  • the embodiments of the present application provide a method for preparing a quantum dot light-emitting diode capable of improving surface defects of a film layer.
  • the method for preparing a quantum dot light-emitting diode includes the following steps:
  • the first electrode substrate or prefabricated device deposited with the oxide nanoparticle solution is placed in an atmosphere of an organic solvent and left to stand for treatment to prepare an electron transport layer;
  • a film layer comprising a second electrode is prepared on the surface of the electron transport layer to obtain a quantum dot light-emitting diode comprising at least a first electrode, a quantum dot light-emitting layer, an electron transport layer and a second electrode.
  • the first electrode substrate or prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment, so as to enhance the presence of oxide nanoparticles in the film.
  • the mobility in the layer makes the arrangement of the microphase separation structure in the film layer more orderly, thereby improving the surface morphology of the electron transport layer, and improving the electron transport capacity and stability.
  • the quantum dot light-emitting diode prepared by the method has improved device efficiency and stability.
  • the first electrode substrate or prefabricated device to be prepared for the electron transport layer is first provided.
  • the quantum dot light emitting diode is an upright structure quantum dot light emitting diode.
  • step S10 an electron transport layer is formed on the surface of the first electrode substrate, and the first electrode substrate is a cathode substrate.
  • the step of depositing the oxide nanoparticle solution on the surface of the first electrode substrate is: depositing the oxide nanoparticle solution on the cathode surface of the cathode substrate.
  • the method before depositing the oxide nanoparticle solution, further includes depositing an electron injection material on the cathode surface of the cathode substrate to prepare an electron injection layer; and depositing the oxide nanoparticle solution on the surface of the electron injection layer facing away from the cathode.
  • the quantum dot light-emitting diode is an inverted structure quantum dot light-emitting diode.
  • an electron transport layer is prepared on the surface of the prefabricated device, and the prefabricated device is a light-emitting device comprising at least an anode and a quantum dot light-emitting layer. structure.
  • the prefabricated device includes an anode substrate, and a quantum dot light-emitting layer bonded to the anode surface of the anode substrate.
  • the prefabricated device includes an anode substrate, and a hole functional layer bound on the anode surface of the anode substrate, and a quantum dot light-emitting layer bound on the surface of the hole functional layer facing away from the anode.
  • the deposition of the oxide nanoparticle solution is achieved by a solution processing method, including but not limited to: spin coating, blade coating, printing, and the like. After the oxide nanoparticle solution is deposited on the surface of the prefabricated device facing away from the first electrode or the surface of the first electrode substrate, without performing annealing treatment, step S20 is directly entered.
  • step S20 it should be noted that in the embodiment of the present application, the surface of the prefabricated device facing away from the first electrode or the surface of the first electrode substrate in a wet state is subjected to solvation treatment, so that the oxide nanoparticles are formed Motion migration occurs in the liquid film of the film, and finally the problem of uneven film layer is improved.
  • the first electrode substrate or prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for static treatment.
  • the oxide nanoparticles in the solution state are in the film layer.
  • the upward motion is increased and self-assembly is carried out to obtain an electron transport prefabricated film with a flat surface.
  • the process of "the oxide nanoparticles existing in the solution state move on the film layer to increase and self-assemble" is also referred to as a solvation process or a solvent annealing process.
  • placing the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment, including: depositing the oxide nanoparticles
  • the first electrode substrate or the prefabricated device of the solution is placed in an airtight container containing a liquid organic solvent, and left to stand for treatment under the condition of a gas pressure of 1 atm-1.2 atm, so that the oxide nanoparticles are self-assembled.
  • the level of air pressure affects the change of the boiling point of the organic solvent, that is, the density of the organic solvent vapor can be controlled within a certain period of time. Too low an organic solvent density environment cannot completely achieve the desired effect of treating the film, and an excessively high organic solvent density environment may affect the film.
  • the film causes damage (affecting the movement or self-assembly of oxide nanoparticles). Therefore, in this embodiment, by controlling the air pressure in the airtight container within the above range, the liquid organic solvent is volatilized and flooded in the airtight environment to promote oxide nanoparticles. Self-assembly occurs in the formed liquid film, improving the surface morphology, especially the flatness, of the electron transport layer.
  • placing the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment, including: depositing the oxide nanoparticle solution
  • the first electrode substrate or the prefabricated device of the oxide nanoparticle solution is placed in an environment containing a gaseous organic solvent for standing treatment, so that the oxide nanoparticles are self-assembled.
  • the self-assembly of oxide nanoparticles in the formed liquid film can be promoted by directly controlling the content of the gaseous organic solvent, and the surface morphology, especially the flatness, of the electron transport layer can be improved.
  • the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in a closed environment containing a gaseous organic solvent for standing treatment, so that the oxide nanoparticles are self-assembled.
  • the gaseous organic solvent is continuously introduced into the environment for solvation treatment, The oxide nanoparticles are allowed to self-assemble.
  • the step of placing the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for standing treatment, including: in the organic solvent atmosphere, the organic solvent vapor density : 0.02-0.03kg/m 3 .
  • the movement of oxide nanoparticles in the liquid film is enhanced and ordered, thereby improving the surface morphology of the electron transport layer.
  • the volume percentage of the sample placed in the organic solvent is too low, the height of the air pressure will affect the boiling point change of the organic solvent, that is, the density of the solvent vapor can be controlled within a certain period of time, and the environment with too low density of the organic solvent cannot completely reach the processing efficiency of the film.
  • the desired effect, too high an organic solvent density environment may cause damage to the film (affecting the motion or self-assembly of oxide nanoparticles).
  • the standing treatment time is 5-30 minutes.
  • the oxide nanoparticles in the liquid film can complete the self-assembly within the above-mentioned time, thereby improving the flatness of the film layer.
  • the step of placing the first electrode substrate or the prefabricated device on which the oxide nanoparticle solution is deposited is placed in an organic solvent atmosphere for static treatment, and is performed under heating conditions, and the heating temperature is lower than the oxide Solvent temperature of nanoparticle solutions.
  • the heating temperature is lower than the oxide Solvent temperature of nanoparticle solutions.
  • the organic solvent vapor density 0.02-0.03kg/m 3
  • the heat treatment can improve the volatilization speed of the liquid organic solvent and accelerate the process of the solvation treatment.
  • the organic solvent is used to make the oxide nanoparticles in the solution state of the embodiments of the present application self-assemble under the action of the gaseous solvent. Therefore, the organic solvent is selected from the organic solvent that is soluble to the oxide nanoparticles, In some embodiments, the solubility of the oxide nanoparticles in the organic solvent is 100-200 mg/ml. In some embodiments, the organic solvent is selected from at least one of alcohols, ketones, alkanes, DMF, and DMSO.
  • the functional groups of the above-mentioned solvents such as hydroxyl groups
  • the functional groups of the above-mentioned solvents such as hydroxyl groups
  • the functional groups of the above-mentioned solvents such as hydroxyl groups
  • the hydroxyl content improves the electron-receiving ability of the oxide nanoparticles, and further improves the electron injection ability in the quantum dot light-emitting diode, thereby improving the luminous efficiency of the quantum dot light-emitting diode.
  • the alcohols include one or more of methanol, ethanol, isopropanol, butanol, and amyl alcohol
  • the ketones include acetone and/or butanone.
  • a film layer including the second electrode is prepared on the surface of the electron transport layer.
  • the prefabricated device includes a first electrode and a quantum dot light-emitting layer, and the film layer including the second electrode is the second electrode, wherein the first electrode is an anode and the second electrode is a cathode.
  • the step of forming a film layer comprising the second electrode on the surface of the electron transport layer includes: forming a cathode on the surface of the electron transport layer.
  • the step of forming a film layer comprising the second electrode on the surface of the electron transport layer includes: forming an electron injection layer on the surface of the electron transport layer, and forming a cathode on the surface of the electron injection layer away from the electron transport layer.
  • the first electrode substrate is a cathode substrate
  • the film layer including the second electrode includes a quantum dot light-emitting layer and a second electrode
  • the second electrode is an anode.
  • the step of preparing a film layer comprising the second electrode on the surface of the electron transport layer includes: preparing a quantum dot light-emitting layer on the surface of the electron transport layer, and the quantum dot light-emitting layer is away from electrons
  • An anode is prepared on the surface of the transport layer.
  • the step of preparing a film layer comprising the second electrode on the surface of the electron transport layer includes: preparing a quantum dot light-emitting layer on the surface of the electron transport layer, and preparing a void on the surface of the quantum dot light-emitting layer away from the electron transport layer A hole functional layer, an anode is prepared on the surface of the hole functional layer.
  • the hole functional layer includes at least one of a hole injection layer, a hole transport layer, and a hole blocking layer.
  • a second aspect of the embodiment of the present application provides a quantum dot light-emitting diode, which at least includes a cathode 6 and an anode 1 disposed opposite to each other, a quantum dot light-emitting layer 4 disposed between the cathode 6 and the anode 1, and
  • the electron transport layer 5 is arranged between the quantum dot light-emitting layer 4 and the cathode 6, and the quantum dot light-emitting diode is prepared by the above-mentioned preparation method of the quantum dot light-emitting diode.
  • the electron transport layer 5 is fabricated by the above method, so the device efficiency and stability are improved.
  • the quantum dot light-emitting diode further includes a hole functional layer disposed between the anode 1 and the quantum dot light-emitting layer 4 ; in some embodiments, the quantum dot light-emitting diode further includes a cathode 6 and an electron transport layer 5 In some embodiments, the quantum dot light-emitting diode further comprises a hole functional layer provided between the anode 1 and the quantum dot light-emitting layer 4, and a hole functional layer provided between the cathode 6 and the electron transport layer 5 electron injection layer.
  • the hole functional layer includes at least one of a hole injection layer 2 , a hole transport layer 3 and a hole blocking layer.
  • the quantum dot light-emitting diode may further include a substrate 7 , and the anode 1 or the cathode 6 is disposed on the substrate 7 .
  • the quantum dot light-emitting diodes provided in the embodiments of the present application are divided into upright structure quantum dot light-emitting diodes and inverted structure quantum dot light-emitting diodes.
  • the upright structure quantum dot light-emitting diode includes an anode 1 and a cathode 6 disposed opposite to each other, a quantum dot light-emitting layer 4 disposed between the anode 1 and the cathode 6, and a quantum dot light-emitting layer disposed between the cathode 6 and the quantum dot light-emitting layer Electron transport layer 5 between 4 , and anode 1 is provided on substrate 7 . Further, an electron injection layer can be arranged between the cathode 6 and the electron transport layer 5; hole functions such as a hole transport layer 3, a hole injection layer 2 and an electron blocking layer can be arranged between the anode 1 and the quantum dot light-emitting layer 4.
  • Floor a quantum dot light-emitting layer
  • the quantum dot light emitting diode includes a substrate 7 , an anode 1 disposed on the surface of the substrate 7 , and a hole injection layer 2 disposed on the surface of the anode 1 .
  • the hole transport layer 3 arranged on the surface of the hole injection layer 2
  • the quantum dot light-emitting layer 4 arranged on the surface of the hole transport layer 3
  • the electron transport layer 5 arranged on the surface of the quantum dot light-emitting layer 4
  • the electron transport layer 5 arranged on the surface of the quantum dot light-emitting layer 4 5 surface of the cathode 6.
  • the inverted structure quantum dot light-emitting diode includes a stacked structure of an anode 1 and a cathode 6 arranged oppositely, a quantum dot light-emitting layer 4 arranged between the anode 1 and the cathode 6, and a quantum dot light-emitting layer 4 arranged between the cathode 6 and the quantum dots
  • the electron transport layer 5 between the point light-emitting layers 4 and the cathode 6 are arranged on the substrate 7 .
  • an electron injection layer can be arranged between the cathode 6 and the electron transport layer 5; hole functions such as a hole transport layer 3, a hole injection layer 2 and an electron blocking layer can be arranged between the anode 1 and the quantum dot light-emitting layer 4.
  • hole functions such as a hole transport layer 3
  • hole injection layer 2 and an electron blocking layer can be arranged between the anode 1 and the quantum dot light-emitting layer 4.
  • Floor As shown in FIG.
  • the quantum dot light emitting diode comprises a substrate 7, a cathode 6 disposed on the surface of the substrate 7, an electron transport layer 5 disposed on the surface of the cathode 6, and The quantum dot light-emitting layer 4 on the surface of the electron transport layer 5, the hole transport layer 3 provided on the surface of the quantum dot light-emitting layer 4, the hole injection layer 2 provided on the surface of the hole transport layer 3 and the hole injection layer 2 provided on the surface Anode 1 on the surface.
  • the substrate 7 may include rigid substrates such as glass, silicon wafers, metal foils, etc., or flexible substrates such as polyimide (PI), polycarbonate (PC), polystyrene, etc. (PS), polyethylene (PE), polyvinyl chloride (PV), polyvinylpyrrolidone (PVP), polymethyl methacrylate, polyethylene terephthalate (PET), polyethylene naphthalate A combination of one or more of alcohol esters, polyamides, and polyethersulfones.
  • PI polyimide
  • PC polycarbonate
  • PS polystyrene, etc.
  • PE polyethylene
  • PV polyvinyl chloride
  • PV polyvinylpyrrolidone
  • PET polyethylene naphthalate
  • the anode 1 may adopt common anode materials and thicknesses, which are not limited in the embodiments of the present application.
  • the anode material may be indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the material of the hole injection layer 2 can be selected from materials with good hole injection properties.
  • the material of the hole injection layer 2 is selected from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS) and its s - MoO doped One of the derivatives (PEDOT:PSS: s-MoO 3 ).
  • the material of the hole transport layer 3 can be a conventional hole transport material.
  • the material of hole transport layer 3 is selected from poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylene) (phenyl)) diphenylamine)] (TFB), poly(9-vinylcarbazole) (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(benzene) base) benzidine) (Poly-TPD), N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB) one of the.
  • the quantum dots of the quantum dot light-emitting layer 4 are direct bandgap compound semiconductors with light-emitting capability, and conventional quantum dot materials can be selected according to conventional quantum dot types.
  • the quantum dots of the quantum dot light-emitting layer can be group II-VI semiconductor nanocrystals, group III-V semiconductor nanocrystals, group II-V semiconductor nanocrystals, group III-VI semiconductor nanocrystals, group IV-VI semiconductor nanocrystals, One of group I-III-VI semiconductor nanocrystals, group I-III-VI core-shell quantum dots, group II-IV-VI semiconductor nanocrystals, group II-IV-VI core-shell structure quantum dots or group IV elements One or more, and the quantum dots can be single-component quantum dots, core-shell structure quantum dots, alloy structure quantum dots, organic-inorganic hybrid perovskite quantum dots, and all-inorganic quantum dot materials.
  • the quantum dots formed by II-VI compounds include, but are not limited to: CdSe, CdS, ZnSe, CdS, PbS, PbSe; the quantum dots formed by III-V compounds include but are not limited to: InP, InAs; II- Quantum dots formed by IV-VI compounds include, but are not limited to: CuInS 2 , AgInS 2 .
  • the quantum dots are one or more of CdSe/ZnSe, CdSe/CdS, CdSe/CdS/ZnS, ZnCdSeS, ZnCdSeS/ZnS, ZnCdS/ZnS, ZnSe/ZnS.
  • the material of the electron transport layer 5 As the material of the electron transport layer 5, conventional electron transport materials can be used.
  • the material of the electron transport layer 5 is selected from one or more of ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , NiO, TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO, InSnO .
  • the cathode 6 may adopt common cathode materials and thicknesses, which are not limited in the embodiments of the present application.
  • the material of the cathode 6 is selected from one or more of metals Al, Ag, Cu, Mo, Au, Ba, Ca, and Mg.
  • a preparation method of a quantum dot light-emitting diode comprising the following steps:
  • PEDOT was spin-coated on the ITO transparent electrode, and the hole injection layer was prepared by annealing at 100 °C for 30 min;
  • the electron transport liquid film was placed in a closed cavity with a volume of 25 cm 3 , and solvated with 10 mL of butanol at 1 atm for 30 mins to prepare an electron transport prefabricated film; the electron transport prefabricated film was annealed to obtain electrons transport layer;
  • a metal cathode is deposited on the electron transport layer, and the reflection of the cathode to visible light is not less than 98%.
  • a preparation method of a quantum dot light-emitting diode comprising the following steps:
  • PEDOT was spin-coated on the ITO transparent electrode, and the hole injection layer was prepared by annealing at 100 °C for 30 min;
  • the electron transport liquid film was placed in a closed cavity with a volume of 35 cm 3 , and solvated with 10 mL of butanol at a pressure of 1 atm for 30 mins at a temperature of 80 °C to prepare an electron transport prefabricated film;
  • the transmission prefabricated film is annealed to obtain an electron transport layer;
  • a metal cathode is deposited on the electron transport layer, and the reflection of the cathode to visible light is not less than 98%.
  • a preparation method of a quantum dot light-emitting diode comprising the following steps:
  • the ZnO nanoparticle solution was spin-coated on the ITO transparent electrode by spin coating to obtain an electron transport liquid film;
  • the electron transport liquid film was placed in a closed cavity with a volume of 50 cm 3 and solvated with 10 mL of DMSO for 30 mins under 1 atm pressure to prepare an electron transport prefabricated film; the electron transport prefabricated film was annealed to obtain electron transport Floor;
  • a metal anode is deposited on the hole injection layer, and the cathode reflects not less than 90% of visible light.
  • a preparation method of a quantum dot light-emitting diode comprising the following steps:
  • PEDOT was spin-coated on the ITO transparent electrode, and the hole injection layer was prepared by annealing at 100 °C for 30 min;
  • the electron transport liquid film was placed in a closed cavity with a volume of 40 cm 3 , and 5 mL of butanol and 5 mL of acetone were used for solvation treatment under 1 atm pressure for 30 mins to prepare the electron transport prefabricated film; the electron transport prefabricated film was annealed processing to obtain an electron transport layer;
  • a metal cathode is deposited on the electron transport layer, and the reflection of the cathode to visible light is not less than 98%.
  • a preparation method of a quantum dot light-emitting diode comprising the following steps:
  • PEDOT was spin-coated on the ITO transparent electrode, and the hole injection layer was prepared by annealing at 100 °C for 30 min;
  • a metal cathode is deposited on the electron transport layer, and the reflection of the cathode to visible light is not less than 98%.
  • L represents the brightness of the device. Under the same current, the higher the brightness of the device, the better the device efficiency;
  • T95 represents the time it takes for the brightness of the device to decay from 100% to 95%. Under the same current, the longer the T95 time of the device, the better the device performance and the better the stability;
  • T95-1K represents the time it takes for the device to decay from 100% to 95% when the device is at 1000nit brightness. This value is calculated from the values of L and T95;
  • C.E represents the current efficiency of the device.
  • Rq represents the root mean square roughness, which is the characterization data of the surface roughness of the device film. The smaller the value, the higher the flatness of the film.
  • Example 2 The AFM morphologies of the electron transport layers obtained in Example 2 and Comparative Example 1 are shown in Figure 5 and Figure 6, respectively. As can be seen from the figures, the electron transport layers prepared by the methods of the examples of the present application have better compactness. and flatness.
  • the morphology diagrams of the quantum dot light-emitting diodes obtained in Examples 1 to 4 and Comparative Example 1 are shown in Figures 7-11 respectively (the quantum dots obtained in Example 1 are shown in Figure 7-11).
  • the topography of the quantum dot light-emitting diodes obtained in Example 2 is shown in Figure 7, the topography of the quantum dots light-emitting diodes obtained in Example 2 is shown in Figure 8, and the quantum dots light-emitting diodes obtained in Example 3 are shown in Figure 8.
  • the topography of the quantum dot light-emitting diode obtained in Example 4 is shown in Figure 9, the topography of the quantum dot light-emitting diode obtained in Example 4 is shown in Figure 10, and the topography of the quantum dot light-emitting diode obtained in Comparative Example 1 is shown in the figure 11). It can be seen from the figure that the quantum dot light-emitting diode provided in the embodiment of the present application has better uniformity of light emission, which is attributed to the better compactness and flatness of the film layer of the electron transport layer prepared in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种量子点发光二极管及其制备方法。所述量子点发光二极管的制备方法,包括以下步骤:获取第一电极基板或含有第一电极的预制器件,在预制器件背离所述第一电极的表面或第一电极基板的表面沉积氧化物纳米颗粒溶液;将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,制备得到电子传输层;在电子传输层的表面制备包含第二电极的膜层,得到至少包含第一电极、量子点发光层、电子传输层和第二电极的量子点发光二极管。本申请通过对溶液状态的氧化物纳米颗粒进行溶剂化处理,改善电子传输层的表面形貌,进而提高电子传输能力。

Description

量子点发光二极管及其制备方法
本申请要求于2021年2月9日在中国专利局提交的、申请号为202110179268.6、发明名称为“量子点发光二极管及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种量子点发光二极管及其制备方法。
背景技术
相较于传统发光二极管,半导体量子点发光二级管(QLED)具有较窄的半高峰宽(FWHM),可控发光波长,及可溶液法制备及打印等优点,作为下一代显示器件,具有较好的应用前景。随着研发的不断推进,量子点发光二极管的外量子效率(EQE)也有了显著的提高,特别是红、绿量子点发光二极管器件,其外量子效率均已高于25%,可比拟有机发光二极管(OLED)。然而,蓝色量子点发光二极管器件的发光效率及使用寿命,仍然与有机发光二极管存在较大差距。
与OLED器件较为相似,QLED器件结构通常由阳极、空穴注入层、空穴传输层、发光层、电子传输层、阴极组成。电子和空穴分别从两端注入,在量子点发光层复合发光。现有电子传输层通常为纳米氧化锌粒子组成,溶液成膜如旋涂形成的功能膜层,尤其是纳米粒子经溶液成膜后得到的功能膜层,膜层表面易产生较多不平整及缺陷,影响载流子传输。
技术问题
本申请实施例的目的之一在于:提供一种量子点发光二极管及其制备方法。
技术解决方案
本申请实施例采用的技术方案是:
第一方面,提供了一种一种量子点发光二极管的制备方法,包括以下步骤:
获取第一电极基板或含有第一电极的预制器件,在所述预制器件背离所述第一电极的表面或所述第一电极基板的表面沉积氧化物纳米颗粒溶液;
将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,制备得到电子传输层;
在所述电子传输层的表面制备包含第二电极的膜层,得到至少包含第一电极、量子点发光层、电子传输层和第二电极的量子点发光二极管。
在一些实施例中,所述有机溶剂的气氛环境中,所述有机溶剂的蒸汽密度为0.02-0.03kg/m 3
在一些实施例中,所述静置处理的时间为5~30分钟。
在一些实施例中,所述有机溶剂选自醇类、酮类、烷烃类、DMF和DMSO中的至少一种。
在一些实施例中,所述醇类包括甲醇、乙醇、异丙醇、丁醇和戊醇中的一种或多种。
在一些实施例中,所述酮类包括丙酮、丁酮中的至少一种。
在一些实施例中,所述将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,包括:
将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于含有液态有机溶剂的密闭容器中,在气压为1 atm-1.2 atm的条件下静置处理。
在一些实施例中,所述将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,包括:
将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于含有气态有机溶剂的环境中静置处理。
在一些实施例中,所述有机溶剂对所述氧化物纳米颗粒溶液中的氧化物纳米颗粒的溶解度为100-200mg/ml。
在一些实施例中,所述将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理的步骤,在加热条件下进行,且所述加热的温度低于所述氧化物纳米颗粒溶液的溶剂温度。
在一些实施例中,所述预制器件包括第一电极和量子点发光层,所述包含第二电极的膜层为第二电极,其中,所述第一电极为阳极,所述第二电极为阴极。
在一些实施例中,所述第一电极基板为阴极基板,所述包含第二电极的膜层包括量子点发光层和第二电极,所述第二电极为阳极。
第二方面,提供了一种量子点发光二极管,至少包括相对设置的阴极和阳极,设置在所述阴极和阳极之间的量子点发光层,以及设置在所述量子点发光层和所述阴极之间的电子传输层,所述量子点发光二极管由上述的量子点发光二极管的制备方法制备获得。
在一些实施例中,所述量子点发光二极管还包括在所述阳极和所述量子点发光层之间设置的空穴功能层。
在一些实施例中,所述空穴功能层包括空穴注入层、空穴传输层、空穴阻挡层中的至少一种。
在一些实施例中,所述量子点发光二极管还包括在所述阴极和所述电子传输层之间设置的电子注入层。
有益效果
本申请实施例提供的量子点发光二极管的制备方法的有益效果在于:通过将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,增强氧化物纳米颗粒在膜层中的运动能力,使膜层中的微相分离结构排列更加有序,从而改善电子传输层的表面形貌,提高电子传输能力和稳定性。通过该方法制备得到的量子点发光二极管,器件效率和稳定性得到提高。
本申请实施例提供的量子点发光二极管的有益效果在于:电子传输层采用上述方法制成,因此,器件效率和稳定性得到提高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的量子点发光二极管的制备工艺流程图;
图2是本申请实施例提供的量子点发光二极管的结构示意图;
图3是本申请实施例提供的正置量子点发光二极管的结构示意图;
图4是本申请实施例提供的倒置量子点发光二极管的结构示意图;
图5是本申请实施例2提供的电子传输层的AFM形貌图;
图6是对比例1提供的电子传输层的AFM形貌图;
图7是本申请实施例1提供的量子点发光二极管电质发光的形貌图;
图8是本申请实施例2提供的量子点发光二极管电质发光的形貌图;
图9是本申请实施例3提供的量子点发光二极管电质发光的形貌图;
图10是本申请实施例4提供的量子点发光二极管电质发光的形貌图;
图11是本申请对比例1提供的量子点发光二极管电质发光的形貌图。
本发明的实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“ a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a, b, c, a-b(即a和b), a-c, b-c, 或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
术语“第一”、“第二”仅用于描述目的,用来将目的如物质、界面、消息、请求和终端彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX 。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中所述的质量可以是µg、mg、g、kg等化工领域公知的质量单位。
术语“DMF”表示N,N-二甲基甲酰胺;
术语“DMSO”表示二甲基亚砜;
术语“AFM”为“Atomic Force Microscope”的简称,表示原子力显微镜。
采用溶液法制备量子点发光二极管制备时,溶液法成膜得到的电子传输层,膜层表面不平整和产生缺陷,影响载流子传输的问题。鉴于此,本申请实施例提供一种能够改善膜层表面缺陷的量子点发光二极管的制备方法。
如图1所示,本申请实施例第一方面提供的量子点发光二极管的制备方法,包括以下步骤:
S10. 获取第一电极基板,在所述第一电极基板的表面沉积氧化物纳米颗粒溶液;或获取含有第一电极的预制器件,在预制器件背离第一电极的表面沉积氧化物纳米颗粒溶液;
S20. 将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件置于有机溶剂的气氛环境中静置处理,制备得到电子传输层;
S30. 在电子传输层的表面制备包含第二电极的膜层,得到至少包含第一电极、量子点发光层、电子传输层和第二电极的量子点发光二极管。
本申请实施例提供的量子点发光二极管的制备方法,通过将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件置于有机溶剂的气氛环境中静置处理,增强氧化物纳米颗粒在膜层中的运动能力,使膜层中的微相分离结构排列更加有序,从而改善电子传输层的表面形貌,提高电子传输能力和稳定性。通过该方法制备得到的量子点发光二极管,器件效率和稳定性得到提高。
具体的,上述步骤S10中,先提供需要制备电子传输层的第一电极基板或者预制器件。
在一种实施方式中,量子点发光二极管为正置结构量子点发光二极管,此时,步骤S10中,在第一电极基板的表面制备电子传输层,且第一电极基板为阴极基板。对应的,在第一电极基板的表面沉积氧化物纳米颗粒溶液的步骤,为:在阴极基板的阴极表面沉积氧化物纳米颗粒溶液。在一些实施例中,在沉积氧化物纳米颗粒溶液之前,还包括在阴极基板的阴极表面沉积电子注入材料,制备电子注入层;在电子注入层背离阴极的表面沉积氧化物纳米颗粒溶液。
在另一种实施方式中,量子点发光二极管为倒置结构量子点发光二极管,此时,步骤S10中,在预制器件的表面制备电子传输层,且预制器件为至少包括阳极和量子点发光层的结构。在一些实施例中,预制器件包括阳极基板,以及结合在阳极基板的阳极表面上的量子点发光层。在一些实施例中,预制器件包括阳极基板,以及结合在阳极基板的阳极表面上的空穴功能层,以及在空穴功能层背离阳极的表面结合的量子点发光层。
上述两种实施方式中,沉积氧化物纳米颗粒溶液采用溶液加工法实现,包括但不限于:旋涂、刮涂、打印等方式。在预制器件背离第一电极的表面或第一电极基板的表面沉积氧化物纳米颗粒溶液后,不进行退火处理,直接进入步骤S20。
上述步骤S20中,应当注意的是,本申请实施例将预制器件背离第一电极的表面或第一电极基板的表面处于湿润状态的氧化物纳米颗粒进行溶剂化处理,使得氧化物纳米颗粒在形成的液态膜中发生运动迁移,最终改善膜层不平整的问题。具体的,将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件置于有机溶剂的气氛环境中静置处理,在有机溶剂气氛环境中,以溶液状态存在的氧化物纳米颗粒在膜层上运动增加并进行自组装,得到表面平整的电子传输预制膜。在本申请一些实施例中,也将“溶液状态存在的氧化物纳米颗粒在膜层上运动增加并进行自组装”的过程,称为溶剂化过程或溶剂退火过程。
在一种实施方式中,将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,包括:将沉积有氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于含有液态有机溶剂的密闭容器中,在气压为1 atm-1.2 atm的条件下静置处理,使氧化物纳米颗粒进行自组装。气压的高低影响有机溶剂的沸点变化,即在一定时间内可控制有机溶剂蒸汽的密度,过低的有机溶剂密度环境不能完整的达到处理薄膜的期望效果,过高的有机溶剂密度环境则可能对薄膜造成损伤(影响氧化物纳米颗粒的运动或者自组装),因此,该实施例通过控制密闭容器中的气压在上述范围内,使液态有机溶剂挥发并充斥在密闭环境中,促使氧化物纳米颗粒在形成的液态膜中发生自组装,改善电子传输层的表面形貌特别是平整度。
在另一种实施方式中,将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,包括:将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于含有气态有机溶剂的环境中静置处理,使氧化物纳米颗粒进行自组装。在这种情况下,可以通过直接控制气态有机溶剂的含量,促使氧化物纳米颗粒在形成的液态膜中发生自组装,改善电子传输层的表面形貌特别是平整度。在一些实施例中,将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件置于含有气态有机溶剂的密闭环境中静置处理,使氧化物纳米颗粒进行自组装。在一些实施例中,将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件静置处理后,通过控制气态有机溶剂的流速,持续地向环境中通入气态有机溶剂进行溶剂化处理,使氧化物纳米颗粒进行自组装。
在一些实施例中,将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件置于有机溶剂的气氛环境中静置处理的步骤中,包括:有机溶剂的气氛环境中,有机溶剂蒸汽密度:0.02-0.03kg/m 3。在这种情况下,在合适含量的有机溶剂气氛中,液态膜中的氧化物纳米颗粒运动增强,且有序的排列,从而改善电子传输层的表面形貌。当样品置于有机溶剂的体积百分含量过低,气压的高低影响有机溶剂的沸点变化,即在一定时间内可控制溶剂蒸汽的密度,过低的有机溶剂密度环境不能完整的达到处理薄膜的期望效果,过高的有机溶剂密度环境则可能对薄膜造成损伤(影响氧化物纳米颗粒的运动或者自组装)。
在一些实施例中,静置处理的时间为5~30分钟。在气态有机溶剂的作用下,液态膜中的氧化物纳米颗粒在上述时间内能够完成自组装,提高膜层的平整性。
在一些实施例中,将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件置于有机溶剂的气氛环境中静置处理的步骤,在加热条件下进行,且加热的温度低于氧化物纳米颗粒溶液的溶剂温度。通过加热处理,可以提高有机溶剂分子的运动速率,进而加快氧化物纳米颗粒的自组装进程。特别的,当将将沉积有氧化物纳米颗粒溶液的第一电极基板或预制器件置于含有液态有机溶剂的密闭容器中,有机溶剂蒸汽密度:0.02-0.03kg/m 3的条件下进行静置处理,使氧化物纳米颗粒进行自组装时,加热处理可以提高液态有机溶剂的挥发速度,加速溶剂化处理的进程。
本申请实施例中,有机溶剂用于使本申请实施例处于溶液状态的氧化物纳米颗粒在气态溶剂作用下发生自组装,因此,有机溶剂选自对氧化物纳米颗粒有溶解性的有机溶剂,在一些实施例中,有机溶剂对氧化物纳米颗粒的溶解度为100-200mg/ml。在一些实施例中,有机溶剂选自醇类、酮类、烷烃类、DMF和DMSO中的至少一种。示例性的,采用醇类、酮类、DMF和DMSO,在这种情况下,上述溶剂的官能团如羟基,在溶剂化过程中结合在氧化物纳米颗粒表面,增加氧化物纳米颗粒的表面官能团如羟基含量,提高氧化物纳米颗粒的到电子能力,进一步提高电子在量子点发光二极管中的注入能力,从而提高量子点发光二极管的发光效率。在一些实施例中,醇类包括甲醇、乙醇、异丙醇、丁醇和戊醇中的一种或多种;酮类包括丙酮和/或丁酮。
上述步骤S30中,在电子传输层的表面制备包含第二电极的膜层。在一种实施方式中,预制器件包括第一电极和量子点发光层,包含第二电极的膜层为第二电极,其中,第一电极为阳极,第二电极为阴极。在这种情况下,在一些实施例中,在电子传输层的表面制备包含第二电极的膜层的步骤,包括:在电子传输层的表面制备阴极。在一些实施例中,在电子传输层的表面制备包含第二电极的膜层的步骤,包括:在电子传输层的表面制备电子注入层,在电子注入层背离电子传输层的表面制备阴极。
在另一种实施方式中,第一电极基板为阴极基板,包含第二电极的膜层包括量子点发光层和第二电极,第二电极为阳极。在这种情况下,在一些实施例中,在电子传输层的表面制备包含第二电极的膜层的步骤,包括:在电子传输层的表面制备量子点发光层,在量子点发光层背离电子传输层的表面制备阳极。在一些实施例中,在电子传输层的表面制备包含第二电极的膜层的步骤,包括:在电子传输层的表面制备量子点发光层,在量子点发光层背离电子传输层的表面制备空穴功能层,在空穴功能层的表面制备阳极。
本申请实施例中,空穴功能层包括空穴注入层、空穴传输层、空穴阻挡层中的至少一种。
如图2所示,本申请实施例第二方面提供了一种量子点发光二极管,至少包括相对设置的阴极6和阳极1,设置在阴极6和阳极1之间的量子点发光层4,以及设置在量子点发光层4和阴极6之间的电子传输层5,量子点发光二极管由上述的量子点发光二极管的制备方法制备获得。
本申请提供的量子点发光二极管,电子传输层5采用上述方法制成,因此,器件效率和稳定性得到提高。
在一些实施例中,量子点发光二极管还包括在阳极1和量子点发光层4之间设置的空穴功能层;在一些实施例中,量子点发光二极管还包括在阴极6和电子传输层5之间设置的电子注入层;在一些实施例中,量子点发光二极管还包括在阳极1和量子点发光层4之间设置的空穴功能层,以及在阴极6和电子传输层5之间设置电子注入层。其中,空穴功能层包括空穴注入层2、空穴传输层3、空穴阻挡层中的至少一种。
本申请实施例中,量子点发光二极管还可以包括衬底7,阳极1或阴极6设置在衬底7上。
本申请实施例提供的量子点发光二极管分为正置结构量子点发光二极管和倒置结构量子点发光二极管。
在一种实施方式中,正置结构量子点发光二极管包括相对设置的阳极1和阴极6,设置在阳极1和阴极6之间的量子点发光层4,以及设置在阴极6和量子点发光层4之间的电子传输层5,且阳极1设置在衬底7上。进一步的,阴极6和电子传输层5之间可以设置电子注入层;在阳极1和量子点发光层4之间可以设置空穴传输层3、空穴注入层2和电子阻挡层等空穴功能层。如图3所示,在一些正置结构量子点发光二极管的实施例中,量子点发光二极管包括衬底7,设置在衬底7表面的阳极1,设置在阳极1表面的空穴注入层2,设置在空穴注入层2表面的空穴传输层3,设置在空穴传输层3表面的量子点发光层4,设置在量子点发光层4表面的电子传输层5和设置在电子传输层5表面的阴极6。
在一种实施方式中,倒置结构量子点发光二极管包括相对设置的阳极1和阴极6的叠层结构,设置在阳极1和阴极6之间的量子点发光层4,以及设置在阴极6和量子点发光层4之间的电子传输层5,且阴极6设置在衬底7上。进一步的,阴极6和电子传输层5之间可以设置电子注入层;在阳极1和量子点发光层4之间可以设置空穴传输层3、空穴注入层2和电子阻挡层等空穴功能层。如图4所示,在一些倒置结构量子点发光二极管的实施例中,量子点发光二极管包括衬底7,设置在衬底7表面的阴极6,设置在阴极6表面的电子传输层5,设置在电子传输层5表面的量子点发光层4,设置在量子点发光层4表面的空穴传输层3,设置在空穴传输层3表面的空穴注入层2和设置在空穴注入层2表面的阳极1。
上述实施例中,衬底7可包括刚性衬底如玻璃、硅晶片、金属箔片等刚性衬底,或柔性衬底如聚酰亚胺(PI)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚乙烯(PE)、聚氯乙烯(PV)、聚乙烯吡咯烷酮(PVP)、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯、聚酰胺、聚醚砜中的一种或多种形成的组合。
阳极1可以采用常见的阳极材料和厚度,本申请实施例不作限定。在一些实施例中,阳极材料可以为氧化铟锡(ITO)或氧化铟锌(IZO)。
空穴注入层2的材料可选自具有良好空穴注入性能的材料。在一些实施例中,空穴注入层2的材料选自聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)及其掺有s-MoO 3的衍生物(PEDOT:PSS: s-MoO 3)中的一种。
空穴传输层3的材料可采用常规的空穴传输材料。在一些实施例中,空穴传输层3的材料选自聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚(N, N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种。
量子点发光层4的量子点为具备发光能力的直接带隙化合物半导体,可以按照常规的量子点类型,选择常规的量子点材料。如量子点发光层的量子点可以为II-VI族半导体纳米晶、III-V族半导体纳米晶、II-V族半导体纳米晶、III-VI族半导体纳米晶、IV-VI族半导体纳米晶、I-III-VI族半导体纳米晶、I-III-VI族核壳结构量子点、II-IV-VI族半导体纳米晶、II-IV-VI族核壳结构量子点或IV族单质中的一种或多种,且量子点可以为单组分量子点,也可以为核壳结构量子点,还可以为合金结构量子点或有机-无机杂化钙钛矿量子点、全无机量子点材料中的至少一种。示例性的,II-VI族化合物形成的量子点包括但不限于:CdSe、CdS、ZnSe、CdS、PbS、PbSe;III-V族化合物形成的量子点包括但不限于:InP、InAs;II-IV-VI族化合物形成的量子点包括但不限于:CuInS 2、AgInS 2。在一些实施例中,量子点为CdSe/ZnSe、CdSe/CdS、CdSe/CdS/ZnS、ZnCdSeS、ZnCdSeS/ZnS、ZnCdS/ZnS、ZnSe/ZnS中的一种或多种。
电子传输层5的材料可采用常规的电子传输材料。在一些实施例中,电子传输层5的材料选自ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO、InSnO中的一种或多种。
阴极6可以采用常见的阴极材料和厚度,本申请实施例不作限定。在一些实施例中,阴极6的材料选自金属Al、Ag、Cu、Mo、Au、Ba、Ca、Mg中的一种或多种。
下面结合具体实施例进行说明。
实施例1
一种量子点发光二极管的制备方法,包括以下步骤:
通过旋涂的方式,在ITO透明电极上旋涂PEDOT,在100℃下退火处理30 min,制备空穴注入层;
在惰性气氛(如氮气)中,在空穴注入层上旋涂TFB,在150℃下退火处理30min,制备空穴传输层;
在惰性气氛中(如氮气),在空穴传输层上旋涂绿色量子点,制备量子点发光层;
在惰性气氛中(如氮气),在量子点发光层上旋涂ZnO纳米颗粒溶液,得到电子传输液态膜;
将电子传输液态膜置于体积为25cm 3的密闭腔体内,使用10 mL 丁醇在1 atm 气压下溶剂化处理30 mins,制备得到电子传输预制膜;将电子传输预制膜进行退火处理,得到电子传输层;
在电子传输层上沉积金属阴极,阴极对可见光反射不低于98%。
实施例2
一种量子点发光二极管的制备方法,包括以下步骤:
通过旋涂的方式,在ITO透明电极上旋涂PEDOT,在100℃下退火处理30 min,制备空穴注入层;
在惰性气氛(如氮气)中,在空穴注入层上旋涂TFB,在150℃下退火处理30min,制备空穴传输层;
在惰性气氛中(如氮气),在空穴传输层上旋涂绿色量子点,制备量子点发光层;
在惰性气氛中(如氮气),在量子点发光层上旋涂ZnO纳米颗粒溶液,得到电子传输液态膜;
将电子传输液态膜置于体积为35cm 3的密闭腔体内,在温度为80℃的条件下,使用10 mL 丁醇在1 atm 气压下溶剂化处理30 mins,制备得到电子传输预制膜;将电子传输预制膜进行退火处理,得到电子传输层;
在电子传输层上沉积金属阴极,阴极对可见光反射不低于98%。
实施例3
一种量子点发光二极管的制备方法,包括以下步骤:
通过旋涂的方式,在ITO透明电极上旋涂ZnO纳米颗粒溶液,得到电子传输液态膜;
将电子传输液态膜置于体积为50cm 3的密闭腔体内,使用10 mL DMSO在1 atm 气压下溶剂化处理30 mins,制备得到电子传输预制膜;将电子传输预制膜进行退火处理,得到电子传输层;
在惰性气氛中(如氮气),在电子传输层上旋涂绿色量子点,制备量子点发光层;
在惰性气氛中(如氮气),在量子点发光层上旋涂TFB,在150℃下退火处理30min,制备空穴传输层;
在惰性气氛(如氮气)中,在空穴传输层上旋涂PEDOT,在100℃下退火处理30 min,制备空穴注入层;
在空穴注入层上沉积金属阳极,阴极对可见光反射不低于90%。
实施例4
一种量子点发光二极管的制备方法,包括以下步骤:
通过旋涂的方式,在ITO透明电极上旋涂PEDOT,在100℃下退火处理30 min,制备空穴注入层;
在惰性气氛(如氮气)中,在空穴注入层上旋涂TFB,在150℃下退火处理30min,制备空穴传输层;
在惰性气氛中(如氮气),在空穴传输层上旋涂绿色量子点,制备量子点发光层;
在惰性气氛中(如氮气),在量子点发光层上旋涂ZnO纳米颗粒溶液,得到电子传输液态膜;
将电子传输液态膜置于体积为40cm 3的密闭腔体内,使用5 mL 丁醇及5 mL丙酮在1 atm 气压下溶剂化处理30 mins,制备得到电子传输预制膜;将电子传输预制膜进行退火处理,得到电子传输层;
在电子传输层上沉积金属阴极,阴极对可见光反射不低于98%。
对比例1
一种量子点发光二极管的制备方法,包括以下步骤:
通过旋涂的方式,在ITO透明电极上旋涂PEDOT,在100℃下退火处理30 min,制备空穴注入层;
在惰性气氛(如氮气)中,在空穴注入层上旋涂TFB,在150℃下退火处理30min,制备空穴传输层;
在惰性气氛中(如氮气),在空穴传输层上旋涂绿色量子点,制备量子点发光层;
在惰性气氛中(如氮气),在量子点发光层上旋涂ZnO纳米颗粒溶液,退火处理,得到电子传输层;
在电子传输层上沉积金属阴极,阴极对可见光反射不低于98%。
将上述对实施例1~4和对比例1得到的电子传输层和量子点发光二极管进行性能测试,结果如表1所示,以2mA恒流驱动器件时:
(1) L表示器件亮度,在相同电流下,器件亮度越高表示器件效率越好;
(2)T95表示器件亮度由100%衰减至95%所用的时间,在相同电流下,器件T95时间越长表示器件性能越好,稳定性越出色;
(3)T95-1K表示当器件在1000nit亮度下,亮度由100%衰减至95%所用时间。此值由L与T95的值计算得出;
(4)C.E表示器件的电流效率,在发光区面积和驱动电流一致的前提下,C.E越高器件性能越好;
(5)Rq表示均方根粗糙度,为器件薄膜表面粗糙度的表征数据,此值越小,薄膜平整度越高。
表1
  L (cd/m²) T95 (h) T95_1K (h) C.E(cd/A) Rq
对比例1 40681 4.12 2243 63.87 1.81
实施例1 53410 5.23 4523 83.85 1.12
实施例2 58110 5.41 5400 91.23 0.97
实施例3 53220 5.19 4462 83.56 1.11
实施例4 53570 5.16 4486 84.10 1.15
实施例2和对比例1得到的电子传输层的AFM形貌分别如图5和图6所示,由图可见,通过本申请实施例方法制备的电子传输层,膜层具有更好的致密性和平整度。
实施例1~4和对比例1得到的量子点发光二极管电质发光的形貌图(可以直观的表现出器件的发光区形貌)分别如图7-11所示(实施例1得到的量子点发光二极管电质发光的形貌图如图7所示,实施例2得到的量子点发光二极管电质发光的形貌图如图8所示,实施例3得到的量子点发光二极管电质发光的形貌图如图9所示,实施例4得到的量子点发光二极管电质发光的形貌图如图10所示,对比例1得到的量子点发光二极管电质发光的形貌图如图11所示)。由图可见,本申请实施例提供的量子点发光二极管具有更好的发光均匀性,这归因于本申请实施例制备得到的电子传输层具有更好的致密性和膜层平整度。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种量子点发光二极管的制备方法,其特征在于,包括以下步骤:
    获取第一电极基板,在所述第一电极基板的表面沉积氧化物纳米颗粒溶液;或获取含有第一电极的预制器件,在所述预制器件背离所述第一电极的表面沉积氧化物纳米颗粒溶液;
    将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,制备得到电子传输层;
    在所述电子传输层的表面制备包含第二电极的膜层,得到至少包含第一电极、量子点发光层、电子传输层和第二电极的量子点发光二极管。
  2. 如权利要求1所述的量子点发光二极管的制备方法,其特征在于,所述有机溶剂的气氛环境中,所述有机溶剂的蒸汽密度为0.02-0.03kg/m 3
  3. 如权利要求1所述的量子点发光二极管的制备方法,其特征在于,所述静置处理的时间为5~30分钟。
  4. 如权利要求1至3任一项所述的量子点发光二极管的制备方法,其特征在于,所述有机溶剂选自醇类、酮类、烷烃类、DMF和DMSO中的至少一种。
  5. 如权利要求4所述的量子点发光二极管的制备方法,其特征在于,所述醇类包括甲醇、乙醇、异丙醇、丁醇和戊醇中的一种或多种。
  6. 如权利要求4所述的量子点发光二极管的制备方法,其特征在于,所述酮类包括丙酮、丁酮中的至少一种。
  7. 如权利要求1至3任一项所述的量子点发光二极管的制备方法,其特征在于,所述将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,包括:
    将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于含有液态有机溶剂的密闭容器中,在气压为1 atm-1.2 atm的条件下静置处理。
  8. 如权利要求1至3任一项所述的量子点发光二极管的制备方法,其特征在于,所述将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理,包括:
    将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于含有气态有机溶剂的环境中静置处理。
  9. 如权利要求1至3任一项所述的量子点发光二极管的制备方法,其特征在于,所述有机溶剂对所述氧化物纳米颗粒溶液中的氧化物纳米颗粒的溶解度为100-200mg/ml。
  10. 如权利要求1至3任一项所述的量子点发光二极管的制备方法,其特征在于,所述将沉积有所述氧化物纳米颗粒溶液的所述第一电极基板或所述预制器件置于有机溶剂的气氛环境中静置处理的步骤,在加热条件下进行,且所述加热的温度低于所述氧化物纳米颗粒溶液的溶剂温度。
  11. 如权利要求1至3任一项所述的量子点发光二极管的制备方法,其特征在于,所述预制器件包括第一电极和量子点发光层,所述包含第二电极的膜层为第二电极,其中,所述第一电极为阳极,所述第二电极为阴极。
  12. 如权利要求1至3任一项所述的量子点发光二极管的制备方法,其特征在于,所述第一电极基板为阴极基板,所述包含第二电极的膜层包括量子点发光层和第二电极,所述第二电极为阳极。
  13. 一种量子点发光二极管,至少包括相对设置的阴极和阳极,设置在所述阴极和阳极之间的量子点发光层,以及设置在所述量子点发光层和所述阴极之间的电子传输层,其特征在于,所述量子点发光二极管由权利要求1至12任一项所述的量子点发光二极管的制备方法制备获得。
  14. 如权利要求13所述的量子点发光二极管,其特征在于,所述阳极的材料选自ITO或IZO;
    所述量子点发光层的量子点选自II-VI族半导体纳米晶、III-V族半导体纳米晶、II-V族半导体纳米晶、III-VI族半导体纳米晶、IV-VI族半导体纳米晶、I-III-VI族半导体纳米晶、I-III-VI族核壳结构量子点、II-IV-VI族半导体纳米晶、II-IV-VI族核壳结构量子点或IV族单质中的一种或多种;
    所述电子传输层的材料选自ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO、InSnO中的一种或多种;
    所述阴极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca、Mg中的一种或多种。
  15. 如权利要求14所述的量子点发光二极管,其特征在于,所述量子点为CdSe/ZnSe、CdSe/CdS、CdSe/CdS/ZnS、ZnCdSeS、ZnCdSeS/ZnS、ZnCdS/ZnS、ZnSe/ZnS中的一种或多种。
  16. 如权利要求13至15任一项所述的量子点发光二极管,其特征在于,所述量子点发光二极管还包括在所述阳极和所述量子点发光层之间设置的空穴功能层。
  17. 如权利要求16所述的量子点发光二极管,其特征在于,所述空穴功能层包括空穴注入层、空穴传输层、空穴阻挡层中的至少一种。
  18. 如权利要求17所述的量子点发光二极管,其特征在于,所述空穴注入层的材料选自聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)及其掺有s-MoO 3的衍生物(PEDOT:PSS: s-MoO 3)中的一种;
    所述空穴传输层的材料选自聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚(N, N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)中的一种。
  19. 如权利要求17所述的量子点发光二极管,其特征在于,所述量子点发光二极管还包括在所述阴极和所述电子传输层之间设置的电子注入层。
PCT/CN2021/141802 2021-02-09 2021-12-27 量子点发光二极管及其制备方法 WO2022170870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110179268.6 2021-02-09
CN202110179268.6A CN114914371A (zh) 2021-02-09 2021-02-09 量子点发光二极管及其制备方法

Publications (1)

Publication Number Publication Date
WO2022170870A1 true WO2022170870A1 (zh) 2022-08-18

Family

ID=82762011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141802 WO2022170870A1 (zh) 2021-02-09 2021-12-27 量子点发光二极管及其制备方法

Country Status (2)

Country Link
CN (1) CN114914371A (zh)
WO (1) WO2022170870A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330715A1 (en) * 2009-06-29 2010-12-30 Ashwini Gopal Uniform Transfer of Luminescent Quantum Dots onto a Substrate
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN108630827A (zh) * 2017-03-15 2018-10-09 Tcl集团股份有限公司 一种量子点固态膜、量子点发光二极管及其制备方法
CN108695413A (zh) * 2017-04-11 2018-10-23 Tcl集团股份有限公司 一种电致发光器件及其制备方法
US20200111933A1 (en) * 2018-10-05 2020-04-09 Samsung Electronics Co., Ltd. Light emitting device and display device including the same
CN111384278A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN111384273A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330715A1 (en) * 2009-06-29 2010-12-30 Ashwini Gopal Uniform Transfer of Luminescent Quantum Dots onto a Substrate
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN108630827A (zh) * 2017-03-15 2018-10-09 Tcl集团股份有限公司 一种量子点固态膜、量子点发光二极管及其制备方法
CN108695413A (zh) * 2017-04-11 2018-10-23 Tcl集团股份有限公司 一种电致发光器件及其制备方法
US20200111933A1 (en) * 2018-10-05 2020-04-09 Samsung Electronics Co., Ltd. Light emitting device and display device including the same
CN111384278A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN111384273A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法

Also Published As

Publication number Publication date
CN114914371A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US9054330B2 (en) Stable and all solution processable quantum dot light-emitting diodes
CN108807724B (zh) 钙钛矿发光层的制备方法、应用和钙钛矿发光器件及其制备方法
CN113838985B (zh) 氧化锌纳米材料及其制备方法、发光器件
CN113948647A (zh) 一种纳米材料及其制备方法与量子点发光二极管
CN111244298B (zh) 一种发光器件及显示器
CN113540368A (zh) 复合材料及其制备方法和量子点发光二极管
WO2022170870A1 (zh) 量子点发光二极管及其制备方法
CN114203941B (zh) 薄膜的制备方法和发光二极管
EP3905360B1 (en) Preparation method for quantum dot light emitting diode
CN114672314A (zh) 核壳结构量子点及其制备方法,量子点发光薄膜和二极管
CN113130778A (zh) 量子点发光二极管及其制备方法
CN100449819C (zh) 一种适合聚合物电致发光器件的阴极
CN114203940B (zh) 薄膜的制备方法和发光二极管
WO2022135405A1 (zh) 发光二极管及其制备方法
WO2023005607A1 (zh) 发光二极管器件及其制备方法、发光基板、发光装置
WO2023202146A1 (zh) 空穴传输薄膜、光电器件和光电器件的制备方法
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
WO2023124550A1 (zh) 发光器件的制备方法、发光器件及显示装置
WO2023093494A1 (zh) 电致发光器件及其制备方法、光电装置
CN115491194B (zh) 氧化锌的前驱体溶液及其制备方法与发光器件
WO2023051317A1 (zh) 氧化钨纳米材料及其制备方法、光电器件
WO2022143554A1 (zh) 发光器件及其制备方法
WO2023142570A1 (zh) 一种掺杂材料及其制备方法、发光二极管
WO2022143963A1 (zh) 量子点发光二极管及其制备方法
WO2022252612A1 (zh) 量子点发光二极管、其制备方法及显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925515

Country of ref document: EP

Kind code of ref document: A1