WO2023005607A1 - 发光二极管器件及其制备方法、发光基板、发光装置 - Google Patents

发光二极管器件及其制备方法、发光基板、发光装置 Download PDF

Info

Publication number
WO2023005607A1
WO2023005607A1 PCT/CN2022/103442 CN2022103442W WO2023005607A1 WO 2023005607 A1 WO2023005607 A1 WO 2023005607A1 CN 2022103442 W CN2022103442 W CN 2022103442W WO 2023005607 A1 WO2023005607 A1 WO 2023005607A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier balance
light emitting
light
carbon atoms
Prior art date
Application number
PCT/CN2022/103442
Other languages
English (en)
French (fr)
Inventor
孙海雁
张晓晋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023005607A1 publication Critical patent/WO2023005607A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present disclosure relates to the field of optoelectronic technology, in particular to a light-emitting diode device and a preparation method thereof, a light-emitting substrate, and a light-emitting device.
  • Quantum dots have the advantages of high fluorescence quantum yield, narrow emission spectrum, and adjustable emission spectrum, and have broad application prospects in display and other fields.
  • QDs can be used to prepare low-cost, large-area self-luminous quantum dot light-emitting diodes (QLEDs) by printing technology, which is expected to become one of the mainstream technologies for next-generation lighting and display applications.
  • QLEDs quantum dot light-emitting diodes
  • the present disclosure provides a light emitting diode device, comprising:
  • an anode layer a light-emitting layer, a carrier balance layer, an electron transport layer and a cathode layer that are stacked;
  • the hole mobility of the carrier balance layer is greater than the electron mobility
  • the LUMO energy level of the carrier balance layer is shallower than the LUMO energy level of the electron transport layer
  • the LUMO energy level of the carrier balance layer is The HOMO energy level is shallower than that of the light emitting layer.
  • the HOMO energy level of the carrier balance layer is shallower than the HOMO energy level of the electron transport layer.
  • the difference between the LUMO energy level of the carrier balance layer and the LUMO energy level of the electron transport layer is greater than or equal to 0.6 eV and less than or equal to 1.5 eV.
  • the electron mobility of the carrier balance layer is more than 2 orders of magnitude smaller than the electron mobility of the electron transport layer.
  • it further includes a hole transport layer disposed between the anode layer and the light-emitting layer, the hole mobility of the hole transport layer is higher than that of the carrier balance layer
  • the hole mobility is an order of magnitude larger or smaller.
  • the absolute value of the LUMO energy level of the carrier balance layer is greater than or equal to 2.35eV, and the absolute value of the HOMO energy level of the carrier balance layer is less than or equal to 6.3eV.
  • the material of the carrier balance layer includes a first compound, and the first compound is selected from compounds represented by the following first general formula:
  • L (n) represents a solubilizing group
  • n represents the quantity of the solubilizing group, and n is greater than or equal to 2;
  • Ar 1 , Ar 2 and Ar 3 are the same or different, at least one of which is selected from the compounds represented by the second general formula, and the rest are selected from the compounds represented by the third general formula;
  • the second general formula is:
  • A is selected from nitrogen or carbon
  • the third general formula is any one of the following general formulas:
  • X is selected from N, C, O or S;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different, and are independently selected from 1 to 30 Substituted alkyl groups of carbon atoms, unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted alkoxy groups having 1 to 30 carbon atoms, unsubstituted alkoxy groups having 1 to 30 carbon atoms , any of an aryl group having 6 to 40 carbon atoms, an aryloxy group having 6 to 40 carbon atoms, and an aralkyl group having 7 to 40 carbon atoms.
  • the solubilizing group is selected from straight chain alkyl groups with 2 to 40 carbon atoms, branched chain alkyl groups with 2 to 40 carbon atoms, Atomic cyclic alkyl, straight chain alkoxy having 2 to 40 carbon atoms, branched alkoxy having 2 to 40 carbon atoms and cyclic alkoxy having 2 to 40 carbon atoms any kind.
  • the molecular weight of the first compound is less than or equal to 5000 g/mol.
  • the molecular weight of the first compound is less than or equal to 4000 g/mol.
  • the thickness of the carrier balancing layer is greater than or equal to 2 microns and less than or equal to 40 microns.
  • the thickness of the carrier balancing layer is greater than or equal to 5 microns and less than or equal to 25 microns.
  • the light emitting layer is a quantum dot light emitting layer.
  • the present disclosure provides a light-emitting substrate, including:
  • the present disclosure provides a light emitting device, including the light emitting substrate according to any one of the embodiments.
  • the present disclosure provides a method for manufacturing a light emitting diode device, the method comprising:
  • anode layer sequentially forming an anode layer, a light-emitting layer, a carrier balance layer, an electron transport layer and a cathode layer; or, sequentially forming a cathode layer, an electron transport layer, a carrier balance layer, a light-emitting layer and an anode layer;
  • the hole mobility of the carrier balance layer is greater than the electron mobility
  • the LUMO energy level of the carrier balance layer is shallower than the LUMO energy level of the electron transport layer
  • the LUMO energy level of the carrier balance layer is The HOMO energy level is shallower than that of the light emitting layer.
  • the step of sequentially forming an anode layer, a light-emitting layer, a carrier balance layer, an electron transport layer, and a cathode layer includes:
  • the steps of sequentially forming the cathode layer, the electron transport layer, the carrier balance layer, the light emitting layer and the anode layer include:
  • the first compound is selected from compounds represented by the following first general formula:
  • L(n) represents a solubilizing group
  • n represents the number of said solubilizing groups, n is greater than or equal to 2
  • Ar 1 , Ar 2 and Ar 3 are the same or different, at least one of which is selected from the second general formula
  • the compounds shown, the rest are selected from the compounds shown in the third general formula;
  • the second general formula is:
  • A is selected from nitrogen or carbon
  • the third general formula is any one of the following general formulas:
  • X is selected from N, C, O or S;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different, and are independently selected from 1 to 30 Substituted alkyl groups of carbon atoms, unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted alkoxy groups having 1 to 30 carbon atoms, unsubstituted alkoxy groups having 1 to 30 carbon atoms , any of an aryl group having 6 to 40 carbon atoms, an aryloxy group having 6 to 40 carbon atoms, and an aralkyl group having 7 to 40 carbon atoms.
  • the step of sequentially forming the anode layer and the light-emitting layer includes:
  • the step of sequentially forming the light-emitting layer and the anode layer on the side of the carrier balance layer away from the cathode layer includes:
  • the hole mobility of the hole transport layer is 1 order of magnitude larger or 1 order of magnitude smaller than the hole mobility of the carrier balance layer.
  • FIG. 1 schematically shows a schematic cross-sectional structure diagram of a light emitting diode device provided by the present disclosure
  • Fig. 2 schematically shows a schematic diagram of an energy level structure of a light emitting diode device provided by the present disclosure
  • Fig. 3 schematically shows a multilayer film surface of a light-emitting substrate in the related art
  • Fig. 4 schematically shows the surface of a multilayer film of a light-emitting substrate provided by the present disclosure
  • Fig. 5 schematically shows a schematic cross-sectional structure diagram of a light-emitting substrate provided by the present disclosure
  • FIG. 6 schematically shows a schematic cross-sectional structure diagram of another light-emitting substrate provided by the present disclosure.
  • An embodiment of the present disclosure provides a light emitting diode device.
  • a schematic cross-sectional structure diagram of the light emitting diode device provided in this embodiment is schematically shown.
  • the light emitting diode device includes: an anode layer 11 , a light emitting layer 12 , a carrier balance layer 13 , an electron transport layer 14 and a cathode layer 15 which are stacked.
  • the hole mobility of the carrier balance layer 13 is greater than the electron mobility.
  • FIG. 2 a schematic diagram of an energy level structure of a light emitting diode device provided by this embodiment is schematically shown.
  • the LUMO energy level of the carrier balancing layer 13 is shallower than that of the electron transport layer 14
  • the HOMO energy level of the carrier balancing layer 13 is shallower than that of the light emitting layer 12 .
  • the LUMO energy level of the carrier balance layer 13 is shallower than the LUMO energy level of the electron transport layer 14 , which means that the LUMO energy level of the carrier balance layer 13 is higher than the LUMO energy level of the electron transport layer 14 . Since both the LUMO energy level of the carrier balance layer 13 and the LUMO energy level of the electron transport layer 14 are negative, the absolute value of the LUMO energy level of the carrier balance layer 13 is smaller than the absolute value of the LUMO energy level of the electron transport layer 14 .
  • the HOMO energy level of the carrier balance layer 13 is shallower than that of the light-emitting layer 12 , which means that the HOMO energy level of the carrier balance layer 13 is higher than that of the light-emitting layer 12 . Since both the HOMO energy level of the carrier balance layer 13 and the HOMO energy level of the light-emitting layer 12 are negative, the absolute value of the HOMO energy level of the carrier balance layer 13 is smaller than the absolute value of the HOMO energy level of the light-emitting layer 12 .
  • the LUMO energy level of the carrier balance layer 13 is shallower than the LUMO energy level of the light-emitting layer 12, a potential barrier that hinders electron transport is formed between the electron-transport layer 14 and the light-emitting layer 12, thereby reducing the flow of electrons from the electron-transport layer 14.
  • the transmission speed to the light-emitting layer 12 makes the transmission speed of electrons from the electron-transport layer 14 to the light-emitting layer 12 close to the transmission speed of holes from the anode layer 11 to the light-emitting layer 12. On the one hand, it can reduce the electrons that have not recombined, that is, the excess electrons.
  • the carrier balance layer 13 plays the role of regulating the carrier balance; Stacked on the interface between the carrier balance layer 13 and the light-emitting layer 12 and inside the carrier balance layer 13, and because the hole mobility of the carrier balance layer 13 is greater than the electron mobility, the HOMO of the carrier balance layer 13 The energy level is shallower than the HOMO energy level of the light-emitting layer 12.
  • the carrier balance layer 13 is provided between the light-emitting layer 12 and the electron transport layer 14, and the hole mobility of the carrier balance layer 13 is greater than the electron mobility, and the carrier balance
  • the LUMO energy level of the layer 13 is shallower than the LUMO energy level of the electron transport layer 14, and the HOMO energy level of the carrier balance layer 13 is shallower than the HOMO energy level of the light-emitting layer 12, which can reduce the electron transfer from the electron transport layer 14 to the light-emitting layer 12. Transmission speed, improve the luminous efficiency, reliability and life of the device.
  • the preparation materials of the light-emitting layer 12 and the electron transport layer 14 are nanoparticles dispersed in a solvent. After the film is formed and the solvent is removed, the surface tension of the film layer is relatively high.
  • stacking such as when the electron transport layer 14 is directly covered on the light-emitting layer 12 or the light-emitting layer 12 is directly covered on the electron transport layer 14, the problem of uneven surface is prone to occur (as shown in Figure 3), and the process is stable. Therefore, the material and process requirements of the solvent system are relatively high.
  • the carrier balance layer 13 plays a role in planarizing the surface of the light emitting layer 12 or the electron transport layer 14, therefore,
  • the surface tension of the light-emitting layer 12 or the electron transport layer 14 can be relieved, the surface uniformity can be improved (as shown in FIG. 4 ), the process stability can be improved, the selection range of solvent materials can be increased, and the process precision requirement can be reduced.
  • the HOMO energy level of the carrier balance layer 13 may be shallower than the HOMO energy level of the electron transport layer 14 . Specifically, the HOMO energy level of the carrier balance layer 13 is higher than the HOMO energy level of the electron transport layer 14 . In this way, a migration barrier can be formed for the holes, preventing the holes from being transported to the electron transport layer 14, and improving the luminous efficiency of the device.
  • the difference between the LUMO energy level of the carrier balance layer 13 and the LUMO energy level of the electron transport layer 14 may be greater than or equal to 0.6 eV and less than or equal to 1.5 eV.
  • the height of the electron transport barrier formed between the electron transport layer 14 and the light emitting layer 12 is greater than or equal to 0.6 eV and less than or equal to 1.5 eV. In this way, it can be ensured that the transport barrier formed between the light-emitting layer 12 and the electron transport layer 14 can effectively hinder the transport of electrons and reduce the transport speed of electrons; Transport to the light-emitting layer 12, preventing the transport barrier from being too high and causing electrons to be unable to cross.
  • the absolute value of the LUMO energy level of the carrier balance layer 13 may be greater than or equal to 2.35eV. Since the LUMO energy level of the carrier balancing layer 13 is a negative value, in this implementation manner, the LUMO energy level of the carrier balancing layer 13 may be less than or equal to -2.35eV. In a specific implementation, the specific value of the LUMO energy level of the carrier balance layer 13 may be determined according to factors such as the LUMO energy level of the electron transport layer 14 , which is not limited in this embodiment.
  • the absolute value of the HOMO energy level of the carrier balance layer 13 may be less than or equal to 6.3 eV. Since the HOMO energy level of the carrier balancing layer 13 is a negative value, in this implementation manner, the HOMO energy level of the carrier balancing layer 13 may be greater than or equal to -6.3eV. In a specific implementation, the specific value of the HOMO energy level of the carrier balance layer 13 can be determined according to factors such as the HOMO energy level of the light emitting layer 12 and the HOMO energy level of the electron transport layer 14, which is not limited in this embodiment.
  • the above-mentioned light emitting diode device may further include a hole transport layer 16 disposed between the anode layer 11 and the light emitting layer 12 .
  • the hole transport layer 16 is mainly used to transport holes, and polymer materials such as PVK, TFB, etc. can be selected, and organic small molecule materials with a molecular weight not higher than 4000 can also be used.
  • the hole mobility of the hole transport layer 16 is generally not high. Below 10 -6 cm 2 /Vs.
  • the electron transport layer 14 is usually made of a material with a lower electron mobility
  • the hole transport layer 16 is made of a material with a higher hole mobility, resulting in the electron transport layer 14 and the hole transport layer 16
  • the material selection range is greatly reduced.
  • the setting of the carrier balance layer 13 can reduce the transmission speed of electrons from the electron transport layer 14 to the light-emitting layer 12, and narrow the gap between the transmission speed of electrons and the transmission speed of holes, it can increase The material selection range of the electron transport layer 14 and the hole transport layer 16 and other film layers.
  • the light emitting layer 12 may be a quantum dot light emitting layer, which is not limited in this embodiment.
  • the light emitting diode device can have the advantages of high fluorescence quantum yield, narrow emission spectrum, adjustable emission spectrum and the like.
  • the main function of the quantum dot light-emitting layer is to recombine excitons on the quantum dots to emit light.
  • the quantum dots can be selected from II-VI, perovskite, III-V, I-III-VI, IV-VI, and silicon-based quantum dots. dots or carbon quantum dots.
  • the material of the anode layer 11 may be a material with a high work function.
  • the anode layer 11 can be arranged close to the substrate of the light-emitting substrate.
  • the anode layer 11 can be made of a transparent oxide material such as indium oxide Tin (Indium Tin Oxide, ITO), Indium Zinc Oxide (Indium Zinc Oxide, IZO), etc., the thickness can be greater than or equal to 80 nanometers, and less than or equal to 200 nanometers; if the light-emitting substrate is a top emission structure, the anode layer 11 can be It is prepared with a composite structure of a transparent oxide material and a metal layer such as Ag, such as Ag/ITO or Ag/IZO.
  • the thickness of the metal layer Ag may be greater than or equal to 80 nanometers and less than or equal to 100 nanometers, and the thickness of the metal oxide may be greater than or equal to 5 nanometers and less than or equal to 10 nanometers.
  • the average reflectance of the anode layer 11 in the visible light band may be greater than or equal to 85% and less than or equal to 95%. It should be noted that, when the light-emitting diode device provided in this embodiment is used for a light-emitting substrate, the cathode layer 15 can also be arranged close to the substrate of the light-emitting substrate. In this structure, the material of the anode layer 11 can be selected according to actual needs , which is not limited in this embodiment.
  • the electron transport layer 14 is mainly responsible for the transport of electrons.
  • Metal oxides such as ZnO and ZnMgO can be selected, or evaporation-type materials containing electron-withdrawing groups such as anthracene and triazine in the molecular structure can be selected.
  • the electrons in the electron transport layer 14 The mobility may be greater than or equal to 10 -4 cm 2 /Vs.
  • the above light emitting diode device may further include a hole injection layer 17 disposed between the anode layer 11 and the hole transport layer 16 .
  • the main function of the hole injection layer 17 is to reduce the hole injection barrier and improve the hole injection efficiency. It can be prepared from materials such as PSS:PEDOT, NiO x , etc.; it can also be prepared by p-type doping of the hole transport material. prepared.
  • the above-mentioned light-emitting diode device may further include an electron blocking layer disposed between the hole transport layer 16 and the light-emitting layer 12 , and the electron blocking layer functions to block electrons from migrating to the hole transport layer 16 .
  • the above light emitting diode device may further include a hole blocking layer disposed between the carrier balance layer 13 and the electron transport layer 14 , and the hole blocking layer functions to block migration of holes to the electron transport layer 14 .
  • the electron mobility of the carrier balance layer 13 is lower than the electron mobility of the electron transport layer 14 by more than 2 orders of magnitude.
  • the electron mobility of the carrier balance layer 13 is at least two orders of magnitude lower than the electron mobility of the electron transport layer 14 .
  • the order of electron mobility of the carrier balance layer 13 is 10 -6
  • the order of electron mobility of the electron transport layer 14 may be 10 -4 or 10 -3 .
  • This implementation can further reduce the transmission speed of electrons from the electron transport layer 14 to the light-emitting layer 12, further reduce the accumulation of excess electrons on the surface of the light-emitting layer 12 near the anode layer 11, and improve the stability, reliability and performance of the device.
  • the hole mobility of the hole transport layer 16 may be 1 order of magnitude larger or 1 order of magnitude smaller than the hole mobility of the carrier balance layer 13 . Specifically, the order of magnitude difference between the hole mobility of the carrier balance layer 13 and the hole mobility of the hole transport layer 16 may be within 1 order of magnitude.
  • the thickness of the carrier balance layer 13 may be greater than or equal to 2 microns and less than or equal to 40 microns. Further, the thickness of the carrier balance layer 13 may be greater than or equal to 5 microns and less than or equal to 25 microns. By selecting an appropriate thickness, on the one hand, the transport speed of electrons can be effectively reduced, and on the other hand, electrons can pass through the carrier balance layer 13 and enter the light-emitting layer 12 . In a specific implementation, the thickness of the carrier balance layer 13 can be determined according to actual requirements, which is not limited in this embodiment.
  • the material of the carrier balance layer 13 may include a first compound, and the first compound is selected from the compounds represented by the following first general formula:
  • L represents a solubilizing group
  • the solubilizing group can be selected from straight chain alkyl groups having 2 to 40 carbon atoms, branched chain alkyl groups having 2 to 40 carbon atoms, cyclic alkyl groups having 2 to 40 carbon atoms , any of a linear alkoxy group having 2 to 40 carbon atoms, a branched alkoxy group having 2 to 40 carbon atoms, and a cyclic alkoxy group having 2 to 40 carbon atoms.
  • solubilizing group can be selected from straight chain alkyl groups with 2 to 30 carbon atoms, branched chain alkyl groups with 2 to 30 carbon atoms, cyclic alkyl groups with 2 to 30 carbon atoms, Any of a linear alkoxy group having 2 to 30 carbon atoms, a branched alkoxy group having 2 to 30 carbon atoms, and a cyclic alkoxy group having 2 to 30 carbon atoms.
  • solubilizing group can be selected from straight chain alkyl groups having 2 to 20 carbon atoms, branched chain alkyl groups having 2 to 20 carbon atoms, cyclic alkyl groups having 2 to 20 carbon atoms, Any of a straight-chain alkoxy group having 2 to 20 carbon atoms, a branched-chain alkoxy group having 2 to 20 carbon atoms, and a cyclic alkoxy group having 2 to 20 carbon atoms.
  • solubilizing group may be selected from straight chain alkyl groups having 2 to 15 carbon atoms, branched chain alkyl groups having 2 to 15 carbon atoms, cyclic alkyl groups having 2 to 15 carbon atoms, Any of a straight-chain alkoxy group having 2 to 15 carbon atoms, a branched-chain alkoxy group having 2 to 15 carbon atoms, and a cyclic alkoxy group having 2 to 15 carbon atoms.
  • solubilizing group may be selected from straight chain alkyl groups having 3 to 15 carbon atoms, branched chain alkyl groups having 3 to 15 carbon atoms, cyclic alkyl groups having 3 to 15 carbon atoms, Any of a straight-chain alkoxy group having 3 to 15 carbon atoms, a branched-chain alkoxy group having 3 to 15 carbon atoms, and a cyclic alkoxy group having 3 to 15 carbon atoms.
  • solubilizing group L can be directly bonded to any position among Ar 1 , Ar 2 and Ar 3 .
  • n represents the number of solubilizing groups. In a specific implementation, n may be greater than or equal to 2. That is, the first compound contains at least two solubilizing groups.
  • Ar 1 , Ar 2 and Ar 3 may be the same or different, at least one of which is selected from the compounds represented by the second general formula, and the rest are selected from the compounds represented by the third general formula. That is, at least one of Ar 1 , Ar 2 and Ar 3 is selected from the compounds represented by the second general formula, and the rest are selected from the compounds represented by the third general formula.
  • the second general formula can be:
  • A is selected from nitrogen or carbon.
  • the third general formula can be any one of the following general formulas:
  • X is selected from nitrogen, carbon, oxygen or sulfur.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different, and are independently selected from substituted alkyl groups having 1 to 30 carbon atoms, substituted alkyl groups having 1 to 30 unsubstituted alkyl having 1 to 30 carbon atoms, substituted alkoxy having 1 to 30 carbon atoms, unsubstituted alkoxy having 1 to 30 carbon atoms, aryl having 6 to 40 carbon atoms, Any of an aryloxy group having 6 to 40 carbon atoms and an aralkyl group having 7 to 40 carbon atoms.
  • the molecular weight of the first compound may be less than or equal to 5000 g/mol. Further, the molecular weight of the first compound may be less than or equal to 4000 g/mol.
  • the light emitting diode device includes an anode layer 11 , a hole injection layer 17 , a hole transport layer 16 , a quantum dot light emitting layer 12 , a carrier balance layer 13 , an electron transport layer 14 and a cathode layer 15 .
  • the material of the anode layer 11 is ITO, and the thickness is greater than or equal to 40 nanometers and less than or equal to 45 nanometers.
  • the thickness of the hole injection layer 17 is greater than or equal to 35 nm and less than or equal to 40 nm.
  • the thickness of the hole transport layer 16 is greater than or equal to 35 nm and less than or equal to 40 nm.
  • the thickness of the light emitting layer 12 is greater than or equal to 10 nm and less than or equal to 20 nm.
  • the thickness of the carrier balance layer 13 is 5 nanometers.
  • the thickness of the electron transport layer 14 is greater than or equal to 30 nm and less than or equal to 60 nm.
  • the cathode layer 15 is made of metal aluminum with a thickness of 100 nanometers.
  • the hole injection layer 17 can be prepared using a PEDOT solution.
  • the hole transport layer 16 can be prepared using PVK solution.
  • the quantum dot light-emitting layer 12 can be prepared by using a CdSe red light quantum dot solution, and the material parameters of the quantum dot light-emitting layer 12 are shown in the EML material in Table 1.
  • the carrier balance layer 13 can be prepared using the A1 solution, and the material parameters of the carrier balance layer 13 are shown in the compound A1 material in Table 1.
  • the electron transport layer 14 is prepared by ZnO solution, and the material parameters of the electron transport layer 14 are shown in the ETL material in Table 1.
  • the specific preparation process is as follows:
  • the cleaned glass substrate carrying the anode layer 11 was treated with an ultraviolet ozone cleaning machine for 15 minutes, transferred to a glove box filled with nitrogen protection, and spin-coated with PEDOT solution at a speed of 3000 rpm for 40 seconds, and baked at 130°C for 20 minutes After being placed at room temperature, a hole injection layer 17 is formed; then, a premixed PVK solution is spin-coated on the hole injection layer 17 at a rotation speed of 3000 rpm for 40 seconds, and baked at 130° C. for 20 minutes to form a hole transport layer.
  • the anode layer of the light emitting diode device prepared by the above preparation process is close to the glass substrate, and the structure of the light emitting diode device is an upright structure, as shown in FIG. 1 .
  • the cathode layer 15, the electron transport layer 14, the carrier balance layer 13, the light emitting layer 12, the hole transport layer 16, the hole injection layer 17 and the anode layer 11 can also be sequentially formed on the glass substrate, each The preparation process of the layer can refer to the above process parameters, and will not be repeated here. Finally, a light-emitting diode device with the cathode layer 15 close to the glass substrate is prepared, and the structure of the light-emitting diode device is an inverted structure. This embodiment does not specifically limit the upright or inverted structure of the light emitting diode device.
  • Structure 2 The thickness of the carrier balance layer 13 is 15 nanometers. Others are the same as structure 1.
  • Structure 3 The thickness of the carrier balance layer 13 is 30 nanometers. Others are the same as structure 1.
  • Structure 4 The thickness of the carrier balance layer 13 is 15 nanometers. The material parameters of the carrier balance layer 13 are shown in A2 material in Table 1. Others are the same as structure 1.
  • Comparative structure 1 on the basis of structure 1, the carrier balance layer 13 is removed, and the others are the same as structure 1.
  • Comparative structure 2 a functional layer is provided between the light-emitting layer 12 and the electron transport layer 14, the material is PVK, the thickness is 20 nm, the other is the same as structure 1.
  • the material parameters of the functional layer are shown in the PVK material in Table 1, and the general formula of the PVK material is as follows:
  • PVK is a hole-type material, so only hole mobility is shown.
  • the material ETL of the electron transport layer 14 is an electron-type material, so only electron mobility is shown.
  • the material of the carrier balance layer 13 such as compound A1 or compound A2 is a hole-biased material, and the electron mobility is lower than the hole mobility. It should be noted that both compound A1 and compound A2 belong to the first compound.
  • Structures 1 to 3 adjusted the thickness of the carrier balance layer 13 to 5 nanometers, 15 nanometers and 30 nanometers respectively. It can be seen from Table 2 that as the thickness of the carrier balance layer 13 increases, the voltage gradually increases, and the current efficiency first increases and then decreases. This is because the electron transport potential As the barrier increases, the transport speed of electrons decreases, and recombination of electrons and holes can occur in the light-emitting layer 12 and the carrier balance layer 13. At this time, the luminous efficiency of the device can be improved.
  • the electron transport barrier may be too large, resulting in the inability of electrons to be transported into the light-emitting layer, thus resulting in an increase in voltage and a decrease in luminous efficiency.
  • the thickness of the carrier balance layer 13 is the same, and the materials of the carrier balance layer 13 are compound A1 and compound A2 respectively. It can be seen from Table 2 that structure 2 has a smaller voltage and a higher current efficiency. This is because the interface potential barrier between compound A1 and electron transport layer 14 is smaller than that between compound A2 and electron transport layer 14, and the electron mobility and hole mobility of compound A1 are higher, so when carrying current When the material of the sub-balancing layer 13 is compound A1, the light-emitting diode device can have lower voltage and higher current efficiency.
  • An embodiment of the present disclosure provides a light-emitting substrate, referring to FIG. 5 and FIG. 6 , which includes: a substrate 50 , and a plurality of light-emitting diode devices according to any embodiment disposed on one side of the substrate 50 .
  • the light emitting diode device includes an anode layer 11 , a light emitting layer 12 , a carrier balance layer 13 , an electron transport layer 14 and a cathode layer 15 stacked on one side of the substrate 50 .
  • the anode layer 11 may be disposed close to the substrate 50 .
  • a hole injection layer 17 and a hole transport layer 16 can also be stacked between the anode layer 11 and the light-emitting layer 12, the hole injection layer 17 is arranged close to the anode layer 11, and the light-emitting layer 12 is arranged in the hole.
  • the side of the hole transport layer 16 facing away from the anode layer 11 is arranged close to the substrate 50 .
  • the cathode layer 15 may also be arranged close to the substrate 50 .
  • a hole transport layer 16 and a hole injection layer 17 can also be stacked between the light-emitting layer 12 and the anode layer 11, the hole transport layer 16 is arranged close to the light-emitting layer 12, and the anode layer 11 is arranged in the hole.
  • the light-emitting substrate provided in this embodiment can also be provided with a drive circuit connected to each light-emitting diode device, and the drive circuit can also be connected to a control circuit to drive each light-emitting diode device to emit light according to an electrical signal input from the control circuit.
  • the driving circuit can be an active driving circuit or a passive driving circuit.
  • the light-emitting substrate can be used for lighting, that is, it can be applied to a lighting device; it can also be used for display, that is, it can be applied to a light-emitting device.
  • Another embodiment of the present disclosure further provides a light emitting device, and the light emitting device may include the light emitting substrate described in any embodiment.
  • the light emitting device may be a lighting device. At this time, the light emitting device is used as a light source to realize the lighting function.
  • the light emitting device may be a backlight module in a liquid crystal display device, a lamp for internal or external lighting, or various signal lamps.
  • the light emitting device may be a display device.
  • the light-emitting substrate is a display substrate, which is used to realize the function of displaying images (ie, screens).
  • a light emitting device may include a display or a product including a display.
  • the display may be a flat panel display (Flat Panel Display, FPD), a microdisplay, and the like. If divided according to whether the user can see the scene on the back of the display, the display can be a transparent display or an opaque display. According to whether the display can be bent or rolled, the display may be a flexible display or a common display (which may be called a rigid display).
  • Exemplary products that include displays may include: computer monitors, televisions, billboards, laser printers with display capabilities, telephones, cell phones, Personal Digital Assistants (PDAs), laptop computers, digital cameras, camcorders VCRs, viewfinders, vehicles, large walls, theater screens or stadium signage, etc.
  • PDAs Personal Digital Assistants
  • laptop computers digital cameras
  • camcorders VCRs camcorders
  • viewfinders vehicles, large walls, theater screens or stadium signage, etc.
  • Another embodiment of the present disclosure also provides a method for preparing a light-emitting diode device, the preparation method comprising: sequentially forming an anode layer, a light-emitting layer, a carrier balance layer, an electron transport layer, and a cathode layer; or, sequentially forming a cathode layer , electron transport layer, carrier balance layer, light emitting layer and anode layer.
  • the hole mobility of the carrier balance layer is greater than the electron mobility
  • the LUMO energy level of the carrier balance layer is shallower than the LUMO energy level of the electron transport layer
  • the HOMO energy level of the carrier balance layer is lower than that of the light-emitting layer. The energy level is shallow.
  • the light emitting diode device described in any of the above embodiments can be prepared.
  • the steps of sequentially forming an anode layer, a light-emitting layer, a carrier balance layer, an electron transport layer, and a cathode layer may include: sequentially forming an anode layer and a light-emitting layer; Spin-coat the first compound solution on one side of the layer, and dry the first compound solution to form a carrier balance layer; then form an electron transport layer and a cathode layer in sequence on the side of the carrier balance layer away from the anode layer .
  • the step of sequentially forming the anode layer and the light-emitting layer may include: first forming the anode layer; then forming a hole transport layer on one side of the anode layer; and then forming a light-emitting layer on the side of the hole transport layer away from the anode layer.
  • the hole mobility of the hole transport layer is 1 order of magnitude larger or 1 order of magnitude smaller than the hole mobility of the carrier balance layer.
  • the step of forming a hole transport layer on one side of the anode layer may further include: forming a hole injection layer on one side of the anode layer, and forming a hole transport layer on a side of the hole injection layer away from the anode layer. layer.
  • the cleaned glass substrate carrying the anode layer 11 was treated with an ultraviolet ozone cleaning machine for 15 minutes, transferred to a glove box filled with nitrogen protection, and spin-coated with PEDOT solution at a speed of 3000 rpm for 40 seconds, and baked at 130°C for 20 minutes After being placed at room temperature, a hole injection layer 17 is formed; then, a premixed PVK solution is spin-coated on the hole injection layer 17 at a rotation speed of 3000 rpm for 40 seconds, and baked at 130° C. for 20 minutes to form a hole transport layer.
  • a light-emitting diode device with an upright structure can be prepared by using the preparation method provided in this implementation mode, as shown in FIG. 1 .
  • the step of sequentially forming the cathode layer, the electron transport layer, the carrier balance layer, the light-emitting layer and the anode layer may include: sequentially forming the cathode layer and the electron transport layer; One side of the cathode layer is spin-coated with the first compound solution, and the first compound solution is dried to form a carrier balance layer; a light-emitting layer and an anode layer are sequentially formed on the side of the carrier balance layer away from the cathode layer.
  • the step of sequentially forming the light-emitting layer and the anode layer on the side of the carrier balance layer away from the cathode layer may include: forming a light-emitting layer on the side of the carrier balance layer away from the cathode layer; A hole transport layer is formed on one side of the balance layer; an anode layer is formed on a side of the hole transport layer away from the carrier balance layer.
  • the hole mobility of the hole transport layer is 1 order of magnitude larger or 1 order of magnitude smaller than the hole mobility of the carrier balance layer.
  • the step of forming the anode layer on the side of the hole transport layer away from the carrier balance layer may further include: forming a hole injection layer on the side of the hole transport layer away from the carrier balance layer, The side of the hole injection layer facing away from the carrier balance layer forms an anode layer.
  • the preparation process of each layer may refer to the previous implementation manner, and will not be repeated here.
  • a light emitting diode device with an inverted structure can be prepared by using the preparation method provided in this implementation manner.
  • the first compound can be selected from the compounds shown in the following first general formula:
  • L represents a solubilizing group
  • the solubilizing group can be selected from straight chain alkyl groups having 2 to 40 carbon atoms, branched chain alkyl groups having 2 to 40 carbon atoms, cyclic alkyl groups having 2 to 40 carbon atoms , any of a linear alkoxy group having 2 to 40 carbon atoms, a branched alkoxy group having 2 to 40 carbon atoms, and a cyclic alkoxy group having 2 to 40 carbon atoms.
  • solubilizing group can be selected from straight chain alkyl groups with 2 to 30 carbon atoms, branched chain alkyl groups with 2 to 30 carbon atoms, cyclic alkyl groups with 2 to 30 carbon atoms, Any of a linear alkoxy group having 2 to 30 carbon atoms, a branched alkoxy group having 2 to 30 carbon atoms, and a cyclic alkoxy group having 2 to 30 carbon atoms.
  • solubilizing group can be selected from straight chain alkyl groups having 2 to 20 carbon atoms, branched chain alkyl groups having 2 to 20 carbon atoms, cyclic alkyl groups having 2 to 20 carbon atoms, Any of a straight-chain alkoxy group having 2 to 20 carbon atoms, a branched-chain alkoxy group having 2 to 20 carbon atoms, and a cyclic alkoxy group having 2 to 20 carbon atoms.
  • solubilizing group may be selected from straight chain alkyl groups having 2 to 15 carbon atoms, branched chain alkyl groups having 2 to 15 carbon atoms, cyclic alkyl groups having 2 to 15 carbon atoms, Any of a straight-chain alkoxy group having 2 to 15 carbon atoms, a branched-chain alkoxy group having 2 to 15 carbon atoms, and a cyclic alkoxy group having 2 to 15 carbon atoms.
  • solubilizing group may be selected from straight chain alkyl groups having 3 to 15 carbon atoms, branched chain alkyl groups having 3 to 15 carbon atoms, cyclic alkyl groups having 3 to 15 carbon atoms, Any of a straight-chain alkoxy group having 3 to 15 carbon atoms, a branched-chain alkoxy group having 3 to 15 carbon atoms, and a cyclic alkoxy group having 3 to 15 carbon atoms.
  • solubilizing group L can be directly bonded to any position among Ar 1 , Ar 2 and Ar 3 .
  • n represents the number of solubilizing groups. In a specific implementation, n may be greater than or equal to 2. That is, the first compound contains at least two solubilizing groups.
  • Ar 1 , Ar 2 and Ar 3 may be the same or different, at least one of which is selected from the compounds represented by the second general formula, and the rest are selected from the compounds represented by the third general formula.
  • the second general formula can be:
  • A is selected from nitrogen or carbon.
  • the third general formula can be any one of the following general formulas:
  • X is selected from nitrogen, carbon, oxygen or sulfur.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different, and are independently selected from substituted alkyl groups having 1 to 30 carbon atoms, substituted alkyl groups having 1 to 30 an unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted alkoxy group having 1 to 30 carbon atoms, an unsubstituted alkoxy group having 1 to 30 carbon atoms, an aryl group having 6 to 40 carbon atoms, Any of an aryloxy group having 6 to 40 carbon atoms and an aralkyl group having 7 to 40 carbon atoms.
  • the molecular weight of the first compound may be less than or equal to 5000 g/mol. Further, the molecular weight of the first compound may be less than or equal to 4000 g/mol.
  • references herein to "one embodiment,” “an embodiment,” or “one or more embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Additionally, please note that examples of the word “in one embodiment” herein do not necessarily all refer to the same embodiment.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the disclosure can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

发光二极管器件及其制备方法、发光基板、发光装置。发光二极管器件,包括:层叠设置的阳极层、发光层、载流子平衡层、电子传输层和阴极层;其中,载流子平衡层的空穴迁移率大于电子迁移率,载流子平衡层的LUMO能级比电子传输层的LUMO能级浅,载流子平衡层的HOMO能级比发光层的HOMO能级浅。本公开技术方案可以提高器件的可靠性和寿命,同时还可以增大空穴与电子的复合区域,拓宽发光区域,提高器件发光效率。

Description

发光二极管器件及其制备方法、发光基板、发光装置
相关申请的交叉引用
本公开要求在2021年07月30日提交中国专利局、申请号为202110876286.X、名称为“发光二极管器件及其制备方法、发光基板、发光装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光电技术领域,特别是涉及一种发光二极管器件及其制备方法、发光基板、发光装置。
背景技术
量子点(Quantum dots,QDs)具有荧光量子产率高,发光光谱窄,发光光谱可调等优点,在显示等领域具有广阔的应用前景。尤其是QDs可采用印刷技术制备低成本、大面积的自发光型量子点发光二极管(Quantum dot light-emitting diode,QLED),有望发展成为下一代照明和显示应用的主流技术之一。
概述
本公开提供了一种发光二极管器件,包括:
层叠设置的阳极层、发光层、载流子平衡层、电子传输层和阴极层;
其中,所述载流子平衡层的空穴迁移率大于电子迁移率,所述载流子平衡层的LUMO能级比所述电子传输层的LUMO能级浅,所述载流子平衡层的HOMO能级比所述发光层的HOMO能级浅。
在一种可选的实现方式中,所述载流子平衡层的HOMO能级比所述电子传输层的HOMO能级浅。
在一种可选的实现方式中,所述载流子平衡层的LUMO能级与所述电子传输层的LUMO能级之差大于或等于0.6eV,且小于或等于1.5eV。
在一种可选的实现方式中,所述载流子平衡层的电子迁移率比所述电子 传输层的电子迁移率小2个数量级以上。
在一种可选的实现方式中,还包括设置在所述阳极层与所述发光层之间的空穴传输层,所述空穴传输层的空穴迁移率比所述载流子平衡层的空穴迁移率大1个数量级或者小1个数量级。
在一种可选的实现方式中,所述载流子平衡层的LUMO能级的绝对值大于或等于2.35eV,所述载流子平衡层的HOMO能级的绝对值小于或等于6.3eV。
在一种可选的实现方式中,所述载流子平衡层的材料包括第一化合物,所述第一化合物选自以下第一通式所示的化合物:
其中,L (n)表示增溶基团;n表示所述增溶基团的数量,n大于或等于2;
Figure PCTCN2022103442-appb-000001
Ar 1、Ar 2和Ar 3相同或不同,其中至少一个选自第二通式所示的化合物,其余选自第三通式所示的化合物;
所述第二通式为:
Figure PCTCN2022103442-appb-000002
其中,A选自氮或碳;
所述第三通式为以下通式中的任一种:
Figure PCTCN2022103442-appb-000003
Figure PCTCN2022103442-appb-000004
其中,X选自N、C、O或S;R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8相同或不同,分别独立地选自具有1至30个碳原子的取代的烷基、具有1至30个碳原子的未取代的烷基、具有1至30个碳原子的取代的烷氧基、具有1至30个碳原子的未取代的烷氧基、具有6至40个碳原子的芳基、具有6至40个碳原子的芳氧基和具有7至40个碳原子的芳烷基中的任一种。
在一种可选的实现方式中,所述增溶基团选自具有2至40个碳原子的直链烷基、具有2至40个碳原子的支链烷基、具有2至40个碳原子的环状烷基、具有2至40个碳原子的直链烷氧基、具有2至40个碳原子的支链烷氧基和具有2至40个碳原子的环状烷氧基中的任一种。
在一种可选的实现方式中,所述第一化合物的分子量小于或等于5000g/mol。
在一种可选的实现方式中,所述第一化合物的分子量小于或等于4000g/mol。
在一种可选的实现方式中,所述载流子平衡层的厚度大于或等于2微米,且小于或等于40微米。
在一种可选的实现方式中,所述载流子平衡层的厚度大于或等于5微米,且小于或等于25微米。
在一种可选的实现方式中,所述发光层为量子点发光层。
本公开提供了一种发光基板,包括:
衬底,以及多个设置在所述衬底一侧的如任一实施例所述的发光二极管器件,所述阳极层或者所述阴极层靠近所述衬底设置。
本公开提供了一种发光装置,包括如任一实施例所述的发光基板。
本公开提供了一种发光二极管器件的制备方法,所述制备方法包括:
依次形成阳极层、发光层、载流子平衡层、电子传输层和阴极层;或者,依次形成阴极层、电子传输层、载流子平衡层、发光层和阳极层;
其中,所述载流子平衡层的空穴迁移率大于电子迁移率,所述载流子平 衡层的LUMO能级比所述电子传输层的LUMO能级浅,所述载流子平衡层的HOMO能级比所述发光层的HOMO能级浅。
在一种可选的实现方式中,所述依次形成阳极层、发光层、载流子平衡层、电子传输层和阴极层的步骤,包括:
依次形成所述阳极层和所述发光层;
在所述发光层背离所述阳极层的一侧旋涂第一化合物溶液,并对所述第一化合物溶液进行烘干处理,形成所述载流子平衡层;
在所述载流子平衡层背离所述阳极层的一侧依次形成所述电子传输层和所述阴极层;
所述依次形成阴极层、电子传输层、载流子平衡层、发光层和阳极层的步骤,包括:
依次形成所述阴极层和所述电子传输层;
在所述电子传输层背离所述阴极层的一侧旋涂第一化合物溶液,并对所述第一化合物溶液进行烘干处理,形成所述载流子平衡层;
在所述载流子平衡层背离所述阴极层的一侧依次形成所述发光层和所述阳极层;
其中,所述第一化合物选自以下第一通式所示的化合物:
Figure PCTCN2022103442-appb-000005
其中,L(n)表示增溶基团;n表示所述增溶基团的数量,n大于或等于2;Ar 1、Ar 2和Ar 3相同或不同,其中至少一个选自第二通式所示的化合物,其余选自第三通式所示的化合物;
所述第二通式为:
Figure PCTCN2022103442-appb-000006
其中,A选自氮或碳;
所述第三通式为以下通式中的任一种:
Figure PCTCN2022103442-appb-000007
其中,X选自N、C、O或S;R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8相同或不同,分别独立地选自具有1至30个碳原子的取代的烷基、具有1至30个碳原子的未取代的烷基、具有1至30个碳原子的取代的烷氧基、具有1至30个碳原子的未取代的烷氧基、具有6至40个碳原子的芳基、具有6至40个碳原子的芳氧基和具有7至40个碳原子的芳烷基中的任一种。
在一种可选的实现方式中,所述依次形成所述阳极层和所述发光层的步骤,包括:
形成所述阳极层;
在所述阳极层的一侧形成空穴传输层;
在所述空穴传输层背离所述阳极层的一侧形成所述发光层;
所述在所述载流子平衡层背离所述阴极层的一侧依次形成所述发光层和所述阳极层的步骤,包括:
在所述载流子平衡层背离所述阴极层的一侧形成所述发光层;
在所述发光层背离所述载流子平衡层的一侧形成空穴传输层;
在所述空穴传输层背离所述载流子平衡层的一侧形成所述阳极层;
其中,所述空穴传输层的空穴迁移率比所述载流子平衡层的空穴迁移率大1个数量级或者小1个数量级。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技 术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。需要说明的是,附图中的比例仅作为示意并不代表实际比例。
图1示意性地示出了本公开提供的一种发光二极管器件的剖面结构示意图;
图2示意性地示出了本公开提供的一种发光二极管器件的能级结构示意图;
图3示意性地示出了相关技术中一种发光基板的多层膜表面;
图4示意性地示出了本公开提供的一种发光基板的多层膜表面;
图5示意性地示出了本公开提供的一种发光基板的剖面结构示意图;
图6示意性地示出了本公开提供的另一种发光基板的剖面结构示意图。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开一实施例提供了一种发光二极管器件,参照图1示意性地示出了本实施例提供的一种发光二极管器件的剖面结构示意图。如图1所示,该发光二极管器件包括:层叠设置的阳极层11、发光层12、载流子平衡层13、电子传输层14和阴极层15。
其中,载流子平衡层13的空穴迁移率大于电子迁移率。
参照图2示意性地示出了本实施例提供的一种发光二极管器件的能级结 构示意图。如图2所示,载流子平衡层13的LUMO能级比电子传输层14的LUMO能级浅,载流子平衡层13的HOMO能级比发光层12的HOMO能级浅。
其中,载流子平衡层13的LUMO能级比电子传输层14的LUMO能级浅,指的是载流子平衡层13的LUMO能级高于电子传输层14的LUMO能级。由于载流子平衡层13的LUMO能级与电子传输层14的LUMO能级都是负值,因此载流子平衡层13的LUMO能级绝对值小于电子传输层14的LUMO能级绝对值。
其中,载流子平衡层13的HOMO能级比发光层12的HOMO能级浅,指的是载流子平衡层13的HOMO能级高于发光层12的HOMO能级。由于载流子平衡层13的HOMO能级与发光层12的HOMO能级都是负值,因此载流子平衡层13的HOMO能级绝对值小于发光层12的HOMO能级绝对值。
由于载流子平衡层13的LUMO能级比发光层12的LUMO能级浅,因此在电子传输层14和发光层12之间形成阻碍电子传输的势垒,从而可以降低电子从电子传输层14至发光层12的传输速度,使电子从电子传输层14至发光层12的传输速度与空穴从阳极层11至发光层12的传输速度接近,一方面可以降低未发生复合的电子即过剩电子的数量,避免过剩电子堆积在发光层12靠近阳极层11一侧的表面,因此可以提高阳极层11与发光层12之间膜层(如空穴传输层16等)的特性稳定性,提高器件的可靠性和寿命,这种情况下,载流子平衡层13起到调控载流子平衡的作用;另一方面,由于电子从电子传输层14至发光层12的传输速度降低,使得部分电子堆积在载流子平衡层13与发光层12的界面以及载流子平衡层13的内部,并且由于载流子平衡层13的空穴迁移率大于电子迁移率,载流子平衡层13的HOMO能级比发光层12的HOMO能级浅,这些因素都可以促使空穴向载流子平衡层13迁移,使空穴和电子在载流子平衡层13的内部以及载流子平衡层13与发光层12的界面处都可以发生复合,从而可以增大空穴与电子的复合区域,拓宽发光区域,提高器件发光效率。
本实施例提供的发光二极管器件,通过在发光层12和电子传输层14之间设置载流子平衡层13,并且载流子平衡层13的空穴迁移率大于电子迁移率,载流子平衡层13的LUMO能级比电子传输层14的LUMO能级浅,载流子平 衡层13的HOMO能级比发光层12的HOMO能级浅,可以降低电子从电子传输层14至发光层12的传输速度,提高器件的发光效率、可靠性和寿命。
另外,在制备发光二极管器件的过程中,发光层12和电子传输层14的制备材料都是将纳米粒子分散在溶剂中,在成膜去除溶剂之后,膜层表面张力较大,在多层膜叠加时,如将电子传输层14直接覆盖在发光层12之上或者将发光层12直接覆盖在电子传输层14之上时,容易出现表面不均的问题(如图3所示),工艺稳定性较差,因此对溶剂体系的材料和工艺要求较高。
本实施例中,通过在发光层12和电子传输层14之间设置载流子平衡层13,该载流子平衡层13起到平坦化发光层12或电子传输层14表面的作用,因此,可以缓解发光层12或电子传输层14的表面张力,提升表面均一性(如图4所示),提升工艺稳定性,增大溶剂材料的选择范围,降低工艺精度要求。
在一种可选的实现方式中,载流子平衡层13的HOMO能级可以比电子传输层14的HOMO能级浅。具体地,载流子平衡层13的HOMO能级高于电子传输层14的HOMO能级。这样,可以对空穴形成迁移势垒,阻止空穴向电子传输层14传输,提高器件的发光效率。
在一种可选的实现方式中,载流子平衡层13的LUMO能级与电子传输层14的LUMO能级之差可以大于或等于0.6eV,且小于或等于1.5eV。本实现方式中,在电子传输层14与发光层12之间形成的阻碍电子的传输势垒高度大于或等于0.6eV,且小于或等于1.5eV。这样,既可以确保形成在发光层12和电子传输层14之间的传输势垒能够有效地阻碍电子的传输,降低电子的传输速度;又可以确保电子能够跨越该传输势垒从电子传输层14传输至发光层12,防止该传输势垒过高而导致电子无法跨越。
在一种可选的实现方式中,载流子平衡层13的LUMO能级的绝对值可以大于或等于2.35eV。由于载流子平衡层13的LUMO能级为负值,本实现方式中,载流子平衡层13的LUMO能级可以小于或等于-2.35eV。在具体实现中,载流子平衡层13的LUMO能级的具体数值可以根据电子传输层14的LUMO能级等因素确定,本实施例对此不作限定。
在一种可选的实现方式中,载流子平衡层13的HOMO能级的绝对值可以小于或等于6.3eV。由于载流子平衡层13的HOMO能级为负值,本实现方 式中,载流子平衡层13的HOMO能级可以大于或等于-6.3eV。在具体实现中,载流子平衡层13的HOMO能级的具体数值可以根据发光层12的HOMO能级以及电子传输层14的HOMO能级等因素确定,本实施例对此不作限定。
参照图1,上述的发光二极管器件还可以包括设置在阳极层11与发光层12之间的空穴传输层16。空穴传输层16主要用于传输空穴,可以选用聚合物材料,例如PVK、TFB等,也可选用分子量不高于4000的有机小分子材料,空穴传输层16的空穴迁移率一般不低于10 -6cm 2/Vs。
相关技术中,为了避免出现过剩电子,通常电子传输层14采用电子迁移率较低的材料,空穴传输层16采用空穴迁移率较高的材料,导致电子传输层14和空穴传输层16的材料选择范围大大减小。本实施例中,由于载流子平衡层13的设置可以降低电子从电子传输层14至发光层12的传输速度,缩小电子的传输速度与空穴的传输速度之间的差距,因此可以增大电子传输层14以及空穴传输层16等膜层的材料选择范围。
在一种可选的实现方式中,发光层12可以为量子点发光层,本实施例对此不作限定。这样,发光二极管器件可以具有荧光量子产率高,发光光谱窄,发光光谱可调等优点。量子点发光层主要的功能是在量子点上激子复合进行发光,量子点可以选择Ⅱ-Ⅵ族、钙钛矿、Ⅲ-Ⅴ族、Ⅰ-Ⅲ-Ⅵ族、Ⅳ-Ⅵ、硅系量子点或者碳量子点等。
在具体实现中,阳极层11的材料可以为具有高功函数的材料。当本实施例提供的发光二极管器件用于发光基板时,可以设置阳极层11靠近发光基板的衬底设置,若该发光基板为底发射结构,则阳极层11可以采用透明氧化物材料如氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)等,厚度可以大于或等于80纳米,且小于或等于200纳米;若该发光基板为顶发射结构,则阳极层11可以采用透明氧化物材料以及金属层如Ag等的复合结构制备,如Ag/ITO或Ag/IZO等。其中,金属层Ag的厚度可以大于或等于80纳米且小于或等于100纳米,金属氧化物厚度可以大于或等于5纳米且小于或等于10纳米。在顶发射结构中,阳极层11在可见光波段的平均反射率可以大于或等于85%,且小于或等于95%。需要说明的是,当本实施例提供的发光二极管器件用于发光基板时,还可以设置阴极层15靠近发光基板的衬底设置,在这种结构中阳极层11的材料可以根据实际需求进行选择, 本实施例对此不作限定。
电子传输层14主要负责电子的传输,可以选择ZnO、ZnMgO等金属氧化物,也可以选用分子结构中包含蒽类、三嗪等吸电子基团的蒸镀型材料,该电子传输层14的电子迁移率可以大于或等于10 -4cm 2/Vs。
如图1所示,上述的发光二极管器件还可以包括设置在阳极层11和空穴传输层16之间的空穴注入层17。空穴注入层17的主要作用为降低空穴注入势垒,提高空穴注入效率,可以选用如PSS:PEDOT,NiO x等材料制备;也可采用对空穴传输材料进行p型掺杂的方式制备得到。
上述的发光二极管器件还可以包括设置在空穴传输层16与发光层12之间的电子阻挡层,电子阻挡层起到阻挡电子向空穴传输层16迁移的作用。
上述的发光二极管器件还可以包括设置在载流子平衡层13与电子传输层14之间的空穴阻挡层,空穴阻挡层起到阻挡空穴向电子传输层14迁移的作用。
在一种可选的实现方式中,载流子平衡层13的电子迁移率比电子传输层14的电子迁移率小2个数量级以上。具体地,载流子平衡层13的电子迁移率至少比电子传输层14的电子迁移率低2个数量级以上。例如,载流子平衡层13的电子迁移率的数量级为10 -6,电子传输层14的电子迁移率的数量级可以位10 -4或10 -3等。本实现方式可以进一步降低电子从电子传输层14向发光层12的传输速度,进一步降低发光层12靠近阳极层11一侧表面的过剩电子堆积,提高器件的稳定性、可靠性和器件性能。
在一种可选的实现方式中,空穴传输层16的空穴迁移率可以比载流子平衡层13的空穴迁移率大1个数量级或者小1个数量级。具体地,载流子平衡层13的空穴迁移率与空穴传输层16的空穴迁移率的数量级差值可以在1个数量级以内。
在一种可选的实现方式中,载流子平衡层13的厚度可以大于或等于2微米,且小于或等于40微米。进一步地,载流子平衡层13的厚度可以大于或等于5微米,且小于或等于25微米。通过选取合适的厚度,一方面,可以有效降低电子的传输速度,另一方面确保电子能够穿过载流子平衡层13进入发光层12内。在具体实现中,载流子平衡层13的厚度可以根据实际需求确定,本实施例对此不作限定。
在一种可选的实现方式中,载流子平衡层13的材料可以包括第一化合物,第一化合物选自以下第一通式所示的化合物:
Figure PCTCN2022103442-appb-000008
其中,L表示增溶基团。
在具体实现中,增溶基团可以选自具有2至40个碳原子的直链烷基、具有2至40个碳原子的支链烷基、具有2至40个碳原子的环状烷基、具有2至40个碳原子的直链烷氧基、具有2至40个碳原子的支链烷氧基和具有2至40个碳原子的环状烷氧基中的任一种。
进一步地,增溶基团可以选自具有2至30个碳原子的直链烷基、具有2至30个碳原子的支链烷基、具有2至30个碳原子的环状烷基、具有2至30个碳原子的直链烷氧基、具有2至30个碳原子的支链烷氧基和具有2至30个碳原子的环状烷氧基中的任一种。
更进一步地,增溶基团可以选自具有2至20个碳原子的直链烷基、具有2至20个碳原子的支链烷基、具有2至20个碳原子的环状烷基、具有2至20个碳原子的直链烷氧基、具有2至20个碳原子的支链烷氧基和具有2至20个碳原子的环状烷氧基中的任一种。
更进一步地,增溶基团可以选自具有2至15个碳原子的直链烷基、具有2至15个碳原子的支链烷基、具有2至15个碳原子的环状烷基、具有2至15个碳原子的直链烷氧基、具有2至15个碳原子的支链烷氧基和具有2至15个碳原子的环状烷氧基中的任一种。
更进一步地,增溶基团可以选自具有3至15个碳原子的直链烷基、具有3至15个碳原子的支链烷基、具有3至15个碳原子的环状烷基、具有3至15个碳原子的直链烷氧基、具有3至15个碳原子的支链烷氧基和具有3至15个碳原子的环状烷氧基中的任一种。
其中,增溶基团L可以直接键合在Ar 1、Ar 2和Ar 3中的任意位置。
n表示增溶基团的数量。在具体实现中,n可以大于或等于2。即第一化 合物至少包含两个增溶基团。
Ar 1、Ar 2和Ar 3可以相同或不同,其中至少一个选自第二通式所示的化合物,其余选自第三通式所示的化合物。即Ar 1、Ar 2和Ar 3中的至少一个选自第二通式所示的化合物,其余选自第三通式所示的化合物。
本实现方式中,第二通式可以为:
Figure PCTCN2022103442-appb-000009
其中,A选自氮或碳。
第三通式可以为以下通式中的任一种:
Figure PCTCN2022103442-appb-000010
其中,X选自氮、碳、氧或硫。
R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8可以相同或不同,分别独立地选自具有1至30个碳原子的取代的烷基、具有1至30个碳原子的未取代的烷基、具有1至30个碳原子的取代的烷氧基、具有1至30个碳原子的未取代的烷氧基、具有6至40个碳原子的芳基、具有6至40个碳原子的芳氧基和具有7至40个碳原子的芳烷基中的任一种。
在一种可选的实现方式中,第一化合物的分子量可以小于或等于 5000g/mol。进一步地,第一化合物的分子量可以小于或等于4000g/mol。
下面对几种具体结构的发光二极管器件的器件性能进行对比。
结构1:发光二极管器件包括层叠设置的阳极层11、空穴注入层17、空穴传输层16、量子点发光层12、载流子平衡层13、电子传输层14以及阴极层15。其中,阳极层11的材料为ITO,厚度大于或等于40纳米且小于或等于45纳米。空穴注入层17的厚度大于或等于35纳米且小于或等于40纳米。空穴传输层16的厚度大于或等于35纳米且小于或等于40纳米。发光层12的厚度大于或等于10纳米且小于或等于20纳米。载流子平衡层13的厚度为5纳米。电子传输层14的厚度大于或等于30纳米且小于或等于60纳米。阴极层15的材料为金属铝,厚度为100纳米。
在具体实现中,空穴注入层17可以采用PEDOT溶液制备。空穴传输层16可以采用PVK溶液制备。量子点发光层12可以采用CdSe红光量子点溶液制备,量子点发光层12的材料参数如表1中的EML材料所示。载流子平衡层13可以采用A1溶液制备,载流子平衡层13的材料参数如表1中的化合物A1材料所示。电子传输层14采用ZnO溶液制备,电子传输层14的材料参数如表1中的ETL材料所示。可选地,具体制备流程如下:
将清洗后的载有阳极层11的玻璃基板进行紫外臭氧清洗机处理15min,转移至充满氮气保护的手套箱内,旋涂PEDOT溶液,转速3000rpm,旋涂时长40s,在130℃下烘烤20min,放置到室温之后,形成空穴注入层17;之后在空穴注入层17上旋涂预混合的PVK溶液,转速3000rpm,旋涂时长40s,在130℃下烘烤20min,形成空穴传输层16;之后在空穴传输层16上旋涂CdSe红光量子点溶液,转速4000rpm,旋涂时长40s,100℃下退火10min,形成量子点发光层12;之后在量子点发光层12上旋涂A1溶液,转速3000rpm,旋涂时长40s,在130℃下烘烤20min,形成载流子平衡层13;之后在载流子平衡层13上旋涂ZnO溶液,转速3000rpm,40s,在100℃下烘烤10min,形成电子传输层14;之后在电子传输层14上蒸镀铝作为阴极。上述制备过程制备得到的发光二极管器件的阳极层靠近玻璃基板,该发光二极管器件的结构为正置结构,如图1所示。
在具体实现中,还可以在玻璃基板上依次形成阴极层15、电子传输层14、载流子平衡层13、发光层12、空穴传输层16、空穴注入层17和阳极层11, 各层的制备工艺可以参照上述的工艺参数,这里不再赘述,最终制备得到阴极层15靠近玻璃基板的发光二极管器件,该发光二极管器件的结构为倒置结构。本实施例对发光二极管器件的正置或倒置结构不作具体限定。
结构2:载流子平衡层13的厚度为15纳米。其它与结构1相同。
结构3:载流子平衡层13的厚度为30纳米。其它与结构1相同。
结构4:载流子平衡层13的厚度为15纳米。载流子平衡层13的材料参数如表1中的A2材料所示。其它与结构1相同。
对比结构1:在结构1的基础上去除了载流子平衡层13,其它与结构1相同。
对比结构2:在发光层12与电子传输层14之间设置功能层,材料为PVK,厚度为20nm,其它与结构1相同。功能层的材料参数如表1中的PVK材料所示,PVK材料的通式如下:
Figure PCTCN2022103442-appb-000011
表1
材料 HOMO能级 LUMO能级 空穴迁移率 电子迁移率
化合物A1 -5.4eV -2.6eV 5.1*10 -4 9.3*10 -6
化合物A2 -5.6eV -2.5eV 1.2*10 -4 4.6*10 -6
PVK -5.8eV -2.2eV 4.8*10 -6 -
EML -6.1eV -3.7eV - -
ETL -7.0eV -3.6eV - 1.8*10 -3
在表1中,PVK为空穴型材料,因此仅示出了空穴迁移率。电子传输层 14的材料ETL为电子型材料,因此仅示出了电子迁移率。载流子平衡层13的材料如化合物A1或化合物A2都是偏空穴型材料,电子迁移率比空穴迁移率低。需要说明的是,化合物A1或化合物A2都属于第一化合物。
通过对上述几种结构器件的电流-电压-亮度特性进行测试,测试结果如表2所示。
表2
Figure PCTCN2022103442-appb-000012
由表2可以看出,与未设置载流子平衡层13的对比结构1相比,设置有载流子平衡层13的结构1至结构4的电流效率明显提升,但电压也稍有上升,这是因为增加载流子平衡层13之后,增加了电子从电子传输层14向发光层12的传输势垒,一定程度上降低了电子的传输速度,缓解了过剩电子在空穴传输层16和发光层12界面的堆积,平衡了发光层12中的载流子,从而可以提升器件性能。
由表1和表2可以看出,对比结构2中,由于PVK具有较浅的LUMO能级,即PVK的LUMO能级(-2.2eV)高于化合物A1的LUMO能级(-2.6eV)以及化合物A2的LUMO能级(-2.5eV),导致电子传输层14与发光层12之间的传输势垒过大,导致电压严重升高,并且电流效率也远低于结构1至结构4。
结构1至结构3调整了载流子平衡层13的厚度,分别为5纳米、15纳米 和30纳米。由表2可以看出,随着载流子平衡层13厚度的增加,电压逐渐上升,电流效率先上升后下降,这是由于在载流子平衡层13厚度增加的初始阶段,电子的传输势垒增大,电子的传输速度降低,发光层12以及载流子平衡层13内均可发生电子和空穴复合,此时可以提高器件的发光效率,然而当发光效率达到某个临界值之后,若继续增大载流子平衡层13厚度,可能导致电子传输势垒过大,导致电子无法传输至发光层内,因此导致电压升高且发光效率降低。
对比结构2和结构4,载流子平衡层13的厚度相同,载流子平衡层13的材料分别为化合物A1和化合物A2,由表2可以看出,结构2具有更小的电压和更高的电流效率。这是由于化合物A1与电子传输层14之间的界面势垒小于化合物A2与电子传输层14之间的界面势垒,并且化合物A1的电子迁移率以及空穴迁移率较高,所以当载流子平衡层13的材料为化合物A1时,可以使发光二极管器件具有更小的电压和更高的电流效率。
本公开一实施例提供了一种发光基板,参照图5和图6,其中,包括:衬底50,以及多个设置在衬底50一侧的如任一实施例所述的发光二极管器件。
其中,发光二极管器件包括层叠设置在衬底50一侧的阳极层11、发光层12、载流子平衡层13、电子传输层14和阴极层15。
在一种可选的实现方式中,参照图5,可以设置阳极层11靠近衬底50设置。如图5所示,在阳极层11和发光层12之间还可以层叠设置有空穴注入层17和空穴传输层16,空穴注入层17靠近阳极层11设置,发光层12设置在空穴传输层16背离阳极层11的一侧。
在另一种可选的实现方式中,参照图6,还可以设置阴极层15靠近衬底50设置。如图6所示,在发光层12和阳极层11之间还可以层叠设置有空穴传输层16和空穴注入层17,空穴传输层16靠近发光层12设置,阳极层11设置在空穴注入层17背离发光层12的一侧。
本实施例提供的发光基板上还可以设置连接各发光二极管器件的驱动电路,驱动电路还可以与控制电路连接,以根据控制电路输入的电信号,驱动各个发光二极管器件发光。该驱动电路可以为有源驱动电路或者无源驱动电路。
在该示例中,该发光基板可以用于照明,即应用于照明装置中;还可以用于显示,即可以应用于发光装置中。
本公开另一实施例还提供了一种发光装置,该发光装置可以包括任一实施例所述的发光基板。
在一些实施例中,该发光装置可以为照明装置。此时,发光装置作为光源,实现照明功能。例如,发光装置可以是液晶显示装置中的背光模组,用于内部或外部照明的灯,或各种信号灯等。
在另一些实施例中,该发光装置可以为显示装置。此时,发光基板为显示基板,用于实现显示图像(即画面)功能。发光装置可以包括显示器或包含显示器的产品。其中,显示器可以是平板显示器(Flat Panel Display,FPD),微型显示器等。若按照用户能否看到显示器背面的场景划分,显示器可以是透明显示器或不透明显示器。若按照显示器能否弯折或卷曲,显示器可以是柔性显示器或普通显示器(可以称为刚性显示器)。示例的,包含显示器的产品可以包括:计算机显示器、电视、广告牌、具有显示功能的激光打印机、电话、手机、个人数字助理(Personal Digital Assistant,PDA)、膝上型计算机、数码相机、便携式摄录机、取景器、车辆、大面积墙壁、剧院的屏幕或体育场标牌等。
本公开另一实施例还提供了一种发光二极管器件的制备方法,该制备方法包括:依次形成阳极层、发光层、载流子平衡层、电子传输层和阴极层;或者,依次形成阴极层、电子传输层、载流子平衡层、发光层和阳极层。
其中,载流子平衡层的空穴迁移率大于电子迁移率,载流子平衡层的LUMO能级比电子传输层的LUMO能级浅,载流子平衡层的HOMO能级比发光层的HOMO能级浅。
采用本实施例提供的制备方法,可以制备得到上述任一实施例所述的发光二极管器件。
在一种可选的实现方式中,依次形成阳极层、发光层、载流子平衡层、电子传输层和阴极层的步骤,可以包括:依次形成阳极层和发光层;然后在发光层背离阳极层的一侧旋涂第一化合物溶液,并对第一化合物溶液进行烘 干处理,形成载流子平衡层;之后在载流子平衡层背离阳极层的一侧依次形成电子传输层和阴极层。
其中,依次形成阳极层和发光层的步骤,可以包括:首先形成阳极层;然后在阳极层的一侧形成空穴传输层;之后在空穴传输层背离阳极层的一侧形成发光层。其中,空穴传输层的空穴迁移率比载流子平衡层的空穴迁移率大1个数量级或者小1个数量级。
在具体实现中,在阳极层的一侧形成空穴传输层的步骤,可以进一步包括:在阳极层的一侧形成空穴注入层,在空穴注入层背离阳极层的一侧形成空穴传输层。
下面给出一种发光二极管器件的具体制备流程:
将清洗后的载有阳极层11的玻璃基板进行紫外臭氧清洗机处理15min,转移至充满氮气保护的手套箱内,旋涂PEDOT溶液,转速3000rpm,旋涂时长40s,在130℃下烘烤20min,放置到室温之后,形成空穴注入层17;之后在空穴注入层17上旋涂预混合的PVK溶液,转速3000rpm,旋涂时长40s,在130℃下烘烤20min,形成空穴传输层16;之后在空穴传输层16上旋涂CdSe红光量子点溶液,转速4000rpm,旋涂时长40s,100℃下退火10min,形成量子点发光层12;之后在量子点发光层12上旋涂A1溶液,转速3000rpm,旋涂时长40s,在130℃下烘烤20min,形成载流子平衡层13;之后在载流子平衡层13上旋涂ZnO溶液,转速3000rpm,40s,在100℃下烘烤10min,形成电子传输层14;之后在电子传输层14上蒸镀铝作为阴极。采用本实现方式提供的制备方法可以制备得到正置结构的发光二极管器件,如图1所示。
在一种可选的实现方式中,依次形成阴极层、电子传输层、载流子平衡层、发光层和阳极层的步骤,可以包括:依次形成阴极层和电子传输层;在电子传输层背离阴极层的一侧旋涂第一化合物溶液,并对第一化合物溶液进行烘干处理,形成载流子平衡层;在载流子平衡层背离阴极层的一侧依次形成发光层和阳极层。
其中,在载流子平衡层背离阴极层的一侧依次形成发光层和阳极层的步骤,可以包括:在载流子平衡层背离阴极层的一侧形成发光层;在发光层背离载流子平衡层的一侧形成空穴传输层;在空穴传输层背离载流子平衡层的一侧形成阳极层。其中,空穴传输层的空穴迁移率比载流子平衡层的空穴迁 移率大1个数量级或者小1个数量级。
在具体实现中,在空穴传输层背离载流子平衡层的一侧形成阳极层的步骤,可以进一步包括:在空穴传输层背离载流子平衡层的一侧形成空穴注入层,在空穴注入层背离载流子平衡层的一侧形成阳极层。
本实现方式中,各层的制备工艺可以参照上一实现方式,这里不再赘述。采用本实现方式提供的制备方法可以制备得到倒置结构的发光二极管器件。
其中,第一化合物可以选自以下第一通式所示的化合物:
Figure PCTCN2022103442-appb-000013
其中,L表示增溶基团。
在具体实现中,增溶基团可以选自具有2至40个碳原子的直链烷基、具有2至40个碳原子的支链烷基、具有2至40个碳原子的环状烷基、具有2至40个碳原子的直链烷氧基、具有2至40个碳原子的支链烷氧基和具有2至40个碳原子的环状烷氧基中的任一种。
进一步地,增溶基团可以选自具有2至30个碳原子的直链烷基、具有2至30个碳原子的支链烷基、具有2至30个碳原子的环状烷基、具有2至30个碳原子的直链烷氧基、具有2至30个碳原子的支链烷氧基和具有2至30个碳原子的环状烷氧基中的任一种。
更进一步地,增溶基团可以选自具有2至20个碳原子的直链烷基、具有2至20个碳原子的支链烷基、具有2至20个碳原子的环状烷基、具有2至20个碳原子的直链烷氧基、具有2至20个碳原子的支链烷氧基和具有2至20个碳原子的环状烷氧基中的任一种。
更进一步地,增溶基团可以选自具有2至15个碳原子的直链烷基、具有2至15个碳原子的支链烷基、具有2至15个碳原子的环状烷基、具有2至15个碳原子的直链烷氧基、具有2至15个碳原子的支链烷氧基和具有2至15个碳原子的环状烷氧基中的任一种。
更进一步地,增溶基团可以选自具有3至15个碳原子的直链烷基、具有 3至15个碳原子的支链烷基、具有3至15个碳原子的环状烷基、具有3至15个碳原子的直链烷氧基、具有3至15个碳原子的支链烷氧基和具有3至15个碳原子的环状烷氧基中的任一种。
其中,增溶基团L可以直接键合在Ar 1、Ar 2和Ar 3中的任意位置。
n表示增溶基团的数量。在具体实现中,n可以大于或等于2。即第一化合物至少包含两个增溶基团。
Ar 1、Ar 2和Ar 3可以相同或不同,其中至少一个选自第二通式所示的化合物,其余选自第三通式所示的化合物。本实现方式中,第二通式可以为:
Figure PCTCN2022103442-appb-000014
其中,A选自氮或碳。
第三通式可以为以下通式中的任一种:
Figure PCTCN2022103442-appb-000015
其中,X选自氮、碳、氧或硫。
R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8可以相同或不同,分别独立地选自具有1至30个碳原子的取代的烷基、具有1至30个碳原子的未取代的烷基、 具有1至30个碳原子的取代的烷氧基、具有1至30个碳原子的未取代的烷氧基、具有6至40个碳原子的芳基、具有6至40个碳原子的芳氧基和具有7至40个碳原子的芳烷基中的任一种。
第一化合物的分子量可以小于或等于5000g/mol。进一步地,第一化合物的分子量可以小于或等于4000g/mol。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的一种发光二极管器件及其制备方法、发光基板、发光装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所 附的权利要求来限制。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (18)

  1. 一种发光二极管器件,其中,包括:
    层叠设置的阳极层、发光层、载流子平衡层、电子传输层和阴极层;
    其中,所述载流子平衡层的空穴迁移率大于电子迁移率,所述载流子平衡层的LUMO能级比所述电子传输层的LUMO能级浅,所述载流子平衡层的HOMO能级比所述发光层的HOMO能级浅。
  2. 根据权利要求1所述的发光二极管器件,其中,所述载流子平衡层的HOMO能级比所述电子传输层的HOMO能级浅。
  3. 根据权利要求1或2所述的发光二极管器件,其中,所述载流子平衡层的LUMO能级与所述电子传输层的LUMO能级之差大于或等于0.6eV,且小于或等于1.5eV。
  4. 根据权利要求1至3任一项所述的发光二极管器件,其中,所述载流子平衡层的电子迁移率比所述电子传输层的电子迁移率小2个数量级以上。
  5. 根据权利要求1至4任一项所述的发光二极管器件,其中,还包括设置在所述阳极层与所述发光层之间的空穴传输层,所述空穴传输层的空穴迁移率比所述载流子平衡层的空穴迁移率大1个数量级或者小1个数量级。
  6. 根据权利要求1至5任一项所述的发光二极管器件,其中,所述载流子平衡层的LUMO能级的绝对值大于或等于2.35eV,所述载流子平衡层的HOMO能级的绝对值小于或等于6.3eV。
  7. 根据权利要求1至6任一项所述的发光二极管器件,其中,所述载流子平衡层的材料包括第一化合物,所述第一化合物选自以下第一通式所示的化合物:
    Figure PCTCN2022103442-appb-100001
    其中,L (n)表示增溶基团;n表示所述增溶基团的数量,n大于或等于2;Ar 1、Ar 2和Ar 3相同或不同,其中至少一个选自第二通式所示的化合物,其余选自第三通式所示的化合物;
    所述第二通式为:
    Figure PCTCN2022103442-appb-100002
    其中,A选自氮或碳;
    所述第三通式为以下通式中的任一种:
    Figure PCTCN2022103442-appb-100003
    其中,X选自N、C、O或S;R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8相同或不同,分别独立地选自具有1至30个碳原子的取代的烷基、具有1至30个碳原子的未取代的烷基、具有1至30个碳原子的取代的烷氧基、具有1至30个碳原子的未取代的烷氧基、具有6至40个碳原子的芳基、具有6至40个碳原子的芳氧基和具有7至40个碳原子的芳烷基中的任一种。
  8. 根据权利要求7所述的发光二极管器件,其中,所述增溶基团选自具有2至40个碳原子的直链烷基、具有2至40个碳原子的支链烷基、具有2至40个碳原子的环状烷基、具有2至40个碳原子的直链烷氧基、具有2至40个碳原子的支链烷氧基和具有2至40个碳原子的环状烷氧基中的任一种。
  9. 根据权利要求7或8所述的发光二极管器件,其中,所述第一化合物的分子量小于或等于5000g/mol。
  10. 根据权利要求9所述的发光二极管器件,其中,所述第一化合物的分子量小于或等于4000g/mol。
  11. 根据权利要求1至10任一项所述的发光二极管器件,其中,所述载流子平衡层的厚度大于或等于2微米,且小于或等于40微米。
  12. 根据权利要求11所述的发光二极管器件,其中,所述载流子平衡层的厚度大于或等于5微米,且小于或等于25微米。
  13. 根据权利要求1至12任一项所述的发光二极管器件,其中,所述发光层为量子点发光层。
  14. 一种发光基板,其中,包括:
    衬底,以及多个设置在所述衬底一侧的如权利要求1至13任一项所述的发光二极管器件,所述阳极层或者所述阴极层靠近所述衬底设置。
  15. 一种发光装置,其中,包括如权利要求14所述的发光基板。
  16. 一种发光二极管器件的制备方法,其中,所述制备方法包括:
    依次形成阳极层、发光层、载流子平衡层、电子传输层和阴极层;或者,依次形成阴极层、电子传输层、载流子平衡层、发光层和阳极层;
    其中,所述载流子平衡层的空穴迁移率大于电子迁移率,所述载流子平衡层的LUMO能级比所述电子传输层的LUMO能级浅,所述载流子平衡层的HOMO能级比所述发光层的HOMO能级浅。
  17. 根据权利要求16所述的制备方法,其中,所述依次形成阳极层、发光层、载流子平衡层、电子传输层和阴极层的步骤,包括:
    依次形成所述阳极层和所述发光层;
    在所述发光层背离所述阳极层的一侧旋涂第一化合物溶液,并对所述第一化合物溶液进行烘干处理,形成所述载流子平衡层;
    在所述载流子平衡层背离所述阳极层的一侧依次形成所述电子传输层和所述阴极层;
    所述依次形成阴极层、电子传输层、载流子平衡层、发光层和阳极层的步骤,包括:
    依次形成所述阴极层和所述电子传输层;
    在所述电子传输层背离所述阴极层的一侧旋涂第一化合物溶液,并对所述第一化合物溶液进行烘干处理,形成所述载流子平衡层;
    在所述载流子平衡层背离所述阴极层的一侧依次形成所述发光层和所述阳极层;
    其中,所述第一化合物选自以下第一通式所示的化合物:
    Figure PCTCN2022103442-appb-100004
    其中,L(n)表示增溶基团;n表示所述增溶基团的数量,n大于或等于2;Ar 1、Ar 2和Ar 3相同或不同,其中至少一个选自第二通式所示的化合物,其余选自第三通式所示的化合物;
    所述第二通式为:
    Figure PCTCN2022103442-appb-100005
    其中,A选自氮或碳;
    所述第三通式为以下通式中的任一种:
    Figure PCTCN2022103442-appb-100006
    其中,X选自N、C、O或S;R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8相同或不同,分别独立地选自具有1至30个碳原子的取代的烷基、具有1至30个碳原子的未取代的烷基、具有1至30个碳原子的取代的烷氧基、具有1至30个碳原子的未取代的烷氧基、具有6至40个碳原子的芳基、具有6至40个碳原子的芳氧基和具有7至40个碳原子的芳烷基中的任一种。
  18. 根据权利要求17所述的制备方法,其中,所述依次形成所述阳极层和所述发光层的步骤,包括:
    形成所述阳极层;
    在所述阳极层的一侧形成空穴传输层;
    在所述空穴传输层背离所述阳极层的一侧形成所述发光层;
    所述在所述载流子平衡层背离所述阴极层的一侧依次形成所述发光层和所述阳极层的步骤,包括:
    在所述载流子平衡层背离所述阴极层的一侧形成所述发光层;
    在所述发光层背离所述载流子平衡层的一侧形成空穴传输层;
    在所述空穴传输层背离所述载流子平衡层的一侧形成所述阳极层;
    其中,所述空穴传输层的空穴迁移率比所述载流子平衡层的空穴迁移率大1个数量级或者小1个数量级。
PCT/CN2022/103442 2021-07-30 2022-07-01 发光二极管器件及其制备方法、发光基板、发光装置 WO2023005607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110876286.XA CN115701229A (zh) 2021-07-30 2021-07-30 发光二极管器件及其制备方法、发光基板、发光装置
CN202110876286.X 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023005607A1 true WO2023005607A1 (zh) 2023-02-02

Family

ID=85087386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103442 WO2023005607A1 (zh) 2021-07-30 2022-07-01 发光二极管器件及其制备方法、发光基板、发光装置

Country Status (2)

Country Link
CN (1) CN115701229A (zh)
WO (1) WO2023005607A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586095A (zh) * 2001-11-12 2005-02-23 Neoviewkolon株式会社 高发光效率的有机发光器件
CN1871877A (zh) * 2003-08-22 2006-11-29 索尼株式会社 有机电致发光器件及显示器
CN103247761A (zh) * 2012-02-14 2013-08-14 三星显示有限公司 具有提高效率特性的有机发光装置和有机发光显示器
CN110622332A (zh) * 2017-05-29 2019-12-27 株式会社Lg化学 有机发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586095A (zh) * 2001-11-12 2005-02-23 Neoviewkolon株式会社 高发光效率的有机发光器件
CN1871877A (zh) * 2003-08-22 2006-11-29 索尼株式会社 有机电致发光器件及显示器
CN103247761A (zh) * 2012-02-14 2013-08-14 三星显示有限公司 具有提高效率特性的有机发光装置和有机发光显示器
CN110622332A (zh) * 2017-05-29 2019-12-27 株式会社Lg化学 有机发光器件

Also Published As

Publication number Publication date
CN115701229A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
US10658606B2 (en) Quantum dot light emitting device, method of manufacturing the same, and quantum dot light emitting display device
WO2019105431A1 (zh) 量子点电致发光器件及显示器
WO2020140760A1 (zh) 量子点发光二极管器件及其制备方法
WO2020238713A1 (zh) 发光二极管器件及其制作方法、显示面板及显示装置
US10763449B2 (en) Organic light-emitting diode (OLED) display panel, fabrication method and electronic device thereof
US20210071070A1 (en) Electroluminescent device and method of manufacturing the same, display panel and display apparatus
WO2017012341A1 (en) Organic light emitting apparatus, display device having the same, and fabricating method thereof
US8237884B1 (en) Organic light-emitting diode device with efficiency roll-up property
WO2024022202A1 (zh) 发光器件、显示基板及显示装置
WO2023005607A1 (zh) 发光二极管器件及其制备方法、发光基板、发光装置
TW201322821A (zh) 發光裝置的製作方法及有機層的形成方法
CN109585698B (zh) 一种溶液法制备p-i-n结构的低压驱动有机发光二极管的方法
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
US8384073B2 (en) System for displaying images
WO2023122902A1 (zh) 发光器件及其制备方法、发光装置
US11825671B2 (en) Electroluminescent device and method for preparing the same, display panel and display device
CN116113300A (zh) 一种发光层、发光器件和显示装置
US20240088325A1 (en) Quantum dot light emitting diode and method for manufacturing same, display panel, and display device
CN111785858A (zh) 发光显示器件及其制备方法、显示装置
WO2023225780A1 (zh) 发光器件、显示装置
Ohsawa et al. 66.4: Large‐sized flexible lighting with highly efficient OLEDs
WO2022027630A1 (zh) 显示基板及显示装置
WO2020215882A1 (zh) 发光结构、显示面板和显示装置
CN111146347A (zh) 电致发光器件及其制备方法
Deng et al. Three-color polymeric light-emitting devices using selective photo-oxidation of multilayered conjugated polymers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18271058

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE