WO2024000517A1 - 发光器件及其制备方法、显示面板、显示装置 - Google Patents

发光器件及其制备方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2024000517A1
WO2024000517A1 PCT/CN2022/103128 CN2022103128W WO2024000517A1 WO 2024000517 A1 WO2024000517 A1 WO 2024000517A1 CN 2022103128 W CN2022103128 W CN 2022103128W WO 2024000517 A1 WO2024000517 A1 WO 2024000517A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
layer
light
transport material
quantum dot
Prior art date
Application number
PCT/CN2022/103128
Other languages
English (en)
French (fr)
Inventor
王好伟
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/103128 priority Critical patent/WO2024000517A1/zh
Priority to CN202280002099.1A priority patent/CN117643194A/zh
Publication of WO2024000517A1 publication Critical patent/WO2024000517A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present disclosure relates to the technical fields of lighting and display, and in particular, to a light-emitting device and a preparation method thereof, a display panel, and a display device.
  • Quantum Dot Light Emitting Diodes have the advantages of high color gamut, self-illumination, low starting voltage, and fast response speed, so they have received widespread attention in the display field.
  • the working principle of the substrate of a quantum dot light-emitting diode device is: electrons and holes are injected into both sides of the quantum dot light-emitting layer. These electrons and holes recombine in the quantum dot light-emitting layer to form excitons, and finally emit light through the excitons.
  • a light-emitting device includes a first electrode, a second electrode, a quantum dot light-emitting layer and a hole transport doping layer located between the first electrode and the second electrode.
  • the hole transport doping layer is located between the quantum dot light-emitting layer and the second electrode; the hole transport doping layer includes a mixture of at least two hole transport materials, wherein the at least two Hole transport materials differ in their highest occupied molecular orbital energy levels.
  • the at least two hole transport materials have different mobilities, and among any two hole transport materials, the mobility of the hole transport material with a lower highest occupied molecular orbital energy level is greater than the highest occupied molecular orbital energy level. Mobility of hole-transporting materials occupying higher energy levels of molecular orbitals.
  • the at least two hole transport materials include a first hole transport material and a second hole transport material, and the highest occupied molecular orbital energy level of the first hole transport material is smaller than the third hole transport material.
  • the highest occupied molecular orbital energy level of the second hole transport material; in the hole transport doped layer, the mass ratio of the first hole transport material and the second hole transport material is 1:5 ⁇ 5:1.
  • a mass ratio of the first hole transport material to the second hole transport material is 2:1.
  • the thickness of the hole transport doping layer is 0.66 times to 5 times the thickness of the quantum dot light emitting layer.
  • the thickness of the hole transport doped layer is 2.3 times the thickness of the quantum dot light emitting layer.
  • the thickness of the hole transport doping layer ranges from 20 nm to 50 nm.
  • the light emitting device further includes: a first hole transport layer.
  • the first hole transport layer is located between the quantum dot light-emitting layer and the hole transport doping layer; wherein the highest occupied molecular orbital energy level of the first hole transport layer is less than or equal to the third The highest occupied molecular orbital energy level of a hole transport material is greater than the highest occupied molecular orbital energy level of the quantum dot light-emitting layer.
  • the mobility of the first hole transport layer is less than or equal to the mobility of the first hole transport material and greater than the mobility of the quantum dot light emitting layer.
  • the first hole transport layer includes the first hole transport material.
  • a mass ratio of the first hole transport material to the second hole transport material is 2:1.
  • the thickness of the hole transport doped layer is 0.33 to 5 times the thickness of the quantum dot light-emitting layer; the thickness of the first hole transport layer is 0.33 times to 5 times the thickness of the hole transport doped layer. 0.06 times to 2 times the thickness of the layer.
  • the thickness of the first hole transport layer is one third of the thickness of the hole transport doped layer.
  • the thickness of the hole transport doping layer is 10 nm to 50 nm; the thickness of the first hole transport layer is 3 nm to 20 nm.
  • the light emitting device further includes: a second hole transport layer.
  • the second hole transport layer is located between the hole transport doped layer and the second electrode; wherein the highest occupied molecular orbital energy level of the second hole transport layer is smaller than that of the second electrode.
  • the highest occupied molecular orbital energy level is greater than or equal to the highest occupied molecular orbital energy level of the second hole transport material.
  • the mobility of the second hole transport layer is less than the mobility of the second electrode and greater than or equal to the mobility of the second hole transport material.
  • the second hole transport layer includes a second hole transport material.
  • a mass ratio of the first hole transport material and the second hole transport material is 1:1.
  • the thickness of the hole transport doped layer is 0.1 to 2 times the thickness of the quantum dot light-emitting layer; the thickness of the second hole transport layer is the thickness of the hole transport doped layer. 0.5 times to 16.66 times the thickness of the layer.
  • the thickness of the second hole transport layer is 3 times the thickness of the hole transport doped layer.
  • the hole transport doped layer has a thickness of 3 nm to 20 nm; the second hole transport layer has a thickness of 10 nm to 50 nm.
  • the light emitting device further includes: a first hole transport layer and a second hole transport layer.
  • the first hole transport layer is located between the quantum dot light-emitting layer and the hole transport doping layer; wherein the highest occupied molecular orbital energy level of the first hole transport layer is less than or equal to the third
  • the highest occupied molecular orbital energy level of a hole transport material is greater than the highest occupied molecular orbital energy level of the quantum dot light-emitting layer.
  • the second hole transport layer is located between the hole transport doped layer and the second electrode; wherein the highest occupied molecular orbital energy level of the second hole transport layer is smaller than that of the second electrode.
  • the highest occupied molecular orbital energy level is greater than or equal to the highest occupied molecular orbital energy level of the second hole transport material.
  • the mobility of the first hole transport layer is less than or equal to the mobility of the first hole transport material and greater than the mobility of the quantum dot light-emitting layer; the second hole The mobility of the transport layer is less than the mobility of the second electrode and greater than or equal to the mobility of the second hole transport material.
  • the first hole transport layer includes the first hole transport material; the second hole transport layer includes a second hole transport material.
  • a mass ratio of the first hole transport material and the second hole transport material is 1:1.
  • the thickness of the hole transport doped layer is 0.1 to 2 times the thickness of the quantum dot light-emitting layer; the thickness of the first hole transport layer is the thickness of the hole transport doped layer.
  • the thickness of the second hole transport layer is 0.15 to 6.67 times the thickness of the hole transport layer; the thickness of the second hole transport layer is 0.5 to 16.67 times the thickness of the hole transport doped layer.
  • the thickness of the first hole transport layer is 1 times the thickness of the hole transport doped layer; the thickness of the second hole transport layer is 1 times the thickness of the hole transport doped layer 6 times the thickness.
  • the thickness of the hole transport doped layer is 3 nm ⁇ 20 nm; the thickness of the first hole transport layer is 3 nm ⁇ 20 nm; the thickness of the second hole transport layer is 10 nm ⁇ 50 nm .
  • the hole transport doping layer includes a stack of multiple sub-doping layers; among any two adjacent sub-doping layers, the sub-doping layer close to the quantum dot light-emitting layer
  • the mass ratio of the first hole transport material to the second hole transport material is greater than the mass ratio of the first hole transport material to the second hole transport material in the sub-doped layer away from the quantum dot light-emitting layer. The ratio of the mass of the second hole transport material.
  • the highest occupied molecular orbital energy level of the first hole transport material is 0.88 to 1.02 times the highest occupied molecular orbital energy level of the quantum dot light-emitting layer; the second hole transport material The highest occupied molecular orbital energy level is 0.82 to 0.97 times the highest occupied molecular orbital energy level of the quantum dot light-emitting layer.
  • the highest occupied molecular orbital energy level of the first hole transport material ranges from -6.3 eV to -5.9 eV; the highest occupied molecular orbital energy level of the second hole transport material ranges from -6.3 eV to -5.9 eV.
  • the value range is -6eV ⁇ -5.5eV.
  • the mobility of the first hole transport material is 1 to 10 times the mobility of the quantum dot light-emitting layer; the mobility of the second hole transport material is 1 to 10 times the mobility of the quantum dot light-emitting layer. 10 2 times to 10 4 times the mobility of the point emitting layer.
  • the mobility of the first hole transport material ranges from 10 -5 cm 2 V -1 s -1 to 10 -3 cm 2 V -1 s -1 ; the second The mobility of the hole transport material ranges from 10 -3 cm 2 V -1 s -1 to 10 -2 cm 2 V -1 s -1 .
  • the at least two hole transport materials include at least two of the following materials: 4,4-bis(carbazole-9-yl)biphenyl, 1,3-bis(carbazol-9-yl) benzene, 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine, 4,4',4′′-tris(carbazol-9-yl)triphenylamine, 1,1-bis[4-[ N,N'-di(p-tolyl)amino]phenyl]cyclohexane, N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine.
  • the light-emitting device further includes: a hole injection layer and an electron transport layer.
  • the hole injection layer is located between the second electrode and the hole transport doped layer; the electron transport layer is located between the first electrode and the quantum dot light emitting layer.
  • the display panel includes: a substrate and a light-emitting device as described in any of the above embodiments.
  • the plurality of light emitting devices are disposed on one side of the substrate.
  • a display device in another aspect, includes: the display panel as described in any of the above embodiments.
  • a method for preparing a light-emitting device includes: forming a quantum dot light-emitting layer on one side of a first electrode; and forming a quantum dot light-emitting layer on a side away from the first electrode. forming a hole transport doped layer, wherein the hole transport doped layer includes a mixture of at least two hole transport materials, wherein the highest occupied molecular orbital energy levels of the at least two hole transport materials are different; in A second electrode is formed on the side of the hole transport doped layer away from the quantum dot light-emitting layer.
  • the at least two hole transport materials include a first hole transport material and a second hole transport material, and the highest occupied molecular orbital energy level of the first hole transport material is smaller than the third hole transport material.
  • the highest occupied molecular orbital energy level of the second hole transport material in the step of forming a hole transport doping layer on the side of the quantum dot light-emitting layer away from the first electrode, a dual-source co-evaporation method is used to The first hole transport material and the second hole transport material are simultaneously deposited on one side of an electrode to form the hole transport doped layer.
  • the step further includes: forming a first hole transport layer on a side of the quantum dot light-emitting layer away from the first electrode.
  • the step of forming a hole transport doping layer on a side of the quantum dot light-emitting layer away from the first electrode includes: forming the hole transport layer on a side of the first hole transport layer away from the first electrode. hole transport doping layer.
  • the method further includes: forming a hole transport doping layer on a side of the quantum dot light-emitting layer away from the first electrode.
  • One side of the electrode forms a second hole transport layer.
  • the step of forming a second electrode on a side of the hole transport doped layer away from the quantum dot light-emitting layer includes: forming the second electrode on a side of the second hole transport layer away from the hole transport doped layer. Second electrode.
  • Figure 1 is a structural diagram of a display device according to some embodiments.
  • Figure 2 is a structural diagram of a display panel according to some embodiments.
  • Figure 3 is a cross-sectional view of a display panel according to some embodiments.
  • Figure 4 is a structural diagram of a display panel according to an implementation manner
  • Figure 5 is a structural diagram of a display panel according to some embodiments.
  • Figure 6 is a schematic diagram of current efficiency as a function of voltage according to some embodiments.
  • Figure 7 is a structural diagram of a display panel according to other embodiments.
  • Figure 8 is a schematic diagram of current efficiency changing with voltage according to other embodiments.
  • Figure 9 is a structural diagram of a display panel according to some other embodiments.
  • Figure 10 is a schematic diagram of current efficiency as a function of voltage according to some other embodiments.
  • Figure 11 is a structural diagram of a display panel according to still other embodiments.
  • Figure 12 is a schematic diagram of current efficiency as a function of voltage according to further embodiments.
  • Figure 13 is a flow chart of a method of manufacturing a light-emitting device according to some embodiments.
  • Figure 14 is a flow chart of a method of manufacturing a light-emitting device according to some embodiments.
  • Figure 15 is a flow chart of a method of manufacturing a light-emitting device according to some embodiments.
  • Figure 16 is a flow chart of a method of manufacturing a light emitting device according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • the difference between A and B refers to the difference between the larger of A and B and the smaller of A and B.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • Quantum Dots as a new type of luminescent material, have the advantages of high light color purity, high luminescence quantum efficiency, adjustable luminous color, and long service life. They are called the current new type of LED (Light Emitting Diodes) luminescence. Materials research hotspots. Therefore, Quantum Dot Light Emitting Diodes (QLED) using quantum dot materials as the light-emitting layer have become the main direction of current research on new display devices.
  • QLED Quantum Dot Light Emitting Diodes
  • the basic working principle of quantum dot light-emitting diodes is to inject electrons and holes into both sides of the quantum dot light-emitting layer. These electrons and holes recombine in the quantum dot light-emitting layer to form excitons, and finally emit light through the excitons.
  • the unbalanced injection rate of electrons and holes into the quantum dot light-emitting layer will cause the quantum dot light-emitting layer to be in a charged state, so that subsequent electrons and holes recombine in a non-radiative manner (Auger recombination), so the quantum dots
  • the luminous efficiency of light-emitting diodes is low.
  • the electron injection efficiency is greater than the hole injection efficiency, which leads to an imbalance in the injection rates of electrons and holes into the quantum dot light-emitting layer, resulting in low luminous efficiency of the quantum dot light-emitting diode.
  • Figure 1 is a structural diagram of a display device 2000 according to some embodiments.
  • the display device 2000 includes a display panel 1000 .
  • the display device 2000 may be a quantum dot organic light emitting diode display device, and the corresponding display panel 1000 may be a quantum dot organic light emitting diode display panel.
  • Figure 2 is a structural diagram of a display panel 1000 according to some embodiments.
  • some embodiments of the present disclosure provide a display panel 1000 , the display panel 1000 has a display area AA and a peripheral area BB located at least on one side of the display area AA.
  • the peripheral area BB surrounds the display area AA.
  • Zone AA is set for one week.
  • the above-mentioned AA area includes sub-pixels (sub pixels) P of multiple colors; the sub-pixels of multiple colors include at least first color sub-pixels, second color sub-pixels and third color sub-pixels.
  • the first color, second color sub-pixels Color and tertiary colors are the three primary colors (such as red, green and blue).
  • the area of any sub-pixel P can be defined by a pixel definition layer.
  • the above-mentioned plurality of sub-pixels P are arranged in a matrix form as an example.
  • the sub-pixels P arranged in a row along the first direction X are called sub-pixels of the same row
  • the sub-pixels P arranged in a row along the second direction Y are called sub-pixels of the same column.
  • Figure 3 is a cross-sectional view of display panel 1000 according to some embodiments.
  • one sub-pixel P includes a light-emitting device 100 and a pixel driving circuit 200 .
  • the pixel driving circuit 200 is generally composed of thin film transistors TFT, capacitors (not shown in the figure) and other electronic devices.
  • the pixel driving circuit 200 can be a pixel driving circuit with a 2T1C structure composed of two thin film transistors (a switching TFT and a driving TFT) and a capacitor; of course, the pixel driving circuit 200 can also be composed of more than two thin film transistors.
  • the pixel driving circuit 200 is composed of (a plurality of switching TFTs and a driving TFT) and at least one capacitor. Among them, no matter what structure the pixel driving circuit 200 has, it must include a driving TFT.
  • the driving TFT may be connected to the anode of the light emitting device 100 .
  • the display panel 1000 includes multiple film layers. The multiple film layers in the display panel 1000 will be introduced below.
  • the display panel 1000 includes a driving substrate 300 , a light emitting device 100 and a packaging layer 400 that are stacked in sequence.
  • the driving substrate 300 includes a substrate 310, a pixel driving circuit 200 located on one side of the substrate 310, and an insulating layer 320.
  • the light-emitting device 100 includes a first electrode 110, a second electrode 120, and a quantum dot light-emitting layer 130 located between the first electrode 110 and the second electrode 120.
  • the first electrode 110 may be a cathode, and at this time, the first electrode 110 may provide electrons.
  • the second electrode 120 is an anode. At this time, the second electrode 120 can provide holes.
  • the first electrode 110 may be located on a side of the second electrode 120 away from the substrate 310 .
  • the first electrode 110 may be located between the second electrode 120 and the substrate 310 .
  • the encapsulating layer 400 includes a first encapsulating inorganic film 410 , an encapsulating organic film 420 and a second encapsulating inorganic film 430 .
  • each of the first encapsulating inorganic film 410 and the second encapsulating inorganic film 430 may be made of silicon nitride, aluminum nitride, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, silicon oxide , aluminum oxide, titanium oxide, tin oxide, cerium oxide, silicon oxynitride (SiON), lithium fluoride, etc.
  • the encapsulating organic film 420 may be made of acrylic resin, methacrylic resin, polyisoprene, vinyl resin, epoxy resin, urethane resin, cellulose resin, or the like.
  • the lamination structure of the encapsulation layer 400 may be varied variously.
  • the display panel 1000 also includes a pixel defining layer 500.
  • the pixel defining layer 500 is located on the side of the insulating layer 320 away from the substrate 310.
  • a plurality of pixel openings are formed in the pixel defining layer 500, and the quantum dot light-emitting layer 130 can be disposed on pixel opening.
  • the light emitting device 100 is introduced below.
  • FIG. 4 is a structural diagram of a display panel 1000 according to an implementation manner.
  • the present disclosure provides a light-emitting device 100 .
  • the light-emitting device 100 includes a first electrode 110 , a second electrode 120 , and a quantum dot light-emitting layer 130 located between the first electrode 110 and the second electrode 120 .
  • the first electrode 110 may be a cathode, and the cathode may be conductive glass, where the conductive glass may include materials such as indium tin oxide (ITO) or fluorine-doped tin oxide (FTO).
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • the thickness of the first electrode 110 ranges from 90 nm to 150 nm.
  • the thickness of the first electrode 110 is 120 nm.
  • the second electrode 120 may be an anode, and the anode may include materials such as aluminum (Al), silver (Ag), and indium zinc oxide (IZO).
  • the thickness of the second electrode 120 ranges from 80 nm to 150 nm.
  • the thickness of the second electrode 120 is 120 nm.
  • the quantum dot light-emitting layer 130 includes CdS, CdSe, CdTe, ZnSe, InP, PbS, CuInS2, ZnO, CsPbCl3, CsPbBr3, CsPhI3, CdS/ZnS, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, InAs, InGaAs, InGaN, GaNk, ZnTe, Si, Ge, C and other nanoscale materials with the above components, such as nanorods and nanosheets.
  • the quantum dot light-emitting layer 130 is a quantum dot that does not contain cadmium.
  • the light emitting device 100 further includes a first hole transport layer 140 and a second hole transport layer 150 .
  • the first hole transport layer 140 and the second hole transport layer 150 are both located between the second electrode 120 and the quantum dot light-emitting layer 130, and the first hole transport layer 140 is located between the second hole transport layer 150 and the quantum dot light-emitting layer 130. between the light-emitting layers 130.
  • the HOMO (Highest Occupied Molecular Orbital, highest occupied molecular orbital) energy level of the second hole transport layer 150 is higher than the HOMO energy level of the first hole transport layer 140
  • the HOMO energy level of the first hole transport layer 140 Higher than the energy level of the quantum dot light emitting layer 130 .
  • the potential barrier between the second hole transport layer 150 and the quantum dot light-emitting layer 130 is high, and it is difficult for holes to jump from the second hole transport layer 150 to the quantum dot light-emitting layer 130 .
  • holes can first be transferred from the second hole transport layer 150 to the first hole transport layer 140.
  • the hole transport layer 140 then transitions from the first hole transport layer 140 to the quantum dot light-emitting layer 130.
  • the potential barrier between the second hole transport layer 150 and the first hole transport layer 140 is low, it is easier for holes to transition from the second hole transport layer 150 to the first hole transport layer 140. Therefore, the amount of holes that transition into the first hole transport layer 140 is large.
  • the potential barrier between the first hole transport layer 140 and the quantum dot light-emitting layer 130 is low.
  • the number of holes in the point light-emitting layer 130 is relatively large, thereby improving the efficiency of hole injection into the quantum dot light-emitting layer 130 , thereby balancing the injection rates of holes and electrons and improving the luminous efficiency of the light-emitting device 100 .
  • Figure 5 is a structural diagram of a display panel 1000 according to some embodiments.
  • the light emitting device 100 further includes a hole transport doping layer 160 .
  • the hole transport doped layer 160 is located between the quantum dot light emitting layer 130 and the second electrode 120 .
  • the hole transport doping layer 160 includes a mixture of at least two hole transport materials, wherein the highest occupied molecular orbital energy levels of the at least two hole transport materials are different.
  • a mixture of at least two hole transport materials is included in the hole transport doped layer 160 .
  • holes in the second electrode 120 can sequentially transition to the quantum dot light-emitting layer 130 through the at least two hole transport materials.
  • holes in the hole transport doped layer 160 holes first pass through the hole transport material with a higher HOMO energy level, and then pass through the hole transport material with a lower HOMO energy level.
  • the contact area between any two hole transport materials with similar HOMO energy levels is larger, and holes are formed by higher HOMO energy levels.
  • the hole transport rate is higher, which can increase the rate of hole injection into the quantum dot light-emitting layer 130, making the injection of electrons and holes into quantum dots.
  • the rate of the point light-emitting layer 130 is more balanced, thereby improving the luminous efficiency of the light-emitting device 100.
  • two, three, four or more hole transport materials are included in the hole transport doped layer 160 .
  • At least two hole transport materials have different mobilities, and among any two hole transport materials, the mobility of the hole transport material with a lower HOMO energy level is greater than that of the hole transport material with a higher HOMO energy level. Mobility of hole transport materials.
  • mobility is the average drift speed of carriers generated under unit electric field strength, that is, a measure of how fast carriers move under the action of an electric field. If the mobility is large, the carriers move fast; if the mobility is small, the carriers move slowly.
  • the more matched the mobility of the two materials (or film layers) the better the carrier transition to the other material (or film layer).
  • two hole transport materials are included in the hole transport doping layer 160 .
  • the second electrode 120 has a higher mobility.
  • the holes generated by the second electrode 120 preferentially pass through the hole transport material with a higher HOMO energy level.
  • the holes with a higher HOMO energy level The transport material has a higher mobility. Therefore, the mobility of the hole transport material with a higher HOMO energy level can match the mobility of the second electrode 120, which can improve the mobility of the second electrode 120 with a higher HOMO energy level.
  • the quantum dot light-emitting layer 130 has a lower mobility.
  • the hole transport doping layer 160 after holes are transported from the hole transport material with a higher HOMO energy level to the hole transport material with a lower HOMO energy level, the holes will be transported by the holes with a lower HOMO energy level.
  • the material is transferred into the quantum dot light emitting layer 130 .
  • the mobility of the quantum dot light-emitting layer 130 is low, and the mobility of the hole transport material with a lower HOMO energy level is lower than the mobility of the hole transport material with a higher HOMO energy level.
  • the HOMO energy The mobility of the hole transport material with a lower HOMO energy level is more consistent with the mobility of the quantum dot light-emitting layer 130 , thereby improving the hole transmission efficiency between the hole transport material with a lower HOMO energy level and the quantum dot light-emitting layer 130 .
  • the at least two hole transport materials include at least two of the following materials: 4,4-bis(carbazole-9-yl)biphenyl (abbreviation: CBP, Chinese name: 4,4'- Bis(N-carbazolyl)-1,1'-biphenyl), 1,3-bis(carbazol-9-yl)benzene (abbreviation: mCP), 2,6-bis(3-(9H-carbazol- 9-yl)phenyl)pyridine (abbreviation: 26DCzPPy), 4,4',4”-tris(carbazol-9-yl)triphenylamine (abbreviation: TCTA, Chinese name: tris(4-carbazol-9-ylphenyl) )amine), 1,1-bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane (abbreviation: TAPC, Chinese name: 4,4'-cyclohexy
  • the first hole transport material may be TCTA
  • the second hole transport material may be NPB.
  • the at least two hole transport materials include a first hole transport material and a second hole transport material, and the highest occupied molecular orbital energy level of the first hole transport material is smaller than that of the second hole transport material.
  • the mass ratio of the first hole transport material and the second hole transport material ranges from 1:5 to 5:1, that is, in the hole transport doped layer 160 , the mass of the first hole transport material is 0.2 to 5 times the mass of the second hole transport material.
  • the mobility of the first hole transport material is lower than the mobility of the second hole transport material.
  • the mass ratio of the first hole transport material to the second hole transport material greater than or equal to 1:5, that is, the mass of the first hole transport material is greater than 0.2 times the mass of the second hole transport material, it can be avoided
  • the content of the first hole transport material in the hole transport doped layer 160 is too low (for example, less than 0.2 times the mass of the second hole transport material), resulting in a gap between the first hole transport material and the quantum dot light-emitting layer 130
  • the contact area between the first hole transport material and the quantum dot light-emitting layer 130 is too small, resulting in too few holes.
  • the mass ratio of the first hole transport material to the second hole transport material less than or equal to 5:1, that is, the mass of the first hole transport material is less than 5 times the mass of the second hole transport material, It can be avoided that the content of the second hole transport material in the hole transport doping layer 160 is too low, resulting in the contact area between the second hole transport material and the second electrode 120 being too small, and thus causing the transition from the second electrode 120 The amount of holes to the second hole transport material quantum dot light-emitting layer 130 is too small.
  • the light-emitting device 100 includes a hole transport part.
  • the hole transport part has a single-layer structure.
  • the hole transport part only includes the hole transport doping layer 160. Based on this, for the hole transport part The hole transport doped layer 160 is introduced.
  • the highest occupied molecular orbital energy level of the first hole transport material is higher than the highest occupied molecular orbital energy level of the second hole transport material.
  • the first hole transport material The mass ratio of the material to the second hole transport material is 2:1.
  • the contact area between the second hole transport material and the second electrode 120 is large enough, which can make the hole transmission efficiency between the second hole transport material and the second electrode 120 greater.
  • the contact area between the first hole transport material and the quantum dot light-emitting layer 130 is large enough, thereby enabling a greater hole transmission efficiency between the first hole transport material and the quantum dot light-emitting layer.
  • the thickness H1 of the hole transport doping layer 160 is 0.66 times to 5 times the thickness H2 of the quantum dot light-emitting layer 130 , that is, H2 ⁇ H1 ⁇ 5H2.
  • the thickness H1 of the hole transport doping layer 140 ⁇ 0.66H2 can avoid the thickness H1 of the hole transport doping layer 140 being too small (for example, less than 0.66H2), resulting in the first hole transport in the hole transport doping layer 140 There are too few materials and too few second hole transport materials, thereby avoiding the low hole transmission efficiency caused by too few first hole transport materials and too few second hole transport materials, thus ensuring that the hole transport doped layer
  • the hole transmission efficiency is 140%.
  • the thickness H1 ⁇ 5H2 of the empty transport doped layer 140 can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 5H2), causing the first hole transport material in the empty transport doped layer 140 to be If there is too much hole transport material, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, resulting in the thickness of the light-emitting device 100 being too large.
  • the hole transport doped layer 140 can be made to have sufficient thickness to ensure the content of the first hole transport material and the second hole transport material in the hole transport doped layer 140, and thus The hole transport efficiency of the hole transport doping layer 140 is ensured. It can also be avoided that the thickness H1 of the hole transport doping layer 160 is too large, resulting in a waste of material and an excessive thickness of the light-emitting device 100 .
  • the thickness H1 of the hole transport doping layer 160 ranges from 20 nm to 50 nm, that is, 20 nm ⁇ H1 ⁇ 50 nm.
  • the thickness H1 of the empty transport doped layer 140 is ⁇ 20 nm, which can prevent the thickness H1 of the hole transport doped layer 140 from being too small (for example, less than 20 nm), causing the first hole transport material in the empty transport doped layer 140 to Too little of the second hole transport material can avoid low hole transmission efficiency caused by too little of the first hole transport material and too little of the second hole transport material, thereby ensuring the efficiency of the hole transport doped layer 140 hole transport efficiency.
  • the thickness H1 of the empty transport doped layer 140 is ⁇ 50 nm, which can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 50 nm), causing the first hole transport material in the empty transport doped layer 140 and the third If the hole transport material is too large, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, causing the light-emitting device 100 to be too large.
  • the thickness H1 of the hole transport doped layer 160 is 35 nm.
  • the thickness H2 of the quantum dot light-emitting layer 130 ranges from 10 nm to 30 nm, that is, 10 nm ⁇ H2 ⁇ 30 nm.
  • the thickness H2 of the quantum dot light-emitting layer 130 is 20 nm.
  • the thickness of the quantum dot light-emitting layer can also be 15nm, 17nm, 23nm, 25nm, etc., which are not listed here.
  • the light-emitting device 100 further includes a hole injection layer (Hole Inject Layer, HIL) 170 and an electron transport layer (Electron Transport Layer, ETL) 180, wherein the hole injection layer 170 is located at the between the two electrodes 120 and the hole transport doped layer 160.
  • the electron transport layer 180 is located between the first electrode 110 and the quantum dot light emitting layer 130 .
  • the hole injection layer 170 By providing the hole injection layer 170, the hole transmission efficiency can be increased, thereby improving the luminous efficiency of the light-emitting device 100.
  • the material of the hole injection layer 170 includes PEDOT: PSS 4083 (poly 3,4-ethylenedioxythiophene/polystyrene sulfonate).
  • the material of the hole injection layer 170 may also include molybdenum oxide.
  • the thickness of the hole injection layer 170 ranges from 5 nm to 20 nm.
  • the thickness of the hole injection layer 170 is 7 nm.
  • the electron transport layer 180 By providing the electron transport layer 180, the electron transport efficiency can be increased, thereby improving the luminous efficiency of the light-emitting device 100.
  • the electron transport layer 180 may be a zinc oxide-based nanoparticle film or a zinc oxide film.
  • the material of the electron transport layer 180 can also be selected from ion-doped zinc oxide nanoparticles, such as magnesium (Mg), indium (In), aluminum (Al), Gallium (Ga) doped magnesium oxide nanoparticles, etc.
  • the thickness of the electron transport layer 180 ranges from 25 nm to 55 nm.
  • the thickness of the electron transport layer 180 is 40 nm.
  • the reference light-emitting device includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, a first hole transport layer 140, a second hole transport layer 150, a hole injection layer 170 and a first hole transport layer 150, which are stacked in sequence.
  • the thickness of the first hole transport layer 140 is 10 nm, and the material is TCTA.
  • the thickness of the second hole transport layer 150 is 30 nm, and the material is NPB.
  • the test light-emitting device 1 includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, a hole transport doping layer 160, a hole injection layer 170 and a second electrode 120 which are stacked in sequence.
  • the thickness of the hole transport doped layer 160 is 35 nm
  • the first hole transport material in the hole transport doped layer 160 is TCTA
  • the second hole transport material is NPB
  • the doping ratio of TCTA and NPB is 2:1.
  • the material of the first electrode 110 is both ITO, and the thickness is 120 nm; the material of the electron transport layer 180 is: zinc oxide, and the thickness is 40 nm;
  • the materials of the quantum dot light-emitting layer 130 include: CdS (cadmium sulfide) and CdSe (cadmium selenide), wherein CdSe is surrounded by CdS.
  • the thickness of the quantum dot light-emitting layer 130 is 20 nm, and the quantum dot light-emitting layer 130 is
  • the material of the red quantum dot light-emitting layer and the hole injection layer 170 are both MoO3 (molybdenum oxide), and the thickness is 7 nm; and the material of the second electrode 120 is Ag, and the thickness is 120 nm.
  • the current efficiency of the test light-emitting device 1 is significantly higher than the current efficiency of the reference light-emitting device.
  • the higher the current efficiency the higher the luminous efficiency of the device. Therefore, the luminous efficiency of the test light-emitting device 1 is significantly higher than that of the reference light-emitting device. It can be seen from this that by providing the hole transport doping layer 160 in the light-emitting device 100, the luminous efficiency of the light-emitting device 100 can be effectively improved.
  • the embodiment in which the hole transport part includes only the hole transport doped layer 160 is introduced.
  • FIG. 7 is a structural diagram of a display panel 1000 according to other embodiments.
  • the light-emitting device 100 further includes a first hole transport layer 140 .
  • the first hole transport layer 140 is located between the quantum dot light emitting layer 130 and the hole transport doping layer 160 .
  • the highest occupied molecular orbital energy level of the first hole transport layer 140 is less than or equal to the highest occupied molecular orbital energy level of the first hole transport material, and is greater than the highest occupied molecular orbital energy level of the quantum dot light-emitting layer 130 .
  • the first hole transport layer 140 between the quantum dot light emitting layer 130 and the hole transport doped layer 160, holes will jump from the first hole transport material of the hole transport doped layer 160 into the first hole transport layer 140. in the hole transport layer 140, and then transitions from the first hole transport layer 140 to the quantum dot light-emitting layer 130.
  • the HOMO energy level of the first hole transport layer 140 When the HOMO energy level of the first hole transport layer 140 is less than the HOMO energy level of the first hole transport material, the HOMO energy level of the first hole transport layer 140 and the HOMO energy level of the first hole transport material The difference is less than the difference between the HOMO energy level of the quantum dot light-emitting layer 130 and the HOMO energy level of the first hole transport material. Therefore, the potential barrier between the first hole transport layer 140 and the first hole transport material is smaller than the potential barrier between the quantum dot light emitting layer 130 and the first hole transport material. Therefore, compared with the hole transport from the first hole transport material, The hole transport material transitions to the quantum dot light-emitting layer 130, and holes more easily transition from the first hole transport material to the first hole transport layer 140.
  • the difference between the HOMO energy level of the quantum dot light-emitting layer 130 and the HOMO energy level of the first hole transport layer 140 is smaller than the HOMO energy level of the quantum dot light-emitting layer 130 and the HOMO energy of the first hole transport material.
  • the difference between levels. Therefore, the potential barrier between the quantum dot light-emitting layer 130 and the first hole transport layer 140 is smaller than the potential barrier between the quantum dot light-emitting layer 130 and the first hole transport material. Therefore, it is easier for holes to jump from the first hole transport layer 140 to the quantum dot light-emitting layer 130 than from the first hole transport material to the quantum dot light-emitting layer 130 .
  • the hole transport efficiency can be increased, thereby increasing the injection rate of electrons and holes into the quantum dot light emitting layer 130. More balanced, thereby improving the luminous efficiency of the light-emitting device 100.
  • the first hole transport material can be included in the first hole transport layer 140 .
  • the mobility of the first hole transport layer 140 is less than or equal to the mobility of the first hole transport material and greater than the mobility of the quantum dot light emitting layer 130 .
  • the mobility of the first hole transport layer 140 is less than the mobility of the first hole transport material, the difference between the mobility of the first hole transport layer 140 and the mobility of the first hole transport material is less than The difference between the mobility of the quantum dot light emitting layer 130 and the mobility of the first hole transport material. Therefore, the mobility of the first hole transport layer 140 is more consistent with the mobility of the first hole transport material, and it is easier for holes to jump from the first hole transport material to the quantum dot light-emitting layer 130 than to jump from the first hole transport material to the quantum dot light-emitting layer 130 .
  • the first hole transport material transitions to the first hole transport layer 140 .
  • the difference between the mobility of the quantum dot light-emitting layer 130 and the mobility of the first hole transport layer 140 is smaller than the difference between the mobility of the quantum dot light-emitting layer 130 and the mobility of the first hole transport material. difference. Therefore, the mobility of the first hole transport layer 140 is more consistent with the mobility of the quantum dot light emitting layer 130 , and it is easier for holes to jump from the first hole transport material to the quantum dot light emitting layer 130 than to jump from the first hole transport material to the quantum dot light emitting layer 130 .
  • a hole transport layer 140 transitions to the quantum dot light-emitting layer 130.
  • the hole transport efficiency can be increased, thereby increasing the injection rate of electrons and holes into the quantum dot light emitting layer 130. More balanced, thereby improving the luminous efficiency of the light-emitting device 100.
  • the first hole transport material is included in the first hole transport layer 140 .
  • first hole transport layer 140 includes a first hole transport material. Therefore, the energy level difference between the first hole transport layer 140 and the first hole transport material in the hole transport doped layer 160 is zero.
  • the contact area between the first hole transport material and the quantum dot light-emitting layer 130 can be increased, thereby increasing the hole transport efficiency, thereby increasing the hole transport efficiency.
  • the rate at which electrons and holes are injected into the quantum dot light-emitting layer 130 is more balanced, thereby improving the luminous efficiency of the light-emitting device 100 .
  • the first hole transport material and the second hole transport material are The mass ratio of hole transport material is 2:1.
  • the contact area between the second hole transport material in the hole transport doping layer 160 and the second electrode 120 is large enough, thereby enabling the hole transport between the second hole transport material and the second electrode 120 to The transmission efficiency is greater.
  • the contact area between the first hole transport material in the hole transport doped layer 160 and the first hole transport layer 140 is large enough, so that more holes can be transferred from the hole transport doped layer 160
  • the first hole transport material jumps to the first hole transport layer 140, and then enough holes jump from the first hole transport layer 140 to the quantum dot light-emitting layer 130, thereby ensuring that the first hole transport material and the quantum dots
  • the mobility between the light-emitting layers 130 is relatively large.
  • the thickness H1 of the hole transport doping layer 160 is sufficient for the quantum dots to emit light. 0.33 times to 5 times the thickness of layer 130, that is, 0.5H2 ⁇ H1 ⁇ 5H2.
  • the thickness H1 of the hole transport doped layer 140 ⁇ 0.33H2 can prevent the thickness H1 of the hole transport doped layer 140 from being too small (for example, less than 0.33H2), resulting in the first hole transport in the hole transport doped layer 140 There are too few materials and too few second hole transport materials, thereby avoiding the low hole transmission efficiency caused by too few first hole transport materials and too few second hole transport materials, thus ensuring that the hole transport doped layer
  • the hole transmission efficiency is 140%.
  • the thickness H1 ⁇ 5H2 of the empty transport doped layer 140 can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 5H2), causing the first hole transport material in the empty transport doped layer 140 to be If there is too much hole transport material, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, resulting in the thickness of the light-emitting device 100 being too large.
  • the thickness H3 of the first hole transport layer 140 is hole transport layer 160 .
  • the thickness H1 of the doped layer 160 is 0.06 to 2 times, that is, 0.06H1 ⁇ H3 ⁇ 2H1.
  • the thickness H3 of the first hole transport layer 140 ⁇ 0.06H1 can prevent the thickness H3 of the first hole transport layer 140 from being too small (for example, less than 0.06H1), and nano-protrusions will be formed when the quantum dot light-emitting layer 130 is formed.
  • the thickness of the first hole transport layer 140 is too small, the surface of the first hole transport layer 140 will be uneven, which is detrimental to the yield of the light emitting device 100 . Therefore, by making H3 ⁇ 0.06H1, the first hole transport layer 140 can be made to have sufficient thickness to ensure that the first hole transport layer 140 has a flat surface, thereby ensuring the yield of the light emitting device 100.
  • the thickness H3 of the first hole transport layer 140 ⁇ 2H1 can prevent the thickness H3 of the first hole transport layer 140 from being too large (for example, greater than 2H1). , causing the overall thickness of the light-emitting device 100 to be larger.
  • the thickness H3 of the first hole transport layer 140 is hole transport layer 160 .
  • the first hole transport layer 140 can be made to have sufficient thickness to ensure that the first hole transport layer 140 has a flat surface, thereby ensuring the yield of the light emitting device 100. It can also be avoided that the thickness H1 of the first hole transport layer 140 is too large, resulting in a waste of material and an excessive thickness of the light-emitting device 100 .
  • the thickness H1 of the hole transport doping layer 160 is 10 nm ⁇ 50 nm. .
  • the thickness H1 of the empty transport doped layer 140 is ⁇ 10 nm, which can prevent the thickness H1 of the hole transport doped layer 140 from being too small (for example, less than 10 nm), causing the first hole transport material in the empty transport doped layer 140 to Too little of the second hole transport material can avoid low hole transmission efficiency caused by too little of the first hole transport material and too little of the second hole transport material, thereby ensuring the efficiency of the hole transport doped layer 140 hole transport efficiency.
  • the thickness H1 of the empty transport doped layer 140 is ⁇ 50 nm, which can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 50 nm), causing the first hole transport material in the empty transport doped layer 140 and the third If the hole transport material is too large, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, causing the light-emitting device 100 to be too large.
  • the thickness H1 of the hole transport doping layer 160 is 30 nm.
  • the thickness H3 of the first hole transport layer 140 is 3 nm to 20 nm. , that is, 3nm ⁇ H3 ⁇ 20nm.
  • the thickness H3 of the first hole transport layer 140 is ⁇ 3 nm, which can prevent the thickness H3 of the first hole transport layer 140 from being too small (for example, less than 3 nm), and nano-protrusions will be formed when the quantum dot light-emitting layer 130 is formed. If the thickness of the first hole transport layer 140 is too small, the surface of the first hole transport layer 140 will be uneven, which is detrimental to the yield of the light emitting device 100 . Therefore, by making H3 ⁇ 3nm, the first hole transport layer 140 can be made to have sufficient thickness to ensure that the first hole transport layer 140 has a flat surface, thereby ensuring the yield of the light emitting device 100.
  • the thickness H3 of the first hole transport layer 140 is less than or equal to 20 nm, which can prevent the thickness H3 of the first hole transport layer 140 from being too large (for example, greater than 20 nm). , resulting in the overall thickness of the light-emitting device 100 being larger.
  • the thickness H3 of the first hole transport layer 140 is 10 nm.
  • the reference light-emitting device and the test light-emitting device 2 are tested, wherein the reference light-emitting device includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, and a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, and a stacked layer arranged in sequence.
  • the thickness of the first hole transport layer 140 is 10 nm, and the material is TCTA.
  • the thickness of the second hole transport layer 150 is 30 nm, and the material is NPB.
  • the hole transport part in the test light-emitting device 2 includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, a first hole transport layer 140, a hole transport doping layer 160, and a hole transport layer 160, which are stacked in sequence. hole injection layer 170 and the second electrode 120 .
  • the thickness of the first hole transport layer 140 is 10 nm, and the material of the first hole transport layer 140 is TCTA.
  • the thickness of the hole transport doped layer 160 is 30 nm.
  • the first hole transport material in the hole transport doping layer 160 is TCTA
  • the second hole transport material is NPB
  • the doping ratio of TCTA and NPB is 2:1.
  • the material of the first electrode 110 is both ITO, and the thickness is 120 nm; the material of the electron transport layer 180 is: zinc oxide, and the thickness is 40 nm;
  • the materials of the quantum dot light-emitting layer 130 include: CdS (cadmium sulfide) and CdSe (cadmium selenide), wherein CdSe is surrounded by CdS.
  • the thickness of the quantum dot light-emitting layer 130 is 20 nm, and the quantum dot light-emitting layer 130 is
  • the material of the red quantum dot light-emitting layer and the hole injection layer 170 are both MoO3 (molybdenum oxide), and the thickness is 7 nm; and the material of the second electrode 120 is Ag, and the thickness is 120 nm.
  • the current efficiency of the test light-emitting device 2 is significantly higher than the current efficiency of the reference light-emitting device.
  • the higher the current efficiency the higher the luminous efficiency of the device. Therefore, the luminous efficiency of the test light-emitting device 2 is significantly higher than that of the reference light-emitting device. It can be seen from this that by arranging the first hole transport layer 140 and the hole transport doping layer 160 in the light-emitting device 100, the luminous efficiency of the light-emitting device 100 can be effectively improved.
  • the embodiment in which the hole transport part includes the first hole transport layer 140 and the hole transport doping layer 160 is introduced.
  • FIG. 9 is a structural diagram of a display panel 1000 according to some other embodiments.
  • the light-emitting device 100 further includes: a second hole transport layer 150 .
  • the second hole transport layer 150 is located between the hole transport doping layer 160 and the second electrode 120 .
  • the highest occupied molecular orbital energy level of the second hole transport layer 150 is less than the highest occupied molecular orbital energy level of the second electrode 120 and is greater than or equal to the highest occupied molecular orbital energy level of the second hole transport material.
  • the second hole transport layer 150 is located between the hole transport doped layer 160 and the second electrode 120 .
  • the second hole transport layer 150 between the second electrode 120 and the hole transport doped layer 160, holes will jump from the second electrode 120 into the second hole transport layer 150, and then from the second hole transport layer 150.
  • the hole transport layer 150 transitions to the second hole transport material of the hole transport doped layer 160 .
  • the difference between the HOMO energy level of the second hole transport layer 150 and the HOMO energy level of the second electrode 120 is less than the difference between the HOMO energy level of the second hole transport material and the HOMO energy level of the second electrode 120 . Therefore, the potential barrier between the second hole transport layer 150 and the second electrode 120 is smaller than the potential barrier between the second hole transport material and the second electrode 120 . Therefore, it is easier for holes to jump from the second electrode 120 to the second hole transport layer 150 than from the second electrode 120 to the second hole transport material.
  • the difference between the HOMO energy level of the second hole transport material and the HOMO energy level of the second hole transport layer 150 is smaller than the HOMO energy level of the second hole transport material and the HOMO energy of the second electrode 120 .
  • the difference between levels. Therefore, the potential barrier between the second hole transport material and the second hole transport layer 150 is smaller than the potential barrier between the second hole transport material and the second electrode 120. Therefore, compared with the hole transport from the second electrode, 120 transitions to the second hole transport material, and it is easier for holes to transition from the second hole transport layer 150 to the second hole transport material.
  • the hole transport efficiency can be increased, thereby making the injection rate of electrons and holes into the second electrode 120 more balanced. , thereby improving the luminous efficiency of the light-emitting device 100.
  • the second hole transport material is included in the second hole transport layer 150 .
  • the mobility of the second hole transport layer 150 is less than the mobility of the second electrode 120 and greater than or equal to the mobility of the second hole transport material.
  • the difference between the mobility of the second hole transport layer 150 and the mobility of the second hole transport material is less than The difference between the mobility of the second electrode 120 and the mobility of the second hole transport material. Therefore, the mobility of the second hole transport layer 150 better matches the mobility of the second electrode 120, and it is easier for holes to jump from the second hole transport material than to jump from the second electrode 120 to the second hole transport material.
  • the hole transport layer 150 transitions to the second hole transport material.
  • the difference between the mobility of the second electrode 120 and the mobility of the second hole transport layer 150 is smaller than the difference between the mobility of the second electrode 120 and the mobility of the second hole transport material.
  • the mobility of the second hole transport layer 150 better matches the mobility of the second electrode 120 , and it is easier for holes to jump from the second electrode 120 to the second hole transport material than to jump from the second electrode 120 to the second hole transport material. 120 transitions to the second hole transport layer 150.
  • the hole transport efficiency can be increased, thereby making the injection rate of electrons and holes into the second electrode 120 more balanced. , thereby improving the luminous efficiency of the light-emitting device 100.
  • the second hole transport material is included in the second hole transport layer 150 .
  • second hole transport layer 150 includes a second hole transport material. Therefore, the energy level difference between the second hole transport layer 150 and the second hole transport material in the hole transport doped layer 160 is zero.
  • the contact area between the second hole transport material and the second electrode 120 can be increased, thereby increasing the hole transport efficiency, so that The injection rate of electrons and holes into the quantum dot light-emitting layer 130 is more balanced, thereby improving the luminous efficiency of the light-emitting device 100 .
  • the first hole transport material and the second hole transport material are The mass ratio of hole transport materials is 1:1.
  • the contact area between the second hole transport material in the hole transport doping layer 160 and the second electrode 120 is large enough, so that more holes can be transferred from the second electrode 120 to the second hole.
  • the transport layer 150 and the second hole transport material there are enough holes to jump from the second hole transport material to the first hole transport material, thereby ensuring the connection between the second hole transport material of the second electrode 120 and the second hole transport material.
  • the hole transmission efficiency is greater.
  • the contact area between the first hole transport material in the hole transport doping layer 160 and the quantum dot light-emitting layer 130 is large enough to ensure that the gap between the first hole transport material and the quantum dot light-emitting layer 130 is ensured. hole transmission efficiency.
  • the thickness H1 of the hole transport doped layer 160 is the quantum dot light-emitting layer.
  • the thickness of 130 is 0.1 to 2 times that of H2, that is, 0.1H2 ⁇ H1 ⁇ 2H2.
  • the thickness H1 of the hole transport doped layer 140 ⁇ 0.1H2 can avoid the thickness H1 of the hole transport doped layer 140 being too small (for example, less than 0.1H2), resulting in the first hole transport in the hole transport doped layer 140 There are too few materials and too few second hole transport materials, thereby avoiding the low hole transmission efficiency caused by too few first hole transport materials and too few second hole transport materials, thus ensuring that the hole transport doped layer
  • the hole transmission efficiency is 140%.
  • the thickness H1 ⁇ 2H2 of the empty transport doped layer 140 can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 2H2), causing the first hole transport material in the empty transport doped layer 140 to be If there is too much hole transport material, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, causing the thickness of the light-emitting device 100 to be too large.
  • the thickness H4 of the second hole transport layer 150 is the hole transport doped layer 150 .
  • the thickness H1 of the hybrid layer 160 is 0.5 times to 16.66 times, that is, 0.5H1 ⁇ H4 ⁇ 16.66H1.
  • the thickness H4 of the second hole transport layer 150 ⁇ 0.5H1 can prevent the thickness H4 of the second hole transport layer 150 from being too small (for example, less than 0.5H1), resulting in too little second hole transport material, and thus causing the third The hole transport rate between the second hole transport material and the second electrode 120 is too small.
  • the thickness H4 of the second hole transport layer 150 ⁇ 16.66H1 can avoid the thickness H4 of the second hole transport layer 150 being too large (for example, greater than 16.66H1), and the thickness H4 of the second hole transport layer 150 can be avoided. If it is too large, the overall thickness of the light-emitting device 100 will be larger.
  • the thickness H4 of the second hole transport layer 150 is the hole transport doped layer 150 .
  • the thickness H1 of the hole transport doped layer 160 is 3 nm to 20 nm. That is, 3nm ⁇ H1 ⁇ 20nm.
  • the thickness H1 of the empty transport doped layer 140 is ⁇ 3 nm, which can prevent the thickness H1 of the hole transport doped layer 140 from being too small (for example, less than 3 nm), causing the first hole transport material in the empty transport doped layer 140 to Too little of the second hole transport material can avoid low hole transmission efficiency caused by too little of the first hole transport material and too little of the second hole transport material, thereby ensuring the efficiency of the hole transport doped layer 140 hole transport efficiency.
  • the thickness H1 of the empty transport doped layer 140 is less than or equal to 20 nm, which can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 20 nm), causing the first hole transport material in the empty transport doped layer 140 to be If there is too much hole transport material, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, resulting in the thickness of the light-emitting device 100 being too large.
  • the thickness H1 of the hole transport doping layer 160 is 10 nm.
  • the thickness H4 of the second hole transport layer 150 is 10 nm to 50 nm. 10nm ⁇ H4 ⁇ 50nm.
  • the thickness H4 of the second hole transport layer 150 is ⁇ 10 nm, which can prevent the thickness H4 of the second hole transport layer 150 from being too small (for example, less than 10 nm), resulting in too little second hole transport material, and thus causing the second hole transport layer 150 to have a thickness H4 ⁇ 10 nm.
  • the hole transport rate between the hole transport material and the second electrode 120 is too small.
  • the thickness H4 of the second hole transport layer 150 is less than or equal to 50 nm, which can prevent the thickness H4 of the second hole transport layer 150 from being too large (for example, greater than 50 nm). , resulting in the overall thickness of the light-emitting device 100 being larger.
  • the thickness H4 of the second hole transport layer 150 is 30 nm.
  • the reference light-emitting device includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, a first hole transport layer 140, a second hole transport layer 150, a hole injection layer 170 and a first hole transport layer 150, which are stacked in sequence.
  • the thickness of the first hole transport layer 140 is 10 nm, and the material is TCTA.
  • the thickness of the second hole transport layer 150 is 30 nm, and the material is NPB.
  • the test light-emitting device 3 includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, a hole transport doping layer 160, a second hole transport layer 150, a hole injection layer 170 and Second electrode 120.
  • the thickness of the hole transport doped layer 160 is 10 nm
  • the first hole transport material in the hole transport doped layer 160 is TCTA
  • the second hole transport material is NPB
  • the mass ratio of TCTA and NPB is 1:1.
  • the thickness of the second hole transport layer 150 is 30 nm
  • the material is NPB.
  • the material of the first electrode 110 is both ITO, and the thickness is 120 nm; the material of the electron transport layer 180 is: zinc oxide, and the thickness is 40 nm;
  • the materials of the quantum dot light-emitting layer 130 include: CdS (cadmium sulfide) and CdSe (cadmium selenide), wherein CdSe is surrounded by CdS.
  • the thickness of the quantum dot light-emitting layer 130 is 20 nm, and the quantum dot light-emitting layer 130 is
  • the material of the red quantum dot light-emitting layer and the hole injection layer 170 are both MoO3 (molybdenum oxide), and the thickness is 7 nm; and the material of the second electrode 120 is Ag, and the thickness is 120 nm.
  • the current efficiency of the test light-emitting device 3 is significantly higher than the current efficiency of the reference light-emitting device.
  • the higher the current efficiency the higher the luminous efficiency of the device. Therefore, the luminous efficiency of the test light-emitting device 3 is significantly higher than that of the reference light-emitting device. It can be seen from this that by arranging the second hole transport layer 150 and the hole transport doped layer 160 in the light-emitting device 100, the luminous efficiency of the light-emitting device 100 can be effectively improved.
  • the embodiment in which the hole transport part includes the second hole transport layer 150 and the hole transport doping layer 160 is introduced.
  • FIG. 11 is a structural diagram of a display panel 1000 according to further embodiments.
  • the light emitting device 100 further includes: a first hole transport layer 140 and a second hole transport layer 150 .
  • the first hole transport layer 140 is located between the quantum dot light-emitting layer 130 and the hole transport doping layer 160.
  • the highest occupied molecular orbital energy level of the first hole transport layer 140 is less than or equal to the highest occupied molecular orbital energy level of the first hole transport material, and is greater than the highest occupied molecular orbital energy level of the quantum dot light-emitting layer 130 .
  • the second hole transport layer 150 is located between the hole transport doped layer 160 and the second electrode 120 .
  • the highest occupied molecular orbital energy level of the second hole transport layer 150 is less than the highest occupied molecular orbital energy level of the second electrode 120 and is greater than or equal to the highest occupied molecular orbital energy level of the second hole transport material.
  • the hole transport layer 150 can increase the hole transport efficiency, thereby making the injection rate of electrons and holes into the quantum dot light-emitting layer 130 more balanced, thereby improving the luminous efficiency of the light-emitting device 100.
  • the light emitting device 100 further includes: a first hole transport layer 140 , a second hole transport layer 150 and a hole transport doping layer 160 , the mobility of the first hole transport layer 140 Less than or equal to the mobility of the first hole transport material, and greater than the mobility of the quantum dot light-emitting layer 130;
  • the mobility of the second hole transport layer 150 is less than the mobility of the second electrode 120, and greater than or equal to the mobility of the second hole transport material. Mobility of hole transport materials. It can be seen from the above that such an arrangement can increase the hole transmission efficiency, thereby making the injection rate of electrons and holes into the quantum dot light-emitting layer 130 more balanced, thereby improving the luminous efficiency of the light-emitting device 100 .
  • the first hole transport layer 140 includes a first hole transport material and the second hole transport layer 150 includes a second hole transport material.
  • the contact area between the first hole transport material and the quantum dot light-emitting layer 130 can be increased, thereby increasing the hole transport efficiency, thereby allowing electrons to The injection rate of holes into the quantum dot light-emitting layer 130 is more balanced, thereby improving the luminous efficiency of the light-emitting device 100 .
  • the contact area between the second hole transport material and the second electrode 120 can be increased, thereby increasing the hole transport efficiency, so that electrons and The injection rate of holes into the quantum dot light-emitting layer 130 is more balanced, thereby improving the luminous efficiency of the light-emitting device 100 .
  • the light emitting device 100 further includes: a first hole transport layer 140, a second hole transport layer 150 and a hole transport doping layer 160, in the hole transport doping layer 160,
  • the mass ratio of the first hole transport material to the second hole transport material is 1:1.
  • the contact area between the second hole transport material in the hole transport doping layer 160 and the second electrode 120 is large enough, so that more holes can be transferred from the second electrode 120 to the second hole.
  • the transport layer 150 and the second hole transport material there are enough holes to jump from the second hole transport material to the first hole transport material, thereby ensuring the connection between the second hole transport material of the second electrode 120 and the second hole transport material.
  • the hole transmission efficiency is greater.
  • the contact area between the first hole transport material in the hole transport doped layer 160 and the first hole transport layer 140 is large enough, so that more holes can be transferred from the hole transport doped layer 160
  • the first hole transport material jumps to the first hole transport layer 140, and then enough holes jump from the first hole transport layer 140 to the quantum dot light-emitting layer 130, thereby ensuring that the first hole transport material and the quantum dots
  • the mobility between the light-emitting layers 130 is relatively large.
  • the thickness H1 of the hole transport doping layer 160 It is 0.1 to 2 times the thickness H2 of the quantum dot light-emitting layer 130, that is, 0.1H2 ⁇ H1 ⁇ 2H2.
  • the thickness H1 of the hole transport doped layer 140 ⁇ 0.1H2 can prevent the thickness H1 of the hole transport doped layer 140 from being too small (for example, less than 0.1H2), resulting in the first hole transport in the hole transport doped layer 140 There are too few materials and too few second hole transport materials, thereby avoiding the low hole transport efficiency caused by too few first hole transport materials and too few second hole transport materials, thus ensuring that the hole transport doped layer
  • the hole transmission efficiency is 140%.
  • the thickness H1 ⁇ 2H2 of the empty transport doped layer 140 can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 2H2), causing the first hole transport material in the empty transport doped layer 140 to be If there is too much hole transport material, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, resulting in the thickness of the light-emitting device 100 being too large.
  • the thickness H3 of the first hole transport layer 140 is the hole transport doping layer 140.
  • the thickness H1 of layer 160 is 0.15 times to 6.67 times, that is, 0.15H1 ⁇ H3 ⁇ 6.67H1.
  • the thickness H3 of the first hole transport layer 140 ⁇ 0.15H1 can prevent the thickness H3 of the first hole transport layer 140 from being too small (for example, less than 0.15H1), and nano-protrusions will be formed when the quantum dot light-emitting layer 130 is formed.
  • the thickness of the first hole transport layer 140 is too small, the surface of the first hole transport layer 140 will be uneven, which is detrimental to the yield of the light emitting device 100 . Therefore, by making H3 ⁇ 0.15H1, the first hole transport layer 140 can be made to have sufficient thickness to ensure that the first hole transport layer 140 has a flat surface, thereby ensuring the yield of the light emitting device 100.
  • the thickness H3 of the first hole transport layer 140 ⁇ 6.67H1 can avoid the thickness H3 of the first hole transport layer 140 being too large (for example, greater than 6.67H1). If it is too large, the overall thickness of the light-emitting device 100 will be larger.
  • the thickness H4 of the second hole transport layer 150 is the hole transport doping layer 140.
  • the thickness H1 of layer 160 is 0.5 times to 16.67 times, that is, 0.5H1 ⁇ H4 ⁇ 16.67H1.
  • the thickness H4 of the second hole transport layer 150 ⁇ 0.5H1 can prevent the thickness H4 of the second hole transport layer 150 from being too small (for example, less than 0.5H1), resulting in too little second hole transport material, and thus causing the third The hole transport rate between the second hole transport material and the second electrode 120 is too small.
  • the thickness H4 of the second hole transport layer 150 ⁇ 16.66H1 can avoid the thickness H4 of the second hole transport layer 150 being too large (for example, greater than 16.66H1), and the thickness H4 of the second hole transport layer 150 can be avoided. If it is too large, the overall thickness of the light-emitting device 100 will be larger.
  • the first hole transport layer 140 can be made to have sufficient thickness to ensure that the first hole transport layer 140 has a flat surface, thereby ensuring the yield of the light emitting device 100 . It can also be avoided that the thickness H1 of the first hole transport layer 140 is too large, resulting in a waste of material and an excessive thickness of the light-emitting device 100 .
  • the light emitting device 100 further includes: a first hole transport layer 140, a second hole transport layer 150 and a hole transport doping layer 160
  • the thickness H1 of the hole transport doping layer 160 It is 3nm ⁇ 20nm.
  • the thickness H1 of the empty transport doped layer 140 is ⁇ 3 nm, which can prevent the thickness H1 of the hole transport doped layer 140 from being too small (for example, less than 3 nm), causing the first hole transport material in the empty transport doped layer 140 to Too little of the second hole transport material can avoid low hole transmission efficiency caused by too little of the first hole transport material and too little of the second hole transport material, thereby ensuring the efficiency of the hole transport doped layer 140 hole transport efficiency.
  • the thickness H1 of the empty transport doped layer 140 is less than or equal to 20 nm, which can prevent the thickness H1 of the empty transport doped layer 140 from being too large (for example, greater than 20 nm), causing the first hole transport material in the empty transport doped layer 140 to be If the hole transport material is too large, waste of material can be avoided, and at the same time, the thickness H1 of the hole transport doped layer 140 may be too large, causing the light-emitting device 100 to be too large.
  • the thickness H1 of the hole transport doped layer 140 is 5 nm.
  • the thickness H3 of the first hole transport layer 140 It is 3nm ⁇ 20nm.
  • the thickness H3 of the first hole transport layer 140 is ⁇ 3 nm, which can prevent the thickness H3 of the first hole transport layer 140 from being too small (for example, less than 3 nm), and nano-protrusions will be formed when the quantum dot light-emitting layer 130 is formed. If the thickness of the first hole transport layer 140 is too small, the surface of the first hole transport layer 140 will be uneven, which is detrimental to the yield of the light emitting device 100 . Therefore, by making H3 ⁇ 3nm, the first hole transport layer 140 can be made to have sufficient thickness to ensure that the first hole transport layer 140 has a flat surface, thereby ensuring the yield of the light emitting device 100.
  • the thickness H3 of the first hole transport layer 140 is less than or equal to 20 nm, which can prevent the thickness H3 of the first hole transport layer 140 from being too large (for example, greater than 20 nm). , resulting in the overall thickness of the light-emitting device 100 being larger.
  • the thickness H3 of the first hole transport layer 140 is 5 nm. .
  • the light emitting device 100 further includes: a first hole transport layer 140 , a second hole transport layer 150 and a hole transport doping layer 160 , the thickness H4 of the second hole transport layer 150 It is 10nm ⁇ 50nm.
  • the thickness H4 of the second hole transport layer 150 is ⁇ 10 nm, which can prevent the thickness H4 of the second hole transport layer 150 from being too small (for example, less than 10 nm), resulting in too little second hole transport material, and thus causing the second hole transport layer 150 to have a thickness H4 ⁇ 10 nm.
  • the hole transport rate between the hole transport material and the second electrode 120 is too small.
  • the thickness H4 of the second hole transport layer 150 is less than or equal to 50 nm, which can prevent the thickness H4 of the second hole transport layer 150 from being too large (for example, greater than 50 nm). , resulting in the overall thickness of the light-emitting device 100 being larger.
  • the thickness H4 of the second hole transport layer 150 is 30 nm. .
  • the reference light-emitting device and the test light-emitting device 4 are tested.
  • the reference light-emitting device includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, and a first hole transport layer that are stacked in sequence. 140.
  • the thickness of the first hole transport layer 140 is 10 nm, and the material is TCTA.
  • the thickness of the second hole transport layer 150 is 30 nm, and the material is NPB.
  • the test light-emitting device 4 includes a first electrode 110, an electron transport layer 180, a quantum dot light-emitting layer 130, a first hole transport layer 140, a hole transport doped layer 160, and a second hole transport layer 150 that are stacked in sequence. , hole injection layer 170 and second electrode 120 .
  • the thickness of the first hole transport layer 140 is 5 nm, and the material is TCTA.
  • the thickness of the hole transport doped layer 160 is 5 nm
  • the first hole transport material in the hole transport doped layer 160 is TCTA
  • the second hole transport material is NPB
  • the doping ratio of TCTA and NPB is 1 :1.
  • the thickness of the second hole transport layer 150 is 40 nm, and the material is NPB.
  • the material of the first electrode 110 is both ITO, and the thickness is 120 nm; the material of the electron transport layer 180 is: zinc oxide, and the thickness is 40 nm;
  • the materials of the quantum dot light-emitting layer 130 include: CdS (cadmium sulfide) and CdSe (cadmium selenide), wherein CdSe is surrounded by CdS.
  • the thickness of the quantum dot light-emitting layer 130 is 20 nm, and the quantum dot light-emitting layer 130 is
  • the material of the red quantum dot light-emitting layer and the hole injection layer 170 are both MoO3 (molybdenum oxide), and the thickness is 7 nm; and the material of the second electrode 120 is Ag, and the thickness is 120 nm.
  • the current efficiency of the test light-emitting device 4 is significantly higher than the current efficiency of the reference light-emitting device.
  • the higher the current efficiency the higher the luminous efficiency of the device. Therefore, the luminous efficiency of the test light-emitting device 4 is significantly higher than that of the reference light-emitting device. It can be seen from this that by arranging the first hole transport layer 140, the second hole transport layer 150 and the hole transport doping layer 160 in the light-emitting device 100, the luminous efficiency of the light-emitting device 100 can be effectively improved.
  • the hole transport doped layer 160 includes multiple sub-doped layers arranged in a stack. In any two adjacent sub-doped layers, the mass ratio of the first hole transport material and the second hole transport material in the sub-doped layer close to the quantum dot light-emitting layer 130 is greater than that of the sub-doped layer far away from the quantum dot light-emitting layer. The mass ratio of the first hole transport material to the second hole transport material in the sub-doped layer of 130.
  • the contact area between the transport material and the quantum dot light-emitting layer 130 thereby increases the hole transport rate between the first hole transport material in the hole transport doped layer 160 and the quantum dot light-emitting layer 130, thereby increasing the hole transport rate.
  • the amount of holes injected into the quantum dot light-emitting layer 130 improves the balance between hole and electron injection, and improves the luminous efficiency of the light-emitting device 100 .
  • the transmission rate of holes can thereby increase the amount of holes injected into the quantum dot light-emitting layer 130, improve the balance between hole and electron injection, and improve the luminous efficiency of the light-emitting device 100.
  • the film layer structure in the light-emitting device 100 is introduced, and then the first hole transport material and the second hole transport material are introduced.
  • the highest occupied molecular orbital energy level of the first hole transport material is 0.88 to 1.02 times the highest occupied molecular orbital energy level of the quantum dot light-emitting layer 130.
  • the HOMO energy level of the first hole transport material and the HOMO energy level of the quantum dot light-emitting layer 130 are both negative values. Therefore, by making the HOMO energy level of the first hole transport material greater than or equal to 0.88 times the HOMO energy level of the quantum dot light-emitting layer 130, it can be avoided that the HOMO energy level of the first hole transport material is too large, causing the first holes to The difference between the HOMO energy level of the transport material and the HOMO energy level of the quantum dot light-emitting layer 130 is too large, that is, the potential barrier between the first hole transport material and the quantum dot light-emitting layer 130 is too large, thereby avoiding the first The hole transport efficiency between the hole transport material and the quantum dot light-emitting layer 130 is too small.
  • the HOMO energy level of the first hole transport material and the HOMO energy level of the quantum dot light-emitting layer 130 are both negative values. Therefore, by making the HOMO energy level of the first hole transport material less than or equal to 1.02 times the HOMO energy level of the quantum dot light-emitting layer 130, it can be avoided that the HOMO energy level of the first hole transport material is too small, causing the first hole The difference between the HOMO energy level of the hole transport material and the HOMO energy level of the second hole transport material is too large, and then the potential barrier between the first hole transport material and the second hole transport material is too large, and thus it can It is avoided that the hole transmission efficiency between the first hole transport material and the second hole transport material is too small.
  • the highest occupied molecular orbital energy level of the second hole transport material is 0.82 times to 0.97 times the highest occupied molecular orbital energy level of the quantum dot light-emitting layer 130 .
  • the HOMO energy level of the second hole transport material and the HOMO energy level of the quantum dot light-emitting layer 130 are both negative values. Therefore, by making the HOMO energy level of the second hole transport material greater than or equal to 0.82 times the HOMO energy level of the quantum dot light-emitting layer 130, it can be avoided that the HOMO energy level of the second hole transport material is too large, causing the first holes to The difference between the HOMO energy level of the transport material and the HOMO energy level of the second hole transport material is too large, which makes the potential barrier between the first hole transport material and the second hole transport material too large, which can It is avoided that the hole transmission efficiency between the first hole transport material and the second hole transport material is too small.
  • the HOMO energy level of the second hole transport material and the HOMO energy level of the quantum dot light-emitting layer 130 are both negative values. Therefore, by making the HOMO energy level of the first hole transport material less than or equal to 0.97 times the HOMO energy level of the quantum dot light-emitting layer 130, it can be avoided that the HOMO energy level of the second hole transport material is too small, causing the second hole The difference between the HOMO energy level of the transport material and the second electrode 120 is too large, which in turn causes the potential barrier between the second hole transport material and the second electrode 120 to be too large, thereby preventing the second hole transport material from interacting with the second electrode 120 . The hole transfer efficiency between the second electrodes 120 is too small.
  • the highest occupied molecular orbital energy level of the first hole transport material ranges from -6.3 eV to -5.9 eV.
  • the HOMO energy level of the first hole transport material less than or equal to -5.9eV, it can be avoided that the HOMO energy level of the first hole transport material is too large (for example, greater than -5.9eV), resulting in the first hole transport material
  • the difference between the HOMO energy level of the quantum dot light-emitting layer 130 and the HOMO energy level of the quantum dot light-emitting layer 130 is too large, thereby causing the potential barrier between the first hole transport material and the quantum dot light-emitting layer 130 to be too large, thus preventing the first hole transport material from being too large.
  • the hole transport efficiency between the hole transport material and the quantum dot light-emitting layer 130 is too small.
  • the HOMO energy level of the first hole transport material is made greater than or equal to -6.3 eV, it can be avoided that the HOMO energy level of the first hole transport material is too small (for example, less than -6.3 eV), resulting in the first hole transport material
  • the difference between the HOMO energy level of the second hole transport material and the HOMO energy level of the second hole transport material is too large, thereby causing the potential barrier between the first hole transport material and the second hole transport material to be too large, thus preventing the third The hole transport efficiency between the first hole transport material and the second hole transport material is too small.
  • the highest occupied molecular orbital energy level of the second hole transport material ranges from -6 eV to -5.5 eV.
  • the HOMO energy level of the second hole transport material is too large (for example, greater than -5.5eV), causing the first hole transport material to
  • the difference between the HOMO energy level of the second hole transport material and the HOMO energy level of the second hole transport material is too large, that is, the potential barrier between the first hole transport material and the second hole transport material is too large, thereby avoiding the first hole transport material.
  • the hole transport efficiency between the hole transport material and the second hole transport material is too small.
  • the HOMO energy level of the first hole transport material greater than or equal to -6 eV
  • the HOMO energy level of the second hole transport material is too small (for example, less than -6 eV), resulting in the HOMO of the second hole transport material
  • the difference between the energy level and the second electrode 120 is too large, thereby causing the potential barrier between the second hole transport material and the second electrode 120 to be too large, thereby preventing the second hole transport material from contacting the second electrode 120
  • the hole transfer efficiency between them is too small.
  • the mobility of the first hole transport material is 1 to 10 3 times the mobility of the quantum dot light-emitting layer 130 .
  • the mobility of the first hole transport material less than or equal to 103 times the mobility of the quantum dot light-emitting layer 130, it can be avoided that the mobility of the first hole transport material is too large, causing the first hole transport material to
  • the difference between the mobility of the quantum dot light-emitting layer 130 and the mobility of the quantum dot light-emitting layer 130 is too large, that is, there is a mismatch between the first hole transport material and the quantum dot light-emitting layer 130, which can avoid the first hole transport material and the quantum dot light-emitting layer 130.
  • the hole transmission efficiency between the point light-emitting layers 130 is too small.
  • the mobility of the first hole transport material is greater than or equal to 1 time of the mobility of the quantum dot light-emitting layer 130, it can be avoided that the mobility of the first hole transport material is too small, causing the first hole transport material to The difference between the mobility and the mobility of the second hole transport material is too large, so that the first hole transport material and the second hole transport material do not match, and thus the first hole transport material and the second hole transport material can be avoided.
  • the hole transfer efficiency between hole transport materials is too small.
  • the mobility of the second hole transport material is 10 2 to 10 4 times that of the quantum dot light-emitting layer 130 .
  • the mobility of the second hole transport material less than or equal to 10 4 times the mobility of the quantum dot light-emitting layer 130, it can be avoided that the mobility of the second hole transport material is too large, causing the second hole transport material to The difference between the mobility of the first hole transport material and the mobility of the first hole transport material is too large, thus causing the first hole transport material and the second hole transport material to not match, thereby avoiding the first hole transport material and the second hole transport material.
  • the hole transfer efficiency between the two hole transport materials is too small.
  • the mobility of the first hole transport material greater than or equal to 10 2 times the mobility of the quantum dot light-emitting layer 130 , it can be avoided that the mobility of the second hole transport material is too small, resulting in the second hole transport material
  • the difference between the mobility of the second electrode 120 and the mobility of the second electrode 120 is too large, thereby causing the second hole transport material and the second electrode 120 to not match, thereby avoiding the interaction between the second hole transport material and the second electrode 120.
  • the hole transfer efficiency between them is too small.
  • the mobility of the first hole transport material ranges from 10 -5 cm 2 V -1 s -1 to 10 -3 cm 2 V -1 s -1 .
  • the mobility of the first hole transport material is too large (for example, greater than 10 -3 cm 2 V -1 s -1 ), causing the difference between the mobility of the first hole transport material and the mobility of the quantum dot light-emitting layer 130 to be too large, that is, the difference between the first hole transport material and the quantum dot light-emitting layer 130 mismatch, thereby preventing the hole transmission efficiency between the first hole transport material and the quantum dot light-emitting layer 130 from being too small.
  • the mobility of the first hole transport material is made greater than or equal to 10 -5 cm 2 V -1 s -1 , it is possible to avoid the mobility of the first hole transport material being too small (for example, less than 10 -5 cm 2 V -1 s -1 ), causing the difference between the mobility of the first hole transport material and the mobility of the second hole transport material to be too large, and then the first hole transport material and the second hole transport material are incompatible with each other. matching, thereby preventing the hole transmission efficiency between the first hole transport material and the second hole transport material from being too small.
  • the mobility of the second hole transport material ranges from 10 -3 cm 2 V -1 s -1 to 10 -2 cm 2 V -1 s -1 .
  • the mobility of the second hole transport material is less than or equal to 10 -2 cm 2 V -1 s -1 , it can be avoided that the mobility of the second hole transport material is too large (for example, greater than 10 -2 cm 2 V -1 s -1 ), causing the difference between the mobility of the second hole transport material and the mobility of the first hole transport material to be too large, thus causing the first hole transport material and the second hole transport material to mismatch, thereby preventing the hole transmission efficiency between the first hole transport material and the second hole transport material from being too small.
  • the mobility of the first hole transport material greater than or equal to 10 -3 cm 2 V -1 s -1 , it is possible to avoid the mobility of the second hole transport material being too small (for example, less than 10 -3 cm 2 V -1 s -1 ), causing the difference between the mobility of the second hole transport material and the mobility of the second electrode 120 to be too large, thus causing the second hole transport material and the second electrode 120 to not match, thus It can be avoided that the hole transport efficiency between the second hole transport material and the second electrode 120 is too small.
  • the hole transport material may be carbazole, triphenylamine, carbazole derivatives, triphenylamine derivatives and other materials.
  • the light-emitting device 100 provided by some embodiments of the present disclosure can effectively improve the efficiency of hole injection into the quantum dot light-emitting layer 130 by arranging the hole transport doping layer 160 in the light-emitting device 100, thereby balancing the holes. and electron injection rate to improve the luminous efficiency of the light-emitting device 100 .
  • the display panel 1000 provided by some embodiments of the present disclosure includes the light-emitting device 100 provided by some of the above embodiments. Therefore, the display panel 1000 provided by some embodiments of the present disclosure includes the light-emitting device provided by some of the above embodiments. All the beneficial effects of 100 will not be described in detail here.
  • the display device 2000 provided by some embodiments of the present disclosure includes the display panel 1000 provided by some of the above embodiments. Therefore, the display device 2000 provided by some embodiments of the present disclosure includes the display panel provided by some of the above embodiments. All the beneficial effects of 1000 will not be described in detail here.
  • Some embodiments of the present disclosure also provide a method for manufacturing a light-emitting device, which is used for the light-emitting device 100 provided in some of the above embodiments.
  • Figure 13 is a flow chart of a method of manufacturing a light emitting device according to some embodiments.
  • the preparation method of the light-emitting device includes the following steps S1 to S3.
  • a quantum dot light-emitting layer 130 is formed on one side of the first electrode 110.
  • the first electrode 110 may be conductive glass.
  • the conductive glass Before forming the quantum dot light-emitting layer 130, the conductive glass can be cleaned with water and isopropyl alcohol respectively, and treated with ultraviolet light for 5 to 10 minutes.
  • a spin coating process may be used.
  • the hole transport doping layer 160 on the side of the quantum dot light-emitting layer 130 away from the first electrode 110, wherein the hole transport doping layer 160 includes a mixture of at least two hole transport materials, wherein the at least The energy levels of the highest occupied molecular orbitals of the two hole transport materials are different.
  • the hole transport doping layer 160 since the above-mentioned at least two hole transport materials are mixed, the contact area between any two hole transport materials with similar HOMO energy levels is larger, and holes are formed by HOMO energy levels.
  • the hole transport rate is higher, which can increase the rate of hole injection into the quantum dot light-emitting layer 130, making the electrons and holes
  • the rate of injecting quantum dots into the light-emitting layer 130 is more balanced, thereby improving the luminous efficiency of the light-emitting device 100 .
  • the hole transport doping layer 160 may be formed through an evaporation process.
  • the second electrode 120 may be an aluminum film or a silver film, and the aluminum film or silver film may be formed through an evaporation process.
  • the second electrode 120 may also be indium zinc oxide (IZO).
  • IZO indium zinc oxide
  • the indium zinc oxide (IZO) may be formed through a sputtering process.
  • the light emitting device 100 may be packaged.
  • ultraviolet curing glue can be used to encapsulate the light-emitting device 100 .
  • the at least two hole transport materials include a first hole transport material and a second hole transport material, and the HOMO energy level of the first hole transport material is smaller than that of the second hole transport material. HOMO energy level.
  • the first hole transport layer 160 is simultaneously deposited on the side of the first electrode 110 using a dual-source co-evaporation method. material and a second hole transport material to form the hole transport doped layer 160 .
  • the "double-source co-evaporation method” means that two evaporation sources are arranged in the coating chamber, one of which is used to evaporate the first hole transport material, and the other evaporation source is used to evaporate the second hole transport material.
  • Hole transport material wherein by changing the evaporation temperature of the first hole transport material and the second hole transport material, the evaporation speed of the two can be changed.
  • step S2 the ratio of the evaporation speeds of the first hole transport material and the second hole transport material ranges from 1:5 to 5:1, so that the hole transport doped layer can
  • the mass ratio of the first hole transport material and the second hole transport material in 160 ranges from 1:5 to 5:1.
  • the hole transport part only includes the hole transport doping layer 160 , and in step S2 , the ratio of the evaporation speeds of the first hole transport material and the second hole transport material is 2:1. At this time, in the hole transport doped layer 160 , the mass ratio of the first hole transport material and the second hole transport material is 2:1.
  • Figure 14 is a flow chart of a method of manufacturing a light emitting device according to some embodiments.
  • S1 Before the step of forming the quantum dot light-emitting layer 130 on one side of the first electrode 110, it also includes: S01. On one side of the first electrode 110 The electron transport layer 180 is formed.
  • the zinc oxide nanoparticles can be spin-coated and heated at a temperature of 80°C to 120°C to form a film.
  • the speed of the glue leveling machine is set to 500rpm ⁇ 2500rpm to adjust the thickness of the film layer.
  • the electron transport layer 180 is a zinc oxide film.
  • 1 g of zinc acetate (or zinc nitrate, etc.) is dissolved in 5 mL of a mixed solution of ethanolamine and n-butanol to form a zinc precursor solution.
  • the above-mentioned conductive glass is placed in a glue leveling machine, and 90 ⁇ L to 120 ⁇ L of the zinc precursor solution is dropped onto the conductive glass and spin-coated. Place the above-mentioned conductive glass on a hot stage at 250°C to 300°C, heat and emit the solvent.
  • Step S1 forming the quantum dot light-emitting layer 130 on one side of the first electrode 110 includes: S11, forming the quantum dot light-emitting layer 130 on the side of the electron transport layer 180 away from the first electrode 110.
  • the hole transport doped layer 160 after S2, forming the hole transport doped layer 160 on the side of the quantum dot light-emitting layer 130 away from the first electrode 110, it also includes S2A, emitting light on the hole transport doped layer 160 away from the quantum dots.
  • a hole injection layer 170 is formed on one side of layer 130 .
  • the hole injection layer 170 may be formed by a spin coating process.
  • the hole injection layer 170 may include PEDOT:PSS 4083 (poly3,4-ethylenedioxythiophene/polystyrenesulfonate).
  • PEDOT:PSS 4083 poly3,4-ethylenedioxythiophene/polystyrenesulfonate.
  • the film-forming temperature of PEDOT is 130°C to 150°C.
  • the thickness of the hole injection layer 170 can be adjusted according to the speed of the glue leveling machine.
  • hole injection layer 170 may also be formed through an evaporation process.
  • the step of forming the second electrode 120 on the side of the hole transport doping layer 160 away from the quantum dot light-emitting layer 130 includes: S31, on the hole injection layer 170 away from the hole transport doping layer. One side of 160 forms the second electrode 120 .
  • Figure 15 is a flow chart of a method of manufacturing a light emitting device according to some embodiments.
  • the quantum dot light-emitting layer 130 on one side of the first electrode 110 it also includes: S1A, forming the quantum dot light-emitting layer 130 on the side away from the first electrode 110.
  • the first hole transport layer 140 is formed.
  • step S1A it can be
  • the first hole transport layer 140 is evaporated on the side of the quantum dot light-emitting layer 130 away from the first electrode 110 at a rate of .
  • the step of forming the hole transport doping layer 160 on the side of the quantum dot light-emitting layer 130 away from the first electrode 110 includes: S21. Forming holes on the side of the first hole transport layer 140 away from the first electrode 110 Transport doped layer 160 .
  • step S2 the ratio of the evaporation speeds of the first hole transport material and the second hole transport material is 2 : 1.
  • the mass ratio of the first hole transport material and the second hole transport material is 2:1.
  • Figure 16 is a flow chart of a method of manufacturing a light emitting device according to some embodiments.
  • the hole transport doping layer 160 on the side of the quantum dot light-emitting layer 130 away from the first electrode 110 it also includes: S2B, performing hole transport doping.
  • the side of layer 160 away from the first electrode 110 forms a second hole transport layer 150 .
  • step S2B you can use The second hole transport layer 150 is evaporated on the side of the quantum dot light-emitting layer 130 away from the first electrode 110 at a rate of .
  • step S2 the ratio of the evaporation speeds of the first hole transport material and the second hole transport material is 1 : 1.
  • the mass ratio of the first hole transport material and the second hole transport material is 1:1.
  • the first hole transport material and the second hole transport material The ratio of the evaporation speeds is 1:1. At this time, the mass ratio of the first hole transport material and the second hole transport material in the hole transport doped layer 160 is 1:1.
  • the hole injection layer 170 is located between the second hole transport layer 150 and the second electrode 120 .
  • the step of forming the second electrode 120 on the side of the hole transport doping layer 160 away from the quantum dot light-emitting layer 130 includes: S32. Forming the second electrode 120 on the side of the second hole transport layer 150 away from the hole transport doping layer 160 The second electrode 120 is formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种发光器件。该发光器件包括第一电极、第二电极、位于第一电极与第二电极之间的量子点发光层以及空穴传输掺杂层。空穴传输掺杂层位于量子点发光层与第二电极之间;空穴传输掺杂层包括至少两种空穴传输材料的混合物,其中,至少两种空穴传输材料的最高占据分子轨道能级不同。

Description

发光器件及其制备方法、显示面板、显示装置 技术领域
本公开涉及照明和显示技术领域,尤其涉及一种发光器件及其制备方法、显示面板、显示装置。
背景技术
量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)器件具有色域高、自发光、启动电压低、响应速度快等优点,因此在显示领域中得到了广泛的关注。量子点发光二极管器件的基板工作原理是:分别向量子点发光层的两侧注入电子和空穴,这些电子和空穴在量子点发光层中复合后形成激子,最终通过激子发光。
发明内容
一方面,提供一种发光器件。所述发光器件包括第一电极、第二电极、位于所述第一电极与所述第二电极之间的量子点发光层以及空穴传输掺杂层。所述空穴传输掺杂层位于所述量子点发光层与所述第二电极之间;所述空穴传输掺杂层包括至少两种空穴传输材料的混合物,其中,所述至少两种空穴传输材料的最高占据分子轨道能级不同。
在一些实施例中,所述至少两种空穴传输材料的迁移率不同,且在任意两种空穴传输材料中,最高占据分子轨道能级较低的空穴传输材料的迁移率,大于最高占据分子轨道能级较高的空穴传输材料的迁移率。
在一些实施例中,所述至少两种空穴传输材料包括第一空穴传输材料和第二空穴传输材料,且所述第一空穴传输材料的最高占据分子轨道能级小于所述第二空穴传输材料的最高占据分子轨道能级;在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为1:5~5:1。
在一些实施例中,在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为2:1。
在一些实施例中,所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.66倍~5倍。
在一些实施例中,所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的2.3倍。
在一些实施例中,所述空穴传输掺杂层的厚度的取值范围为20nm~50nm。
在一些实施例中,所述发光器件还包括:第一空穴传输层。所述第一空穴传输层位于所述量子点发光层和所述空穴传输掺杂层之间;其中,所述第一空 穴传输层的最高占据分子轨道能级小于或等于所述第一空穴传输材料的最高占据分子轨道能级,且大于所述量子点发光层的最高占据分子轨道能级。
在一些实施例中,所述第一空穴传输层的迁移率小于或等于所述第一空穴传输材料的迁移率,且大于所述量子点发光层的迁移率。
在一些实施例中,所述第一空穴传输层包括所述第一空穴传输材料。
在一些实施例中,在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为2:1。
在一些实施例中,所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.33倍~5倍;所述第一空穴传输层的厚度为所述空穴传输掺杂层的厚度的0.06倍~2倍。
在一些实施例中,所述第一空穴传输层的厚度为所述空穴传输掺杂层的厚度的三分之一。
在一些实施例中,所述空穴传输掺杂层的厚度为10nm~50nm;所述第一空穴传输层的厚度为3nm~20nm。
在一些实施例中,所述发光器件还包括:第二空穴传输层。所述第二空穴传输层位于所述空穴传输掺杂层和所述第二电极之间;其中,所述第二空穴传输层的最高占据分子轨道能级小于所述第二电极的最高占据分子轨道能级,且大于或等于所述第二空穴传输材料的最高占据分子轨道能级。
在一些实施例中,所述第二空穴传输层的迁移率小于所述第二电极的迁移率,且大于或等于所述第二空穴传输材料的迁移率。
在一些实施例中,所述第二空穴传输层包括第二空穴传输材料。
在一些实施例中,在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为1:1。
在一些实施例中,所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.1倍~2倍;所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的0.5倍~16.66倍。
在一些实施例中,所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的3倍。
在一些实施例中,所述空穴传输掺杂层的厚度为3nm~20nm;所述第二空穴传输层的厚度为10nm~50nm。
在一些实施例中,所述发光器件还包括:第一空穴传输层和第二空穴传输层。所述第一空穴传输层位于所述量子点发光层和所述空穴传输掺杂层之间;其中,所述第一空穴传输层的最高占据分子轨道能级小于或等于所述第一空 穴传输材料的最高占据分子轨道能级,且大于所述量子点发光层的最高占据分子轨道能级。所述第二空穴传输层位于所述空穴传输掺杂层和所述第二电极之间;其中,所述第二空穴传输层的最高占据分子轨道能级小于所述第二电极的最高占据分子轨道能级,且大于或等于所述第二空穴传输材料的最高占据分子轨道能级。
在一些实施例中,所述第一空穴传输层的迁移率小于或等于所述第一空穴传输材料的迁移率,且大于所述量子点发光层的迁移率;所述第二空穴传输层的迁移率小于所述第二电极的迁移率,且大于或等于所述第二空穴传输材料的迁移率。
在一些实施例中,所述第一空穴传输层包括所述第一空穴传输材料;所述第二空穴传输层包括第二空穴传输材料。
在一些实施例中,在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为1:1。
在一些实施例中,所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.1倍~2倍;所述第一空穴传输层的厚度是所述空穴传输掺杂层的厚度的0.15倍~6.67倍;所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的0.5倍~16.67倍。
在一些实施例中,所述第一空穴传输层的厚度是所述空穴传输掺杂层的厚度的1倍;所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的6倍。
在一些实施例中,所述空穴传输掺杂层的厚度为3nm~20nm;所述第一空穴传输层的厚度为3nm~20nm;所述第二空穴传输层的厚度为10nm~50nm。
在一些实施例中,所述空穴传输掺杂层包括堆叠设置的多层子掺杂层;在任意相邻的两层子掺杂层中,靠近所述量子点发光层的子掺杂层中的所述第一空穴传输材料与所述第二空穴传输材料的质量之比,大于远离所述量子点发光层的子掺杂层中的所述第一空穴传输材料与所述第二空穴传输材料的质量之比。
在一些实施例中,所述第一空穴传输材料的最高占据分子轨道能级为所述量子点发光层的最高占据分子轨道能级的0.88倍~1.02倍;所述第二空穴传输材料的最高占据分子轨道能级为所述量子点发光层的最高占据分子轨道能级的0.82倍~0.97倍。
在一些实施例中,所述第一空穴传输材料的最高占据分子轨道能级的取值范围为-6.3eV~-5.9eV;所述第二空穴传输材料的最高占据分子轨道能级的 取值范围为-6eV~-5.5eV。
在一些实施例中,所述第一空穴传输材料的迁移率为所述量子点发光层的迁移率的1倍~10 3倍;所述第二空穴传输材料的迁移率为所述量子点发光层的迁移率的10 2倍~10 4倍。
在一些实施例中,所述第一空穴传输材料的迁移率的取值范围为10 -5cm 2V -1s -1~10 -3cm 2V -1s -1;所述第二空穴传输材料的迁移率的取值范围为10 -3cm 2V -1s -1~10 -2cm 2V -1s -1
在一些实施例中,所述至少两种空穴传输材料包括以下材料中的至少两种:4,4-bis(carbazole-9-yl)biphenyl、1,3-bis(carbazol-9-yl)benzene、2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine、4,4',4”-tris(carbazol-9-yl)triphenylamine、1,1-bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane、N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine。
在一些实施例中,所述发光器件还包括:空穴注入层和电子传输层。所述空穴注入层位于所述第二电极和所述空穴传输掺杂层之间;所述电子传输层位于所述第一电极和所述量子点发光层之间。
另一方面,提供一种显示面板。所述显示面板包括:衬底以及如上述任一实施例所述的发光器件。所述多个发光器件设置于所述衬底的一侧。
又一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的显示面板。
又一方面,提供一种发光器件的制备方法,该发光器件的制备方法包括:在第一电极的一侧形成量子点发光层;在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层,其中,所述空穴传输掺杂层包括至少两种空穴传输材料的混合物,其中,所述至少两种空穴传输材料的最高占据分子轨道能级不同;在所述空穴传输掺杂层远离所述量子点发光层的一侧形成第二电极。
在一些实施例中,所述至少两种空穴传输材料包括第一空穴传输材料和第二空穴传输材料,且所述第一空穴传输材料的最高占据分子轨道能级小于所述第二空穴传输材料的最高占据分子轨道能级;在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层的步骤中,采用双源共蒸法在所述第一电极的一侧同时沉积所述第一空穴传输材料和第二空穴传输材料,以形成所述空穴传输掺杂层。
在一些实施例中,所述在第一电极的一侧形成量子点发光层的步骤之后,还包括:在所述量子点发光层远离所述第一电极的一侧形成第一空穴传输层。在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层的步骤, 包括:在所述第一空穴传输层远离所述第一电极的一侧形成所述空穴传输掺杂层。
在一些实施例中,在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层的步骤之后,还包括:在所述空穴传输掺杂层远离所述第一电极的一侧形成第二空穴传输层。在所述空穴传输掺杂层远离量子点发光层的一侧形成第二电极的步骤,包括:在所述第二空穴传输层远离所述空穴传输掺杂层的一侧形成所述第二电极。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的结构图;
图2为根据一些实施例的显示面板的结构图;
图3为根据一些实施例的显示面板的截面图;
图4为根据一种实现方式的显示面板的结构图;
图5为根据一些实施例的显示面板的结构图;
图6为根据一些实施例的电流效率随电压变化的示意图;
图7为根据另一些实施例的显示面板的结构图;
图8为根据另一些实施例的电流效率随电压变化的示意图;
图9为根据其他的一些实施例的显示面板的结构图;
图10为根据其他的一些实施例的电流效率随电压变化的示意图;
图11为根据又一些实施例的显示面板的结构图;
图12为根据又一些实施例的电流效率随电压变化的示意图;
图13为根据一些实施例的发光器件的制备方法的流程图;
图14为根据一些实施例的发光器件的制备方法的流程图;
图15为根据一些实施例的发光器件的制备方法的流程图;
图16为根据一些实施例的发光器件的制备方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。 基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一些实施例(some embodiments)”、“示例(example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A和B之间的差值”,指的是,A和B中的较大者与A和B中的较小者之间的差值。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
量子点(Quantum Dots,QD)作为新型的发光材料,具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优点,称为目前新型LED(Light Emitting Diodes,发光二极管)发光材料的研究热点。因此,以量子点材料作为发光层的量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)成为了目前新型显示器件研究的主要方向。
量子点发光二极管的基本工作原理是:分别向量子点发光层的两侧注入 电子和空穴,这些电子和空穴在量子点发光层中复合后形成激子,最终通过激子发光。
然而,电子和空穴的注入量子点发光层的速率不平衡会导致量子点发光层处于带电状态,这样随后的电子和空穴则以非辐射复合的方式进行(俄歇复合),因此量子点发光二极管的发光效率偏低。
在相关技术中,电子注入效率要大于空穴的注入效率,进而导致电子和空穴的注入量子点发光层的速率不平衡,从而使得量子点发光二极管的发光效率偏低。
图1为根据一些实施例的显示装置2000的结构图。
请参阅图1,本公开的一些实施例提供了一种显示装置2000,显示装置2000包括:显示面板1000。
其中,显示装置2000可以为量子点有机发光二级管显示装置,对应的显示面板1000可以为量子点有机发光二级管显示面板。
图2为根据一些实施例的显示面板1000的结构图。
请参阅图2,本公开的一些实施例提供了一种显示面板1000,该显示面板1000,显示区AA和至少位于显示区AA一侧的周边区BB,在一些示例中,周边区BB围绕显示区AA设置一周。
上述AA区中包括多种颜色的子像素(sub pixel)P;该多种颜色的子像素至少包括第一颜色子像素、第二颜色子像素和第三颜色子像素,第一颜色、第二颜色和第三颜色为三基色(例如红色、绿色和蓝色)。任意子像素P的区域可通过像素界定层进行限定。
为了方便说明,本申请中上述多个子像素P是以矩阵形式排列为例进行的说明。在此情况下,沿第一方向X排列成一排的子像素P称为同一行子像素,沿第二方向Y排列成一排的子像素P称为同一列子像素。
图3为根据一些实施例的显示面板1000的截面图。
请参阅图3,对于单个子像素P而言,一个子像素P包括发光器件100和像素驱动电路200。其中,像素驱动电路200一般由薄膜晶体管TFT、电容(图中未示出)等电子器件组成。例如,像素驱动电路200可以是由两个薄膜晶体管(一个开关TFT和一个驱动TFT)和一个电容构成的2T1C结构的像素驱动电路;当然,像素驱动电路200还可以是由两个以上的薄膜晶体管(多个开关TFT和一个驱动TFT)和至少一个电容构成的像素驱动电路200。其中,不管像素驱动电路200是何种结构,都必须包括驱动TFT。其中,驱动TFT可以与发光器件100的阳极连接。
其中,显示面板1000中包括多个膜层,下面对显示面板1000中的多个膜层进行介绍。
请参阅图2,显示面板1000中包括依次叠层设置的驱动基板300、发光器件100以及封装层400。
其中,驱动基板300包括衬底310、位于衬底310一侧的像素驱动电路200以及绝缘层320。
其中,发光器件100包括第一电极110、第二电极120以及位于第一电极110和第二电极120之间的量子点发光层130。
其中,第一电极110可以为阴极,此时,第一电极110可以提供电子。而第二电极120为阳极,此时,第二电极120可以提供空穴。
在一些示例中,第一电极110可以位于第二电极120远离衬底310的一侧。
而在另一些示例中,第一电极110可以位于第二电极120与衬底310之间。
而封装层400包括第一封装无机膜410、封装有机膜420和第二封装无机膜430。在一些示例中,第一封装无机膜410和第二封装无机膜430中的每一个可由硅氮化物、铝氮化物、锆氮化物、钛氮化物、铪氮化物、钽氮化物、硅氧化物、铝氧化物、钛氧化物、锡氧化物、铈氧化物、氧氮化硅(SiON)、锂氟化物等制造。在一些示例中,封装有机膜420可由丙烯酸树脂、甲基丙烯酸树脂、聚异戊二烯、乙烯基树脂、环氧树脂、氨基甲酸乙酯树脂、纤维素树脂等制造。封装层400的层叠结构可不同地变化。
此外,显示面板1000中还包括像素界定层500,像素界定层500位于绝缘层320远离衬底310的一侧,像素界定层500中形成有多个像素开口,而量子点发光层130可以设置于像素开口中。
下面对发光器件100进行介绍。
图4为根据一种实现方式的显示面板1000的结构图。
请参阅图4,本公开提供了一种发光器件100,该发光器件100包括第一电极110、第二电极120、位于第一电极110和第二电极120之间的量子点发光层130。
在一些示例中,第一电极110可以为阴极,阴极可以为导电玻璃,其中,导电玻璃可以包括氧化铟锡(ITO)或掺氟的氧化锡(FTO)等材料。
在一些示例中,第一电极110的厚度的取值范围为:90nm~150nm。示例性的,第一电极110的厚度为120nm。
在一些示例中,第二电极120可以为阳极,阳极可以包括铝(Al)、银(Ag)和铟锌氧化物(IZO)等材料。
在一些示例中,第二电极120的厚度的取值范围为80nm~150nm。示例性的,第二电极120的厚度为120nm。
示例性的,量子点发光层130包括CdS、CdSe、CdTe、ZnSe、InP、PbS、CuInS2、ZnO、CsPbCl3、CsPbBr3、CsPhI3、CdS/ZnS、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、InAs、InGaAs、InGaN、GaNk、ZnTe、Si、Ge、C以及具有上述成分的其他纳米尺度材料,例如纳米棒、纳米片。优选的,量子点发光层130为不含镉的量子点。
在一种实现方式中,发光器件100还包括第一空穴传输层140和第二空穴传输层150。其中,第一空穴传输层140和第二空穴传输层150均位于第二电极120和量子点发光层130之间,且第一空穴传输层140位于第二空穴传输层150和量子点发光层130之间。
其中,第二空穴传输层150的HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)能级高于第一空穴传输层140的HOMO能级,而第一空穴传输层140的HOMO能级高于量子点发光层130的能级。
其中,两个膜层之间的能级的差值越大,二者之间的势垒越大,而势垒越大,空穴从HOMO能级较高的膜层中跃迁HOMO能级较低的膜层中越困难,即空穴从HOMO能级较高的膜层中跃迁HOMO能级较低的膜层中的数量越少。
因此,第二空穴传输层150与量子点发光层130之间的势垒较高,空穴难以从第二空穴传输层150跃迁至量子点发光层130中。
在上述一些实现方式中,通过在第二空穴传输层150与量子点发光层130之间设置第一空穴传输层140,可以使得空穴先由第二空穴传输层150跃迁至第一空穴传输层140,而后再由第一空穴传输层140跃迁至量子点发光层130。其中,由于第二空穴传输层150与第一空穴传输层140之间的势垒较低,因此,空穴由第二空穴传输层150跃迁至第一空穴传输层140较容易,因此,跃迁至第一空穴传输层140中的空穴的量较多。此外,第一空穴传输层140与量子点发光层130之间的势垒较低,因此,空穴由第一空穴传输层140跃迁至量子点发光层130较容易,因此,跃迁到量子点发光层130中的空穴的量较多,进而提高了空穴注入量子点发光层130的效率,从而可以平衡空穴和电子的注入速率,提高发光器件100的发光效率。
图5为根据一些实施例的显示面板1000的结构图。
请参阅图5,在本公开的一些实施例中,发光器件100还包括空穴传输掺杂层160。空穴传输掺杂层160位于量子点发光层130与第二电极120之间。空穴传输掺杂层160包括至少两种空穴传输材料的混合物,其中,至少两种空穴传输材料的最高占据分子轨道能级不同。
两个膜层(或材料)之间的HOMO能级的差值越大,二者之间的势垒越大,空穴从HOMO能级较高的结构中跃迁HOMO能级较低的结构中越困难,即空穴从HOMO能级较高的结构中跃迁HOMO能级较低的结构中的数量越少。反之,两种膜层(或材料)之间的HOMO能级的差值越大,二者之间的势垒越小,空穴从HOMO能级较高的结构中跃迁HOMO能级较低的结构中的数量越多。
在本公开的一些实施例中,空穴传输掺杂层160中包括至少两种空穴传输材料的混合物。此时,第二电极120中的空穴可以依次通过所述至少两种空穴传输材料跃迁至量子点发光层130中。在空穴传输掺杂层160中,空穴先经过HOMO能级较高的空穴传输材料,而后经过HOMO能级较低的空穴传输材料。
在空穴传输掺杂层160,由于上述至少两种空穴传输材料混合,因此,任意HOMO能级相近的两种空穴传输材料之间的接触面积较大,空穴由HOMO能级较高的空穴传输材料跃迁至HOMO能级较低的空穴传输材料中时,空穴的传输速率较高,进而可以提高空穴注入量子点发光层130的速率,使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
在一些示例中,空穴传输掺杂层160中包括两种、三种、四种或者更多种空穴传输材料。
在一些实施例中,至少两种空穴传输材料的迁移率不同,且在任意两种空穴传输材料中,HOMO能级较低的空穴传输材料的迁移率,大于HOMO能级较高的空穴传输材料的迁移率。
其中,迁移率是单位电场强度下所产生的载流子平均漂移速度,即载流子在电场作用下运动速度的快慢的量度。迁移率大,载流子运动得快;迁移率小,载流子运动得慢。
其中,两种材料(或膜层)的迁移率越匹配,即两种材料(或膜层)的迁移率越相近。载流子由其中一个材料(或膜层)跃迁至另一个材料(或膜层)时,两种材料(或膜层)的迁移率越匹配,跃迁到另一个材料(或膜层)中的载流子的量越多,即载流子的传输速率越高。
示例性的,在空穴传输掺杂层160中包括两种空穴传输材料。
其中,第二电极120的迁移率较高,在空穴传输的过程中,第二电极120所产生的空穴优先经过HOMO能级较高的空穴传输材料,HOMO能级较高的空穴传输材料的具有较高的迁移率,因此,HOMO能级较高的空穴传输材料的迁移率能够与第二电极120的迁移率匹配,进而可以提高第二电极120与HOMO能级较高的空穴传输材料之间的空穴的传输效率。
而量子点发光层130的迁移率较低。在空穴传输掺杂层160中,空穴由HOMO能级较高的空穴传输材料传输至HOMO能级较低的空穴传输材料后,空穴会由HOMO能级较低的空穴传输材料传输至量子点发光层130中。其中,量子点发光层130的迁移率较低,而HOMO能级较低的空穴传输材料的迁移率相比于HOMO能级较高的空穴传输材料的迁移率要低,因此,HOMO能级较低的空穴传输材料的迁移率与量子点发光层130的迁移率更匹配,进而可以提高HOMO能级较低的空穴传输材料与量子点发光层130之间的空穴的传输效率。
综上,通过提高第二电极120与HOMO能级较低的空穴传输材料之间的空穴的传输效率,以及HOMO能级较高的空穴传输材料与量子点发光层130之间的空穴的传输效率,可以提高空穴的传输效率。
在一些实施例中,所述至少两种空穴传输材料包括以下材料中的至少两种:4,4-bis(carbazole-9-yl)biphenyl(简称:CBP,中文名称:4,4'-双(N-咔唑基)-1,1'-联苯)、1,3-bis(carbazol-9-yl)benzene(简称:mCP)、2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine(简称:26DCzPPy)、4,4',4”-tris(carbazol-9-yl)triphenylamine(简称:TCTA,中文名称:三(4-咔唑-9-基苯基)胺)、1,1-bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane(简称:TAPC,中文名称:4,4'-环己基二[N,N-二(4-甲基苯基)苯胺)、N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine(简称:NPB,中文名称:N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺)。
示例性的,第一空穴传输材料可以为TCTA,而第二空穴传输材料可以为NPB。
在一些实施例中,所述至少两种空穴传输材料包括第一空穴传输材料和第二空穴传输材料,且第一空穴传输材料的最高占据分子轨道能级小于第二空穴传输材料的最高占据分子轨道能级。在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比的取值范围为1:5~5:1,即在空穴传输掺杂层160中,第一空穴传输材料的质量为第二空穴传输材料的质量的0.2倍~5倍。
其中,第一空穴传输材料的迁移率低于第二空穴传输材料的迁移率。
通过使得第一空穴传输材料与第二空穴传输材料的质量之比大于或等于1:5,即第一空穴传输材料的质量大于第二空穴传输材料的质量的0.2倍,可以避免空穴传输掺杂层160中的第一空穴传输材料的含量过低(例如低于第二空穴传输材料的质量的0.2倍),导致第一空穴传输材料与量子点发光层130之间的接触面积过小,进而导致由第一空穴传输材料跃迁至量子点发光层130的空穴的量过少。
此外,通过使得第一空穴传输材料与第二空穴传输材料的质量之比小于或等于5:1,即第一空穴传输材料的质量小于第二空穴传输材料的质量的5倍,可以避免空穴传输掺杂层160中的第二空穴传输材料的含量过低,导致第二空穴传输材料与第二电极120之间的接触面积过小,进而导致由第二电极120跃迁至第二空穴传输材料量子点发光层130的空穴的量过少。
其中,发光器件100中包括空穴传输部,在一些实施例中,空穴传输部为单层结构,此时,空穴传输部中仅包括空穴传输掺杂层160,基于此,对空穴传输掺杂层160进行介绍。
在一些实施例中,第一空穴传输材料的最高占据分子轨道能级高于第二空穴传输材料的最高占据分子轨道能级,在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比为2:1。此时,第二空穴传输材料与第二电极120之间的接触面积足够大,进而能够使得第二空穴传输材料与第二电极120之间的空穴的传输效率较大。此外,第一空穴传输材料与量子点发光层130之间的接触面积足够大,进而能够使得第一空穴传输材料与量子点发光层之间的空穴的传输效率较大。
综上,通过使得第二空穴传输材料与第二电极120之间的空穴的传输效率较大,并且同时保证第一空穴传输材料与量子点发光层130之间的空穴的传输效率较大,进而能够保证空穴进入量子点发光层130的量,保证空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
请参阅图5,在一些实施例中,空穴传输掺杂层160的厚度H1为量子点发光层130的厚度H2的0.66倍~5倍,即H2≤H1≤5H2。
其中,空传输掺杂层140的厚度H1≥0.66H2,可以避免空穴传输掺杂层140的厚度H1过小(例如小于0.66H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空 穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤5H2,可以避免空传输掺杂层140的厚度H1过大(例如大于5H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过多,从而可以避免材料的浪费,同时避免因空传输掺杂层140的厚度H1过大,导致发光器件100的厚度过大。
在一些实施例中,空穴传输掺杂层160的厚度H1为量子点发光层130的厚度H2的A倍,即H1=2.3H2。
其中,通过使得H1=2.3H2,即可以使得空穴传输掺杂层140具有足够的厚度,保证空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料的含量,进而保证空穴传输掺杂层140的空穴传输效率。还可以避免空穴传输掺杂层160的厚度H1过大,导致材料的浪费以及发光器件100的厚度过大。
请参阅图5,在一些实施例中,空穴传输掺杂层160的厚度H1的取值范围为20nm~50nm,即20nm≤H1≤50nm。
其中,空传输掺杂层140的厚度H1≥20nm,可以避免空穴传输掺杂层140的厚度H1过小(例如小于20nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤50nm,可以避免空传输掺杂层140的厚度H1过大(例如大于50nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过大,从而可以避免材料的浪费,同时避免因空传输掺杂层140的厚度H1过大,导致发光器件100的过大。
示例性的,空穴传输掺杂层160的厚度H1为35nm。
在一些示例中,量子点发光层130的厚度H2的取值范围为10nm~30nm,即10nm≤H2≤30nm。
示例性的,量子点发光层130的厚度H2为20nm。当然,量子点发光层的厚度还可以为15nm、17nm、23nm、25nm等,在此不一一列举。
请参阅图5,在一些实施例中,发光器件100还包括空穴注入层(Hole Inject Layer,HIL)170和电子传输层(Electron Transport Layer,ETL)180,其中,空穴注入层170位于第二电极120和空穴传输掺杂层160之间。而电子传输层180,位于第一电极110和量子点发光层130之间。
通过设置空穴注入层170可以增大空穴的传输效率,进而提高发光器件 100的发光效率。
其中,空穴注入层170的材料包括PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)。除此之外,空穴注入层170的材料还可以包括氧化钼。
在一些示例中,空穴注入层170的厚度的取值范围为5nm~20nm。示例性的,空穴注入层170的厚度为7nm。
而通过设置电子传输层180,可以增大电子的传输效率,进而提高发光器件100的发光效率。
其中,电子传输层180的可以为氧化锌基纳米粒子薄膜或氧化锌薄膜。此外,当电子传输层180为氧化锌基纳米粒子薄膜时,电子传输层180的材料还可以选择离子掺杂型氧化锌纳米粒子,如镁(Mg)、铟(In)、铝(Al)、镓(Ga)掺杂氧化镁纳米粒子等。
在一些示例中,电子传输层180的厚度的取值范围为:25nm~55nm。示例性的,电子传输层180的厚度为40nm。
在本公开中,对参考发光器件和测试发光器件1进行测试。其中,参考发光器件包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、第一空穴传输层140、第二空穴传输层150、空穴注入层170和第二电极120。其中,第一空穴传输层140的厚度为10nm,材料为TCTA。第二空穴传输层150的厚度为30nm,材料为NPB。
而测试发光器件1包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、空穴传输掺杂层160、空穴注入层170和第二电极120。其中,空穴传输掺杂层160的厚度为35nm,空穴传输掺杂层160中的第一空穴传输材料为TCTA,第二空穴传输材料为NPB,且TCTA和NPB的掺杂比例为2:1。
其中,需要说明的是,在参考发光器件和测试发光器件1中,第一电极110的材料均为ITO,厚度均为120nm;电子传输层180的均材料为:氧化锌,厚度均为40nm;量子点发光层130的材料包括:CdS(硫化镉)和CdSe(硒化镉),其中,CdSe包围在CdS的外部,量子点发光层130的厚度均为20nm,且量子点发光层130均为红色量子点发光层;空穴注入层170的材料均为MoO3(氧化钼),厚度均为7nm;而第二电极120的材料均为Ag,厚度均为120nm。
经过测试可得到如图6所示的电流效率示意图。
由图6可知,测试发光器件1的电流效率明高于参考发光器件的电流效 率,电流效率越高,该器件的发光效率越高。因此,测试发光器件1的发光效率明高于参考发光器件的发光效率。由此可知,通过在发光器件100中设置空穴传输掺杂层160,可以有效提高发光器件100的发光效率。
在上面的一些实施例中,对空穴传输部包括仅空穴传输掺杂层160的实施例进行了介绍。
图7为根据另一些实施例的显示面板1000的结构图。
请参阅图7,在另一些实施例中,发光器件100还包括第一空穴传输层140。第一空穴传输层140位于量子点发光层130和空穴传输掺杂层160之间。其中,第一空穴传输层140的最高占据分子轨道能级小于或等于第一空穴传输材料的最高占据分子轨道能级,且大于量子点发光层130的最高占据分子轨道能级。
其中,通过在量子点发光层130和空穴传输掺杂层160之间设置第一空穴传输层140,空穴会由空穴传输掺杂层160的第一空穴传输材料跃迁入第一空穴传输层140中,而后由第一空穴传输层140跃迁至量子点发光层130。
当第一空穴传输层140的HOMO能级小于第一空穴传输材料的HOMO能级时,第一空穴传输层140的HOMO能级与第一空穴传输材料的HOMO能级之间的差值,小于量子点发光层130的HOMO能级与第一空穴传输材料的HOMO能级之间的差值。因此,第一空穴传输层140与第一空穴传输材料之间的势垒,小于量子点发光层130与第一空穴传输材料之间势垒,因此,相比于空穴从第一空穴传输材料跃迁至量子点发光层130,空穴更容易从第一空穴传输材料跃迁至第一空穴传输层140。同理,量子点发光层130的HOMO能级与第一空穴传输层140之间的HOMO能级的差值,小于量子点发光层130的HOMO能级与第一空穴传输材料的HOMO能级之间的差值。因此,量子点发光层130与第一空穴传输层140之间的势垒小于量子点发光层130与第一空穴传输材料之间势垒。因此,相比于空穴从第一空穴传输材料跃迁至量子点发光层130,空穴更容易从第一空穴传输层140跃迁至量子点发光层130。
因此,通过在量子点发光层130和空穴传输掺杂层160之间设置第一空穴传输层140可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
当第一空穴传输层140的HOMO能级等于第一空穴传输材料的HOMO能级时,可以使得第一空穴传输层140中包括第一空穴传输材料。
在一些实施例中,第一空穴传输层140的迁移率小于或等于第一空穴传输材料的迁移率,且大于量子点发光层130的迁移率。
当第一空穴传输层140的迁移率小于第一空穴传输材料的迁移率时,第一空穴传输层140的迁移率与第一空穴传输材料的迁移率之间的差值,小于量子点发光层130的迁移率与第一空穴传输材料的迁移率之间的差值。因此,第一空穴传输层140的迁移率与第一空穴传输材料的迁移率更匹配,相比于空穴从第一空穴传输材料跃迁至量子点发光层130,空穴更容易从第一空穴传输材料跃迁至第一空穴传输层140。
同理,量子点发光层130的迁移率与第一空穴传输层140之间的迁移率的差值,小于量子点发光层130的迁移率与第一空穴传输材料的迁移率之间的差值。因此,第一空穴传输层140的迁移率与量子点发光层130的迁移率更匹配,相比于空穴从第一空穴传输材料跃迁至量子点发光层130,空穴更容易从第一空穴传输层140跃迁至量子点发光层130。
因此,通过在量子点发光层130和空穴传输掺杂层160之间设置第一空穴传输层140可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
当第一空穴传输层140的迁移率等于第一空穴传输材料的迁移率时,当第一空穴传输层140的中包括第一空穴传输材料。
在一些实施例中,第一空穴传输层140包括第一空穴传输材料。因此,第一空穴传输层140与空穴传输掺杂层160中的第一空穴传输材料的能级差值为零。
其中,通过使得第一空穴传输层140包括第一空穴传输材料,可以增大第一空穴传输材料与量子点发光层130之间的接触面积,进而可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
在一些实施例中,在发光器件100包括第一空穴传输层140和空穴传输掺杂层160的情况下,在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比为2:1。此时,空穴传输掺杂层160中的第二空穴传输材料与第二电极120之间的接触面积足够大,进而能够使得第二空穴传输材料与第二电极120之间的空穴的传输效率较大。此外,空穴传输掺杂层160中的第一空穴传输材料与第一空穴传输层140之间的接触面积足够大,从而可以使得较多的空穴由空穴传输掺杂层160中的第一空穴传输材料跃迁至第一空穴传输层140,而后有足够的空穴由第一空穴传输层140跃迁至量子点发光层130,进而保证第一空穴传输材料与量子点发光层130之间的迁移率较大。
综上,通过使得第二空穴传输材料与第二电极120之间的空穴的传输效率较大,并且同时保证第一空穴传输材料与量子点发光层130之间的空穴的传输效率较大,进而能够保证空穴进入量子点发光层130的量,保证空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
请参阅图7,在一些实施例中,在发光器件100中包括空穴传输掺杂层160和第一空穴传输层140的情况下,空穴传输掺杂层160的厚度H1为量子点发光层130的厚度的0.33倍~5倍,即0.5H2≤H1≤5H2。
其中,空传输掺杂层140的厚度H1≥0.33H2,可以避免空穴传输掺杂层140的厚度H1过小(例如小于0.33H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤5H2,可以避免空传输掺杂层140的厚度H1过大(例如大于5H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过多,从而可以避免材料的浪费,同时避免因空传输掺杂层140的厚度H1过大,导致发光器件100的厚度过大。
请参阅图7,在一些实施例中,在发光器件100中包括空穴传输掺杂层160和第一空穴传输层140的情况下,第一空穴传输层140的厚度H3为空穴传输掺杂层160的厚度H1的0.06倍~2倍,即0.06H1≤H3≤2H1。
其中,第一空穴传输层140的厚度H3≥0.06H1,可以避免第一空穴传输层140的厚度H3过小(例如小于0.06H1),而形成量子点发光层130时会形成纳米凸起,若第一空穴传输层140的厚度过小,则会导致第一空穴传输层140的表面不平整,不利于发光器件100的良率。因此,通过使得H3≥0.06H1,可以使得第一空穴传输层140具有足够的厚度,保证第一空穴传输层140具有平整的表面,从而保证发光器件100的良率。
此外,第一空穴传输层140的厚度H3≤2H1,可以避免第一空穴传输层140的厚度H3过大(例如大于2H1),则可以避免第一空穴传输层140的厚度H3过大,导致发光器件100整体的厚度较大。
请参阅图7,在一些实施例中,在发光器件100中包括空穴传输掺杂层160和第一空穴传输层140的情况下,第一空穴传输层140的厚度H3为空穴传输掺杂层160的厚度H1的三分之一。此时,即可以使得第一空穴传输层140具有足够的厚度,保证第一空穴传输层140具有平整的表面,从而保证发 光器件100的良率。还可以避免第一空穴传输层140的厚度H1过大,导致材料的浪费以及发光器件100的厚度过大。
请参阅图7,在一些实施例中,在发光器件100中包括空穴传输掺杂层160和第一空穴传输层140的情况下,空穴传输掺杂层160的厚度H1为10nm~50nm。
其中,空传输掺杂层140的厚度H1≥10nm,可以避免空穴传输掺杂层140的厚度H1过小(例如小于10nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤50nm,可以避免空传输掺杂层140的厚度H1过大(例如大于50nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过大,从而可以避免材料的浪费,同时避免因空传输掺杂层140的厚度H1过大,导致发光器件100的过大。
示例性的,空穴传输掺杂层160的厚度H1为30nm。
请参阅图7,在一些实施例中,在发光器件100中包括空穴传输掺杂层160和第一空穴传输层140的情况下,第一空穴传输层140的厚度H3为3nm~20nm,即3nm≤H3≤20nm。
其中,第一空穴传输层140的厚度H3≥3nm,可以避免第一空穴传输层140的厚度H3过小(例如小于3nm),而形成量子点发光层130时会形成纳米凸起,若第一空穴传输层140的厚度过小,则会导致第一空穴传输层140的表面不平整,不利于发光器件100的良率。因此,通过使得H3≥3nm,可以使得第一空穴传输层140具有足够的厚度,保证第一空穴传输层140具有平整的表面,从而保证发光器件100的良率。
此外,第一空穴传输层140的厚度H3≤20nm,可以避免第一空穴传输层140的厚度H3过大(例如大于20nm),则可以避免第一空穴传输层140的厚度H3过大,导致发光器件100整体的厚度较大。
示例性的,第一空穴传输层140的厚度H3为10nm。
在本公开的一些实施例中,对参考发光器件和测试发光器件2进行测试,其中,参考发光器件包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、第一空穴传输层140、第二空穴传输层150、空穴注入层170和第二电极120。其中,第一空穴传输层140的厚度为10nm,材料为TCTA。第二空穴传输层150的厚度为30nm,材料为NPB。
而测试发光器件2中的空穴传输部包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、第一空穴传输层140、空穴传输掺杂层160、空穴注入层170和第二电极120。其中,第一空穴传输层140的厚度为10nm,第一空穴传输层140的材料为TCTA。空穴传输掺杂层160的厚度为30nm。空穴传输掺杂层160中的第一空穴传输材料为TCTA,第二空穴传输材料为NPB,且TCTA和NPB的掺杂比例为2:1。
其中,需要说明的是,在参考发光器件和测试发光器件2中,第一电极110的材料均为ITO,厚度均为120nm;电子传输层180的均材料为:氧化锌,厚度均为40nm;量子点发光层130的材料包括:CdS(硫化镉)和CdSe(硒化镉),其中,CdSe包围在CdS的外部,量子点发光层130的厚度均为20nm,且量子点发光层130均为红色量子点发光层;空穴注入层170的材料均为MoO3(氧化钼),厚度均为7nm;而第二电极120的材料均为Ag,厚度均为120nm。
经过测试可得到如图8所示的电流效率示意图。
由图8可知,测试发光器件2的电流效率明高于参考发光器件的电流效率,电流效率越高,该器件的发光效率越高。因此,测试发光器件2的发光效率明高于参考发光器件的发光效率。由此可知,通过在发光器件100中设置第一空穴传输层140和空穴传输掺杂层160,可以有效提高发光器件100的发光效率。
在上面的一些实施例中,对空穴传输部包括第一空穴传输层140和空穴传输掺杂层160的实施例进行了介绍。
图9为根据其他的一些实施例的显示面板1000的结构图。
请参阅图9,在其他的一些实施例中,发光器件100还包括:第二空穴传输层150。第二空穴传输层150位于空穴传输掺杂层160和第二电极120之间。其中,第二空穴传输层150的最高占据分子轨道能级小于第二电极120的最高占据分子轨道能级,且大于或等于第二空穴传输材料的最高占据分子轨道能级。
在发光器件100还包括空穴注入层170的情况下,第二空穴传输层150位于空穴传输掺杂层160和第二电极120之间。
其中,通过在第二电极120和空穴传输掺杂层160之间设置第二空穴传输层150,空穴会由第二电极120跃迁入第二空穴传输层150中,而后由第二空穴传输层150跃迁至空穴传输掺杂层160的第二空穴传输材料。
当第二空穴传输层150的HOMO能级大于第二空穴传输材料的HOMO 能级时,第二空穴传输层150的HOMO能级与第二电极120的HOMO能级之间的差值,小于第二空穴传输材料的HOMO能级与第二电极120的HOMO能级之间的差值。因此,第二空穴传输层150与第二电极120之间的势垒小于第二空穴传输材料与第二电极120之间势垒。因此,相比于空穴从第二电极120跃迁至第二空穴传输材料,空穴更容易从第二电极120跃迁至第二空穴传输层150。同理,第二空穴传输材料的HOMO能级与第二空穴传输层150的HOMO能级之间的差值,小于第二空穴传输材料的HOMO能级与第二电极120的HOMO能级之间的差值。因此,第二空穴传输材料与第二空穴传输层150之间的势垒,小于第二空穴传输材料与第二电极120之间势垒,因此,相比于空穴从第二电极120跃迁至第二空穴传输材料,空穴更容易第二空穴传输层150从跃迁至第二空穴传输材料。因此,通过在第二电极120和空穴传输掺杂层160之间设置第二空穴传输层150可以增大空穴的传输效率,从而使得电子和空穴的注入第二电极120的速率更加平衡,从而提高发光器件100的发光效率。
当第二空穴传输层150的HOMO能级等于第二空穴传输材料的HOMO能级时,第二空穴传输层150中包括第二空穴传输材料。
在一些实施例中,第二空穴传输层150的迁移率小于第二电极120的迁移率,且大于或等于第二空穴传输材料的迁移率。
当第二空穴传输层150的迁移率大于第二空穴传输材料的迁移率时,第二空穴传输层150的迁移率与第二空穴传输材料的迁移率之间的差值,小于第二电极120的迁移率与第二空穴传输材料的迁移率之间的差值。因此,第二空穴传输层150的迁移率与第二电极120的迁移率更匹配,相比于空穴从第二电极120跃迁至第二空穴传输材料,空穴更容易从第二空穴传输层150跃迁至第二空穴传输材料。同理,第二电极120的迁移率与第二空穴传输层150之间的迁移率的差值,小于第二电极120的迁移率与第二空穴传输材料的迁移率之间的差值。因此,第二空穴传输层150的迁移率与第二电极120的迁移率更匹配,相比于空穴从第二电极120跃迁至第二空穴传输材料,空穴更容易从第二电极120跃迁至第二空穴传输层150。
因此,通过在第二电极120和空穴传输掺杂层160之间设置第二空穴传输层150可以增大空穴的传输效率,从而使得电子和空穴的注入第二电极120的速率更加平衡,从而提高发光器件100的发光效率。
当第二空穴传输层150的迁移率等于第二空穴传输材料的迁移率时,当第二空穴传输层150的中包括第二空穴传输材料。
在一些实施例中,第二空穴传输层150包括第二空穴传输材料。因此,第二空穴传输层150与空穴传输掺杂层160中的第二空穴传输材料的能级差值为零。
其中,通过使得第二空穴传输层150包括第二空穴传输材料,可以增大第二空穴传输材料与第二电极120之间的接触面积,进而可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
在一些实施例中,发光器件100还包括第二空穴传输层150和空穴传输掺杂层160的情况下,在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比为1:1。
此时,空穴传输掺杂层160中的第二空穴传输材料与第二电极120之间的接触面积足够大,从而可以使得较多的空穴由第二电极120跃迁至第二空穴传输层150以及第二空穴传输材料中,而后有足够的空穴由第二空穴传输材料跃迁至第一空穴传输材料中,进而保证第二电极120第二空穴传输材料之间的空穴的传输效率较大。此外,空穴传输掺杂层160中的第一空穴传输材料与量子点发光层130之间的接触面积足够大,进而可以保证第一空穴传输材料与量子点发光层130之间的空穴的传输效率。
综上,通过使得第二空穴传输材料与第二电极120之间的空穴的传输效率较大,并且同时保证第一空穴传输材料与量子点发光层130之间的空穴的传输效率较大,进而能够保证空穴进入量子点发光层130的量,保证空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
请参阅图9,在一些实施例中,发光器件100还包括第二空穴传输层150和空穴传输掺杂层160的情况下,空穴传输掺杂层160的厚度H1为量子点发光层130的厚度H2的0.1倍~2倍,即0.1H2≤H1≤2H2。
其中,空传输掺杂层140的厚度H1≥0.1H2,可以避免空穴传输掺杂层140的厚度H1过小(例如小于0.1H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤2H2,可以避免空传输掺杂层140的厚度H1过大(例如大于2H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过多,从而可以避免材料的浪费,同时避免因空传 输掺杂层140的厚度H1过大,导致发光器件100的厚度过大。
请参阅图9,在一些实施例中,发光器件100还包括第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层150的厚度H4是空穴传输掺杂层160的厚度H1的0.5倍~16.66倍,即0.5H1≤H4≤16.66H1。
其中,第二空穴传输层150的厚度H4≥0.5H1,可以避免第二空穴传输层150的厚度H4过小(例如小于0.5H1),导致第二空穴传输材料过少,进而导致第二空穴传输材料与第二电极120之间的空穴的传输速率过小。
此外,第二空穴传输层150的厚度H4≤16.66H1,可以避免第二空穴传输层150的厚度H4过大(例如大于16.66H1),则可以避免第二空穴传输层150的厚度H4过大,导致发光器件100整体的厚度较大。
请参阅图9,在一些实施例中,发光器件100还包括第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层150的厚度H4是空穴传输掺杂层160的厚度H1的3倍,即H4=3H1。
请参阅图9,在一些实施例中,发光器件100还包括第二空穴传输层150和空穴传输掺杂层160的情况下,空穴传输掺杂层160的厚度H1为3nm~20nm,即3nm≤H1≤20nm。
其中,空传输掺杂层140的厚度H1≥3nm,可以避免空穴传输掺杂层140的厚度H1过小(例如小于3nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤20nm,可以避免空传输掺杂层140的厚度H1过大(例如大于20nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过多,从而可以避免材料的浪费,同时避免因空传输掺杂层140的厚度H1过大,导致发光器件100的厚度过大。
示例性的,空穴传输掺杂层160的厚度H1为10nm。
请参阅图9,在一些实施例中,发光器件100还包括第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层150的厚度H4为10nm~50nm,10nm≤H4≤50nm。
其中,第二空穴传输层150的厚度H4≥10nm,可以避免第二空穴传输层150的厚度H4过小(例如小于10nm),导致第二空穴传输材料过少,进而导致第二空穴传输材料与第二电极120之间的空穴的传输速率过小。
此外,第二空穴传输层150的厚度H4≤50nm,可以避免第二空穴传输层 150的厚度H4过大(例如大于50nm),则可以避免第二空穴传输层150的厚度H4过大,导致发光器件100整体的厚度较大。
示例性的,发光器件100还包括第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层150的厚度H4为30nm。
在本公开中,对参考发光器件和测试发光器件3进行测试。其中,参考发光器件包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、第一空穴传输层140、第二空穴传输层150、空穴注入层170和第二电极120。其中,第一空穴传输层140的厚度为10nm,材料为TCTA。第二空穴传输层150的厚度为30nm,材料为NPB。
而测试发光器件3中包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、空穴传输掺杂层160、第二空穴传输层150、空穴注入层170和第二电极120。其中,空穴传输掺杂层160的厚度为10nm,空穴传输掺杂层160中的第一空穴传输材料为TCTA,第二空穴传输材料为NPB,且TCTA和NPB的质量之比为1:1。第二空穴传输层150的厚度为30nm,材料为NPB。
其中,需要说明的是,在参考发光器件和测试发光器件3中,第一电极110的材料均为ITO,厚度均为120nm;电子传输层180的均材料为:氧化锌,厚度均为40nm;量子点发光层130的材料包括:CdS(硫化镉)和CdSe(硒化镉),其中,CdSe包围在CdS的外部,量子点发光层130的厚度均为20nm,且量子点发光层130均为红色量子点发光层;空穴注入层170的材料均为MoO3(氧化钼),厚度均为7nm;而第二电极120的材料均为Ag,厚度均为120nm。
经过测试可得到如图10所示的电流效率示意图。
由图10可知,测试发光器件3的电流效率明高于参考发光器件的电流效率,电流效率越高,该器件的发光效率越高。因此,测试发光器件3的发光效率明高于参考发光器件的发光效率。由此可知,通过在发光器件100中设置第二空穴传输层150和空穴传输掺杂层160,可以有效提高发光器件100的发光效率。
在上面的一些实施例中,对空穴传输部包括第二空穴传输层150和空穴传输掺杂层160的实施例进行了介绍。
图11为根据又一些实施例的显示面板1000的结构图。
请参阅图11,在又一些实施例中,发光器件100还包括:第一空穴传输层140和第二空穴传输层150。其中,第一空穴传输层140位于量子点发光层 130和空穴传输掺杂层160之间。其中,第一空穴传输层140的最高占据分子轨道能级小于或等于第一空穴传输材料的最高占据分子轨道能级,且大于量子点发光层130的最高占据分子轨道能级。第二空穴传输层150位于空穴传输掺杂层160和第二电极120之间。其中,第二空穴传输层150的最高占据分子轨道能级小于第二电极120的最高占据分子轨道能级,且大于或等于第二空穴传输材料的最高占据分子轨道能级。
经上文可知,通过在量子点发光层130和空穴传输掺杂层160之间设置第一空穴传输层140,以及在第二电极120和空穴传输掺杂层160之间设置第二空穴传输层150,均可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第一空穴传输层140的迁移率小于或等于第一空穴传输材料的迁移率,且大于量子点发光层130的迁移率;第二空穴传输层150的迁移率小于第二电极120的迁移率,且大于或等于第二空穴传输材料的迁移率。经上文可知,如此设置,可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
在一些实施例中,第一空穴传输层140包括第一空穴传输材料,第二空穴传输层150包括第二空穴传输材料。
通过使得第一空穴传输层140包括第一空穴传输材料,可以增大第一空穴传输材料与量子点发光层130之间的接触面积,进而可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
通过使得第二空穴传输层150包括第二空穴传输材料,可以增大第二空穴传输材料与第二电极120之间的接触面积,进而可以增大空穴的传输效率,从而使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比为1:1。
此时,空穴传输掺杂层160中的第二空穴传输材料与第二电极120之间的接触面积足够大,从而可以使得较多的空穴由第二电极120跃迁至第二空穴传输层150以及第二空穴传输材料中,而后有足够的空穴由第二空穴传输 材料跃迁至第一空穴传输材料中,进而保证第二电极120第二空穴传输材料之间的空穴的传输效率较大。
此外,空穴传输掺杂层160中的第一空穴传输材料与第一空穴传输层140之间的接触面积足够大,从而可以使得较多的空穴由空穴传输掺杂层160中的第一空穴传输材料跃迁至第一空穴传输层140,而后有足够的空穴由第一空穴传输层140跃迁至量子点发光层130,进而保证第一空穴传输材料与量子点发光层130之间的迁移率较大。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,空穴传输掺杂层160的厚度H1为量子点发光层130的厚度H2的0.1倍~2倍,即0.1H2≤H1≤2H2。
其中,空传输掺杂层140的厚度H1≥0.1H2,可以避免空穴传输掺杂层140的厚度H1过小(例如小于0.1H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤2H2,可以避免空传输掺杂层140的厚度H1过大(例如大于2H2),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过多,从而可以避免材料的浪费,同时避免因空传输掺杂层140的厚度H1过大,导致发光器件100的厚度过大。
在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第一空穴传输层140的厚度H3是空穴传输掺杂层160的厚度H1的0.15倍~6.67倍,即0.15H1≤H3≤6.67H1。
其中,第一空穴传输层140的厚度H3≥0.15H1,可以避免第一空穴传输层140的厚度H3过小(例如小于0.15H1),而形成量子点发光层130时会形成纳米凸起,若第一空穴传输层140的厚度过小,则会导致第一空穴传输层140的表面不平整,不利于发光器件100的良率。因此,通过使得H3≥0.15H1,可以使得第一空穴传输层140具有足够的厚度,保证第一空穴传输层140具有平整的表面,从而保证发光器件100的良率。
此外,第一空穴传输层140的厚度H3≤6.67H1,可以避免第一空穴传输层140的厚度H3过大(例如大于6.67H1),则可以避免第一空穴传输层140的厚度H3过大,导致发光器件100整体的厚度较大。
在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层150的厚度H4是空穴传输掺杂 层160的厚度H1的0.5倍~16.67倍,即0.5H1≤H4≤16.67H1。
其中,第二空穴传输层150的厚度H4≥0.5H1,可以避免第二空穴传输层150的厚度H4过小(例如小于0.5H1),导致第二空穴传输材料过少,进而导致第二空穴传输材料与第二电极120之间的空穴的传输速率过小。
此外,第二空穴传输层150的厚度H4≤16.66H1,可以避免第二空穴传输层150的厚度H4过大(例如大于16.66H1),则可以避免第二空穴传输层150的厚度H4过大,导致发光器件100整体的厚度较大。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第一空穴传输层140的厚度H3是空穴传输掺杂层160的厚度H1的1倍,即H3=H1。此时,即可以使得第一空穴传输层140具有足够的厚度,保证第一空穴传输层140具有平整的表面,从而保证发光器件100的良率。还可以避免第一空穴传输层140的厚度H1过大,导致材料的浪费以及发光器件100的厚度过大。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层的150厚度H4是空穴传输掺杂层160的厚度H1的6倍,即H4=6H1。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,空穴传输掺杂层160的厚度H1为3nm~20nm。
其中,空传输掺杂层140的厚度H1≥3nm,可以避免空穴传输掺杂层140的厚度H1过小(例如小于3nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过少,进而可以避免因第一空穴传输材料以及第二空穴传输材料过少而导致的空穴的传输效率较低,从而可以保证空穴传输掺杂层140的空穴的传输效率。
此外,空传输掺杂层140的厚度H1≤20nm,可以避免空传输掺杂层140的厚度H1过大(例如大于20nm),导致空传输掺杂层140中的第一空穴传输材料以及第二空穴传输材料过大,从而可以避免材料的浪费,同时避免因空传输掺杂层140的厚度H1过大,导致发光器件100的过大。
示例性的,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,空传输掺杂层140的厚度H1为5nm。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第一空穴传输层140的厚度H3为3nm~20nm。
其中,第一空穴传输层140的厚度H3≥3nm,可以避免第一空穴传输层140的厚度H3过小(例如小于3nm),而形成量子点发光层130时会形成纳米凸起,若第一空穴传输层140的厚度过小,则会导致第一空穴传输层140的表面不平整,不利于发光器件100的良率。因此,通过使得H3≥3nm,可以使得第一空穴传输层140具有足够的厚度,保证第一空穴传输层140具有平整的表面,从而保证发光器件100的良率。
此外,第一空穴传输层140的厚度H3≤20nm,可以避免第一空穴传输层140的厚度H3过大(例如大于20nm),则可以避免第一空穴传输层140的厚度H3过大,导致发光器件100整体的厚度较大。
示例性的,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第一空穴传输层140的厚度H3为5nm。
在一些实施例中,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层150的厚度H4为10nm~50nm。
其中,第二空穴传输层150的厚度H4≥10nm,可以避免第二空穴传输层150的厚度H4过小(例如小于10nm),导致第二空穴传输材料过少,进而导致第二空穴传输材料与第二电极120之间的空穴的传输速率过小。
此外,第二空穴传输层150的厚度H4≤50nm,可以避免第二空穴传输层150的厚度H4过大(例如大于50nm),则可以避免第二空穴传输层150的厚度H4过大,导致发光器件100整体的厚度较大。
示例性的,在发光器件100还包括:第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,第二空穴传输层150的厚度H4为30nm。
在本公开中,对参考发光器件和测试发光器件4进行测试,其中,参考发光器件包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、第一空穴传输层140、第二空穴传输层150、空穴注入层170和第二电极120。其中,第一空穴传输层140的厚度为10nm,材料为TCTA。第二空穴传输层150的厚度为30nm,材料为NPB。
而测试发光器件4包括依次叠层设置的第一电极110、电子传输层180、量子点发光层130、第一空穴传输层140、空穴传输掺杂层160、第二空穴传输层150、空穴注入层170和第二电极120。其中,第一空穴传输层140的厚度为5nm,材料为TCTA。而空穴传输掺杂层160的厚度为5nm,空穴传输掺 杂层160中的第一空穴传输材料为TCTA,第二空穴传输材料为NPB,且TCTA和NPB的掺杂比例为1:1。第二空穴传输层150的厚度为40nm,材料为NPB。
其中,需要说明的是,在参考发光器件和测试发光器件4中,第一电极110的材料均为ITO,厚度均为120nm;电子传输层180的均材料为:氧化锌,厚度均为40nm;量子点发光层130的材料包括:CdS(硫化镉)和CdSe(硒化镉),其中,CdSe包围在CdS的外部,量子点发光层130的厚度均为20nm,且量子点发光层130均为红色量子点发光层;空穴注入层170的材料均为MoO3(氧化钼),厚度均为7nm;而第二电极120的材料均为Ag,厚度均为120nm。
经过测试可得到如图12所示的电流效率示意图。
由图12可知,测试发光器件4的电流效率明高于参考发光器件的电流效率,电流效率越高,该器件的发光效率越高。因此,测试发光器件4的发光效率明高于参考发光器件的发光效率。由此可知,通过在发光器件100中设置第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160,可以有效提高发光器件100的发光效率。
在一些实施例中,空穴传输掺杂层160的包括堆叠设置的多层子掺杂层。在任意相邻的两层子掺杂层中,靠近量子点发光层130的子掺杂层中的第一空穴传输材料与第二空穴传输材料的质量之比,大于远离量子点发光层130的子掺杂层中的第一空穴传输材料与第二空穴传输材料的质量之比。
因此,在空穴传输掺杂层160中,越靠近量子点发光层130,第一空穴传输材料所占的比例越大,因此,可以增大空穴传输掺杂层160中的第一空穴传输材料与量子点发光层130之间的接触面积,进而增大空穴传输掺杂层160中的第一空穴传输材料与量子点发光层130之间的空穴的传输速率,进而可以增大注入量子点发光层130中的空穴的量,提高空穴与电子注入平衡,提高发光器件100的发光效率。
而越靠近第二电极120,第二空穴传输材料所占的比例越大。因此,可以增大在空穴传输掺杂层160中第二空穴传输材料与第二电极120之间的接触面积,从而可以增大第二空穴传输材料与第二电极120之间的空穴的传输速率,进而可以增大注入量子点发光层130中的空穴的量,提高空穴与电子注入平衡,提高发光器件100的发光效率。
在上面的一些实施例中,对发光器件100中的膜层结构进行了介绍,接下来对第一空穴传输材料和第二空穴传输材料进行介绍。
在一些实施例中,第一空穴传输材料的最高占据分子轨道能级为量子点 发光层130的最高占据分子轨道能级的0.88倍~1.02倍。
其中,由于第一空穴传输材料的HOMO能级以及量子点发光层130的HOMO能级的取值均为负值。因此,通过使得第一空穴传输材料的HOMO能级大于或等于量子点发光层130的HOMO能级的0.88倍,可以避免第一空穴传输材料的HOMO能级过大,导致第一空穴传输材料的HOMO能级与量子点发光层130的HOMO能级之间的差值过大,即第一空穴传输材料与量子点发光层130之间的势垒过大,进而可以避免第一空穴传输材料和量子点发光层130之间空穴的传输效率过小。
此外,由于第一空穴传输材料的HOMO能级以及量子点发光层130的HOMO能级的取值均为负值。因此,通过使得第一空穴传输材料的HOMO能级小于或等于量子点发光层130的HOMO能级的1.02倍,进而可以避免第一空穴传输材料的HOMO能级过小,导致第一空穴传输材料的HOMO能级与第二空穴传输材料的HOMO能级之间的差值过大,进而第一空穴传输材料与第二空穴传输材料之间的势垒过大,进而可以避免第一空穴传输材料与第二空穴传输材料之间的空穴传输效率过小。
在一些实施例中,第二空穴传输材料的最高占据分子轨道能级为量子点发光层130的最高占据分子轨道能级的0.82倍~0.97倍。
其中,由于第二空穴传输材料的HOMO能级以及量子点发光层130的HOMO能级的取值均为负值。因此,通过使得第二空穴传输材料的HOMO能级大于或等于量子点发光层130的HOMO能级的0.82倍,可以避免第二空穴传输材料的HOMO能级过大,导致第一空穴传输材料的HOMO能级与第二空穴传输材料的HOMO能级之间的差值过大,进而使得第一空穴传输材料与第二空穴传输材料之间的势垒过大,进而可以避免第一空穴传输材料与第二空穴传输材料之间的空穴传输效率过小。
此外,由于第二空穴传输材料的HOMO能级以及量子点发光层130的HOMO能级的取值均为负值。因此,通过使得第一空穴传输材料的HOMO能级小于或等于量子点发光层130的HOMO能级的0.97倍,可以避免第二空穴传输材料的HOMO能级过小,导致第二空穴传输材料的HOMO能级与第二电极120之间的差值过大,进而使得第二空穴传输材料与第二电极120之间的势垒过大,从而可以避免第二空穴传输材料与第二电极120之间的空穴传输效率过小。
在一些实施例中,第一空穴传输材料的最高占据分子轨道能级的取值范围为-6.3eV~-5.9eV。
其中,通过使得第一空穴传输材料的HOMO能级小于或等于-5.9eV,可以避免第一空穴传输材料的HOMO能级过大(例如大于-5.9eV),导致第一空穴传输材料的HOMO能级与量子点发光层130的HOMO能级之间的差值过大,进而使得第一空穴传输材料与量子点发光层130之间的势垒过大,进而可以避免第一空穴传输材料和量子点发光层130之间空穴的传输效率过小。
此外,通过使得第一空穴传输材料的HOMO能级大于或等于-6.3eV,可以避免第一空穴传输材料的HOMO能级过小(例如小于-6.3eV),导致第一空穴传输材料的HOMO能级与第二空穴传输材料的HOMO能级之间的差值过大,进而使得第一空穴传输材料与第二空穴传输材料之间的势垒过大,进而可以避免第一空穴传输材料与第二空穴传输材料之间的空穴传输效率过小。
在一些实施例中,第二空穴传输材料的最高占据分子轨道能级的取值范围为-6eV~-5.5eV。
其中,通过使得第二空穴传输材料的HOMO能级小于或等于-5.5eV,可以避免第二空穴传输材料的HOMO能级过大(例如大于-5.5eV),导致第一空穴传输材料的HOMO能级与第二空穴传输材料的HOMO能级之间的差值过大,即第一空穴传输材料与第二空穴传输材料之间的势垒过大,进而可以避免第一空穴传输材料与第二空穴传输材料之间的空穴传输效率过小。
此外,通过使得第一空穴传输材料的HOMO能级大于或等于-6eV,可以避免第二空穴传输材料的HOMO能级过小(例如小于-6eV),导致第二空穴传输材料的HOMO能级与第二电极120之间的差值过大,进而致第二空穴传输材料与第二电极120之间的势垒过大,从而可以避免第二空穴传输材料与第二电极120之间的空穴传输效率过小。
在一些实施例中,第一空穴传输材料的迁移率为量子点发光层130的迁移率的1倍~10 3倍。
其中,通过使得第一空穴传输材料的迁移率小于或等于量子点发光层130的迁移率的10 3倍,可以避免第一空穴传输材料的迁移率过大,导致第一空穴传输材料的迁移率与量子点发光层130的迁移率之间的差值过大,即第一空穴传输材料与量子点发光层130之间的不匹配,进而可以避免第一空穴传输材料和量子点发光层130之间空穴的传输效率过小。
此外,通过使得第一空穴传输材料的迁移率大于或等于量子点发光层130的迁移率的1倍,可以避免第一空穴传输材料的迁移率过小,导致第一空穴传输材料的迁移率与第二空穴传输材料的迁移率之间的差值过大,进而第一空穴传输材料与第二空穴传输材料不匹配,进而可以避免第一空穴传输材料 与第二空穴传输材料之间的空穴传输效率过小。
在一些实施例中,第二空穴传输材料的迁移率为量子点发光层130的迁移率的10 2倍~10 4倍。
其中,通过使得第二空穴传输材料的迁移率小于或等于量子点发光层130的迁移率的10 4倍,可以避免第二空穴传输材料的迁移率过大,导致第二空穴传输材料的迁移率与第一空穴传输材料的迁移率之间的差值过大,进而使得第一空穴传输材料与第二空穴传输材料不匹配,进而可以避免第一空穴传输材料与第二空穴传输材料之间的空穴传输效率过小。
此外,通过使得第一空穴传输材料的迁移率大于或等于量子点发光层130的迁移率的10 2倍,可以避免第二空穴传输材料的迁移率过小,导致第二空穴传输材料的迁移率与第二电极120的迁移率之间的差值过大,进而使得第二空穴传输材料与第二电极120不匹配,从而可以避免第二空穴传输材料与第二电极120之间的空穴传输效率过小。
在一些实施例中,第一空穴传输材料的迁移率的取值范围为10 -5cm 2V -1s -1~10 -3cm 2V -1s -1
其中,通过使得第一空穴传输材料的迁移率小于或等于10 -3cm 2V -1s -1,可以避免第一空穴传输材料的迁移率过大(例如大于10 -3cm 2V -1s -1),导致第一空穴传输材料的迁移率与量子点发光层130的迁移率之间的差值过大,即第一空穴传输材料与量子点发光层130之间的不匹配,进而可以避免第一空穴传输材料和量子点发光层130之间空穴的传输效率过小。
此外,通过使得第一空穴传输材料的迁移率大于或等于10 -5cm 2V -1s -1,可以避免第一空穴传输材料的迁移率过小(例如小于10 -5cm 2V -1s -1),导致第一空穴传输材料的迁移率与第二空穴传输材料的迁移率之间的差值过大,进而第一空穴传输材料与第二空穴传输材料不匹配,进而可以避免第一空穴传输材料与第二空穴传输材料之间的空穴传输效率过小。
在一些实施例中,第二空穴传输材料的迁移率的取值范围为10 -3cm 2V -1s -1~10 -2cm 2V -1s -1
其中,通过使得第二空穴传输材料的迁移率小于或等于10 -2cm 2V -1s -1,可以避免第二空穴传输材料的迁移率过大(例如大于10 -2cm 2V -1s -1),导致第二空穴传输材料的迁移率与第一空穴传输材料的迁移率之间的差值过大,进而使得第一空穴传输材料与第二空穴传输材料不匹配,进而可以避免第一空穴传输材料与第二空穴传输材料之间的空穴传输效率过小。
此外,通过使得第一空穴传输材料的迁移率大于或等于10 -3cm 2V -1s -1, 可以避免第二空穴传输材料的迁移率过小(例如小于10 -3cm 2V -1s -1),导致第二空穴传输材料的迁移率与第二电极120的迁移率之间的差值过大,进而使得第二空穴传输材料与第二电极120不匹配,从而可以避免第二空穴传输材料与第二电极120之间的空穴传输效率过小。
在一些实施例中,空穴传输材料可以为咔唑、三苯胺、咔唑衍生物及三苯胺衍生物等材料。
综上,本公开的一些实施例所提供的发光器件100,通过在发光器件100中设置空穴传输掺杂层160,可以有效提高空穴注入量子点发光层130的效率,从而可以平衡空穴和电子的注入速率,提高发光器件100的发光效率。
而本公开的一些实施例所提供的显示面板1000包括以上一些实施例所提供的发光器件100,因此,而本公开的一些实施例所提供的显示面板1000包括以上一些实施例所提供的发光器件100的全部有益效果,在此不进行赘述。
而本公开的一些实施例所提供的显示装置2000包括以上一些实施例所提供的显示面板1000,因此,而本公开的一些实施例所提供的显示装置2000包括以上一些实施例所提供的显示面板1000的全部有益效果,在此不进行赘述。
本公开的一些实施例还提供了一种发光器件的制备方法,用于以上一些实施例所提供的发光器件100。
图13为根据一些实施例的发光器件的制备方法的流程图。
请参阅图13,该发光器件的制备方法包括:以下步骤S1~S3。
请再次参阅图5,S1、在第一电极110的一侧形成量子点发光层130。
其中,第一电极110可以为导电玻璃。
在形成量子点发光层130之前可以分别采用水和异丙醇分别对导电玻璃进行清洗,并使用紫外线对其处理5至10分钟。
在形成量子点发光层130时,可以采用旋涂工艺。
S2、在量子点发光层130远离第一电极110的一侧形成空穴传输掺杂层160,其中,空穴传输掺杂层160包括至少两种空穴传输材料的混合物,其中,所述至少两种空穴传输材料的最高占据分子轨道能级不同。
其中,在空穴传输掺杂层160,由于上述至少两种空穴传输材料混合,因此,任意HOMO能级相近的两种空穴传输材料之间的接触面积较大,空穴由HOMO能级较高的空穴传输材料跃迁至HOMO能级较低的空穴传输材料中时,空穴的传输速率较高,进而可以提高空穴注入量子点发光层130的速率,使得电子和空穴的注入量子点发光层130的速率更加平衡,从而提高发光器件100的发光效率。
示例性的,可以通过蒸镀工艺形成空穴传输掺杂层160。
S3、在空穴传输掺杂层160远离量子点发光层130的一侧形成第二电极120。
其中,第二电极120可以为铝膜或银膜,其中,铝膜或银膜可以通过蒸镀工艺形成。
此外,第二电极120还可以为铟锌氧化物(IZO),此时,铟锌氧化物(IZO)可以通过溅射工艺形成。
在步骤S3之后,可以对发光器件100进行封装。示例性的,可以采用紫外固化胶对发光器件100进行封装。
在一些实施例中,所述至少两种空穴传输材料包括第一空穴传输材料和第二空穴传输材料,且第一空穴传输材料的HOMO能级小于所述第二空穴传输材料的HOMO能级。
在S2、在量子点发光层130远离第一电极110的一侧形成空穴传输掺杂层160的步骤中,采用双源共蒸法在第一电极110的一侧同时沉积第一空穴传输材料和第二空穴传输材料,以形成空穴传输掺杂层160。
其中,“双源共蒸法”指的是,将两个蒸发源均设置于镀膜室中,其中一个蒸发源用于蒸发第一空穴传输材料,而另一个蒸发源用于蒸发第二空穴传输材料,其中,通过改变第一空穴传输材料和第二空穴传输材料的蒸发温度,可以改变二者的蒸镀速度。
示例性的,在步骤S2中,第一空穴传输材料和第二空穴传输材料的蒸镀速度之比的取值范围为1:5~5:1,从而可以使得空穴传输掺杂层160中第一空穴传输材料和第二空穴传输材料的质量之比的取值范围为1:5~5:1。
在一些示例中,空穴传输部中仅包括空穴传输掺杂层160,在步骤S2中,第一空穴传输材料和第二空穴传输材料的蒸镀速度之比的为2:1。此时,在空穴传输掺杂层中160中,第一空穴传输材料与第二空穴传输材料的质量之比为2:1。
图14为根据一些实施例的发光器件的制备方法的流程图。
请参阅图14,且同时参阅图5,在一些实施例中,S1、在第一电极110的一侧形成量子点发光层130的步骤之前,还包括:S01、在第一电极110的一侧形成电子传输层180。
当电子传输层180为氧化锌基纳米粒子薄膜时,可以旋涂氧化锌纳米粒子,并在80℃~120℃的温度下加热成膜。其中,匀胶机转速设置为500rpm~2500rpm,以调整膜层的厚度。
当电子传输层180为氧化锌薄膜时。在制备氧化锌薄膜时,将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中,以形成锌的前驱体溶液。
而后将上述导电玻璃置于匀胶机,将90μL~120μL锌的前驱体溶液滴加到导电玻璃上,旋涂。将上述导电玻璃置于250℃~300℃的热台上,加热并发溶剂。
步骤S1、在第一电极110的一侧形成量子点发光层130的步骤包括:S11、在电子传输层180背离第一电极110的一侧形成量子点发光层130。
在一些实施例中,S2、在量子点发光层130远离第一电极110的一侧形成空穴传输掺杂层160的步骤之后,还包括S2A、在空穴传输掺杂层160远离量子点发光层130的一侧形成空穴注入层170。
其中,空穴注入层170可以通过旋涂工艺形成。
示例性的,空穴注入层170可以包括PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)。其中,PEDOT的成膜温度为130℃~150℃。而空穴注入层170的厚度可以根据匀胶机转速调控。
此外,也可以通过蒸镀工艺形成空穴注入层170。
在包括S2A的情况下,S3、在空穴传输掺杂层160远离量子点发光层130的一侧形成第二电极120的步骤包括:S31、在空穴注入层170远离空穴传输掺杂层160的一侧形成第二电极120。
图15为根据一些实施例的发光器件的制备方法的流程图。
请参阅图15,在一些实施例中,S1、在第一电极110的一侧形成量子点发光层130的步骤之后,还包括:S1A、在量子点发光层130远离第一电极110的一侧形成第一空穴传输层140。
示例性的,在步骤S1A中,可以以
Figure PCTCN2022103128-appb-000001
的速率在量子点发光层130远离第一电极110的一侧蒸镀第一空穴传输层140。
S2、在量子点发光层130远离第一电极110的一侧形成空穴传输掺杂层160的步骤,包括:S21、在第一空穴传输层140远离第一电极110的一侧形成空穴传输掺杂层160。
在发光器件100包括第一空穴传输层140和空穴传输掺杂层160的情况下,在步骤S2中,第一空穴传输材料和第二空穴传输材料的蒸镀速度之比为2:1,此时,在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比为2:1。
图16为根据一些实施例的发光器件的制备方法的流程图。
请参阅图16,在一些实施例中,S2、在量子点发光层130远离第一电极110的一侧形成空穴传输掺杂层160的步骤之后,还包括:S2B、在空穴传输掺杂层160远离第一电极110的一侧形成第二空穴传输层150。
示例性的,在步骤S2B中,可以以
Figure PCTCN2022103128-appb-000002
的速率在量子点发光层130远离第一电极110的一侧蒸镀第二空穴传输层150。
在发光器件100包括第二空穴传输层150和空穴传输掺杂层160的情况下,在步骤S2中,第一空穴传输材料和第二空穴传输材料的蒸镀速度之比为1:1,此时,在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比为1:1。
在发光器件100包括第一空穴传输层140、第二空穴传输层150和空穴传输掺杂层160的情况下,在步骤S2中,第一空穴传输材料和第二空穴传输材料的蒸镀速度之比为1:1,此时,在空穴传输掺杂层160中,第一空穴传输材料与第二空穴传输材料的质量之比为1:1。
其中,可以理解的是,在发光器件100还包括空穴注入层170的情况下,空穴注入层170位于第二空穴传输层150和第二电极120之间。
S3、在空穴传输掺杂层160远离量子点发光层130的一侧形成第二电极120的步骤,包括:S32、在第二空穴传输层150远离空穴传输掺杂层160的一侧形成第二电极120。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种发光器件,包括:
    第一电极和第二电极;
    位于所述第一电极与所述第二电极之间的量子点发光层;以及,
    空穴传输掺杂层,位于所述量子点发光层与所述第二电极之间;所述空穴传输掺杂层包括至少两种空穴传输材料的混合物,其中,所述至少两种空穴传输材料的最高占据分子轨道能级不同。
  2. 根据权利要求1所述的发光器件,其中,
    所述至少两种空穴传输材料的迁移率不同,且在任意两种空穴传输材料中,最高占据分子轨道能级较低的空穴传输材料的迁移率,大于最高占据分子轨道能级较高的空穴传输材料的迁移率。
  3. 根据权利要求2所述的发光器件,其中,
    所述至少两种空穴传输材料包括第一空穴传输材料和第二空穴传输材料,且所述第一空穴传输材料的最高占据分子轨道能级小于所述第二空穴传输材料的最高占据分子轨道能级;
    在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为1:5~5:1。
  4. 根据权利要3所述的发光器件,其中,
    在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为2:1。
  5. 根据权利要4所述的发光器件,其中,
    所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.66倍~5倍。
  6. 根据权利要4或5所述的发光器件,其中,
    所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的2.3倍。
  7. 根据权利要求4~6中任一项所述的发光器件,其中,
    所述空穴传输掺杂层的厚度的取值范围为20nm~50nm。
  8. 根据权利要求3所述的发光器件,还包括:
    第一空穴传输层,位于所述量子点发光层和所述空穴传输掺杂层之间;其中,所述第一空穴传输层的最高占据分子轨道能级小于或等于所述第一空穴传输材料的最高占据分子轨道能级,且大于所述量子点发光层的最高占据分子轨道能级;
    所述第一空穴传输层的迁移率小于或等于所述第一空穴传输材料的迁移率,且大于所述量子点发光层的迁移率。
  9. 根据权利要求8所述的发光器件,其中,
    所述第一空穴传输层包括所述第一空穴传输材料。
  10. 根据权利要求8或9所述的发光器件,其中,
    在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为2:1。
  11. 根据权利要求8~10中任一项所述的发光器件,其中,
    所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.33倍~5倍;
    所述第一空穴传输层的厚度为所述空穴传输掺杂层的厚度的0.06倍~2倍。
  12. 根据权利要求8~11中任一项所述的发光器件,其中,
    所述第一空穴传输层的厚度为所述空穴传输掺杂层的厚度的三分之一。
  13. 根据权利要求3所述的发光器件,还包括:
    第二空穴传输层,位于所述空穴传输掺杂层和所述第二电极之间;其中,所述第二空穴传输层的最高占据分子轨道能级小于所述第二电极的最高占据分子轨道能级,且大于或等于所述第二空穴传输材料的最高占据分子轨道能级;
    所述第二空穴传输层的迁移率小于所述第二电极的迁移率,且大于或等于所述第二空穴传输材料的迁移率。
  14. 根据权利要求13所述的发光器件,其中,
    所述第二空穴传输层包括第二空穴传输材料。
  15. 根据权利要求13或14所述的发光器件,其中,
    在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为1:1。
  16. 根据权利要求13~15中任一项所述的发光器件,其中,
    所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.1倍~2倍;
    所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的0.5倍~16.66倍。
  17. 根据权利要求13~16中任一项所述的发光器件,其中,
    所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的3倍。
  18. 根据权利要求3所述的发光器件,还包括:
    第一空穴传输层,位于所述量子点发光层和所述空穴传输掺杂层之间;其中,所述第一空穴传输层的最高占据分子轨道能级小于或等于所述第一空穴传输材料的最高占据分子轨道能级,且大于所述量子点发光层的最高占据分子轨道能级;所述第一空穴传输层的迁移率小于或等于所述第一空穴传输材 料的迁移率,且大于所述量子点发光层的迁移率;
    第二空穴传输层,位于所述空穴传输掺杂层和所述第二电极之间;其中,所述第二空穴传输层的最高占据分子轨道能级小于所述第二电极的最高占据分子轨道能级,且大于或等于所述第二空穴传输材料的最高占据分子轨道能级;所述第二空穴传输层的迁移率小于所述第二电极的迁移率,且大于或等于所述第二空穴传输材料的迁移率。
  19. 根据权利要求18所述的发光器件,其中,
    所述第一空穴传输层包括所述第一空穴传输材料;
    所述第二空穴传输层包括第二空穴传输材料。
  20. 根据权利要求18或19所述的发光器件,其中,
    在所述空穴传输掺杂层中,所述第一空穴传输材料与所述第二空穴传输材料的质量之比为1:1。
  21. 根据权利要求18~20中任一项所述的发光器件,其中,
    所述空穴传输掺杂层的厚度为所述量子点发光层的厚度的0.1倍~2倍;
    所述第一空穴传输层的厚度是所述空穴传输掺杂层的厚度的0.15倍~6.67倍;
    所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的0.5倍~16.67倍。
  22. 根据权利要求18~21中任一项所述的发光器件,其中,
    所述第一空穴传输层的厚度是所述空穴传输掺杂层的厚度的1倍;
    所述第二空穴传输层的厚度是所述空穴传输掺杂层的厚度的6倍。
  23. 根据权利要求3~22中任一项所述的发光器件,其中,
    所述空穴传输掺杂层包括堆叠设置的多层子掺杂层;在任意相邻的两层子掺杂层中,靠近所述量子点发光层的子掺杂层中的所述第一空穴传输材料与所述第二空穴传输材料的质量之比,大于远离所述量子点发光层的子掺杂层中的所述第一空穴传输材料与所述第二空穴传输材料的质量之比。
  24. 根据权利要求3~23中任一项所述的发光器件,其中,
    所述第一空穴传输材料的最高占据分子轨道能级为所述量子点发光层的最高占据分子轨道能级的0.88倍~1.02倍;
    所述第二空穴传输材料的最高占据分子轨道能级为所述量子点发光层的最高占据分子轨道能级的0.82倍~0.97倍。
  25. 根据权利要求3~24中任一项所述的发光器件,其中,
    所述第一空穴传输材料的最高占据分子轨道能级的取值范围为-6.3eV~ ﹣5.9eV;
    所述第二空穴传输材料的最高占据分子轨道能级的取值范围为-6eV~-5.5eV。
  26. 据权利要求3~25中任一项所述的发光器件,其中,
    所述第一空穴传输材料的迁移率为所述量子点发光层的迁移率的1倍~10 3倍;
    所述第二空穴传输材料的迁移率为所述量子点发光层的迁移率的10 2倍~10 4倍。
  27. 据权利要求3~26中任一项所述的发光器件,其中,
    所述第一空穴传输材料的迁移率的取值范围为10 -5cm 2V -1s -1~10 -3cm 2V -1s -1
    所述第二空穴传输材料的迁移率的取值范围为10 -3cm 2V -1s -1~10 -2cm 2V -1s -1
  28. 根据权利要1~27中任一项所述的发光器件,其中,
    所述至少两种空穴传输材料包括以下材料中的至少两种:
    4,4-bis(carbazole-9-yl)biphenyl、1,3-bis(carbazol-9-yl)benzene、2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine、4,4',4”-tris(carbazol-9-yl)triphenylamine、1,1-bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclohexane、N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine。
  29. 根据权利要1~28中任一项所述的发光器件,还包括:
    空穴注入层,位于所述第二电极和所述空穴传输掺杂层之间;
    电子传输层,位于所述第一电极和所述量子点发光层之间。
  30. 一种显示面板,包括:
    衬底;以及,
    如权利要求1~29中任一项所述的多个发光器件,所述多个发光器件设置于所述衬底的一侧。
  31. 一种显示装置,包括:如权利要求30所述的显示面板。
  32. 一种发光器件的制备方法,包括:
    在第一电极的一侧形成量子点发光层;
    在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层,其中,所述空穴传输掺杂层包括至少两种空穴传输材料的混合物,其中,所述至少两种空穴传输材料的最高占据分子轨道能级不同;
    在所述空穴传输掺杂层远离所述量子点发光层的一侧形成第二电极。
  33. 根据权利要求32所述的发光器件的制备方法,其中,
    所述至少两种空穴传输材料包括第一空穴传输材料和第二空穴传输材料,且所述第一空穴传输材料的最高占据分子轨道能级小于所述第二空穴传输材料的最高占据分子轨道能级;
    在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层的步骤中,采用双源共蒸法在所述第一电极的一侧同时沉积所述第一空穴传输材料和第二空穴传输材料,以形成所述空穴传输掺杂层。
  34. 根据权利要求32或33所述的发光器件的制备方法,其中,
    所述在第一电极的一侧形成量子点发光层的步骤之后,还包括:
    在所述量子点发光层远离所述第一电极的一侧形成第一空穴传输层;
    所述在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层的步骤,包括:
    在所述第一空穴传输层远离所述第一电极的一侧形成所述空穴传输掺杂层。
  35. 根据权利要求32~34中任一项所述的发光器件的制备方法,其中,
    在所述量子点发光层远离所述第一电极的一侧形成空穴传输掺杂层的步骤之后,还包括:
    在所述空穴传输掺杂层远离所述第一电极的一侧形成第二空穴传输层;
    在所述空穴传输掺杂层远离量子点发光层的一侧形成第二电极的步骤,包括:
    在所述第二空穴传输层远离所述空穴传输掺杂层的一侧形成所述第二电极。
PCT/CN2022/103128 2022-06-30 2022-06-30 发光器件及其制备方法、显示面板、显示装置 WO2024000517A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/103128 WO2024000517A1 (zh) 2022-06-30 2022-06-30 发光器件及其制备方法、显示面板、显示装置
CN202280002099.1A CN117643194A (zh) 2022-06-30 2022-06-30 发光器件及其制备方法、显示面板、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103128 WO2024000517A1 (zh) 2022-06-30 2022-06-30 发光器件及其制备方法、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2024000517A1 true WO2024000517A1 (zh) 2024-01-04

Family

ID=89383849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103128 WO2024000517A1 (zh) 2022-06-30 2022-06-30 发光器件及其制备方法、显示面板、显示装置

Country Status (2)

Country Link
CN (1) CN117643194A (zh)
WO (1) WO2024000517A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426902A (zh) * 2012-05-22 2013-12-04 乐金显示有限公司 有机发光装置及其制造方法
CN105244451A (zh) * 2015-10-16 2016-01-13 Tcl集团股份有限公司 一种具有混合htl的量子点发光二极管及其制备方法
CN110635058A (zh) * 2019-09-26 2019-12-31 昆山国显光电有限公司 一种有机发光器件及显示面板
US20210098729A1 (en) * 2018-03-30 2021-04-01 Sharp Kabushiki Kaisha Light emitting element, light emitting device, and apparatus for producing light emitting element
CN113437231A (zh) * 2021-06-22 2021-09-24 云谷(固安)科技有限公司 显示面板及显示装置
CN113809255A (zh) * 2021-09-17 2021-12-17 天津大学 一种电荷传输层掺杂的量子点发光二极管及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426902A (zh) * 2012-05-22 2013-12-04 乐金显示有限公司 有机发光装置及其制造方法
CN105244451A (zh) * 2015-10-16 2016-01-13 Tcl集团股份有限公司 一种具有混合htl的量子点发光二极管及其制备方法
US20210098729A1 (en) * 2018-03-30 2021-04-01 Sharp Kabushiki Kaisha Light emitting element, light emitting device, and apparatus for producing light emitting element
CN110635058A (zh) * 2019-09-26 2019-12-31 昆山国显光电有限公司 一种有机发光器件及显示面板
CN113437231A (zh) * 2021-06-22 2021-09-24 云谷(固安)科技有限公司 显示面板及显示装置
CN113809255A (zh) * 2021-09-17 2021-12-17 天津大学 一种电荷传输层掺杂的量子点发光二极管及制备方法

Also Published As

Publication number Publication date
CN117643194A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11653512B2 (en) Light-emitting diode and light-emitting device with reduced hole and current leakages
US10665805B2 (en) Light-emitting diode and light-emitting device including the same
US10658606B2 (en) Quantum dot light emitting device, method of manufacturing the same, and quantum dot light emitting display device
CN106384765B (zh) 一种量子点发光二极管及其制备方法
CN103904178B (zh) 量子点发光器件
US20180358414A1 (en) Organic electroluminescent device
US9379344B2 (en) Display panel and display device
KR102050461B1 (ko) 유기 발광 소자
WO2017140047A1 (zh) 发光器件及其制备方法、显示装置
US9118032B2 (en) Organic light emitting device
CN106601922B (zh) 一种量子点显示面板及其制作方法
WO2020238713A1 (zh) 发光二极管器件及其制作方法、显示面板及显示装置
CN109698259B (zh) 应用各向异性纳米棒的发光二极管及包括其的发光装置
CN104681731A (zh) 一种钙钛矿型电致发光器件及其制备方法
CN106920827B (zh) 一种发光二极管、阵列基板、发光器件及显示装置
WO2020224334A1 (zh) 量子点电致发光器件、显示面板及显示装置
US20120199837A1 (en) Organic electroluminescent element and organic electroluminescent display device
WO2021238448A1 (zh) 有机电致发光器件及阵列基板
WO2024000517A1 (zh) 发光器件及其制备方法、显示面板、显示装置
WO2017201776A1 (zh) 三原色白光oled器件结构及其电致发光器件和显示器件
CN111490070B (zh) 显示面板
KR20170112452A (ko) 유기발광소자
WO2024040561A1 (zh) 发光器件及其制备方法、显示面板、显示装置
CN116437683A (zh) 量子点发光二极管及其制备方法、光电装置
CN116437694A (zh) 电致发光器件及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002099.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948619

Country of ref document: EP

Kind code of ref document: A1