WO2018216747A1 - 飲料用水素含有水製品の製造方法 - Google Patents

飲料用水素含有水製品の製造方法 Download PDF

Info

Publication number
WO2018216747A1
WO2018216747A1 PCT/JP2018/019892 JP2018019892W WO2018216747A1 WO 2018216747 A1 WO2018216747 A1 WO 2018216747A1 JP 2018019892 W JP2018019892 W JP 2018019892W WO 2018216747 A1 WO2018216747 A1 WO 2018216747A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
container
containing water
filling
Prior art date
Application number
PCT/JP2018/019892
Other languages
English (en)
French (fr)
Inventor
五十嵐 純一
Original Assignee
株式会社シェフコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シェフコ filed Critical 株式会社シェフコ
Priority to JP2018558251A priority Critical patent/JP6456011B1/ja
Publication of WO2018216747A1 publication Critical patent/WO2018216747A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Definitions

  • the present invention relates to a method for producing a hydrogen-containing water product for beverages.
  • hydrogen-containing water in which hydrogen gas is dissolved in water also simply referred to as hydrogen water
  • has high reducibility and is therefore considered to be effective in suppressing metal oxidation and food spoilage.
  • it is drawing attention because it can be expected to improve various health problems.
  • Patent Document 2 A method of efficiently dissolving hydrogen gas by bringing it into contact with the gas has been proposed (Patent Document 2).
  • Patent Document 3 A method of efficiently dissolving hydrogen gas by bringing it into contact with the gas.
  • JP 2002-254078 A Japanese Patent No. 3606466 JP 2011-230055 A
  • the desired dissolved hydrogen concentration cannot be realized due to the presence of impurities (functional raw material) (dissolved hydrogen due to the blending of the functional raw material).
  • the concentration may decrease), or depending on the method of dissolving hydrogen, problems such as contamination and damage of the apparatus may occur.
  • the hydrogen-containing water can be produced while filling and sealing the hydrogen-containing water in a sealable container or in the sealed container. When air and air come into contact with each other, there is a problem that the air dissolves in the hydrogen-containing water and the concentration of dissolved hydrogen in the hydrogen-containing water decreases.
  • the inventors have filled the produced hydrogen-containing water into the container at the same time, or before or after filling, into the system, That is, it has been found that the water-soluble capsules can be present in the hydrogen-containing water without lowering the dissolved hydrogen concentration of the hydrogen-containing water itself to be filled by being present in the container. That is, by filling a water-soluble capsule with a water-soluble functional raw material, when the water-soluble capsule is dissolved in the hydrogen-containing water, the functional raw material is dissolved in the hydrogen-containing water. It has been found that the functional raw material can be blended in hydrogen-containing water without reducing the dissolved hydrogen concentration of water.
  • the present invention is a method for producing a hydrogen-containing water product for beverages, comprising the steps of filling hydrogen-containing water in an openable container and sealing the container, wherein the water-soluble capsule is the hydrogen-containing water. It is related with the manufacturing method of the hydrogen containing water products for drinks characterized by throwing in the said container which can be opened before, during or after the process of filling.
  • the filling of the hydrogen-containing water into the container is preferably performed by pressure filling.
  • the water-soluble capsule is preferably added before or during the step of filling the hydrogen-containing water.
  • the water-soluble capsule is preferably made of a material containing at least one selected from the group consisting of hydroxypropylmethylcellulose (HPMC), pullulan, and gelatin.
  • HPMC hydroxypropylmethylcellulose
  • pullulan pullulan
  • gelatin hydroxypropylmethylcellulose
  • the openable container is preferably a bottle can or an easy open can.
  • the openable container is a bag-shaped container, and the bag-shaped container is made of a flexible bag-shaped container body made of a laminated film including a metal layer and a synthetic resin layer, or the bag
  • the container has a flexible bag-like container body made of a laminated film including a metal layer and a synthetic resin layer, a spout fixed to the container body by thermal welding at an upper edge thereof, and the spout
  • a spouted straw body formed by inserting a bag-like container body, a lower portion of the straw into the container body, and being fixed to the container body by thermal welding at an upper edge thereof, and screwing into an upper end opening portion of the straw with the spout With a sealed cap , It is preferable that the straw with a packaging container.
  • the hydrogen-containing water is pressurized and filled into the openable container at a load pressure of 0.15 MPa to 0.5 MPa.
  • the heat treatment after filling is preferably performed at a temperature of 65 ° C. to 90 ° C. under a heating condition of 3 minutes to 2 hours.
  • the hydrogen-containing water is preferably hydrogen-containing water whose dissolved hydrogen concentration at the time of filling is equal to or higher than the saturated concentration of hydrogen in water at the temperature of the hydrogen-containing water at the time of filling.
  • the product capacity of the openable container is desirably 150 mL to 550 mL.
  • the water-soluble capsule is preferably added at a rate of 20 mg to 200 mg with respect to 200 mL of the hydrogen-containing water.
  • the water-soluble capsule is preferably a water-soluble capsule filled with a functional raw material.
  • the hydrogen-containing water product for drinks which was manufactured with the manufacturing method of this invention and was filled with hydrogen-containing water with the functional raw material is also the object of this invention.
  • the method for producing a beverage-containing hydrogen-containing water product of the present invention is not a method in which, for example, a functional raw material or the like is dissolved in hydrogen-containing water and the hydrogen-containing water containing the functional raw material is filled in the container. It is characterized by adopting a method of charging in a water-soluble capsule into the container before, during or after the step of filling with water. Thereby, since it does not pass through the mixing process to hydrogen-containing water, such as the functional raw material conventionally made, it can reduce the contact with hydrogen-containing water and air which are concerned in the mixing process, and is highly dissolved.
  • the water-soluble capsule can be introduced into the hydrogen-containing water and dissolved in the hydrogen-containing water. And by filling a functional raw material etc. in a water-soluble capsule, the functional raw material in a capsule will be mix
  • functional raw materials are dissolved due to the presence of functional raw materials as solutes. A decrease in the dissolved hydrogen concentration is unavoidable as compared to the case where hydrogen is dissolved without using it.
  • FIG. 1 is a perspective view showing one embodiment of a beverage-containing hydrogen-containing water product produced by the production method of the present invention.
  • FIG. 2 is an enlarged view of the vicinity A of the upper end of the straw in the drinking water-containing water product shown in FIG.
  • FIG. 3 is a perspective view which shows the straw with a spout used for the hydrogen-containing water product for drinks manufactured with the manufacturing method of this invention.
  • the conventional hydrogen-containing water product in which hydrogen-containing water is filled and sealed in, for example, a general-purpose packaging container with a straw has a problem that the dissolved hydrogen concentration of the hydrogen-containing water decreases as time passes from the production. Has occurred. If it is a bag-like container body without a straw, the problem of air inflow from around the straw or cap can be avoided, but on the other hand, it is difficult to drink directly from the bag-like container body.
  • the present invention solves these problems, and has come up with a method of introducing a water-soluble capsule into a container before, during, and after filling with hydrogen-containing water. It was. This minimizes the decrease in the dissolved hydrogen concentration of hydrogen-containing water due to contact with air when blending functional ingredients, etc., and introduces water-soluble capsules without causing contamination or damage to the production equipment. This is achieved by dissolving, and further by filling a water-soluble capsule with a water-soluble functional raw material.
  • the present invention is a method for producing a hydrogen-containing water product for beverages, comprising filling a hydrogen-containing water in an openable container (also simply referred to as “container”) and sealing the container.
  • the present invention is directed to a method for producing a beverage-containing hydrogen-containing water product, wherein the capsule is put into the openable container before, during, or after the step of filling the hydrogen-containing water.
  • the kind of hydrogen-containing water used in the production of the beverage-containing hydrogen-containing water product of the present invention is not particularly limited.
  • a bubbling method in which hydrogen gas supplied from a gas cylinder is dissolved in raw water, The removed pressure vessel is filled with hydrogen gas, and while maintaining the pressure of the hydrogen gas in the pressure vessel at, for example, 2 to 10 atm, the raw water is sprayed into the pressure vessel in a shower shape and brought into contact with the hydrogen gas.
  • the production method of the present invention includes the steps of filling a hydrogen-containing water in an openable container and sealing the container, and filling the water-soluble capsule described later with the hydrogen-containing water.
  • the method, procedure, and production apparatus are not particularly limited.
  • the following (A) to (E) are produced by producing hydrogen-containing water by using the above-described membrane dissolution method and filling the container with a product. It is possible to suitably adopt the method through the above.
  • the process of filling the hydrogen-containing water into an openable container and sealing the container corresponds to the following processes (C) and (D).
  • the step of filling the hydrogen-containing water in the step (C) is preferably performed by pressure filling, and further provided with the following configuration in order to realize efficient pressure filling. It is preferable that That is, a predetermined pressure is applied to the water flow path from the purified water supplied to the degassing device in the degassing step (A) to the hydrogen-containing water injected into the container in the filling step (C) by operating the pressure pump. Thus, it is desirable that the hydrogen-containing water loaded with pressure is supplied to the filling device.
  • the hydrogen-containing water obtained in the hydrogen dissolution step (B) is pressurized and filled into the container. 1) A preparation stage in which the shaft valve closes the filling port of the filling device, and the hydrogen-containing water loaded with the pressure from the hydrogen dissolving step (B) is supplied into the cavity in contact with the filling port.
  • This step is a step of degassing the supplied purified water of the raw material and sending the obtained degassed water to (b) the hydrogen dissolving device in (B) the hydrogen dissolving step.
  • the deaeration device (a) used in this step is a device that degass the supplied raw purified water through a hollow fiber membrane.
  • the degassing device (a) is not particularly limited as long as it can degas a dissolved gas such as oxygen gas, nitrogen gas, and carbon dioxide gas.
  • a degassing device including a vacuum degassing device or a hollow fiber membrane module is used.
  • an apparatus can be used, it is preferable to use a deaeration apparatus provided with a hollow fiber membrane module because a gas dissolved in a minute amount can be efficiently deaerated.
  • the hollow fiber membrane module is usually formed by arranging a number of hollow fiber membranes in a bundle and providing an appropriate space between the membranes, and is divided into a water chamber and a gas chamber by the hollow fiber membrane. By passing the purified water through and depressurizing the gas chamber, the dissolved gas flowing in the water chamber is degassed.
  • two or more hollow fiber membrane modules may be used in parallel. Particularly, by using two or more hollow fiber membrane modules in series, a gas dissolved in a trace amount can be more efficiently degassed. it can.
  • the membrane is required to have high pressure resistance, but the type of hollow fiber membrane is not particularly limited as long as it has such pressure resistance.
  • a polymer film such as tetrafluoroethylene can be used.
  • a high pressure is applied to the water flow path for supplying purified water to the deaeration device. Therefore, the hollow fiber membrane used in this device is low in the water flow path. Since the hollow fiber membrane may be consumed more quickly than in the prior art in which pressure is applied, it is desirable to adopt a grade having a higher pressure resistance.
  • the degassing of the purified water may be performed under heating.
  • it is required to cool to a low temperature to at least room temperature (about 25 ° C.) or less.
  • the purified water used with this deaeration apparatus (a) can be obtained by filtering the water used as a raw material in a purification apparatus, for example.
  • the water used as a raw material is not particularly limited as long as it is supplied from a water source suitable for drinking, such as tap water (water supplied for water supply business, water supplied by a dedicated water supply or simplified dedicated water supply), groundwater, etc. Can be mentioned.
  • the purification device usually comprises an activated carbon filtration device and a membrane filtration device.
  • the activated carbon filter removes the musty odor of water, trihalomethane, and dechlorination treatment. It is also possible to remove suspended solids (including activated carbon), bacteria such as Escherichia coli, pathogenic protozoa such as Cryptosporidium, etc. with a safety filter filtration device.
  • membranes that can be used in membrane filtration devices include microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), nanofilter membranes (NF membranes), and reverse osmosis membranes (RO membranes). In view of the remaining of mineral components that determine the taste when drinking, it is most desirable to use an MF membrane.
  • the water flow path in each step after membrane filtration (Piping) can be kept clean, the inside of the container filled with hydrogen-containing water can be sterilized, and if the problem on food hygiene can be solved, the (E) sterilization step of performing the heat treatment after filling and sealing is not performed.
  • the hydrogen gas atmosphere formed by the heat treatment in the sterilization process to be described later is formed by gradually evaporating hydrogen that exceeds the saturation concentration with the passage of time after the production of the product.
  • This step is obtained by the (a) deaerator, (b) the pressurized hydrogen gas is dissolved in the deaerated water supplied to the hydrogen dissolving device, and the obtained hydrogen-containing water is supplied to the filling device (c). It is a sending process.
  • the hydrogen dissolving device (b) used in this step is a device for dissolving pressurized hydrogen gas through the hollow fiber membrane in the deaerated water supplied from the deaerator (a) in the above step.
  • the hydrogen dissolving apparatus (b) a hydrogen dissolving apparatus equipped with a hollow fiber membrane module is used because the hydrogen gas dissolving amount per unit time and unit space is large and it is easy to increase the dissolving efficiency of hydrogen gas. Use.
  • the hollow fiber membrane module is usually formed by arranging a large number of hollow fiber membranes in a bundle and providing an appropriate space between the membranes, and is divided into a water chamber and a gas chamber by the hollow fiber membranes. By passing the degassed water and supplying hydrogen gas to the gas chamber, the hydrogen gas is dissolved in the degassed water flowing in the water chamber.
  • Two or more hollow fiber membrane modules may be used in combination.
  • pressure is applied to the water flow path for supplying degassed water to the hydrogen dissolving apparatus, so that the hollow fiber membrane used in this apparatus is expensive.
  • the type of the hollow fiber membrane is not particularly limited, and the hollow fiber membrane used in the present apparatus is the hollow fiber used in the above-described deaeration device.
  • the polymer film mentioned as the film can be used.
  • pressure is applied to the hydrogen gas obtained by the electrolysis of a commercially available high purity hydrogen gas cylinder or water, and it supplies to the gas chamber of a hollow fiber membrane module.
  • the pressure applied to the hydrogen gas is, for example, 0.1 MPa to 0.5 MPa, that is, 0.1 MPa to 0.5 MPa as the pressure further applied to the atmospheric pressure (about 0.1 MPa).
  • the hollow fiber membrane used in the present apparatus may be consumed more quickly than the conventional technology in which a low pressure is applied to the water flow path. It is desirable to use an excellent grade.
  • the purified water supplied to the degassing apparatus (a) is injected into the container in the filling apparatus (c) described later.
  • a pressure pump capable of applying pressure is provided in the water flow path to the hydrogen-containing water.
  • the pressure pump is not particularly limited as long as it can apply pressure to the water flow path (pipe), and a known pressure pump can be used.
  • the water flow toward the water flow path that is, the degassing device (a) after the pressure is applied by the pressure pump in order to maintain the pressure applied to the water flow path.
  • a relief valve may be connected to the loop flow path. The relief valve functions to open the loop flow path when the water pressure in the water flow path after pressure is applied by a pressure pump exceeds a certain reference pressure, while the water pressure is lower than a certain reference. Functions to close the loop flow path. That is, the water pressure is maintained below the reference pressure by performing water circulation between the pressure pump and the loop flow path as needed by opening and closing the relief valve.
  • the reference pressure is, for example, 0.1 MPa to 0.5 MPa, preferably 0.15 MPa to 0.5 MPa, preferably from 0.1 MPa to 0.5 MPa, from the viewpoint of wear of the hollow fiber membrane or pressure resistance performance of each device, It is 0.15 MPa to 0.4 MPa, for example, 0.15 MPa to 0.3 MPa. That is, a pressure of 0.1 MPa to 0.5 MPa, for example, a pressure of 0.15 MPa to 0.5 MPa, is applied to the water channel as a pressure to be further applied to the atmospheric pressure (about 0.1 MPa).
  • the production apparatus that can be used in the present invention has a water flow path before the filling apparatus (c) described later, for example, a water flow path between the hydrogen dissolving apparatus (b) and the filling apparatus (c). It is preferable that an orifice is provided.
  • the orifice plays a role of limiting the flow rate of the hydrogen-containing water loaded with the reference pressure by the pressure pump to be supplied to the filling device (c) to be equal to or less than a certain reference flow rate.
  • the amount of decrease in pressure can be suppressed by providing an orifice as compared to the case without an orifice, and the hydrogen-containing water to the filling device can be suppressed. This leads to a stable supply.
  • the orifice also plays a role of smoothly and safely filling the hydrogen-containing water container.
  • This step is a step of filling the container with the hydrogen-containing water obtained by (b) the hydrogen dissolving device and (c) supplied to the filling device.
  • the filling device used in this step is a device that fills the above-mentioned container with hydrogen-containing water supplied by the hydrogen dissolving device in the above step from its inlet (for example, the upper end port).
  • This step is preferably performed by pressure filling, and the filling device (c) preferably has the following configuration in order to efficiently perform the pressure filling.
  • the filling device (c) includes a cavity in the device main body that is in contact with the filling port, and a shaft valve that can be reciprocated so that the tip portion thereof faces the filling port. It is preferable that The cavity communicates with the water flow path from the hydrogen dissolving device (b), and the reciprocating motion of the shaft valve causes the inlet of the container connected to the filling port to flow from the hydrogen dissolving device (b). It is preferable that the valve mechanism is configured to communicate with the passage and to block the communication. At this time, the cavity in the apparatus main body is connected to the gas decompression unit and the gas pressurization unit through a gas path inside the shaft valve or along the outer surface of the shaft valve.
  • the gas path is opened and closed by a reciprocating motion of the shaft valve, that is, a structure in which the gas path and the cavity communicate with each other and the communication is blocked by the reciprocating motion of the shaft valve.
  • the shaft valve is set to reciprocate at a constant cycle, whereby the filling port is repeatedly opened and closed at a constant cycle.
  • the gas path is repeatedly opened and closed at a constant cycle. While the filling port is open, the hydrogen-containing water is injected into the container.
  • the filling amount of the hydrogen-containing water in the filling device is determined by the period of reciprocation of the shaft valve (opening / closing of the filling port) and the orifice. Can be set by setting the reference flow rate (orifice diameter).
  • the water-soluble capsule is put into the openable container at the same time as or before and after filling the hydrogen-containing water in the container. It is characterized by.
  • a packaging container with a straw or a packaging container with a spout which will be described later, the water-soluble capsule is put into the container, or a packaging container comprising a bag-like container body (without a spout with a spout or a spout), Or what is necessary is just to implement from the upper opening part in the case of a metal can (a bottle can and an easy open can).
  • This step is a step (d) sealing the inlet of the container filled with hydrogen-containing water with the filling device (d) with a sealing device (d).
  • the sealing device used in this step is a device that seals the inlet of the container that has been filled with hydrogen-containing water (packing with a straw). This device is not particularly limited as long as it can immediately seal the inlet of the container (packing with straw) sent from the filling device, and a known sealing device can be used.
  • This step is a step in which, after the (D) sealing step is completed, the hydrogen-containing water-containing container whose sealing has been completed is appropriately sent to a heat sterilizer to be heat sterilized.
  • the final product a hydrogen-containing water product for beverages, is completed through this process.
  • the heat sterilizer for example, a heat steam sterilizer can be used, and the heating temperature and heating time at the time of sterilization are F values (necessary for killing a certain number of specific bacterial spores or bacteria at a certain temperature. It is desirable to appropriately determine the heating temperature (minutes) and product quality. For example, the heating temperature and the heating time are 65 to 90 ° C. and 3 minutes to 2 hours, and for example, the heating temperature and the heating time of 85 minutes are used for 30 minutes.
  • a hydrogen-containing water product for beverages needs to be subjected to the heat treatment for sterilization after filling and sealing the hydrogen-containing water in a storage container. Since the saturated hydrogen concentration decreases as the temperature rises, as the temperature of the hydrogen-containing water inside the vessel rises due to this heat treatment, the hydrogen dissolved in the hydrogen-containing water cannot be kept dissolved and exceeds the saturated hydrogen concentration. This hydrogen is forcibly vaporized. For example, when a packaging container with a straw is used, vaporized hydrogen accumulates in the vicinity of a cap at the top of the container and a suction port (spout) at the top of the straw to form a hydrogen gas atmosphere.
  • spout suction port
  • the hydrogen-containing water is pressurized and filled into the container so that the dissolved hydrogen concentration at the time of filling is reduced to the hydrogen water at the temperature of the hydrogen-containing water at the time of filling.
  • This is much higher than the saturation concentration (saturated hydrogen concentration).
  • the hydrogen gas vaporized by the heat treatment cannot be completely dissolved even after re-dissolving in the hydrogen-containing water after cooling the product, and the hydrogen gas described above even when cooled to room temperature after the heat treatment. Will continue to exist in the container. If hydrogen remains in the container in a gas atmosphere (reacts with a hydrogen sensor etc. when the product is opened), the hydrogen concentration of the hydrogen-containing water can be kept high.
  • a beverage-containing hydrogen-containing water product manufactured by pressure filling includes an openable container, hydrogen-containing water pressure-filled and sealed in the container, and a water-soluble capsule dissolved in the hydrogen-containing water. (Properly constituting the water-soluble capsule) and a gas atmosphere containing hydrogen gas generated by the heat treatment after the pressure filling in the space above the surface of the hydrogen-containing water in the container It will be.
  • the gas atmosphere is present, for example, after 30 days, preferably after at least 90 days, and more preferably after 180 days.
  • the gas atmosphere is particularly preferably in a form in which the hydrogen gas partial pressure is 90% or more with respect to the whole atmosphere pressure.
  • the present invention even if there are various gases that lead to a decrease in the dissolved hydrogen concentration due to the presence of the gas atmosphere containing hydrogen gas, that is, gas remaining in the container or gas mixed in the hydrogen-containing water.
  • Drinking hydrogen-containing water products manufactured using pressure filling can maintain a high dissolved hydrogen concentration and a low oxidation-reduction potential value as compared with products manufactured by existing technology and products filled at normal pressure.
  • the air generated when mixing the water containing water in the conventional functional raw material or the like by charging the water-soluble capsule into the container at the same time or before and after the filling.
  • the beverage-containing hydrogen-containing water product obtained by the production method of the present invention has a high dissolved hydrogen concentration, a low oxidation-reduction potential, and a low dissolved oxygen concentration, for example, even after 90 days have passed since the production. Hydrogen-containing water can be realized.
  • the oxidation-reduction potential is about ⁇ 600 mV or less
  • the dissolved hydrogen concentration is 1.0 ppm or more
  • the oxidation-reduction potential of the hydrogen-containing water filled becomes ⁇ [ ⁇ after the production at least 90 days under normal temperature storage.
  • 59 ⁇ pH value of hydrogen-containing water in the beverage-containing hydrogen-containing water product after 90 days
  • the beverage-containing hydrogen-containing water product is filled.
  • the pH of the hydrogen-containing water is 7.0
  • a product having an oxidation-reduction potential of ⁇ 593 mV or less can be produced.
  • the product is shaken lightly up and down after 90 days, a sound in which the hydrogen-containing water hits the inner wall of the container is produced, and a product in which the presence of a gas atmosphere is confirmed can be manufactured.
  • the value of the oxidation-reduction potential (ORP) defined in the present invention refers to a value (vs.
  • Water-soluble capsule According to the production method of the present invention, various components can be blended in the hydrogen-containing water filled in the container.
  • the present invention is characterized in that the water-soluble capsule is put into the container before, during or after the step of filling the hydrogen-containing water.
  • Various methods can be considered for blending the water-soluble capsule into the hydrogen-containing water. For example, after obtaining the hydrogen-containing water by the above-mentioned various methods, the water-soluble capsule is added to and mixed with the obtained hydrogen-containing water. Thus, after water-soluble capsules are previously mixed and dissolved in hydrogen-containing water in this way, a method of filling (pressurizing) the capsules in a packaging container can be employed. However, in this method, in the step of adding, mixing, and dissolving the water-soluble capsule in the hydrogen-containing water, the contact between the hydrogen-containing water and the air increases during the mixing operation, so that the dissolved hydrogen concentration may decrease. Concerned.
  • a method of dissolving a water-soluble capsule in raw water (purified water) and then dissolving hydrogen therein is also conceivable.
  • this method cannot achieve a desired dissolved hydrogen concentration, or impurities (water-soluble capsule). Due to the presence of this, there is a risk of contamination or breakage of a manufacturing apparatus such as a hydrogen dissolving apparatus. Therefore, in the method of the present invention, means for allowing the water-soluble capsule to be present in the system at the same time as filling the hydrogen-containing water into the container or before and after filling is adopted. Among these, it is preferable to introduce the water-soluble capsule before or during the step of filling the hydrogen-containing water.
  • a method in which a water-soluble capsule is put in the container in advance and hydrogen-containing water is filled therein may be employed. These water-soluble capsules are charged into the container before, during, or after filling the hydrogen-containing water into the container. However, after filling the hydrogen-containing water and before sealing the container, Processing may be performed in advance (for example, a hole is formed in the capsule) so as not to overflow from the capsule.
  • the water-soluble capsule is not particularly limited.
  • the water-soluble capsule is composed of a material containing at least one selected from the group consisting of hydroxypropylmethylcellulose (HPMC), pullulan, and gelatin (pig gelatin, fish gelatin). It is preferable to employ capsules. These HPMC and the like are usually used as main components constituting water-soluble capsules.
  • the water-soluble capsules are present, for example, in a ratio of 5 mg to 200 mg with respect to 200 mL of hydrogen-containing water, for example, 10 mg to 200 mg, 20 mg to 200 mg, 30 mg to 200 mg, 35 mg to 100 mg, 40 mg to 90 mg, 40 mg to 80 mg. It is preferable to become.
  • these can adopt various shapes, for example, a powder shape or a lump shape, for example, a flake shape, a granular shape, a plate shape, a spherical shape, an ellipsoid shape, or a hollow shape.
  • Various shapes such as a spherical shape and an ellipsoid shape are assumed.
  • it is possible to achieve a certain amount (mixing) of each blended hydrogen-containing water product, including functional ingredients, etc. It is necessary to take into consideration the contamination of the apparatus due to the overflowing of various ingredients assumed during the filling of hydrogen-containing water and the filling of hydrogen-containing water, and the overflowing functional raw materials.
  • the production method of the present invention has adopted the shape of a water-soluble capsule (empty capsule) formed by forming a thin layer and a hollow shape.
  • the main raw material is at least one selected from the group consisting of hydroxypropylmethylcellulose (HPMC), pullulan, and gelatin, for example, in the form of a water-soluble capsule containing these at 80% by mass or more, and this is contained in a container. It was found to be put in.
  • HPMC hydroxypropylmethylcellulose
  • pullulan pullulan
  • gelatin for example, in the form of a water-soluble capsule containing these at 80% by mass or more, and this is contained in a container. It was found to be put in.
  • foods or food additives other than the hydroxypropyl methylcellulose (HPMC), pullulan, and gelatin may be used.
  • the total amount of other foods or food additives is less than 20% by mass (0 to 20% by mass) based on the total mass of hydroxypropylmethylcellulose (HPMC), pullulan or gelatin and other foods or food additives. Less).
  • these other foods or food additives can be contained in the hydrogen-containing water.
  • the food or food additive examples include water, potassium chloride, mold release agents (vegetable oil, lecithin, etc.), surface treatment agents (talc, calcium stearate, etc.), thickening polysaccharides (carrageenan, gellan gum, etc.), etc.
  • Known materials can be used, and these are preferably water-soluble.
  • capsules mainly composed of hydroxypropylmethylcellulose (HPMC), pullulan and gelatin for example, commercially available capsules (empty capsules) manufactured by Capsugel Japan Co., Ltd. and Qualicaps Co., Ltd. can be employed.
  • a water-soluble capsule preferably a water-soluble capsule containing at least one selected from the group consisting of hydroxypropylmethylcellulose (HPMC), pullulan, and gelatin, has a temperature of about room temperature (20 ° C. ⁇ 5 ° C.) over time. It can be dissolved in hydrogen-containing water, but after filling the hydrogen-containing water, the packaging container is sealed, and through the heat sterilization process described later, the water-soluble capsule is dissolved in the hydrogen-containing water simultaneously with sterilization of the product. It can be further promoted.
  • water-soluble capsules may form a gel with hydrogen-containing water at high temperatures (for example, heating (sterilization) at 85 ° C. for about 30 minutes). It dissolves and becomes liquid (hydrogen-containing water in which water-soluble capsules are dissolved).
  • the openable container used in the production of the beverage-containing hydrogen-containing water product of the present invention includes a bag-like container, for example, a flexible bag-like container body, a spouted straw, and a sealing cap.
  • a packaging container with a straw, a packaging container with a spout comprising a flexible bag-shaped container body, a spout and a sealing cap, or a bag-shaped container body without a straw or a spout can be employed.
  • metal cans such as a bottle can (reseal can) and an easy open can (pull tab can, pull top can), may be sufficient.
  • various forms of the openable container will be described in detail.
  • a packaging container with a straw which is one form of the bag-like container used in the present invention, it has flexibility composed of a laminated film (also referred to as a metal laminated film) including a metal layer (for example, metal foil) and a synthetic resin layer.
  • the lower part of the straw with a spout is inserted into the bag-shaped container body, and the straw with the spout is fixed to the container body by thermal welding at the upper edge thereof, and the sealing cap is screwed onto the upper end opening of the straw with the spout.
  • a so-called “aluminum pouch” can be used.
  • FIG. 1 the example of one form of the hydrogen-containing water product for drinks manufactured with the manufacturing method of this invention is shown.
  • a drinking hydrogen-containing water product 1 shown in FIG. 1 is a form in which a packaging container with a straw is adopted as a bag-shaped container, and is composed of a container body 3, a straw 4 with a spout, and a sealing cap 5. 2 is filled with hydrogen-containing water 6, and then the upper end 42A of the straw 4 with spout is sealed with a cap 5 (the presence of a water-soluble capsule dissolved in the hydrogen-containing water 6) Is not shown).
  • FIG. 1 A drinking hydrogen-containing water product 1 shown in FIG. 1 is a form in which a packaging container with a straw is adopted as a bag-shaped container, and is composed of a container body 3, a straw 4 with a spout, and a sealing cap 5. 2 is filled with hydrogen-containing water 6, and then the upper end 42A of the straw 4 with spout is sealed with a cap 5 (the
  • FIG. 2 shows an enlarged view of the periphery A of the upper end portion 42A of the straw 4 with a spout of the beverage-containing hydrogen-containing water product 1 shown in FIG. That is, in the beverage-containing hydrogen-containing water product, when a gas atmosphere is present in the container at the stage of cooling to room temperature after the heat treatment, if the spouted straw described below is transparent or translucent, the outside of the straw The presence of the gas atmosphere 7 can be confirmed (see FIG. 2 (a): hydrogen-containing water 6, gas atmosphere 7). The movement, that is, the movement of the gas atmosphere 7 can be visually confirmed from the outside of the straw (see FIG. 2B: hydrogen-containing water 6, gas atmosphere 7). When the gas atmosphere is present, if the product is shaken lightly up and down, a sound (for example, a fake sound such as a chapchap or a crisp) is generated when the hydrogen-containing water hits the inner wall of the container. Can be confirmed.
  • a sound for example, a fake sound such as a chapchap or
  • FIG. 3 An example of an embodiment of a straw with a spout used for a packaging container with a straw used in the present invention is shown in a perspective view (appearance) in FIG.
  • the spouted straw 4 is provided with a straw portion 41 that serves as an introduction port for contents, and a mouth portion 42 that serves as a filling port and a suction port for the contents. Is filled with hydrogen-containing water.
  • a male thread portion 43 is formed on the outer periphery of the lower portion of the mouth portion 42 so that a sealing cap, which will be described later, can be detachably screwed, and further below that is for engaging the sealing cap.
  • a protrusion 48 is formed.
  • a flange 47 is formed for fitting into the guide rail when the container is supplied when being fed into the filling device.
  • a female screw portion that is screwed into the male screw portion 43 of the mouth portion 42 is provided on the inner periphery of the sealing cap that seals the upper end mouth portion 42 ⁇ / b> A of the spouted straw 4. Is formed.
  • a sealing material for sealing the upper end mouth part 42A may be provided at the tip of the mouth part 42 after filling the contents. It is possible to prevent leakage of hydrogen-containing water.
  • the sealing material is formed of a film obtained by laminating a synthetic resin film and a metal foil, and can be welded to the upper end opening 42A of the opening 42 by means such as heat sealing.
  • a heat welding portion 44 for heat welding to the container body 3 is provided below the flange 47.
  • a hole 46 is provided above the straw portion 41, whereby the hydrogen-containing water as the contents can be sucked out easily.
  • positioning the straw 4 with a spout stably to the container body 3 are formed so that it may extend below the said heat welding part 44 continuously.
  • the straws with spout used in the present invention are, for example, low density polyethylene resin, medium density polyethylene resin, high density polyethylene resin, linear low density polyethylene resin, polystyrene resin, ionomer resin, polypropylene resin, acrylic resin, nylon resin, polyester. It can be formed using a resin material such as a base resin or a polycarbonate resin.
  • a straw with a spout used by this invention, you may use the straw with a spout which improved the gas interruption
  • a gas barrier material that blocks the permeation of hydrogen gas at least in the upper part of the straw above the portion that is thermally welded to the container body in the spout with the spout is provided on the inner wall of the straw. The thing etc. which were arrange
  • a gas barrier material is provided inside the spout or the straw so as to close the hole of the straw, and the internal force of the bag-like container body by applying pressure from the outside by using the rotational force at the time of opening the sealing cap described later is used.
  • a gas barrier material may be provided so that the deployed gas barrier material can be perforated at the pressure of hydrogen-containing water for drinking.
  • the gas barrier material is not particularly limited as long as it does not transmit a gas such as hydrogen or oxygen, but a metal foil (metal film) such as aluminum, iron, copper, or bell, a film such as polyvinylidene chloride, polyethylene, etc.
  • an aluminum film (aluminum foil) is preferable from the viewpoint of gas barrier properties, cost, and film operability.
  • the gas barrier property can be improved by using a multilayer film such as EVOH.
  • the sealing cap is not particularly limited as long as it has a shape that can be screwed into the upper end opening of the spouted straw and seal the upper opening of the straw.
  • a female threaded portion that is screwed into the male threaded portion 43 of the mouth of the spouted straw 4 is formed on the inner periphery of the sealing cap, and a band that can be engaged with the projection 48 of the spouted straw.
  • a sealing cap having an improved gas barrier property may be used as in the case of the straw with the spout.
  • an inner seal material capable of sealing the upper end of the spouted straw can be provided on the inner wall of the top of the sealing cap.
  • the inner seal material may be formed of a synthetic resin film, a metal foil (film), or a laminated film obtained by laminating them.
  • synthetic resin film the film using the resin material quoted with the straw with a spout, the various films mentioned as said gas barrier material,
  • metal foil the metal foil mentioned as said gas barrier material is used suitably. Can be used.
  • a pouch container As the container body, a container body made of a laminated film (metal laminated film) including a metal layer and a synthetic resin layer, for example, a container body made of an aluminum laminated film (laminated film including an aluminum layer and a synthetic resin layer), so-called A pouch container is preferably used because it is highly airtight and can prevent outflow of hydrogen.
  • a pouch container As the shape of the pouch container, various types such as a commercially available gusset type (with a town) and a stand type (without a town) can be used.
  • the product capacity of the container is not particularly limited, but for example, 100 mL to 2,000 mL, particularly 150 mL to 550 mL, specifically 150 mL, 180 mL, 200 mL, 220 mL, 250 mL, 280 mL, 300 mL, 330 mL, 350 mL, 400 mL, 450 mL, 500 mL.
  • a container having a capacity of about 550 mL can be suitably used.
  • the “product volume” is a standard capacity (appropriate filling amount, also referred to as display capacity) when the product is distributed and sold, and usually several% to 15% from the maximum capacity that can be filled in the container. % Is less.
  • the size (caliber) of the cap and the water inlet (spout) is almost constant regardless of the product capacity. Therefore, the contact area between the hydrogen gas generated due to the heat treatment and collected around the cap or spout and the hydrogen-containing water in the container is 500 mL or less compared to products with a low capacity (150 mL, 200 mL, etc.). In the case of a large product capacity such as 550 mL, the capacity is small. Therefore, in such a large-capacity product, re-dissolution of the hydrogen gas in the product into hydrogen-containing water occurs more slowly than in a low-capacity product.
  • a hydrogen gas atmosphere should remain for a long period of time. It becomes.
  • Large-capacity products are attracting attention as being excellent in long-term storage because they can maintain a high dissolved hydrogen concentration for a long period of time compared to low-capacity products.
  • the hydrogen gas atmosphere usually disappears in about three months, and as in the hydrogen-containing water products for beverages of the present invention, It is difficult to maintain a state in which hydrogen-containing water and a gas atmosphere continue to coexist inside.
  • a packaging container with a spout can also be used as one form of the bag-shaped container as an openable container.
  • This container has a spout fixed to a flexible bag-shaped container body made of a laminated film (metal laminate film) including a metal layer and a synthetic resin layer by heat welding at an upper edge portion of the container. It is a bag-like container formed by screwing a sealing cap on the upper end opening. That is, the present container is a form in which in the packaging container with a straw, there is no straw in the bag-shaped container and only a spout (suction port) is provided.
  • the bag-like container body in this packaging container that is, the [container body] of the above [bag-like container: packaging container with straw] can be used, and the shape and capacity thereof are those described in the above [container body]. Can do.
  • the spout used for this packaging container can be formed using the various resin materials mentioned in [Straw with a spout] in the above [Bag-shaped container: Packaging container with a straw].
  • a spout having an improved gas barrier property of the spout itself can be used, and in the spout above the portion thermally welded to the container body, using the gas barrier material mentioned in the above [Straw with a spout]
  • the gas barrier material may be provided over substantially the entire surface of the spout inner peripheral wall or on the surface thereof. Gas barrier material is attached to the lower part of the spout so as to close the hole of the spout, and the internal hydrogen content by using the rotational force when opening the sealing cap or applying pressure from the outside to the bag-like container body
  • a gas barrier material may be provided so that the attached gas barrier material can be perforated by water pressure and used for drinking.
  • the sealing cap used in the present packaging container the [sealing cap] of the above [bag-shaped container: packaging container with straw] can be used.
  • the packaging container with a straw or press the container body of the packaging container with a spout from both sides to release the internal air and cap the cap while overflowing the hydrogen-containing water.
  • the packaging container with a straw or press the container body of the packaging container with a spout from both sides to release the internal air and cap the cap while overflowing the hydrogen-containing water.
  • the dissolved hydrogen in the hydrogen-containing water compared to the form consisting only of the bag-like container described later and the metal can The decrease in concentration can be kept low.
  • a bag-like container without a straw or spout can be used as a bag-like container as an openable container.
  • This container is only a flexible bag-shaped container made of a laminated film (metal laminated film) including a metal layer and a synthetic resin layer (the above-mentioned straw with spout or spout is not inserted) In this case, after the filling step of hydrogen-containing water described later, the upper edge of the container body is sealed by thermal welding to obtain a product.
  • the bag-like container body in this packaging container that is, the [container body] of the above [bag-like container: packaging container with straw] can be used, and the shape and capacity thereof are those described in the above [container body].
  • a packaging container a container without a straw
  • metal cans such as easy open cans (pull tab cans, pull top cans) and bottle cans (reseal cans) made of aluminum or steel can be adopted in addition to the above-mentioned bag-like containers such as packaging containers with straws.
  • easy open cans pull tab cans and pull top cans
  • easy open cans cannot be recapped. Since the dissolved hydrogen concentration of water decreases, it is desirable to drink it all at once so that the decrease of the dissolved hydrogen concentration can be suppressed.
  • the cap In the case of bottle cans (reseal cans), the cap can be recaptured when it cannot be swallowed, but it cannot be recapped while venting the air that has flowed into the can. Will be reduced. Therefore, in these metal can aspects, the product volume that can be swallowed at one time is examined. For example, by setting the product volume to about 100 mL to 200 mL, there is no leftover, and the product is provided for drinking while maintaining the dissolved hydrogen concentration. It can be.
  • the container body is pushed by pressing the container body from both sides even if it is opened once and the cap is put on while overflowing the hydrogen-containing water with the release of the air inside. Residual air in the body can be minimized.
  • the cap is put on while drinking water (every time it is opened), it is difficult to reduce the residual air in the container to zero, and the dissolved hydrogen concentration increases each time the cap is opened. The phenomenon of decline is inevitable.
  • the present invention is to add a water-soluble capsule into the container before, during, or after filling the hydrogen-containing water into the container, and in a preferred embodiment, by further combining pressure filling, It is possible to provide a product in which the concentration of dissolved hydrogen in the hydrogen-containing water during the storage period is higher and longer than that of conventional products (particularly products in which functional raw materials are blended). Therefore, even when a situation where the cap is opened and closed a plurality of times is assumed, it is possible to keep the dissolved hydrogen concentration at a relatively high concentration even after that.
  • the production method of the present invention is also appealing to consumers in that it can produce a hydrogen-containing water product for drinking that can be drunk in several times while maintaining a high dissolved hydrogen concentration. It is a manufacturing method that can provide high products.
  • the functional raw material is filled in the water-soluble capsule, and this is used in the production method, so that the dissolved hydrogen concentration of the hydrogen-containing water at the time of filling is increased.
  • the functional raw material can be blended in the hydrogen-containing water without lowering the water content. That is, in the present invention, the functional raw material is filled in the aforementioned water-soluble capsule (empty capsule) in advance, and the water-soluble capsule filled with the functional raw material in the capsule is filled at the same time as or in the container. By adding it before and after, the blending of functional raw materials into hydrogen-containing water is realized. And the hydrogen-containing water product for drinks manufactured with the manufacturing method of this invention and filled with hydrogen-containing water with the functional raw material is also the object of this invention.
  • Said functional raw material is not specifically limited,
  • the various raw materials used in the conventional drink etc. can be used.
  • the following compounds etc. can be mentioned, These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the following classifications are for convenience in the present disclosure, and are not limited to these classifications.
  • Amino acids alanine, tryptophan, lysine, methionine, threonine, valine, leucine, isoleucine, histitine, theanine, citrulline, etc.
  • Polyamine putrescine, spermine, spermidine, etc.
  • Moisturizing substances glucosamine (amino sugar), ceramide (sphingolipid) ), Hyaluronic acid (mucopolysaccharide), etc., peptides and proteins, and substances containing them: peptides, elastin peptides (eg bonito elastin), silk peptides (eg edible silk), collagen (protein), swallow nests (eg , Korokaria (registered trademark) is also included), etc., vitamins such as vitamin B 1, vitamin B 2, vitamin B 3 (niacin), vitamin B 6, vitamin B 7 (biotin), vitamin B 9 (folic acid), Vita Emissions B 12, vitamin C (ascorbic acid) and derivatives such as vitamin-like substances: hesperidin, L- carnitine, etc., antioxidant: pyrroloquinoline quinone (PQQ) (coenzyme), low molecular polyphenols (e.g.
  • PQQ pyrroloquinoline quinone
  • oligo Nord (Registered trademark)), coenzyme Q10, etc.
  • flavonoids flavonoids: rutin, catechin, etc.
  • minerals magnesium, calcium, zinc, iron, saccharides: glucose (glucose), ribose, fructose (fructose), arabinose and other monosaccharides; sucrose (Sucrose), lactose (lactose), maltose (maltose), trehalose and other disaccharides; oligosaccharides; sugar alcohols such as erythritol, maltitol, sorbitol, xylitol, etc., synthetic sweeteners: aspartame, acesulfame potassium, sucralose Etc.
  • Compound dextrin, indigestible dextrin, corn starch, cellulose, and derivatives thereof, etc.
  • Hydroxy acid and its derivatives citric acid, sodium citrate, etc.
  • stearic acid and its derivatives calcium stearate, magnesium stearate, etc.
  • vegetables, fruits Plants (including powders, liquids, extracts, etc.): tomatoes, spinach, long-lived grasses (button bow fus), hihatu, sakura, olives, roses, cat's claw, maca, camcam etc.
  • Teas Matcha, Sencha, Houjicha , Black tea, oolong tea, brown rice tea, dodomi tea, etc. ⁇ Agar etc. ⁇ Perfumes.
  • the functional raw material can be appropriately determined in consideration of its solubility, functions such as flavor, and the like. For example, it can be blended at 1 mg to 10 g per liter of hydrogen-containing water.
  • the amount of the functional raw material can be changed in accordance with the size of the water-soluble capsule. That is, when a large amount of the functional raw material is intended to be blended, a desired amount of the functional raw material is contained in a plurality of water-soluble capsules.
  • the capsules may be divided and filled, and the capsules filled with the plurality of functional raw materials may be charged simultaneously with filling the container or before and after filling.
  • the functional raw material can be blended into the hydrogen-containing water, and the functions such as flavor derived from the functional raw material can be achieved. Can be imparted to hydrogen-containing water. Furthermore, depending on the type of the functional raw material, a decrease in the dissolved hydrogen concentration can be suppressed, and an increase in the redox potential and the dissolved hydrogen concentration can be suppressed.
  • the compounds such as capsules used in the following examples and the like are as follows. ⁇ Water-soluble capsule (pullulan): Trade name “Plantcaps (registered trademark)”, size 2, pullulan content 85.5%, capsule weight: 63 mg (pullulan content: 54 mg), Capsugel Japan K.K. -Pullulan (powder): Product name "Food Additive Pullulan", Hayashibara Co., Ltd.
  • a container with a product capacity of 200 mL is used as a packaging container with a straw, and this is filled with hydrogen-containing water in an amount of 215 g ⁇ 10 g.
  • a sample was used.
  • Five product samples were prepared for each example, and the dissolved hydrogen concentration of each sample immediately after filling was measured.
  • the dissolved hydrogen concentration is measured with a dissolved sensor (combination of multimeter and dissolved hydrogen sensor) manufactured by Unisense, and the temperature (water temperature) and the measured temperature (water temperature) at the time of sensor calibration are 20 ° C. ⁇ 2 ° C.
  • the temperature at the time of filling to the packaging container with a straw was adjusted.
  • the number of capsules to be added size No.
  • Example 1 The product sample of Example 1 was manufactured by following the method disclosed in our previous patent (see Japanese Patent No. 4551964, see the apparatus shown in FIG. 1). Specifically, (1) a purification step in which the raw water is filtered and purified in the purification device and the obtained purified water is sent to the deaeration device; and (2) the purification supplied in the deaeration device. A degassing step of degassing water through a hollow fiber membrane and sending the obtained degassed water to a hydrogen dissolving device; (3) In the hydrogen dissolving device, pressurized hydrogen is supplied to the supplied degassed water through the hollow fiber membrane.
  • the product sample of Example 1 was manufactured through the filling step, and the dissolved hydrogen concentration was measured by the above procedure.
  • one water-soluble capsule was put in advance in a packaging container with a straw filled with hydrogen-containing water, and this was filled with hydrogen-containing water.
  • Example 2 The product sample of Example 2 was manufactured by following the method disclosed in our previous patent (see Japanese Patent No. 6052948, apparatus shown in FIG. 1). Specifically, (1) a purification process in which the raw water is filtered and purified in the purification device and the obtained purified water is sent to the deaeration device; and (2) the purification supplied in the deaeration device. A degassing step of degassing water through a hollow fiber membrane and sending the obtained degassed water to a hydrogen dissolving device; (3) In the hydrogen dissolving device, pressurized hydrogen is supplied to the supplied degassed water through the hollow fiber membrane.
  • the product sample of Example 2 is manufactured through the filling step and (5) the sealing step of sealing the opening of the packaging container with a straw filled with hydrogen-containing water with a sealing cap, and dissolved in the above procedure.
  • the hydrogen concentration was measured.
  • the above (4) filling step is performed by pressure filling (load pressure: 0.2 MPa to 0.3 MPa). At this time, the dissolved hydrogen concentration at the time of filling (measurement) is 3.
  • the pressure filling was carried out by adjusting to around 3 ppm. Further, in the filling step, one water-soluble capsule was put in advance in a packaging container with a straw filled with hydrogen-containing water, and the hydrogen-containing water was pressurized and filled therein.
  • Example 1 and Example 2 separately from each product sample, (4) after the filling step, (5) the opening of the packaging container with a straw filled with hydrogen-containing water is used as a sealing cap. And (6) the process of sterilizing the product filled and sealed with hydrogen-containing water by heat treatment (at 85 ° C. for 30 minutes) to produce a hydrogen-containing water product for drinking (confirmation sample) Manufactured. And the confirmation sample which passed through the process of said (6) heat processing was opened, and it confirmed that the water-soluble capsule was melt
  • Example 2 Under the maximum capacity conditions capable of stably maintaining mass production, the production of hydrogen-containing water is performed.
  • the beverage-containing hydrogen-containing water product of Comparative Example 2 is a hydrogen-containing water (hydrogen-reduced water) as shown below, following the method disclosed in the previous patent (Japanese Patent No. 3606466) (so-called “pressurization method”). After that, the obtained hydrogen-containing water is filled into the packaging container with a straw from its opening (injection port) to produce a product sample of Comparative Example 2, and the dissolved hydrogen concentration is measured by the above procedure. did. Specifically, hydrogen gas is filled in a pressure vessel from which air has been removed, and raw water is showered in the pressure vessel while maintaining the hydrogen gas pressure in the pressure vessel at 2 to 10 atmospheres (for example, 8 atmospheres).
  • Comparative Example 5 Instead of pre-dissolving pullulan in raw water, hydrogen gas and raw water are introduced in a pressure vessel, hydrogen gas is dissolved to obtain hydrogen-containing water, and then pullulan (powder) is added at a concentration of 0.025% by mass.
  • the product sample of Comparative Example 5 was produced in the same manner as in Comparative Example 2 except that this was stirred and dissolved so that it was filled in a packaging container with a straw, and the dissolved hydrogen concentration was measured. .
  • Example 2 manufactured by previously introducing a water-soluble capsule (pullulan) into a packaging container with a straw achieves a high dissolved hydrogen concentration.
  • the product sample of Comparative Example 2 dissolving hydrogen after dissolving the pullulan
  • the product sample of Comparative Example 4 dissolving the pullulan after producing the hydrogen-containing water
  • a lower dissolved hydrogen concentration than the product sample of Example 1 was measured. The above results are considered to be because in the product samples of Comparative Examples 1 to 3, the saturated dissolved hydrogen concentration itself decreased due to the presence of pullulan as a solute.
  • the difference in dissolved hydrogen concentration after storage is larger than the initial (at the time of filling), and the difference is the longer the storage period is Will be even bigger. That is, since the difference in dissolved hydrogen concentration after storage becomes larger than the difference in dissolved hydrogen concentration at the time of filling, it is required to keep the dissolved hydrogen concentration at the time of filling as high as possible.
  • Comparative Example 1 hydrogen dissolution method: membrane dissolution method using a hollow fiber
  • Comparative Example 2 hydrogen dissolution method: pressurization method
  • the solute component remains in the hydrogen dissolution apparatus (and degassing apparatus) (especially the hollow fiber membrane), there is a possibility that it may lead to the growth of bacteria. There are some concerns. Although it is theoretically possible to kill the propagated bacteria by a subsequent sterilization process, it is not easy to guarantee that the bacteria have been completely killed. Moreover, when the solute component remains in the hollow fiber membrane, the concentration of the solute component in the hydrogen-containing water after passing through the hydrogen dissolving device is not constant. As described above, the method of dissolving hydrogen gas in the water in which the solute component has been dissolved using the membrane dissolution method is to reduce the dissolved hydrogen concentration and ensure the quality stability and safety in the production of “for beverage” products. In addition, it can be said that it is unsuitable in the actual manufacturing method which assumed mass production of hydrogen-containing water products from a viewpoint of deterioration of an apparatus.
  • the market field of mineral water and hydrogen-containing water according to the present invention is basically tasteless and odorless products that do not contain additives, and flavored water compared to general soft drinks although flavored water is also marketed. Consumers who prefer these are often sensitive to smell and taste.
  • a hollow fiber membrane such as a hydrogen-dissolving apparatus is constructed by introducing a water-soluble capsule into the openable container before, during, or after the step of filling hydrogen-containing water.
  • the pipe through which water is passed in the production of hydrogen-containing water and the solute component do not come into contact, and this is an epoch-making method without the above-mentioned concerns.
  • Example 4 In the filling step, the same procedure as in Example 1 was performed except that one water-soluble capsule was put into the packaging container with a straw during filling of the hydrogen-containing water, and the above (5) sealing step and (6 ) After the heat sterilization process, the hydrogen-containing water product for beverage of Example 4 was produced.
  • Example 5 After the filling step, before sealing the opening of the packaging container with a straw with a sealing cap, the same procedure as in Example 1 except that one water-soluble capsule was put into the packaging container with a straw, and Furthermore, the hydrogen-containing water product for drinks of Example 5 was manufactured through the said (5) sealing process and (6) heat sterilization process.
  • Example 6 In a water-soluble capsule, 300 mg of glucose (powder) (product “TDA-S” (anhydrous crystalline glucose), Sanei Saccharification Co., Ltd.) is filled, and this is packed in a packaging container with a straw that is filled with hydrogen-containing water in the filling process.
  • a beverage-containing hydrogen-containing water product of Example 6 was produced in the same procedure as in Example 1, except that one was previously charged, and further through the above (5) sealing step and (6) heat sterilization step.
  • Example 7 instead of water-soluble capsules based on pullulan, As Example 7, HPMC water-soluble capsule (trade name “Vcaps (registered trademark) Plus”, size No. 2, HPMC content 95%, capsule weight: 60 mg (HPMC content: 57 mg), Capsugel Japan Co., Ltd.) , As Example 8, a water-soluble capsule of porcine gelatin (trade name “hard capsule”, size 2; porcine gelatin content 85.5%, capsule weight: 63 mg (pig gelatin content: 54 mg), Capsugel Japan Co., Ltd., As Example 9, fish gelatin water-soluble capsule (trade name “Ocean Caps (registered trademark)”, size 2, fish gelatin content 85.5%, capsule weight: 63 mg (fish gelatin content: 54 mg), caps gel Japan Co., Ltd. In the same manner as in Example 1, except that one each was used, and further through the above (5) sealing step and (6) heat sterilization step, the hydrogen-containing beverages of Examples 7 to 9 were contained. A water product was manufactured.
  • Example 4 thru or Example 9
  • a water-soluble capsule in Example 6 water-soluble It was confirmed that the capsule and glucose filled in the capsule) were completely dissolved.
  • the result is that if it is a water-soluble raw material such as glucose, it is filled into a water-soluble capsule, and this is put into a container before, during, or after the step of filling with hydrogen-containing water. At the same time, it is suggested that it can be dissolved in hydrogen-containing water.
  • water-soluble capsules empty capsules (one) are filled with a predetermined amount of various functional raw materials, and product samples are produced by using the filled capsules in the same manner as in Example 2 above. did.
  • N-acetylglucosamine, D-glucosamine, and ceramide were each an empty capsule made of pullulan [trade name “Plantcaps (registered trademark)”, size No. 2, pullulan content 85.5%, capsule weight: 63 mg (pullulan content : 54 mg), Capsugel Japan Co., Ltd.] was filled in a predetermined amount.
  • a product sample was produced in the same manner as in Example 2 ((4) Filled capsules in the filling step were previously placed in a packaging container with a straw, Filled with hydrogen-containing water). Table 3 shows details and blending amounts of each component filled in the capsule.
  • Example 11 Sorbitol, fructooligosaccharides, D-ribose, maltitol, and glucose were added to pullulan empty capsules [trade name “Plantcaps (registered trademark)”, size No. 2, pullulan content 85.5%, capsule weight: 63 mg ( Pullulan content: 54 mg), Capsugel Japan Co., Ltd.] was filled in a predetermined amount. Using this filled capsule, a product sample was produced in the same manner as in Example 2 ((4) Filled capsules in the filling step were previously placed in a packaging container with a straw, Filled with hydrogen-containing water). Table 7 shows details and blending amounts of each component filled in the capsule.
  • Example 12 Ascorbic acid, sodium ascorbate, citric acid, and sodium citrate were each added to a pullulan empty capsule [trade name “Plantcaps (registered trademark)”, size No. 2, pullulan content 85.5%, capsule weight: 63 mg ( Pullulan content: 54 mg), Capsugel Japan Co., Ltd.] was filled in a predetermined amount. Using this filled capsule, a product sample was produced in the same manner as in Example 2 ((4) Filled capsules in the filling step were previously placed in a packaging container with a straw, Filled with hydrogen-containing water). Table 11 shows the amount of each component filled in the capsule.
  • Example 13 Rutin, Hesperidin, Swallow's nest extract, Polyamine, Glucose are each an empty capsule made of pullulan [trade name “Plantcaps (registered trademark)”, size 2, pullulan content 85.5%, capsule weight: 63 mg (with pullulan) Amount: 54 mg), Capsugel Japan Co., Ltd.] was filled in a predetermined amount. Using this filled capsule, a product sample was produced in the same manner as in Example 2 ((4) Filled capsules in the filling step were previously placed in a packaging container with a straw, Filled with hydrogen-containing water). Table 15 shows details and blending amounts of each component filled in the capsule.
  • Example 14 Silk peptide, L-carnitine, L-citrulline, cherry blossom extract, rose petal extract, olive leaf extract powder, pyrroloquinoline quinone disodium salt (PQQ), hyaluronic acid, respectively, empty capsules made by pullulan [trade name " Plantcaps (registered trademark) ”, Size No. 2, pullulan content 85.5%, capsule weight: 63 mg (pullulan content: 54 mg), Capsugel Japan Co., Ltd.] was filled in a predetermined amount. Using this filled capsule, a product sample was produced in the same manner as in Example 2 ((4) Filled capsules in the filling step were previously placed in a packaging container with a straw, Filled with hydrogen-containing water). Table 19 shows details and blending amounts of each component filled in the capsule.
  • Example 15 Rose petal extract, L-citrulline, cherry blossom extract, pyrroloquinoline quinone disodium salt (PQQ) are mixed in a specified amount and an empty capsule made by Pullulan [trade name “Plantcaps (registered trademark)”, size 3, containing pullulan The rate was 85.5%, capsule weight: 51 mg (pullulan content: 43.6 mg), Capsugel Japan Co., Ltd.].
  • a product sample was produced in the same manner as in Example 2 ((4) Filled capsules in the filling step were previously placed in a packaging container with a straw, Filled with hydrogen-containing water). Table 23 shows details and blending amounts of each component filled in the capsule.
  • a hydrogen-containing water product containing a functional beverage can be produced by the production method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

【課題】機能性原料等の配合した飲料用水素含有水製品において、充填時の水素含有水自体の溶存水素濃度の低下を抑制するとともに、機能性原料等の所望量の配合、製造装置の汚染の防止等を図れる飲料用水素含有水製品の製造方法を提供すること。 【解決手段】水素含有水を開封可能な容器内に充填し、そして該容器を密封する工程を含む、飲料用水素含有水製品の製造方法であって、水溶性カプセルを、前記水素含有水を充填する工程の前、中、又は後に、前記開封可能な容器内に投入することを特徴とする、飲料用水素含有水製品の製造方法。

Description

飲料用水素含有水製品の製造方法
 本発明は、飲料用水素含有水製品の製造方法に関する。
 近年、水に水素ガスを溶解させた水素含有水(単に水素水ともいう)は、高い還元性を有することから、金属の酸化や食品類の腐敗を抑制する効果があるとされ、また飲用へ転用した場合には様々な健康障害の改善を期待できるとして注目されている。
 上述の飲用向けの水素溶解水を製造する方法としては、例えばガスボンベからの水素ガスを原水に溶解させたり、或いは水の電気分解により発生した水素ガスを原水に溶解させたりする方法がある(例えば特許文献1)。ただし、単に水素ガスを原水中に供給するだけでは、室温・大気圧下では原水中に溶存している窒素ガス、酸素ガスなどが水素ガスの溶解を邪魔するため、その溶存水素濃度は水素の飽和濃度に遠く及ばない。
 また例えば空気を除去した圧力容器内に水素ガスを充填し、該圧力容器内における水素ガスの圧力を2~10気圧に保ったまま、その圧力容器内に原水をシャワー状に散水して水素ガスと接触させることにより、水素ガスを効率よく溶解させる方法が提案されている(特許文献2)。
 あるいは、水に高圧で水素ガスを噴射して超微細気泡(所謂“ナノバブル”“マイクロバブル”)を発生させ、これを水に溶解させる方法が提案されている(特許文献3)。
特開2002-254078号公報 特許第3606466号公報 特開2011-230055号公報
 上述したように、より高い溶存水素濃度を実現すべく、種々の水素含有水の製造方法が提案され、そして、主にキャップが取り付けられたストロー付包装容器などに前記方法により得られる水素含有水を充填した飲料用水素含有水製品の提案がなされている。
 また近年では、水素含有水にアミノ酸などの機能性原料を配合して機能性の向上を図った水素含有水の提案もなされている。しかしこれら機能性原料の水素含有水への配合の際には、空気との接触が起こり易く、溶存水素濃度が大きく低下することが懸念される。また原料水に機能性原料を配合した後に該原料水への水素の溶解を行った場合、不純物(機能性原料)の存在により所望の溶存水素濃度を実現できない(機能性原料の配合により溶存水素濃度が下がる)、あるいは水素の溶解法によっては装置の汚染や損傷などの問題が生じる虞がある。
 加えて、たとえ高濃度の溶存水素濃度を実現した水素含有水を製造できたとしても、この水素含有水を密封可能な容器に充填・密封する間、或いは密封後の容器内において、水素含有水と空気が接触すると空気が水素含有水に溶解して水素含有水中の溶存水素濃度が低下するという問題が生じる。
 本発明者らは、上記の課題を解決するべく鋭意検討を行った結果、製造した水素含有水を容器内に充填するのと同時に、あるいは充填の前または後に、水溶性カプセルを系内に、すなわち容器内に存在させることにより、充填する水素含有水自体の溶存水素濃度を低下させることなく、水素含有水中に水溶性カプセルを存在させることができることを見出した。すなわち水溶性カプセル内に水溶性の機能性原料を充填することで、水素含有水中で水溶性カプセルが溶解すると、機能性原料が水素含有水中に溶けだすこととなり、これにより、充填時の水素含有水の溶存水素濃度を低下させることなく、機能性原料の水素含有水中への配合を実現できることを見出した。そして水溶性のカプセルの形態を採用したことにより、カプセル容量にあわせた機能性原料の所望量の配合、製造装置の汚染の防止、添加したカプセル(さらには充填する機能性原料)の水素含有水への速やかな溶解を同時に実現できることを見出し、以下の本発明を完成させた。
 すなわち本発明は、水素含有水を開封可能な容器内に充填し、そして該容器を密封する工程を含む、飲料用水素含有水製品の製造方法であって、水溶性カプセルを、前記水素含有水を充填する工程の前、中、又は後に、前記開封可能な容器内に投入することを特徴とする、飲料用水素含有水製品の製造方法に関する。
 本発明の製造方法において、前記水素含有水の容器内への充填が加圧充填にて実施されることが好ましい。
 また前記水溶性カプセルは、前記水素含有水を充填する工程の前又は該工程中に投入することが好ましい。
 さらに前記水溶性カプセルは、ヒドロキシプロピルメチルセルロース(HPMC)、プルラン、及びゼラチンからなる群から選択される少なくとも一種を含む材料からなることが好ましい。
 そして、前記容器を密封する工程の後、さらに、該密封された容器を加熱処理する殺菌工程を含むことが好ましい。
 また本発明の製造方法において、前記開封可能な容器は、ボトル缶又はイージーオープン缶であることが好ましい。
 あるいは前記開封可能な容器が袋状の容器であって、前記袋状容器は、金属層と合成樹脂層とを含む積層フィルムからなる可撓性を有する袋状容器体からなるか、または前記袋状容器は、金属層と合成樹脂層とを含む積層フィルムからなる可撓性を有する袋状容器体と、該容器体にその上縁部での熱溶着により固着されてなるスパウトと、該スパウトの上端口部に螺着された封止キャップとを備えてなる、スパウト付包装容器であるか、もしくは前記袋状容器は、金属層と合成樹脂層とを含む積層フィルムからなる可撓性を有する袋状容器体と、ストロー下部が該容器体内に差し込まれ、該容器体にその上縁部での熱溶着により固着されてなるスパウト付ストローと、該スパウト付ストローの上端口部に螺着された封止キャップとを備えてなる、ストロー付包装容器であることが好ましい。
 さらに本発明の製造方法において、前記水素含有水は、0.15MPa乃至0.5MPaの負荷圧力にて前記開封可能な容器内に加圧充填されることが好ましい。
 そして前記充填後の加熱処理は、65℃乃至90℃の温度で、3分間乃至2時間の加熱条件にてなされることが好ましい。
 また前記水素含有水は、充填時の溶存水素濃度が、充填時の水素含有水の温度における水素の水への飽和濃度以上の水素含有水であることが好ましい。
 そして本発明の製造方法において、前記開封可能な容器の製品容量は、150mL乃至550mLであることが望ましい。
 また前記水溶性カプセルは、前記水素含有水200mLに対して20mg~200mgの割合にて投入されることが好ましい。
 また前記水溶性カプセルは、機能性原料がカプセル内に充填された水溶性カプセルであることが好ましい。
 そして本発明の製造方法により製造された、機能性原料とともに水素含有水が充填された、飲料用水素含有水製品も本発明の対象である。
 本発明の飲料用水素含有水製品の製造方法は、事前に、例えば機能性原料等を水素含有水に溶解し、機能性原料入りの水素含有水を容器内に充填する方法ではなく、水素含有水を充填する工程の前、中、又は後に、容器内に水溶性のカプセルの形態にて投入する方法を採用したことを特徴とする。これにより、従来為されてきた機能性原料等の水素含有水への混合工程を経ることがないため、該混合工程において懸念される水素含有水と空気との接触を減じることができ、高い溶存水素濃度にて製造した水素含有水の溶存水素濃度を低下させることなく、水素含有水中に水溶性カプセルを投入し、これを水素含有水中に溶解させることができる。そして水溶性カプセル中に機能性原料等を充填することで、水溶性カプセルの溶解とともに、カプセル中の機能性原料が水素含有水中に配合(溶解)されることとなる。
 また、水素を溶解する前の原料水に機能性原料等を溶解し、機能性原料入りの水に水素を溶解する従来の方法では、溶質としての機能性原料の存在により、機能性原料を溶解せずに水素を溶解した場合と比べて溶存水素濃度の低下は避けられない。また水素の溶解法によっては、水素溶解装置の汚染や損傷などの問題が生じ得る。
 本発明の製造方法によれば、こうした装置の汚染や損傷の懸念を回避でき、且つ、高い溶存水素濃度を有する水素含有水中に、水溶性カプセルを投入することができる。そして水溶性カプセル中に機能性原料等を充填することで、装置の汚染や損傷を回避しつつ、カプセル内の機能性原料を水素含有水に配合することができる。
 さらに本発明によれば、“水溶性”の“カプセル”の形態を採用したことにより、これを水素含有水に投入することにより、製品に対して一定量の配合を容易とし、例えば機能性原料等を粉末形態にて投入する場合に起こり得る投入時の飛散といった製造装置の汚染が少なく、さらに、水素含有水との接触面(すなわち表面積)が大きいことから水素含有水への溶解が速やかに進み、投入した水溶性カプセルの溶け残りが少ない製品を製造することができる。
図1は、本発明の製造方法により製造された飲料用水素含有水製品の一形態を示す斜視図である。 図2は、図1に示す飲料用水素含有水製品におけるストローの上端口部周辺Aの拡大図である。 図3は、本発明の製造方法により製造された飲料用水素含有水製品に用いるスパウト付ストローを示す斜視図である。
 前述したように、これまでにも種々の水素含有水の製造方法が検討されているものの、たとえ高濃度の溶存水素濃度が実現できたとしても、水素含有水の充填・密封・保管中に、水素含有水と空気が接触して水素含有水中の溶存水素濃度が低下するという問題が生じていた。
 またたとえば保存容器として汎用のストロー付包装容器を使用した場合、該ストロー付包装容器における上端口部(即ち吸口部:スパウト)やキャップの気密性を完全に保つことは難しく、僅かながら容器内部の空間と外部の空間とが連通している。このため、時間の経過と共に、ごく僅かであっても容器外部からの空気が容器内部に徐々に流入することは避けられず、そして水素含有水と空気とが接することによって起こる溶存水素濃度の低下は避けられない。
 このように、水素含有水を、例えば汎用のストロー付包装容器に充填・密封した従来の水素含有水製品は、製造から期間が経過するにつれて水素含有水の溶存水素濃度が低下してしまうという問題が生じている。ストローのない袋状容器体であれば、ストローやキャップ周辺からの空気流入の問題については避けられるものの、一方で該袋状容器体から直接飲用することは困難と言え、コップ等の別の容器に移し替える際、大気と接触することによって溶存水素濃度の大幅な低下が起きるなど、別の問題が生じ得る。いずれにしても、製造後から長期間(例えば3~6ヶ月程度の期間以上)経過した場合においても、溶存水素濃度をできるだけ維持し、酸化還元電位を低く保てる(マイナス値を維持する)水素含有水製品が求められていた。
 こうした課題に対し、水素含有水の溶存水素の寿命を長くすることを目指して還元性のアルデヒド基を有する物質を添加する試み(例えば国際公開第2008/062814号)が検討され、また、水素含有水に種々の風味や機能性を持たせるべく、機能性原料などの配合物を水素含有水に添加することを検討した場合、これら機能性原料混合時における水素含有水と空気が接触する懸念の他、機能性原料を混合した後では水素溶解時に所望の溶存水素濃度を実現できない点、そして装置の汚染や損傷など、課題は尽きない。
 本発明はこうした課題を解決するものであって、水素含有水を容器内に充填する前に、あるいは充填中に、さらには充填後に、容器内に水溶性カプセルを投入するという方法を思いつくに至った。これにより、機能性原料等の配合時に空気と接触することによる水素含有水の溶存水素濃度の低下を極力抑えるとともに、製造装置の汚染や損傷を起こすことなく、水溶性カプセルを投入し、これを溶解させること、さらには水溶性カプセル内に水溶性の機能性原料を充填することで、これを溶解させることを実現したものである。
 本発明は、水素含有水を開封可能な容器(単に“容器”とも称する)内に充填し、そして該容器を密封する工程を含む、飲料用水素含有水製品の製造方法であって、水溶性カプセルを、前記水素含有水を充填する工程の前、中、又は後に、前記開封可能な容器内に投入することを特徴とする、飲料用水素含有水製品の製造方法を対象とする。
[飲料用水素含有水製品の製造方法]
 本発明の飲料用水素含有水製品の製造に使用する水素含有水の種類、すなわちその製造方法は特に限定されず、例えば、ガスボンベから供給される水素ガスを原水に溶解させたバブリング法、空気を除去した圧力容器内に水素ガスを充填し、該圧力容器内における水素ガスの圧力を例えば2~10気圧に保ったまま、その圧力容器内に原水をシャワー状に散水して水素ガスと接触させることにより水素ガスを原水に溶解させる加圧法、水の電気分解により発生した水素ガスを溶解させる電解法、或いは中空糸膜を用いた膜溶解法など、種々の方法によって得たものを用いることができる。
 中でも、原料となる水から中空糸膜を通じて残存ガスを脱気し、次いで得られた脱気水及び加圧された水素ガスをガス透過膜モジュールに導入して水素ガスを脱気水に溶解させる膜溶解法を用いて製造した水素含有水が、溶存水素濃度をより効率的に高めることができるため好ましい(例えば本発明者らが為した先の特許出願:特許第4551964号明細書)。そして前述の方法により製造した水素含有水を容器内に充填すること、とりわけ加圧充填することにより、効率的に高めた溶存水素濃度を高い値に維持することにつながるため好ましい(例えば本発明者らが為した先の特許出願:特許第6052948号明細書)。
 本発明の製造方法は、前述の通り、水素含有水を開封可能な容器内に充填し、そして該容器を密封する工程を含み、また、後述する水溶性カプセルを、前記水素含有水を充填する工程の前、中、又は後に、前記開封可能な容器内に投入することを含む限り、特にその方法や手順、そして製造装置について限定されることはない。
 例えば本発明の飲料用水素含有水製品の製造方法として、上記の膜溶解法を用いて水素含有水を製造し、これを容器に充填して製品とする、以下の(A)乃至(E)を経る方法を好適に採用し得る。この場合、“水素含有水を開封可能な容器内に充填し、そして該容器を密封する工程”は下記(C)及び(D)工程に該当する。
(A)脱気装置において、供給された原料の浄化水を中空糸膜を通じて脱気し、得られた脱気水を水素溶解装置に送る脱気工程と、
(B)前記水素溶解装置において、供給された脱気水に加圧水素ガスを中空糸膜を通じて溶解し、得られた水素含有水を充填装置に送る水素溶解工程と、
(C)前記充填装置において、供給された水素含有水を(例:ストロー付包装)容器にその注入口より充填する充填工程と、
(D)水素含有水が充填された(ストロー付包装)容器の注入口を密封装置にて密封する密封工程と、
(E)前記密封された容器を加熱処理する殺菌工程。
 中でも好適な態様において、前記(C)工程における水素含有水を充填する工程が、加圧充填にてなされることが好ましく、そして効率的な加圧充填を実現するべく、下記の構成を更に備えてなることが好ましい。
 すなわち、前記脱気工程(A)において脱気装置に供給される浄化水から前記充填工程(C)において容器に注入される水素含有水までの水流路には、圧力ポンプの運転によって所定の圧力が負荷され、これにより、圧力が負荷された水素含有水が前記充填装置に供給されることが望ましい。
 要するに、好適な態様において、上記脱気装置(a)に供給される浄化水から、充填装置(c)にて容器に注入される水素含有水までの水流路及び各装置[脱気装置(a)、水素溶解装置(b)、充填装置(c)]に、所定の圧力を付加できる圧力ポンプとを少なくとも備える製造装置にて製造することが望ましい。
 また好適な態様において、前記充填工程(C)において、水素溶解工程(B)で得られた水素含有水を容器内に加圧充填するべく、
1)軸弁が前記充填装置の充填口を閉じ、そして、前記水素溶解工程(B)からの圧力が負荷された水素含有水が該充填口に接する空洞内に供給された状態とする準備段階と、
2)そして前記容器の注入口を該充填口と接続し、続いて前記軸弁に設けられた気体路を通じて気体減圧手段により、前記容器の内部の気体を除去する脱気段階と、
3)その後、前記気体路を閉じ、そして前記軸弁が前記充填口を開き、圧力が負荷された水素含有水を前記容器内に直接注入する注入段階と、
4)次いで前記軸弁が前記充填口を閉じた後、前記気体路を開き、気体加圧手段により前記気体路を通じて加圧空気を前記空洞内に導入することにより、充填装置内に残る水素含有水を前記容器内に排出する排出段階とを含み、そして、
5)前記注入口と前記充填口との接続を解いたとき、直ちに前記密封工程(D)に移行する工程を備えてなる装置を使用することが好適である。
 以下、(A)乃至(E)工程及び各工程に使用する装置を説明する。
<脱気工程(A)及び脱気装置(a)>
 本工程は、供給された原料の浄化水を脱気し、得られた脱気水を(B)水素溶解工程における(b)水素溶解装置に送る工程である。
 本工程で使用される脱気装置(a)は、供給された原料の浄化水を中空糸膜を通じて脱気する装置である。
 前記脱気装置(a)は、酸素ガス、窒素ガス、炭酸ガス等の溶存気体の脱気を行うことができれば特に制限されず、例えば真空脱気装置や、中空糸膜モジュールを備えた脱気装置を用いることができるが、微量に溶存する気体を効率よく脱気することができるため、中空糸膜モジュールを備えた脱気装置を用いることが好ましい。
 該中空糸膜モジュールは、通常数多くの中空糸膜を束状にそして膜間に適当なスペースを設けて配置されてなり、そして中空糸膜によって水室と気体室とに区画され、水室に前記浄化水を通過させ、気体室を減圧することにより、水室に流れる溶存気体を脱気する。
 また、中空糸膜モジュールは、2つ以上並列使用してもよく、特に2つ以上の中空糸膜モジュールを直列して使用することにより、微量に溶存する気体をより効率よく脱気することができる。
 また好適な態様において、前述したとおり、本発明で使用し得る製造装置では、脱気装置に浄化水を供給する水流路に圧力が負荷されることが想定されるため、本装置で用いる中空糸膜には高い耐圧性能が求められるが、中空糸膜はそのような耐圧性能があれば、その種類は特に制限は無く、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリジメチルシロキサン(シリコーンゴムの形態も含む)、ポリカーボネート-ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール-ポリジメチルシロキサン-ポリスルホンブロック共重合体、ポリ(4-メチルペンテン-1-)、ポリ(2,6-ジメチルフェニレンオキシド)、ポリテトラフルオロエチレン等の高分子膜を用いることができる。
 なお、本製造方法では、好適な態様において、浄化水を脱気装置に供給する水流路に高い圧力が負荷されることが想定されるため、本装置で用いる中空糸膜は、水流路に低い圧力が負荷されている従来技術に比べて、中空糸膜の消耗が早くなるおそれがあるので、より耐圧性に優れたグレードのものを採用するのが望ましい。
 なお、脱気効率を高めるために浄化水の脱気を加温下で実施してもよく、その場合には、その後の水素溶解の効率を上げるために、脱気後に水素溶解装置に送る際により低温に、少なくとも室温(25℃前後)以下にまで冷却することが求められる。
 なお、本脱気装置(a)で使用する浄化水は、例えば浄化装置において原料となる水をろ過して得ることができる。
 原料となる水は、飲用に適した水源から供給されたものであれば特に制限は無く、水道水(水道事業の用に供する水道、専用水道若しくは簡易専用水道により供給される水)や地下水等を挙げることができる。
 前記浄化装置は、通常、活性炭ろ過装置と膜ろ過装置を備えてなる。
 前記活性炭ろ過装置により原料となる水のカビ臭、トリハロメタンの除去や、脱塩素処理などを行う。また安全フィルタろ過装置によって、浮遊物(活性炭などを含む)や、大腸菌などの細菌、クリプトスポリジウムなどの病原性原虫などを除去することも可能である。
 膜ろ過装置に使用可能な膜としては、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、ナノフィルター膜(NF膜)、逆浸透膜(RO膜)が挙げられるが、操作性や、飲用とした場合に味の決め手となるミネラル成分の残存性を考慮すると、MF膜を用いることがもっとも望ましい。NF膜やRO膜を用いたとき、ナトリウムイオンやカリウムイオン等の原水に溶存するミネラル成分が除去されやすくなるため、飲用に適した水とするにはこれらミネラル成分の残存率を調整するとか、あるいは新たに添加するなどの必要が後工程で生じる場合がある。しかも、その場合、操作が煩雑になり好ましくない。
 なお、NF膜などの0.1μm以下程度孔径を有する膜を使用した膜ろ過装置を用いる場合には、細菌類を除去できる可能性があり、この場合、膜ろ過後の各工程における水流路(配管)を清潔に保ち、また、水素含有水を充填する容器内を殺菌することができ、食品衛生上の問題が解決できれば、充填密封後の(E)加熱処理を行う殺菌工程を行わずとも、水素含有水製品を製造できる可能性がある。この場合、後述する殺菌工程における加熱処理によって形成される水素ガス雰囲気は、製品製造後の時間の経過とともに、徐々に飽和濃度を超える水素が気化することにより、形成される。
<水素溶解工程(B)及び水素溶解装置(b)>
 本工程は、前記(a)脱気装置にて得られ、(b)水素溶解装置に供給された脱気水に加圧水素ガスを溶解し、得られた水素含有水を充填装置(c)に送る工程である。
 本工程で使用される水素溶解装置(b)は、前記工程の脱気装置(a)より供給された脱気水に加圧水素ガスを中空糸膜を通じて溶解させる装置である。
 前記水素溶解装置(b)としては、単位時間、単位スペース当りの水素ガス溶解量が大きく、水素ガスの溶解効率を高めることが容易であることから、中空糸膜モジュールを備えた水素溶解装置を用いる。
 前記中空糸膜モジュールは、通常数多くの中空糸膜を束状にそして膜間に適当なスペースを設けて配置されてなり、そして中空糸膜によって水室と気体室とに区画され、水室に前記脱気水を通過させ、気体室に水素ガスを供給することにより、水室に流れる脱気水に水素ガスを溶解させる。
 また、中空糸膜モジュールは、2つ以上を併用してもよい。
 好適な態様において、本発明で使用し得る製造装置では、脱気水を水素溶解装置に供給する水流路に圧力が負荷されることが想定されるため、本装置で用いる中空糸膜には高い耐圧性能が求められるが、中空糸膜はそのような高い耐圧性能があれば、その種類は特に制限は無く、本装置で使用する中空糸膜としては、前述の脱気装置に使用する中空糸膜として挙げた高分子膜を用いることができる。
 水素ガスの供給方法には特に制限は無く、例えば市販の高純度水素ガスボンベや水の電気分解などで得られる水素ガスに圧力をかけて中空糸膜モジュールの気体室に供給する。
ここで水素ガスに負荷させる圧力としては、例えば0.1MPa乃至0.5MPa、つまり大気圧(約0.1MPa)に対して更に加える圧力として0.1MPa乃至0.5MPaである。水素ガスに圧力を負荷させることにより、溶存水素濃度をより高めることができる。
 なお好適な態様において、本発明で使用し得る製造装置では、脱気水を水素溶解装置(b)に供給する水流路に高い圧力が負荷されることが想定される。このため、水流路に低い圧力が負荷されている従来技術に比べて、本装置で用いる中空糸膜は中空糸膜の消耗が早くなるおそれがあるので、該中空糸膜は、より耐圧性に優れたグレードのものを採用するのが望ましい。
 前述したとおり、好適な態様において、本発明で採用し得る製造装置(製造工程)では、前記脱気装置(a)に供給される浄化水から後述する充填装置(c)において容器に注入される水素含有水までの水流路に、圧力を負荷することができる圧力ポンプを備えていることが好適である。圧力ポンプを備えることにより、従来に比して相当に高い圧力が負荷された、溶存水素濃度が高い水素含有水を、水流路を通じて充填装置まで給送することができる。
 前記圧力ポンプは、水流路(配管)に圧力を負荷することができるものであれば特に制限されず、公知の圧力ポンプを使用することができる。
 また、上記の好適な態様における製造方法において、水流路に付加された圧力を維持するべく、前記圧力ポンプにより圧力が負荷された後の水流路(すなわち、前記脱気装置(a)へ向かう水流路)と、前記圧力ポンプにより圧力が負荷される前の水流路とを連通するループ流路が設けてなることが好ましい。
 前記ループ流路にはリリーフ弁が接続され得る。該リリーフ弁は、圧力ポンプにより圧力が負荷された後の水流路における水圧が、一定の基準圧力を超えたときには、該ループ流路を開くように機能し、該水圧が一定の基準より低い間は該ループ流路を閉じるように機能する。すなわち、該リリーフ弁の開閉によって圧力ポンプとループ流路との間の水循環を随時行うことにより、前記水圧を基準圧力以下に維持する役割を担う。
 前記基準圧力としては、前記中空糸膜の消耗や各装置の耐圧性能などの観点から、例えば0.1MPa乃至0.5MPa、好適には0.15MPa乃至0.5MPaが適用され、好ましくは、例えば0.15MPa乃至0.4MPaであり、例えば0.15MPa乃至0.3MPaである。すなわち、水流路には、大気圧(約0.1MPa)に対して更に加える圧力として、0.1MPa乃至0.5MPaの圧力、例えば0.15MPa乃至0.5MPaの圧力が負荷される。
 本発明で使用し得る製造装置には、好適な態様において、後述する充填装置(c)より前の水流路に、例えば前記水素溶解装置(b)と充填装置(c)との間の水流路に、オリフィスを備えてなることが好ましい。前記オリフィスは、該充填装置(c)に供給されることとなる、前記圧力ポンプにより基準圧力が負荷された水素含有水の流量を、一定の基準流量以下に制限する役割を担う。水素含有水の容器への注入開始とともに水流路における水圧は低下するが、オリフィスがない場合と比べて、オリフィスを設けることにより圧力の低下量を抑えることができ、充填装置への水素含有水の安定的な供給につながる。このようにオリフィスは水素含有水の容器への充填を円滑且つ安全に行う役割をも担う。
<充填工程(C)及び充填装置(c)>
 本工程は、前記(b)水素溶解装置にて得られ、(c)充填装置に供給された水素含有水を容器に充填する工程である。
 本工程で使用される充填装置は、前記工程の水素溶解装置により供給された水素含有水を前述の容器に、その注入口(例えば上端口部)より充填する装置である。
 本工程は、好適には加圧充填によって実施され、該加圧充填を効率的に実施するべく、充填装置(c)は以下の構成を有してなることが好ましい。
 すなわち、好適な態様において、本充填装置(c)は、装置本体内に、充填口に接する空洞を有し、且つ、軸弁をその先端部が該充填口に臨むように往復動可能に備えてなることが好ましい。また前記空洞は水素溶解装置(b)からの水流路と連通しており、そして該軸弁の往復動により、前記充填口と接続された容器の注入口を水素溶解装置(b)からの水流路と連通し、そしてその連通を遮断することができる弁機構のものとなっていることが好ましい。
 またこのとき、装置本体内の前記空洞は、軸弁内部の又は軸弁外面に沿う気体路を経て、気体減圧手段及び気体加圧手段と接続される。前記気体路は前記軸弁の往復動により開閉される構造、すなわち、該軸弁の往復動により、該気体路と該空洞が連通する/連通を遮断する構造となっていることが好ましい。
 上記軸弁は、一定の周期で往復動するように設定され、これにより、前記充填口は一定の周期で繰り返し開閉されることとなる。なおこの軸弁の一定の周期での往復動に連動して、上記気体路も一定の周期で繰り返し開閉される。
 そして、上記充填口が開いている間、水素含有水の容器への注入が為され、充填装置における水素含有水の充填量は、軸弁の往復動の周期(充填口の開閉)と、オリフィスによる基準流量の設定(オリフィス径)により、設定することができる。
 なお前述したように、本発明の製造方法にあっては、水素含有水を容器内に充填するのと同時に、あるいは充填の前後に、水溶性カプセルを、前記開封可能な容器内に投入することを特徴とする。
 水溶性カプセルの容器内への投入は、後述するストロー付包装容器又はスパウト付包装容器の場合にはその注入口から、また(スパウト付ストローやスパウトのない)袋状容器体からなる包装容器、あるいは、金属缶(ボトル缶やイージーオープン缶)の場合にはその上部開口部から、実施すればよい。
<密封工程(D)及び密封装置(d)>
 本工程は、前記(c)充填装置にて水素含有水が充填された容器の注入口を(d)密封装置にて密封する工程である。
 そして本工程で使用される密封装置は、水素含有水の充填が完了した(ストロー付包装)容器の注入口を密封する装置である。
 本装置は、充填装置から送られた(ストロー付包装)容器の注入口を直ちに密封することができるものであれば特に制限されず、公知の密封装置を使用することができる。
<殺菌工程(E)及び加熱殺菌装置(e)>
 本工程は、前記(D)密封工程が終了した後、密封が完了した水素含有水入り容器を適宜加熱殺菌装置に送り、加熱殺菌する工程である。本工程を経て最終製品である飲料用水素含有水製品が完成する。
 加熱殺菌装置としては、例えば、加熱蒸気殺菌装置を使用することができ、殺菌時の加熱温度及び加熱時間は、F値(一定温度で一定数の特定細菌胞子、または細菌を死滅させるのに要する加熱温度(分))や製品品質を勘案して適宜決定することが望ましい。例えば、加熱温度及び加熱時間は65~90℃、3分間乃至2時間であり、例えば、85℃で30分間という加熱温度及び加熱時間が採用される。
 なお飲料用の水素含有水製品は、食品衛生上の観点から、水素含有水を保存容器に充填・密封した後、上記の殺菌のための加熱処理を経る必要がある。飽和水素濃度は温度上昇とともに低下するため、この加熱処理によって容器内部の水素含有水の温度が上昇するに伴い、水素含有水に溶存していた水素が溶存状態を保てず、飽和水素濃度以上の水素は強制的に気化することとなる。例えばストロー付包装容器を用いた場合、通常、容器の上部となるキャップやストロー上部の吸口部(スパウト)の周辺に気化した水素が溜まり、水素ガス雰囲気を形成することとなる。
 気化した水素(ガス)は、加熱処理後に製品を冷却すると、冷却温度時の飽和水素濃度に応じて、加熱処理後に生成した容器内部の水素ガスが水素含有水に再溶解する。従来汎用のストロー付包装容器に、水素含有水を常圧充填した従来の飲料用水素含有水製品にあっては、上記加熱殺菌後常温に冷却された段階で、水素ガスの再溶解により、水素ガス雰囲気は実質消失する。
 本発明の製造方法の好適な態様において、水素含有水を容器内に加圧充填することにより、充填時の水素含有水の溶存水素濃度は、充填時の水素含有水の温度における水素の水への飽和濃度(飽和水素濃度)よりも遥かに高いものとなっている。このため、加熱処理(殺菌工程)により気化した水素ガスは、製品冷却後の水素含有水への再溶解を経た後においても溶解しきれず、加熱処理後常温に冷却された段階でも上記の水素ガスの雰囲気が容器内に存在し続けることとなる。容器内に水素がガス雰囲気で多少なりとも残存していれば(製品の封を開けた際に水素センサ等に反応する)、水素含有水の水素濃度は高く保たれる要因にもなり得るため、水素ガス雰囲気が残存することは水素含有水の性質上、非常に重要である。
 すなわち、加圧充填により製造された飲料用水素含有水製品は、開封可能な容器と、該容器内に加圧充填されそして密封された水素含有水と、該水素含有水中に溶存した水溶性カプセル(正しくは水溶性カプセルを構成する成分)と、該容器内の水素含有水の水面より上方の空間に該加圧充填後の加熱処理により生成された水素ガスを含むガス雰囲気とから構成されることとなる。そして前記ガス雰囲気は例えば30日経過後において、好ましくは少なくとも90日経過後においても存在し、さらに好ましくは180日経過後も存在してなる。該ガス雰囲気は、該雰囲気全体圧に対して水素ガス分圧が90%以上の雰囲気となっている形態であることが特に好ましい。
 そしてこの水素ガスを含むガス雰囲気の存在により、溶存水素濃度の低下につながる種々の気体、すなわち、容器内に残存する気体や水素含有水中に混入する気体の存在があったとしても、本発明において加圧充填を採用して製造された飲料水素含有水製品は、既存技術により製造した製品や常圧充填した製品と比較して高い溶存水素濃度、低い酸化還元電位値を保つことができる。
 なお前述したとおり、本発明の製造方法では、水溶性カプセルを容器内に充填するのと同時あるいは充填の前後に投入することで、従来の機能性原料等の水素含有水への混合時に起こる空気との接触よる水素含有水の溶存水素濃度の低下を抑制することを実現してものであるが、上記の加圧充填を組み合わせることで、さらに、長期間保管後においても、高い溶存水素濃度、低い酸化還元電位値を維持することができる。
 以上の通り、本発明の製造方法により得られる飲料用水素含有水製品は、例えば製造後90日経過後においても、従来製品と比べて高い溶存水素濃度、低い酸化還元電位、低い溶存酸素濃度を有する水素含有水を実現できる。
 本発明によれば、例えば製造後180日以上経過後においても、例えばpH7.0の水素含有水において、酸化還元電位がおよそ-600mV以下、溶存水素濃度が1.0ppm以上、また例えば、製造後90日経過後において、溶存酸素濃度が1.0ppm以下、さらには、製造後180日経過後においても、溶存酸素濃度が1.3ppm以下といった、高品質に維持された水素含有水を提供することができる。
 例えば本発明の製造方法によれば、製造された飲料用水素含有水製品において、充填されてなる水素含有水の酸化還元電位が、製造後、常温保存下で少なくとも90日経過後において、{[-59×(90日経過後の該飲料用水素含有水製品中の水素含有水のpH値)]-180}mV以下の製品、すなわち、90日経過後に、当該飲料用水素含有水製品中の充填された水素含有水のpHが7.0の場合には、該水素含有水の酸化還元電位が-593mV以下である製品を製造することができる。また、同時に、90日経過後において該製品を上下に軽く振ると、容器の内壁に該水素含有水が当たる音が発生し、ガス雰囲気の存在が確認される製品を製造することができる。
 ここで、本発明で規定する酸化還元電位(ORP)の値は、3.3mol/L塩化銀電極を基準として測定したときの値(vs.Ag/AgCl(3.3N))を指し、標準:水素電極(SHE)に対する3.3mol/L塩化銀電極(Ag/AgCl(3.3N))の電位は25℃で+0.206V(vs.SHE)である。
[水溶性カプセル]
 本発明の製造方法によれば、前記容器内に充填された水素含有水中に、種々の成分を配合可能である。特に本発明では、水溶性カプセルを、前述の水素含有水を充填する工程の前、中、又は後に、容器内に投入することを特徴とする。
 上記水溶性カプセルの水素含有水への配合は種々の方法が考えられ得、例えば前述の種々の方法で水素含有水を得た後、得られた水素含有水に、水溶性カプセルを投入・混合する方が考えられ、このように水素含有水に水溶性カプセルを予め混合・溶解した後、これを包装容器内に(加圧)充填する方法が採り得る。ただこの方法では、水素含有水に水溶性カプセルを投入・混合・溶解する工程において、該混合操作の過程で水素含有水と空気との接触が増加することで、溶存水素濃度が低下することが懸念される。また、原料水(浄化水)に水溶性カプセルを溶解し、その後、ここに水素を溶解させる方法も考えられるが、この方法では所望の溶存水素濃度を実現できない、あるいは、不純物(水溶性カプセル)の存在により、水素溶解装置を始めとする製造装置の汚染や破損が起こる虞がある。
 そのため本発明の方法にあっては、水素含有水を容器内に充填するのと同時に、あるいは充填の前後に、水溶性カプセルを系内に存在させる手段を採用する。中でも、前記水溶性カプセルを、前記水素含有水を充填する工程の前又は該工程中に投入することが好ましい。例えば、前記容器に予め水溶性カプセルを投入し、ここに水素含有水を充填する方法が採用され得る。
 これら水溶性カプセルは、水素含有水を容器内に充填する前、中、又は後に容器内に投入することとなるが、水素含有水の充填後・該容器を密封する前に、該カプセルが容器から溢れ出ないように、予め処理を施しても(例えば該カプセルに孔を開けておく)よい。
 上記水溶性カプセルは、特に限定されず、本発明では、特にヒドロキシプロピルメチルセルロース(HPMC)、プルラン、及びゼラチン(豚ゼラチン、魚ゼラチン)からなる群から選択される少なくとも一種を含む材料からなる水溶性カプセルを採用することが好ましい。これらHPMC等は、通常、水溶性カプセルを構成する主たる成分として使用されている。
 水溶性カプセルは、例えば水素含有水200mLに対して、5mg~200mgの割合で、例えば10mg~200mg、20mg~200mg、30mg~200mg、35mg~100mg、40mg~90mg、40mg~80mgにて存在してなることが好ましい。
 なお、従来より、機能性原料等の配合において、これらは、種々の形状を採用し得、例えば粉末状や、あるいは塊状、例えばフレーク状、粒状、板状、球状、楕円体状、あるいは中空の球状・楕円体状などの種々の形状が想定される。
 但し、実際の製造工程では、機能性原料等を始めとする各種配合物の各飲料用水素含有水製品に対して一定量の投入(配合)を実現すること、投入のし易さ、投入中の飛散や水素含有水の充填中に想定される各種配合物の溢れ出し、そして溢れ出した機能性原料等による装置の汚染等を考慮する必要がある。このため、溶解性の高さに優れるとみられる粉末状であるよりは、品質安定性や操作性の観点からは、ある程度塊状の形態を為していることが好ましいと言える。
 一方で、充填後の加熱殺菌工程により機能性原料等を水素含有水への溶解を促進させるべく、機能性原料等を始めとする配合物の水素含有水との接触面(すなわち表面積)は大きいことが好ましく、例えばフレーク状や、中空の球状又は楕円体状といった形状が好ましいといえる。
 これらを考慮し、本発明の製造方法にあっては、薄層かつ中空の構成を有する形状を形成してなる水溶性カプセル(空カプセル)の形状の採用に至った。すなわち、前記ヒドロキシプロピルメチルセルロース(HPMC)、プルラン、及びゼラチンからなる群から選択される少なくとも一種を主原料とし、例えばこれらを80質量%以上にて含む、水溶性カプセルの形態とし、これを容器内に投入することを見出した。
 上記水溶性カプセルの形状と為すために、前記ヒドロキシプロピルメチルセルロース(HPMC)、プルラン、ゼラチン以外の食品又は食品添加物を使用してもよい。この場合、ヒドロキシプロピルメチルセルロース(HPMC)、プルラン又はゼラチンとその他の食品又は食品添加物の総質量に対して、その他の食品又は食品添加物の総量は最大で20質量%未満(0~20質量%未満)の割合にて使用できる。そしてその結果、本発明の製造方法により得られる飲料用水素含有水製品において、これらその他の食品又は食品添加物を水素含有水中に含むことができる。
 前記食品又は食品添加物としては、例えば水、塩化カリウム、離型剤(植物油、レシチン等)、表面処理剤(タルク、ステアリン酸カルシウム等)、増粘多糖類(カラギーナン、ジェランガム等)などをはじめ、公知のものを使用でき、これらは水溶性であることが好ましい。
 上記ヒドロキシプロピルメチルセルロース(HPMC)、プルラン、ゼラチンを主原料とする各種カプセルとしては、たとえばカプスゲル・ジャパン(株)製、クオリカプス(株)製の市販のカプセル(空カプセル)を採用することができる。
 水溶性カプセル、好適にはヒドロキシプロピルメチルセルロース(HPMC)、プルラン、及びゼラチンからなる群から選択される少なくとも一種を含む水溶性カプセルは、常温(20℃±5℃)程度の温度で時間の経過とともに水素含有水に溶解し得るが、水素含有水の充填後、該包装容器を密封し、後述する加熱殺菌工程を経ることで、製品の殺菌と同時に水素含有水への前記水溶性カプセルの溶解がさらに促進され得る。なお、水溶性カプセルは、高温(例えば85℃で30分間程度の加熱(殺菌))下において、水素含有水とゲルを形成する場合があるが、その後常温にて保管することにより、該ゲルは溶解して液状(水溶性カプセルが溶解した水素含有水)となる。
[開封可能な容器]
 本発明の飲料用水素含有水製品の製造に用いる上記開封可能な容器としては、袋状の容器の形態、例えば可撓性を有する袋状容器体とスパウト付ストローと封止キャップとを備えてなるストロー付包装容器や、可撓性を有する袋状容器体とスパウトと封止キャップとを備えてなるスパウト付包装容器や、あるいは、ストローやスパウトのない袋状容器体が採用し得る。またボトル缶(リシール缶)やイージーオープン缶(プルタブ缶、プルトップ缶)などの金属缶であってもよい。
 以下、開封可能な容器の種々の形態につき、詳述する。
[袋状の容器:ストロー付包装容器]
 本発明で使用する袋状容器の一形態であるストロー付包装容器としては、金属層(例えば金属箔)と合成樹脂層とを含む積層フィルム(金属ラミネートフィルムとも称する)からなる可撓性を有する袋状容器体内に、スパウト付ストローのストロー下部を差し込み、該容器体にその上縁部での熱溶着によりスパウト付ストローを固着し、該スパウト付ストローの上端口部に封止キャップを螺着してなる袋状容器、所謂「アルミパウチ」の形態の容器を使用することができる。
 図1に、本発明の製造方法にて製造された飲料用水素含有水製品の一形態の例を示す。図1に示す飲料用水素含有水製品1は、袋状の容器としてストロー付包装容器を採用した形態であり、容器体3とスパウト付ストロー4と封止キャップ5から構成されるストロー付包装容器2に水素含有水6が充填され、その後、該スパウト付ストロー4の上端口部42Aをキャップ5で封止された形態にある(なお水素含有水6中に溶解してなる水溶性カプセルの存在については図示を省略する)。
 図2に、図1に示す飲料用水素含有水製品1のスパウト付ストロー4の上端口部42Aの周辺Aの拡大図を示す。すなわち、前記飲料用水素含有水製品において、加熱処理後常温に冷却された段階において容器内にガス雰囲気が存在する場合、後述するスパウト付ストローを透明あるいは半透明なものとすると、ストローの外側からガス雰囲気7の存在が確認でき(図2(a)参照:水素含有水6、ガス雰囲気7)、あるいは、前記飲料用水素含有水製品を上下に軽く揺らすと、容器内で水素含有水6が移動する様子、すなわちガス雰囲気7が移動する様子を、前記ストローの外側から目視にて確認できる(図2(b)参照:水素含有水6、ガス雰囲気7)。また該ガス雰囲気が存在する場合には、該製品を上下に軽く振ると、容器の内壁に該水素含有水が当たる音(例えば、チャプチャプ、カシャカシャなどの擬音)が発生し、この音によりガス雰囲気の存在が確認できる。
[スパウト付ストロー]
 本発明で使用するストロー付包装容器に使用するスパウト付ストローの一形態の例を図3に斜視図(外観)にて示す。
 図3に示すように、スパウト付ストロー4は、内容物の導入口を為すストロー部41、内容物の充填口且つ吸引口となる口部42が備えられ、上端口部42Aより後述する充填装置によって水素含有水が充填される。該口部42の下部外周には、後述する封止キャップが着脱自在に螺着できるようにするための雄ネジ部43が形成され、さらにその下方には、封止キャップを係合させるための突起部48が形成されている。さらにその下方には、充填装置に送り込まれる際、容器の供給時にガイドレールに嵌合させるためのフランジ47が形成されている。なお、図3には示されていないが、スパウト付ストロー4の上端口部42Aを封止する封止キャップの内周には、口部42の雄ネジ部43に螺合する雌ネジ部が形成されている。また、口部42の先端には、内容物を充填した後に、上端口部42Aを封止するためのシール材を設けてもよく、これにより加圧加熱殺菌しても口部42から内容物である水素含有水が漏れ出るのを防ぐことができる。前記シール材は合成樹脂フィルムと金属箔とをラミネートしたフィルム等により形成され、口部42の上端口部42Aにヒートシールなどの手段により溶着され得る。
 そしてフランジ47の下方には、容器体3に熱溶着させるための熱溶着部44が設けられている。またストロー部41の上方には、孔46が設けられ、これにより内容物である水素含有水を容易に吸い出すことができる。そして、孔46形成部分の強度補強並びに、スパウト付ストロー4を容器体3に安定して配置するための耳部45が上記熱溶着部44に連続して下方に伸びるように形成されている。
 本発明で使用するスパウト付ストローは、例えば低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、高密度ポリエチレン樹脂、直鎖状低密度ポリエチレン樹脂、ポリスチレン樹脂、アイオノマー樹脂、ポリプロピレン樹脂、アクリル樹脂、ナイロン樹脂、ポリエステル系樹脂、ポリカーボネート樹脂等の樹脂材料を用いて形成され得る。
 また本発明で使用するスパウト付ストローとして、スパウト付ストロー自体のガス遮断性を高めたスパウト付ストローを用いてもよい。
 ガス遮断性を高めたスパウト付ストローとしては、前記スパウト付ストローにおいて、少なくとも前記容器体に熱溶着される部分より上方のストロー上部において、水素ガスの透過を遮るガス遮断材を、ストロー内周壁の表面上又は内部に、実質全域に亘って配備したものなどを挙げることができる。またガス遮断材をストローの孔を塞ぐようにスパウトあるいはストロー内部に配備し、後述する封止キャップ開封時の回転力を利用したり、袋状容器体を外側から圧力を加えたことによる内部の水素含有水の圧力にて、該配備したガス遮断材に孔を開け、飲用に供することができるように、ガス遮断材を配備してもよい。
 上記ガス遮断材としては、水素や酸素等の気体を透過しないものであれば特に限定されないが、アルミニウム、鉄、銅、鈴等の金属箔(金属フィルム)や、ポリ塩化ビニリデン等のフィルム、ポリエチレンやポリプロピレン等のポリオレフィンフィルム等にポリ塩化ビニリデンを塗工したフィルム、或いはこれらポリオレフィンフィルム等にアルミニウム、カーボン、シリカ等を蒸着を施したフィルムが挙げられる。中でもガスバリア性、コスト面及びフィルムの操作性の観点から、好ましくはアルミニウムフィルム(アルミニウム箔)が挙げられる。この他にもEVOH等の多層フィルムを用いることにより、ガス遮断性を向上させることもできる。
[封止キャップ]
 上記封止キャップとしては、前述のスパウト付ストローの上端口部に螺着され、該ストローの上端口部を密封できる形状であれば特に限定されない。通常、該封止キャップの内周には、前記スパウト付ストロー4の口部の雄ネジ部43に螺合する雌ネジ部が形成され、また前記スパウト付ストローの突起部48と係合できるバンドが設けられる。
 封止キャップは、上記スパウト付ストローと同様に、封止キャップ自体のガス遮断性を高めたものを用いてもよい。その場合、例えば封止キャップの頂部の内壁に、前記スパウト付ストローの上端口部を封止できる水素ガス遮断性のインナーシール材を設けることができる。
 前記インナーシール材は、合成樹脂フィルムや、金属箔(フィルム)、またこれらを相互にラミネートした積層フィルムにより形成され得る。そして前記合成樹脂フィルムとしては、スパウト付ストローで挙げた樹脂材料を用いたフィルム、また、前記ガス遮断材として挙げた各種フィルム、さらに金属箔としては前記ガス遮断材として挙げた金属箔を好適に用いることができる。
[容器体]
 上記容器体としては、金属層と合成樹脂層とを含む積層フィルム(金属ラミネートフィルム)製の容器体、例えばアルミラミネートフィルム(アルミ層と合成樹脂層とを含む積層フィルム)製の容器体、所謂パウチ容器が、気密性が高く水素の流出を防ぐことができるために好ましく用いられる。パウチ容器の形状としては、既に市販されているガゼットタイプ(まち付き)、スタンドタイプ(まち無し)等、各種のタイプのものを使用できる。
 上記容器の製品容量は特に限定されないが、例えば100mL乃至2,000mL、特に150mL乃至550mL、具体的には150mL、180mL、200mL、220mL、250mL、280mL、300mL、330mL、350mL、400mL、450mL、500mL、550mL程度の容量の容器を好適に使用できる。なお本明細書において「製品容量」とは、製品が流通・販売される際の規格容量(適正充填量、表示内容量とも称する)であり、通常、容器に充填できる最大容量より数%~15%程度少ないものとなっている。
 なお、キャップや吸水口(スパウト)の大きさ(口径)は製品容量に関わらずほぼ一定となっている。そのため、加熱処理に起因して生じ、キャップやスパウト周辺に溜まっている水素ガスと、容器内の水素含有水との接触面積は、低容量(150mLや200mLなど)の製品と比べて、500mLや550mLといった大容量の製品容量の場合には小さいものとなる。従ってこうした大容量製品にあっては、製品内の水素ガスの水素含有水への再溶解が、低容量の製品と比べてゆっくりと起こる。このため、大容量製品にあっては、本発明の飲料用水素含有水製品のみならず、常圧充填された従来の飲料用水素含有水製品においても、長期間、水素ガス雰囲気が残存することとなる。大容量製品は低容量製品と比べ、長い期間、溶存水素濃度を高い状態で保つことできるため、長期保管性に優れるとして注目されている。しかしながら、従来の飲料用水素含有水製品では、こうした大容量製品にあっても、通常、3ヶ月程度で水素ガス雰囲気は実質消失し、本発明の飲料用水素含有水製品のように、容器の内部に水素含有水とガス雰囲気が共存し続けている状態を保つことは困難である。
[袋状の容器:スパウト付包装容器]
 本発明では、開封可能な容器としての袋状容器の一形態として、スパウト付包装容器を用いることもできる。本容器は、金属層と合成樹脂層とを含む積層フィルム(金属ラミネートフィルム)からなる可撓性を有する袋状容器体に、その上縁部での熱溶着によりスパウトを固着し、該スパウトの上端口部に封止キャップを螺着してなる袋状容器である。本容器は、すなわち、前記ストロー付包装容器において、袋状容器内にストローが存在せず、スパウト(吸口)のみ設けられた形態である。
 本包装容器における袋状容器体は、すなわち、上記[袋状の容器:ストロー付包装容器]の[容器体]を使用でき、その形状、容量も前記[容器体]の記載のものを挙げることができる。
 また本包装容器に使用するスパウトは、上記[袋状の容器:ストロー付包装容器]の[スパウト付ストロー]にて挙げた各種樹脂材料を用いて形成され得る。またスパウト自体のガス遮断性を高めたスパウトを用いることもでき、上記[スパウト付ストロー]にてあげたガス遮断材を用いて、前記容器体に熱溶着される部分より上方のスパウトにおいて、前記ガス遮断材を、スパウト内周壁の表面上又は内部に、実質全域に亘って配備してもよい。またガス遮断材をスパウトの下部にスパウトの孔を塞ぐように貼着し、封止キャップ開封時の回転力を利用したり、袋状容器体を外側から圧力を加えたことによる内部の水素含有水の圧力にて、該貼着したガス遮断材に孔を開け、飲用に供することができるように、ガス遮断材を配備してもよい。
 さらに本包装容器に使用する封止キャップは、上記[袋状の容器:ストロー付包装容器]の[封止キャップ]を使用できる。
 本発明において、特にストロー付包装容器あるいはスパウト付包装容器を用いた場合には、これらに使用される袋状容器体が可撓性を有することから、一旦開封しても、ストロー付包装容器(又はスパウト付包装容器)の容器体を両側から押して、内部の空気を放出するとともに水素含有水を溢れさせながらキャップをはめることで、容器体内の空気の残留を極力抑えて、簡単にリキャップ(リシール)することができる。このため、飲み残しがあり、これを保存する(複数回に分けて飲用する)場合においても、後述する袋状容器体ののみからなる形態や、金属缶と比べて、水素含有水の溶存水素濃度の低下を低く抑えることができる。
[袋状の容器:袋状容器体からなる包装容器]
 本発明にあっては、開封可能な容器としての袋状の容器として、ストローやスパウトのない袋状容器体を用いることもできる。本容器は、金属層と合成樹脂層とを含む積層フィルム(金属ラミネートフィルム)からなる可撓性を有する袋状容器体のみとしたもの(上述のスパウト付ストローやスパウトを挿入せずとしたものであり、封止キャップを有していない形態)であり、この場合、後述する水素含有水の充填工程の後に、該容器体の上縁部を熱溶着により密封し製品となる。
 本包装容器における袋状容器体は、すなわち、上記[袋状の容器:ストロー付包装容器]の[容器体]を使用でき、その形状、容量も前記[容器体]の記載のものを挙げることができる。
 なお、袋状容器体からなる包装容器(ストローのない容器)を使用した場合、一旦開封するとリシールすることが困難であるため、一度に飲み切ることが可能な容量を検討するとよい。
[金属缶:ボトル缶・イージーオープン缶]
 本発明では、上記ストロー付包装容器等の袋状の容器以外にも、アルミ製やスチール製のイージーオープン缶(プルタブ缶、プルトップ缶)やボトル缶(リシール缶)などの金属缶を採用し得、それらの容量は前記[容器体]の記載のものを挙げることができる。
 ただし、これら金属缶に充填された製品のうち、イージーオープン缶(プルタブ缶、プルトップ缶)はリキャップが不可能であることから、一旦開封すると水素含有水と空気が接触し続け、時間とともに水素含有水の溶存水素濃度が低下するため、溶存水素濃度の低下が少しでも抑えられるよう、一度に飲み切ることが望ましい。またボトル缶(リシール缶)の場合には、飲みきれない際に再度キャップをすることができるものの、缶内に流入した空気を抜きながらリキャップすることはできないため、結局水素含有水の溶存水素濃度が低下することとなる。従ってこれら金属缶の態様では、一度に飲みきることができる製品容量を検討し、例えば100mLから200mL程度の製品容量とすることで、飲み残しがなく、溶存水素濃度を保ったまま飲用に供する製品とすることができる。
 なお、製品容量が増加するほど、例えば製品容量が550mLなどの大容量製品では、一度に飲み切ることが難しいため、複数回に分けての飲用が想定される。前述したとおり、前記ストロー付包装容器やスパウト付包装容器を用いた製品では、一旦開封しても容器体を両側から押して内部の空気の放出とともに水素含有水を溢れさせながらキャップをはめることで容器体内の空気の残留を極力抑えることができる。しかし、たとえ飲用毎(開封毎)に内部の水素含有水を溢れさせながらキャップをはめたとしても、容器体内の空気の残留をゼロにすることは難しく、キャップの開封の度に溶存水素濃度が低下する現象は避けられない。
 前述したように、大容量の水素含有水製品は長期保管性に優れるというメリットがあるが、一旦開封するとそのメリットは失われることとなり、複数回の開封・リキャップを繰り返した場合においても溶存水素濃度の低下が小さい製品が望まれている。
 この要望に対し、本発明は、水素含有水を容器内に充填する前、中、又は後に水溶性カプセルを該容器内に投入することで、好適な態様ではさらに加圧充填を組み合わせることで、保存期間中における水素含有水の溶存水素濃度が、従来製品(特に機能性原料の配合を図った製品)よりも高く且つ長く保たれた製品を提供することが可能である。そのため、複数回のキャップの開閉を行う事態が想定された場合にその後においても、溶存水素濃度を比較的高い濃度で保つことが可能である。
 このように、本発明の製造方法は、高い溶存水素濃度を維持したまま数回に分けて飲用することもできる飲料用水素含有水製品を製造できる点においても、消費者に対して訴求力の高い製品を提供できる製造方法となっている。
[機能性原料]
 これまで述べたように、本発明の製造方法によれば、前記水溶性カプセル内に機能性原料を充填し、これを前記の製造方法において用いることにより、充填時の水素含有水の溶存水素濃度を低下させることなく、機能性原料の水素含有水中への配合が実現される。
 すなわち本発明では、機能性原料を前述の水溶性カプセル(空カプセル)に予め充填し、該機能性原料がカプセル内に充填された水溶性カプセルを、容器内に充填するのと同時あるいは充填の前後に投入することで、機能性原料の水素含有水への配合を実現する。そして本発明の製造方法により製造された、機能性原料とともに水素含有水が充填された飲料用水素含有水製品もまた、本発明の対象である。
 上記の機能性原料は特に限定されず、従来の飲料等において使用されてきた各種の原料を用いることができる。例えば以下の化合物等を挙げることができ、これらは一種を単独で使用しても、二種以上を組み合わせて使用してもよい。なお以下の分類は本開示における便宜上のものであって、これら分類に限定されるものではない。
・アミノ酸類:アラニン、トリプトファン、リシン、メチオニン、トレオニン、バリン、ロイシン、イソロイシン、ヒスジチン、テアニン、シトルリン等
・ポリアミン:プトレシン、スペルミン、スペルミジン等
・保湿性物質:グルコサミン(アミノ糖)、セラミド(スフィンゴ脂質)、ヒアルロン酸(ムコ多糖)等
・ペプチド及びタンパク質並びにそれらの含有物質:ペプチド、エラスチンペプチド(一例として、カツオエラスチン)、シルクペプチド(一例として、エディブルシルク)、コラーゲン(タンパク質)、ツバメ巣(例えば、コロカリア(登録商標)なども含む)等
・ビタミン類:ビタミンB、ビタミンB、ビタミンB(ナイアシン)、ビタミンB、ビタミンB(ビオチン)、ビタミンB(葉酸)、ビタミンB12、ビタミンC(アスコルビン酸)並びにこれらの誘導体等
・ビタミン様物質:ヘスペリジン、L-カルニチン等
・抗酸化性物質:ピロロキノリンキノン(PQQ)(補酵素)、低分子ポリフェノール(例えばオリゴノール(登録商標))、コエンザイムQ10等
・フラボノイド類:ルチン、カテキン等
・ミネラル類:マグネシウム、カルシウム、亜鉛、鉄
・糖類:グルコース(ブドウ糖)、リボース、フルクトース(果糖)、アラビノース等の単糖類;スクロース(ショ糖)、ラクトース(乳糖)、マルトース(麦芽糖)、トレハロース等の二糖類;オリゴ糖;エリスリトール、マルチトール、ソルビトール、キシリトール等の糖アルコール類、等
・合成甘味料:アスパルテーム、アセスルファムカリウム、スクラロース等
・炭水化物:デキストリン、難消化デキストリン、コーンスターチ、セルロース、並びにこれらの誘導体等
・ヒドロキシ酸及びその誘導体:クエン酸、クエン酸ナトリウム等
・ステアリン酸及びその誘導体:ステアリン酸カルシウム、ステアリン酸マグネシウム等
・野菜・果実・植物類(粉末、液状物、抽出エキスなどを含む):トマト、ホウレンソウ、長命草(ボタンボウフウ)、ヒハツ、サクラ、オリーブ、バラ、キャッツクロー、マカ、カムカム等
・茶類:抹茶、煎茶、ほうじ茶、紅茶、ウーロン茶、玄米茶、どくだみ茶等。
・寒天等。
・香料等。
 機能性原料は、その溶解性や、風味等の機能を考慮して、その配合量を適宜決定でき、例えば水素含有水1Lあたり1mg乃至10gにて配合することができる。
 機能性原料は、水溶性カプセルの大きさに応じてその配合量を変更でき、すなわち機能性原料を大量に配合することを意図した場合には、複数の水溶性カプセルに所望量の機能性原料を分割して充填し、これら複数の機能性原料が充填されたカプセルを、容器内に充填するのと同時あるいは充填の前後に投入すればよい。
 本発明によれば、上述したように充填時の水素含有水の溶存水素濃度を低下させることなく、機能性原料の水素含有水中への配合を実現し、そして機能性原料由来の風味等の機能を水素含有水に付与できる。さらに機能性原料の種類によっては、溶存水素濃度の低下を抑制し、酸化還元電位及び溶存水素濃度の増加を抑制できる。
 本発明の望ましい実施形態をさらに具体的に説明するが、これによって本発明が限定されるものではない。
 なお、以下の実施例等に使用したカプセル等の配合物は以下の通りである。
・水溶性カプセル(プルラン):
 商品名「Plantcaps(登録商標)」、サイズ2号、プルラン含有率85.5%、カプセル重量:63mg(プルラン含有量:54mg)、カプスゲル・ジャパン(株)
・プルラン(粉末):
 商品名「食品添加物プルラン」、(株)林原
 下記に示す実施例及び比較例のいずれの例においても、ストロー付包装容器として製品容量が200mLである容器を使用し、ここに充填量215g±10gの量にて水素含有水を充填して製品試料とした。各例についてそれぞれ5個の製品試料を作製し、充填直後の各試料の溶存水素濃度を測定した。
 溶存水素濃度の測定は、Unisense社製の溶存センサー(マルチメータと溶存水素センサーの組合せ)にて実施し、センサー校正時の温度(水温)並びに測定温度(水温)が20℃±2℃となるように、ストロー付包装容器への充填時の温度を調整した。
 なお、各製品試料におけるプルランの配合濃度が0.025質量%となるように、投入するカプセル個数(2号サイズ、1個)、及び溶解させるプルラン粉末の配合量を適宜調整した。
 得られた結果を表1に示す。
 なお20℃、1気圧における飽和水素濃度は1.61ppmである。
<実施例1>
 実施例1の製品試料は、本発明者らの先の特許(特許第4551964号明細書、図1に示す装置を参照)において開示した方法に倣い製造した。
 具体的には、(1)浄化装置において、原料となる水をろ過及び浄化し、得られた浄化水を脱気装置に送る浄化工程と、(2)前記脱気装置において、供給された浄化水を、中空糸膜を通じて脱気し、得られた脱気水を水素溶解装置に送る脱気工程と、(3)前記水素溶解装置において、供給された脱気水に中空糸膜を通じて加圧水素ガスを溶解し、得られた水素含有水を充填装置に送る水素溶解工程と、(4)前記充填装置において供給された水素含有水をストロー付包装容器にその開口部(注入口)より充填する充填工程を経て、実施例1の製品試料を製造し、上記の手順にて溶存水素濃度を測定した。
 上記(4)充填工程において、水素含有水を充填するストロー付包装容器には、予め水溶性カプセル1個を投入しておき、ここに水素含有水を充填した。
<実施例2>
 実施例2の製品試料は、本発明者らの先の特許(特許第6052948号明細書、図1に示す装置を参照)において開示した方法に倣い製造した。
 具体的には、(1)浄化装置において、原料となる水をろ過及び浄化し、得られた浄化水を脱気装置に送る浄化工程と、(2)前記脱気装置において、供給された浄化水を、中空糸膜を通じて脱気し、得られた脱気水を水素溶解装置に送る脱気工程と、(3)前記水素溶解装置において、供給された脱気水に中空糸膜を通じて加圧水素ガスを溶解し、得られた水素含有水を充填装置に送る水素溶解工程と、(4)前記充填装置において供給された水素含有水をストロー付包装容器にその開口部(注入口)より充填する充填工程と、(5)水素含有水が充填されたストロー付包装容器の開口部を封止キャップにて密封する密封工程を経て、実施例2の製品試料を製造し、上記の手順にて溶存水素濃度を測定した。
 そして実施例2においては、上記(4)充填工程を加圧充填(負荷圧力:0.2MPa乃至0.3MPa)にて実施し、このとき、充填時(測定時)の溶存水素濃度が3.3ppm前後となるように調整して加圧充填を実施した。
 また充填工程において、水素含有水を充填するストロー付包装容器には、予め水溶性カプセル1個を投入しておき、ここに水素含有水を加圧充填した。
 なお上記、実施例1及び実施例2では、各々の製品試料とは別に、(4)充填工程の後、(5)水素含有水が充填されたストロー付包装容器の開口部を封止キャップにて密封する密封工程と、(6)水素含有水が充填・密封された製品を加熱処理(85℃で30分間)して殺菌する工程を実施し、飲料用水素含有水製品(確認サンプル)を製造した。
 そして、上記(6)加熱処理する工程を経た確認サンプルを開封し、水溶性カプセルが完全に溶解していることを確認した。
 なお本発明者らは、上記実施例2の手順に従い、特許第6052948号明細書、図1に示す装置において、量産製造を安定維持することが可能な最大能力条件にて、水素含有水の製造、及び水素含有水の加圧充填を実施し作製した製品試料(予め水溶性カプセル1個を投入したストロー付包装容器に水素含有水を加圧充填)において、充填時の溶存水素濃度:3.80ppm(平均値)[n=1:3.73ppm、n=2:3.81ppm、n=3:3.90ppm、n=4:3.79ppm、n=5:3.76ppm]が実現できることを確認している。
<比較例1>
 水素含有水を充填するストロー付包装容器に、水溶性カプセルを予め投入する代わりに、浄化工程後の浄化水にプルラン(粉末)を0.025質量%の濃度となるように撹拌溶解し、その後、脱気装置にて中空糸膜を通じて脱気し、続いて水素溶解装置にて中空糸膜を通じて加圧水素ガスを溶解した以外には、上記実施例1と同様の方法にて、比較例1の製品試料を製造し、溶存水素濃度を測定した。
<比較例2>
 比較例2の飲料用水素含有水製品は、先の特許(特許第3606466号明細書)において開示される方法(所謂“加圧法”)に倣い、下記に示すように水素含有水(水素還元水)を得、その後、得られた水素含有水をストロー付包装容器にその開口部(注入口)より充填して、比較例2の製品試料を製造し、上記の手順にて溶存水素濃度を測定した。
 詳細には、空気を除去した圧力容器内に水素ガスを充填し、前記圧力容器内における水素ガスの圧力を2~10気圧(例えば8気圧)に保ったまま、その圧力容器内に原水をシャワー状に散水して水素ガスと接触させることにより、該原水中に前記圧力容器内の水素ガスを溶解させ、水素含有水を得た。なお原水には、予めプルラン(粉末)を0.025質量%の濃度となるように撹拌溶解し、これを圧力容器内に導入して、水素ガスを溶解させた。但し、水素ガスの導入の前(プルラン溶解前)に、原水の脱気処理は行わなかった。
<比較例3>
 水素含有水を充填するストロー付包装容器に、水溶性カプセルを予め投入する代わりに、浄化工程後の浄化水にプルラン(粉末)を0.025質量%の濃度となるように撹拌溶解し、その後、脱気装置にて中空糸膜を通じて脱気し、続いて水素溶解装置にて中空糸膜を通じて加圧水素ガスを溶解した以外には、上記実施例2と同様の方法にて、比較例3の製品試料を製造し、溶存水素濃度を測定した。
<比較例4>
 水素含有水を充填するストロー付包装容器に、水溶性カプセルを予め投入する代わりに、水素溶解工程後の水素含有水にプルラン(粉末)を0.025質量%の濃度となるように撹拌溶解し、その後、これをストロー付包装容器に充填した以外には、上記実施例1と同様の方法にて、比較例4の製品試料を製造し、溶存水素濃度を測定した。
<比較例5>
 原水に予めプルランを溶解する代わりに、圧力容器内で水素ガスと原水を導入し、水素ガスを溶解させて水素含有水を得た後、ここにプルラン(粉末)を0.025質量%の濃度となるように撹拌溶解し、その後、これをストロー付包装容器に充填した以外には、上記比較例2と同様の方法にて、比較例5の製品試料を製造し、溶存水素濃度を測定した。
<比較例6>
 水素含有水を充填するストロー付包装容器に、水溶性カプセルを予め投入する代わりに、水素溶解工程後の水素含有水にプルラン(粉末)を0.025質量%の濃度となるように撹拌溶解し、その後、これをストロー付包装容器に充填した以外には、上記実施例2と同様の方法にて、比較例6の製品試料を製造した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、プルランを溶解した後に水素を溶解した比較例1の製品試料、並びに、水素含有水を製造した後にプルランを溶解した比較例4の製品試料に対して、予めストロー付包装容器内に水溶性カプセル(プルラン)を投入して製造した実施例1の製品試料は高い溶存水素濃度を実現することが確認された。
 同様に、加圧充填を採用した例にあっても、プルランを溶解した後に水素を溶解した比較例3の製品試料、並びに、水素含有水を製造した後にプルランを溶解した比較例6の製品試料に対して、予めストロー付包装容器内に水溶性カプセル(プルラン)を投入して製造した実施例2の製品試料は、高い溶存水素濃度を実現することが確認された。
 また、水素ガスの溶解に加圧法を用いた比較例2の製品試料(プルランを溶解した後に水素を溶解)及び比較例4の製品試料(水素含有水を製造した後にプルランを溶解)にあっても、実施例1の製品試料よりも低い溶存水素濃度が測定された。
 以上の結果は、比較例1乃至比較例3の製品試料にあっては、溶質であるプルランの存在によって、飽和溶存水素濃度そのものの低下が起こったためと考えられる。また比較例4乃至比較例6の製品試料にあっては、実製品を想定した場合、製品品質を均一にする必要があり、すなわち水素含有水にプルランを均一に溶解させるべく撹拌等の手順を経る必要がある。そしてこれが溶存させた水素ガスの飛散につながり、溶存水素濃度の大きな低下につながったといえる。
 なお、充填時(充填直後)の溶存水素濃度の差が、仮に僅かな数値であると捉えられ得る程度の差であったとしても、特に汎用のストロー付包装容器に充填し、加熱・殺菌工程を経て、飲料用水素含有水製品として長期間の保管に供した場合、保管後の溶存水素濃度の差は当初(充填時)と比べて大きなものとなり、保管期間が長期になればなるほどその差は一層大きなものとなる。すなわち、充填時の溶存水素濃度の差以上に、保管後の溶存水素濃度の差は大きくなることから、充填時の溶存水素濃度は出来る限り高く保つことが求められる。
 なお、プルランを溶解した後に脱気・水素を溶解した比較例1(水素溶解法:中空糸を用いた膜溶解法)と比較例2(水素溶解法:加圧法)とを比べると、比較例2の製品試料は比較例1の製品試料と比べてわずかに高い溶存水素濃度が測定されたが、これは、溶質の存在によって水素溶解装置(及び脱気装置)の中空糸膜に目詰まりが生じ、結果的に不十分な水素溶解(さらには不十分な脱気)につながったことによるものとみられる。
<参考例>
 前記比較例1の製品試料を製造後、そのまま同じ条件[浄化工程後の浄化水にプルラン(粉末)を0.025質量%の濃度となるように撹拌溶解し、その後、中空糸膜を有する脱気装置にて脱気・中空糸膜を有する水素溶解装置にて水素ガスを溶解]にて、上記プルラン溶解水を2時間通水(水素溶解装置を2時間稼働)しながら水素ガスを溶解させ、2時間稼働後に装置を停止させた。
 翌日、同様の手順にて30分間脱気装置及び水素溶解装置を稼働して製品試料を製造し、30分間稼働後の製品試料の溶存水素濃度(2日目)を測定した。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、先にプルランを溶解した水に膜溶解法にて水素を溶解した場合、2日目の稼働時には溶存水素濃度が大きく低下する結果となった。
 これは、溶質成分(プルラン)によって水素溶解装置(及び脱気装置)の中空糸膜に目詰まりが生じ、短期間で劣化が生じたことが一因と考えられる。
 なお、中空糸膜の目詰まりの原因である溶質成分を、装置稼働終了後に洗浄し除去することも考えられるが、中空糸膜から溶質成分を完全に除去したことを担保することは容易でない点、溶質成分が水素溶解装置(及び脱気装置)内(特に中空糸膜)に残留していると、細菌の繁殖につながる虞がある点、細菌の繁殖によって中空糸膜をさらに劣化させる虞がある点が懸念される。また繁殖した細菌は後の殺菌工程によって死滅させることは理論上可能と言えるものの、完全に死滅させたことを保証することは実際には容易でない。しかも、溶質成分が中空糸膜に残留している場合、水素溶解装置を経た後の水素含有水における溶質成分の濃度は一定でないものとなる。このように、先に溶質成分を溶解させた水に、膜溶解法を用いて水素ガスを溶解させる方法は、溶存水素濃度の低下並びに“飲料用”製品の製造における品質安定性及び安全性確保、加えて、装置の劣化の観点から、水素含有水製品の量産を想定した実際の製造方法においては不適であるということができる。
 特に匂いや味を有する原料を溶質成分として用いることを想定した場合、中空糸膜を十分に洗浄したとしても匂いや味を含めて全てを取り除くことは難しい。そして同一装置にて別の原料を用いる製造を実施すると、製造した水素含有水に先に用いた原料の匂いや味が移ることが十分に考えられる。ミネラルウォーターや本発明に係る水素含有水の市場分野は、基本的には添加物等を配合しない無味無臭の製品が主流であり、フレーバーウォーターなども上市されているものの一般のソフトドリンクに比べ味付けは薄く、これらを嗜好する消費者は匂いや味に敏感であることが多い。その為、別の原料を含む製品を製造する際には、水素溶解装置や脱気装置における中空糸膜の交換だけでなく、原料配合後に通過する配管やタンク(原料配合に使用するタンクや水素を溶存させるタンク等)を全て交換せざるをえない状況も考えられる。特に後者は、膜溶解法のみならず、加圧法、電解法等、種々の水素溶解法を用いた水素含有水の製造において共通の課題といえる。
 本発明の製造方法にあっては、水素含有水を充填する工程の前、中、又は後に、前記開封可能な容器内に水溶性カプセルを投入するという構成により、水素溶解装置等の中空糸膜と、並びに、水素含有水製造において通水する配管と、溶質成分が接触せず、上記の懸念のない画期的な方法となっている。
<実施例4>
 充填工程において、水素含有水の充填の間に、水溶性カプセル1個をストロー付包装容器に投入した以外は、実施例1と同様の手順にて、そしてさらに上記(5)密封工程及び(6)加熱殺菌工程を経て、実施例4の飲料用水素含有水製品を製造した。
<実施例5>
 充填工程の後、ストロー付包装容器の開口部を封止キャップにて密封する前に、水溶性カプセル1個をストロー付包装容器に投入した以外は、実施例1と同様の手順にて、そしてさらに上記(5)密封工程及び(6)加熱殺菌工程を経て、実施例5の飲料用水素含有水製品を製造した。
<実施例6>
 水溶性カプセル内に、ブドウ糖(粉末)(商品「TDA-S」(無水結晶ぶどう糖)、サンエイ糖化(株))を300mg充填し、これを充填工程において水素含有水を充填するストロー付包装容器に予め1個投入した以外は、実施例1と同様の手順にて、そしてさらに上記(5)密封工程及び(6)加熱殺菌工程を経て、実施例6の飲料用水素含有水製品を製造した。
<実施例7~実施例9>
 プルランを主成分とする水溶性カプセルの代わりに、
実施例7として、HPMC 水溶性カプセル(商品名「Vcaps(登録商標)Plus」、サイズ2号、HPMC含有率95%、カプセル重量:60mg(HPMC含有量:57mg)、カプスゲル・ジャパン(株))、
実施例8として、豚ゼラチン 水溶性カプセル(商品名「ハードカプセル」、サイズ2号、豚ゼラチン含有率85.5%、カプセル重量:63mg(豚ゼラチン含有量:54mg)、カプスゲル・ジャパン(株)、
実施例9として、魚ゼラチン 水溶性カプセル(商品名「Ocean Caps(登録商標)」、サイズ2号、魚ゼラチン含有率85.5%、カプセル重量:63mg(魚ゼラチン含有量:54mg)、カプスゲル・ジャパン(株)、
をそれぞれ1個ずつ用いた以外は、実施例1と同様の手順にて、そしてさらに上記(5)密封工程及び(6)加熱殺菌工程を経て、実施例7~実施例9の飲料用水素含有水製品を製造した。
 実施例4乃至実施例9において、(6)加熱処理する工程を経た後、確認サンプルとして飲料用水素含有水製品を開封したところ、いずれの例においても水溶性カプセル(実施例6においては水溶性カプセルとカプセル内に充填したブドウ糖)が完全に溶解していることを確認した。この結果は、ブドウ糖などの水溶性の原料であれば、水溶性カプセル内に充填し、これを水素含有水を充填する工程の前、中、又は後に容器内に投入することで、水溶性カプセルとともに水素含有水に溶解可能であることを示唆するものである。
 以下、水溶性カプセル(空のカプセル)(1個)に、各種機能性原料を所定量充填し、この充填カプセルを用いて、前述の実施例2と同様の方法の方法にて製品試料を製造した。
 [実施例10]
 N-アセチルグルコサミン、D-グルコサミン、セラミドを、夫々、プルラン製の空カプセル[商品名「Plantcaps(登録商標)」、サイズ2号、プルラン含有率85.5%、カプセル重量:63mg(プルラン含有量:54mg)、カプスゲル・ジャパン(株)]1個に所定量充填した。この充填カプセルを用いて、実施例2と同様の方法にて、製品試料を製造した((4)充填工程における充填カプセルの投入は、予めストロー付き包装容器に前記充填カプセルを投入し、ここに水素含有水を充填した)。
 表3にカプセルに充填した各成分の詳細並びに配合量をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000003
<溶存水素濃度の経時変化>
 上記の充填カプセルを投入して製造した製品試料、並びに比較試料として、空カプセルや充填カプセルを投入せずに製造した比較製品試料(水素含有水のみ)とを、一定期間保存した。試料の製造後30日経過後、60日経過後、90日経過後、120日経過後、180日経過後、240日経過後、300日経過後(室温(25℃±5℃にて保管))の溶存水素濃度、pH及び酸化還元電位(vs.Ag/AgCl)を測定した。なお各試料(所定期間経過ごと)について5個ずつ作成し、これらの平均値として測定結果を算出した。
 測定した溶存水素濃度dH変化、pH変化、及び酸化還元電位ORPの変化を表4~表6に示す。
 なお、20℃、1気圧における飽和水素濃度は1.6ppmである。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 [実施例11]
 ソルビトール、フラクトオリゴ糖、D-リボース、マルチトール、ブドウ糖を、夫々、プルラン製の空カプセル[商品名「Plantcaps(登録商標)」、サイズ2号、プルラン含有率85.5%、カプセル重量:63mg(プルラン含有量:54mg)、カプスゲル・ジャパン(株)]1個に所定量充填した。この充填カプセルを用いて、実施例2と同様の方法にて、製品試料を製造した((4)充填工程における充填カプセルの投入は、予めストロー付き包装容器に前記充填カプセルを投入し、ここに水素含有水を充填した)。
 表7にカプセルに充填した各成分の詳細並びに配合量をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000007
<溶存水素濃度の経時変化>
 実施例10と同様の手順にて、所定期間保管後の各試料の溶存水素濃度、pH及び酸化還元電位(vs.Ag/AgCl)を測定した(各試料について5個ずつ作製、平均値として測定結果を算出)。測定した溶存水素濃度dH変化、pH変化、及び酸化還元電位ORPの変化を表8~表10に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 [実施例12]
 アスコルビン酸、アスコルビン酸ナトリウム、クエン酸、クエン酸ナトリウムを、夫々、プルラン製の空カプセル[商品名「Plantcaps(登録商標)」、サイズ2号、プルラン含有率85.5%、カプセル重量:63mg(プルラン含有量:54mg)、カプスゲル・ジャパン(株)]1個に所定量充填した。この充填カプセルを用いて、実施例2と同様の方法にて、製品試料を製造した((4)充填工程における充填カプセルの投入は、予めストロー付き包装容器に前記充填カプセルを投入し、ここに水素含有水を充填した)。
 表11にカプセルに充填した各成分の配合量をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000011
<溶存水素濃度の経時変化>
 実施例10と同様の手順にて、所定期間保管後の各試料の溶存水素濃度、pH及び酸化還元電位(vs.Ag/AgCl)を測定した(各試料について5個ずつ作製、平均値として測定結果を算出)。測定した溶存水素濃度dH変化、pH変化、及び酸化還元電位ORPの変化を表12~表14に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 [実施例13]
 ルチン、ヘスペリジン、ツバメ巣エキス、ポリアミン、ブドウ糖を、夫々、プルラン製の空カプセル[商品名「Plantcaps(登録商標)」、サイズ2号、プルラン含有率85.5%、カプセル重量:63mg(プルラン含有量:54mg)、カプスゲル・ジャパン(株)]1個に所定量充填した。この充填カプセルを用いて、実施例2と同様の方法にて、製品試料を製造した((4)充填工程における充填カプセルの投入は、予めストロー付き包装容器に前記充填カプセルを投入し、ここに水素含有水を充填した)。
 表15にカプセルに充填した各成分の詳細及び配合量をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000015
<溶存水素濃度の経時変化>
 実施例10と同様の手順にて、所定期間保管後(30日経過後、60日経過後、90日経過後、120日経過後、180日経過後)の各試料の溶存水素濃度、pH及び酸化還元電位(vs.Ag/AgCl)を測定した(各試料について5個ずつ作製、平均値として測定結果を算出)。測定した溶存水素濃度dH変化、pH変化、及び酸化還元電位ORPの変化を表16~表18に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 [実施例14]
 シルクペプチド、L-カルニチン、L-シトルリン、桜の花エキス、バラ花びら抽出物、オリーブ葉エキス末、ピロロキノリンキノン2ナトリウム塩(PQQ)、ヒアルロン酸を、夫々、プルラン製の空カプセル[商品名「Plantcaps(登録商標)」、サイズ2号、プルラン含有率85.5%、カプセル重量:63mg(プルラン含有量:54mg)、カプスゲル・ジャパン(株)]1個に所定量充填した。この充填カプセルを用いて、実施例2と同様の方法にて、製品試料を製造した((4)充填工程における充填カプセルの投入は、予めストロー付き包装容器に前記充填カプセルを投入し、ここに水素含有水を充填した)。
 表19にカプセルに充填した各成分の詳細及び配合量をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000019
<溶存水素濃度の経時変化>
 実施例10と同様の手順にて、所定期間保管後の各試料の溶存水素濃度、pH及び酸化還元電位(vs.Ag/AgCl)を測定した(各試料について5個ずつ作製、平均値として測定結果を算出)。測定した溶存水素濃度dH変化、pH変化、及び酸化還元電位ORPの変化を表20~表22に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 [実施例15]
 バラ花びら抽出物、L-シトルリン、桜の花エキス、ピロロキノリンキノン2ナトリウム塩(PQQ)を所定量混合し、プルラン製の空カプセル[商品名「Plantcaps(登録商標)」、サイズ3号、プルラン含有率85.5%、カプセル重量:51mg(プルラン含有量:43.6mg)、カプスゲル・ジャパン(株)]1個に充填した。この充填カプセルを用いて、実施例2と同様の方法にて、製品試料を製造した((4)充填工程における充填カプセルの投入は、予めストロー付き包装容器に前記充填カプセルを投入し、ここに水素含有水を充填した)。
 表23にカプセルに充填した各成分の詳細及び配合量をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000023
<溶存水素濃度の経時変化>
 実施例10と同様の手順にて、所定期間保管後(30日経過後、60日経過後、90日経過後、120日経過後、180日経過後)の各試料の溶存水素濃度、pH及び酸化還元電位(vs.Ag/AgCl)を測定した(各試料について5個ずつ作製、平均値として測定結果を算出)。測定した溶存水素濃度dH変化、pH変化、及び酸化還元電位ORPの変化を表24~表26に示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 実施例10~実施例15に示すように、本発明の製造方法により、機能性飲料を含有する水素含有水製品を製造することができる。
 1・・・飲料用水素含有水製品
 2・・・ストロー付包装容器
 3・・・容器体
 4・・・スパウト付ストロー
  41 ストロー部
  42 口部
  42A 上端口部
  43 雄ネジ部
  44 熱溶着部
  45 耳部
  46 孔
  47 フランジ
  48 突起部
  4A ストロー上部
 5・・・封止キャップ
 6・・・水素含有水
 7・・・ガス雰囲気

Claims (16)

  1. 水素含有水を開封可能な容器内に充填し、そして該容器を密封する工程を含む、
    飲料用水素含有水製品の製造方法であって、
    水溶性カプセルを、前記水素含有水を充填する工程の前、中、又は後に、前記開封可能な容器内に投入することを特徴とする、
    飲料用水素含有水製品の製造方法。
  2. 前記水素含有水の容器内への充填が加圧充填にて実施される、請求項1に記載の製造方法。
  3. 前記水溶性カプセルを、前記水素含有水を充填する工程の前又は該工程中に投入することを特徴とする、請求項1又は請求項2に記載の製造方法。
  4. 前記水溶性カプセルは、ヒドロキシプロピルメチルセルロース(HPMC)、プルラン、及びゼラチンからなる群から選択される少なくとも一種を含む材料からなる、請求項1乃至請求項3のうちいずれか一項に記載の製造方法。
  5. 前記容器を密封する工程の後、さらに、該密封された容器を加熱処理する殺菌工程を含む、請求項1乃至請求項4のうちいずれか一項に記載の製造方法。
  6. 前記開封可能な容器がボトル缶又はイージーオープン缶である、
    請求項1乃至請求項5のうちいずれか一項に記載の製造方法。
  7. 前記開封可能な容器が袋状の容器であって、
    前記袋状の容器が、
    金属層と合成樹脂層とを含む積層フィルムからなる可撓性を有する袋状容器体からなる、
    請求項1乃至請求項5のうちいずれか一項に記載の製造方法。
  8. 前記開封可能な容器が袋状の容器であって、
    前記袋状の容器が、
    金属層と合成樹脂層とを含む積層フィルムからなる可撓性を有する袋状容器体と、
    該容器体にその上縁部での熱溶着により固着されてなるスパウトと、
    該スパウトの上端口部に螺着された封止キャップとを備えてなる、スパウト付包装容器である、
    請求項1乃至請求項5のうちいずれか一項に記載の製造方法。
  9. 前記開封可能な容器が袋状の容器であって、
    前記袋状の容器が、
    金属層と合成樹脂層とを含む積層フィルムからなる可撓性を有する袋状容器体と、
    ストロー下部が該容器体内に差し込まれ、該容器体にその上縁部での熱溶着により固着されてなるスパウト付ストローと、
    該スパウト付ストローの上端口部に螺着された封止キャップとを備えてなる、ストロー付包装容器である、
    請求項1乃至請求項5のうちいずれか一項に記載の製造方法。
  10. 前記水素含有水は、0.15MPa乃至0.5MPaの負荷圧力にて前記開封可能な容器内に加圧充填される、請求項2乃至請求項9のうちいずれか一項に記載の製造方法。
  11. 前記充填後の加熱処理は、65℃乃至90℃の温度で、3分間乃至2時間の加熱条件にてなされる、請求項5乃至請求項10のうちいずれか一項に記載の製造方法。
  12. 前記水素含有水は、充填時の溶存水素濃度が、充填時の水素含有水の温度における水素の水への飽和濃度以上の水素含有水である、請求項1乃至請求項11のうちいずれか一項に記載の製造方法。
  13. 前記開封可能な容器の製品容量は、150mL乃至550mLである、請求項1乃至請求項12のうちいずれか一項に記載の製造方法。
  14. 前記水溶性カプセルは、前記水素含有水200mLに対して20mg~200mgの割合にて投入される、請求項1乃至請求項13のうちいずれか一項に記載の製造方法。
  15. 前記水溶性カプセルが、機能性原料がカプセル内に充填された水溶性カプセルである、請求項1乃至請求項14のうちいずれか一項に記載の製造方法。
  16. 請求項15に記載の製造方法により製造された、機能性原料とともに水素含有水が充填された、飲料用水素含有水製品。
PCT/JP2018/019892 2017-05-23 2018-05-23 飲料用水素含有水製品の製造方法 WO2018216747A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018558251A JP6456011B1 (ja) 2017-05-23 2018-05-23 飲料用水素含有水製品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017101909 2017-05-23
JP2017-101909 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018216747A1 true WO2018216747A1 (ja) 2018-11-29

Family

ID=64395555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019892 WO2018216747A1 (ja) 2017-05-23 2018-05-23 飲料用水素含有水製品の製造方法

Country Status (3)

Country Link
JP (1) JP6456011B1 (ja)
TW (1) TWI700044B (ja)
WO (1) WO2018216747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093493A1 (ja) * 2017-11-09 2019-05-16 株式会社シェフコ 飲料用水素含有水製品並びに箱詰めキット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471571B2 (ja) 2018-11-28 2024-04-22 株式会社シェフコ 飲料用水素含有水製品の製造方法並びに飲料用水素含有水製品
CN109938228A (zh) * 2019-04-18 2019-06-28 北京泰克美高新技术有限公司 加氢水产品及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062814A1 (fr) * 2006-11-24 2008-05-29 Spring Co., Ltd. Solution aqueuse dissoute dans l'hydrogène et procédé de prolongement de la durée de vie de l'hydrogène dissous dans la solution aqueuse
JP2010269246A (ja) * 2009-05-21 2010-12-02 Shefco Co Ltd 飲料用水素含有水を製造する方法
JP2013169153A (ja) * 2012-02-17 2013-09-02 Shefco Co Ltd 機能性原料を含有する水素含有飲料
WO2015019498A1 (ja) * 2013-08-09 2015-02-12 株式会社シェフコ 機能性原料を含有する水素含有飲料
JP2015033360A (ja) * 2013-08-09 2015-02-19 株式会社シェフコ 機能性原料を含有する水素含有飲料
JP2015113331A (ja) * 2013-12-16 2015-06-22 株式会社光未来 水素含有組成物および該水素含有組成物を用いた水素の添加方法
WO2015166967A1 (ja) * 2014-04-28 2015-11-05 株式会社シェフコ 飲料用水素含有水の製造方法、及びその製造装置
JP2016188096A (ja) * 2015-03-30 2016-11-04 株式会社シェフコ 飲料用水素含有水製品及び箱詰めキット
JP2017158475A (ja) * 2016-03-09 2017-09-14 キリン株式会社 飲料特性調整装置及び方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062814A1 (fr) * 2006-11-24 2008-05-29 Spring Co., Ltd. Solution aqueuse dissoute dans l'hydrogène et procédé de prolongement de la durée de vie de l'hydrogène dissous dans la solution aqueuse
JP2010269246A (ja) * 2009-05-21 2010-12-02 Shefco Co Ltd 飲料用水素含有水を製造する方法
JP2013169153A (ja) * 2012-02-17 2013-09-02 Shefco Co Ltd 機能性原料を含有する水素含有飲料
WO2015019498A1 (ja) * 2013-08-09 2015-02-12 株式会社シェフコ 機能性原料を含有する水素含有飲料
JP2015033360A (ja) * 2013-08-09 2015-02-19 株式会社シェフコ 機能性原料を含有する水素含有飲料
JP2015113331A (ja) * 2013-12-16 2015-06-22 株式会社光未来 水素含有組成物および該水素含有組成物を用いた水素の添加方法
WO2015166967A1 (ja) * 2014-04-28 2015-11-05 株式会社シェフコ 飲料用水素含有水の製造方法、及びその製造装置
JP2016188096A (ja) * 2015-03-30 2016-11-04 株式会社シェフコ 飲料用水素含有水製品及び箱詰めキット
JP2017158475A (ja) * 2016-03-09 2017-09-14 キリン株式会社 飲料特性調整装置及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093493A1 (ja) * 2017-11-09 2019-05-16 株式会社シェフコ 飲料用水素含有水製品並びに箱詰めキット
JPWO2019093493A1 (ja) * 2017-11-09 2021-01-07 株式会社シェフコ 飲料用水素含有水製品並びに箱詰めキット

Also Published As

Publication number Publication date
JP6456011B1 (ja) 2019-01-23
JPWO2018216747A1 (ja) 2019-06-27
TW201900032A (zh) 2019-01-01
TWI700044B (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
JP7462174B2 (ja) 飲料用水素含有水製品
JP6456011B1 (ja) 飲料用水素含有水製品の製造方法
JP5688606B2 (ja) 機能性原料を含有する水素含有飲料の製造方法
TWI590765B (zh) 含氫飲料用水之製造方法及其製造裝置
WO2015019498A1 (ja) 機能性原料を含有する水素含有飲料
CN1893829A (zh) 容器装饮料
JP2009125654A (ja) 飲料用水素含有水の製造方法
JP2001086963A (ja) 液状食品及びその製造方法
JP6587314B2 (ja) 飲料用水素含有水製品及び箱詰めキット
JP2016123358A (ja) 乳成分含有容器詰飲料及びその製造方法、並びに乳成分含有容器詰飲料の風味改善方法
JP7471571B2 (ja) 飲料用水素含有水製品の製造方法並びに飲料用水素含有水製品
JP6395659B2 (ja) 飲料用水素含有水の製造方法、及びその製造装置
US10869492B2 (en) Beverage product and method and apparatus for producing beverage product
JP7075176B2 (ja) 水素含有液の水素含有量低下抑制剤及び水素含有液の水素含有量低下抑制方法、並びに水素含有液の製造方法
WO2019093493A1 (ja) 飲料用水素含有水製品並びに箱詰めキット
JP6700136B2 (ja) 容器詰水素含有飲料及びその製造方法
JP2015033360A (ja) 機能性原料を含有する水素含有飲料
JP2006020657A (ja) 微量元素配合輸液製剤
JP7080275B2 (ja) 容器詰水素含有飲料及びその製造方法
JP2019098235A (ja) 水素ガス保持剤、水素ガス含有組成物およびその製造方法
JP2020018302A (ja) 飲料用水素含有水製品
CN111743024A (zh) 饮品制品以及用以制造饮品的方法
JP2004057189A (ja) ルチンの収容体および保存方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558251

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806745

Country of ref document: EP

Kind code of ref document: A1