WO2018216643A1 - 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 - Google Patents
繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 Download PDFInfo
- Publication number
- WO2018216643A1 WO2018216643A1 PCT/JP2018/019448 JP2018019448W WO2018216643A1 WO 2018216643 A1 WO2018216643 A1 WO 2018216643A1 JP 2018019448 W JP2018019448 W JP 2018019448W WO 2018216643 A1 WO2018216643 A1 WO 2018216643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- fiber
- component
- resin composition
- reinforced composite
- Prior art date
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 168
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 168
- 239000000463 material Substances 0.000 title claims abstract description 115
- 239000003733 fiber-reinforced composite Substances 0.000 title claims abstract description 108
- 239000000203 mixture Substances 0.000 title claims abstract description 105
- 239000003677 Sheet moulding compound Substances 0.000 claims abstract description 102
- 150000001875 compounds Chemical class 0.000 claims abstract description 35
- -1 urea compound Chemical class 0.000 claims abstract description 33
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 18
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 18
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims abstract description 11
- 239000004202 carbamide Substances 0.000 claims abstract description 9
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 150000004714 phosphonium salts Chemical class 0.000 claims abstract description 8
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims abstract description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims abstract description 7
- 150000001334 alicyclic compounds Chemical class 0.000 claims abstract description 7
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 7
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 7
- 125000003710 aryl alkyl group Chemical group 0.000 claims abstract description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 7
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 3
- 239000012783 reinforcing fiber Substances 0.000 claims description 75
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 22
- 239000004917 carbon fiber Substances 0.000 claims description 22
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 12
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 7
- 238000001595 flow curve Methods 0.000 claims description 6
- KDQTUCKOAOGTLT-UHFFFAOYSA-N 3-[3-(dimethylcarbamoylamino)-4-methylphenyl]-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=C(C)C(NC(=O)N(C)C)=C1 KDQTUCKOAOGTLT-UHFFFAOYSA-N 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims description 4
- 150000003003 phosphines Chemical class 0.000 claims description 3
- 229920005989 resin Polymers 0.000 abstract description 75
- 239000011347 resin Substances 0.000 abstract description 75
- 238000005452 bending Methods 0.000 abstract description 37
- 125000005843 halogen group Chemical group 0.000 abstract description 2
- 150000002460 imidazoles Chemical class 0.000 abstract description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 abstract 1
- 239000011342 resin composition Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 27
- 239000000835 fiber Substances 0.000 description 22
- 239000011159 matrix material Substances 0.000 description 21
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 19
- 238000004017 vitrification Methods 0.000 description 19
- 238000005259 measurement Methods 0.000 description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 17
- 238000002156 mixing Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 238000005470 impregnation Methods 0.000 description 13
- 238000000465 moulding Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 10
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 9
- 230000009477 glass transition Effects 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 229920001567 vinyl ester resin Polymers 0.000 description 4
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229930003836 cresol Natural products 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012778 molding material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 2
- GFNDFCFPJQPVQL-UHFFFAOYSA-N 1,12-diisocyanatododecane Chemical compound O=C=NCCCCCCCCCCCCN=C=O GFNDFCFPJQPVQL-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- IKYNWXNXXHWHLL-UHFFFAOYSA-N 1,3-diisocyanatopropane Chemical compound O=C=NCCCN=C=O IKYNWXNXXHWHLL-UHFFFAOYSA-N 0.000 description 1
- FVLCBDPSQUONII-UHFFFAOYSA-N 1,4-diisocyanato-2,3-dimethylbutane Chemical compound O=C=NCC(C)C(C)CN=C=O FVLCBDPSQUONII-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- SIZPGZFVROGOIR-UHFFFAOYSA-N 1,4-diisocyanatonaphthalene Chemical compound C1=CC=C2C(N=C=O)=CC=C(N=C=O)C2=C1 SIZPGZFVROGOIR-UHFFFAOYSA-N 0.000 description 1
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- BSYJHYLAMMJNRC-UHFFFAOYSA-N 2,4,4-trimethylpentan-2-ol Chemical compound CC(C)(C)CC(C)(C)O BSYJHYLAMMJNRC-UHFFFAOYSA-N 0.000 description 1
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 1
- LKMJVFRMDSNFRT-UHFFFAOYSA-N 2-(methoxymethyl)oxirane Chemical compound COCC1CO1 LKMJVFRMDSNFRT-UHFFFAOYSA-N 0.000 description 1
- STHCTMWQPJVCGN-UHFFFAOYSA-N 2-[[2-[1,1,2-tris[2-(oxiran-2-ylmethoxy)phenyl]ethyl]phenoxy]methyl]oxirane Chemical compound C1OC1COC1=CC=CC=C1CC(C=1C(=CC=CC=1)OCC1OC1)(C=1C(=CC=CC=1)OCC1OC1)C1=CC=CC=C1OCC1CO1 STHCTMWQPJVCGN-UHFFFAOYSA-N 0.000 description 1
- PULOARGYCVHSDH-UHFFFAOYSA-N 2-amino-3,4,5-tris(oxiran-2-ylmethyl)phenol Chemical compound C1OC1CC1=C(CC2OC2)C(N)=C(O)C=C1CC1CO1 PULOARGYCVHSDH-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- INWVTRVMRQMCCM-UHFFFAOYSA-N N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 Chemical compound N=C=O.N=C=O.C=1C=CC=CC=1C(C)(C)C1=CC=CC=C1 INWVTRVMRQMCCM-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000001246 bromo group Chemical class Br* 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- JXCGFZXSOMJFOA-UHFFFAOYSA-N chlorotoluron Chemical compound CN(C)C(=O)NC1=CC=C(C)C(Cl)=C1 JXCGFZXSOMJFOA-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- OSXWETDBWKSBFH-UHFFFAOYSA-N diphenyl-bis(prop-2-enyl)phosphanium Chemical compound C=1C=CC=CC=1[P+](CC=C)(CC=C)C1=CC=CC=C1 OSXWETDBWKSBFH-UHFFFAOYSA-N 0.000 description 1
- GELSOTNVVKOYAW-UHFFFAOYSA-N ethyl(triphenyl)phosphanium Chemical compound C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC)C1=CC=CC=C1 GELSOTNVVKOYAW-UHFFFAOYSA-N 0.000 description 1
- SLAFUPJSGFVWPP-UHFFFAOYSA-M ethyl(triphenyl)phosphanium;iodide Chemical compound [I-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC)C1=CC=CC=C1 SLAFUPJSGFVWPP-UHFFFAOYSA-M 0.000 description 1
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 239000011208 reinforced composite material Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- GFZMLBWMGBLIDI-UHFFFAOYSA-M tetrabutylphosphanium;acetate Chemical compound CC([O-])=O.CCCC[P+](CCCC)(CCCC)CCCC GFZMLBWMGBLIDI-UHFFFAOYSA-M 0.000 description 1
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 description 1
- IBWGNZVCJVLSHB-UHFFFAOYSA-M tetrabutylphosphanium;chloride Chemical compound [Cl-].CCCC[P+](CCCC)(CCCC)CCCC IBWGNZVCJVLSHB-UHFFFAOYSA-M 0.000 description 1
- CCIYPTIBRAUPLQ-UHFFFAOYSA-M tetrabutylphosphanium;iodide Chemical compound [I-].CCCC[P+](CCCC)(CCCC)CCCC CCIYPTIBRAUPLQ-UHFFFAOYSA-M 0.000 description 1
- DDFYFBUWEBINLX-UHFFFAOYSA-M tetramethylammonium bromide Chemical compound [Br-].C[N+](C)(C)C DDFYFBUWEBINLX-UHFFFAOYSA-M 0.000 description 1
- RXMRGBVLCSYIBO-UHFFFAOYSA-M tetramethylazanium;iodide Chemical compound [I-].C[N+](C)(C)C RXMRGBVLCSYIBO-UHFFFAOYSA-M 0.000 description 1
- BRKFQVAOMSWFDU-UHFFFAOYSA-M tetraphenylphosphanium;bromide Chemical compound [Br-].C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 BRKFQVAOMSWFDU-UHFFFAOYSA-M 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- FWYKRJUVEOBFGH-UHFFFAOYSA-M triphenyl(prop-2-enyl)phosphanium;bromide Chemical compound [Br-].C=1C=CC=CC=1[P+](C=1C=CC=CC=1)(CC=C)C1=CC=CC=C1 FWYKRJUVEOBFGH-UHFFFAOYSA-M 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4021—Ureas; Thioureas; Guanidines; Dicyandiamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4028—Isocyanates; Thioisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/44—Amides
- C08G59/46—Amides together with other curing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/686—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/688—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2363/02—Polyglycidyl ethers of bis-phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2463/04—Epoxynovolacs
Definitions
- the present invention relates to an epoxy resin composition for a fiber reinforced composite material suitably used for a fiber reinforced composite material such as an aircraft member, a spacecraft member, and an automobile member, and a fiber reinforced composite material using the same.
- Fiber reinforced composite materials consisting of reinforced fibers and matrix resins can be designed using the advantages of reinforced fibers and matrix resins, so the applications are expanding in the aerospace field, sports field, general industrial field, etc. , Prepreg method, hand layup method, filament winding method, pultrusion method, resin transfer molding (RTM) method, sheet molding compound molding method, and the like.
- the sheet molding compound may be abbreviated as SMC.
- the SMC molding method in which an intermediate base material composed of a matrix resin and discontinuous reinforcing fibers is molded by a hot press machine has attracted attention in recent years because of its excellent versatility and productivity.
- an intermediate base material called a prepreg impregnated with a matrix resin on continuous reinforcing fibers (a unidirectionally aligned form, a woven form, etc.) is laminated in a desired shape, and heated and pressurized.
- the matrix resin is cured to obtain a fiber-reinforced composite material.
- this prepreg method is suitable for the production of fiber-reinforced composite materials having high material strength required for structural materials such as aircraft and automobiles.
- this prepreg method is subject to many processes such as preparation and lamination of prepregs. Since it is necessary, it can only be produced in small quantities and is not suitable for mass production.
- the SMC molding method is a B-stage that is obtained by impregnating a bundle of discontinuous reinforcing fibers (usually having a fiber length of about 5 to 100 mm) into a sheet form by impregnating a resin composition as a matrix resin.
- a resin composition as a matrix resin.
- an intermediate substrate called SMC is produced, and the SMC is shaped by heating and pressurizing in a mold, and the matrix resin is cured to obtain a fiber-reinforced composite material having a desired shape.
- the SMC molding method can easily form even complex-shaped fiber-reinforced composite materials. There is also an advantage that is possible.
- the reinforcing fiber glass fiber, aramid fiber, carbon fiber, boron fiber or the like is used.
- the matrix resin either a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin that can be easily impregnated into the reinforcing fiber is often used.
- the thermosetting resin epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, bismaleimide resin, cyanate resin and the like are used. Among these, epoxy resins are widely used from the viewpoint of adhesive properties with reinforced fibers, dimensional stability, and mechanical properties such as strength and rigidity of the obtained composite material.
- the resin composition serving as the matrix resin constituting the SMC needs to have a low viscosity in order to sufficiently impregnate the reinforcing fibers.
- the matrix resin after B-stage it is necessary for the matrix resin after B-stage to be easily peeled off before forming the film that has been pasted on both sides when producing SMC.
- the SMC must have flow characteristics during molding that provide a fiber-reinforced composite material with excellent mechanical strength with the reinforcing fibers uniformly dispersed in the matrix resin.
- Epoxy resin has excellent heat resistance and good mechanical properties, but it must be B-staged to a level where a fiber reinforced composite material in which reinforcing fibers are uniformly dispersed in a matrix resin can be obtained compared to vinyl ester resin. Is difficult, and the curing time is long. On the other hand, in order to obtain a fiber composite reinforced material with good surface quality, which is regarded as important when applied to exterior parts such as automobiles, it is necessary for the resin curing to proceed gently and uniformly without the curing time being too short. is there.
- Patent Document 1 a resin composition comprising an epoxy resin containing a sorbitol polyglycidyl ether containing a hydroxyl group and a polyisocyanate compound has been disclosed, and can be made into a B-stage without impairing the excellent heat resistance inherent in the epoxy resin.
- Patent Document 1 A method has been proposed (Patent Document 1).
- Patent Document 2 a method for improving curability by using a urea compound and an organotin compound in combination has been proposed.
- the shape of a bundled assembly of discontinuous reinforcing fibers has been studied.
- the angle between the end of the bundled assembly and the arrangement direction of the reinforcing fibers should be 12 °.
- Patent Document 4 a method for improving the homogeneity of the bundled aggregate and the resin has been proposed.
- Patent Document 3 can be easily B-staged by using photopolymerization of a radically polymerizable unsaturated compound, and further improves the curability, but has insufficient heat resistance.
- an SMC made of a vinyl ester resin and a bundled aggregate in which the angle between the end of the bundled aggregate of discontinuous reinforcing fibers and the arrangement direction of the reinforcing fibers is 12 ° is pressed.
- a fiber reinforced composite material with high homogeneity of bundled aggregate and resin and few voids can be obtained, but vinyl ester resin has a relatively large calorific value immediately after the start of curing, and curing proceeds rapidly. Therefore, there are cases where a part that proceeds earlier and a part that progresses later occur in the process of completing the entire curing, which may adversely affect the surface quality.
- the first object of the present invention is to improve the drawbacks of the prior art, and provide an epoxy resin composition that is easy to be B-staged and exhibits curability in a short time, and provides a cured resin having high heat resistance. To provide. Furthermore, it is providing the fiber reinforced composite material excellent in bending strength by using this epoxy resin composition.
- the second object is to improve the drawbacks of such a technique, and the matrix resin is composed of an epoxy resin composition that allows the resin curing to proceed gently and uniformly, with excellent surface quality and excellent bending strength. It is to provide an SMC that provides a fiber reinforced composite material.
- the epoxy resin composition for fiber-reinforced composite material according to the first aspect of the present invention has the following constitution. That is, an epoxy resin composition for fiber-reinforced composite material comprising the following components (A) to (E).
- Component (A) Epoxy resin Component (B): Dicyandiamide or derivative thereof Component (C): Polyisocyanate compound Component (D): Urea compound represented by formula (1)
- R 1 and R 2 each independently represent H, CH 3 , OCH 3 , OC 2 H 5 , NO 2 , halogen, or NH—CO—NR 3 R 4.
- R 3 and R 4 each independently A hydrocarbon group having 1 to 8 carbon atoms, an allyl group, an alkoxy group, an alkenyl group, an aralkyl group, or an alicyclic compound containing R 3 and R 4 simultaneously.
- the epoxy resin composition is used as a reinforcing fiber.
- An SMC impregnated and a fiber reinforced composite material obtained by curing the SMC are also provided.
- the SMC of the second invention in the present invention has the following configuration. That is, the SMC includes a bundle of discontinuous reinforcing fibers and an epoxy resin composition for fiber-reinforced composite material, and the bundle has a width in a direction perpendicular to the direction in which the reinforcing fibers are arranged.
- the angle a and the angle b are each 2 ° or more and 30 ° or less
- the epoxy resin composition includes the following components (A) to (C)
- the vertical axis is the heat flow measured by differential scanning calorimetry:
- the half-value width ⁇ T in the heat flow curve with temperature on the horizontal axis is SMC having a temperature of 15 ° C. or more and 50 ° C. or less.
- an epoxy resin composition for fiber reinforced composite material that is easy to be B-staged, has excellent curability and heat resistance, and provides a fiber reinforced composite material having high bending strength. Is possible.
- the fiber reinforced composite having a good surface quality and excellent bending strength, the matrix resin comprising an epoxy resin composition that allows the resin curing to proceed gently and uniformly. It becomes possible to provide the SMC from which the material is obtained.
- the epoxy resin composition for fiber-reinforced composite material according to the first aspect of the present invention is an epoxy resin composition for fiber-reinforced composite material containing the following components (A) to (E).
- Component (A) Epoxy resin Component (B): Dicyandiamide or derivative thereof Component (C): Polyisocyanate compound Component (D): Urea compound represented by formula (1)
- R 1 and R 2 each independently represent H, CH 3 , OCH 3 , OC 2 H 5 , NO 2 , halogen, or NH—CO—NR 3 R 4.
- R 3 and R 4 each independently A hydrocarbon group having 1 to 8 carbon atoms, an allyl group, an alkoxy group, an alkenyl group, an aralkyl group, or an alicyclic compound containing R 3 and R 4 simultaneously.
- the component (A) of the first invention in the present invention is a component necessary for heat resistance and mechanical property expression.
- the epoxy resin of component (A) means a compound containing one or more epoxy groups in the molecule.
- Component (A) epoxy resin is not particularly limited as long as it is a compound containing one or more epoxy groups in the molecule.
- the bifunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, and epoxy resins obtained by modifying these. .
- trifunctional or higher polyfunctional epoxy resins examples include phenol novolac type epoxy resins, novolac type epoxy resins such as cresol novolac type epoxy resins, tetraglycidyl diaminodiphenylmethane, triglycidyl aminophenol type epoxy resins, tetraglycidyl amine type Glycidylamine type epoxy resins such as epoxy resins, glycidyl ether type epoxy resins such as tetrakis (glycidyloxyphenyl) ethane and tris (glycidyloxymethane), epoxy resins modified from these, and bromines obtained by brominating these epoxy resins An epoxy resin may be mentioned, but is not limited thereto.
- epoxy resins As a component (A).
- bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin can be particularly preferably used.
- these epoxy resins are used, for example, compared to the case of using a highly rigid epoxy resin such as an epoxy resin having a naphthalene skeleton in the molecule, the mechanical strength when the fiber-reinforced composite material is improved is further improved. There is an effect. This is because when a highly rigid epoxy resin is cured in a short period of time, the crosslink density increases and distortion is likely to occur. However, when the above-described epoxy resin is used, there is a low possibility that such a problem will occur.
- bisphenol A type epoxy resins include “jER (registered trademark)” 825, “jER (registered trademark)” 826, “jER (registered trademark)” 827, “jER (registered trademark)” 828, “jER ( Registered trademark) 834, jER (registered trademark) 1001, jER (registered trademark) 1002, jER (registered trademark) 1003, jER (registered trademark) 1004, jER (registered trademark) 1004AF "JER (registered trademark)” 1007, "jER (registered trademark)” 1009 (manufactured by Mitsubishi Chemical Corporation), “Epicron (registered trademark)” 850 (manufactured by DIC Corporation), “Epototo (registered trademark)” “YD-128 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)”, “DER (registered trademark)”-331, “DER (registered trademark)”-332 (
- bisphenol F type epoxy resins include “jER (registered trademark)” 806, “jER (registered trademark)” 807, “jER (registered trademark)” 1750, “jER (registered trademark)” 4004P, “jER (registered trademark)” Trademark) "4007P", “jER (registered trademark)” 4009P (manufactured by Mitsubishi Chemical Corporation), “Epicron (registered trademark)” 830 (manufactured by DIC Corporation), “Epototo (registered trademark)” YDF-170, “Epototo (registered trademark)” YDF2001, “Epototo (registered trademark)” YDF2004 (Nippon Steel & Sumitomo Chemical Co., Ltd.) and the like can be mentioned.
- Examples of commercially available tetramethylbisphenol F type epoxy resins that are alkyl-substituted products include “Epototo (registered trademark)” YSLV-80XY (Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
- Examples of commercially available bisphenol S-type epoxy resins include “Epiclon (registered trademark)” EXA-1515 (manufactured by DIC Corporation).
- phenol novolac epoxy resins include “jER (registered trademark)” 152, “jER (registered trademark)” 154 (manufactured by Mitsubishi Chemical Corporation), “Epicron (registered trademark)” N-740, and “Epicron”. (Registered trademark) “N-770”, “Epiclon (registered trademark)” N-775 (manufactured by DIC Corporation) and the like.
- cresol novolac type epoxy resins Commercial products of cresol novolac type epoxy resins include “Epicron (registered trademark)” N-660, “Epicron (registered trademark)” N-665, “Epicron (registered trademark)” N-670, “Epicron (registered trademark)” “N-673”, “Epicron (registered trademark)” N-695 (manufactured by DIC Corporation), EOCN-1020, EOCN-102S, EOCN-104S (manufactured by Nippon Kayaku Co., Ltd.), and the like.
- the component (B) of the first invention in the present invention is dicyandiamide or a derivative thereof.
- Dicyandiamide is excellent in terms of imparting high mechanical properties and heat resistance to the cured resin, and is widely used as a curing agent for epoxy resins.
- the resin composition using dicyandiamide as a curing agent is excellent in storage stability, it can be suitably used.
- the dicyandiamide derivative means a compound obtained by combining dicyandiamide and various compounds. Like dicyandiamide, it is excellent in giving high mechanical properties and heat resistance to the cured resin.
- the resin composition used as a curing agent is also excellent in storage stability.
- Examples of the dicyandiamide derivatives include those obtained by bonding dicyandiamide and various compounds such as epoxy resin, vinyl compound, acrylic compound, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. It is done. These may be used individually by 1 type and may be used in combination of 2 or more type. Moreover, you may use together with dicyandiamide. Examples of such commercially available dicyandiamide include DICY7 and DICY15 (manufactured by Mitsubishi Chemical Corporation).
- the component (B) in the fiber reinforced resin composition of the present invention preferably contains 1 to 50 parts by mass with respect to 100 parts by mass of the component (A).
- the component (B) is contained in an amount of 1 part by mass or more with respect to 100 parts by mass of the component (A), it is preferable because an effect of improving the curability is obtained. It is preferable because it exhibits sex. From this point of view, it is more preferably in the range of 1 to 20 parts by mass.
- the component (C) of the first invention in the present invention is a polyisocyanate compound, and is not particularly limited as long as it has two or more isocyanate groups on average in one molecule.
- Aromatic isocyanates can be used.
- Examples of the aliphatic isocyanate that can be used as the polyisocyanate compound of component (C) include ethylene diisocyanate, trimethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, propylene-1,2-diisocyanate, 2 , 3-dimethyltetramethylene diisocyanate, butylene-1,2-diisocyanate, butylene-1,3-diisocyanate, 1,4-diisocyanate hexane, cyclopentene-1,3-diisocyanate, isophorone diisocyanate, 1,2,3,4 Examples
- aromatic isocyanates that can be used as the polyisocyanate compound of component (C) include p-phenylene diisocyanate, 1-methylphenylene-2,4-diisocyanate, naphthalene-1,4-diisocyanate, tolylene diisocyanate, diphenyl-4, Aromatic isocyanates such as 4-diisocyanate, benzene-1,2,4-triisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate (MDI), diphenylpropane diisocyanate, tetramethylene xylene diisocyanate, polymethylene polyphenyl polyisocyanate, and aromatics thereof The thing etc.
- Aromatic isocyanates such as 4-diisocyanate, benzene-1,2,4-triisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate (MDI), dipheny
- the component (C) in the fiber-reinforced resin composition of the first invention in the present invention preferably contains 1 to 50 parts by mass with respect to 100 parts by mass of the component (A).
- the B-stage is sufficiently advanced to obtain a fiber-reinforced composite material in which the reinforcing fibers are uniformly dispersed in the matrix resin.
- SMC sufficiently expands in the mold during hot press molding. From this point of view, it is more preferably in the range of 5 to 30 parts by mass.
- the component (D) of the first invention in the present invention is a urea compound represented by the formula (1).
- R 1 and R 2 each independently represent H, CH 3 , OCH 3 , OC 2 H 5 , NO 2 , halogen, or NH—CO—NR 3 R 4.
- R 3 and R 4 Each independently represents a hydrocarbon group having 1 to 8 carbon atoms, an allyl group, an alkoxy group, an alkenyl group, an aralkyl group, or an alicyclic compound containing R 3 and R 4 simultaneously.
- the hydrocarbon group is preferably an alkyl group.
- hydrocarbon groups allyl groups, alkoxy groups, alkenyl groups, aralkyl groups, or alicyclic compounds containing R 3 and R 4 at the same time, as long as they have 1 to 8 carbon atoms, they are listed above.
- Some hydrogen atoms may be substituted by atoms other than those (for example, halogen atoms) or substituents.
- Examples of the urea compound represented by the formula (1) as the component (D) include 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3- (3-chloro-4-methylphenyl) -1,1-dimethylurea and 2,4-bis (3,3-dimethylureido) toluene can be mentioned, and these can be used alone or in combination of two or more. Can do. Among these, 2,4-bis (3,3-dimethylureido) toluene is most preferable because it can greatly shorten the curing time.
- the component (D) in the fiber-reinforced resin composition of the first invention in the present invention is preferably contained in an amount of 1 to 15 parts by mass with respect to 100 parts by mass of the component (A).
- the component (D) is contained in an amount of 1 part by mass or more with respect to 100 parts by mass of the component (A)
- the component (D) is contained in an amount of 15 parts by mass or less with respect to 100 parts by mass of the component (A)
- the component (E) of the first invention in the present invention is at least one compound selected from the group consisting of a quaternary ammonium salt, a phosphonium salt, an imidazole compound, and a phosphine compound.
- quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetrabutylammonium bromide, and the like
- phosphonium salts include allyltriphenylphosphonium bromide, diallyldiphenylphosphonium bromide, ethyltriphenylphosphonium.
- the component (E) is at least one compound selected from the group consisting of a quaternary ammonium salt, a phosphonium salt, an imidazole compound, and a phosphine compound. It shows that two or more types can be used in combination. Among these, quaternary ammonium salts and / or phosphine compounds are preferable as the component (E) because the curing time can be greatly shortened.
- the component (E) in the fiber-reinforced resin composition of the first invention in the present invention is preferably contained in an amount of 1 to 15 parts by mass with respect to 100 parts by mass of the component (A).
- the component (E) is contained in an amount of 1 part by mass or more with respect to 100 parts by mass of the component (A)
- the component (E) is contained in an amount of 15 parts by mass or less with respect to 100 parts by mass of the component (A)
- the viscosity at 70 ° C. measured with an E-type viscometer is preferably 10 mPa ⁇ s or more and 1000 mPa ⁇ s or less, and is preferably 10 mPa ⁇ s or more and 900 mPa ⁇ s or less. It is more preferable.
- An epoxy resin composition having a viscosity at 70 ° C. of 1000 mPa ⁇ s or less is excellent in impregnation into reinforcing fibers, thereby obtaining a fiber-reinforced composite material having good surface quality.
- a viscosity shall measure the epoxy resin composition after mixing each component and stirring for 1 minute.
- the components after mixing and stirring for 1 minute may be referred to as immediately after the preparation or mixing.
- the curability of the epoxy resin composition depends on the molding temperature, for example, the vitrification time at 140 ° C. of the resin composition after B-stage formation, and the vitrification of the resin composition after B-stage formation at 140 ° C.
- the vitrification time can be measured as follows.
- thermosetting measuring device such as ATD-1000 (manufactured by Alpha Technologies)
- a complex viscosity is calculated from a torque increase accompanying the progress of the curing reaction. Ask for.
- the time until the complex viscosity reaches 1.0 ⁇ 10 7 Pa ⁇ s is defined as the vitrification time.
- the heat resistance of the fiber reinforced composite material obtained by using the epoxy resin composition for fiber reinforced composite material of the first invention in the present invention is equal to the glass transition temperature of the cured epoxy resin product obtained by curing the epoxy resin composition.
- the glass transition temperature of the cured epoxy resin obtained by heating at 140 ° C. for 2 hours and completely curing is 140 ° C. or higher and 250 ° C. or lower. It is preferable that it is 150 ° C. or higher and 220 ° C. or lower. When the glass transition temperature is less than 140 ° C., the heat resistance of the cured epoxy resin may be insufficient.
- the glass transition temperature of the cured epoxy resin obtained by curing the epoxy resin composition is determined by measurement using a dynamic viscoelasticity measurement (DMA) apparatus. That is, using a rectangular test piece cut out from the cured resin plate, DMA measurement is performed at an elevated temperature, and the temperature at the inflection point of the obtained storage elastic modulus G ′ is defined as Tg.
- DMA dynamic viscoelasticity measurement
- the sheet molding compound of the first invention in the present invention includes the epoxy resin composition for fiber-reinforced composite material of the first invention in the present invention and reinforcing fibers.
- the type and length of the reinforcing fiber, the content ratio of the reinforcing fiber and the resin, etc. are not particularly limited, but the fiber length of the reinforcing fiber is usually about 5 to 100 mm, and the average fiber diameter Is preferably 3 to 12 ⁇ m, the basis weight of the reinforcing fiber is 0.1 to 5 kg / m 2 , and the carbon fiber weight content is in the range of 30 to 60%.
- the method for producing the SMC of the first invention in the present invention is not particularly limited.
- the epoxy resin composition of the first invention in the present invention is reinforced by a known method suitable for the form of the reinforcing fiber.
- the SMC of the present invention can be obtained by maintaining the temperature at room temperature to about 80 ° C. for several hours to several days to obtain a semi-cured state in which the increase in viscosity of the resin composition is saturated.
- making a semi-cured state in which the increase in viscosity of the resin composition is saturated is referred to as B-stage.
- the conditions for forming the B stage can be arbitrarily selected within the range of room temperature to about 80 ° C. and several hours to several days.
- the epoxy resin composition is held at 40 ° C.
- the B-stage is considered to be mainly caused by the reaction between the polyisocyanate compound and the hydroxyl group in the epoxy resin.
- the viscosity of the epoxy resin composition after the B-stage is defined as DMA. It is preferable that the viscosity at 140 ° C. is 100 Pa ⁇ s or more and 10,000 Pa ⁇ s or less, preferably 500 Pa ⁇ s or more and 10000 Pa ⁇ s or less, for example, the molding temperature measured using (ARES manufactured by TA Instruments). More preferably.
- the reinforcing fiber used in the SMC of the first invention in the present invention is not particularly limited, and examples thereof include glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. Two or more of these reinforcing fibers may be mixed and used. Among these, in order to obtain a fiber-reinforced composite material that is lighter and more durable, it is preferable to use carbon fiber or graphite fiber. In particular, in applications where there is a high demand for reducing the weight and strength of materials, carbon fibers are preferably used because they have excellent specific elastic modulus and specific strength.
- any type of carbon fiber can be used depending on the application, but a carbon fiber having a tensile elastic modulus of 400 GPa at the highest is preferable from the viewpoint of impact resistance. From the viewpoint of strength, a carbon fiber having a tensile strength of 4.4 to 6.5 GPa is preferable because a composite material having high rigidity and mechanical strength can be obtained. Also, the tensile elongation is an important factor, and it is preferable that the carbon fiber is a high strength and high elongation carbon fiber of 1.7 to 2.3%. Accordingly, carbon fibers having the characteristics that the tensile modulus is at least 230 GPa, the tensile strength is at least 4.4 GPa, and the tensile elongation is at least 1.7% are most suitable.
- Carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T800S-24K, “Torayca (registered trademark)” T700G-24K, and “Torayca (registered trademark)” T300- 3K, and “TORAYCA (registered trademark)” T700S-12K (manufactured by Toray Industries, Inc.).
- the fiber-reinforced composite material of the first invention in the present invention is obtained by curing the SMC of the first invention of the present invention.
- a fiber reinforced composite material obtained by curing SMC is used particularly in the automobile field, mechanical properties such as high heat resistance and bending strength are required.
- the fiber reinforced composite material of the present invention can usually have a glass transition temperature of 140 ° C. or more and 250 ° C. or less of a cured epoxy resin that is a matrix resin, it has excellent heat resistance and the cured epoxy resin has Therefore, high bending strength of 350 MPa or more, and 400 MPa or more in a more preferable mode can be exhibited.
- the SMC according to the second aspect of the present invention is an SMC comprising a bundle of discontinuous reinforcing fibers and an epoxy resin composition for fiber-reinforced composite material, wherein the bundle includes the reinforcing fibers.
- the edges formed by the edges formed by the arrangement of both ends of the reinforcing fibers in the bundle assembly are arranged at an acute angle with respect to the arrangement direction of the reinforcing fibers.
- each of angle a and angle b is 2 ° or more and 30 ° or less
- the epoxy resin composition includes the following components (A) to (C):
- the SMC has a full width at half maximum ⁇ T of 15 ° C. or more and 50 ° C. or less in a heat flow curve with the heat flow measured by differential scanning calorimetry as the vertical axis and the temperature as the horizontal axis.
- Each of the angles a and b is an SMC made of an epoxy resin composition containing reinforcing fibers having a angle of 2 ° to 30 ° and a component (A) to a component (C) having a full width at half maximum ⁇ T of 15 ° C. to 50 ° C. Therefore, the homogeneity of the reinforcing fiber and the resin can be increased to a level that could not be achieved by the conventional technology, the surface unevenness due to sink marks at the time of resin curing is highly suppressed, and the surface quality is good, and Thus, a fiber-reinforced composite material exhibiting high strength can be obtained.
- the SMC Since the angle a and the angle b with respect to the arrangement direction of the reinforcing fibers of the side formed by the arrangement of the ends of the reinforcing fibers in the bundle assembly are smaller, the SMC has higher homogeneity between the bundle assembly and the resin. In the fiber reinforced composite material molded using this, the effect of improving the surface quality and strength is great. The effect is remarkable when the angle a and the angle b are 30 degrees or less. However, on the other hand, as the angle a and the angle b become smaller, the handleability of the bundle assembly itself decreases. In addition, the smaller the angle between the reinforcing fiber array direction and the cutting blade, the lower the stability in the cutting process. Therefore, the angle a and the angle b are preferably 2 ° or more.
- the angle a and the angle b are 3 ° or more and 25 ° or less.
- the angle a and the angle b are more preferably 5 ° or more and 15 ° or less.
- the angle here is an angle shown by FIG. 1 as above-mentioned, and is represented by an absolute value.
- Examples of means for cutting a continuous reinforcing fiber bundle for producing a discontinuous bundle of reinforcing fibers include a rotary cutter such as a guillotine cutter and a roving cutter.
- the continuous reinforcing fiber bundle is inserted into the cutting means and cut in a state where the longitudinal direction of the continuous reinforcing fiber bundle and the direction of the cutting blade provided in the cutting means are relatively skewed.
- the epoxy resin composition for fiber-reinforced composite material used in the second invention of the present invention includes the components (A) to (C) described above, and the horizontal axis represents temperature and the vertical axis represents heat flow.
- the full width at half maximum ⁇ T in the heat flow curve with the heat flow measured by differential scanning calorimetry as the vertical axis and the temperature as the horizontal axis is 15 ° C. or more and 50 ° C. or less.
- component (A), component (B), component (C), and preferred compounds, properties, and content ratios as component (A), component (B), and component (C) relate to the first invention. This is the same as the case of the epoxy resin composition for fiber-reinforced composite material.
- the heat flow curve is obtained by collecting the epoxy resin composition in an aluminum sample pan and measuring it in a temperature range of 0 to 300 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere.
- the temperature difference ⁇ T of each temperature at which the heat flow value is 50 is set to a half width, and when ⁇ T is 50 ° C.
- ⁇ T is 15 ° C. or higher, resin curing proceeds gently and uniformly without causing rapid curing with sudden heat generation. Therefore, when SMC including this is used, it is homogeneous and has good surface quality.
- a fiber reinforced composite material is obtained. From the viewpoint of improving the surface quality of the fiber-reinforced composite material, ⁇ T is preferably 20 ° C. or higher and 50 ° C. or lower. At this time, the type and length of the reinforcing fiber, the content ratio of the reinforcing fiber and the resin, etc.
- the fiber length of the reinforcing fiber is usually about 5 to 100 mm and the average fiber diameter is 3 to 12 ⁇ m.
- the basis weight of the reinforcing fiber is preferably 0.1 to 5 kg / m 2 and the carbon fiber weight content is in the range of 30 to 60%.
- the epoxy resin composition for fiber-reinforced composite material of the second invention in the present invention further includes the component (D) and the component (E) described above.
- the definition of component (D), component (E), and the preferred compounds, properties, and content ratios as component (D) and component (E) are the same as those of the epoxy resin composition for fiber-reinforced composite material according to the first invention. Same as the case.
- the method for producing an SMC of the second invention in the present invention is the above-described cutting that can satisfy the conditions of the angle a and the angle b as a means for cutting a continuous reinforcing fiber bundle for producing a bundle of discontinuous reinforcing fibers.
- the means there is no particular limitation. That is, the process of blending the component (D) and the component (E) is not essential, and the continuous reinforcing fiber bundle cutting means for producing a discontinuous bundle of reinforcing fibers is subjected to specific conditions. Except for satisfying, it is the same as the SMC manufacturing method using the epoxy resin composition for fiber-reinforced composite material according to the first invention.
- the material of the reinforcing fiber used in the second invention of the present invention is not particularly limited, and is the same as that of the SMC according to the first invention.
- the fiber reinforced composite material of the second invention in the present invention is obtained by curing the SMC of the second invention of the present invention.
- the fiber-reinforced composite material of the second invention in the present invention is excellent in heat resistance because the glass transition temperature of the cured epoxy resin that is a matrix resin can usually be 140 ° C. or higher and 250 ° C. or lower.
- the fiber-reinforced composite material of the second invention in the present invention is an epoxy resin composition capable of expressing high mechanical properties in which resin curing proceeds gently and uniformly without causing rapid resin curing with rapid heat generation.
- epoxy resin composition for fiber-reinforced composite material of the first invention in the present invention and the SMC of the second invention in the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. It is not something.
- ⁇ Preparation of cured resin plate> The epoxy resin composition prepared above was degassed under reduced pressure, and then poured into a mold set to a thickness of 2 mm with a 2 mm thick “Teflon (registered trademark)” spacer. Curing was performed at a temperature of 140 ° C. for 2 hours to obtain a cured resin plate having a thickness of 2 mm.
- a sheet-like fiber-reinforced resin molding material was obtained by impregnating the above-mentioned epoxy resin composition into a discontinuous carbon fiber nonwoven fabric with a roller so that the carbon fiber weight content of the fiber-reinforced resin molding material was 40%.
- This fiber reinforced resin molding material was held at 40 ° C. for 24 hours, and the resin was made into a B-stage to obtain SMC.
- This SMC was cured under conditions of about 140 ° C. ⁇ 5 minutes under a pressure of 10 MPa with a pressure press, and a plate-like fiber reinforced composite material of 300 ⁇ 400 mm was obtained.
- Tg Glass Transition Temperature
- Arithmetic average roughness Ra measurement of the surface of the fiber reinforced composite material From the plate-like fiber reinforced composite material obtained as described above, from the direction of 0 degrees (the longitudinal direction of the plate is 0 degrees) and 90 degrees, 80 ⁇ 30 respectively. 5 pieces (total 10 pieces) of 1.6 mm test pieces were cut out, and the arithmetic average roughness of the surface of each test piece was measured using a surface roughness measuring device Surfcom 480A (manufactured by Tokyo Seimitsu Co., Ltd.). The average value of was adopted as Ra.
- the measurement condition is a crosshead speed of 0.3 mm / s.
- Examples 1 to 3 As described above, the epoxy resin composition was prepared by blending the components (A), (B), (C), (D), and (E) in the content ratios shown in Table 1, and the viscosity at 70 ° C. Was measured. In addition, each epoxy resin composition was held at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. and the vitrification time were measured. Furthermore, SMC and a fiber reinforced composite material were produced using each epoxy resin composition and a bundled assembly having the angles a and b as shown in Table 1, and the bending strength was measured. The only changes in Examples 1 to 3 are the content ratios of components (A), (B), and (C).
- the viscosity at 70 ° C. of the resin composition immediately after preparation was 1000 mPa ⁇ s or less, and the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 10000 Pa ⁇ s or less, the vitrification time was less than 5 minutes, and the fluidity and curability when SMC was hot-press molded were also good.
- the Tg of the cured resin was 140 ° C. or higher, and the fiber reinforced composite material also had good heat resistance and mechanical properties with a bending strength of 350 MPa or higher.
- Examples 4 to 8 As described above, the epoxy resin composition was prepared by blending the components (A), (B), (C), (D), and (E) in the content ratios shown in Table 2, and the viscosity at 70 ° C. Was measured. In addition, each epoxy resin composition was held at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. and the vitrification time were measured. Further, using each epoxy resin composition and a bundled assembly having the angles a and b as shown in Table 2, SMCs and fiber reinforced composite materials were produced, and the bending strength was measured. The only changes in Examples 4 to 8 are the components (and blending amounts) of components (C), (D), and (E).
- the viscosity at 70 ° C. of the resin composition immediately after preparation was 1000 mPa ⁇ s or less, and the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 10000 Pa ⁇ s or less, the vitrification time was less than 5 minutes, and the fluidity and curability when SMC was hot-press molded were also good.
- the Tg of the cured resin was 140 ° C. or higher, and the fiber reinforced composite material also had good heat resistance and mechanical properties with a bending strength of 350 MPa or higher.
- Example 9 to 13 As described above, the epoxy resin composition was prepared by blending the components (A), (B), (C), (D), and (E) in the content ratios shown in Table 3, and the viscosity at 70 ° C. Was measured. In addition, each epoxy resin composition was held at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. and the vitrification time were measured. Further, using each epoxy resin composition and a bundled assembly having the angles a and b as shown in Table 3, SMCs and fiber reinforced composite materials were produced, and the bending strength was measured. The only changes in Examples 9 to 13 are the blending amounts of components (D) and (E). In any case, the viscosity at 70 ° C.
- the resin composition immediately after preparation was 1000 mPa ⁇ s or less, and the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 10000 Pa ⁇ s or less, the vitrification time was less than 5 minutes, and the fluidity and curability when SMC was hot-press molded were also good.
- the Tg of the cured resin was 140 ° C. or higher, and the fiber reinforced composite material also had good heat resistance and mechanical properties with a bending strength of 350 MPa or higher.
- Example 14 As described above, components (A), (B), and (C) were blended in the content ratios shown in Table 4 to prepare an epoxy resin composition, and the viscosity at 70 ° C. was measured. Further, the epoxy resin composition was held at 40 ° C. for 24 hours to form a B stage, and then the viscosity at 140 ° C. was measured. Furthermore, SMC and a fiber reinforced composite material were produced using the epoxy resin composition and a bundled assembly having the angles a and b as shown in Table 4, and the arithmetic average roughness Ra and the bending strength were measured. The viscosity at 70 ° C.
- the resin composition immediately after the preparation was 450 mPa ⁇ s, and the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 300 Pa ⁇ s, and the fluidity when SMC was hot-press molded was also good.
- the Tg of the cured resin was 140 ° C., and the fiber reinforced composite material also had good heat resistance, surface quality, and mechanical properties with an arithmetic average roughness Ra of 0.4 ⁇ m and a bending strength of 370 MPa.
- Example 15 and 16 As described above, the epoxy resin composition was prepared by blending the components (A), (B), (C), (D), and (E) in the content ratios shown in Table 4, and the viscosity at 70 ° C. Was measured. Each epoxy resin composition was kept at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. was measured. Furthermore, SMC and a fiber reinforced composite material were produced using each epoxy resin composition and a bundled assembly having an angle a and an angle b as shown in Table 4, and the arithmetic average roughness Ra and bending strength were measured. . The only changes in Examples 15 and 16 are the component (E). In any case, the viscosity at 70 ° C.
- the resin composition immediately after preparation was 1000 mPa ⁇ s or less, and the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 10000 Pa ⁇ s or less, and the fluidity at the time of hot press molding SMC was also good.
- the Tg of the cured resin was 140 ° C. or higher, and the fiber-reinforced composite material also had good heat resistance, surface quality, and mechanical properties with an arithmetic average roughness Ra of 0.4 ⁇ m or less and a bending strength of 350 MPa or more.
- Examples 17 to 19 As described above, the epoxy resin composition was prepared by blending the components (A), (B), (C), (D), and (E) in the content ratios shown in Table 4, and the viscosity at 70 ° C. Was measured. Each epoxy resin composition was kept at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. was measured. Furthermore, SMC and a fiber reinforced composite material were produced using each epoxy resin composition and a bundled assembly having an angle a and an angle b as shown in Table 4, and the arithmetic average roughness Ra and bending strength were measured. . The only changes in Examples 17 to 19 are the amounts of components (D) and (E).
- the viscosity at 70 ° C. of the resin composition immediately after preparation was 1000 mPa ⁇ s or less, and the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 10000 Pa ⁇ s or less, and the fluidity at the time of hot press molding SMC was also good.
- the Tg of the cured resin was 140 ° C. or higher, and the fiber-reinforced composite material also had good heat resistance, surface quality, and mechanical properties with an arithmetic average roughness Ra of 0.4 ⁇ m or less and a bending strength of 350 MPa or more.
- Example 3 an epoxy resin composition was prepared by blending in the content ratio described in Table 5 without adding the component (E), and the viscosity at 70 ° C. was measured. Further, the epoxy resin composition was held at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. and the vitrification time were measured. Furthermore, SMC and a fiber reinforced composite material were produced using the epoxy resin composition and a bundled assembly having an angle a and an angle b as shown in Table 5, and the bending strength was measured. The resin composition immediately after the preparation had a viscosity at 70 ° C.
- the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 60 Pa ⁇ s and the vitrification time was 10 minutes, and the fluidity and curability when hot-press molding SMC were poor.
- the Tg of the cured resin was 150 ° C., and the fiber reinforced composite material also had good heat resistance and mechanical properties with a bending strength of 380 MPa.
- Comparative Example 2 In the comparative example 1, the compounding quantity of the component (D) was increased, it mix
- the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 80 Pa ⁇ s and the vitrification time was 8 minutes, and the fluidity and curability when SMC was hot-press molded were also poor.
- the Tg of the cured resin was 148 ° C., and the fiber reinforced composite material also had good bending resistance and heat resistance and mechanical properties of 390 MPa.
- Example 3 an epoxy resin composition was prepared by blending in the content ratio described in Table 5 without adding the component (D), and the viscosity at 70 ° C. was measured. Further, the epoxy resin composition was held at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. and the vitrification time were measured. Furthermore, SMC and a fiber reinforced composite material were produced using the epoxy resin composition and a bundled assembly having an angle a and an angle b as shown in Table 5, and the bending strength was measured. The resin composition immediately after the preparation had a viscosity at 70 ° C.
- the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 500 Pa ⁇ s and the fluidity when SMC was hot-press molded was good, but it did not become vitrified and the curability was poor.
- the curability is poor, the curing reaction between the epoxy resin and the curing agent becomes insufficient, the Tg of the cured resin is as low as 130 ° C., and the bending strength of the fiber reinforced composite material is as low as 300 MPa. The heat resistance and mechanical characteristics peculiar to it were not expressed and it was inferior.
- Comparative Example 4 In the comparative example 3, the compounding quantity of the component (E) was increased, it mix
- the impregnation property to the reinforcing fiber at the time of SMC production was good.
- the viscosity at 140 ° C. after B-stage formation was 700 Pa ⁇ s and the fluidity when SMC was hot-press-molded was good, but it was not vitrified and the curability was poor.
- the curability is poor, the curing reaction between the epoxy resin and the curing agent becomes insufficient, the Tg of the cured resin is as low as 120 ° C., and the bending strength of the fiber reinforced composite material is as low as 250 MPa. The heat resistance and mechanical characteristics peculiar to it were not expressed and it was inferior.
- Example 14 (Comparative Examples 5 and 6)
- the SMC and the fiber reinforced composite material were produced by changing the angle a and the angle b in the bundled assembly of discontinuous reinforcing fibers used in the fiber reinforced composite material.
- Average roughness Ra and bending strength were measured. In any case, the arithmetic average roughness Ra of the fiber reinforced composite material was larger than 0.4 ⁇ m, the bending strength was lower than 350 MPa, and the surface quality and mechanical properties were poor.
- Example 14 the component (B) was changed to an acid anhydride and blended in the content ratios shown in Table 6 to prepare an epoxy resin composition, and the viscosity at 70 ° C. was measured.
- Each epoxy resin composition was kept at 40 ° C. for 24 hours to be B-staged, and then the viscosity at 140 ° C. was measured.
- SMC and a fiber reinforced composite material were produced using each epoxy resin composition and a bundled assembly having the angles a and b as shown in Table 6, and the arithmetic average roughness Ra and the bending strength were measured. .
- the resin composition immediately after preparation had a viscosity at 70 ° C.
- the impregnation property into the reinforcing fiber during SMC production was good.
- the viscosity at 140 ° C. after the B-stage was 120 Pa ⁇ s, and the fluidity when SMC was hot-press molded was also good.
- the Tg of the cured resin was 142 ° C. and heat resistance was good, the arithmetic average roughness Ra of the fiber reinforced composite material was 0.5 ⁇ m, the bending strength was 300 MPa, and the surface quality and mechanical properties were poor. .
- Example 14 In Example 14, the component (B) was changed to a liquid amine and a solid amine and blended at the content ratios shown in Table 6 to prepare an epoxy resin composition, and the viscosity at 70 ° C. was measured. Further, the epoxy resin composition was held at 40 ° C. for 24 hours to form a B stage, and then the viscosity at 140 ° C. was measured. Furthermore, SMC and a fiber reinforced composite material were produced using the epoxy resin composition and a bundled assembly having the angles a and b as shown in Table 6, and the arithmetic average roughness Ra and the bending strength were measured. The viscosity at 70 ° C.
- the epoxy resin composition of the first invention in the present invention has a shorter mold occupancy time at the time of molding and a heat compression molding of SMC than a conventional matrix resin for fiber reinforcement, particularly an epoxy resin composition for SMC. It is excellent in that it provides a good fiber-reinforced composite material without the matrix flowing out. SMC using the epoxy resin composition of the present invention as a matrix resin gives a fiber-reinforced composite material excellent in heat resistance and mechanical properties peculiar to epoxy. Further, the SMC of the second invention in the present invention further has surface quality and mechanical properties. A fiber-reinforced composite material having excellent characteristics is provided, and it is suitably used as a raw material for structural parts for industrial, automotive and aircraft use.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Abstract
Description
成分(B):ジシアンジアミドまたはその誘導体
成分(C):ポリイソシアネート化合物
成分(D):式(1)で表されるウレア化合物
成分(E):4級アンモニウム塩、ホスホニウム塩、イミダゾール化合物、及びホスフィン化合物からなる群より選ばれる少なくとも1つの化合物
さらに、本発明における第一の発明においては、前記エポキシ樹脂組成物を強化繊維に含浸されてなるSMC、さらには、そのSMCを硬化されてなる繊維強化複合材料も提供される。
成分(A):エポキシ樹脂
成分(B):ジシアンジアミドまたはその誘導体
成分(C):ポリイソシアネート化合物
さらに、本発明における第二の発明においても、第二の発明のSMCを硬化されてなる繊維強化複合材料も提供される。
成分(B):ジシアンジアミドまたはその誘導体
成分(C):ポリイソシアネート化合物
成分(D):式(1)で表されるウレア化合物
成分(E):4級アンモニウム塩、ホスホニウム塩、イミダゾール化合物、及びホスフィン化合物からなる群より選ばれる少なくとも1つの化合物。
ここで、R3およびR4において炭化水素基はアルキル基であることが好ましい。また、炭化水素基、アリル基、アルコキシ基、アルケニル基、アラルキル基、またはR3とR4を同時に含む脂環式化合物においては、炭素数が1~8であることを満たす限り、上記に列挙した以外の原子(例えばハロゲン原子)や置換基により一部の水素原子が置換されていても構わない。
成分(A):エポキシ樹脂
成分(B):ジシアンジアミドまたはその誘導体
成分(C):ポリイソシアネート化合物
ここで、第二の発明に係るSMCを構成する不連続の強化繊維の束状集合体における上記の角度aおよび角度bは、図1に示される角度である。
各実施例・比較例の樹脂組成物を得るために、以下の樹脂原料を用いた。なお、表中の樹脂組成物の欄における各成分の数値は含有量を示し、その単位は、特に断らない限り「質量部」である。
・“エポトート(登録商標)”YD128(新日鉄住金化学(株)製):ビスフェノールA型エポキシ樹脂
・“jER(登録商標)”154(三菱化学(株)製):フェノールノボラック型エポキシ樹脂。
・“jERキュア(登録商標)”DICY7(三菱化学(株)製):ジシアンジアミド
2’.ジシアンジアミドまたはその誘導体に該当しない硬化剤(成分(B’)と記す)
・“リカシッド(登録商標)”MH-700(新日本理化(株)製):メチルヘキサヒドロ無水フタル酸
・“jERキュア(登録商標)”W(三菱化学(株)製):ジエチルトルエンジアミン
・3,3’-DAS(三井化学ファイン(株)製):3,3’-ジアミノジフェニルスルホン。
・“ルプラネート(登録商標)”M20S(BASF INOAC ポリウレタン(株)製):ポリメリックMDI(ポリメチレンポリフェニルポリイソシアネート:複数のMDIをメチレン基で連結した構造を有するもの)
・“ルプラネート(登録商標)”MI(BASF INOAC ポリウレタン(株)製):モノメリックMDI(ジフェニルメタンジイソシアネート)。
・“Omicure(登録商標)”24(PTIジャパン(株)製):2,4-ビス(3,3-ジメチルウレイド)トルエン
・DCMU99(保土ヶ谷化学(株)製):3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素。
・テトラブチルアンモニウムブロミド(東京化成工業(株)製)
・テトラフェニルホスホニウムブロミド (東京化成工業(株)製)
・2-メチルイミダゾール(東京化成工業(株)製)
・トリフェニルホスフィン(東京化成工業(株)製)。
表に記載した含有割合で各成分を混合し、エポキシ樹脂組成物を調製した。
上記で調製したエポキシ樹脂組成物を減圧下で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中に注入した。140℃の温度で2時間硬化させ、厚さ2mmの樹脂硬化板を得た。
炭素繊維として、“トレカ(登録商標)”T700S-12K(東レ(株)製)を使用した。前記連続炭素繊維ストランドを所望の角度で切断して均一分散するように散布することにより、繊維配向が等方的である不連続炭素繊維不織布を得た。切断装置にはロータリー式カッターを用いた。刃の間隔は30mmとした。また、不連続炭素繊維不織布の目付は1kg/m2であった。
各実施例における評価は以下の通りに行った。なお、測定n数は特に断らない限り、n=1である。
測定すべき検体を、JIS Z8803(1991)における「円すい-平板形回転粘度計による粘度測定方法」に従い、標準コーンローター(1°34’×R24)を装着したE型粘度計を使用して、70℃に保持した状態で測定した。E型粘度計としては、(株)トキメック製TVE-30Hを用いた。なお、検体としては、各成分を混合し、1分間攪拌後のエポキシ樹脂組成物を用いた。
測定すべき検体をアルミサンプルパンに採取し、Pyris1 DSC(Perkin Elmer社製)を使用して、窒素雰囲気下において、10℃/minの昇温速度で、0~300℃の温度範囲で測定することで熱流曲線を測定した。この曲線において樹脂硬化反応による凸状の発熱ピークの頂点の熱流値を100とする際に、熱流値が50となる各温度の温度差ΔTを半値幅として求めた。なお、検体としては、各成分を混合し、1分間攪拌後のエポキシ樹脂組成物を用いた。
測定すべき検体を、DMA(TAインスツルメンツ社製ARES)を使用して、140℃に加熱したステージにサンプルを投入し、粘度を測定した。なお、検体としては、各成分を混合したエポキシ樹脂組成物を40℃で24時間保持したものを用いた。
測定すべき検体を、熱硬化測定装置ATD-1000(Alpha Technologies(株)製)を用いて140℃に加熱したステージにサンプルを投入し、周波数1.0Hz、歪み1%で動的粘弾性測定を行い、複素粘性率を求めた。このとき、複素粘性率が1.0×107Pa・sに達するまでの時間をガラス化時間とした。なお、Bステージ化後の検体としては、各成分を混合したエポキシ樹脂組成物を40℃で24時間保持したものを用いた。
樹脂硬化板から幅12.7mm、長さ40mmの試験片を切り出し、DMA(TAインスツルメンツ社製ARES)を用いてTg測定を行った。測定条件は、昇温速度5℃/分である。測定で得られた貯蔵弾性率G’の変曲点での温度をTgとした。
前記のようにして得られた平板状の繊維強化複合材料より、0度(平板長手方向を0度)と90度方向から、それぞれ80×30×1.6mmの試験片を5片(合計10片)切り出し、表面粗さ測定器サーフコム480A((株)東京精密製)を用いて各試験片の表面の算術平均粗さを測定し、それらの平均値をRaとして採用した。測定条件は、クロスヘッドスピード0.3mm/sである。
前記のようにして得られた平板状の繊維強化複合材料より0度(平板長手方向を0度)と90度方向から、それぞれ100×25×1.6mmの試験片を5片(合計10片)切り出し、JIS K7074(1988)に準拠し測定を実施した。
前記のようにして、成分(A)、(B)、(C)、(D)、(E)を表1に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、それぞれのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度とガラス化時間を測定した。さらにそれぞれのエポキシ樹脂組成物と表1に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、曲げ強度を測定した。実施例1~3における変更点は成分(A)、(B)、(C)の含有割合のみである。いずれの場合も、調製直後の樹脂組成物の70℃における粘度は1000mPa・s以下とSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は10000Pa・s以下、ガラス化時間も5分未満であり、SMCを加熱プレス成形する際の流動性および硬化性も良好であった。さらに樹脂硬化物のTgは140℃以上、繊維強化複合材料についても、曲げ強度が350MPa以上と耐熱性、力学特性も良好であった。
前記のようにして、成分(A)、(B)、(C)、(D)、(E)を表2に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、それぞれのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度とガラス化時間を測定した。さらにそれぞれのエポキシ樹脂組成物と表2に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、曲げ強度を測定した。実施例4~8における変更点は成分(C)、(D)、(E)の成分(および配合量)のみである。いずれの場合も、調製直後の樹脂組成物の70℃における粘度は1000mPa・s以下とSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は10000Pa・s以下、ガラス化時間も5分未満であり、SMCを加熱プレス成形する際の流動性および硬化性も良好であった。さらに樹脂硬化物のTgは140℃以上、繊維強化複合材料についても、曲げ強度が350MPa以上と耐熱性、力学特性も良好であった。
前記のようにして、成分(A)、(B)、(C)、(D)、(E)を表3に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、それぞれのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度とガラス化時間を測定した。さらにそれぞれのエポキシ樹脂組成物と表3に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、曲げ強度を測定した。実施例9~13における変更点は成分(D)、(E)の配合量のみである。いずれの場合も、調製直後の樹脂組成物の70℃における粘度は1000mPa・s以下とSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は10000Pa・s以下、ガラス化時間も5分未満であり、SMCを加熱プレス成形する際の流動性および硬化性も良好であった。さらに樹脂硬化物のTgは140℃以上、繊維強化複合材料についても、曲げ強度が350MPa以上と耐熱性、力学特性も良好であった。
前記のようにして、成分(A)、(B)、(C)を表4に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、そのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度を測定した。さらにそのエポキシ樹脂組成物と表4に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、算術平均粗さRaと曲げ強度を測定した。調製直後の樹脂組成物の70℃における粘度は450mPa・sとSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は300Pa・sであり、SMCを加熱プレス成形する際の流動性も良好であった。さらに樹脂硬化物のTgは140℃、繊維強化複合材料についても、算術平均粗さRaが0.4μm、曲げ強度が370MPaと耐熱性、表面品位、力学特性も良好であった。
前記のようにして、成分(A)、(B)、(C)、(D)、(E)を表4に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、それぞれのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度を測定した。さらにそれぞれのエポキシ樹脂組成物と表4に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、算術平均粗さRaと曲げ強度を測定した。実施例15と16における変更点は成分(E)の成分のみである。いずれの場合も、調製直後の樹脂組成物の70℃における粘度は1000mPa・s以下とSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は10000Pa・s以下であり、SMCを加熱プレス成形する際の流動性も良好であった。さらに樹脂硬化物のTgは140℃以上、繊維強化複合材料についても、算術平均粗さRaが0.4μm以下、曲げ強度が350MPa以上と耐熱性、表面品位、力学特性も良好であった。
前記のようにして、成分(A)、(B)、(C)、(D)、(E)を表4に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、それぞれのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度を測定した。さらにそれぞれのエポキシ樹脂組成物と表4に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、算術平均粗さRaと曲げ強度を測定した。実施例17~19における変更点は成分(D)、(E)の配合量のみである。いずれの場合も、調製直後の樹脂組成物の70℃における粘度は1000mPa・s以下とSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は10000Pa・s以下であり、SMCを加熱プレス成形する際の流動性も良好であった。さらに樹脂硬化物のTgは140℃以上、繊維強化複合材料についても、算術平均粗さRaが0.4μm以下、曲げ強度が350MPa以上と耐熱性、表面品位、力学特性も良好であった。
実施例3において、成分(E)を添加せずに表5に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、そのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度とガラス化時間を測定した。さらにそのエポキシ樹脂組成物と表5に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、曲げ強度を測定した。調製直後の樹脂組成物の70℃における粘度は470mPa・sとSMC作製時の強化繊維への含浸性が良好であった。ただし、Bステージ化後の140℃における粘度は60Pa・s、ガラス化時間も10分であり、SMCを加熱プレス成形する際の流動性および硬化性は不良であった。また、樹脂硬化物のTgは150℃、繊維強化複合材料についても、曲げ強度が380MPaと耐熱性、力学特性は良好であった。
比較例1において、成分(D)の配合量を増量し、表5に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、そのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度とガラス化時間を測定した。さらにそのエポキシ樹脂組成物と表5に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、曲げ強度を測定した。調製直後の樹脂組成物の70℃における粘度は550mPa・sとSMC作製時の強化繊維への含浸性が良好であった。ただし、Bステージ化後の140℃における粘度は80Pa・s、ガラス化時間も8分であり、やはりSMCを加熱プレス成形する際の流動性および硬化性は不良であった。また、樹脂硬化物のTgは148℃、繊維強化複合材料についても、曲げ強度が390MPaと耐熱性、力学特性は良好であった。
実施例3において、成分(D)を添加せずに表5に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、そのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度とガラス化時間を測定した。さらにそのエポキシ樹脂組成物と表5に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、曲げ強度を測定した。調製直後の樹脂組成物の70℃における粘度は470mPa・sとSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は500Pa・sとSMCを加熱プレス成形する際の流動性は良好であったが、ガラス化に至らず、硬化性は不良であった。さらに、硬化性が不良なために、エポキシ樹脂と硬化剤の硬化反応が不十分となり、樹脂硬化物のTgは130℃と低く、繊維強化複合材料の曲げ強度も300MPaと低く、本来のエポキシ樹脂特有の耐熱性や機械特性が発現されず不良であった。
比較例3において、成分(E)の配合量を増量し、表5に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、そのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度とガラス化時間を測定した。さらにそのエポキシ樹脂組成物と表5に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、曲げ強度を測定した。調製直後の樹脂組成物の70℃における粘度は550mPa・sとSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は700Pa・sとSMCを加熱プレス成形する際の流動性は良好であったが、やはりガラス化に至らず、硬化性は不良であった。さらに、硬化性が不良なために、エポキシ樹脂と硬化剤の硬化反応が不十分となり、樹脂硬化物のTgは120℃と低く、繊維強化複合材料の曲げ強度も250MPaと低く、本来のエポキシ樹脂特有の耐熱性や機械特性が発現されず不良であった。
実施例14において、表6に記載した通り、繊維強化複合材料に使用する不連続の強化繊維の束状集合体における角度aおよび角度bを変更してSMCおよび繊維強化複合材料を作製し、算術平均粗さRaと曲げ強度を測定した。いずれの場合も繊維強化複合材料の算術平均粗さRaが0.4μmよりも大きく、曲げ強度も350MPaより低く、表面品位、力学特性は不良であった。
実施例14において、成分(B)を酸無水物に変更し、表6に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、それぞれのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度を測定した。さらにそれぞれのエポキシ樹脂組成物と表6に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、算術平均粗さRaと曲げ強度を測定した。調製直後の樹脂組成物の70℃における粘度は30mPa・sとSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は120Pa・sであり、SMCを加熱プレス成形する際の流動性も良好であった。さらに、樹脂硬化物のTgは142℃と耐熱性も良好であったが、繊維強化複合材料の算術平均粗さRaが0.5μm、曲げ強度が300MPaと表面品位、力学特性は不良であった。
実施例14において、成分(B)を液状アミンと固体状アミンに変更し、表6に記載した含有割合で配合してエポキシ樹脂組成物を調製し、70℃における粘度を測定した。また、そのエポキシ樹脂組成物を40℃で24時間保持し、Bステージ化した後、140℃における粘度を測定した。さらにそのエポキシ樹脂組成物と表6に示す通りの角度aおよび角度bを有する束状集合体を用いて、SMCおよび繊維強化複合材料を作製し、算術平均粗さRaと曲げ強度を測定した。調製直後の樹脂組成物の70℃における粘度は400mPa・sとSMC作製時の強化繊維への含浸性が良好であった。また、Bステージ化後の140℃における粘度は200Pa・sであり、SMCを加熱プレス成形する際の流動性も良好であった。しかし、ΔTが80℃と大きいため、未硬化部が生じ、樹脂硬化物のTgは120℃と耐熱性は不良であり、繊維強化複合材料の算術平均粗さRaは0.3μmと表面品位が良好であるものの、曲げ強度が250MPaと力学特性は不良であった。
Claims (15)
- 以下の成分(A)~成分(E)を含む、繊維強化複合材料用エポキシ樹脂組成物。
成分(A):エポキシ樹脂
成分(B):ジシアンジアミドまたはその誘導体
成分(C):ポリイソシアネート化合物
成分(D):式(1)で表されるウレア化合物
成分(E):4級アンモニウム塩、ホスホニウム塩、イミダゾール化合物、及びホスフィン化合物からなる群より選ばれる少なくとも1つの化合物 - 成分(E)が、4級アンモニウム塩、及びホスフィン化合物からなる群より選ばれる少なくとも1つの化合物である、請求項1に記載の繊維強化複合材料用エポキシ樹脂組成物。
- 成分(A)100質量部に対して、成分(E)を1質量部以上15質量部以下含む、請求項1又は2に記載の繊維強化複合材料用エポキシ樹脂組成物。
- 成分(D)が、2,4-ビス(3,3-ジメチルウレイド)トルエンである、請求項1~3のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
- 成分(A)100質量部に対して、成分(D)を1質量部以上15質量部以下含む、請求項1~4のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。
- 請求項1~5のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物、並びに、強化繊維を含む、シートモールディングコンパウンド。
- 前記強化繊維が炭素繊維である、請求項6に記載のシートモールディングコンパウンド。
- 不連続の強化繊維の束状集合体と繊維強化複合材料用エポキシ樹脂組成物とを含むシートモールディングコンパウンドであって、
前記束状集合体は、その強化繊維の配列方向に直角な方向の幅が最大となる面において、前記強化繊維の配列方向に対して、前記束状集合体中の強化繊維の両側の端部の配列が形成する辺がとる鋭角の角度を、それぞれ角度aおよび角度bとすると、角度a,bのそれぞれが2°以上30°以下であり、
前記エポキシ樹脂組成物は、以下の成分(A)~成分(C)を含み、さらに、
示差走査熱量測定により測定される熱流を縦軸として、横軸に温度を表した熱流曲線における半値幅ΔTが15℃以上50℃以下である、シートモールディングコンパウンド。
成分(A):エポキシ樹脂
成分(B):ジシアンジアミドまたはその誘導体
成分(C):ポリイソシアネート化合物 - 成分(E)が、4級アンモニウム塩、及びホスフィン化合物からなる群より選ばれる少なくとも1つの化合物である、請求項9に記載のシートモールディングコンパウンド。
- 成分(A)100質量部に対して、成分(E)を1質量部以上15質量部以下含む、請求項9又は10に記載のシートモールディングコンパウンド。
- 成分(D)が、2,4-ビス(3,3-ジメチルウレイド)トルエンである、請求項9~11のいずれかに記載のシートモールディングコンパウンド。
- 成分(A)100質量部に対して、成分(D)を1質量部以上15質量部以下含む、請求項9~12のいずれかに記載のシートモールディングコンパウンド。
- 前記強化繊維が炭素繊維である、請求項8~13のいずれかに記載のシートモールディングコンパウンド。
- 請求項6~14のいずれかに記載のシートモールディングコンパウンドが硬化されてなる繊維強化複合材料。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880033061.4A CN110637041B (zh) | 2017-05-24 | 2018-05-21 | 纤维增强复合材料用环氧树脂组合物及纤维增强复合材料 |
ES18805134T ES2908294T3 (es) | 2017-05-24 | 2018-05-21 | Composición de resina epoxi para materiales compuestos reforzados con fibras, y material compuesto reforzado con fibras |
JP2018526727A JP6439901B1 (ja) | 2017-05-24 | 2018-05-21 | 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 |
EP18805134.6A EP3632952B1 (en) | 2017-05-24 | 2018-05-21 | Epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material |
US16/611,358 US11661484B2 (en) | 2017-05-24 | 2018-05-21 | Epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material |
KR1020197034160A KR102361346B1 (ko) | 2017-05-24 | 2018-05-21 | 섬유 강화 복합 재료용 에폭시 수지 조성물, 및 섬유 강화 복합 재료 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-102295 | 2017-05-24 | ||
JP2017102295 | 2017-05-24 | ||
JP2017-195707 | 2017-10-06 | ||
JP2017195707 | 2017-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018216643A1 true WO2018216643A1 (ja) | 2018-11-29 |
Family
ID=64395614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019448 WO2018216643A1 (ja) | 2017-05-24 | 2018-05-21 | 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11661484B2 (ja) |
EP (1) | EP3632952B1 (ja) |
JP (1) | JP6439901B1 (ja) |
KR (1) | KR102361346B1 (ja) |
CN (1) | CN110637041B (ja) |
ES (1) | ES2908294T3 (ja) |
WO (1) | WO2018216643A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019098028A1 (ja) * | 2017-11-16 | 2019-11-14 | 三菱ケミカル株式会社 | 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 |
WO2022045329A1 (ja) | 2020-08-31 | 2022-03-03 | 東レ株式会社 | 成形材料および繊維強化複合材料 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021153584A1 (ja) * | 2020-01-30 | 2021-08-05 | ||
CN116120637B (zh) * | 2023-03-14 | 2024-08-23 | 中国科学院长春应用化学研究所 | 一种复合阻燃剂、其制备方法及应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219321A (ja) | 1983-05-30 | 1984-12-10 | Mitsubishi Rayon Co Ltd | 繊維強化プラスチツク中間素材 |
JPS60195119A (ja) * | 1984-03-16 | 1985-10-03 | Mitsui Petrochem Ind Ltd | エポキシ樹脂組成物 |
JPH02235919A (ja) * | 1989-03-08 | 1990-09-18 | Sumitomo Chem Co Ltd | シートモールディングコンパウンド用エポキシ樹脂組成物 |
JPH05320303A (ja) | 1992-05-21 | 1993-12-03 | Sumitomo Chem Co Ltd | エポキシ樹脂組成物 |
JP2001011287A (ja) * | 1999-04-28 | 2001-01-16 | Toray Ind Inc | 繊維強化プラスチック製部材 |
JP2001040121A (ja) * | 1999-05-24 | 2001-02-13 | Toray Ind Inc | プリプレグ及び繊維強化複合材料 |
JP2008214547A (ja) * | 2007-03-06 | 2008-09-18 | Toray Ind Inc | 繊維強化複合材料用プリプレグおよび繊維強化複合材料 |
WO2008149615A1 (ja) | 2007-06-04 | 2008-12-11 | Toray Industries, Inc. | チョップド繊維束、成形材料、および、繊維強化プラスチック、ならびに、これらの製造方法 |
JP2012192726A (ja) * | 2011-02-28 | 2012-10-11 | Mitsubishi Rayon Co Ltd | プリフォーム及び同プリフォームの製造方法並びに同プリフォームを用いた繊維強化樹脂成形品の製造方法 |
JP2014145002A (ja) * | 2013-01-28 | 2014-08-14 | Toray Ind Inc | プリプレグ材 |
JP2016196590A (ja) | 2015-04-06 | 2016-11-24 | 三菱レイヨン株式会社 | 熱硬化性樹脂組成物および該熱硬化性樹脂組成物を用いるシートモールディングコンパウンドの製造方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6330536A (ja) * | 1986-07-24 | 1988-02-09 | Mitsubishi Rayon Co Ltd | 繊維強化プラスチツク中間素材 |
TW274553B (ja) * | 1992-06-05 | 1996-04-21 | Ciba Geigy Ag | |
EP0603131A1 (de) * | 1992-12-18 | 1994-06-22 | Ciba-Geigy Ag | Aromatische Harnstoffverbindung als Härtungsbeschleuniger für eine Mischung aus Epoxiharz und Dicyandiamid |
DE60320134T3 (de) * | 2002-11-28 | 2015-12-24 | Mitsubishi Rayon Co., Ltd. | Herstellungsverfahren für faserverstärktes verbundmaterial |
CN101824205B (zh) * | 2004-02-27 | 2014-04-16 | 东丽株式会社 | 一体化成型品、纤维增强复合材料板及电气·电子设备用外壳 |
US7658967B2 (en) * | 2005-08-25 | 2010-02-09 | Pittsburgh Glass Works, Llc | Methods for applying sound dampening and/or aesthetic coatings and articles made thereby |
US20070048504A1 (en) * | 2005-08-25 | 2007-03-01 | Dimario Joseph | Methods for applying sound dampening and/or aesthetic coatings and articles made thereby |
CN101379108B (zh) * | 2006-02-03 | 2011-11-30 | 旭化成电子材料株式会社 | 微胶囊型环氧树脂用固化剂、母料型环氧树脂用固化剂组合物、单液型环氧树脂组合物、及其加工品 |
CN101517029B (zh) * | 2006-07-31 | 2013-10-16 | 汉高股份及两合公司 | 可固化的环氧树脂-基粘合剂组合物 |
EP1916269A1 (de) * | 2006-10-24 | 2008-04-30 | Sika Technology AG | Blockierte Polyurethanprepolymere und hitzehärtende Epoxidharzzusammensetzungen |
EP1916285A1 (de) * | 2006-10-24 | 2008-04-30 | Sika Technology AG | Derivatisiertes Epoxid-Festharz und dessen Verwendungen |
JP2008149615A (ja) | 2006-12-19 | 2008-07-03 | Canon Inc | 画像記録方法および画像記録装置 |
US20090104448A1 (en) * | 2007-10-17 | 2009-04-23 | Henkel Ag & Co. Kgaa | Preformed adhesive bodies useful for joining substrates |
ATE456596T1 (de) * | 2007-11-14 | 2010-02-15 | Sika Technology Ag | Hitzehärtende epoxidharzzusammensetzung enthaltend nichtaromatische harnstoffe als beschleuniger |
EP2128182A1 (de) * | 2008-05-28 | 2009-12-02 | Sika Technology AG | Hitzehärtende Epoxidharzzusammensetzung enthaltend einen Beschleuniger mit Heteroatomen |
ATE461953T1 (de) * | 2008-07-17 | 2010-04-15 | Sika Technology Ag | Haftvermittlerverbindungen für beölten stahl |
WO2011122631A1 (ja) * | 2010-03-30 | 2011-10-06 | 東レ株式会社 | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 |
RU2509651C1 (ru) * | 2010-07-21 | 2014-03-20 | Торэй Индастриз, Инк. | Препрег, армированный волокнами композитный материал и способ производства препрега |
EP2468834A1 (de) * | 2010-12-23 | 2012-06-27 | Sika Technology AG | Hitzehärtende Dichtstoffzusammensetzungen mit schneller Hautbildung und hoher Zugfestigkeit |
WO2013084669A1 (ja) * | 2011-12-05 | 2013-06-13 | 東レ株式会社 | 炭素繊維成形素材、成形材料および炭素繊維強化複合材料 |
JP5765484B2 (ja) * | 2013-03-11 | 2015-08-19 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
EP2803687A1 (de) * | 2013-05-13 | 2014-11-19 | Basf Se | Epoxidharzzusammensetzung für Faser-Matrix-Halbzeuge |
KR20160043975A (ko) * | 2013-08-16 | 2016-04-22 | 다우 글로벌 테크놀로지스 엘엘씨 | 1k 열경화성 에폭시 조성물 |
WO2016060088A1 (ja) * | 2014-10-14 | 2016-04-21 | 三菱化学株式会社 | 半導体デバイス用層間充填剤組成物及び半導体デバイスの製造法 |
TWI591109B (zh) * | 2015-06-11 | 2017-07-11 | Mitsubishi Rayon Co | Epoxy resin composition, molded article, prepreg, fiber reinforced Composites and structures |
JP7053643B2 (ja) * | 2016-10-28 | 2022-04-12 | ライヒホールド アクティーゼルスカブ | 繊維-マトリックス半製品用の急速硬化エポキシ樹脂組成物 |
EP3634729B1 (en) * | 2017-06-07 | 2021-12-15 | Dow Global Technologies LLC | Molding compound having randomly oriented filaments and methods for making and using same |
US11390719B2 (en) * | 2017-07-31 | 2022-07-19 | Toray Industries, Inc. | Sheet molding compound, prepreg, and fiber-reinforced composite material |
-
2018
- 2018-05-21 US US16/611,358 patent/US11661484B2/en active Active
- 2018-05-21 WO PCT/JP2018/019448 patent/WO2018216643A1/ja active Application Filing
- 2018-05-21 EP EP18805134.6A patent/EP3632952B1/en active Active
- 2018-05-21 JP JP2018526727A patent/JP6439901B1/ja active Active
- 2018-05-21 ES ES18805134T patent/ES2908294T3/es active Active
- 2018-05-21 KR KR1020197034160A patent/KR102361346B1/ko active IP Right Grant
- 2018-05-21 CN CN201880033061.4A patent/CN110637041B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219321A (ja) | 1983-05-30 | 1984-12-10 | Mitsubishi Rayon Co Ltd | 繊維強化プラスチツク中間素材 |
JPS60195119A (ja) * | 1984-03-16 | 1985-10-03 | Mitsui Petrochem Ind Ltd | エポキシ樹脂組成物 |
JPH02235919A (ja) * | 1989-03-08 | 1990-09-18 | Sumitomo Chem Co Ltd | シートモールディングコンパウンド用エポキシ樹脂組成物 |
JPH05320303A (ja) | 1992-05-21 | 1993-12-03 | Sumitomo Chem Co Ltd | エポキシ樹脂組成物 |
JP2001011287A (ja) * | 1999-04-28 | 2001-01-16 | Toray Ind Inc | 繊維強化プラスチック製部材 |
JP2001040121A (ja) * | 1999-05-24 | 2001-02-13 | Toray Ind Inc | プリプレグ及び繊維強化複合材料 |
JP2008214547A (ja) * | 2007-03-06 | 2008-09-18 | Toray Ind Inc | 繊維強化複合材料用プリプレグおよび繊維強化複合材料 |
WO2008149615A1 (ja) | 2007-06-04 | 2008-12-11 | Toray Industries, Inc. | チョップド繊維束、成形材料、および、繊維強化プラスチック、ならびに、これらの製造方法 |
JP2012192726A (ja) * | 2011-02-28 | 2012-10-11 | Mitsubishi Rayon Co Ltd | プリフォーム及び同プリフォームの製造方法並びに同プリフォームを用いた繊維強化樹脂成形品の製造方法 |
JP2014145002A (ja) * | 2013-01-28 | 2014-08-14 | Toray Ind Inc | プリプレグ材 |
JP2016196590A (ja) | 2015-04-06 | 2016-11-24 | 三菱レイヨン株式会社 | 熱硬化性樹脂組成物および該熱硬化性樹脂組成物を用いるシートモールディングコンパウンドの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3632952A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019098028A1 (ja) * | 2017-11-16 | 2019-11-14 | 三菱ケミカル株式会社 | 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 |
US10988589B2 (en) | 2017-11-16 | 2021-04-27 | Mitsubishi Chemical Corporation | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
US11618803B2 (en) | 2017-11-16 | 2023-04-04 | Mitsubishi Chemical Corporation | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
WO2022045329A1 (ja) | 2020-08-31 | 2022-03-03 | 東レ株式会社 | 成形材料および繊維強化複合材料 |
Also Published As
Publication number | Publication date |
---|---|
EP3632952A4 (en) | 2020-12-30 |
US11661484B2 (en) | 2023-05-30 |
EP3632952B1 (en) | 2022-02-16 |
KR102361346B1 (ko) | 2022-02-10 |
JP6439901B1 (ja) | 2018-12-19 |
JPWO2018216643A1 (ja) | 2019-06-27 |
KR20200010258A (ko) | 2020-01-30 |
CN110637041A (zh) | 2019-12-31 |
CN110637041B (zh) | 2022-05-10 |
US20200157292A1 (en) | 2020-05-21 |
ES2908294T3 (es) | 2022-04-28 |
EP3632952A1 (en) | 2020-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6439901B1 (ja) | 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 | |
CN110945061B (zh) | 片状模塑料、预浸料和纤维增强复合材料 | |
WO2017150521A1 (ja) | エポキシ樹脂組成物、成形材料および繊維強化複合材料 | |
WO2014030638A1 (ja) | エポキシ樹脂組成物、及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック | |
JPWO2016017371A1 (ja) | 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 | |
WO2019098028A1 (ja) | 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 | |
CN112673038B (zh) | 环氧树脂组合物、纤维增强复合材料用成型材料及纤维增强复合材料 | |
JP4428978B2 (ja) | エポキシ樹脂組成物 | |
JP2018053065A (ja) | 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 | |
JP2019116543A (ja) | シートモールディングコンパウンド、繊維強化複合材料およびそれらに用いられる樹脂組成物 | |
JP2021147550A (ja) | 成形材料および繊維強化複合材料 | |
JP5573650B2 (ja) | エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料 | |
JP6447791B1 (ja) | シートモールディングコンパウンド、プリプレグおよび繊維強化複合材料 | |
JP2018135496A (ja) | 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 | |
JP6737410B1 (ja) | シートモールディングコンパウンドおよび繊維強化複合材料 | |
JP7524764B2 (ja) | プリプレグ、繊維強化複合樹脂成形体、管状成形体の製造方法、エポキシ樹脂組成物、および管状成形体 | |
WO2018207509A1 (ja) | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料およびその製造方法 | |
JP7508949B2 (ja) | エポキシ樹脂組成物、中間基材、トウプレグ、および繊維強化複合材料 | |
WO2019142735A1 (ja) | プリプレグおよび繊維強化複合材料 | |
JP2023004897A (ja) | プリプレグ、エポキシ樹脂組成物、およびプリプレグの製造方法 | |
JP2023065896A (ja) | シートモールディングコンパウンドおよび繊維強化複合材料 | |
WO2020071360A1 (ja) | シートモールディングコンパウンド、繊維強化複合材料、繊維強化複合材料の製造方法 | |
JP2015108052A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018526727 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18805134 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197034160 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018805134 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018805134 Country of ref document: EP Effective date: 20200102 |