WO2020238713A1 - 发光二极管器件及其制作方法、显示面板及显示装置 - Google Patents

发光二极管器件及其制作方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2020238713A1
WO2020238713A1 PCT/CN2020/091173 CN2020091173W WO2020238713A1 WO 2020238713 A1 WO2020238713 A1 WO 2020238713A1 CN 2020091173 W CN2020091173 W CN 2020091173W WO 2020238713 A1 WO2020238713 A1 WO 2020238713A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
layer
light
transport layer
organic
Prior art date
Application number
PCT/CN2020/091173
Other languages
English (en)
French (fr)
Inventor
禹钢
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/271,619 priority Critical patent/US20210320272A1/en
Publication of WO2020238713A1 publication Critical patent/WO2020238713A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present disclosure relates to a light emitting diode device and a manufacturing method thereof, a display panel and a display device.
  • Quantum dots are semiconductor nanocrystals that can be processed in a solution. They have the advantages of narrow emission spectra, adjustable emission wavelengths, and high spectral purity. They are most promising as the core part of the next generation of light-emitting devices.
  • Quantum Dot Light Emitting Diodes QLED for short
  • QLED Quantum Dot Light Emitting Diodes
  • QLED uses quantum dots as the material for the light-emitting layer, and the light-emitting layer is introduced between different conductive materials to obtain light of the required wavelength.
  • QLED has the advantages of high color gamut, self-illumination, low starting voltage, fast response speed and long life.
  • a light emitting diode device includes: a light emitting layer; and a hole transport layer located on one side of the light emitting layer; wherein, the hole transport layer includes a perovskite material and an organic hole transport material.
  • the molar ratio of the organic hole transport material in the hole transport layer is greater than 0% and less than or equal to 10%.
  • the molar ratio of the organic hole transport material in the hole transport layer gradually increases in a direction away from the light-emitting layer.
  • the hole transport layer is formed by co-evaporating a perovskite precursor material and the organic hole transport material.
  • the hole transport layer has a stacked structure of the perovskite material and the organic hole transport material.
  • the general molecular formula of the perovskite material is ABX 3 ;
  • A includes monovalent alkali metal, small molecule organic ammonium or Tl;
  • B includes Pb or Sn;
  • X includes Cl or Br.
  • the perovskite material includes MAPbCl 3 .
  • the organic hole transport material includes at least one of CBP, TCTA, TFB, TPD, NPB, and TAPC.
  • the light emitting device includes a first electrode, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and a second electrode that are sequentially stacked.
  • the electron transport layer is a ZnO nanoparticle layer or a TiO 2 nanorod layer.
  • the light-emitting layer is a quantum dot light-emitting layer or an organic light-emitting layer.
  • a display panel includes a base substrate and the aforementioned light emitting diode devices arrayed on the surface of the base substrate.
  • a display device includes a display panel as described above.
  • a method for manufacturing a light emitting diode device includes: forming a light-emitting layer; and forming a hole transport layer on one side of the light-emitting layer; wherein the hole transport layer includes a perovskite material and an organic hole transport material.
  • the molar ratio of the organic hole transport material in the hole transport layer is greater than 0% and less than or equal to 10%.
  • the molar ratio of the organic hole transport material in the hole transport layer gradually increases in a direction away from the light-emitting layer.
  • the forming a hole transport layer on one side of the light-emitting layer includes: co-evaporating a perovskite precursor and an organic hole transport material, thereby forming the holes on one side of the light-emitting layer Transport layer; and baking the hole transport layer.
  • the hole transport layer has a stacked structure of the perovskite material and the organic hole transport material.
  • the perovskite precursor includes MAC1 and PbCl 2 ; the perovskite material includes MAPbCl 3 .
  • the general molecular formula of the perovskite material is ABX 3 ;
  • A includes monovalent alkali metal, small molecule organic ammonium or Tl;
  • B includes Pb or Sn;
  • X includes Cl or Br.
  • the organic hole transport material includes at least one of CBP, TCTA, TFB, TPD, NPB, and TAPC.
  • the light-emitting layer is a quantum dot light-emitting layer or an organic light-emitting layer.
  • Figure 1 is a schematic diagram of the structure of a QLED device
  • Fig. 2 is a schematic structural diagram of a QLED device according to an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a QLED device according to another embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a QLED device according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a QLED display panel and a display device according to an embodiment of the present disclosure
  • Fig. 6 is a flowchart of a manufacturing method of a QLED device according to an embodiment of the present disclosure
  • Fig. 7 is a flowchart of a method for manufacturing a QLED device according to another embodiment of the present disclosure.
  • Fig. 8 is a current-voltage curve of a device according to an embodiment of the present disclosure.
  • a QLED device 10 includes a first electrode 11, an electron transport layer 12, a quantum dot light emitting layer 13, a hole transport layer 14, a hole injection layer 15 and a second electrode 16 which are sequentially stacked. Under the action of an electric field, holes and electrons transfer carriers in the hole transport layer 14 and the electron transport layer 12 respectively, and recombine into excitons in the quantum dot light-emitting layer 13 to emit light.
  • the QLED device uses inorganic ZnO nanoparticles as the electron transport material, and its carrier transport performance is high, and the electron mobility is generally on the order of 10 -3 cm 2 V -1 s -1 ; on the other hand, the QLED device uses holes
  • the transport material is organic, and its carrier transport performance is low.
  • the hole mobility is generally on the order of 10 -5 -10 -4 cm 2 V -1 s -1 , which does not match the carrier transport performance of the electron transport material. This easily leads to unbalanced carrier transport in the QLED device, and the exciton recombination region is at the interface between the hole transport layer 14 and the quantum dot light-emitting layer 13 or even into the hole transport layer 14.
  • the light-emitting diode device includes a light-emitting layer and a hole transport layer on one side of the light-emitting layer; the hole transport layer 14 includes a perovskite material and an organic hole transport material.
  • the light emitting diode device further includes an electron transport layer on the other side of the light emitting layer, and also includes a first electrode (cathode) located on the side of the electron transport layer away from the light emitting layer and a side of the hole transport layer away from the light emitting layer.
  • the second electrode anode
  • the light emitting diode device is a QLED device or an organic light emitting diode (OLED) device.
  • the present disclosure takes the QLED device as an example for description, but the present disclosure is not limited to this.
  • the QLED device 10 includes: a quantum dot light emitting layer 13; and a hole transport layer 14 located on one side of the quantum dot light emitting layer; wherein, the hole transport layer 14 includes a perovskite material 141 and an organic hole transport layer. Material 142.
  • the hole transport layer 14 includes a mixed hole transport layer material obtained by mixing a perovskite material 141 and an organic hole transport material 142.
  • the perovskite material 141 has a high carrier mobility, for example, 10 -1 cm 2 V -1 s -1 or more. Using the perovskite material 141 as the host material of the hole transport layer 14 can improve the carrier transport performance of the hole transport layer 14 to match the carrier transport performance of the electron transport layer 12, thereby eliminating pure organic The problem of unbalanced carrier transport caused by the hole transport layer. On the other hand, the carrier diffusion distance of the perovskite material 141 is relatively large, which is likely to cause excessive holes to accumulate at the interface between the hole transport layer 14 and the quantum dot light-emitting layer 13, reducing device efficiency and durability.
  • the hole transport layer 14 is doped with an organic hole transport material 142 to adjust the carrier transport performance of the hole transport layer 14.
  • the organic hole transport material 142 can self-assemble in the perovskite material 141 to form an orientation
  • the hole channel makes the transport of holes more controllable, thereby avoiding the accumulation of excessive holes at the interface between the hole transport layer 14 and the quantum dot light-emitting layer 13. Therefore, the use of the perovskite material 141 and the organic hole transport material 142 as the hole transport layer of the QLED device improves the carrier transport performance of the QLED device 10 while ensuring the efficiency and durability of the QLED device 10.
  • the organic hole transport material 142 can play a role in adjusting the carrier transport performance of the hole transport layer 14, an excessively high ratio of organic matter may destroy the crystal form of the perovskite. Therefore, in some embodiments of the present disclosure, the molar ratio of the organic hole transport material 142 in the hole transport layer 14 is greater than 0% and less than or equal to 10%, for example, 1% to 8%.
  • the thickness of the hole transport layer may range from 30 nm to 3000 nm, for example, 50 nm to 1500 nm, for example, 150 nm to 500 nm.
  • the thickness range can be determined according to the carrier mobility and thickness of the selected electron transport layer material, so that in the resulting QLED device, excitons obtained by recombination of electrons and holes are located in the light-emitting layer.
  • the molar ratio of the organic hole transport material 142 in the hole transport layer 14 can be increased in a gradient away from the quantum dot light emitting layer 13, that is, closer to the quantum dot light emitting layer.
  • the organic doping ratio on the side of 13 is low (for example, the molar ratio is 1%), and the organic doping ratio on the side away from the quantum dot light-emitting layer 13 is relatively high (for example, the molar ratio is 10%).
  • the band gap of the organic hole transport material is narrower than the band gap of the perovskite material, and such a gradient doping method can achieve the exciton confinement function.
  • the above hole transport layer can be prepared by a ternary organic-inorganic hybrid co-evaporation process.
  • the organic hole transport material can be accurately adjusted in the perovskite In the solution method, the problem that the perovskite is easily damaged by the subsequent solution preparation layer can be avoided by adopting the evaporation method.
  • the hole transport layer prepared by the co-evaporation process may have a stacked structure of a perovskite material layer 1411 and an organic hole transport material layer 1421, and the perovskite material layer 1411 has The high carrier mobility can improve the carrier transport performance of the hole transport layer 14.
  • the organic hole transport material layer 1421 forms a directional hole channel, which makes the transport of holes more controllable, thereby avoiding holes
  • the interface between the transport layer 14 and the quantum dot light-emitting layer 13 accumulates excessive holes. Therefore, the obtained hole transport layer improves the carrier transport performance of the QLED device, while also ensuring the efficiency and durability of the QLED device.
  • the molecular formula of the perovskite material is ABX 3.
  • A may include monovalent alkali metal, small molecular organic ammonium (for example, methyl ammonium) or Tl, and B may include Pb or Sn , X can include Cl or Br.
  • the perovskite material may be a metal halide perovskite material, such as MAPbCl 3 (methylamine lead chloride).
  • the organic hole transport material may be any electron-rich aromatic hole material known to those skilled in the art.
  • the organic hole transport material may include 4,4'-bis(9-carbazole )Biphenyl (CBP), tris(4-carbazol-9-ylphenyl)amine (TCTA), poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine )(TFB), N,N′-bis(3-methylphenyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (TPD), N, N'-Diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB), 4,4'-cyclohexylbis[N,N -At least one of bis(4-methylphenyl)aniline]
  • the QLED device 10 may include a base substrate, and includes a first electrode 11, an electron transport layer 12, a quantum dot light emitting layer 13, a hole transport layer 14, and a The hole injection layer 15 and the second electrode 16.
  • the material of the electron transport layer may be a ZnO nanoparticle layer or a TiO 2 nanorod layer.
  • the electron transport layer can also be made of other suitable electron transport materials, which is not limited in the present disclosure.
  • the base substrate may be a rigid substrate or a flexible substrate
  • the rigid substrate may be a glass substrate, a ceramic substrate, a plastic substrate, etc.
  • the flexible substrate may be a plastic substrate (such as a polyimide substrate), a glass substrate Etc.
  • a plastic substrate such as a polyimide substrate
  • Etc glass substrate
  • the material of the electron injection layer may include: alkali metal halides, alkaline earth metal halides, alkali metal oxides, metal carbonates, metal complex materials, oxadiazole materials, imidazole materials, or phenanthrene Rollin derivatives, etc., this disclosure does not limit this.
  • the material of the hole injection layer 15 may include: star-shaped triphenylamine compounds, metal complexes, polyaniline, fluorocarbons, porphyrin derivatives, P-type doping (P- Doped) amine derivatives, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT/PSS), polythiophene or polyaniline, which is not limited in the present disclosure.
  • the first electrode 11 is a cathode
  • the material of the first electrode 11 may be a material with a low work function, for example, magnesium (Mg), calcium (Ca), indium (In), lithium (Li), Aluminum (Al), silver (Ag) or its alloys or fluorides, such as magnesium (Mg)-silver (Ag) alloys, lithium (Li)-fluorine compounds, lithium (Li)-oxygen (O) compounds, etc., the present disclosure There is no restriction on this.
  • the second electrode 16 is an anode
  • the material of the second electrode 16 may be a metal, an alloy, or a combination of a metal, an alloy, and a metal oxide with a good conductive function, such as Ag, Au, Pd, Pt, Ag: Au (i.e. alloy of Ag and Au), Ag: Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au, Ag/Pd (i.e.
  • the quantum dot light-emitting layer 13 includes silicon quantum dots, germanium quantum dots, cadmium sulfide quantum dots, cadmium selenide quantum dots, cadmium telluride quantum dots, zinc selenide quantum dots, lead sulfide quantum dots, selenization Lead quantum dots, indium phosphide quantum dots, and indium arsenide quantum dots, etc., and the shape of the quantum dots can be spherical or quasi-spherical, and the particle size is between 2nm-20nm, which is not limited in the present disclosure.
  • the carrier mobility of the quantum dot light-emitting layer is not higher than the carrier mobility of the hole transport layer, which is more convenient for trapping carriers.
  • the material of the organic light-emitting layer of the OLED device can be a fluorescent light-emitting material or a phosphorescent light-emitting material.
  • it can be a light-emitting material obtained by doping.
  • the main light-emitting body material includes metal complex materials, anthracene derivatives, and aromatics.
  • the doped fluorescent materials include coumarin dyes ( coumarin 6, C-545T), Quinacridone (DMQA), 2,5,8,11-Tetra-tert-butylperylene, 5,6,11,12-Tetraphenylnaphthacene, N,N'- Dimethylquinacridone or 4-(dinitrile methylene)-2-methyl-6-(4-dimethylamino-styrene)-4H-pyran (DCM) series, this disclosure is about Not limited.
  • an embodiment of the present disclosure also provides a display panel 201.
  • the display panel 201 includes an array substrate 2011 and the QLED devices 10 as the above embodiments arranged on the surface of the array substrate 2011 in an array form.
  • the display panel 201 includes a pixel array that includes a plurality of sub-pixels arranged in an array, and each sub-pixel includes a QLED device 10 and a pixel circuit for driving the QLED device 10, and the QLED device 10 is electrically connected to the corresponding pixel circuit. connection.
  • the array substrate serves as the base substrate of the QLED device.
  • the pixel circuit of the sub-pixel is a 2T1C pixel circuit, which includes two TFTs (Thin-film Transistors) and a storage capacitor Cs to drive the QLED device to emit light.
  • One of the two TFTs is a driving transistor.
  • the other is a data write transistor.
  • the pixel circuit may also have a compensation function.
  • the compensation function may be realized by voltage compensation, current compensation or hybrid compensation.
  • the pixel circuit with compensation function may be, for example, 4T1C or 4T2C. No more details here.
  • the display panel 201 may also include a gate driving circuit and a data driving circuit.
  • the pixel array also includes multiple rows of gate lines and multiple columns of data lines interlaced therewith; the multiple rows of gate lines are electrically connected to the gate driving circuit, for example, corresponding to multiple rows of sub-pixels of the pixel array, and the gate driving circuit is a multi-row gate.
  • the lines provide scanning signals to control the sequential opening of multiple rows of sub-pixels; the multiple-column data lines are electrically connected to the data driving circuit, for example, corresponding to the multiple columns of sub-pixels in the pixel array, and the data driving circuit applies data signals on the multiple-column data lines,
  • the data driving circuit applies data signals on the multiple-column data lines,
  • the display panel has all the features and advantages of the aforementioned QLED device, and will not be described in detail here.
  • an embodiment of the present disclosure also provides a display device 20.
  • the display device includes the display panel 201 as above.
  • the display device 20 may also include necessary packaging elements and control circuits, which are not limited herein.
  • the display device can be implemented as any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.
  • the display device has all the features and advantages of the aforementioned QLED device, and will not be described in detail here.
  • the embodiments of the present disclosure also provide a method for manufacturing a light emitting diode device.
  • the method may include: forming a light emitting layer; forming a hole transport layer on one side of the light emitting layer, wherein the holes
  • the transport layer includes perovskite materials and organic hole transport materials.
  • the manufacturing method of the QLED device may include the following steps:
  • Step S101 forming a quantum dot light-emitting layer
  • Step S102 forming a hole transport layer on one side of the quantum dot light-emitting layer; wherein the hole transport layer includes a perovskite material and an organic hole transport material.
  • the QLED device fabricated by this method can have the structure shown in Figure 2.
  • the perovskite material 141 has high carrier mobility. Using the perovskite material 141 as the main material of the hole transport layer 14 can improve the carrier transport performance of the hole transport layer 14 and make it compatible with the electron transport layer.
  • the carrier transport performance of 12 is matched to eliminate the problem of unbalanced carrier transport caused by the pure organic hole transport layer.
  • the carrier diffusion distance of the perovskite material 141 is relatively large, which is likely to cause excessive holes to accumulate at the interface between the hole transport layer 14 and the quantum dot light-emitting layer 13, reducing device efficiency and durability.
  • the doped organic hole transport material 142 plays a role in adjusting the carrier transport performance of the hole transport layer 14.
  • the organic hole transport material 142 can self-assemble in the perovskite material 141 to form a directed hole channel , Making the transport of holes more controllable, thereby avoiding the accumulation of excessive holes at the interface between the hole transport layer 14 and the quantum dot light-emitting layer 13. Therefore, using this method to fabricate a QLED device can improve the carrier transport performance of the QLED device 10 while ensuring the efficiency and durability of the QLED device 10.
  • the organic hole transport material 142 can play a role in adjusting the carrier transport performance of the hole transport layer 14, excessive doping of the organic hole transport material during the preparation process may destroy the crystal form of the perovskite. Therefore, in some embodiments of the present disclosure, the molar ratio of the organic hole transport material 142 in the hole transport layer 14 is greater than 0% and less than or equal to 10%, for example, 1% to 8%.
  • the preparation conditions of the hole transport layer 14 can be controlled so that the molar ratio of the organic hole transport material 142 in the hole transport layer 14 increases in a gradient away from the quantum dot light-emitting layer 13, ie close to One side of the quantum dot light-emitting layer 13 has a lower organic doping ratio (for example, the molar ratio is 1%), and the side far from the quantum dot light-emitting layer 13 has a higher organic doping ratio (for example, the molar ratio is 10%), forming Figure 3 shows the gradient doping structure.
  • the band gap of the organic hole transport material is narrower than the band gap of the perovskite material, and such a gradient doping method can achieve the exciton confinement function.
  • the hole transport layer may be prepared by a ternary organic-inorganic hybrid co-evaporation process.
  • the step S102 of forming a hole transport layer on one side of the quantum dot light-emitting layer includes the following sub-steps:
  • Step S1021 Co-evaporate the perovskite precursor and the organic hole transport material to form a hole transport layer on one side of the quantum dot light-emitting layer;
  • Step S1022 baking the hole transport layer.
  • the vacuum degree of the working chamber can be 10 -4 -10 -5 Pa, MACl/PbCl 2 evaporation
  • the rate may be 0.1-10 nm/s
  • the evaporation rate of the organic small molecule hole transport material may be 0.01-1 nm/s, which is not limited in the present disclosure.
  • the hole transport layer can form a laminated structure of the perovskite material layer 1411 and the organic hole transport material layer 1421, as shown in FIG. 4, the perovskite The material layer 1411 has high carrier mobility, which can improve the carrier transport performance of the hole transport layer 14.
  • the organic hole transport material layer 1421 forms a directional hole channel, which makes the transport of holes more controllable, thereby Avoid accumulation of excessive holes at the interface between the hole transport layer 14 and the quantum dot light emitting layer 13. Therefore, using this method can improve the carrier transport performance of the QLED device, while ensuring the efficiency and durability of the QLED device.
  • the molecular formula of the perovskite material is ABX 3.
  • A may include a monovalent alkali metal, small molecular organic ammonium (for example, methyl ammonium) or Tl, and B may include Pb or Sn , X can include Cl or Br.
  • the co-evaporated perovskite precursor can be MACl (methyl ammonium chloride) and PbCl 2 (lead chloride), and the formed perovskite material is MAPbCl 3 (methylamine Lead chloride).
  • the co-evaporated organic hole transport material can be any electron-rich aromatic hole material.
  • the organic hole transport material can include 4,4'-bis(9-carbazole)biphenyl ( CBP), tris(4-carbazol-9-ylphenyl)amine (TCTA), poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine) (TFB) , N,N′-bis(3-methylphenyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (TPD), N,N′-two Phenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (NPB), 4,4'-cyclohexylbis[N,N-bis(4 -At least one of -methylphenyl)aniline] (CBP), 4,4'
  • the QLED device can also include a first electrode 11, an electron transport layer 12, a hole injection layer 15, a second electrode 16, etc. These components can be made by selecting appropriate materials and using appropriate processes. , This disclosure does not limit this.
  • the QLED device may also include a base substrate on which the first electrode 11, the electron transport layer 12, the quantum dot light-emitting layer 13, the hole transport layer 14, the hole injection layer 15, and the second electrode are sequentially prepared on the base substrate.
  • the base substrate is an array substrate, and pixel circuits for each sub-pixel of the pixel array have been prepared on the array substrate, and the prepared QLED device is electrically connected to the pixel circuit of the corresponding sub-pixel.
  • At least one embodiment of the present disclosure adopts a co-evaporation process to prepare a perovskite material doped with an organic hole transport material as a hole transport layer.
  • using the high carrier mobility of perovskite can improve the carrier transport performance of the hole transport layer and eliminate the problem of unbalanced carrier transport caused by the pure organic hole transport layer;
  • Organic matter self-assembles in the perovskite to form a periodic layered structure, which provides directional hole channels, makes hole transport more controllable, and avoids the accumulation of excess holes at the interface between the hole transport layer and the quantum dot light-emitting layer.
  • the vapor deposition method prevents the perovskite from being easily damaged by the subsequent solution preparation layer in the solution method, and can precisely control the doping ratio of the organic hole transport material.
  • fabricating a QLED device may include the following steps.
  • cathode layer ITO or other metal/semiconductor conductive cathodes are prepared on the base substrate.
  • the cathode prepared on the base substrate can be cleaned.
  • the solution film forming method spin coating/printing is used to deposit ZnO nanoparticles on clean ITO or other metal/semiconductor conductive cathodes, and the solvent is removed to form a uniform film.
  • the quantum dots are deposited on the electron transport layer by the solution film forming method (spin coating/printing), and the solvent is removed to form a uniform film.
  • a substrate with an electron transport layer and a quantum dot light-emitting layer is placed in a vacuum chamber, and the evaporation sources are MAC1, PbCl 2 and CBP. After the vacuum reached 5 ⁇ 10 -4 Pa, MAC1 and PbCl 2 were vaporized together to maintain the molar ratio of the two at 1:1.
  • the organic hole transport material CBP is mixed, and the molar ratio of the doping is 0%-10%. Then, the base substrate in the preparation process is taken out into an inert gas environment, baked at about 100° C. for 10 minutes to 30 minutes, to fully react to form perovskite, and then placed in the vacuum chamber again.
  • HTA-CN 2,3,6,7,10,11-hexacyano-1,4,5,8,9, 12-hexaazatriphenylene
  • fabricating a QLED device may include the following steps.
  • cathode layer ITO or other metal/semiconductor conductive cathodes are prepared on the base substrate.
  • the cathode prepared on the base substrate can be cleaned.
  • the solution film forming method spin coating/printing is used to deposit TiO 2 nanorods on clean ITO or other metal/semiconductor conductive cathodes, and the solvent is removed to form a uniform film.
  • the quantum dots are deposited on the electron transport layer by the solution film forming method (spin coating/printing), and the solvent is removed to form a uniform film.
  • a substrate with an electron transport layer and a quantum dot light-emitting layer is placed in a vacuum chamber, and the evaporation sources are MAC1, PbCl 2 and CBP. After the vacuum reached 5 ⁇ 10 -4 Pa, MAC1 and PbCl 2 were vaporized together to maintain the molar ratio of the two at 1:1. While co-evaporating the perovskite, the CBP is doped gradiently. The molar ratio of CBP on the side close to the quantum dot light-emitting layer is lower, about 1%, and the side far from the quantum dot light-emitting layer is higher, about 10%. . Then, the base substrate in the preparation process is taken out into an inert gas environment, baked at about 100° C. for 10-30 minutes to fully react to form perovskite, and then placed in the vacuum chamber again.
  • HTA-CN 2,3,6,7,10,11-hexacyano-1,4,5,8,9, 12-hexaazatriphenylene
  • HTL hole transport layer
  • TFB hole transport layer
  • ITO/PEDOT PSS(40nm)/HTL(50nm)/QD(15nm)/Au(100nm).
  • the structures of the two devices are the same, so they can be compared.
  • Figure 8 shows the current-voltage curves of the above two devices, where line 801 is the current-voltage curve of the device using the hybrid perovskite of the embodiment of the disclosure as the hole transport layer, and line 802 is the current-voltage curve using TFB as the hole transport layer. Current-voltage curve of the hole transport layer device.
  • the current of the device using the hybrid perovskite of the embodiment of the present disclosure as the hole transport layer is significantly higher than that of the device using TFB as the hole transport layer.
  • the current of the device using the hybrid perovskite of the embodiment of the present disclosure as the hole transport layer can reach about 64mA, which is more than 3 times larger than the current of the device using TFB as the hole transport layer, which shows that the hybrid The perovskite hole transport layer does have higher hole transport properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光二极管器件及其制作方法、显示面板及显示装置。该发光二极管器件包括:量子点发光层以及位于量子点发光层一侧的空穴传输层。空穴传输层包括钙钛矿材料和有机空穴传输材料。钙钛矿材料的高载流子迁移率可以改善空穴传输层的载流子传输性能。

Description

发光二极管器件及其制作方法、显示面板及显示装置
本申请要求于2019年5月24日提交的中国专利申请第201910441452.6的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本公开涉及发光二极管器件及其制作方法、显示面板及显示装置。
背景技术
量子点是一种溶液可加工的半导体纳米晶体,具有发光光谱窄、发光波长可调控、光谱纯度高等优点,最有希望成为下一代发光器件的核心部分。量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)将量子点作为发光层的制作材料,在不同的导电材料之间引入发光层从而得到所需要波长的光。QLED具有色域高、自发光、启动电压低、响应速度快、寿命长等优点。
发明内容
根据本公开的至少一实施例提供了一种发光二极管器件。该发光二极管器件包括:发光层;以及位于发光层一侧的空穴传输层;其中,所述空穴传输层包括钙钛矿材料和有机空穴传输材料。
在一些实施例中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例大于0%且小于等于10%。
在一些实施例中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例在远离所述发光层的方向上梯度增大。
在一些实施例中,所述空穴传输层是通过共蒸镀钙钛矿前体材料和所述有机空穴传输材料形成的。
在一些实施例中,所述空穴传输层具有所述钙钛矿材料和所述有机空穴传输材料的叠层结构。
在一些实施例中,所述钙钛矿材料的分子通式为ABX 3;A包括一价碱金属、小分子有机铵或Tl;B包括Pb或Sn;X包括Cl或Br。
在一些实施例中,所述钙钛矿材料包括MAPbCl 3
在一些实施例中,所述有机空穴传输材料包括CBP、TCTA、TFB、TPD、NPB、TAPC中的至少一种。
在一些实施例中,所述发光器件包括依次层叠的第一电极、电子传输层、发光层、空穴传输层、空穴注入层和第二电极。
在一些实施例中,所述电子传输层是ZnO纳米粒子层或TiO 2纳米棒层。
在一些实施例中,所述发光层为量子点发光层或有机发光层。
根据本公开的至少另一实施例提供了一种显示面板。所述显示面板包括衬底基板和阵列布置在所述衬底基板的表面上的如前所述的发光二极管器件。
根据本公开的至少又一实施例提供了一种显示装置。所述显示装置包括如前所述显示面板。
根据本公开的至少再一实施例提供了一种发光二极管器件的制作方法。所述方法包括:形成发光层;以及在所述发光层的一侧形成空穴传输层;其中,所述空穴传输层包括钙钛矿材料和有机空穴传输材料。
在一些实施例中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例大于0%且小于等于10%。
在一些实施例中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例在远离所述发光层的方向上梯度增大。
在一些实施例中,所述在发光层的一侧形成空穴传输层包括:共蒸镀钙钛矿前体和有机空穴传输材料,从而在所述发光层的一侧形成所述空穴传输层;以及烘烤所述空穴传输层。
在一些实施例中,所述空穴传输层具有所述钙钛矿材料和所述有机空穴传输材料的叠层结构。
在一些实施例中,所述钙钛矿前体包括MACl和PbCl 2;所述钙钛矿材料包括MAPbCl 3
在一些实施例中,所述钙钛矿材料的分子通式为ABX 3;A包括一价碱金属、小分子有机铵或Tl;B包括Pb或Sn;X包括Cl或Br。
在一些实施例中,所述有机空穴传输材料包括CBP、TCTA、TFB、TPD、NPB、TAPC中的至少一种。
在一些实施例中,所述发光层为量子点发光层或有机发光层。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种QLED器件的结构示意图;
图2为根据本公开的一个实施例的QLED器件的结构示意图;
图3为根据本公开的另一个实施例的QLED器件的结构示意图;
图4为根据本公开的又一个实施例的QLED器件的结构示意图;
图5为根据本公开实施例的QLED显示面板和显示装置的示意图;
图6为根据本公开的一个实施例的QLED器件的制作方法的流程图;
图7为根据本公开另一个实施例的QLED器件的制作方法的流程图;以及
图8为根据本公开实施例的器件的电流-电压曲线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。附图中各部分的形状和大小不反映各部分的真实比例,只是示意性地说明本公开内容。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而 不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
如图1所示,一种QLED器件10包括依次层叠的第一电极11、电子传输层12、量子点发光层13、空穴传输层14、空穴注入层15和第二电极16。在电场的作用下,空穴和电子分别空穴传输层14和电子传输层12内进行载流子的迁移,并在量子点发光层13内复合成激子进行发光。
该QLED器件采用无机ZnO纳米颗粒作为电子传输材料,其载流子传输性能高,电子迁移率一般为10 -3cm 2V -1s -1数量级;另一方面,该QLED器件采用的空穴传输材料是有机物,其载流子传输性能低,空穴迁移率一般为10 -5-10 -4cm 2V -1s -1数量级,与电子传输材料的载流子传输性能不匹配。这容易导致QLED器件中载流子传输不平衡,激子复合区域在空穴传输层14与量子点发光层13的界面甚至到空穴传输层14内。
本公开的至少一实施例提供了一种发光二极管器件,发光二极管器件包括:发光层以及位于发光层一侧的空穴传输层;该空穴传输层14包括钙钛矿材料和有机空穴传输材料。例如,该发光二极管器件还包括发光层另一侧的电子传输层,以及还包括位于电子传输层的远离发光层一侧的第一电极(阴极)和位于空穴传输层的远离发光层一侧的第二电极(阳极)。例如,该发光二极管器件为QLED器件或有机发光二极管(OLED)器件。下面,本公开以QLED器件为例进行说明,但是本公开不限于此。
如图2所示,QLED器件10包括:量子点发光层13;以及位于量子点发光层一侧的空穴传输层14;其中,空穴传输层14包括钙钛矿材料141和有机空穴传输材料142。
例如,空穴传输层14包括钙钛矿材料141和有机空穴传输材料142混合得到的混合空穴传输层材料。
钙钛矿材料141具有高的载流子迁移率,例如在10 -1cm 2V -1s -1以上。采用钙钛矿材料141作为空穴传输层14的主体材料,可以提高空穴传输层14的载流子传输性能,使其与电子传输层12的载流子传输性能相匹配,从而消除纯有机空穴传输层导致的载流子传输不平衡的问题。另一方面,钙钛矿材 料141的载流子扩散距离较大,容易导致空穴传输层14与量子点发光层13的界面积累过量的空穴,降低器件效率和耐受性。在空穴传输层14掺杂有机空穴传输材料142以起到调节空穴传输层14的载流子传输性能的作用,有机空穴传输材料142可以在钙钛矿材料141中自组装形成定向的空穴通道,使空穴的传输更加可控,从而避免在空穴传输层14与量子点发光层13的界面积累过量的空穴。因此,采用钙钛矿材料141和有机空穴传输材料142作为QLED器件的空穴传输层,改善了QLED器件10中载流子传输性能,同时保证了QLED器件10的效率和耐受性。
尽管有机空穴传输材料142可以起到调节空穴传输层14的载流子传输性能的作用,但是过高的有机物比例可能会破坏钙钛矿的晶型。因此,在本公开的一些实施例中,有机空穴传输材料142在空穴传输层14中的摩尔比例大于0%且小于等于10%,例如,1%~8%。
例如,该空穴传输层的厚度范围可以从30nm-3000nm,例如,50nm-1500nm,例如150nm-500nm。该厚度范围可以根据所选择的电子传输层的材料的载流子迁移率以及厚度确定,以使得在所得到的QLED器件中,由电子和空穴复合所得到的激子位于发光层中。
在一些实施例中,如图3所示,可以使有机空穴传输材料142在空穴传输层14中的摩尔比例在远离量子点发光层13的方向上梯度增大,即靠近量子点发光层13的一侧有机物掺杂比例较低(例如,摩尔比例为1%),远离量子点发光层13的一侧有机物掺杂比例较高(例如,摩尔比例为10%)。在一些实施例中,有机空穴传输材料的带隙比钙钛矿材料的带隙窄,采用这样的梯度掺杂方式可以起到激子限域功能。
上述空穴传输层可以是通过三元有机-无机杂化共蒸镀工艺制备的,通过有效地控制钙钛矿前体和有机物的蒸发条件,可以精确地调节有机空穴传输材料在钙钛矿中的掺杂比例,并且采用蒸镀法可以避免溶液法中钙钛矿容易被后续溶液制备层破坏的问题。
在一些示例中,如图4所示,通过共蒸镀工艺制备的空穴传输层可以具有钙钛矿材料层1411和有机空穴传输材料层1421的叠层结构,钙钛矿材料层1411具有高的载流子迁移率,可以提高空穴传输层14的载流子传输性能,有机空穴传输材料层1421形成定向的空穴通道,使空穴的传输更加可控,从 而避免在空穴传输层14与量子点发光层13的界面积累过量的空穴。因此,所得到的空穴传输层改善了QLED器件的载流子传输性能,同时也保证了QLED器件的效率和耐受性。
例如,钙钛矿材料的分子通式为ABX 3,在本公开的实施例中,A可以包括一价碱金属、小分子有机铵(例如,甲基铵)或Tl,B可以包括Pb或Sn,X可以包括Cl或Br。例如,在一个实施例中,钙钛矿材料可以是金属卤化物钙钛矿材料,例如MAPbCl 3(甲胺氯化铅)。
例如,有机空穴传输材料可以是本领域技术人员已知的任何富电子芳香空穴材料,例如,在一个实施例中,有机空穴传输材料可以包括4,4'-二(9-咔唑)联苯(CBP)、三(4-咔唑-9-基苯基)胺(TCTA)、聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-联苯-4,4′-二胺(TPD)、N,N′-二苯基-N,N′-(1-萘基)-1,1′-联苯-4,4′-二胺(NPB)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)中的至少一种。
如图2-图4所示,QLED器件10可以包括衬底基板,且包括在衬底基板上依次层叠的第一电极11、电子传输层12、量子点发光层13、空穴传输层14、空穴注入层15和第二电极16。
在一些实施例中,电子传输层的材料可以是ZnO纳米粒子层或TiO 2纳米棒层。当然,电子传输层也可以由其他合适的电子传输材料制成,本公开对此不做限定。
在一些实施例中,衬底基板可以为刚性基板或柔性基板,该刚性基板可以为玻璃基板、陶瓷基板、塑料基板等,该柔性基板可以为塑料基板(例如聚酰亚胺基板)、玻璃基板等,本公开对此不做限定。
在一些实施例中,电子注入层的材料可以包括:碱金属卤化物、碱土金属卤化物、碱金属氧化物、金属碳酸化合物、金属配合物材料、噁二唑类材料、咪唑类材料或邻菲罗林衍生物等,本公开对此不做限定。
在一些实施例中,空穴注入层15的材料可以包括:星形的三苯胺化合物、金属配合物、聚苯胺、氟碳氢化合物、卟啉(Porphyrin)衍生物、P型掺杂(P-Doped)胺类衍生物、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS)、聚噻吩或聚苯胺,本公开对此不做限定。
在一些实施例中,第一电极11为阴极,第一电极11的材料可以为具有 低功函数的材料,例如,镁(Mg)、钙(Ca)、铟(In)、锂(Li),铝(Al)、银(Ag)或其合金或氟化物,例如镁(Mg)-银(Ag)合金、锂(Li)-氟化合物、锂(Li)-氧(O)化合物等,本公开对此不做限定。
在一些实施例中,第二电极16为阳极,第二电极16的材料可以为金属、合金、或者金属、合金与有良好导电功能的金属氧化物的组合,例如Ag、Au、Pd、Pt、Ag:Au(即Ag和Au的合金)、Ag:Pd、Ag:Pt、Al:Au、Al:Pd、Al:Pt、Ag:Au、Ag/Pd(即Ag和Pd的叠层)、Ag/Pt、Ag/ITO、Ag/IZO、Al/Au、Al/Pd、Al/Pt、Al/ITO、Al/IZO、Ag:Pd/ITO、Ag:Pt/ITO、Al:Au/ITO、Al:Pd/ITO、Al:Pt/ITO、Ag:Au/ITO、Ag:Pd/IZO、Ag:Pt/IZO、Al:Au/IZO、Al:Pd/IZO、Al:Pt/IZO、Ag:Au/IZO等,本公开对此不做限定。
在一些实施例中,量子点发光层13包括硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点等,并且量子点的形状可以为球形或类球形,粒径在2nm-20nm之间,本公开对此不做限定。例如,本公开的实施例中,量子点发光层的载流子迁移率不高于空穴传输层的载流子迁移率,为此更便于捕获俘获载流子。
在本公开的一些涉及OLED器件的实施例中,除了发光层的材料不同之外,其他部分可以基本相同。OLED器件的有机发光层的材料可以荧光型发光材料或磷光型发光材料,例如,可以是通过掺杂得到的发光材料,例如,主发光体材料包括金属配合物材料、蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物或含有咔唑基团的衍生物,被掺杂的荧光发光材料包括香豆素染料(coumarin 6、C-545T)、喹吖啶酮(DMQA)、2,5,8,11-四叔丁基苝、5,6,11,12-四苯基并四苯、N,N'-二甲基喹吖啶酮或4-(二腈亚甲叉)-2-甲基-6-(4-二甲胺基-苯乙烯)-4H-吡喃(DCM)系列,本公开对此不做限定。
根据本公开的另一方面,如图5所示,本公开的实施例还提供了一种显示面板201。显示面板201包括阵列基板2011和以阵列形式布置在阵列基板2011表面的如以上实施例的QLED器件10。例如,显示面板201包括像素阵列,该像素阵列包括以阵列形式布置的多个子像素,每个子像素包括QLED器件10以及用于驱动该QLED器件10的像素电路,QLED器件10与对应 的像素电路电连接。此时,阵列基板作为QLED器件的衬底基板。
例如,该子像素的像素电路为2T1C像素电路,即包括两个TFT(Thin-film transistor,薄膜晶体管)和一个存储电容Cs来实现驱动QLED器件发光,该两个TFT中的一个为驱动晶体管,而另一个为数据写入晶体管。又例如,在上述2T1C的像素电路的基础上,像素电路还可以具有补偿功能,补偿功能可以通过电压补偿、电流补偿或混合补偿来实现,具有补偿功能的像素电路例如可以为4T1C或4T2C等,这里不再详述。
显示面板201还可以包括栅极动电路和数据驱动电路。像素阵列还包括多行栅线和与之交错的多列数据线;多行栅线与栅极驱动电路电连接,例如与像素阵列的多行子像素对应连接,栅极驱动电路为多行栅线提供扫描信号,从而控制多行子像素依序打开;多列数据线与数据驱动电路电连接,例如与像素阵列的多列子像素对应连接,数据驱动电路在多列数据线上施加数据信号,由此在该多行子像素被分别打开时向相应行子像素中写入数据信号,由此实现一帧图像的显示。
该显示面板具有前述QLED器件的全部特征和优点,此处不再详细描述。
根据本公开的又一方面,如图5所示,本公开的实施例还提供了一种显示装置20。显示装置包括如上的显示面板201。如本领域技术人员将理解,显示装置20还可以包括必要的封装元件和控制电路,在此不做限定。该显示装置可以实现为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置具有前述QLED器件的全部特征和优点,此处不再详细描述。
根据本公开的另一方面,本公开的实施例还提供了一种发光二极管器件的制作方法,该方法可以包括:形成发光层;在发光层的一侧形成空穴传输层,其中,空穴传输层包括钙钛矿材料和有机空穴传输材料。以下,仍以上述QLED器件的制作方法为例进行非限制性的描述。
如图6所示,根据本公开至少一实施例的QLED器件的制作方法可以包括以下步骤:
步骤S101:形成量子点发光层;
步骤S102:在量子点发光层的一侧形成空穴传输层;其中,空穴传输层包括钙钛矿材料和有机空穴传输材料。采用该方法制作的QLED器件可以具 有如图2所示的结构。
钙钛矿材料141具有高的载流子迁移率,采用钙钛矿材料141作为空穴传输层14的主体材料,可以提高空穴传输层14的载流子传输性能,使其与电子传输层12的载流子传输性能相匹配,从而消除纯有机空穴传输层导致的载流子传输不平衡的问题。另一方面,钙钛矿材料141的载流子扩散距离较大,容易导致空穴传输层14与量子点发光层13的界面积累过量的空穴,降低器件效率和耐受性。而所掺杂的有机空穴传输材料142起到调节空穴传输层14的载流子传输性能的作用,有机空穴传输材料142可以在钙钛矿材料141中自组装形成定向的空穴通道,使空穴的传输更加可控,从而避免在空穴传输层14与量子点发光层13的界面积累过量的空穴。因此,采用该方法制作QLED器件,可以改善QLED器件10中载流子传输性能,同时保证QLED器件10的效率和耐受性。
尽管有机空穴传输材料142可以起到调节空穴传输层14的载流子传输性能的作用,但是在制备过程中掺杂过多的有机空穴传输材料可能会破坏钙钛矿的晶型。因此,在本公开的一些实施例中,有机空穴传输材料142在空穴传输层14中的摩尔比例大于0%且小于等于10%,例如,1%~8%。
在一些制备过程中,可以控制空穴传输层14的制备条件,使有机空穴传输材料142在空穴传输层14中的摩尔比例在远离量子点发光层13的方向上梯度增大,即靠近量子点发光层13的一侧有机物掺杂比例较低(例如,摩尔比例为1%),远离量子点发光层13的一侧有机物掺杂比例较高(例如,摩尔比例为10%),形成如图3所示的梯度掺杂结构。在一些实施例中,有机空穴传输材料的带隙比钙钛矿材料的带隙窄,采用这样的梯度掺杂方式可以起到激子限域功能。
在一些实施例中,空穴传输层可以通过三元有机-无机杂化共蒸镀工艺制备。在至少一个示例中,如图7所示,在量子点发光层的一侧形成空穴传输层的步骤S102包括以下子步骤:
步骤S1021:共蒸镀钙钛矿前体和有机空穴传输材料,从而在量子点发光层的一侧形成空穴传输层;
步骤S1022:烘烤空穴传输层。
对于共蒸镀和烘烤的具体工艺参数,本领域技术人员可以针对不同材料 选择合适的参数,例如,工作腔的真空度可以为10 -4-10 -5Pa,MACl/PbCl 2的蒸镀速率可以为0.1-10nm/s,有机小分子空穴传输材料的蒸镀速率可以为0.01-1nm/s,本公开对此不做限定。通过有效地控制钙钛矿前体和有机物的蒸发条件,可以精确地调节有机物的掺杂比例,并且采用蒸镀法可以避免溶液法中钙钛矿容易被后续溶液制备层破坏的问题。
在至少一个示例中,在烘烤过程中,通过自组装,空穴传输层可以形成钙钛矿材料层1411和有机空穴传输材料层1421的叠层结构,如图4所示,钙钛矿材料层1411具有高的载流子迁移率,可以提高空穴传输层14的载流子传输性能,有机空穴传输材料层1421形成定向的空穴通道,使空穴的传输更加可控,从而避免在空穴传输层14与量子点发光层13的界面积累过量的空穴。因此,采用该方法可以改善QLED器件的载流子传输性能,同时保证QLED器件的效率和耐受性。
钙钛矿材料的分子通式为ABX 3,在本公开的至少一实施例中,A可以包括一价碱金属、小分子有机铵(例如,甲基铵)或Tl,B可以包括Pb或Sn,X可以包括Cl或Br。例如,在至少一实施例中,共蒸镀的钙钛矿前体可以是MACl(甲基氯化铵)和PbCl 2(氯化铅),所形成的钙钛矿材料是MAPbCl 3(甲胺氯化铅)。
共蒸镀的有机空穴传输材料可以是任何富电子芳香空穴材料,例如,在至少一实施例中,有机空穴传输材料可以包括4,4'-二(9-咔唑)联苯(CBP)、三(4-咔唑-9-基苯基)胺(TCTA)、聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-联苯-4,4′-二胺(TPD)、N,N′-二苯基-N,N′-(1-萘基)-1,1′-联苯-4,4′-二胺(NPB)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)中的至少一种。
如图2-4所示,QLED器件还可以包括第一电极11、电子传输层12、空穴注入层15、第二电极16等,这些组成部分可以选择合适的材料、采用合适的工艺来制作,本公开对此不做限定。
例如,QLED器件还可以包括衬底基板,在该衬底基板上依次制备第一电极11、电子传输层12、量子点发光层13、空穴传输层14、空穴注入层15和第二电极16。例如,该衬底基板为阵列基板,该阵列基板上已经制备了用于像素阵列的各个子像素的像素电路,所制备的QLED器件与对应的子像素 的像素电路电连接。
综上所述,本公开的至少一实施例采用共蒸镀工艺制备掺杂了有机空穴传输材料的钙钛矿材料作为空穴传输层。一方面,利用钙钛矿的高载流子迁移率,可以提高空穴传输层的载流子传输性能,消除纯有机空穴传输层导致的载流子传输不平衡的问题;另一方面,有机物在钙钛矿中自组装形成周期性层状结构,提供定向的空穴通道,使空穴传输更加可控,避免空穴传输层与量子点发光层的界面积累过量的空穴。此外,采用蒸镀法避免了溶液法中钙钛矿容易被后续溶液制备层破坏,并且可以精确地调控有机空穴传输材料的掺杂比例。
下面给出采用本公开的方法制作QLED器件的实施例的两个具体示例。
在一个示例中,制作QLED器件可以包括以下步骤。
制备阴极层:在衬底基板上制备ITO或其他金属/半导体导电阴极。例如,可以对在衬底基板上制备的阴极进行清洁。
制备电子传输层:采用溶液成膜方法(旋涂/打印)将ZnO纳米粒子沉积到洁净的ITO或其他金属/半导体导电阴极上,除去溶剂使其均匀成膜。
制备量子点发光层:采用溶液成膜方法(旋涂/打印)将量子点沉积到电子传输层上,除去溶剂使其均匀成膜。
制备钙钛矿材料为主体的空穴传输层:将具有电子传输层和量子点发光层的基底置于真空腔体中,蒸镀源为MACl、PbCl 2和CBP。在真空度达到5×10 -4Pa后,共蒸MACl和PbCl 2,保持两者摩尔比为1:1。
共蒸钙钛矿的同时,掺入有机空穴传输材料CBP,掺杂的摩尔比例为0%-10%。然后将制备过程中的衬底基板取出至惰性气体环境内,在约100℃烘烤10min-30min,使其充分反应形成钙钛矿,然后重新置于真空腔体中。
制备空穴注入层与阳极:待钙钛矿空穴传输层达到目标厚度后,可以蒸镀2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HTA-CN)作为空穴注入层,蒸镀金属Ag作为阳极,从而得到QLED器件。
在另一个示例中,制作QLED器件可以包括以下步骤。
制备阴极层:在衬底基板上制备ITO或其他金属/半导体导电阴极。例如,可以对在衬底基板上制备的阴极进行清洁。
制备电子传输层:采用溶液成膜方法(旋涂/打印)将TiO 2纳米棒沉积 到洁净的ITO或其他金属/半导体导电阴极上,除去溶剂使其均匀成膜。
制备量子点发光层:采用溶液成膜方法(旋涂/打印)将量子点沉积到电子传输层上,除去溶剂使其均匀成膜。
制备钙钛矿材料为主体的空穴传输层:将具有电子传输层和量子点发光层的基底置于真空腔体中,蒸镀源为MACl、PbCl 2和CBP。在真空度达到5×10 -4Pa后,共蒸MACl和PbCl 2,保持两者摩尔比为1:1。共蒸钙钛矿的同时,梯度掺杂CBP,靠近量子点发光层的一侧CBP摩尔比例较低,为1%左右,远离量子点发光层的一侧CBP摩尔比例较高,为10%左右。然后将制备过程中的衬底基板取出至惰性气体环境内,在约100℃烘烤10-30min,使其充分反应形成钙钛矿,然后重新置于真空腔体中。
制备空穴注入层与阳极:待钙钛矿空穴传输层达到目标厚度后,可蒸镀2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HTA-CN)作为空穴注入层,蒸镀Ag作为阳极,从而得到QLED器件。
另外,研究人员采用本公开至少一实施例的钙钛矿材料与有机空穴传输材料杂化的空穴传输层(HTL)制作了单空穴器件。作为对比,研究人员也制作了采用TFB作为空穴传输层的单空穴器件。这两个器件的结构均为:
ITO/PEDOT:PSS(40nm)/HTL(50nm)/QD(15nm)/Au(100nm)。
这两个器件的结构除了空穴传输层的材料不同之外,其他部分相同,由此可以进行比较。
图8示出了上述两个器件的电流-电压曲线,其中,线801为采用本公开实施例的杂化钙钛矿作为空穴传输层的器件的电流-电压曲线,线802为采用TFB作为空穴传输层的器件的电流-电压曲线。
如图8所示,在2v-7v的电压范围内,采用本公开实施例的杂化钙钛矿作为空穴传输层的器件的电流明显高于采用TFB作为空穴传输层的器件的电流。电压为7v时,采用本公开实施例的杂化钙钛矿作为空穴传输层的器件的电流可以达到约64mA,比采用TFB作为空穴传输层的器件的电流大3倍以上,这说明杂化钙钛矿空穴传输层确实具有更高的空穴传输性能。
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的 厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (22)

  1. 一种发光二极管器件,包括:
    发光层;以及
    位于所述发光层一侧的空穴传输层;
    其中,所述空穴传输层包括钙钛矿材料和有机空穴传输材料。
  2. 根据权利要求1所述的发光二极管器件,其中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例大于0%且小于等于10%。
  3. 根据权利要求2所述的发光二极管器件,其中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例在远离所述发光层的方向上梯度增大。
  4. 根据权利要求1-3任一项所述的发光二极管器件,其中,所述空穴传输层是通过共蒸镀钙钛矿前体和所述有机空穴传输材料形成的。
  5. 根据权利要求4所述的发光二极管器件,其中,所述空穴传输层具有所述钙钛矿材料和所述有机空穴传输材料的叠层结构。
  6. 根据权利要求1-5任一项所述的发光二极管器件,其中,所述钙钛矿材料的分子通式为ABX 3
    其中,A包括一价碱金属、小分子有机铵或Tl;B包括Pb或Sn;X包括Cl或Br。
  7. 根据权利要求1-6任一项所述的发光二极管器件,其中所述钙钛矿材料包括MAPbCl 3
  8. 根据权利要求1-7任一项所述的发光二极管器件,其中,所述有机空穴传输材料包括CBP、TCTA、TFB、TPD、NPB、TAPC中的至少一种。
  9. 根据利要求1-8任一项所述的发光二极管器件,还包括第一电极、电子传输层、空穴注入层和第二电极,
    其中,所述第一电极、所述电子传输层、所述发光层、所述空穴传输层、所述空穴注入层和所述第二电极依次层叠。
  10. 根据利要求9所述的发光二极管器件,其中,所述电子传输层是ZnO纳米粒子层或TiO 2纳米棒层。
  11. 根据利要求1-10任一项所述的发光二极管器件,其中,所述发光层为量子点发光层或有机发光层。
  12. 一种显示面板,包括:
    衬底基板,和
    阵列布置在所述衬底基的板表面上的如权利要求1-11中任一项所述的发光二极管器件。
  13. 一种显示装置,包括如权利要求12所述的显示面板。
  14. 一种发光二极管器件的制作方法,包括:
    形成发光层;以及
    在所述发光层的一侧形成空穴传输层;
    其中,所述空穴传输层包括钙钛矿材料和有机空穴传输材料。
  15. 根据权利要求14所述的方法,其中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例大于0%且小于等于10%。
  16. 根据权利要求15所述的方法,其中,所述有机空穴传输材料在所述空穴传输层中的摩尔比例在远离所述发光层的方向上梯度增大。
  17. 根据权利要求14-16任一项所述的方法,其中,在所述量子点发光层的一侧形成所述空穴传输层包括:
    共蒸镀钙钛矿前体和所述有机空穴传输材料,从而在所述发光层的一侧形成所述空穴传输层;以及
    烘烤所述空穴传输层。
  18. 根据权利要求17所述的方法,其中,所述空穴传输层具有所述钙钛矿材料和所述有机空穴传输材料的叠层结构。
  19. 根据权利要求17或18所述的方法,其中,所述钙钛矿前体包括MACl和PbCl 2;所述钙钛矿材料包括MAPbCl 3
  20. 根据权利要求14-19任一项所述的方法,其中,所述钙钛矿材料的分子通式为ABX 3;其中,A包括一价碱金属、小分子有机铵或Tl;B包括Pb或Sn;X包括Cl或Br。
  21. 根据权利要求14-20任一项所述的方法,其中,所述有机空穴传输材料包括CBP、TCTA、TFB、TPD、NPB、TAPC中的至少一种。
  22. 根据权利要求14-21任一项所述的方法,其中,所述发光层为量子点发光层或有机发光层。
PCT/CN2020/091173 2019-05-24 2020-05-20 发光二极管器件及其制作方法、显示面板及显示装置 WO2020238713A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/271,619 US20210320272A1 (en) 2019-05-24 2020-05-20 Light-emitting diode device and manufacturing method therefor, and display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910441452.6 2019-05-24
CN201910441452.6A CN110112305B (zh) 2019-05-24 2019-05-24 Qled器件及其制作方法、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020238713A1 true WO2020238713A1 (zh) 2020-12-03

Family

ID=67492113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091173 WO2020238713A1 (zh) 2019-05-24 2020-05-20 发光二极管器件及其制作方法、显示面板及显示装置

Country Status (3)

Country Link
US (1) US20210320272A1 (zh)
CN (1) CN110112305B (zh)
WO (1) WO2020238713A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112305B (zh) * 2019-05-24 2023-04-07 京东方科技集团股份有限公司 Qled器件及其制作方法、显示面板及显示装置
US20220328730A1 (en) * 2019-09-02 2022-10-13 Sharp Kabushiki Kaisha Element and electronic device
CN111525048B (zh) * 2020-04-30 2022-11-04 广东聚华印刷显示技术有限公司 复合材料及其制备方法与发光二极管
CN111697148B (zh) * 2020-06-19 2021-08-31 西北工业大学 一种金纳米棒耦合的量子点发光二极管的制备方法
CN112851525B (zh) * 2020-12-31 2024-04-05 广东聚华印刷显示技术有限公司 钙钛矿材料及其制备方法、qled器件和显示装置
CN115315825A (zh) * 2021-01-06 2022-11-08 京东方科技集团股份有限公司 发光二极管、显示面板和显示装置
KR20220140903A (ko) * 2021-04-08 2022-10-19 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 전자 장치
CN116568110B (zh) * 2023-05-10 2024-01-26 天津大学 一种空穴传输层材料、制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098956A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法
CN107104193A (zh) * 2017-05-03 2017-08-29 上海大学 具有多层周期掺杂结构的复合空穴传输层、led器件结构、应用和制备方法
WO2018064235A1 (en) * 2016-09-27 2018-04-05 Massachusetts Institute Of Technology Tunable light emitting diodes utilizing quantum-confined layered perovskite emitters
CN108219786A (zh) * 2018-01-31 2018-06-29 浙江理工大学 一种室温下制备钙钛矿量子点的方法
CN108886101A (zh) * 2016-11-14 2018-11-23 京东方科技集团股份有限公司 量子点发光二极管及其制造方法、显示面板和显示装置
CN110112305A (zh) * 2019-05-24 2019-08-09 京东方科技集团股份有限公司 Qled器件及其制作方法、显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3185323A1 (en) * 2014-05-09 2017-06-28 Novaled GmbH Doped perovskites and their use as active and/or charge transport layers in optoelectronic devices
CN105870349B (zh) * 2016-06-06 2017-09-26 京东方科技集团股份有限公司 发光二极管及其制备方法、发光器件
CN109478598A (zh) * 2016-12-28 2019-03-15 松下知识产权经营株式会社 太阳能电池、光吸收层以及光吸收层的形成方法
CN107452886A (zh) * 2017-08-12 2017-12-08 西南大学 一种复合薄膜和有机发光二极管及其制备方法
CN109473559B (zh) * 2018-10-19 2020-07-24 京东方科技集团股份有限公司 一种电致发光器件及其制作方法、显示装置
CN109638165B (zh) * 2018-12-17 2020-06-23 深圳大学 一种多功能的光电子器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098956A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法
WO2018064235A1 (en) * 2016-09-27 2018-04-05 Massachusetts Institute Of Technology Tunable light emitting diodes utilizing quantum-confined layered perovskite emitters
CN108886101A (zh) * 2016-11-14 2018-11-23 京东方科技集团股份有限公司 量子点发光二极管及其制造方法、显示面板和显示装置
CN107104193A (zh) * 2017-05-03 2017-08-29 上海大学 具有多层周期掺杂结构的复合空穴传输层、led器件结构、应用和制备方法
CN108219786A (zh) * 2018-01-31 2018-06-29 浙江理工大学 一种室温下制备钙钛矿量子点的方法
CN110112305A (zh) * 2019-05-24 2019-08-09 京东方科技集团股份有限公司 Qled器件及其制作方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN110112305B (zh) 2023-04-07
US20210320272A1 (en) 2021-10-14
CN110112305A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020238713A1 (zh) 发光二极管器件及其制作方法、显示面板及显示装置
US10461131B2 (en) Quantum dot LED and OLED integration for high efficiency displays
CN109713098B (zh) 发光二极管以及包括该发光二极管的发光设备
Jiang et al. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays
US11005061B2 (en) Organic light emitting display device
EP2819201B1 (en) Organic light emitting device
US11228013B2 (en) Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same
US10903442B2 (en) Organic light-emitting diode comprising self-crystallizing material and organic light-emitting display device including the same
KR20190035399A (ko) 발광다이오드 및 이를 포함하는 발광장치
KR102422769B1 (ko) 유기 발광 표시 장치
US20180375057A1 (en) Light-emitting device and method of fabricating display panel therewith
US8785916B2 (en) Optoelectronic organic component and method for the production thereof
US10014357B2 (en) Organic light-emitting device and organic light-emitting display device using the same
WO2016188042A1 (zh) 电致发光器件及其制备方法、显示基板、显示装置
KR20090009252A (ko) 발광 구성요소
US20220052262A1 (en) Method of manufacturing perovskite light emitting device by inkjet printing
US20170054103A1 (en) Display apparatus and method of manufacturing the same
CN112467058B (zh) 一种三元激基复合物复合材料主体及其oled器件制备
CN111490070B (zh) 显示面板
US11737343B2 (en) Method of manufacturing perovskite light emitting device by inkjet printing
CN114586186A (zh) 有机电致发光器件和显示装置
CN113871553A (zh) 发光层图案化方法及发光二极管器件的制备方法
WO2024000517A1 (zh) 发光器件及其制备方法、显示面板、显示装置
WO2024040561A1 (zh) 发光器件及其制备方法、显示面板、显示装置
Cao et al. Inverted Hybrid Inorganic–Organic Light-Emitting Diodes With Balanced Charge Injection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815322

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20815322

Country of ref document: EP

Kind code of ref document: A1