WO2017201776A1 - 三原色白光oled器件结构及其电致发光器件和显示器件 - Google Patents

三原色白光oled器件结构及其电致发光器件和显示器件 Download PDF

Info

Publication number
WO2017201776A1
WO2017201776A1 PCT/CN2016/085796 CN2016085796W WO2017201776A1 WO 2017201776 A1 WO2017201776 A1 WO 2017201776A1 CN 2016085796 W CN2016085796 W CN 2016085796W WO 2017201776 A1 WO2017201776 A1 WO 2017201776A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
type semiconductor
semiconductor material
primary color
Prior art date
Application number
PCT/CN2016/085796
Other languages
English (en)
French (fr)
Inventor
周凯锋
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/120,743 priority Critical patent/US20170346030A1/en
Publication of WO2017201776A1 publication Critical patent/WO2017201776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a three-primary white light OLED device structure, an electroluminescent device thereof, and a display device.
  • OLEDs Organic electroluminescent devices
  • OLEDs are widely used in the industry for their own advantages such as self-luminescence, fast response, wide viewing angle, light weight, and low power consumption.
  • OLED is a promising flat panel display technology. It has excellent display performance, self-illumination, simple structure, ultra-thin, fast response, wide viewing angle, low power consumption and flexible display. Known as “dream display.”
  • its production equipment investment is much smaller than TFT-LCD, which has won the favor of major display manufacturers and has become the main force of the third-generation display devices in the display technology field.
  • OLED has been on the eve of mass production. With the further development of research and the emergence of new technologies, OLED display devices will have a breakthrough development.
  • WOLED white organic light emitting diode
  • CF color filter layer
  • WOLED is mainly formed by binary complementary color or three primary colors.
  • FIG. 1 it is a schematic structural diagram of a conventional three-primary color WOLED device.
  • the three primary color WOLED device structure mainly includes: a substrate 1 , an anode 2 formed on the substrate 1 , and a hole injection layer 3 formed on the anode 2 .
  • a hole transport layer 4 on the hole injection layer 3 mainly includes: a red light layer 5 formed on the hole transport layer 4, a green light layer 6 formed on the red light layer 5, and a blue light layer 7 formed on the green light layer 6.
  • the three primary colors are mixed to output white light from the substrate 1 side. It can be seen that the existing three primary color white light devices mainly form white light by stacking red, green and blue three primary color materials, and the white light formed has high color purity and color rendering, but the device structure and process are complicated and due to the electrode/organic, organic/organic interface.
  • an object of the present invention is to provide a three-primary white light OLED device structure, which reduces the driving voltage of the device and improves the power efficiency of the white light device.
  • Another object of the present invention is to provide a display device including a three primary color white OLED device structure that reduces the driving voltage of the device and improves the power efficiency of the white light device.
  • the present invention provides a three-primary white OLED device structure, comprising: a substrate, an anode formed on the substrate, and a P-type doped layer formed on the anode, formed on the P-type doped layer a first luminescent layer, a first N-type semiconductor material layer formed on the first luminescent layer, and a first P-type semiconductor material layer formed on the first N-type semiconductor material layer, formed in the first P-type a second luminescent layer on the semiconductor material layer, a second N-type semiconductor material layer formed on the second luminescent layer, and a second P-type semiconductor material layer formed on the second N-type semiconductor material layer.
  • the P-type doped layer is formed by doping a P-type dopant with a hole transport type host material.
  • the hole transporting type host material is an organic material.
  • the N-type doped layer is formed by doping an N-type dopant with an electron transporting type host material.
  • the electron transporting type host material is an organic material.
  • the first and second P-type semiconductor material layers are formed of a donor material, and the first and second N-type semiconductor material layers are formed of an acceptor type material.
  • a heterojunction interface is formed respectively.
  • the first luminescent layer is a blue luminescent layer
  • the second luminescent layer is a green luminescent layer
  • the third luminescent layer is a red luminescent layer.
  • the present invention also provides an electroluminescent device comprising the above-described three primary color white OLED device structure.
  • the present invention also provides a display device comprising the above-described three primary color white OLED device structure.
  • the three primary color white OLED device structure of the present invention and its electroluminescent device and display introduces a doped layer to form a PIN structure to effectively reduce the driving voltage of the device, and at the same time form a heterojunction structure at the interface of the two luminescent layers, avoiding exciton annihilation at the interface, balancing the carrier concentration of each illuminating unit to increase the current of the device. Efficiency, ultimately improving the power efficiency of white light devices.
  • FIG. 1 is a schematic structural view of a conventional three primary color WOLED device
  • FIG. 2 is a schematic structural view of a three primary color white OLED device according to the present invention.
  • FIG. 3 is a schematic diagram of the N-type (a) and P-type (b) doping principles in the structure of the three primary color white OLED devices of the present invention
  • FIG. 4 is a schematic diagram showing the principle of forming a heterojunction of a P-type organic/N-type organic interface in the structure of a three primary color white OLED device according to the present invention.
  • the structure of the three primary color white OLED device mainly includes: a substrate 20, an anode 21 formed on the substrate 20, a P-type doped layer 22 formed on the anode 21, and a first light formed on the P-type doped layer 22 a layer 23, a first N-type semiconductor material layer 24 formed on the first luminescent layer 23, and a first P-type semiconductor material layer 25 formed on the first N-type semiconductor material layer 24, formed on the first P a second luminescent layer 26 on the semiconductor material layer 25, a second N-type semiconductor material layer 27 formed on the second luminescent layer 26, and a second P-type semiconductor formed on the second N-type semiconductor material layer 27.
  • the first luminescent layer 23 can be a blue luminescent layer
  • the second luminescent layer 26 can be a green luminescent layer
  • the third luminescent layer 29 can be a red luminescent layer.
  • the present invention passes through the first luminescent material 23 of the three primary color luminescent materials, and the second luminescent layer 26 and the third luminescent layer 29 are stacked to form white light.
  • the device has a P-I-N structure as a whole, and three P-I-N structures are formed between the illuminating units.
  • At least one P-type doping layer 22 is formed, which is formed by doping a hole-transporting host material with a P-type dopant, the host material being an organic material, and the dopant is not limited to an organic material.
  • At least one layer of the N-type doped layer 30 is formed in the present invention by being doped in an electron transporting type host material
  • the hetero N-type dopant, the host material is an organic material, and the dopant is not limited to an organic material.
  • At least two heterogeneous layers are formed, which are disposed between the two luminescent layers of the three luminescent layers, and each heterojunction is disposed or mixed by the P-type semiconductor layer and the N-type semiconductor layer to form at least one layer.
  • Rough interface Referring to FIG. 2, specifically at the interface of the first N-type semiconductor material layer 24 and the first P-type semiconductor material layer 25, and at the interface of the second N-type semiconductor material layer 27 and the second P-type semiconductor material layer 28. , respectively forming a heterojunction interface.
  • the invention forms white light by stacking three primary color luminescent materials, improves color rendering, and designs a PIN structure on the device structure to reduce the driving voltage of the multilayer device, and realizes exciton at the interface by introducing a heterojunction layer between the light emitting units. Effective separation, improve exciton utilization efficiency and balance the carrier injection concentration of each light-emitting unit, and finally improve the power efficiency of the white light device.
  • the three primary color white OLED device structure of the present invention can be applied to an electroluminescent device to form an electroluminescent device comprising the structure of the three primary color white OLED devices to take advantage of the advantages.
  • the three primary color white OLED device structure of the present invention can be applied to a display device to form a display device including the structure of the three primary color white OLED devices to take advantage of the advantages.
  • the P-type doped layer 22 of the present invention is provided with the anode 21 side to realize injection and transport of holes from the anode 21 to the organic layer: the P-type doped layer 22 is composed of a host material and a P-type dopant, and the host material is a hole mobility. For higher materials, the P-type dopant has a deeper HOMO (highest occupied molecular orbital) energy level to form charge transfer with the host material.
  • HOMO highest occupied molecular orbital
  • the N-type doping layer 30 is disposed on the cathode 31 side to realize electron injection and transmission from the cathode 31 to the organic layer: the N-type doping layer 30 is composed of a host material and an N-type dopant, and the host material is a material having a high electron mobility.
  • the N-type dopant has a shallower LUMO (lowest unoccupied molecular orbital) energy level to form charge transfer with the host material.
  • the heterojunction layer is disposed between the first luminescent layer 23 and the second luminescent layer 29 (red/green/blue) between the two luminescent layers, adjacent to the P-type semiconductor layer and the N-type semiconductor layer
  • the composition forms a heterojunction at the P/N interface to separate excitons into electrons and holes: the P-type semiconductor material layer is a donor type material, and the N-type semiconductor material layer is an acceptor type material.
  • the structure of the entire three primary color white OLED device is as shown in FIG. 2, and the device as a whole has a P-I-N structure, and the light emitting unit R and the light emitting unit G and the light emitting unit B also constitute a P-I-N structure, which is advantageous for reducing the driving voltage of the whole device.
  • FIG. 3 it is a schematic diagram of the N-type (a) and P-type (b) doping principles in the structure of the three primary color white OLED devices of the present invention.
  • the present invention can reduce the device driving voltage and increase the carrier injection concentration by P-type or N-type doping.
  • Suitable doping materials can often change the electrode/organic interface characteristics, such as interface Fermi level drift, interface band bending, etc., to reduce the injection barrier, and the charge transfer effect between the dopant material and the host material increases holes or electrons in the host material. concentration.
  • FIG. 4 it is a schematic diagram of the principle of forming a heterojunction of a P-type organic/N-type organic interface in the structure of a three primary color white OLED device according to the present invention.
  • the present invention achieves exciton separation by forming a heterojunction through a P-type organic/N-type organic interface.
  • the donor and the acceptor have different electron affinities and ionization potentials. When two materials having different electron affinities can contact the ionization potential, a potential difference is generated at the contact interface, and the potential difference can form a local electric field.
  • the LUMO value of the donor is higher than the LUMO value of the acceptor, when the exciton migrates to the interface under the action of the local electric field, the electrons are reduced from the conduction band of the donor to the conduction band of the acceptor, thereby destroying the original There are electron-hole pairs in the excitons, so that the excitons are dissociated into holes and electrons.
  • the method for fabricating the three primary color white OLED device structures of the present invention is as follows:
  • P-type semiconductor layer 2 (5 to 10 nm), green light-emitting layer 2 (30 to 100 nm), N-type semiconductor layer 3 (5 to 10 nm), and P-type semiconductor layer 4 (5 to 10 nm), Red light emitting layer 3 (30 ⁇ 100nm), N type doped layer (5 ⁇ 20nm), cathode (100 ⁇ 500nm);
  • Each functional film is formed into a film by vacuum deposition or solution method
  • the anode material can be selected from ITO, Au and other high work function metals; the cathode can be selected from low work function alloys such as Ba/Al and Mg/Ag; the blue material can be PFO, G0, Firpic, and green light material can be P-PPV.
  • P-type doped layer from P dopant: hole transporting body 0.1% to 99% (mass ratio)
  • the host material is PVK, NPB, m-MTDATA, etc.
  • the P-type dopant is F4-TCNQ, ReO3, Fe2O3, etc.
  • P-type semiconductor material layers are donor materials such as P3HT, PTB7, etc.
  • N-type semiconductor material layers are acceptor materials.
  • the device as a whole has a P-I-N structure, and the red light emitting unit 1 and the green light emitting unit 2 and the blue light emitting unit 3 also constitute a P-I-N structure (such as a P-type layer/light-emitting layer/N-type layer structure).
  • the invention forms a series connection of three PIN structures, which utilizes the P-type and N-type doping effects to increase the concentration of holes and electrons while reducing the interface charge injection barrier, and further introduces a heterojunction layer between the light-emitting units to achieve interface stimuli. Effective separation of children.
  • the P-type semiconductor material layer is a donor type material
  • the N-type semiconductor material layer is an acceptor type material, and exciton separation can be realized.
  • the device driving voltage is reduced by the electrode interface doping effect, and the plurality of heterojunction structures fully utilize the excitons at the interfaces of the respective light emitting units to realize efficient illumination of the three primary color luminescent materials to thereby emit white light.
  • the three primary color white OLED device structure, the electroluminescent device and the display device thereof use the principle of chromaticity to form white light by superimposing complementary color materials, and introducing a doping layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种三原色白光OLED器件结构及其电致发光器件和显示器件。该器件结构包括:基板(20),形成于基板(20)上的阳极(21),形成于阳极(21)上的P型掺杂层(22),形成于P型掺杂层(22)上的第一发光层(23),形成于第一发光层(23)上的第一N型半导体材料层(24),形成于第一N型半导体材料层(24)上的第一P型半导体材料层(25),形成于第一P型半导体材料层(25)上的第二发光层(26),形成于第二发光层(26)上的第二N型半导体材料层(27),形成于第二N型半导体材料层(27)上的第二P型半导体材料层(28),形成于第二P型半导体材料层(28)上的第三发光层(29),形成于该第三发光层(29)上的N型掺杂层(30),以及形成于该N型掺杂层(30)上的阴极(31)。该电致发光器件和显示器件能够有效降低器件的驱动电压,提升白光器件的功率效率。

Description

三原色白光OLED器件结构及其电致发光器件和显示器件 技术领域
本发明涉及显示技术领域,尤其涉及一种三原色白光OLED器件结构及其电致发光器件和显示器件。
背景技术
有机电致发光器件(OLED)以其自身优势如自发光,响应速度快,广视角,轻薄,低功耗等受到业界的广泛关注。OLED是一种极具发展前景的平板显示技术,它具有十分优异的显示性能,具有自发光、结构简单、超轻薄、响应速度快、宽视角、低功耗及可实现柔性显示等特性,被誉为“梦幻显示器”。再加上其生产设备投资远小于TFT-LCD,得到了各大显示器厂家的青睐,已成为显示技术领域中第三代显示器件的主力军。目前OLED已处于大规模量产的前夜,随着研究的进一步深入,新技术的不断涌现,OLED显示器件必将有一个突破性的发展。
为实现OLED显示器的全彩化,一种方式是通过白色有机发光二极管(WOLED,White Organic Light Emitting Diode)和彩色滤光层(CF,Color Filter)叠加来实现。其中,WOLED和CF层叠加过程不需要精准的掩膜工艺,就可以实现OLED显示器的高分辨率。白光OLED(WOLED)可作为光源应用于照明领域,通过白光OLED加彩色滤光片可实现全彩显示应用于显示领域,具有重要意义。
目前WOLED主要通过二元互补色或者三原色混色而成。参见图1,其为现有三原色WOLED器件结构示意图,该三原色WOLED器件结构主要包括:包括基板1、形成于基板1上的阳极2、形成于阳极2上的空穴注入层3、形成于空穴注入层3上的空穴传输层4、形成于空穴传输层4上的红光层5、形成于红光层5上的绿光层6、形成于绿光层6上的蓝光层7、形成于蓝光层7上的电子传输层8、形成于电子传输层8上的电子注入层9、以及形成于电子注入层9上阴极10,红光层5、绿光层6及蓝光层7形成三原色混色从基板1侧输出白光。由此可见,现有三原色白光器件主要通过红绿蓝三基色材料堆叠形成白光,形成的白光的色纯度和显色性较高,但器件结构和工艺复杂且由于电极/有机,有机/有机界面的存在导致这种多层结构的白光器件的驱动电压较高,载流子注入和复合不平衡造成白光器件电流效率降低,这些问题会阻碍这种三原色白光器件的商业化。鉴于以 上问题,亟需提供一种可以解决上述技术问题的三原色白光OLED器件结构。
发明内容
因此,本发明的目的在于提供一种三原色白光OLED器件结构,降低器件的驱动电压,提升白光器件的功率效率。
本发明的又一目的在于提供一种电致发光器件,包含降低器件的驱动电压,提升白光器件的功率效率的三原色白光OLED器件结构。
本发明的另一目的在于提供一种显示器件,包含降低器件的驱动电压,提升白光器件的功率效率的三原色白光OLED器件结构。
为实现上述目的,本发明提供了一种三原色白光OLED器件结构,包括:基板,形成于该基板上的阳极,形成于该阳极上的P型掺杂层,形成于该P型掺杂层上的第一发光层,形成于该第一发光层上的第一N型半导体材料层,形成于该第一N型半导体材料层上的第一P型半导体材料层,形成于该第一P型半导体材料层上的第二发光层,形成于该第二发光层上的第二N型半导体材料层,形成于该第二N型半导体材料层上的第二P型半导体材料层,形成于该第二P型半导体材料层上的第三发光层,形成于该第三发光层上的N型掺杂层,以及形成于该N型掺杂层上的阴极。
其中,该P型掺杂层通过在空穴传输型主体材料掺杂P型掺杂剂形成。
其中,该空穴传输型主体材料为有机材料。
其中,该N型掺杂层通过在电子传输型主体材料掺杂N型掺杂剂形成。
其中,该电子传输型主体材料为有机材料。
其中,该第一、第二P型半导体材料层由给体型材料形成,该第一、第二N型半导体材料层由受体型材料形成。
其中,该第一N型半导体材料层和第一P型半导体材料层的界面处,以及该第二N型半导体材料层和第二P型半导体材料层的界面处,分别形成异质结界面。
其中,该第一发光层为蓝色发光层,该第二发光层为绿色发光层,该第三发光层为红色发光层。
本发明还提供了一种电致发光器件,其包括上述的三原色白光OLED器件结构。
本发明还提供了一种显示器件,其包括上述的三原色白光OLED器件结构。
综上所述,本发明三原色白光OLED器件结构及其电致发光器件和显 示器件引入掺杂层形成P-I-N结构来有效降低器件的驱动电压,同时在两发光层界面处形成异质结结构,避免界面处激子猝灭,平衡各发光单元载流子浓度提高器件的电流效率,最终提升白光器件的功率效率。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为现有三原色WOLED器件结构示意图;
图2为本发明三原色白光OLED器件结构示意图;
图3为本发明三原色白光OLED器件结构中N型(a)和P型(b)掺杂原理示意图;
图4为本发明三原色白光OLED器件结构中P型有机/N型有机界面形成异质结实现激子分离的原理示意图。
具体实施方式
参见图2,其为本发明三原色白光OLED器件结构示意图。该三原色白光OLED器件结构主要包括:基板20,形成于该基板20上的阳极21,形成于该阳极21上的P型掺杂层22,形成于该P型掺杂层22上的第一发光层23,形成于该第一发光层23上的第一N型半导体材料层24,形成于该第一N型半导体材料层24上的第一P型半导体材料层25,形成于该第一P型半导体材料层25上的第二发光层26,形成于该第二发光层26上的第二N型半导体材料层27,形成于该第二N型半导体材料层27上的第二P型半导体材料层28,形成于该第二P型半导体材料层28上的第三发光层29,形成于该第三发光层29上的N型掺杂层30,以及形成于该N型掺杂层30上的阴极31。在一较佳实施例中,该第一发光层23可以为蓝色发光层,该第二发光层26可以为绿色发光层,该第三发光层29可以为红色发光层。
本发明通过三原色发光材料第一发光层23,该第二发光层26及第三发光层29堆叠形成白光,如图2所示,器件整体呈P-I-N结构,而且发光单元间形成3个P-I-N结构。
本发明中至少形成一层P型掺杂层22,通过在空穴传输型主体材料掺杂P型掺杂剂形成,主体材料为有机材料,掺杂剂不限于有机材料。
本发明中至少形成一层N型掺杂层30,通过在电子传输型主体材料掺 杂N型掺杂剂,主体材料为有机材料,掺杂剂不限于有机材料。
本发明中至少形成两种异质层,设置于三种发光层的两两发光层之间,每种异质结由P型半导体层和N型半导体层相邻设置或者混合至少形成一层异质结界面。参见图2,具体为该第一N型半导体材料层24和第一P型半导体材料层25的界面处,以及该第二N型半导体材料层27和第二P型半导体材料层28的界面处,分别形成异质结界面。
本发明通过三原色发光材料堆叠形成白光,提高显色性,在器件结构上设计呈P-I-N结构有利于降低多层器件的驱动电压,通过在发光单元之间引入异质结层实现界面处激子的有效分离,提高激子利用效率并且平衡各发光单元载流子注入浓度,最终提高白光器件的功率效率。
本发明三原色白光OLED器件结构可应用于电致发光器件中,形成包括该三原色白光OLED器件结构的电致发光器件,以利用其优点。
本发明三原色白光OLED器件结构可应用于显示器件中,形成包括该三原色白光OLED器件结构的显示器件,以利用其优点。
本发明P型掺杂层22设置阳极21侧,实现空穴从阳极21到有机层注入与传输:P型掺杂层22由主体材料和P型掺杂剂构成,主体材料为空穴迁移率较高的材料,P型掺杂剂具有较深的HOMO(最高占据分子轨道)能级与主体材料形成电荷转移。
N型掺杂层30设置阴极31侧,实现电子从阴极31到有机层注入与传输:N型掺杂层30由主体材料和N型掺杂剂构成,主体材料为电子迁移率较高材料,N型掺杂剂具有较浅的LUMO(最低未占分子轨道)能级与主体材料形成电荷转移。
异质结层设置于第一发光层23,该第二发光层26及第三发光层29(红/绿/蓝)两两发光层之间,由P型半导体层和N型半导体层相邻组成,P/N界面处形成异质结实现激子分离成电子和空穴:P型半导体材料层为给体型材料,N型半导体材料层为受体型材料。
整个三原色白光OLED器件结构如图2所示,器件整体呈P-I-N结构,且发光单元R和发光单元G和发光单元B也均构成P-I-N结构,这样有利于降低整体器件的驱动电压。
参见图3,其为本发明三原色白光OLED器件结构中N型(a)和P型(b)掺杂原理示意图。本发明通过P型或N型掺杂能降低器件驱动电压,增加载流子注入浓度。合适的掺杂材料往往能改变电极/有机界面特性,如界面费米能级漂移,界面能带弯曲等降低注入势垒,掺杂材料与主体材料间的电荷转移效应提高主体材料中空穴或电子浓度。
参见图4,其为本发明三原色白光OLED器件结构中P型有机/N型有机界面形成异质结实现激子分离的原理示意图。本发明通过P型有机/N型有机界面形成异质结实现激子分离。给体和受体具有不同的电子亲和能与电离势,当两种具有不同电子亲和能与电离势的材料相接触时,在接触界面处会产生电势差,该电势差可以形成局部电场,而由于给体的LUMO值高于受体的LUMO值,因此在该局部电场作用下,激子迁移至此界面时,其电子从给体的导带降到受体的导带上,从而破坏了原有激子中的电子空穴对,使得激子被解离成空穴和电子。
一较佳实施例中,本发明三原色白光OLED器件结构的制备方法如下:
1.提供一种基板(玻璃或者塑料),在其上面依次沉积阳极(100~500nm),P型掺杂层(5~20nm),蓝光发光层1(30~100nm),N型半导体层1(5~10nm),P型半导体层2(5~10nm),绿光发光层2(30~100nm),N型半导体层3(5~10nm),P型半导体层4(5~10nm),红光发光层3(30~100nm),N型掺杂层(5~20nm),阴极(100~500nm);
2.各功能薄膜通过真空沉积或溶液法方式成膜;
3.阳极材料可选ITO,Au等高功函金属;阴极可选Ba/Al,Mg/Ag等低功函合金;蓝光材料可选PFO,G0,Firpic,绿光材料可选P-PPV,Ir(ppy)3,红光材料可选MEH-PPV,Ir(MDQ)2(acac);P型掺杂层由P掺杂剂:空穴传输性主体=0.1%~99%(质量比),主体材料如PVK,NPB,m-MTDATA等,P型掺杂剂为F4-TCNQ,ReO3,Fe2O3等;N型掺杂层由N掺杂剂:电子传输性主体=0.1%~99%(质量比)主体材料如PFN,TmPyPB,TpPyPB等,N型掺杂剂为Cs2CO3,Li2CO3,Li3N等;P型半导体材料层为给体材料如P3HT,PTB7等,N型半导体材料层为受体材料如:PCBM,PC71BM等.
4.器件整体呈P-I-N结构,且红光发光单元1和绿光发光单元2和蓝光发光单元3也均构成P-I-N结构(如P型层/发光层/N型层结构)。
本发明形成三个P-I-N结构的串联,是利用P型和N型掺杂效应提高空穴和电子的浓度同时降低界面电荷注入势垒,另外在发光单元之间引入异质结层实现界面处激子的有效分离。本发明中P型半导体材料层为给体型材料,N型半导体材料层为受体型材料,能实现激子分离。通过电极界面掺杂效应实现降低器件驱动电压,多个异质结结构充分利用各发光单元界面处激子实现三原色发光材料高效发光从而混合发出白光。
综上所述,本发明三原色白光OLED器件结构及其电致发光器件和显示器件利用色彩学原理,通过互补色材料发光叠加形成白光,引入掺杂层 形成P-I-N结构来有效降低器件的驱动电压,同时在两发光层界面处形成异质结结构,避免界面处激子猝灭,平衡各发光单元载流子浓度提高器件的电流效率,最终提升白光器件的功率效率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (10)

  1. 一种三原色白光OLED器件结构,包括:基板,形成于该基板上的阳极,形成于该阳极上的P型掺杂层,形成于该P型掺杂层上的第一发光层,形成于该第一发光层上的第一N型半导体材料层,形成于该第一N型半导体材料层上的第一P型半导体材料层,形成于该第一P型半导体材料层上的第二发光层,形成于该第二发光层上的第二N型半导体材料层,形成于该第二N型半导体材料层上的第二P型半导体材料层,形成于该第二P型半导体材料层上的第三发光层,形成于该第三发光层上的N型掺杂层,以及形成于该N型掺杂层上的阴极。
  2. 如权利要求1所述的三原色白光OLED器件结构,其中,该P型掺杂层通过在空穴传输型主体材料掺杂P型掺杂剂形成。
  3. 如权利要求2所述的三原色白光OLED器件结构,其中,该空穴传输型主体材料为有机材料。
  4. 如权利要求1所述的三原色白光OLED器件结构,其中,该N型掺杂层通过在电子传输型主体材料掺杂N型掺杂剂形成。
  5. 如权利要求4所述的三原色白光OLED器件结构,其中,该电子传输型主体材料为有机材料。
  6. 如权利要求1所述的三原色白光OLED器件结构,其中,该第一、第二P型半导体材料层由给体型材料形成,该第一、第二N型半导体材料层由受体型材料形成。
  7. 如权利要求1所述的三原色白光OLED器件结构,其中,该第一N型半导体材料层和第一P型半导体材料层的界面处,以及该第二N型半导体材料层和第二P型半导体材料层的界面处,分别形成异质结界面。
  8. 如权利要求1所述的三原色白光OLED器件结构,其中,该第一发光层为蓝色发光层,该第二发光层为绿色发光层,该第三发光层为红色发光层。
  9. 一种电致发光器件,包括如权利要求1所述的三原色白光OLED器件结构。
  10. 一种显示器件,包括如权利要求1所述的三原色白光OLED器件结构。
PCT/CN2016/085796 2016-05-24 2016-06-15 三原色白光oled器件结构及其电致发光器件和显示器件 WO2017201776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/120,743 US20170346030A1 (en) 2016-05-24 2016-06-15 Three primary colors white light oled element structure, and electro luminescent device and display element thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610350045.0 2016-05-24
CN201610350045.0A CN105977392A (zh) 2016-05-24 2016-05-24 三原色白光oled器件结构及其电致发光器件和显示器件

Publications (1)

Publication Number Publication Date
WO2017201776A1 true WO2017201776A1 (zh) 2017-11-30

Family

ID=56955799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085796 WO2017201776A1 (zh) 2016-05-24 2016-06-15 三原色白光oled器件结构及其电致发光器件和显示器件

Country Status (3)

Country Link
US (1) US20170346030A1 (zh)
CN (1) CN105977392A (zh)
WO (1) WO2017201776A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202046382A (zh) * 2017-11-27 2020-12-16 日商尼康股份有限公司 發光元件與顯示裝置及其製造方法
CN110379931A (zh) * 2019-07-26 2019-10-25 云谷(固安)科技有限公司 发光器件和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438828A (zh) * 2002-02-15 2003-08-27 伊斯曼柯达公司 具有层叠的场致发光单元的有机场致发光器件
CN101447555A (zh) * 2008-12-29 2009-06-03 中国科学院长春应用化学研究所 基于有机半导体异质结电荷产生层作为连接层的叠层有机电致发光器件及制法
US20110101316A1 (en) * 2009-10-29 2011-05-05 E.I. Du Pont De Nemours And Company Organic light-emitting diode luminaires
CN102074658A (zh) * 2010-11-01 2011-05-25 中国科学院长春应用化学研究所 电荷产生层、叠层有机发光二极管及其制备方法
CN103022366A (zh) * 2013-01-05 2013-04-03 太原理工大学 一种有机电致发光器件
CN105161627A (zh) * 2015-06-29 2015-12-16 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4477150B2 (ja) * 1996-01-17 2010-06-09 三星モバイルディスプレイ株式會社 有機薄膜el素子
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
JP5621405B2 (ja) * 2010-08-19 2014-11-12 コニカミノルタ株式会社 光電変換素子、光電変換素子の製造方法および太陽電池
WO2012077046A2 (en) * 2010-12-09 2012-06-14 Koninklijke Philips Electronics N.V. Electroluminescent device with adjustable color point
KR102174919B1 (ko) * 2013-12-03 2020-11-05 엘지디스플레이 주식회사 유기 발광 소자 및 유기 발광 표시장치
EP3010057B1 (en) * 2014-10-13 2020-04-29 LG Display Co., Ltd. Organic light emitting display device
US20160351815A1 (en) * 2015-05-29 2016-12-01 Universita Degli Studi Di Milano - Bicocca Phenazine-Based Molecular and Polymeric Semiconductors
KR101809259B1 (ko) * 2015-11-16 2017-12-14 연세대학교 산학협력단 디스플레이 패널 및 그 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438828A (zh) * 2002-02-15 2003-08-27 伊斯曼柯达公司 具有层叠的场致发光单元的有机场致发光器件
CN101447555A (zh) * 2008-12-29 2009-06-03 中国科学院长春应用化学研究所 基于有机半导体异质结电荷产生层作为连接层的叠层有机电致发光器件及制法
US20110101316A1 (en) * 2009-10-29 2011-05-05 E.I. Du Pont De Nemours And Company Organic light-emitting diode luminaires
CN102074658A (zh) * 2010-11-01 2011-05-25 中国科学院长春应用化学研究所 电荷产生层、叠层有机发光二极管及其制备方法
CN103022366A (zh) * 2013-01-05 2013-04-03 太原理工大学 一种有机电致发光器件
CN105161627A (zh) * 2015-06-29 2015-12-16 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置

Also Published As

Publication number Publication date
CN105977392A (zh) 2016-09-28
US20170346030A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
CN101447555B (zh) 基于有机半导体异质结电荷产生层作为连接层的叠层有机电致发光器件及制法
CN103715360B (zh) 有机电致发光器件、显示装置
KR101453874B1 (ko) 백색 유기발광소자
CN105206715B (zh) 一种激子限域结构的qled及其制备方法
US20130240847A1 (en) Monolithic parallel multijunction oled with independent tunable color emission
CN107256927B (zh) 有机发光器件和显示装置
CN104701459B (zh) 一种有机发光二极管器件及显示面板、显示装置
CN102074658B (zh) 电荷产生层、叠层有机发光二极管及其制备方法
CN102214794A (zh) 有机发光二极管装置
CN102169966A (zh) 一种有机发光二极管
CN104253235A (zh) 有机发光器件
CN102779948B (zh) 白色有机电致发光器件及其制造方法
WO2017000635A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
CN112117388B (zh) 有机电致发光器件、显示面板及显示装置
CN108666432A (zh) 一种含有多级有机半导体异质结的有机发光二极管
CN102569660A (zh) 一种叠层结构有机电致发光器件
CN102315390A (zh) 电致发光器件及其制备方法
TWI618273B (zh) 有機發光裝置
US20230043738A1 (en) Organic electroluminescent device, display panel, and display apparatus
CN108288678B (zh) 一种双蓝光层杂化白光有机电致发光器件
WO2021238448A1 (zh) 有机电致发光器件及阵列基板
CN112467058B (zh) 一种三元激基复合物复合材料主体及其oled器件制备
CN104752613B (zh) 有机发光二极管和包括其的有机发光二极管显示装置
WO2017201776A1 (zh) 三原色白光oled器件结构及其电致发光器件和显示器件
CN104134753A (zh) 一种叠层有机电致发光器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15120743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902765

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902765

Country of ref document: EP

Kind code of ref document: A1