WO2019098028A1 - 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 - Google Patents
熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 Download PDFInfo
- Publication number
- WO2019098028A1 WO2019098028A1 PCT/JP2018/040504 JP2018040504W WO2019098028A1 WO 2019098028 A1 WO2019098028 A1 WO 2019098028A1 JP 2018040504 W JP2018040504 W JP 2018040504W WO 2019098028 A1 WO2019098028 A1 WO 2019098028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin composition
- thermosetting resin
- imidazole
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/22—Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
- C08G65/24—Epihalohydrins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4021—Ureas; Thioureas; Guanidines; Dicyandiamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
- C08G59/3254—Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
- C08G59/3263—Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/686—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/21—Urea; Derivatives thereof, e.g. biuret
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
Definitions
- the present invention relates to a thermosetting resin composition, a prepreg, a fiber-reinforced composite material, and a method for producing the same.
- a thermosetting resin composition a prepreg, a fiber-reinforced composite material, and a method for producing the same.
- Fiber-reinforced composite materials containing a reinforcing fiber and a matrix resin composition are widely used in industrial applications such as automobiles because of their excellent mechanical properties, and in recent years, the application range has been increasingly expanded.
- a fiber reinforced composite material is known in which a prepreg laminate in which a plurality of sheet-like prepregs in which a matrix resin composition is impregnated with reinforcing fibers is laminated is formed by heating and pressing.
- thermosetting resin composition containing a phenol resin, a melamine resin, a bismaleimide resin, an unsaturated polyester resin, an epoxy resin, etc. is often used from the point of being excellent in impregnation property and heat resistance.
- an epoxy resin composition is widely used because a fiber-reinforced composite material having excellent heat resistance and moldability and higher mechanical strength can be obtained.
- High-cycle press molding is known as a molding method frequently used for automotive applications (Patent Document 1).
- high cycle press molding in order to enable mass production of the product, curing is performed under high pressure at about 100 to 150 ° C. in a short time of several minutes to several tens of minutes.
- the resin composition used for high cycle press molding has a rapid curing property that can be cured at a temperature of about 100 to 150 ° C. in a short time of several minutes to several tens of minutes, and a resin while impregnating the reinforcing fiber substrate with the resin composition.
- the heat stability that does not change the viscosity characteristics of and the storage stability during storage are required.
- rapid curing, thermal stability and storage stability are opposite properties, and it was difficult to satisfy all the properties.
- the molded product in high cycle press molding, in order to prevent deformation at the time of demolding, it is preferable that the molded product have heat resistance higher than the molding temperature. Furthermore, since the use application of a molded object also spreads, the highly heat-resistant molded object is calculated
- the heat resistance of cured products of epoxy resin and imidazole compound is high, but when an epoxy resin composition containing imidazole compound is used, the bending strength of the obtained fiber reinforced composite material (for example, 90 ° C. bending strength) Is a problem. That is, the cured product of the epoxy resin composition containing the imidazole compound has weak adhesion to the reinforcing fiber base. Therefore, when it is made into a fiber reinforced composite material, breakage is likely to occur at the interface between the cured product of the epoxy resin composition and the reinforcing fiber base.
- Patent Document 2 discloses an example using an imidazole compound and dicyandiamide or a derivative thereof as a curing agent.
- thermosetting resin composition disclosed in these documents was not high. Furthermore, in high cycle press molding, coexistence with heat resistance and a bending physical property was not completed.
- the present invention has been made in view of the above problems, and achieves both high heat resistance and high bending strength as a fiber-reinforced composite material, rapid curing, high thermal stability, and storage stability capable of high cycle press forming. It is an object of the present invention to provide a thermosetting resin composition having the same, a prepreg using the same, and a fiber reinforced composite material.
- the present invention has the following aspects.
- thermosetting resin composition comprising an epoxy resin, an epoxy resin curing agent, an imidazole compound, and an epoxy resin curing accelerator, The epoxy resin curing agent is dicyandiamide or a derivative thereof, A thermosetting resin composition, wherein the epoxy resin curing accelerator contains a urea derivative having two or more dimethylureide groups in the molecule.
- V1 / V0 is 1.0 to 4.5, where V1 is a viscosity after holding for 5 minutes at 60 ° C., and V1 is a viscosity after holding for 5 hours at 60 ° C.
- thermosetting resin composition As described in [2].
- thermosetting resin composition according to any one of [1] to [3], wherein the imidazole compound is an imidazole compound having a curing start temperature of 100 ° C. or higher.
- Method of measuring curing start temperature A sample resin composition prepared by adding 10 parts by mass of an imidazole compound to 100 parts by mass of bisphenol A epoxy resin having an epoxy equivalent of 180 to 220 and mixing them, a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min.
- DSC differential scanning calorimeter
- the calorific value is measured according to the above, and the temperature at the intersection point of the tangent line at the inflection point of the obtained DSC curve and the baseline is taken as the curing start temperature of the imidazole compound.
- the imidazole compound comprises one selected from the group consisting of imidazole derivatives, imidazole adducts, inclusion imidazoles, microcapsule-type imidazoles, and imidazole adducts. Thermosetting resin composition.
- the urea derivative having two or more dimethylureido groups in the molecule is either one or both of 2,4-bis (3,3-dimethylureido) toluene and 4,4'-methylenebis (phenyldimethylurea)
- the thermosetting resin composition according to any one of [1] to [7] which contains a urea derivative having a dimethyl ureido group.
- thermosetting resin composition according to any one of [1] to [8], wherein the epoxy resin contains a polyfunctional epoxy resin having three or more epoxy groups in the molecule.
- the polyfunctional epoxy resin having three or more epoxy groups in the molecule includes one selected from the group consisting of phenol novolac epoxy resin, trisphenol methane epoxy resin, and tetraglycidyl diaminodiphenylmethane.
- the thermosetting resin composition as described in [9].
- the epoxy resin is represented by 30 to 70 parts by mass of an epoxy resin containing a structure represented by the following formula (1) in a molecule in 100 parts by mass of the epoxy resin, and represented by the formula (1)
- the thermosetting resin composition according to any one of [1] to [10], which contains 20 to 40 parts by mass of a multifunctional epoxy resin not having a structure and having three or more epoxy groups in the molecule.
- thermosetting resin composition comprising the thermosetting resin composition according to any one of [1] to [11] and a reinforcing fiber base.
- a fiber reinforced composite material which is a cured product of the prepreg according to [12].
- a preform having a desired molded product shape and a substantially net shape is produced by forming one or two or more of the prepregs described in [12] in layers, and the preform is desired.
- the thermosetting resin composition according to any one of [1] to [11], which is for automobile materials.
- thermosetting resin composition and a fiber-reinforced composite material can be obtained in which the fiber-reinforced composite material has both high heat resistance and high bending strength. Furthermore, the thermosetting resin composition of the present invention has both rapid curing capable of high cycle press molding and heat stability and storage stability required for a prepreg.
- thermosetting resin composition of the present invention comprises an epoxy resin, an epoxy resin curing agent, an imidazole compound, and an epoxy resin curing accelerator.
- the epoxy resin curing agent is dicyandiamide or a derivative thereof.
- epoxy resin curing accelerators include urea derivatives having two or more dimethyl ureide groups in the molecule.
- thermosetting resin composition By using dicyandiamide or a derivative thereof as the epoxy resin curing agent, the mechanical properties of the cured product of the thermosetting resin composition are improved.
- the imidazole compound By using the imidazole compound, the curing speed of the thermosetting resin composition is improved, and the mechanical properties of the obtained cured product are improved.
- a urea derivative having two or more dimethylureide groups in the molecule As the epoxy resin curing accelerator, the low temperature curing property and the rapid curing property of the thermosetting resin composition are improved.
- thermosetting resin composition of the present invention achieves both rapid curing and storage stability by containing all of dicyandiamide or a derivative thereof, an imidazole compound, and a urea derivative having two or more dimethylureide groups in the molecule. can do.
- epoxy resin As an epoxy resin used by this invention, the compound which has an epoxy group in a molecule
- the epoxy resin examples include a compound having a hydroxyl group in the molecule and a glycidyl ether type epoxy resin obtained from epichlorohydrin, a glycidyl amine type epoxy resin obtained from a compound having an amino group in the molecule and epichlorohydrin, Glycidyl ester type epoxy resin obtained from a compound having a carboxyl group in the molecule and epichlorohydrin, Alicyclic epoxy resin obtained by oxidizing a compound having a double bond in the molecule, epoxy having a heterocyclic structure Examples thereof include resins and epoxy resins in which two or more types of groups selected from these are mixed in the molecule.
- numerator can also be used as epoxy resins other than these.
- An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
- glycidyl ether type epoxy resin Specific examples of glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, phenol novolac type epoxy resin, trisphenol novolac type epoxy resin, naphthalene type epoxy Resins and aryl glycidyl ether type epoxy resins such as anthracene type epoxy resins; polyethylene glycol type epoxy resins, polypropylene glycol type epoxy resins, dicyclopentadiene type epoxy resins, and positional isomers thereof, substituted products with alkyl groups and halogens, etc. Can be mentioned.
- EPON 825 As a commercial item of bisphenol A type epoxy resin, for example, EPON 825, jER (registered trademark. The same as the following) 826, jER 827, jER 828 (above, manufactured by Mitsubishi Chemical Corporation), Epiclon (registered trademark.
- bisphenol F type epoxy resin for example, jER806, jER807, jER1750 (above, made by Mitsubishi Chemical Corporation), Epiclon 830 (made by DIC Corporation), Epototh YD-170, Epototh YD-175 (all, new day Examples include Samurai Sumikin Chemical Co., Ltd., Bakelite EPR169 (manufactured by Bakelite AG), GY281, GY282, GY285 (all manufactured by Huntsman Advanced Materials, Inc.), and the like.
- Examples of commercially available products of bisphenol S-type epoxy resins include Epiclon EXA-1514 (manufactured by DIC Corporation).
- Examples of commercially available resorcinol type epoxy resins include Denacol (registered trademark, hereinafter the same) EX-201 (manufactured by Nagase ChemteX Co., Ltd.) and the like.
- EX-201 manufactured by Nagase ChemteX Co., Ltd.
- a commercial item of a phenol novolak type epoxy resin for example, jER152, jER154 (above, made by Mitsubishi Chemical Corporation), Epiclon N-740 (made by DIC Corporation), EPN179, EPN180 (above, made by Huntsman Advanced Materials Co., Ltd.) Etc.
- trisphenol methane epoxy resin examples include, for example, Tactix (registered trademark; the same as the following) 742 (Huntsman Advanced Materials Co., Ltd.), EPPN (registered trademark. The same as the following) 501H, EPPN501HY, EPPN502H, EPPN503H ( As mentioned above, Nippon Kayaku Co., Ltd. product, jER1032H60 (made by Mitsubishi Chemical Corporation), etc. are mentioned.
- examples of commercially available products of naphthalene type epoxy resin include HP-4032, HP-4700 (all manufactured by DIC Corporation), NC-7300 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
- Examples of commercially available products of dicyclopentadiene type epoxy resin include XD-100 (manufactured by Nippon Kayaku Co., Ltd.), HP 7200 (manufactured by DIC Corporation), and the like.
- Examples of commercially available products of anthracene type epoxy resins include YL7172YX-8800 (manufactured by Mitsubishi Chemical Corporation).
- glycidyl amine type epoxy resin Specific examples of the glycidyl amine type epoxy resin include tetraglycidyldiaminodiphenylmethanes, glycidyl compounds of aminophenol, glycidyl compounds of aminocresol, glycidyl anilines, glycidyl compounds of xylene diamine and the like.
- glycidyl compounds of aminophenol and glycidyl compounds of aminocresol include, for example, jER630 (Mitsubishi Chemical Co., Ltd.), Araldite MY0500, Araldite MY0510, Araldite MY0600 (all manufactured by Huntsman Advanced Materials), Sumiepoxy ELM120, Sumi epoxy ELM 100 (above, manufactured by Sumitomo Chemical Co., Ltd.) and the like can be mentioned.
- Examples of commercially available products of glycidyl anilines include GAN (registered trademark, the same as the following), GOT (registered trademark, the same as the following) (Nippon Kayaku Co., Ltd.), Bakelite EPR 493 (Bakelite AG), etc. .
- Examples of glycidyl compounds of xylene diamine include TETRAD (registered trademark, hereinafter the same)-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and the like.
- glycidyl ester type epoxy resin Specific examples of the glycidyl ester type epoxy resin include phthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, dimer acid diglycidyl ester, and isomer of these species.
- Epomic registered trademark. The same below.
- R508 made by Mitsui Chemicals, Inc.
- Denacol registered trademark. The same below
- EX-721 manufactured by Nagase ChemteX Co., Ltd.
- Examples of commercially available products of hexahydrophthalic acid diglycidyl ester include Epomic R 540 (manufactured by Mitsui Chemicals, Inc.), AK-601 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
- dimer acid diglycidyl ester examples include jER 871 (manufactured by Mitsubishi Chemical Corporation), Epototh YD-171 (manufactured by Nippon Steel & Sumitomo Metal Co., Ltd.), and the like.
- alicyclic epoxy resin examples include compounds having a 1,2-epoxycyclohexane ring as a partial structure.
- Celoxide registered trademark. The same shall apply hereinafter
- 2021 P Celoxide 2081
- Celoxide 3000 all manufactured by Daicel Co., Ltd.
- CY 179 Hauntsman Advanced
- epoxy resin having a heterocyclic structure Specific examples of the epoxy resin having a heterocyclic structure include a compound having an oxazolidone ring as a partial structure, a compound having a xanthene skeleton as a partial structure, and the like.
- AER registered trademark.
- AER 4151 LSA 4311, LSA 4313, LSA 7001 (above, Asahi Kasei E-Materials Co., Ltd.), Epiclon TSR-400 (Made by DIC Corporation) etc.
- EXA-7335 manufactured by DIC Corporation.
- epoxy resin containing a structure represented by formula (1) As an epoxy resin containing the structure represented by following formula (1), the reaction product of an epoxy resin and the amine compound which has an at least 1 sulfur atom in a molecule
- Examples of the epoxy resin preferably used include bisphenol-type epoxy resins such as bisphenol A-type epoxy resin and bisphenol F-type epoxy resin, and among them, bisphenol A-type epoxy resin is preferable.
- an epoxy resin containing a structure represented by the above formula (1) an epoxy resin and an amine compound having at least one sulfur atom in the molecule, specifically by the above formula (1)
- the reaction is carried out by mixing an amine compound having a structure in a weight ratio of 100: 3 to 100: 30, preferably 100: 5 to 100: 20, heating at 130 to 200 ° C., preferably 140 to 170 ° C.
- unreacted epoxy resin and the above-mentioned amine compound may remain in the reaction product, but it is not particularly necessary to remove these residues.
- the viscosity of the thermosetting resin composition can be easily adjusted. preferable. That is, by adjusting the reaction conditions of the epoxy resin and the amine compound having at least one sulfur atom in the molecule, for example, by setting the reaction conditions at high temperature for a long time, the viscosity of the obtained reaction product can be increased. By setting the conditions to a low temperature for a short time, the viscosity of the obtained reaction product can be controlled low. Therefore, the viscosity of a thermosetting resin composition can be adjusted by mix
- an epoxy resin containing the structure represented by the above-mentioned formula (1) for the thermosetting resin composition it is easy to obtain quick curing suitable for high cycle press molding, and the thermosetting resin composition Cured products are easy to obtain high mechanical properties.
- the epoxy resin in the thermosetting resin composition of the present invention comprises an epoxy resin having a structure represented by the formula (1) and a polyfunctional epoxy resin having three or more epoxy groups in the molecule.
- numerator the polyfunctional epoxy resin which does not contain the structure represented by said Formula (1) and has three or more epoxy groups in a molecule
- polyfunctional epoxy resin which has three or more epoxy groups in a molecule
- phenol novolak type epoxy resin cresol novolac type epoxy resin, trisphenol methane type epoxy resin, tetraglycidyl diaminodiphenylmethanes, glycidyl compound of aminophenol, And glycidyl compounds of aminocresol and the like.
- phenol novolac epoxy resins, trisphenolmethane epoxy resins, and tetraglycidyl diaminodiphenylmethane are preferable in that they can exhibit high heat resistance and high mechanical properties.
- a substance having a different number of epoxy groups in the molecule such as a phenol novolac epoxy resin
- it is a polyfunctional epoxy resin having three or more epoxy groups in the molecule. The content of resin was calculated.
- 30-70 mass parts is preferable with respect to 100 mass parts of epoxy resins in a thermosetting resin composition, as for content of the epoxy resin containing the structure represented by said Formula (1), 40-65 mass parts is more preferable. . If content of the epoxy resin containing the structure represented by said Formula (1) is more than the said lower limit, it is easy to obtain rapid curing property and high mechanical property. If content of the epoxy resin containing the structure represented by said Formula (1) is below the said upper limit, resin hardened
- the content of the polyfunctional epoxy resin having three or more epoxy groups in the molecule is preferably 20 to 40 parts by mass, more preferably 20 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin in the thermosetting resin composition. preferable. If the content of the polyfunctional epoxy resin having three or more epoxy groups in the molecule is not less than the above lower limit value, it is easy to obtain high heat resistance. If the content of the polyfunctional epoxy resin having three or more epoxy groups in the molecule is equal to or less than the upper limit value, high mechanical properties are easily obtained.
- the viscosity of the thermosetting resin composition can be made in an optimal range by using a liquid epoxy resin and a solid epoxy resin at room temperature and further combining a thermoplastic resin as necessary. It can be adjusted.
- the content of the epoxy resin which is liquid at room temperature in 100 parts by mass of the epoxy resin is preferably 10 to 90 parts by mass, and more preferably 60 to 90 parts by mass.
- the viscosity of the thermosetting resin composition can be made in an appropriate range.
- epoxy resins which are liquid at room temperature are, for example, jER 825, 826, 827, 828, 834 (all manufactured by Mitsubishi Chemical Corporation), Epiclon 850 (manufactured by DIC Corporation), Epototh YD-128 (Nippon Iron Corp.) Bisphenol A type epoxy resin such as Sumikin Chemical Co., Ltd., DER-331, DER-332 (Dow Chemical Co., Ltd.), ARALDITE (registered trademark, the same applies hereinafter) LY 556 (Huntsman Advanced Materials Co., Ltd.); jER 806, 807, 1750 (above, Mitsubishi Chemical Corporation), Epiclon 830 (DIC Corporation), Epotote YD-170, Epototh YD-175 (above, Nippon Steel & Sumikin Chemical Co., Ltd.) and other bisphenol F Type epoxy resin; Phenolic novolac epoxy resins such as jER152 (manufactured by Mitsubishi Chemical Corporation), Epiclon N-7
- a bisphenol A epoxy resin and a phenol novolac epoxy resin are preferable from the viewpoint of being excellent in the balance between the toughness and the heat resistance of the cured product.
- the content of the epoxy resin solid at room temperature in 100 parts by mass of the epoxy resin is preferably 10 to 90 parts by mass, and more preferably 10 to 30 parts by mass.
- epoxy resin solid at room temperature examples include, for example, jER154, 157S70 (above, Mitsubishi Chemical Co., Ltd.), Epiclon N-770, Epiclon N-740, Epiclon N-775 (above, DIC Co., Ltd.) Etc.) phenol novolac type epoxy resin; Epiclon N-660, Epiclon N-665, Epiclon N-670, Epiclon N-673, Epiclon N-695 (all manufactured by DIC Corporation), EOCN (registered trademark, hereinafter the same)-1020, EOCN-102S, Cresol novolac epoxy resin such as EOCN-104S (all manufactured by Nippon Kayaku Co., Ltd.); Bisphenol A epoxy resin such as jER1001, 1002, 1003 (all manufactured by Mitsubishi Chemical Corporation); Bisphenol F-type epoxy resin such as jER4004P, 4005P (all manufactured by Mitsubishi Chemical Corporation); Tris phenol methane type epoxy resin such as jER1032H60 (made by Mitsubishi Chemical Corporation); Bi
- an epoxy resin containing a structure represented by the above-mentioned formula (1) in a molecule may be used as a solid epoxy resin at room temperature.
- an epoxy resin containing a structure represented by the formula (1) in the molecule as an epoxy resin solid at room temperature, the curing time of the thermosetting resin composition can be easily shortened, and a thermosetting resin can be further easily obtained.
- the cured product of the composition is easy to obtain high mechanical properties.
- epoxy resins which are solid at room temperature may be used alone or in combination of two or more.
- the molecular weight of the epoxy resin in the thermosetting resin composition of the present invention is preferably 200 to 3,000, and more preferably 300 to 2,000. If the molecular weight of the epoxy resin is within the above range, the thermosetting resin composition can be easily adjusted to a desired viscosity.
- Molecular weight is the weight average molecular weight of polystyrene conversion by gel permeation chromatography.
- Molecular weight fractionation conditions Under the following conditions, each component of the epoxy resin is separated to calculate the molecular weight of the epoxy resin. The weight average molecular weight of each fraction collected is regarded as the molecular weight of the fraction, and the mass ratio of the fraction is calculated from the ratio of the peak area to the total peak area.
- HLC-8020 (component system) (made by Tosoh Corporation) Pump: DP-8020 (2 computer controlled dual pumps) Online Degasser: SD-8022 Auto sampler: AS-8020 RI detector: RI-8020 UV detector: UV-8020 Fraction collector: FC-8020 Column: TSK-GEL G3000 (21.5 mm ID x 60 cmL) x 2 + guard column flow rate: 4.0 ml / min (2.0 ml / min x 2) Mobile phase: Chloroform column temperature: Room temperature injection volume: 1.0 ml Concentration: 6% by mass
- the epoxy equivalent of the epoxy resin in the thermosetting resin composition of the present invention is preferably 120 to 300 g / eq, more preferably 150 to 280 g / eq. If the epoxy equivalent of an epoxy resin is more than the said lower limit, resin will not become too brittle and it will be easy to obtain high mechanical property. If the epoxy equivalent of an epoxy resin is below the said upper limit, heat resistance does not fall easily.
- Epoxy equivalent means the molecular weight of the epoxy resin per epoxy group.
- the content of the epoxy resin in 100 parts by mass of the thermosetting resin composition of the present invention is preferably 60 to 95 parts by mass, more preferably 65 to 93 parts by mass, and still more preferably 70 to 90 parts by mass.
- the content of the epoxy resin is equal to or more than the lower limit value, mechanical properties can be easily kept high. If the content of the epoxy resin is equal to or less than the upper limit value, the heat resistance at the time of curing hardly decreases.
- Epoxy resin curing agent The epoxy resin curing agent in the thermosetting resin composition of the present invention is dicyandiamide or a derivative thereof. Dicyandiamide and its derivatives have high melting points, and their compatibility with epoxy resins is suppressed at low temperatures. Moreover, while an outstanding pot life is obtained because an epoxy resin composition contains dicyandiamide or its derivative (s), the dynamic characteristic of resin cured material is easy to be improved.
- Examples of derivatives of dicyandiamide include those obtained by combining dicyandiamide with various compounds such as an epoxy resin, a vinyl compound, an acrylic compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.
- an epoxy resin such as an epoxy resin, a vinyl compound, an acrylic compound, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.
- an epoxy resin curing agent in the thermosetting resin composition of the present invention one of these may be used alone, or two or more may be used in combination. Also, it may be used in combination with dicyandiamide.
- dicyandiamide is preferable from the viewpoint of reactivity.
- a commercial item may be used as dicyandiamide or its derivative.
- Examples of commercially available products of dicyandiamide include, but are not limited to, DICY7, DICY15 (above, manufactured by Mitsubishi Chemical Co., Ltd.), Dicyanex 1400F (above, manufactured by Air Products), and the like.
- the content of dicyandiamide or a derivative thereof in 100 parts by mass of the thermosetting resin composition of the present invention is preferably 1 to 9 parts by mass, more preferably 3 to 8 parts by mass, and still more preferably 3.5 to 7 parts by mass .
- the epoxy resin contained in the epoxy resin composition can be sufficiently cured. If the content of dicyandiamide or a derivative thereof is equal to or less than the upper limit, storage stability is easily ensured, and the toughness of the cured resin is easily increased.
- the imidazole compound in the thermosetting resin composition of the present invention is a compound having an imidazole ring in the molecule, and a compound having a substituent on the imidazole ring (hereinafter also referred to as “imidazole derivative”), epoxy group of epoxy resin
- a compound having a structure in which an imidazole or an imidazole derivative is ring-opened and added hereinafter, also referred to as “imidazole adduct”
- a compound in which an imidazole or an imidazole derivative is clathrated with another molecule hereinafter, also referred to as “inclusion imidazole”
- a microencapsulated imidazole or imidazole derivative hereinafter also referred to as "microcapsule-type imidazole
- an imidazole or imidazole derivative hereinafter also referred to as "imidazole adduct" coordinated with a stabilizer and the like.
- an imidazole compound having a curing start temperature of 100 ° C. or higher is preferably used as the imidazole compound in the thermosetting resin composition of the present invention.
- An imidazole compound having a curing start temperature of 100 ° C. or higher has low reactivity at relatively low temperatures such as room temperature, and an epoxy resin composition containing an imidazole compound having a cure start temperature of 100 ° C. or higher has thermal stability high. Therefore, the epoxy resin composition containing the imidazole compound whose hardening start temperature is 100 degreeC or more, and the prepreg containing this have high storage stability.
- the molding processing temperature of the epoxy resin composition it shows high curability and cure acceleration.
- the curing initiation temperature of the imidazole compound in the thermosetting resin composition of the present invention is more preferably 110 ° C. or more.
- the curing initiation temperature is a value measured by the following method. ⁇ Curing start temperature of imidazole compound> A sample resin composition prepared by adding 10 parts by mass of an imidazole compound to 100 parts by mass of bisphenol A epoxy resin having an epoxy equivalent of 180 to 220 and mixing them, a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min. The heating value is measured according to the above, and the temperature of the intersection point of the tangent at the inflection point of the obtained DSC curve and the baseline.
- DSC differential scanning calorimeter
- an imidazole compound whose hardening start temperature is 100 degreeC or more
- an imidazole derivative, an imidazole adduct, a clathrate imidazole, a microcapsule type imidazole, an imidazole adduct, etc. are mentioned.
- One of these imidazole compounds may be used alone, or two or more thereof may be used in combination.
- the imidazole derivative having a curing start temperature of 100 ° C. or more for example, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 1-cyanoethyl-2-phenylimidazo And lithium trimellitate, 2-phenyl-4,5-dihydroxymethylimidazole, and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
- imidazole derivatives before adduct treatment, inclusion treatment with different molecules, and microencapsulation treatment include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1- Cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl 2-undecylimidazolium trimellitate, 1-cyanoethyl
- Examples of the imidazole adduct having a curing start temperature of 100 ° C. or higher include an imidazole or imidazole derivative in which a stabilizer is coordinated.
- Preferred examples of the imidazole adduct include those in which an imidazole or an imidazole derivative is coordinated to a boric acid compound, isocyanuric acid, a metal atom or the like to control the reactivity of an imidazole ring and an epoxy group.
- an isocyanuric acid adduct of imidazole or an imidazole derivative is preferable because it is easy to ensure the stability in the epoxy resin and it is difficult to lower the heat resistance of a cured product with the epoxy resin.
- Specific examples of the imidazole derivative prior to addition of isocyanuric acid include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2- Phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole,
- imidazole adducts having a curing start temperature of 100 ° C. or higher such as 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-
- s-Triazine-isocyanuric acid adduct, 2-phenylimidazole-isocyanuric acid adduct, 2-methylimidazole-isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole-isocyanuric acid adduct, 2-phenyl- 4-Methyl-5-hydroxymethylimidazole isocyanuric acid adduct is preferred.
- examples of the imidazole adduct having a curing initiation temperature of 100 ° C. or higher include isocyanuric acid adducts of imidazole derivatives having a triazine skeleton (triazine ring) in the molecule.
- Examples of commercially available 2,4-diamino-6- (2′-methylimidazolyl- (1 ′))-ethyl-s-triazine / isocyanuric acid adducts include, for example, 2MA-OK (manufactured by Shikoku Kasei Kogyo Co., Ltd.) However, the present invention is not limited thereto.
- imidazole adducts having a curing start temperature of 100 ° C. or more are preferable from the viewpoint of easily securing stability and curability.
- the imidazole compound in the thermosetting resin composition of the present invention is thermally compounded into a thermosetting resin composition by combining it with dicyandiamide or a derivative thereof and a urea derivative having two or more dimethylureide groups in the molecule. It is easy to cure the curable resin composition in a short time. Moreover, when the thermosetting resin composition of this invention contains an imidazole compound, it is easy to improve the heat resistance of hardened
- the content of the imidazole compound in 100 parts by mass of the thermosetting resin composition of the present invention is preferably 1 to 8 parts by mass, more preferably 1 to 7 parts by mass, still more preferably 1 to 4 parts by mass, 1.5 -3 parts by weight are particularly preferred. If content of an imidazole compound is more than the said lower limit, the curability of a thermosetting resin composition will be easy to improve, and the hardened
- the imidazole compound is a crystalline solid at room temperature (25 ° C.), and the solubility in epoxy resin is low at 100 ° C. or less. Therefore, it is a powder having a volume average particle diameter of preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less as the imidazole compound from the viewpoint of well dispersing in the thermosetting resin composition and promoting the curing reaction. Is preferred.
- the volume average particle size can be measured with a particle size analyzer (manufactured by Nikkiso Co., Ltd., product name: AOETRAC SPR Model: 7340), and is taken as the value of D50 of the measured particle size distribution.
- the epoxy resin curing accelerator in the thermosetting resin composition of the present invention contains a urea derivative having two or more dimethylureide groups in the molecule.
- a urea derivative having two or more dimethylureide groups in the molecule it has two or more dimethylureide groups in the molecule, and is heated at high temperature to form an isocyanate group and dimethylamine, and these are epoxy resins It is not particularly limited as long as it activates an epoxy group, dicyandiamide or a derivative thereof.
- a decrease in heat resistance occurs due to a decrease in crosslink density in the reaction with the epoxy resin.
- urea derivatives include aromatic dimethylurea in which a dimethylureido group is bonded to an aromatic ring, aliphatic dimethylurea in which a dimethylureido group is bonded to an aliphatic compound, and the like.
- aromatic dimethyl urea is preferable in that the curing speed is increased.
- aromatic dimethylurea having two or more dimethylureido groups in the molecule examples include methylenebis (phenyldimethylurea) and tolylene bis (dimethylurea).
- methylenebis (phenyldimethylurea) and tolylene bis (dimethylurea) examples include 4,4'-methylenebis (phenyldimethylurea) (MBPDMU), 2,4-bis (3,3-dimethylureido) toluene (TBDMU), 2,4-tolylene bis (N'-2,4 , 6-tribromophenylurea) and the like.
- TBDMU is preferable because it has high curing promoting ability and easily imparts heat resistance to a resin cured product.
- the aromatic dimethyl urea having two or more dimethyl ureido groups in these molecules may be used alone or in combination of two or more.
- Examples of aliphatic dimethylureas having two or more dimethylureido groups in the molecule include dimethylurea obtained from isophorone diisocyanate and dimethylamine, dimethylurea obtained from m-xylylene diisocyanate and dimethylamine, and hexamethylene diisocyanate. Dimethylurea obtained from dimethylamine and the like can be mentioned.
- a commercial item may be used as a urea derivative which has two or more dimethyl ureido groups in a molecule.
- Commercial products of MBPDMU include, for example, Technicure MDU-11 (above, manufactured by A & C Catalysts); Omicure (registered trademark; hereinafter the same.) (Omicure) 52 (above, manufactured by PI TAI Japan Co., Ltd.) Examples include, but are not limited to.
- Examples of commercially available products of TBDMU include, but are not limited to, Omicure (Omicure) 24 (above, manufactured by PITI Japan Japan Co., Ltd.) and the like.
- the content of the urea derivative having two or more dimethylureide groups in the molecule in 100 parts by mass of the thermosetting resin composition of the present invention is preferably 1 to 8 parts by mass, more preferably 1 to 5 parts by mass, More preferably, it is 1.5 to 4 parts by mass. If the content of the urea derivative having two or more dimethylureide groups in the molecule is equal to or more than the above lower limit value, the curing accelerating action of the epoxy resin contained in the epoxy resin composition is easily obtained sufficiently. If the content of the urea derivative having two or more dimethylureide groups in the molecule is equal to or less than the above upper limit, a resin cured product having excellent storage stability, heat resistance, and mechanical properties is easily obtained.
- urea derivatives having two or more dimethylureide groups in the molecule are crystalline solids at room temperature (25 ° C.) and have low solubility in epoxy resin at 100 ° C. or less. Therefore, the urea derivative having two or more dimethylureide groups in the molecule is preferably 100 ⁇ m or less, more preferably 20 ⁇ m, from the viewpoint of well dispersing in the thermosetting resin composition and promoting the curing reaction. It is preferable that it is a powder which has the following volume average particle diameters. The volume average particle size can be measured in the same manner as the volume average particle size of the imidazole compound.
- thermosetting resin composition of the present invention does not fall under any of dicyandiamide or a derivative thereof, an imidazole compound, and a urea derivative having two or more dimethylureide groups in the molecule, as long as the purpose of the present invention is not impaired. It may contain ingredients.
- thermosetting resin composition of the present invention may contain a thermoplastic resin in order to adjust the viscosity to the optimum range.
- a thermoplastic resin polyvinyl acetal resin, polyvinyl alcohol resin, phenoxy resin, polysulfone, polyether sulfone which has high solubility to an epoxy resin is preferable.
- thermoplastic resin for example, Denka butyral (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a polyvinyl acetal resin, and Denkapovar (registered trademark. Hereinafter the same.) (Manufactured by Denki Kagaku Kogyo Co., Ltd.) as a polyvinyl alcohol resin. , Vinirek (registered trademark; the same as the above) (Chisso Corporation), phenoxy resin YP-50 (Nippon Steel Sumikin Chemical Co., Ltd.), YP-50s (Nippon Steel Sumikin Chemical Co., Ltd.), YP-70 (Nippon Steel & Sumikin Chemical Co., Ltd.
- the content of the thermoplastic resin in the thermosetting resin composition of the present invention is preferably 1 to 20 parts by mass, and more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin in the thermosetting resin composition.
- the content of the thermoplastic resin is equal to or more than the above lower limit value, the effect of reducing the tack at room temperature and suppressing the resin flow at the time of curing is easily exhibited.
- the content of the thermoplastic resin is equal to or less than the above upper limit value, mechanical properties of the cured product are hardly impaired.
- thermosetting resin composition of this invention may contain various additives, resin, a filler, etc. in the range which does not impair the meaning of this invention.
- thermosetting resin composition of the present invention the curing completion time measured with a curastometer is preferably 6 minutes or less at 140 ° C., and more preferably 5 minutes or less. If curing is completed within the above-mentioned time, it can be said that the resin composition has sufficient rapid curability as a resin composition used for high cycle press molding.
- the above characteristics can be achieved by using an imidazole compound and a urea derivative having two or more dimethylureide groups in the molecule in combination.
- the epoxy resin containing the structure represented by the following formula (1) the rapid curing property can be further improved.
- the curastometer gives a sine wave vibration of a constant amplitude which does not destroy the resin composition at a constant temperature to the resin composition, continuously measures the torque transmitted from the resin composition to the upper die, and the curing reaction is in progress.
- the change in visco-elastic stress is recorded as a torque amplitude / time curve (hardening curve).
- Tmax maximum torque value at which the torque value does not change is obtained from the curing curve
- T90 torque value of 90% of the maximum torque value
- thermosetting resin composition of the present invention has a viscosity ratio V1 / V0 of 1. when the viscosity after holding for 5 minutes at 60 ° C. is V0 and the viscosity after holding for 5 hours at 60 ° C. is V1. It is preferably 0 to 4.5, more preferably 1.0 to 2.5, and still more preferably 1.0 to 2.0. When the ratio of the viscosity of the thermosetting resin composition of the present invention is in the above range, the viscosity of the thermosetting resin composition of the present invention is increased during preparation of the resin or during manufacture of the prepreg.
- the tack of the prepreg is lost and lamination can not be performed, or voids can not be sufficiently impregnated in the prepreg, and voids remain inside the fiber-reinforced composite material, The smoothness of the surface is lost and the appearance is deteriorated.
- the above properties can be achieved by adjusting the amount of curing agent in the epoxy resin.
- the amount of the curing agent is reduced and the viscosity ratio V1 / V0 is in the above range, loss of the amount of the curing agent tends to cause loss of rapid curing. That is, by changing the amount of the curing agent, it may be difficult to maintain quick curing and to make the viscosity ratio V1 / V0 within the above range.
- the imidazole compound is selected from the group consisting of an imidazole derivative, an imidazole adduct, a clathrate imidazole, a microcapsule imidazole, and an imidazole adduct from the viewpoint of improving the storage stability and quick curing property of the thermosetting resin composition 1 It is preferred to include a species. Among them, imidazole adducts are particularly preferable from the viewpoint of improving storage stability.
- the viscosity at 30 ° C. of the thermosetting resin composition of the present invention is preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 5 Pa ⁇ s, and 5.0 ⁇ 10 2 to 9.8 ⁇ 10 4 Pa ⁇ s. s is more preferable, and 1.0 ⁇ 10 3 to 9.7 ⁇ 10 4 Pa ⁇ s is more preferable. If the viscosity of the thermosetting resin composition is equal to or higher than the lower limit value, the handleability of the resin film tends to be excellent, and the operations such as preparation, lamination, and molding of the resin film become easy.
- thermosetting resin composition is equal to or less than the upper limit value, for example, the thermosetting resin composition is easily impregnated into the reinforcing fiber substrate at the time of resin film production including the reinforcing fiber substrate described later. There is no need to heat, and the drapability of the resin film is less likely to be impaired.
- thermosetting resin composition can be brought into the above range by melt-mixing a solid thermosetting resin and a liquid thermosetting resin.
- the thermosetting resin composition of the present invention preferably has a minimum viscosity of 100 to 130 ° C. in temperature-rising viscosity measurement in which the initial temperature is 30 ° C. and the temperature is raised at 2.0 ° C./min.
- the minimum viscosity at that time is preferably 0.1 Pa ⁇ s to 50 Pa ⁇ s, and more preferably 0.5 Pa ⁇ s to 10 Pa ⁇ s. If the temperature at which the viscosity is the lowest is within the above range, the flow amount of the thermosetting resin composition at the time of molding can be easily suppressed to an appropriate range, and a molded article having a good appearance can be easily obtained.
- the minimum viscosity in that case is in the said range, it will be easy to obtain a molded object with a good appearance.
- the minimum viscosity is above the lower limit, excessive flow is easily suppressed, and appearance defects such as irregularities are less likely to occur on the surface of the molded article, and if below the above upper limit, every corner of the mold during molding A thermosetting resin composition is common, and it is easy to obtain a molded article with a good appearance.
- the temperature at which the viscosity is the lowest can be in the above range by selecting the type of curing agent. Moreover, the minimum viscosity in that case can be made into the said range by melt-mixing solid thermosetting resin, liquid thermosetting resin, a thermoplastic resin, etc.
- thermosetting resin composition of the present invention can be produced by a conventionally known method. For example, it is preferable to manufacture using a glass flask, a kneader, a planetary mixer, a general stirring heating kettle, a stirring pressure heating kettle, etc.
- thermosetting resin composition of this invention is manufactured by the manufacturing method which has the following processes, for example.
- Step (1) A step of preparing an epoxy resin and an additive such as a thermoplastic resin in a dissolution vessel and heating and mixing at 70 to 150 ° C. for 1 to 6 hours to obtain an epoxy resin main agent.
- Step (2) After the epoxy resin base material is cooled to 50 to 70 ° C., an epoxy resin curing agent, an imidazole compound, and an epoxy resin curing accelerator are added and mixed at 50 to 70 ° C. for 0.5 to 2 hours. To obtain an epoxy resin composition.
- the prepreg of the present invention comprises the thermosetting resin composition of the present invention and a reinforcing fiber base. Specifically, it is a sheet-like prepreg in which a reinforcing fiber substrate is impregnated with the thermosetting resin composition of the present invention.
- the prepreg is used as a single layer or a laminated body in which a plurality of sheets are laminated as needed. For example, as shown in FIG. 1, it is used as a prepreg laminate 1 in which six prepregs 10 are laminated.
- a reinforcement fiber which comprises a reinforcement fiber base material For example, an inorganic fiber, an organic fiber, a metal fiber, or the reinforcement fiber of the hybrid structure which combined these, etc. can be used.
- inorganic fibers include carbon fibers, graphite fibers, silicon carbide fibers, alumina fibers, tungsten carbide fibers, boron fibers, glass fibers and the like.
- organic fibers include aramid fibers, high density polyethylene fibers, other common nylon fibers, polyester fibers and the like.
- metal fibers include fibers of stainless steel, iron and the like, and metal-coated carbon fibers may also be used. Among these, carbon fibers are preferable in consideration of mechanical properties such as strength of the fiber-reinforced composite material.
- the reinforcing fibers of the reinforcing fiber base may be long fibers or short fibers. Long fibers are preferred in terms of excellent rigidity.
- a form of the reinforcing fiber base a form in which many long fibers are aligned in one direction to form a UD sheet (one-direction sheet), a form in which long fibers are woven to form a cross material (textile), a non-woven fabric consisting of short fibers And the like.
- Examples of the weave of the cross material include plain weave, twill weave, satin weave, triaxial weave and the like.
- Fiber basis weight of the reinforcing fiber base material is preferably 50 ⁇ 800g / m 2, more preferably 75 ⁇ 300g / m 2. If the fiber weight of the reinforcing fiber base is not less than the above lower limit value, it is possible to reduce the number of laminated sheets required to obtain a molded product having a desired thickness. If the fiber basis weight of the reinforcing fiber base is equal to or less than the above upper limit, it is easy to obtain a prepreg base in a good impregnated state.
- the lamination configuration of the prepreg base material is not particularly limited.
- stacked each UD prepreg base material so that the fiber axis of the reinforced fiber of the UD prepreg base material which adjoins up and down may be orthogonal may be mentioned.
- the prepreg base material only the same type of prepreg base material may be laminated, or different types of prepreg base materials may be laminated.
- the number of laminated layers of the prepreg base is not particularly limited, and can be appropriately determined according to the required properties of the fiber-reinforced composite material.
- the fiber reinforced composite material of the present invention is a cured product of the prepreg of the present invention.
- the fiber-reinforced composite material is obtained by heat-pressing a prepreg.
- thermosetting resin composition of the present invention is excellent in rapid curability, resin outflow from the mold at the time of molding can be suppressed. Therefore, the thermosetting resin composition of the present invention is more effective when employing press molding in the molding step, and is particularly effective when employing high cycle press molding.
- the mold 100 includes a lower mold 110 provided with a convex portion 112 on the upper surface side and an upper mold 120 provided with a concave portion 122 on the lower surface side.
- a cavity having a shape complementary to the shape of the target fiber reinforced composite material is formed between the convex portion 112 and the concave portion 122 in the mold 100. It is supposed to be formed.
- the upper mold 120 is brought close to the lower mold 110 and the mold 100 is closed.
- the prepreg laminate 1 is heat and pressure molded.
- the thermosetting resin composition in the prepreg laminate 1 is cured while flowing.
- the mold 100 is opened and the fiber reinforced composite material 2 is taken out to obtain a fiber reinforced composite material as shown in FIG.
- thermo molding conditions known heat and pressure molding conditions can be adopted except that the prepreg of the present invention (prepreg laminate 1) is used.
- the mold temperature at the time of heat and pressure molding is preferably 100 to 180 ° C., and more preferably 120 to 160 ° C. By heating above the lower limit value, rapid curing can be achieved, and the molding cycle can be shortened. By heating below the said upper limit, the resin flow is suppressed at the time of shaping
- the surface pressure at the time of heat and pressure molding is preferably 1 to 15 MPa, and more preferably 4 to 10 MPa.
- the heat and pressure molding time is preferably 1 to 15 minutes, more preferably 2 to 8 minutes, and still more preferably 2 to 5 minutes.
- a resin composition excellent in storage stability and quick curing can be prepared.
- High cycle press molding is possible by molding in a time not exceeding the upper limit value.
- the prepreg according to the present invention is formed one on one or two or more together and shaped to have a desired molded product shape and substantially net shape. It may further have a shaping process of producing a preform. That is, in the method for producing a fiber-reinforced composite material of the present invention, a method of performing, in order, a laminating step of superposing two or more sheets of the prepreg of the present invention, an shaping step, and a forming step may be performed in this order. In this case, a preform having a desired molded article shape and a substantially net shape is heated and pressed in a molding step to produce a fiber reinforced composite material having the desired molded article shape.
- the shaping method of the prepreg laminate may be any method capable of shaping to an intermediate shape based on the shape of the target fiber-reinforced composite material, and one or two or more of the prepregs of the present invention may be superposed. Well-known methods can be adopted except using.
- the fiber-reinforced composite material of the present invention preferably has a glass transition temperature obtained by dynamic viscoelasticity measurement of 135 ° C. or higher, more preferably 150 ° C. or higher. If the glass transition temperature of a fiber reinforced composite material is more than the said lower limit, it can be used for the part which needs high heat resistance.
- the glass transition temperature of the fiber-reinforced composite material of the present invention as measured by dynamic viscoelasticity measurement is, for example, a cured product obtained by placing a prepreg in a mold preheated to 140 ° C., closing the mold and holding for 5 minutes at It is determined by the temperature dependence of the storage rigidity (G ') obtained by the dynamic viscoelasticity measurement of
- thermosetting resin composition [Isothermal viscosity stability: Measurement of viscosity V0 and V1 of thermosetting resin composition]
- the viscosity of the thermosetting resin composition was measured under the following conditions.
- Measurement time 5 hours Stress: 300 Pa
- the viscosity measurement was started by the above measurement method, and the viscosity after 5 minutes was set to V0, and the viscosity after 5 hours was set to V1.
- V0 / V1 is within 1.0 to 2.0. There is no large viscosity change during preparation of the resin composition or during preparation of the prepreg, and a good prepreg can be prepared.
- the curing completion time (time to reach 90% torque of the maximum torque value) of the thermosetting resin composition was determined as follows.
- the change in torque value (N ⁇ m) at a die temperature of 140 ° C. was measured using “Curalastometer 7 Type P” manufactured by JSR Trating Co., Ltd.
- a maximum torque value (Tmax) at which the torque value does not change is obtained from the change curve of the torque value, and a torque value (T90) 90% of the maximum torque value is calculated.
- T90 torque value
- the time required to reach T90 after the start of measurement was determined, and this was taken as the curing completion time (t90).
- the measurement conditions are shown below.
- Device Curastometer (manufactured by JSR Trading Co., Ltd., "curastometer 7 Type P") Effective die bore diameter: ⁇ 160 mm Measurement temperature: 140 ° C
- Epoxy resin Epoxy resins a-1 and a-2 containing a structure represented by the above formula (1) in the molecule
- a-1 reaction product of epoxy resin and 4,4'-diaminodiphenyl sulfone bisphenol A epoxy resin (product name "jER 828", manufactured by Mitsubishi Chemical Corporation) and 4,4'-diaminodiphenyl sulfone (trade name) Reactant obtained by mixing Seikacure S and Wakayama Seika Kogyo Co., Ltd. at a mass ratio of 100: 9 at room temperature and mixing and heating at 150 ° C.
- a resin composition (I) was obtained.
- a dissolved product of a-1 and polyether sulfone was obtained by mixing 71.67 parts by mass of the above a-1 and 23.33 parts by mass of the resin composition (I).
- N775 Phenolic novolac epoxy resin (product name “N775”, epoxy equivalent 189, manufactured by DIC Corporation, ratio of molecules having 3 or more epoxy groups: 90.9%).
- jER 828 Bisphenol A type epoxy resin (product name “jER 828”, epoxy equivalent 189, manufactured by Mitsubishi Chemical Corporation).
- jER1032H60 Trisphenolmethane type epoxy resin (product name "jER1032H60", epoxy equivalent 169, manufactured by Mitsubishi Chemical Corporation, ratio 98.4% of molecules having 3 or more epoxy groups).
- jER 604 bisphenol A type epoxy resin (product name “jER 604”, epoxy equivalent 120, manufactured by Mitsubishi Chemical Corporation, ratio of molecules having three or more epoxy groups: 100%).
- Dicy 15 Dicyandiamide (product name “Dicy 15”, manufactured by Mitsubishi Chemical Corporation, average particle size 8.3 ⁇ m)
- Dicy1400F Dicyandiamide (product name "Dicyanex 1400F", manufactured by Air Products, average particle size 4.5 ⁇ m)
- TBDMU 2,4-bis (3,3-dimethylureido) toluene (product name “Omicure 24", manufactured by PI TAI Japan).
- DCMU 3- (3,4-dichlorophenyl) -1,1-dimethylurea (product name “DCMU 99”, manufactured by Hodogaya Chemical Industry Co., Ltd.).
- Carbon fiber bundle Product name "TRW 40 50L", manufactured by Mitsubishi Chemical Corporation, tensile strength 4.1 GPa, tensile elastic modulus 240 GPa, number of filaments 50,000, basis weight 3.75 g / m.
- the curing start temperature was calculated as follows. Sample resin composition prepared by adding 10 parts by mass of the target imidazole compound to 100 parts by mass of bisphenol A type epoxy resin ("jER 828" manufactured by Mitsubishi Chemical Corporation) having an epoxy equivalent of 189 and curing start temperature The calorific value was measured by a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min, and the temperature of the intersection point of the tangent at the inflection point of the obtained DSC curve and the baseline was taken. The curing start temperature of 2MAOK was 149.1 ° C., and the curing start temperature of 2 MZA was 139.1 ° C.
- DSC differential scanning calorimeter
- thermosetting resin composition (C-1).
- the evaluation results of the obtained thermosetting resin (C-1) are shown in Table 2.
- thermosetting resin composition (C-1) was coated at 60 ° C. on a release paper using a multi-coater (M-500 manufactured by Hirano Techseed Co., Ltd.) to obtain a resin film.
- M-500 manufactured by Hirano Techseed Co., Ltd.
- a carbon fiber bundle is wound with a drum wind on the resin coated surface of a resin film, the carbon fiber bundle is sandwiched by the same film, and a thermosetting resin composition (C-1) is impregnated into the carbon fiber bundle to obtain a unidirectional prepreg. I got The basis weight of the carbon fiber bundle in the prepreg was 244 g / m 2 , and the resin content was 31.0% by mass.
- the obtained prepregs were stacked in 10 sheets in the same fiber direction, and press molding (molding temperature: 140 ° C., molding time: 5 minutes) was performed to obtain a molded plate (fiber-reinforced composite material).
- the evaluation results of the obtained molded plate are shown in Table 2.
- thermosetting resin compositions (C-2) to (C-7) were prepared in the same manner as in Example 1 except that the composition and resin content of each component were changed as shown in Table 2. Using the obtained thermosetting resin compositions (C-2) to (C-7), a resin film was produced in the same manner as in Example 1 to obtain a molded plate. Table 2 shows the evaluation results of the obtained thermosetting resin compositions (C-2) to (C-7) and the molded plates obtained from these thermosetting resin compositions.
- thermosetting resin compositions (X-1) to (X-4) were prepared in the same manner as in Example 1 except that the composition and resin content of each component were changed as shown in Table 2. Using the obtained thermosetting resin compositions (X-1) to (X-4), a resin film was produced in the same manner as in Example 1 to obtain a molded plate. The evaluation results of the resulting thermosetting resin compositions (X-1) to (X-4) and the molded plates obtained from these thermosetting resin compositions are shown in Table 2.
- the fiber-reinforced composite material achieves both high heat resistance and high 90 degree bending strength. It has been shown that the resin composition has both rapid curing capable of high cycle press molding and storage stability necessary for producing a prepreg. In Example 6 and Example 7, it was shown that high cycle press forming can exhibit fast curing.
- thermosetting resin composition (X-1) since dicyandiamide or a derivative thereof was not contained, the stability at 60 ° C. was low, and the resin had rapid curability suitable for high cycle press molding. I did not. Moreover, both the heat resistance and the 90-degree bending strength of the obtained molded plate were low. In Comparative Example 2 in which the thermosetting resin composition (X-2) was used, the imidazole compound was not contained, and therefore, the resin did not have rapid curability suitable for high cycle press molding. Moreover, the obtained molded board had low heat resistance.
- the invention can be applied to a variety of applications and is particularly useful as a material for industrial applications, especially for automobiles.
- Reference Signs List 1 prepreg laminate 2 fiber reinforced composite material 3 flat plate portion 4 side portion 10 prepreg 100 mold 110 lower mold 112 convex 120 upper mold 122 concave
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Epoxy Resins (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
繊維強化複合材料として高い耐熱性と高い曲げ強度を両立させ、ハイサイクルプレス成形が可能な速硬化性、熱安定性、および保存安定性を兼ね備えている熱硬化性樹脂組成物を提供する。本発明の熱硬化性樹脂組成物は、エポキシ樹脂、エポキシ樹脂硬化剤、イミダゾール化合物、およびエポキシ樹脂硬化促進剤を含む熱硬化性樹脂組成物であって、前記エポキシ樹脂硬化剤がジシアンジアミドまたはその誘導体であり、前記エポキシ樹脂硬化促進剤が分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む。
Description
本発明は、熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法に関する。
本願は、2017年11月16日に、日本に出願された特願2017-220688号に基づき優先権を主張し、その内容をここに援用する。
本願は、2017年11月16日に、日本に出願された特願2017-220688号に基づき優先権を主張し、その内容をここに援用する。
強化繊維とマトリクス樹脂組成物とを含有する繊維強化複合材料は、力学物性に優れる等の理由から、自動車等の産業用途等に幅広く用いられおり、近年ではますます適用範囲が拡がってきている。
例えば、強化繊維にマトリクス樹脂組成物が含浸されたシート状のプリプレグが複数積層されたプリプレグ積層体が加熱加圧されて成形された繊維強化複合材料が知られている。
例えば、強化繊維にマトリクス樹脂組成物が含浸されたシート状のプリプレグが複数積層されたプリプレグ積層体が加熱加圧されて成形された繊維強化複合材料が知られている。
マトリクス樹脂組成物としては、含浸性や耐熱性に優れる点から、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等を含有する熱硬化性樹脂組成物が用いられることが多い。
なかでも、耐熱性、成形性に優れ、より機械強度が高い繊維強化複合材料が得られるため、エポキシ樹脂組成物が幅広く使用されている。
なかでも、耐熱性、成形性に優れ、より機械強度が高い繊維強化複合材料が得られるため、エポキシ樹脂組成物が幅広く使用されている。
自動車用途に多用される成形方法としては、ハイサイクルプレス成形が知られている(特許文献1)。
ハイサイクルプレス成形においては、製品の大量生産を可能にするために、高圧下において100~150℃程度で数分から数十分程度の短時間で硬化させる。
ハイサイクルプレス成形に使用される樹脂組成物は、100~150℃程度で数分から数十分程度の短時間で硬化できる速硬化性と、強化繊維基材に樹脂組成物が含浸する間に樹脂の粘度特性が変わらない熱安定性と、貯蔵時の保存安定性が必要とされる。しかしながら、速硬化性と、熱安定性および保存安定性は相反する特性であり、全ての特性を満たすことは困難であった。
また、ハイサイクルプレス成形において、脱型時の変形を防ぐために成形体は成形温度より高い耐熱性を持つほうが好ましい。さらに、成形体の使用用途も広がるため、高耐熱の成形体が求められている。
ハイサイクルプレス成形においては、製品の大量生産を可能にするために、高圧下において100~150℃程度で数分から数十分程度の短時間で硬化させる。
ハイサイクルプレス成形に使用される樹脂組成物は、100~150℃程度で数分から数十分程度の短時間で硬化できる速硬化性と、強化繊維基材に樹脂組成物が含浸する間に樹脂の粘度特性が変わらない熱安定性と、貯蔵時の保存安定性が必要とされる。しかしながら、速硬化性と、熱安定性および保存安定性は相反する特性であり、全ての特性を満たすことは困難であった。
また、ハイサイクルプレス成形において、脱型時の変形を防ぐために成形体は成形温度より高い耐熱性を持つほうが好ましい。さらに、成形体の使用用途も広がるため、高耐熱の成形体が求められている。
一般的にエポキシ樹脂とイミダゾール系化合物の硬化物の耐熱性は高いが、イミダゾール系化合物を含むエポキシ樹脂組成物を用いた場合、得られる繊維強化複合材料の曲げ強度(例えば、90℃曲げ強度)が問題となる。すなわち、イミダゾール系化合物を含むエポキシ樹脂組成物の硬化物は、強化繊維基材との接着性が弱い。そのため、繊維強化複合材料にした際、エポキシ樹脂組成物の硬化物と強化繊維基材との界面で破壊が起こりやすくなる。
これに対して、ジシアンジアミドやその誘導体を硬化剤として使用した場合は、強化繊維基材との接着性が強く、得られる繊維強化複合材料の曲げ試験(例えば、90℃曲げ試験)で高強度を発揮することができる。しかしながら、ジシアンジアミドやその誘導体を硬化剤として使用した場合は、硬化物の耐熱性は高くない。
これに対して、ジシアンジアミドやその誘導体を硬化剤として使用した場合は、強化繊維基材との接着性が強く、得られる繊維強化複合材料の曲げ試験(例えば、90℃曲げ試験)で高強度を発揮することができる。しかしながら、ジシアンジアミドやその誘導体を硬化剤として使用した場合は、硬化物の耐熱性は高くない。
特許文献2には、イミダゾール系化合物およびジシアンジアミドやその誘導体を硬化剤として使用した例が開示されている。
しかしながら、これらの文献で開示されている熱硬化性樹脂組成物の耐熱性は高くなかった。さらに、ハイサイクルプレス成形において、耐熱性と曲げ物性との両立はできていなかった。
本発明は上記問題に鑑みてなされたものであり、繊維強化複合材料として高い耐熱性と高い曲げ強度を両立させ、ハイサイクルプレス成形が可能な速硬化性、熱安定性、および保存安定性を兼ね備えている熱硬化性樹脂組成物、およびそれを用いたプリプレグ、繊維強化複合材料を提供することを目的とする。
本発明は、以下の態様を有する。
[1]エポキシ樹脂、エポキシ樹脂硬化剤、イミダゾール化合物、およびエポキシ樹脂硬化促進剤を含む熱硬化性樹脂組成物であって、
前記エポキシ樹脂硬化剤がジシアンジアミドまたはその誘導体であり、
前記エポキシ樹脂硬化促進剤が分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む、熱硬化性樹脂組成物。
[2]キュラストメーターで測定した硬化完了時間が、140℃において6分以下である、[1]に記載の熱硬化性樹脂組成物。
[3]60℃で5分間保持した後の粘度をV0、60℃で5時間保持した後の粘度をV1としたときに、V1/V0が1.0~4.5である、[1]または[2]に記載の熱硬化性樹脂組成物。
[4]前記イミダゾール化合物が、硬化開始温度が100℃以上のイミダゾール化合物である、[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[硬化開始温度の測定方法]
エポキシ当量が180~220のビスフェノールA型エポキシ樹脂100質量部に、イミダゾール化合物を10質量部加えて混合して調整した試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC)により発熱量を測定し、得られたDSC曲線の変曲点における接線とベースラインとの交点の温度を、そのイミダゾール化合物の硬化開始温度とする。
[5]前記イミダゾール化合物が、イミダゾール誘導体、イミダゾールアダクト、包接イミダゾール、マイクロカプセル型イミダゾール、およびイミダゾール付加物からなる群より選ばれる1種を含む、[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]前記イミダゾール化合物が前記イミダゾール付加物であり、前記イミダゾール付加物が、イミダゾールまたはイミダゾール誘導体のイソシアヌル酸付加物である、[5]に記載の熱硬化性樹脂組成物。
[7]前記分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体が、2,4-ビス(3,3-ジメチルウレイド)トルエンおよび4,4’-メチレンビス(フェニルジメチルウレア)の一方または両方である、[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]100質量部の前記エポキシ樹脂に対して、1~9質量部の前記ジシアンジアミドまたはその誘導体、1~8質量部の前記イミダゾール化合物、および1~8質量部の前記分子内に2つ以上ジメチルウレイド基を持つ尿素誘導体を含有する、[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]前記エポキシ樹脂が、分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂を含有する、[1]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]前記分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂が、フェノールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、およびテトラグリシジルジアミノジフェニルメタンからなる群より選ばれる1種を含む、[9]に記載の熱硬化性樹脂組成物。
[11]前記エポキシ樹脂が、100質量部の前記エポキシ樹脂中、分子内に下記式(1)で表される構造を含むエポキシ樹脂の30~70質量部、および式(1)で表される構造を含まず分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂の20~40質量部を含有する、[1]~[10]のいずれかに記載の熱硬化性樹脂組成物。
前記エポキシ樹脂硬化剤がジシアンジアミドまたはその誘導体であり、
前記エポキシ樹脂硬化促進剤が分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む、熱硬化性樹脂組成物。
[2]キュラストメーターで測定した硬化完了時間が、140℃において6分以下である、[1]に記載の熱硬化性樹脂組成物。
[3]60℃で5分間保持した後の粘度をV0、60℃で5時間保持した後の粘度をV1としたときに、V1/V0が1.0~4.5である、[1]または[2]に記載の熱硬化性樹脂組成物。
[4]前記イミダゾール化合物が、硬化開始温度が100℃以上のイミダゾール化合物である、[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[硬化開始温度の測定方法]
エポキシ当量が180~220のビスフェノールA型エポキシ樹脂100質量部に、イミダゾール化合物を10質量部加えて混合して調整した試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC)により発熱量を測定し、得られたDSC曲線の変曲点における接線とベースラインとの交点の温度を、そのイミダゾール化合物の硬化開始温度とする。
[5]前記イミダゾール化合物が、イミダゾール誘導体、イミダゾールアダクト、包接イミダゾール、マイクロカプセル型イミダゾール、およびイミダゾール付加物からなる群より選ばれる1種を含む、[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]前記イミダゾール化合物が前記イミダゾール付加物であり、前記イミダゾール付加物が、イミダゾールまたはイミダゾール誘導体のイソシアヌル酸付加物である、[5]に記載の熱硬化性樹脂組成物。
[7]前記分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体が、2,4-ビス(3,3-ジメチルウレイド)トルエンおよび4,4’-メチレンビス(フェニルジメチルウレア)の一方または両方である、[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]100質量部の前記エポキシ樹脂に対して、1~9質量部の前記ジシアンジアミドまたはその誘導体、1~8質量部の前記イミダゾール化合物、および1~8質量部の前記分子内に2つ以上ジメチルウレイド基を持つ尿素誘導体を含有する、[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]前記エポキシ樹脂が、分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂を含有する、[1]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]前記分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂が、フェノールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、およびテトラグリシジルジアミノジフェニルメタンからなる群より選ばれる1種を含む、[9]に記載の熱硬化性樹脂組成物。
[11]前記エポキシ樹脂が、100質量部の前記エポキシ樹脂中、分子内に下記式(1)で表される構造を含むエポキシ樹脂の30~70質量部、および式(1)で表される構造を含まず分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂の20~40質量部を含有する、[1]~[10]のいずれかに記載の熱硬化性樹脂組成物。
[12][1]~[11]のいずれかに記載の熱硬化性樹脂組成物と、強化繊維基材とを含んだプリプレグ。
[13][12]に記載のプリプレグの硬化物である繊維強化複合材料。
[14][12]に記載のプリプレグを1枚で、もしくは2枚以上重ね合わせて賦形することにより所望する成形品形状とほぼ正味形状を有するプリフォームを製作し、前記プリフォームを所望する成形品形状に加熱加圧成形することを含む繊維強化複合材料の製造方法。
[15]自動車材料用である[1]~[11]のいずれかに記載の熱硬化性樹脂組成物。
[13][12]に記載のプリプレグの硬化物である繊維強化複合材料。
[14][12]に記載のプリプレグを1枚で、もしくは2枚以上重ね合わせて賦形することにより所望する成形品形状とほぼ正味形状を有するプリフォームを製作し、前記プリフォームを所望する成形品形状に加熱加圧成形することを含む繊維強化複合材料の製造方法。
[15]自動車材料用である[1]~[11]のいずれかに記載の熱硬化性樹脂組成物。
本発明によれば、繊維強化複合材料が高い耐熱性と高い曲げ強度を両立する熱硬化性樹脂組成物および繊維強化複合材料を得ることができる。
さらに、本発明の熱硬化性樹脂組成物は、ハイサイクルプレス成形が可能な速硬化性と、プリプレグに必要な熱安定性および保存安定性を兼ね備える。
さらに、本発明の熱硬化性樹脂組成物は、ハイサイクルプレス成形が可能な速硬化性と、プリプレグに必要な熱安定性および保存安定性を兼ね備える。
以下に本発明の好ましい実施の形態について説明するが、本発明はこれらの形態のみに限定されるものではない。
≪熱硬化性樹脂組成物≫
本発明の熱硬化性樹脂組成物は、エポキシ樹脂、エポキシ樹脂硬化剤、イミダゾール化合物、およびエポキシ樹脂硬化促進剤を含む。
ここで、エポキシ樹脂硬化剤はジシアンジアミドまたはその誘導体である。
また、エポキシ樹脂硬化促進剤は分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む。
≪熱硬化性樹脂組成物≫
本発明の熱硬化性樹脂組成物は、エポキシ樹脂、エポキシ樹脂硬化剤、イミダゾール化合物、およびエポキシ樹脂硬化促進剤を含む。
ここで、エポキシ樹脂硬化剤はジシアンジアミドまたはその誘導体である。
また、エポキシ樹脂硬化促進剤は分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む。
エポキシ樹脂硬化剤としてジシアンジアミドまたはその誘導体を用いることで、熱硬化性樹脂組成物の硬化物の機械物性が向上する。
イミダゾール化合物を用いることで、熱硬化性樹脂組成物の硬化速度を向上させ、得られた硬化物の機械物性が向上する。
エポキシ樹脂硬化促進剤として分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を用いることで、熱硬化性樹脂組成物の低温硬化性および速硬化性が向上する。
イミダゾール化合物を用いることで、熱硬化性樹脂組成物の硬化速度を向上させ、得られた硬化物の機械物性が向上する。
エポキシ樹脂硬化促進剤として分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を用いることで、熱硬化性樹脂組成物の低温硬化性および速硬化性が向上する。
本発明の熱硬化性樹脂組成物は、ジシアンジアミドまたはその誘導体、イミダゾール化合物、および分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を全て含有することで、速硬化性と保存安定性を両立することができる。
[エポキシ樹脂]
本発明で用いられるエポキシ樹脂としては、分子中にエポキシ基を有する化合物が挙げられる。得られる樹脂硬化物の耐熱性や機械物性が高いことから、分子中に2つ以上のエポキシ基を有する化合物が好ましい。
本発明で用いられるエポキシ樹脂としては、分子中にエポキシ基を有する化合物が挙げられる。得られる樹脂硬化物の耐熱性や機械物性が高いことから、分子中に2つ以上のエポキシ基を有する化合物が好ましい。
エポキシ樹脂の例としては、分子内に水酸基を有する化合物とエピクロロヒドリンから得られるグリシジルエーテル型エポキシ樹脂、分子内にアミノ基を有する化合物とエピクロロヒドリンから得られるグリシジルアミン型エポキシ樹脂、分子内にカルボキシル基を有する化合物とエピクロロヒドリンから得られるグリシジルエステル型エポキシ樹脂、分子内に二重結合を有する化合物を酸化することにより得られる脂環式エポキシ樹脂、複素環構造を有するエポキシ樹脂、あるいはこれらから選ばれる2種類以上のタイプの基が分子内に混在するエポキシ樹脂等が挙げられる。
また、これら以外のエポキシ樹脂として、分子内に下記式(1)で表される構造を含むエポキシ樹脂を用いることもできる。
エポキシ樹脂は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(グリシジルエーテル型エポキシ樹脂)
グリシジルエーテル型エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリスフェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂およびアントラセン型エポキシ樹脂等のアリールグリシジルエーテル型エポキシ樹脂;ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、およびこれらの位置異性体やアルキル基やハロゲンでの置換体等が挙げられる。
グリシジルエーテル型エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリスフェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂およびアントラセン型エポキシ樹脂等のアリールグリシジルエーテル型エポキシ樹脂;ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、およびこれらの位置異性体やアルキル基やハロゲンでの置換体等が挙げられる。
ビスフェノールA型エポキシ樹脂の市販品としては、例えばEPON825、jER(登録商標。以下同じ。)826、jER827、jER828(以上、三菱ケミカル株式会社製)、エピクロン(登録商標。以下同じ。)850(DIC株式会社製)、エポトート(登録商標。以下同じ。)YD-128(新日鐵住金化学株式会社製)、DER-331、DER-332(以上、ダウ・ケミカル日本株式会社製)、Bakelite EPR154、Bakelite EPR162、Bakelite EPR172、Bakelite EPR173、Bakelite EPR174(以上、Bakelite AG社製)等が挙げられる。
ビスフェノールF型エポキシ樹脂の市販品としては、例えばjER806、jER807、jER1750(以上、三菱ケミカル株式会社製)、エピクロン830(DIC株式会社製)、エポトートYD-170、エポトートYD-175(以上、新日鐵住金化学株式会社製)、Bakelite EPR169(Bakelite AG社製)、GY281、GY282、GY285(以上、ハンツマン・アドバンスト・マテリアル社製)等が挙げられる。
ビスフェノールS型エポキシ樹脂の市販品としては、例えばエピクロンEXA-1514(DIC株式会社製)等が挙げられる。
レゾルシノール型エポキシ樹脂の市販品としては、例えばデナコール(登録商標。以下同じ。)EX-201(ナガセケムテックス株式会社製)等が挙げられる。
フェノールノボラック型エポキシ樹脂の市販品としては、例えばjER152、jER154(以上、三菱ケミカル株式会社製)、エピクロンN-740(DIC株式会社製)、EPN179、EPN180(以上、ハンツマン・アドバンスト・マテリアル社製)等が挙げられる。
フェノールノボラック型エポキシ樹脂の市販品としては、例えばjER152、jER154(以上、三菱ケミカル株式会社製)、エピクロンN-740(DIC株式会社製)、EPN179、EPN180(以上、ハンツマン・アドバンスト・マテリアル社製)等が挙げられる。
トリスフェノールメタン型エポキシ樹脂の市販品としては、例えばTactix(登録商標。以下同じ。)742(ハンツマン・アドバンスト・マテリアル社製)、EPPN(登録商標。以下同じ。)501H、EPPN501HY、EPPN502H、EPPN503H(以上、日本化薬株式会社製)、jER1032H60(三菱ケミカル株式会社製)等が挙げられる。
ナフタレン型エポキシ樹脂の市販品としては、例えばHP-4032、HP-4700(以上、DIC株式会社製)、NC-7300(日本化薬株式会社製)等が挙げられる。
ナフタレン型エポキシ樹脂の市販品としては、例えばHP-4032、HP-4700(以上、DIC株式会社製)、NC-7300(日本化薬株式会社製)等が挙げられる。
ジシクロペンタジエン型エポキシ樹脂の市販品としては、例えばXD-100(日本化薬株式会社製)、HP7200(DIC株式会社製)等が挙げられる。
アントラセン型エポキシ樹脂の市販品としては、例えばYL7172YX-8800(三菱ケミカル(株)製)等が挙げられる。
アントラセン型エポキシ樹脂の市販品としては、例えばYL7172YX-8800(三菱ケミカル(株)製)等が挙げられる。
(グリシジルアミン型エポキシ樹脂)
グリシジルアミン型エポキシ樹脂の具体例としては、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物、アミノクレゾールのグリシジル化合物、グリシジルアニリン類、キシレンジアミンのグリシジル化合物等が挙げられる。
グリシジルアミン型エポキシ樹脂の具体例としては、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物、アミノクレゾールのグリシジル化合物、グリシジルアニリン類、キシレンジアミンのグリシジル化合物等が挙げられる。
テトラグリシジルジアミノジフェニルメタン類の市販品としては、例えばスミエポキシ(登録商標。以下同じ。)ELM434(住友化学株式会社製)、アラルダイト(登録商標。以下同じ。)MY720、アラルダイトMY721、アラルダイトMY9512、アラルダイトMY9612、アラルダイトMY9634、アラルダイトMY9663(以上、ハンツマン・アドバンスト・マテリアル社製)、jER604(三菱ケミカル株式会社製)、Bakelite EPR494、Bakelite EPR495、Bakelite EPR496、Bakelite EPR497(以上、Bakelite AG社製)等が挙げられる。
アミノフェノールのグリシジル化合物、アミノクレゾールのグリシジル化合物の市販品としては、例えばjER630(三菱ケミカル株式会社製)、アラルダイトMY0500、アラルダイトMY0510、アラルダイトMY0600(以上、ハンツマン・アドバンスト・マテリアル社製)、スミエポキシELM120、スミエポキシELM100(以上、住友化学株式会社製)等が挙げられる。
グリシジルアニリン類の市販品としては、例えばGAN(登録商標。以下同じ。)、GOT(登録商標。以下同じ。)(日本化薬株式会社製)、Bakelite EPR493(Bakelite AG社製)等が挙げられる。
キシレンジアミンのグリシジル化合物としては、例えばTETRAD(登録商標。以下同じ。)-X(三菱瓦斯化学株式会社製)等が挙げられる。
キシレンジアミンのグリシジル化合物としては、例えばTETRAD(登録商標。以下同じ。)-X(三菱瓦斯化学株式会社製)等が挙げられる。
(グリシジルエステル型エポキシ樹脂)
グリシジルエステル型エポキシ樹脂の具体例としては、フタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステルや、これらの種異性体等が挙げられる。
グリシジルエステル型エポキシ樹脂の具体例としては、フタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステルや、これらの種異性体等が挙げられる。
フタル酸ジグリシジルエステルの市販品としては、例えばエポミック(登録商標。以下同じ。)R508(三井化学株式会社製)、デナコール(登録商標。以下同じ。)EX-721(ナガセケムテックス株式会社製)等が挙げられる。
ヘキサヒドロフタル酸ジグリシジルエステルの市販品としては、例えばエポミックR540(三井化学株式会社製)、AK-601(日本化薬株式会社製)等が挙げられる。
ダイマー酸ジグリシジルエステルの市販品としては、例えばjER871(三菱ケミカル株式会社製)、エポトートYD-171(新日鐵住金化学株式会社製)等が挙げられる。
ヘキサヒドロフタル酸ジグリシジルエステルの市販品としては、例えばエポミックR540(三井化学株式会社製)、AK-601(日本化薬株式会社製)等が挙げられる。
ダイマー酸ジグリシジルエステルの市販品としては、例えばjER871(三菱ケミカル株式会社製)、エポトートYD-171(新日鐵住金化学株式会社製)等が挙げられる。
(脂環式エポキシ樹脂)
脂環式エポキシ樹脂の具体例としては、1,2-エポキシシクロヘキサン環を部分構造として有する化合物等が挙げられる。
脂環式エポキシ樹脂の具体例としては、1,2-エポキシシクロヘキサン環を部分構造として有する化合物等が挙げられる。
1,2-エポキシシクロヘキサン環を部分構造として有する化合物の市販品としては、例えばセロキサイド(登録商標。以下同じ。)2021P、セロキサイド2081、セロキサイド3000(以上、株式会社ダイセル製)、CY179(ハンツマン・アドバンスド・マテリアル社製)等が挙げられる。
(複素環構造を有するエポキシ樹脂)
複素環構造を有するエポキシ樹脂の具体例としては、オキサゾリドン環を部分構造として有する化合物、キサンテン骨格を部分構造として有する化合物等が挙げられる。
複素環構造を有するエポキシ樹脂の具体例としては、オキサゾリドン環を部分構造として有する化合物、キサンテン骨格を部分構造として有する化合物等が挙げられる。
オキサゾリドン環を部分構造として有する化合物の市販品としては、例えばAER(登録商標。以下同じ。)4152、AER4151、LSA4311、LSA4313、LSA7001(以上、旭化成イーマテリアルズ株式会社製)や、エピクロンTSR-400(DIC株式会社製)等が挙げられる。
キサンテン骨格を部分構造として有する化合物の市販品としては、例えばEXA-7335(DIC株式会社製)等が挙げられる。
キサンテン骨格を部分構造として有する化合物の市販品としては、例えばEXA-7335(DIC株式会社製)等が挙げられる。
(式(1)で表される構造を含むエポキシ樹脂)
下記式(1)で表される構造を含むエポキシ樹脂としては、例えばエポキシ樹脂と、分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応生成物が挙げられる。
下記式(1)で表される構造を含むエポキシ樹脂としては、例えばエポキシ樹脂と、分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応生成物が挙げられる。
上記式(1)で表される構造を含むエポキシ樹脂としては、例えば、4,4’-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、ビス(4-(4-アミノフェノキシ)フェニル)スルフォン、ビス(4-(3-アミノフェノキシ)フェニル)スルフォン、およびこれらの誘導体等が挙げられる。
このうち、硬化樹脂の耐熱性の観点から、ジアミノジフェニルスルフォンを用いることが好ましく、4,4’-ジアミノジフェニルスルフォンを用いることがより好ましい。
このうち、硬化樹脂の耐熱性の観点から、ジアミノジフェニルスルフォンを用いることが好ましく、4,4’-ジアミノジフェニルスルフォンを用いることがより好ましい。
好ましく用いられるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂が挙げられるが、なかでもビスフェノールA型エポキシ樹脂が好ましい。
前記式(1)で表される構造を含むエポキシ樹脂を得る方法としては、エポキシ樹脂と、分子内に少なくとも一つの硫黄原子を有するアミン化合物、具体的には前記式(1)で表される構造を有するアミン化合物とを、質量比で100:3~100:30、好ましくは100:5~100:20の比率で混合し、130~200℃、好ましくは140~170℃で加熱して反応させる方法が挙げられる。
この方法を用いた場合、未反応のエポキシ樹脂や前記アミン化合物が、反応生成物中に残留することがあるが、これら残留物を取り除く必要は特にない。
この方法を用いた場合、未反応のエポキシ樹脂や前記アミン化合物が、反応生成物中に残留することがあるが、これら残留物を取り除く必要は特にない。
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂として、式(1)で表される構造を含むエポキシ樹脂を用いることで、前記熱硬化性樹脂組成物の粘度を容易に調整することができるため好ましい。
すなわち、エポキシ樹脂と分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応条件を調整する、例えば、反応条件を高温長時間とすることで、得られる反応生成物の粘度を高くでき、反応条件を低温短時間とすることで、得られる反応生成物の粘度を低くコントロールすることができる。したがって、所望の粘度を有する前記反応生成物を含むエポキシ樹脂を、熱硬化性樹脂組成物中に配合することで、熱硬化性樹脂組成物の粘度を調整することができる。また、熱硬化性樹脂組成物に、前記式(1)で表される構造を含むエポキシ樹脂を用いることで、ハイサイクルプレス成形に適した速硬化性を得やすく、熱硬化性樹脂組成物の硬化物は高い機械物性を得やすい。
すなわち、エポキシ樹脂と分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応条件を調整する、例えば、反応条件を高温長時間とすることで、得られる反応生成物の粘度を高くでき、反応条件を低温短時間とすることで、得られる反応生成物の粘度を低くコントロールすることができる。したがって、所望の粘度を有する前記反応生成物を含むエポキシ樹脂を、熱硬化性樹脂組成物中に配合することで、熱硬化性樹脂組成物の粘度を調整することができる。また、熱硬化性樹脂組成物に、前記式(1)で表される構造を含むエポキシ樹脂を用いることで、ハイサイクルプレス成形に適した速硬化性を得やすく、熱硬化性樹脂組成物の硬化物は高い機械物性を得やすい。
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂は、前記式(1)で表される構造を含むエポキシ樹脂と、分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂とを含むことが好ましい。分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂としては、前記式(1)で表される構造を含まず分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂が好ましい。
分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物、アミノクレゾールのグリシジル化合物等が挙げられる。
これらのなかでも高い耐熱性と、高い機械物性を発揮できる点で、フェノールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタンが好ましい。
フェノールノボラック型エポキシ樹脂のように、分子内に有するエポキシ基の個数が異なる物質を含んでいる場合には、GPCで分画することで、分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂の含有量を算出した。
これらのなかでも高い耐熱性と、高い機械物性を発揮できる点で、フェノールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタンが好ましい。
フェノールノボラック型エポキシ樹脂のように、分子内に有するエポキシ基の個数が異なる物質を含んでいる場合には、GPCで分画することで、分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂の含有量を算出した。
前記式(1)で表される構造を含むエポキシ樹脂の含有量は、熱硬化性樹脂組成物におけるエポキシ樹脂100質量部に対し、30~70質量部が好ましく、40~65質量部がより好ましい。
前記式(1)で表される構造を含むエポキシ樹脂の含有量が前記下限値以上であれば、速硬化性と高い機械物性を得やすい。前記式(1)で表される構造を含むエポキシ樹脂の含有量が前記上限値以下であれば、耐熱性の高い樹脂硬化物が得られやすい。
前記式(1)で表される構造を含むエポキシ樹脂の含有量が前記下限値以上であれば、速硬化性と高い機械物性を得やすい。前記式(1)で表される構造を含むエポキシ樹脂の含有量が前記上限値以下であれば、耐熱性の高い樹脂硬化物が得られやすい。
分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂の含有量は、熱硬化性樹脂組成物におけるエポキシ樹脂100質量部に対し、20~40質量部が好ましく、20~30質量部がより好ましい。
分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂の含有量が前記下限値以上であれば、高い耐熱性を得やすい。分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂の含有量が前記上限値以下であれば、高い機械物性が得られやすい。
分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂の含有量が前記下限値以上であれば、高い耐熱性を得やすい。分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂の含有量が前記上限値以下であれば、高い機械物性が得られやすい。
また、後述するように、室温で液体状のエポキシ樹脂と固体状のエポキシ樹脂、さらに必要に応じて熱可塑性樹脂を組み合わせて使用することで、熱硬化性樹脂組成物の粘度を最適な範囲に調整することができる。
エポキシ樹脂100質量部に占める、室温で液体状のエポキシ樹脂の含有量は、10~90質量部であることが好ましく、60~90質量部であることがより好ましい。
エポキシ樹脂100質量部に占める、室温で液体状のエポキシ樹脂の含有量を前記範囲内とすることで、熱硬化性樹脂組成物の粘度を適正範囲とすることができる。
エポキシ樹脂100質量部に占める、室温で液体状のエポキシ樹脂の含有量を前記範囲内とすることで、熱硬化性樹脂組成物の粘度を適正範囲とすることができる。
室温で液体状のエポキシ樹脂の市販品としては、例えばjER825、826、827、828、834(以上、三菱ケミカル(株)製)、エピクロン850(DIC(株)製)、エポトートYD-128(新日鉄住金化学(株)製)、DER-331、DER-332(ダウケミカル社製)、ARALDITE(登録商標。以下同じ。)LY556(ハンツマン・アドバンスト・マテリアル社製)等のビスフェノールA型エポキシ樹脂;
jER806、807、1750(以上、三菱ケミカル(株)製)、エピクロン830(DIC(株)製)、エポトートYD-170、エポトートYD-175(以上、新日鉄住金化学(株)製)等のビスフェノールF型エポキシ樹脂;
jER152(三菱ケミカル(株)製)、エピクロンN-730A(DIC(株)製)、DEN-425(ダウケミカル社製)等のフェノールノボラック型エポキシ樹脂;
jER604、630(以上、三菱ケミカル(株)製)、MY0600、MY0500(以上、ハンツマン・アドバンスト・マテリアル社製)等のアミン型エポキシ樹脂;
セロキサイド2021P、セロキサイド8000((株)ダイセル製)等の脂環式エポキシ樹脂;
等が挙げられる。
これらの室温で液体状のエポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
jER806、807、1750(以上、三菱ケミカル(株)製)、エピクロン830(DIC(株)製)、エポトートYD-170、エポトートYD-175(以上、新日鉄住金化学(株)製)等のビスフェノールF型エポキシ樹脂;
jER152(三菱ケミカル(株)製)、エピクロンN-730A(DIC(株)製)、DEN-425(ダウケミカル社製)等のフェノールノボラック型エポキシ樹脂;
jER604、630(以上、三菱ケミカル(株)製)、MY0600、MY0500(以上、ハンツマン・アドバンスト・マテリアル社製)等のアミン型エポキシ樹脂;
セロキサイド2021P、セロキサイド8000((株)ダイセル製)等の脂環式エポキシ樹脂;
等が挙げられる。
これらの室温で液体状のエポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
室温で液体状のエポキシ樹脂としては、硬化物の靱性と耐熱性のバランスに優れる点から、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂が好ましい。
エポキシ樹脂100質量部に占める、室温で固体状のエポキシ樹脂の含有量は、10~90質量部であることが好ましく、10~30質量部であることがより好ましい。
エポキシ樹脂100質量部に占める、室温で固体状のエポキシ樹脂の含有量を前記範囲内とすることで、熱硬化性樹脂組成物の粘度を適正範囲とすることができる。
エポキシ樹脂100質量部に占める、室温で固体状のエポキシ樹脂の含有量を前記範囲内とすることで、熱硬化性樹脂組成物の粘度を適正範囲とすることができる。
室温で固体状のエポキシ樹脂の市販品としては、例えばjER154、157S70(以上、三菱ケミカル(株)製)、エピクロンN-770、エピクロンN-740、エピクロンN-775(以上、DIC(株)製)等のフェノールノボラック型エポキシ樹脂;
エピクロンN-660、エピクロンN-665、エピクロンN-670、エピクロンN-673、エピクロンN-695(以上、DIC(株)製)、EOCN(登録商標。以下同じ。)-1020、EOCN-102S、EOCN-104S(以上、日本化薬(株)製)等のクレゾールノボラック型エポキシ樹脂;
jER1001、1002、1003(以上、三菱ケミカル(株)製)等のビスフェノールA型エポキシ樹脂;
jER4004P、4005P(以上、三菱ケミカル(株)製)等のビスフェノールF型エポキシ樹脂;
jER1032H60(三菱ケミカル(株)製)等のトリスフェノールメタン型エポキシ樹脂;
YX4000、YL6121H(以上、三菱ケミカル(株)製)等のビフェニル型エポキシ樹脂;
HP4700(DIC(株)製)等のナフタレン型エポキシ樹脂;
HP7200(DIC(株)製)等のジシクロペンタジエン型エポキシ樹脂;
TSR-400(DIC(株)製)、DER858(ダウケミカル社製)、AER 4152(旭化成イーマテリアルズ(株)製)等のオキサゾリドン環骨格を有するエポキシ樹脂;
EXA-1514、EXA-1517(DIC(株)製)等のビスフェノールS型エポキシ樹脂;
等が挙げられる。
エピクロンN-660、エピクロンN-665、エピクロンN-670、エピクロンN-673、エピクロンN-695(以上、DIC(株)製)、EOCN(登録商標。以下同じ。)-1020、EOCN-102S、EOCN-104S(以上、日本化薬(株)製)等のクレゾールノボラック型エポキシ樹脂;
jER1001、1002、1003(以上、三菱ケミカル(株)製)等のビスフェノールA型エポキシ樹脂;
jER4004P、4005P(以上、三菱ケミカル(株)製)等のビスフェノールF型エポキシ樹脂;
jER1032H60(三菱ケミカル(株)製)等のトリスフェノールメタン型エポキシ樹脂;
YX4000、YL6121H(以上、三菱ケミカル(株)製)等のビフェニル型エポキシ樹脂;
HP4700(DIC(株)製)等のナフタレン型エポキシ樹脂;
HP7200(DIC(株)製)等のジシクロペンタジエン型エポキシ樹脂;
TSR-400(DIC(株)製)、DER858(ダウケミカル社製)、AER 4152(旭化成イーマテリアルズ(株)製)等のオキサゾリドン環骨格を有するエポキシ樹脂;
EXA-1514、EXA-1517(DIC(株)製)等のビスフェノールS型エポキシ樹脂;
等が挙げられる。
また、室温で固体状のエポキシ樹脂としては、分子内に前記式(1)で表される構造を含むエポキシ樹脂を用いてもよい。
室温で固体状のエポキシ樹脂として、分子内に前記式(1)で表される構造を含むエポキシ樹脂を用いることで、熱硬化性樹脂組成物の硬化時間を短縮しやすく、さらに熱硬化性樹脂組成物の硬化物が高い機械物性を得やすい。
室温で固体状のエポキシ樹脂として、分子内に前記式(1)で表される構造を含むエポキシ樹脂を用いることで、熱硬化性樹脂組成物の硬化時間を短縮しやすく、さらに熱硬化性樹脂組成物の硬化物が高い機械物性を得やすい。
これらの室温で固体状のエポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂の分子量は、200~3000が好ましく、300~2000がより好ましい。エポキシ樹脂の分子量が前記範囲内であれば、熱硬化性樹脂組成物を所望の粘度に調整しやすい。
分子量とは、ゲルパーミエイションクロマトグラフィーによるポリスチレン換算の重量平均分子量である。
<分子量の分画条件>
下記条件で、エポキシ樹脂の各成分を分取してエポキシ樹脂の分子量を算出する。
分取した各フラクションの重量平均分子量をそのフラクションの分子量とし、ピーク面積と全ピーク面積の比から、そのフラクションの質量割合を算出する。
装置 : HLC-8020(コンポーネントシステム) (東ソー製)
ポンプ : DP-8020(コンピューターコントロールデュアルポンプ 2台)
オンラインデガッサー : SD-8022
オートサンプラー : AS-8020
RI検出器 : RI-8020
UV検出器 : UV-8020
フラクションコレクター : FC-8020
カラム : TSK-GEL G3000(21.5mmID×60cmL)×2本 + ガードカラム付
流速 : 4.0ml/分(2.0ml/分×2)
移動相 : クロロホルム
カラム温度 : 室温
注入量 : 1.0ml
濃度 : 6質量%
<分子量の分画条件>
下記条件で、エポキシ樹脂の各成分を分取してエポキシ樹脂の分子量を算出する。
分取した各フラクションの重量平均分子量をそのフラクションの分子量とし、ピーク面積と全ピーク面積の比から、そのフラクションの質量割合を算出する。
装置 : HLC-8020(コンポーネントシステム) (東ソー製)
ポンプ : DP-8020(コンピューターコントロールデュアルポンプ 2台)
オンラインデガッサー : SD-8022
オートサンプラー : AS-8020
RI検出器 : RI-8020
UV検出器 : UV-8020
フラクションコレクター : FC-8020
カラム : TSK-GEL G3000(21.5mmID×60cmL)×2本 + ガードカラム付
流速 : 4.0ml/分(2.0ml/分×2)
移動相 : クロロホルム
カラム温度 : 室温
注入量 : 1.0ml
濃度 : 6質量%
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂のエポキシ当量は、120~300g/eqが好ましく、150~280g/eqがより好ましい。
エポキシ樹脂のエポキシ当量が前記下限値以上であれば、樹脂が脆くなりすぎず、高い機械物性を得やすい。エポキシ樹脂のエポキシ当量が前記上限値以下であれば、耐熱性が低下しにくい。
エポキシ当量とは、エポキシ基1個あたりのエポキシ樹脂の分子量を意味する。
エポキシ樹脂のエポキシ当量が前記下限値以上であれば、樹脂が脆くなりすぎず、高い機械物性を得やすい。エポキシ樹脂のエポキシ当量が前記上限値以下であれば、耐熱性が低下しにくい。
エポキシ当量とは、エポキシ基1個あたりのエポキシ樹脂の分子量を意味する。
本発明の熱硬化性樹脂組成物100質量部中のエポキシ樹脂の含有量は、60~95質量部が好ましく、65~93質量部がより好ましく、70~90質量部がさらに好ましい。
エポキシ樹脂の含有量が前記下限値以上であれば、機械物性を高く保ちやすい。エポキシ樹脂の含有量が前記上限値以下であれば、硬化時の耐熱性が低下しにくい。
エポキシ樹脂の含有量が前記下限値以上であれば、機械物性を高く保ちやすい。エポキシ樹脂の含有量が前記上限値以下であれば、硬化時の耐熱性が低下しにくい。
[エポキシ樹脂硬化剤]
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂硬化剤は、ジシアンジアミドまたはその誘導体である。
ジシアンジアミドおよびその誘導体は融点が高く、低温領域でエポキシ樹脂との相溶性が抑えられる。また、エポキシ樹脂組成物がジシアンジアミドまたはその誘導体を含むことで、優れたポットライフが得られるとともに、樹脂硬化物の力学特性が向上しやすい。
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂硬化剤は、ジシアンジアミドまたはその誘導体である。
ジシアンジアミドおよびその誘導体は融点が高く、低温領域でエポキシ樹脂との相溶性が抑えられる。また、エポキシ樹脂組成物がジシアンジアミドまたはその誘導体を含むことで、優れたポットライフが得られるとともに、樹脂硬化物の力学特性が向上しやすい。
ジシアンジアミドの誘導体としては、例えばジシアンジアミドと、エポキシ樹脂、ビニル化合物、アクリル化合物、9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド等の各種化合物を結合させたもの等が挙げられる。
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂硬化剤としては、これらの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、ジシアンジアミドと併用してもよい。
本発明の熱硬化性樹脂組成物におけるエポキシ硬化剤としては、反応性の点からジシアンジアミドが好ましい。
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂硬化剤としては、これらの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、ジシアンジアミドと併用してもよい。
本発明の熱硬化性樹脂組成物におけるエポキシ硬化剤としては、反応性の点からジシアンジアミドが好ましい。
ジシアンジアミドまたはその誘導体としては市販品を用いてもよい。
ジシアンジアミドの市販品としては、例えば、DICY7、DICY15(以上、三菱ケミカル株式会社製)Dicyanex 1400F(以上、Air Products社製)等が挙げられるが、これらに限定されるものではない。
ジシアンジアミドの市販品としては、例えば、DICY7、DICY15(以上、三菱ケミカル株式会社製)Dicyanex 1400F(以上、Air Products社製)等が挙げられるが、これらに限定されるものではない。
本発明の熱硬化性樹脂組成物100質量部中のジシアンジアミドまたはその誘導体の含有量は、1~9質量部が好ましく、3~8質量部がより好ましく、3.5~7質量部がさらに好ましい。
ジシアンジアミドまたはその誘導体の含有量が前記下限値以上であれば、エポキシ樹脂組成物中に含まれるエポキシ樹脂を十分に硬化することができる。ジシアンジアミドまたはその誘導体の含有量が前記上限値以下であれば、保存安定性を確保しやすく、樹脂硬化物の靱性を高くしやすい。
ジシアンジアミドまたはその誘導体の含有量が前記下限値以上であれば、エポキシ樹脂組成物中に含まれるエポキシ樹脂を十分に硬化することができる。ジシアンジアミドまたはその誘導体の含有量が前記上限値以下であれば、保存安定性を確保しやすく、樹脂硬化物の靱性を高くしやすい。
[イミダゾール化合物]
本発明の熱硬化性樹脂組成物におけるイミダゾール化合物は、分子内にイミダゾール環を有する化合物であり、イミダゾール環に置換基を持つ化合物(以下、「イミダゾール誘導体」とも言う。)、エポキシ樹脂のエポキシ基にイミダゾールもしくはイミダゾール誘導体が開環付加した構造を有する化合物(以下、「イミダゾールアダクト」とも言う。)、イミダゾールまたはイミダゾール誘導体を異分子で包接した化合物(以下、「包接イミダゾール」とも言う。)、マイクロカプセル化したイミダゾールまたはイミダゾール誘導体(以下、「マイクロカプセル型イミダゾール」とも言う。)、および安定化剤等を配位させたイミダゾールまたはイミダゾール誘導体(以下、「イミダゾール付加物」とも言う。)からなる群から選ばれる少なくとも1種であることが好ましい。
本発明の熱硬化性樹脂組成物におけるイミダゾール化合物は、分子内にイミダゾール環を有する化合物であり、イミダゾール環に置換基を持つ化合物(以下、「イミダゾール誘導体」とも言う。)、エポキシ樹脂のエポキシ基にイミダゾールもしくはイミダゾール誘導体が開環付加した構造を有する化合物(以下、「イミダゾールアダクト」とも言う。)、イミダゾールまたはイミダゾール誘導体を異分子で包接した化合物(以下、「包接イミダゾール」とも言う。)、マイクロカプセル化したイミダゾールまたはイミダゾール誘導体(以下、「マイクロカプセル型イミダゾール」とも言う。)、および安定化剤等を配位させたイミダゾールまたはイミダゾール誘導体(以下、「イミダゾール付加物」とも言う。)からなる群から選ばれる少なくとも1種であることが好ましい。
なかでも、本発明の熱硬化性樹脂組成物におけるイミダゾール化合物としては、硬化開始温度が100℃以上であるイミダゾール化合物が好ましく用いられる。
硬化開始温度が100℃以上であるイミダゾール化合物は、室温等、比較的低温での反応性が低く、また、硬化開始温度が100℃以上であるイミダゾール化合物を含むエポキシ樹脂組成物は熱安定性が高い。したがって、硬化開始温度が100℃以上であるイミダゾール化合物を含むエポキシ樹脂組成物や、これを含むプリプレグは保存安定性が高い。一方で、エポキシ樹脂組成物の成形加工温度では、高い硬化性および硬化促進性を示す。
本発明の熱硬化性樹脂組成物におけるイミダゾール化合物の硬化開始温度は110℃以上であることがより好ましい。
硬化開始温度が100℃以上であるイミダゾール化合物は、室温等、比較的低温での反応性が低く、また、硬化開始温度が100℃以上であるイミダゾール化合物を含むエポキシ樹脂組成物は熱安定性が高い。したがって、硬化開始温度が100℃以上であるイミダゾール化合物を含むエポキシ樹脂組成物や、これを含むプリプレグは保存安定性が高い。一方で、エポキシ樹脂組成物の成形加工温度では、高い硬化性および硬化促進性を示す。
本発明の熱硬化性樹脂組成物におけるイミダゾール化合物の硬化開始温度は110℃以上であることがより好ましい。
硬化開始温度は以下の方法で測定された値である。
<イミダゾール化合物の硬化開始温度>
エポキシ当量が180~220のビスフェノールA型エポキシ樹脂100質量部に、イミダゾール化合物を10質量部加えて混合して調製した試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC)により発熱量を測定し、得られたDSC曲線の変曲点における接線とベースラインとの交点の温度。
<イミダゾール化合物の硬化開始温度>
エポキシ当量が180~220のビスフェノールA型エポキシ樹脂100質量部に、イミダゾール化合物を10質量部加えて混合して調製した試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC)により発熱量を測定し、得られたDSC曲線の変曲点における接線とベースラインとの交点の温度。
硬化開始温度が100℃以上であるイミダゾール化合物としては、イミダゾール誘導体、イミダゾールアダクト、包接イミダゾール、マイクロカプセル型イミダゾール、イミダゾール付加物等が挙げられる。
これらのイミダゾール化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
これらのイミダゾール化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
硬化開始温度が100℃以上のイミダゾール誘導体としては、例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、および2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられる。
アダクト処理、異分子による包接処理、マイクロカプセル化処理する前のイミダゾール誘導体の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテイト、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-エチル-4-メチルイミダゾリル-(1’))-エチル-s-トリアジン、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられるが、これらに限定されるものではない。
硬化開始温度が100℃以上のイミダゾール付加物としては、安定化剤を配位させたイミダゾールまたはイミダゾール誘導体等が挙げられる。
イミダゾール付加物としては、イミダゾールまたはイミダゾール誘導体がホウ酸化合物、イソシアヌル酸、金属原子等に配位してイミダゾール環とエポキシ基の反応性を制御しているものが好ましく挙げられる。
イミダゾール付加物としては、イミダゾールまたはイミダゾール誘導体がホウ酸化合物、イソシアヌル酸、金属原子等に配位してイミダゾール環とエポキシ基の反応性を制御しているものが好ましく挙げられる。
これらの中で、イミダゾールまたはイミダゾール誘導体のイソシアヌル酸付加物は、エポキシ樹脂中での安定性を確保しやすく、エポキシ樹脂との硬化物の耐熱性を下げにくいため好ましい。
イソシアヌル酸を付加する前のイミダゾール誘導体の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテイト、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-エチル-4-メチルイミダゾリル-(1’))-エチル-s-トリアジン、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられるが、これらに限定されるものではない。
イソシアヌル酸を付加する前のイミダゾール誘導体の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテイト、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-(1’))-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-エチル-4-メチルイミダゾリル-(1’))-エチル-s-トリアジン、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられるが、これらに限定されるものではない。
特に、安定性が高く、硬化性も高いため、硬化開始温度が100℃以上のイミダゾール付加物としては、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物、2-フェニルイミダゾール・イソシアヌル酸付加物、2-メチルイミダゾール・イソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール・イソシアヌル酸付加物、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール・イソシアヌル酸付加物が好ましい。
より保存安定性が向上しやすい観点から、さらに好ましい硬化開始温度が100℃以上のイミダゾール付加物としては、分子内にトリアジン骨格(トリアジン環)を有するイミダゾール誘導体のイソシアヌル酸付加物が挙げられる。
分子内にトリアジン骨格(トリアジン環)を有するイミダゾール誘導体のイソシアヌル酸付加物としては、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物、1-(4,6-ジアミノ-s-トリアジン-2-イル)エチル-2-ウンデシルイミダゾール・イソシアヌル酸付加物、2,4-ジアミノ-6-[2-(2-エチル-4-メチル-1-イミダゾリル)エチル]-s-トリアジン・イソシアヌル酸付加物等が挙げられる。
分子内にトリアジン骨格(トリアジン環)を有するイミダゾール誘導体のイソシアヌル酸付加物としては、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物、1-(4,6-ジアミノ-s-トリアジン-2-イル)エチル-2-ウンデシルイミダゾール・イソシアヌル酸付加物、2,4-ジアミノ-6-[2-(2-エチル-4-メチル-1-イミダゾリル)エチル]-s-トリアジン・イソシアヌル酸付加物等が挙げられる。
プリプレグとしての保存安定性やハイサイクルプレス成形に適した速硬化性を得やすい観点から、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物が特に好ましい。
2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物の市販品としては、例えば2MA-OK(四国化成工業株式会社製)等が挙げられるが、これらに限定されるものではない。
これらの硬化開始温度が100℃以上のイミダゾール化合物の中で、安定性と硬化性を確保しやすい観点から、硬化開始温度が100℃以上のイミダゾール付加物が好ましい。
本発明の熱硬化性樹脂組成物におけるイミダゾール化合物は、ジシアンジアミドまたはその誘導体および分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体と組み合わせて熱硬化性樹脂組成物に配合されることにより、熱硬化性樹脂組成物を短時間で硬化させやすい。また、本発明の熱硬化性樹脂組成物がイミダゾール化合物を含有することにより、硬化物の耐熱性を向上させやすい。
本発明の熱硬化性樹脂組成物100質量部中のイミダゾール化合物の含有量は、1~8質量部が好ましく、1~7質量部がより好ましく、1~4質量部がさらに好ましく、1.5~3質量部が特に好ましい。
イミダゾール化合物の含有量が前記下限値以上であれば、熱硬化性樹脂組成物の硬化性が向上しやすく、その硬化物が高い耐熱性を示しやすい。イミダゾール化合物の含有量が前記上限値以下であれば、保存安定性を損ないにくく、機械物性を高く保ちやすい。
イミダゾール化合物の含有量が前記下限値以上であれば、熱硬化性樹脂組成物の硬化性が向上しやすく、その硬化物が高い耐熱性を示しやすい。イミダゾール化合物の含有量が前記上限値以下であれば、保存安定性を損ないにくく、機械物性を高く保ちやすい。
通常、イミダゾール化合物は室温(25℃)の条件下では結晶性固体であり、100℃以下ではエポキシ樹脂への溶解性は低い。したがって、熱硬化性樹脂組成物中に良好に分散して、硬化反応を促進する観点から、イミダゾール化合物としては、好ましくは100μm以下、より好ましくは20μm以下の体積平均粒径を有する粉体であることが好ましい。
体積平均粒径は粒度計(日機装社製、製品名:AEOTRAC SPR Model:7340)にて測定することができ、測定した粒度分布のD50の値とする。
体積平均粒径は粒度計(日機装社製、製品名:AEOTRAC SPR Model:7340)にて測定することができ、測定した粒度分布のD50の値とする。
[エポキシ樹脂硬化促進剤]
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂硬化促進剤は、分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む。
分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体としては、分子内に2つ以上のジメチルウレイド基を持ち、高温で加熱することによりイソシアネート基とジメチルアミンを生成し、これらがエポキシ樹脂のエポキシ基、ジシアンジアミドまたはその誘導体を活性化するものであれば、特に制限されない。分子内に1つしかジメチルウレイド基を持たない場合は、エポキシ樹脂との反応において架橋密度の低下による耐熱性の低下が起こる。
本発明の熱硬化性樹脂組成物におけるエポキシ樹脂硬化促進剤は、分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む。
分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体としては、分子内に2つ以上のジメチルウレイド基を持ち、高温で加熱することによりイソシアネート基とジメチルアミンを生成し、これらがエポキシ樹脂のエポキシ基、ジシアンジアミドまたはその誘導体を活性化するものであれば、特に制限されない。分子内に1つしかジメチルウレイド基を持たない場合は、エポキシ樹脂との反応において架橋密度の低下による耐熱性の低下が起こる。
尿素誘導体としては、例えばジメチルウレイド基が芳香環に結合した芳香族ジメチルウレア、ジメチルウレイド基が脂肪族化合物に結合した脂肪族ジメチルウレア等が挙げられる。
これらのなかでも、硬化速度が速くなる点で、芳香族ジメチルウレアが好ましい。
これらのなかでも、硬化速度が速くなる点で、芳香族ジメチルウレアが好ましい。
分子内に2つ以上のジメチルウレイド基を持つ芳香族ジメチルウレアとしては、メチレンビス(フェニルジメチルウレア)、トリレンビス(ジメチルウレア)等が挙げられる。具体例としては、4,4’-メチレンビス(フェニルジメチルウレア)(MBPDMU)、2,4-ビス(3,3-ジメチルウレイド)トルエン(TBDMU)、2,4-トリレンビス(N’-2,4,6-トリブロモフェニル尿素)等が挙げられる。
これらのなかでも、硬化促進能力が高く、樹脂硬化物への耐熱性を付与しやすいため、TBDMUが好ましい。
これらの分子内に2つ以上のジメチルウレイド基を持つ芳香族ジメチルウレアは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらのなかでも、硬化促進能力が高く、樹脂硬化物への耐熱性を付与しやすいため、TBDMUが好ましい。
これらの分子内に2つ以上のジメチルウレイド基を持つ芳香族ジメチルウレアは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
分子内に2つ以上のジメチルウレイド基を持つ脂肪族ジメチルウレアとしては、イソホロンジイソシアネートとジメチルアミンとから得られるジメチルウレア、m-キシリレンジイソシアネートとジメチルアミンとから得られるジメチルウレア、ヘキサメチレンジイソシアネートとジメチルアミンとから得られるジメチルウレア等が挙げられる。
分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体としては市販品を用いてもよい。
MBPDMUの市販品としては、例えばTechnicure MDU-11(以上、A&C Catalysts社製);Omicure(登録商標。以下同じ。)(オミキュア)52(以上、ピイ・ティ・アイ・ジャパン株式会社製)等が挙げられるが、これらに限定されるものではない。
TBDMUの市販品としては、例えばOmicure(オミキュア)24(以上、ピイ・ティ・アイ・ジャパン株式会社製)等が挙げられるが、これらに限定されるものではない。
MBPDMUの市販品としては、例えばTechnicure MDU-11(以上、A&C Catalysts社製);Omicure(登録商標。以下同じ。)(オミキュア)52(以上、ピイ・ティ・アイ・ジャパン株式会社製)等が挙げられるが、これらに限定されるものではない。
TBDMUの市販品としては、例えばOmicure(オミキュア)24(以上、ピイ・ティ・アイ・ジャパン株式会社製)等が挙げられるが、これらに限定されるものではない。
本発明の熱硬化性樹脂組成物100質量部中の分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体の含有量は、1~8質量部が好ましく、1~5質量部がより好ましく、1.5~4質量部がさらに好ましい。
分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体の含有量が前記下限値以上であれば、エポキシ樹脂組成物中に含まれるエポキシ樹脂の硬化促進作用が十分に得られやすい。分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体の含有量が前記上限値以下であれば、保存安定性、耐熱性、機械的特性により優れた樹脂硬化物が得られやすい。
分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体の含有量が前記下限値以上であれば、エポキシ樹脂組成物中に含まれるエポキシ樹脂の硬化促進作用が十分に得られやすい。分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体の含有量が前記上限値以下であれば、保存安定性、耐熱性、機械的特性により優れた樹脂硬化物が得られやすい。
分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体のうち、MBPDMUおよびTBDMUは室温(25℃)の条件下では結晶性固体であり、100℃以下ではエポキシ樹脂への溶解性は低い。したがって、熱硬化性樹脂組成物中に良好に分散して、硬化反応を促進する観点から、分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体としては、好ましくは100μm以下、より好ましくは20μm以下の体積平均粒径を有する粉体であることが好ましい。
体積平均粒径は、イミダゾール化合物の体積平均粒径と同様に測定することができる。
体積平均粒径は、イミダゾール化合物の体積平均粒径と同様に測定することができる。
[任意成分]
本発明の熱硬化性樹脂組成物は、本発明の趣旨を損なわない範囲で、ジシアンジアミドまたはその誘導体、イミダゾール化合物、分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体のいずれにも該当しない任意成分を含んでもよい。
本発明の熱硬化性樹脂組成物は、本発明の趣旨を損なわない範囲で、ジシアンジアミドまたはその誘導体、イミダゾール化合物、分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体のいずれにも該当しない任意成分を含んでもよい。
ただし、任意成分としての、低温における硬化性に優れるその他の硬化剤は、熱硬化性樹脂組成物を含む樹脂フィルムのライフ、すなわち、樹脂フィルムのタック性と柔軟性を保持したまま保存可能な期間を短くするため、少量の添加にとどめておく必要がある。
また、本発明の熱硬化性樹脂組成物は、粘度を最適範囲に調整するため、熱可塑性樹脂を含有していてもよい。
熱可塑性樹脂としては、エポキシ樹脂への溶解性が高い、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、フェノキシ樹脂、ポリスルホン、ポリエーテルスルホンが好ましい。
熱可塑性樹脂としては、エポキシ樹脂への溶解性が高い、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、フェノキシ樹脂、ポリスルホン、ポリエーテルスルホンが好ましい。
熱可塑性樹脂の市販品としては、例えば、ポリビニルアセタール樹脂としてデンカブチラール(電気化学工業(株)製)、ポリビニルアルコール樹脂としてデンカポバール(登録商標。以下同じ。)(電気化学工業(株)製)、ビニレック(登録商標。以下同じ。)(チッソ(株)製)、フェノキシ樹脂としてYP-50(新日鉄住金化学(株)製)、YP-50s(新日鉄住金化学(株)製)、YP-70(新日鉄住金化学(株)製)、ポリスルホンとしてUDEL(登録商標。以下同じ。)(ソルベイ アドバンストポリマーズ(株)製)、ポリエーテルスルホンとしてUltrason(登録商標。以下同じ。)(BASF社製)等が挙げられる。
本発明の熱硬化性樹脂組成物における熱可塑性樹脂の含有量は、熱硬化性樹脂組成物におけるエポキシ樹脂100質量部に対し、1~20質量部が好ましく、2~10質量部がより好ましい。
熱可塑性樹脂の含有量が前記下限値以上であれば、室温でのタック低減や硬化時の樹脂フロー抑制の効果を発揮しやすい。熱可塑性樹脂の含有量が前記上限値以下であれば、硬化物の機械物性を損ないにくい。
熱可塑性樹脂の含有量が前記下限値以上であれば、室温でのタック低減や硬化時の樹脂フロー抑制の効果を発揮しやすい。熱可塑性樹脂の含有量が前記上限値以下であれば、硬化物の機械物性を損ないにくい。
さらに、本発明の熱硬化性樹脂組成物は、本発明の趣旨を損なわない範囲で、各種添加剤、樹脂、充填剤等を含有していてもよい。
[熱硬化性樹脂組成物の硬化完了時間]
本発明の熱硬化性樹脂組成物は、キュラストメーターで測定した硬化完了時間が、140℃において6分以下であることが好ましく、5分以下であることがより好ましい。
前記時間内で硬化完了すれば、ハイサイクルプレス成形に使用する樹脂組成物として十分な速硬化性を有していると言える。
本発明の熱硬化性樹脂組成物は、キュラストメーターで測定した硬化完了時間が、140℃において6分以下であることが好ましく、5分以下であることがより好ましい。
前記時間内で硬化完了すれば、ハイサイクルプレス成形に使用する樹脂組成物として十分な速硬化性を有していると言える。
イミダゾール化合物と分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を併用することで、上記特性を達成することができる。下記式(1)で表される構造を含むエポキシ樹脂を用いることで、さらに速硬化性を向上させることができる。
キュラストメーターは、一定温度下において樹脂組成物を破壊しない程度の一定振幅の正弦波振動を樹脂組成物に与え、樹脂組成物から上ダイスに伝わるトルクを連続的に測定し、硬化反応進行中の粘弾性応力の変化をトルク振幅/時間曲線(硬化曲線)として記録するものである。
本発明の熱硬化性樹脂組成物の硬化完了時間は硬化曲線からトルク値が変化しなくなる最大トルク値(Tmax)を求め、最大トルク値の90%のトルク値(T90)を算出する。測定開始からT90に到達するまでに要した時間を求め、これを硬化完了時間(t90)とする。
本発明の熱硬化性樹脂組成物の硬化完了時間は硬化曲線からトルク値が変化しなくなる最大トルク値(Tmax)を求め、最大トルク値の90%のトルク値(T90)を算出する。測定開始からT90に到達するまでに要した時間を求め、これを硬化完了時間(t90)とする。
[熱硬化性樹脂組成物の粘度]
本発明の熱硬化性樹脂組成物は、60℃で5分間保持した後の粘度をV0、60℃で5時間保持した後の粘度をV1としたときに、粘度の比V1/V0が1.0~4.5であることが好ましく、1.0~2.5がより好ましく、1.0~2.0がさらに好ましい。
本発明の熱硬化性樹脂組成物の粘度の比が前記範囲内にあることで、樹脂の調製中やプリプレグの製造中に増粘し、良好なプリプレグが得られなくなることを防止しやすい。樹脂の調製中やプリプレグの製造中に増粘した場合、プリプレグのタックが失われて積層できなかったり、プリプレグに樹脂が十分に含浸できなくなることにより繊維強化複合材料の内部にボイドが残ったり、表面の平滑性が損なわれて外観が悪くなったりする。
本発明の熱硬化性樹脂組成物は、60℃で5分間保持した後の粘度をV0、60℃で5時間保持した後の粘度をV1としたときに、粘度の比V1/V0が1.0~4.5であることが好ましく、1.0~2.5がより好ましく、1.0~2.0がさらに好ましい。
本発明の熱硬化性樹脂組成物の粘度の比が前記範囲内にあることで、樹脂の調製中やプリプレグの製造中に増粘し、良好なプリプレグが得られなくなることを防止しやすい。樹脂の調製中やプリプレグの製造中に増粘した場合、プリプレグのタックが失われて積層できなかったり、プリプレグに樹脂が十分に含浸できなくなることにより繊維強化複合材料の内部にボイドが残ったり、表面の平滑性が損なわれて外観が悪くなったりする。
一般に、エポキシ樹脂中の硬化剤の量を調節することで、前記特性を達成することができる。ただし、硬化剤の量を減量して粘度の比V1/V0を前記範囲内にした場合、硬化剤の量の減量により速硬化性を失いやすい。すなわち、硬化剤の量を変更することで、速硬化性を維持し、かつ粘度の比V1/V0を前記範囲内にすることは困難な場合がある。
これに対して、イミダゾール化合物を併用することで、速硬化性、および前記特性を両立できる。熱硬化性樹脂組成物の保存安定性および速硬化性を向上させる観点から、イミダゾール化合物が、イミダゾール誘導体、イミダゾールアダクト、包接イミダゾール、マイクロカプセル型イミダゾール、およびイミダゾール付加物からなる群より選ばれる1種を含むことが好ましい。なかでも、保存安定性を向上させる観点から、イミダゾール付加物が特に好ましい。
本発明の熱硬化性樹脂組成物の30℃における粘度は、1.0×102~1.0×105Pa・sが好ましく、5.0×102~9.8×104Pa・sがより好ましく、1.0×103~9.7×104Pa・sがさらに好ましい。
熱硬化性樹脂組成物の粘度が前記下限値以上であれば、樹脂フィルムの取り扱い性が優れたものとなりやすく、樹脂フィルムの作製や積層、成形等の作業が容易になる。熱硬化性樹脂組成物の粘度が前記上限値以下であれば、例えば後述の強化繊維基材を含む樹脂フィルム作製時に熱硬化性樹脂組成物を強化繊維基材に含浸させやすく、含浸時に過度に加熱する必要がなくなり、また、樹脂フィルムのドレープ性が損なわれにくい。
熱硬化性樹脂組成物の粘度が前記下限値以上であれば、樹脂フィルムの取り扱い性が優れたものとなりやすく、樹脂フィルムの作製や積層、成形等の作業が容易になる。熱硬化性樹脂組成物の粘度が前記上限値以下であれば、例えば後述の強化繊維基材を含む樹脂フィルム作製時に熱硬化性樹脂組成物を強化繊維基材に含浸させやすく、含浸時に過度に加熱する必要がなくなり、また、樹脂フィルムのドレープ性が損なわれにくい。
熱硬化性樹脂組成物の粘度は、固体状の熱硬化性樹脂と液体状の熱硬化性樹脂を溶融混合することで上記範囲内とすることができる。
本発明の熱硬化性樹脂組成物は初期温度を30℃とし、2.0℃/分で昇温させる昇温粘度測定において、最低粘度となる温度が100~130℃であることが好ましい。また、その際の最低粘度は0.1Pa・s~50Pa・sであることが好ましく、0.5Pa・s~10Pa・sがより好ましい。
最低粘度となる温度が前記範囲内であれば、成形時における熱硬化性樹脂組成物の流動量を適正な範囲に抑制しやすく、外観のよい成形体を得やすい。また、その際の最低粘度が前記範囲内であれば、外観のよい成形体を得やすい。特に、最低粘度が前記下限値以上であれば、過度な流動が抑制されやすく、成形体表面に凹凸等の外観不良がおきにくく、前記上限値以下であれば、成形時に金型の隅々まで熱硬化性樹脂組成物が行き渡り、外観のよい成形体が得られやすい。
最低粘度となる温度が前記範囲内であれば、成形時における熱硬化性樹脂組成物の流動量を適正な範囲に抑制しやすく、外観のよい成形体を得やすい。また、その際の最低粘度が前記範囲内であれば、外観のよい成形体を得やすい。特に、最低粘度が前記下限値以上であれば、過度な流動が抑制されやすく、成形体表面に凹凸等の外観不良がおきにくく、前記上限値以下であれば、成形時に金型の隅々まで熱硬化性樹脂組成物が行き渡り、外観のよい成形体が得られやすい。
最低粘度となる温度は、硬化剤の種類を選定することで前記範囲内とすることができる。また、その際の最低粘度は、固体状の熱硬化性樹脂と液体状の熱硬化性樹脂および熱可塑性樹脂等を溶融混合することで上記範囲内とすることができる。
[熱硬化性樹脂組成物の製法]
本発明の熱硬化性樹脂組成物は、従来公知の方法で製造することができる。例えば、ガラスフラスコ、ニーダー、プラネタリーミキサー、一般的な撹拌加熱釜、攪拌加圧加熱釜等を用いて製造することが好ましい。
本発明の熱硬化性樹脂組成物は、従来公知の方法で製造することができる。例えば、ガラスフラスコ、ニーダー、プラネタリーミキサー、一般的な撹拌加熱釜、攪拌加圧加熱釜等を用いて製造することが好ましい。
本発明の熱硬化性樹脂組成物は、例えば、以下の工程を有する製造方法により製造されることが好ましい。
工程(1):エポキシ樹脂、および熱可塑性樹脂等の添加剤を溶解容器に仕込み、70~150℃で、1~6時間加熱混合して、エポキシ樹脂主剤を得る工程。
工程(2):前記エポキシ樹脂主剤を50~70℃に冷却した後、エポキシ樹脂硬化剤、イミダゾール化合物、エポキシ樹脂硬化促進剤を添加し、50~70℃で0.5~2時間混合して、エポキシ樹脂組成物を得る工程。
工程(1):エポキシ樹脂、および熱可塑性樹脂等の添加剤を溶解容器に仕込み、70~150℃で、1~6時間加熱混合して、エポキシ樹脂主剤を得る工程。
工程(2):前記エポキシ樹脂主剤を50~70℃に冷却した後、エポキシ樹脂硬化剤、イミダゾール化合物、エポキシ樹脂硬化促進剤を添加し、50~70℃で0.5~2時間混合して、エポキシ樹脂組成物を得る工程。
≪プリプレグ≫
本発明のプリプレグは、本発明の熱硬化性樹脂組成物と、強化繊維基材とを含む。具体的には、強化繊維基材に本発明の熱硬化性樹脂組成物を含浸したシート状のプリプレグである。
本発明のプリプレグは、本発明の熱硬化性樹脂組成物と、強化繊維基材とを含む。具体的には、強化繊維基材に本発明の熱硬化性樹脂組成物を含浸したシート状のプリプレグである。
プリプレグは単層、又は必要に応じて複数枚を積層した積層体として用いられる。例えば図1に示すように、6枚のプリプレグ10を積層したプリプレグ積層体1として使用される。
強化繊維基材を構成する強化繊維としては、特に限定されず、例えば、無機繊維、有機繊維、金属繊維、又はこれらを組み合わせたハイブリッド構成の強化繊維等を使用できる。
無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。
有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。
金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。
これらの中では、繊維強化複合材料の強度等の機械物性を考慮すると、炭素繊維が好ましい。
有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。
金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。
これらの中では、繊維強化複合材料の強度等の機械物性を考慮すると、炭素繊維が好ましい。
強化繊維基材の強化繊維は、長繊維であってもよく、短繊維であってもよい。剛性に優れる点から、長繊維が好ましい。
強化繊維基材の形態としては、多数の長繊維を一方向に揃えてUDシート(一方向シート)とする形態、長繊維を製織してクロス材(織物)とする形態、短繊維からなる不織布とする形態等が挙げられる。
クロス材の織り方としては、例えば、平織、綾織、朱子織、三軸織等が挙げられる。
強化繊維基材の形態としては、多数の長繊維を一方向に揃えてUDシート(一方向シート)とする形態、長繊維を製織してクロス材(織物)とする形態、短繊維からなる不織布とする形態等が挙げられる。
クロス材の織り方としては、例えば、平織、綾織、朱子織、三軸織等が挙げられる。
強化繊維基材の繊維目付は、50~800g/m2が好ましく、75~300g/m2がより好ましい。
強化繊維基材の繊維目付が前記下限値以上であれば、所望の厚みを有する成形体を得るために必要な積層枚数を少なくできる。強化繊維基材の繊維目付が前記上限値以下であれば、良好な含浸状態のプリプレグ基材を得やすい。
強化繊維基材の繊維目付が前記下限値以上であれば、所望の厚みを有する成形体を得るために必要な積層枚数を少なくできる。強化繊維基材の繊維目付が前記上限値以下であれば、良好な含浸状態のプリプレグ基材を得やすい。
プリプレグ基材の積層構成は、特に限定されない。
例えば、UDプリプレグ基材を用いる場合、上下に隣り合うUDプリプレグ基材の強化繊維の繊維軸が直交するように各UDプリプレグ基材を積層した構成が挙げられる。
プリプレグ基材においては、同一種類のプリプレグ基材のみを積層してもよく、異なる種類のプリプレグ基材を積層してもよい。
例えば、UDプリプレグ基材を用いる場合、上下に隣り合うUDプリプレグ基材の強化繊維の繊維軸が直交するように各UDプリプレグ基材を積層した構成が挙げられる。
プリプレグ基材においては、同一種類のプリプレグ基材のみを積層してもよく、異なる種類のプリプレグ基材を積層してもよい。
プリプレグ基材の積層数は、特に限定されず、要求される繊維強化複合材料の特性等に応じて適宜決定できる。
≪繊維強化複合材料≫
本発明の繊維強化複合材料は、本発明のプリプレグの硬化物である。
繊維強化複合材料は、プリプレグを加熱加圧成形することにより得られる。
本発明の繊維強化複合材料は、本発明のプリプレグの硬化物である。
繊維強化複合材料は、プリプレグを加熱加圧成形することにより得られる。
[成形工程]
プリプレグを必要枚数積層することで得たプリプレグ積層体を金型により加熱加圧成形して繊維強化複合材料を得る。
プリプレグを必要枚数積層することで得たプリプレグ積層体を金型により加熱加圧成形して繊維強化複合材料を得る。
金型を用いたプリプレグ積層体の加熱加圧成形方法としては、公知の加熱加圧成形方法を採用でき、例えば、オートクレーブ成形、オーブン成形、内圧成形、プレス成形等が挙げられる。
プレス成形は、他の加熱加圧成形方法に比べて、表層に樹脂フィルムから形成された樹脂層を有する繊維強化複合材料を得ることが容易であるものの、成形圧力が高く、金型外に樹脂が流出しやすい傾向がある。しかし、本発明の熱硬化性樹脂組成物であれば、速硬化性に優れているので、成形時の金型からの樹脂流出を抑制できる。よって、本発明の熱硬化性樹脂組成物は成形工程でプレス成形を採用する場合により有効であり、ハイサイクルプレス成形を採用する場合に特に有効である。
プレス成形は、他の加熱加圧成形方法に比べて、表層に樹脂フィルムから形成された樹脂層を有する繊維強化複合材料を得ることが容易であるものの、成形圧力が高く、金型外に樹脂が流出しやすい傾向がある。しかし、本発明の熱硬化性樹脂組成物であれば、速硬化性に優れているので、成形時の金型からの樹脂流出を抑制できる。よって、本発明の熱硬化性樹脂組成物は成形工程でプレス成形を採用する場合により有効であり、ハイサイクルプレス成形を採用する場合に特に有効である。
例えば、図2に例示した金型100によりプリプレグ積層体1をプレス成形する場合について説明する。
金型100は、上面側に凸部112が設けられた下型110と、下面側に凹部122が設けられた上型120とを備える。上型120を下型110に近接させて金型100を閉じたときに、金型100内の凸部112と凹部122の間に目的の繊維強化複合材料の形状と相補的な形状のキャビティが形成されるようになっている。
金型100は、上面側に凸部112が設けられた下型110と、下面側に凹部122が設けられた上型120とを備える。上型120を下型110に近接させて金型100を閉じたときに、金型100内の凸部112と凹部122の間に目的の繊維強化複合材料の形状と相補的な形状のキャビティが形成されるようになっている。
図2(a)に示すように下型110上にプリプレグ積層体1を配置した後、図2(b)に示すように、上型120を下型110に近接させて金型100を閉じ、プリプレグ積層体1を加熱加圧成形する。金型100により加圧されながら加熱されることで、プリプレグ積層体1中の熱硬化性樹脂組成物が流動しつつ硬化する。
硬化後、図2(c)に示すように、金型100を開いて繊維強化複合材料2を取り出して、図3に示すような繊維強化複合材料を得る。
硬化後、図2(c)に示すように、金型100を開いて繊維強化複合材料2を取り出して、図3に示すような繊維強化複合材料を得る。
加熱加圧成形条件は、本発明のプリプレグ(プリプレグ積層体1)を用いる以外は、公知の加熱加圧成形条件を採用することができる。
加熱加圧成形時の金型温度は、100~180℃が好ましく、120~160℃がより好ましい。
前記下限値以上で加熱することで、速硬化することができ、成形サイクルを短縮できる。前記上限値以下で加熱することにより、成形時に樹脂フローが抑制され、外観のよい成形体を得ることができる。
前記下限値以上で加熱することで、速硬化することができ、成形サイクルを短縮できる。前記上限値以下で加熱することにより、成形時に樹脂フローが抑制され、外観のよい成形体を得ることができる。
加熱加圧成形時の面圧は、1~15MPaが好ましく、4~10MPaがより好ましい。
前記下限値以上の圧力をかけることで、樹脂が流動し、金型の隅々まで樹脂組成物が行き渡るため、外観のよい成形体が得られやすい。前記上限値以下の圧力をかけることで、樹脂が流動しすぎて成形外観が悪くなることを防止できる。
前記下限値以上の圧力をかけることで、樹脂が流動し、金型の隅々まで樹脂組成物が行き渡るため、外観のよい成形体が得られやすい。前記上限値以下の圧力をかけることで、樹脂が流動しすぎて成形外観が悪くなることを防止できる。
加熱加圧成形時間は、1~15分が好ましく、2~8分がより好ましく、2~5分がさらに好ましい。
前記下限値以上の時間で成形することで、保存安定性と速硬化性に優れた樹脂組成物を作成することができる。前記上限値以下の時間で成形することで、ハイサイクルプレス成形が可能となる。
前記下限値以上の時間で成形することで、保存安定性と速硬化性に優れた樹脂組成物を作成することができる。前記上限値以下の時間で成形することで、ハイサイクルプレス成形が可能となる。
[賦形工程]
本発明の繊維強化複合材料の製造方法においては、成形工程に先立ち、本発明のプリプレグを1枚で、もしくは2枚以上重ね合わせて賦形することにより所望する成形品形状とほぼ正味形状を有するプリフォームを製作する賦形工程をさらに有していてもよい。すなわち、本発明の繊維強化複合材料の製造方法においては、必要に応じて本発明のプリプレグを2枚以上重ね合わせる積層工程、賦形工程および成形工程をこの順に行う方法であってもよい。
この場合は、所望する成形品形状とほぼ正味形状を有するプリフォームを成形工程で加熱加圧成形して所望する成形品形状を有する繊維強化複合材料を製造する。
本発明の繊維強化複合材料の製造方法においては、成形工程に先立ち、本発明のプリプレグを1枚で、もしくは2枚以上重ね合わせて賦形することにより所望する成形品形状とほぼ正味形状を有するプリフォームを製作する賦形工程をさらに有していてもよい。すなわち、本発明の繊維強化複合材料の製造方法においては、必要に応じて本発明のプリプレグを2枚以上重ね合わせる積層工程、賦形工程および成形工程をこの順に行う方法であってもよい。
この場合は、所望する成形品形状とほぼ正味形状を有するプリフォームを成形工程で加熱加圧成形して所望する成形品形状を有する繊維強化複合材料を製造する。
プリプレグ積層体の賦形方法は、目的の繊維強化複合材料の形状を踏まえた中間的な形状に賦形できる方法であればよく、本発明のプリプレグを1枚で、もしくは2枚以上重ね合わせて用いる以外は公知の方法を採用することができる。
(耐熱性)
本発明の繊維強化複合材料は、動的粘弾性測定により得られるガラス転移温度が好ましくは135℃以上であり、より好ましくは150℃以上である。
繊維強化複合材料のガラス転移温度が前記下限値以上であれば、高い耐熱性が必要な部分に使用しうる。
本発明の繊維強化複合材料は、動的粘弾性測定により得られるガラス転移温度が好ましくは135℃以上であり、より好ましくは150℃以上である。
繊維強化複合材料のガラス転移温度が前記下限値以上であれば、高い耐熱性が必要な部分に使用しうる。
本発明の繊維強化複合材料の動的粘弾性測定によるガラス転移温度は、例えば、140℃に予熱した金型にプリプレグを入れ、金型を閉じて加圧しながら140℃で5分間保持した硬化物の動的粘弾性測定によって得られる貯蔵剛性率(G’)の温度依存性により決定される。
以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によって限定されない。
[等温粘度安定性:熱硬化性樹脂組成物の粘度V0とV1の測定]
熱硬化性樹脂組成物の粘度は、以下の条件で測定した。
装置:レオメーター(サーモフィッシャー・サイエンティフィック社製、「MARS 40」)
使用プレート:25φパラレルプレート
プレートギャップ:0.5mm
測定周波数:10rad/秒
測定温度:60℃
測定時間:5時間
応力:300Pa
上記測定方法で粘度測定を開始して、5分後の粘度をV0とし、5時間後の粘度をV1とした。
熱硬化性樹脂組成物の粘度は、以下の条件で測定した。
装置:レオメーター(サーモフィッシャー・サイエンティフィック社製、「MARS 40」)
使用プレート:25φパラレルプレート
プレートギャップ:0.5mm
測定周波数:10rad/秒
測定温度:60℃
測定時間:5時間
応力:300Pa
上記測定方法で粘度測定を開始して、5分後の粘度をV0とし、5時間後の粘度をV1とした。
[60℃等温粘度安定性評価]
上記粘度V0とV1の比から以下の評価基準にしたがって評価した。
(評価基準)
AA:V0/V1が1.0~2.0以内。樹脂組成物の調製中やプリプレグ作成中に大きな粘度変化がなく、良好なプリプレグを作成できる。
A:V0/V1が2.0~2.5以内。
B:V0/V1が2.5~4.5以内。
C:V0/V1が4.5以上。樹脂組成物の調製中やプリプレグ作成中に大きな粘度変化があり、良好なプリプレグが作成できない。
上記粘度V0とV1の比から以下の評価基準にしたがって評価した。
(評価基準)
AA:V0/V1が1.0~2.0以内。樹脂組成物の調製中やプリプレグ作成中に大きな粘度変化がなく、良好なプリプレグを作成できる。
A:V0/V1が2.0~2.5以内。
B:V0/V1が2.5~4.5以内。
C:V0/V1が4.5以上。樹脂組成物の調製中やプリプレグ作成中に大きな粘度変化があり、良好なプリプレグが作成できない。
[キュラストメーターのキュアタイム:熱硬化性樹脂組成物の硬化完了時間]
熱硬化性樹脂組成物の硬化完了時間(最大トルク値の90%トルクに到達する時間)は、以下のようにして求めた。
JSRトレーティング株式会社製の「キュラストメーター7 Type P」を使用し、ダイス温度140℃でのトルク値(N・m)の変化を測定した。ついで、トルク値の変化曲線からトルク値が変化しなくなる最大トルク値(Tmax)を求め、最大トルク値の90%のトルク値(T90)を算出する。測定開始からT90に到達するまでに要した時間を求め、これを硬化完了時間(t90)とした。測定条件を以下に示す。
装置:キュラストメーター(JSRトレーディング株式会社製、「キュラストメーター7 Type P」)
ダイス有効ボア径:φ160mm
測定温度:140℃
熱硬化性樹脂組成物の硬化完了時間(最大トルク値の90%トルクに到達する時間)は、以下のようにして求めた。
JSRトレーティング株式会社製の「キュラストメーター7 Type P」を使用し、ダイス温度140℃でのトルク値(N・m)の変化を測定した。ついで、トルク値の変化曲線からトルク値が変化しなくなる最大トルク値(Tmax)を求め、最大トルク値の90%のトルク値(T90)を算出する。測定開始からT90に到達するまでに要した時間を求め、これを硬化完了時間(t90)とした。測定条件を以下に示す。
装置:キュラストメーター(JSRトレーディング株式会社製、「キュラストメーター7 Type P」)
ダイス有効ボア径:φ160mm
測定温度:140℃
[硬化物の動的粘弾性測定(ガラス転移温度)]
各実施例、比較例で得られた成形板を長さ55mm×幅12.5mmの試験片に加工し、TAインストルメンツ社製レオメーターARES-RDAを用いて、ねじりモードで測定した。測定周波数1Hz、昇温速度5℃/分で、logG’を温度に対してプロットし、logG’の平坦領域の近似直線と、logG’が急激に低下する領域の近似直線との交点の温度をガラス転移温度(G’Tg)とした。
各実施例、比較例で得られた成形板を長さ55mm×幅12.5mmの試験片に加工し、TAインストルメンツ社製レオメーターARES-RDAを用いて、ねじりモードで測定した。測定周波数1Hz、昇温速度5℃/分で、logG’を温度に対してプロットし、logG’の平坦領域の近似直線と、logG’が急激に低下する領域の近似直線との交点の温度をガラス転移温度(G’Tg)とした。
[90度曲げ強度]
各実施例、比較例で得られた成形板を、湿式ダイヤモンドカッタによって長さ(繊維と直交方向)63mm×幅(繊維と平行方向)12.7mmの寸法に切断して、端面を#1000のサンドペーパーで研磨し、試験片を作製した。試験片について、万能試験機(Instron社製、Instron4465、解析ソフト:Bluehill)を用い、ASTM D790に準拠して圧子R:5.0、L/D:16、クロスヘッドスピード:0.92~0.94mm/分の条件にて3点曲げ試験を行い、90度曲げ強度を算出した。
各実施例、比較例で得られた成形板を、湿式ダイヤモンドカッタによって長さ(繊維と直交方向)63mm×幅(繊維と平行方向)12.7mmの寸法に切断して、端面を#1000のサンドペーパーで研磨し、試験片を作製した。試験片について、万能試験機(Instron社製、Instron4465、解析ソフト:Bluehill)を用い、ASTM D790に準拠して圧子R:5.0、L/D:16、クロスヘッドスピード:0.92~0.94mm/分の条件にて3点曲げ試験を行い、90度曲げ強度を算出した。
[使用原料]
使用した原料を以下に示す。
使用した原料を以下に示す。
(エポキシ樹脂)
分子内に前記式(1)で表される構造を含むエポキシ樹脂a-1およびa-2
分子内に前記式(1)で表される構造を含むエポキシ樹脂a-1およびa-2
a-1:エポキシ樹脂と4,4’-ジアミノジフェニルスルフォンとの反応物
ビスフェノールA型エポキシ樹脂(製品名「jER 828」、三菱化学株式会社製)と4,4’-ジアミノジフェニルスルフォン(商品名:セイカキュアーS、和歌山精化工業(株)製)とを質量比100:9で室温にて混合した後、150℃にて混合加熱して得た反応物であって、エポキシ樹脂と分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応生成物を主成分とする混合物(エポキシ当量266g/eq、粘度(90℃)1.3Pa・s)。
ビスフェノールA型エポキシ樹脂(製品名「jER 828」、三菱化学株式会社製)と4,4’-ジアミノジフェニルスルフォン(商品名:セイカキュアーS、和歌山精化工業(株)製)とを質量比100:9で室温にて混合した後、150℃にて混合加熱して得た反応物であって、エポキシ樹脂と分子内に少なくとも一つの硫黄原子を有するアミン化合物との反応生成物を主成分とする混合物(エポキシ当量266g/eq、粘度(90℃)1.3Pa・s)。
a-2:a-1とポリエーテルスルホンの溶解物
jER828/ポリエーテルスルホン(商品名:E2020P、BASF製)=7/3(単位:質量部)にて混合し180℃にて均一に溶解させて樹脂組成物(I)を得た。上記のa-1を71.67質量部と樹脂組成物(I)23.33質量部を混合してa-1とポリエーテルスルホンの溶解物を得た。エポキシ当量266g/eq、粘度(90℃)1.3Pa・s)
jER828/ポリエーテルスルホン(商品名:E2020P、BASF製)=7/3(単位:質量部)にて混合し180℃にて均一に溶解させて樹脂組成物(I)を得た。上記のa-1を71.67質量部と樹脂組成物(I)23.33質量部を混合してa-1とポリエーテルスルホンの溶解物を得た。エポキシ当量266g/eq、粘度(90℃)1.3Pa・s)
N775:フェノールノボラック型エポキシ樹脂(製品名「N775」、エポキシ当量189、DIC株式会社製、エポキシ基を3個以上有する分子の比率 90.9%)。
jER828:ビスフェノールA型エポキシ樹脂(製品名「jER 828」、エポキシ当量189、三菱ケミカル株式会社製)。
jER1032H60:トリスフェノールメタン型エポキシ樹脂(製品名「jER1032H60」、エポキシ当量169、三菱ケミカル株式会社製、エポキシ基を3個以上有する分子の比率 98.4%)。
jER604:ビスフェノールA型エポキシ樹脂(製品名「jER 604」、エポキシ当量120、三菱ケミカル株式会社製、エポキシ基を3個以上有する分子の比率 100%)。
jER828:ビスフェノールA型エポキシ樹脂(製品名「jER 828」、エポキシ当量189、三菱ケミカル株式会社製)。
jER1032H60:トリスフェノールメタン型エポキシ樹脂(製品名「jER1032H60」、エポキシ当量169、三菱ケミカル株式会社製、エポキシ基を3個以上有する分子の比率 98.4%)。
jER604:ビスフェノールA型エポキシ樹脂(製品名「jER 604」、エポキシ当量120、三菱ケミカル株式会社製、エポキシ基を3個以上有する分子の比率 100%)。
(エポキシ樹脂硬化剤)
Dicy15:ジシアンジアミド(製品名「Dicy15」、三菱ケミカル株式会社製、平均粒径8.3μm)
Dicy1400F:ジシアンジアミド(製品名「Dicyanex 1400F」、エアプロダクツ社製、平均粒径4.5μm)
Dicy15:ジシアンジアミド(製品名「Dicy15」、三菱ケミカル株式会社製、平均粒径8.3μm)
Dicy1400F:ジシアンジアミド(製品名「Dicyanex 1400F」、エアプロダクツ社製、平均粒径4.5μm)
(イミダゾール化合物)
2MAOK:2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物(体積平均粒径1.1μm、製品名「キュアゾール2MAOK-PW」、四国化成社製)。
2MZA:2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン(体積平均粒径1.4μm、製品名「キュアゾール2MZA-PW」、四国化成社製)。
2MAOK:2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン・イソシアヌル酸付加物(体積平均粒径1.1μm、製品名「キュアゾール2MAOK-PW」、四国化成社製)。
2MZA:2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン(体積平均粒径1.4μm、製品名「キュアゾール2MZA-PW」、四国化成社製)。
(エポキシ樹脂硬化促進剤)
TBDMU:2,4-ビス(3,3-ジメチルウレイド)トルエン(製品名「オミキュア24」、ピイ・ティ・アイ・ジャパン社製)。
DCMU:3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(製品名「DCMU99」、保土谷化学工業株式会社製)。
TBDMU:2,4-ビス(3,3-ジメチルウレイド)トルエン(製品名「オミキュア24」、ピイ・ティ・アイ・ジャパン社製)。
DCMU:3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(製品名「DCMU99」、保土谷化学工業株式会社製)。
(強化繊維)
炭素繊維束:製品名「TRW40 50L」、三菱ケミカル株式会社製、引張強度4.1GPa、引張弾性率240GPa、フィラメント数50000本、目付3.75g/m。
炭素繊維束:製品名「TRW40 50L」、三菱ケミカル株式会社製、引張強度4.1GPa、引張弾性率240GPa、フィラメント数50000本、目付3.75g/m。
(硬化開始温度)
硬化開始温度は以下の通り算出した。
硬化開始温度は、エポキシ当量が189のビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製の「jER828」)100質量部に、対象のイミダゾール化合物10質量部を加えて混合して調整した試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC)により発熱量を測定し、得られたDSC曲線の変曲点における接線とベースラインとの交点の温度とした。
2MAOKの硬化開始温度は149.1℃であり、2MZAの硬化開始温度は139.1℃であった。
硬化開始温度は以下の通り算出した。
硬化開始温度は、エポキシ当量が189のビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製の「jER828」)100質量部に、対象のイミダゾール化合物10質量部を加えて混合して調整した試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC)により発熱量を測定し、得られたDSC曲線の変曲点における接線とベースラインとの交点の温度とした。
2MAOKの硬化開始温度は149.1℃であり、2MZAの硬化開始温度は139.1℃であった。
(マスターバッチの調製)
下記表1に記載の質量比で各成分を混練し、次いで三本ロールにて均一に分散させ、マスターバッチI-1~I-7、II-1~II~4を調製した。
下記表1に記載の質量比で各成分を混練し、次いで三本ロールにて均一に分散させ、マスターバッチI-1~I-7、II-1~II~4を調製した。
[実施例1]
溶解釜にエポキシ樹脂a-2を60質量部、N775を25質量部、jER828を10質量部投入して80℃で溶解させた。その後、60℃まで冷却し、マスターバッチI-1を22質量部加え、60℃でさらに撹拌混合して熱硬化性樹脂組成物(C-1)を得た。
得られた熱硬化性樹脂(C-1)の評価結果を表2に示す。
溶解釜にエポキシ樹脂a-2を60質量部、N775を25質量部、jER828を10質量部投入して80℃で溶解させた。その後、60℃まで冷却し、マスターバッチI-1を22質量部加え、60℃でさらに撹拌混合して熱硬化性樹脂組成物(C-1)を得た。
得られた熱硬化性樹脂(C-1)の評価結果を表2に示す。
マルチコーター(ヒラノテクシード社製、M-500型)を用い、熱硬化性樹脂組成物(C-1)を離型紙上に60℃で塗布して、樹脂フィルムを得た。樹脂フィルムの樹脂塗布面上に炭素繊維束をドラムワインドにて巻き付け、同じフィルムで炭素繊維束を挟み込み、熱硬化性樹脂組成物(C-1)を炭素繊維束に含浸させることによって一方向プリプレグを得た。プリプレグにおける炭素繊維束の目付は244g/m2であり、樹脂含有率は31.0質量%であった。
得られたプリプレグを、繊維方向を揃えて10枚積層し、プレス成形(成形温度:140℃、成形時間:5分間)を行い、成形板(繊維強化複合材料)を得た。
得られた成形板の評価結果を表2に示す。
得られた成形板の評価結果を表2に示す。
[実施例2~7]
各成分の組成および樹脂含有量を表2に示すように変更した以外は、実施例1と同様にして熱硬化性樹脂組成物(C-2)~(C-7)を調製した。
得られた熱硬化性樹脂組成物(C-2)~(C-7)を用い、実施例1と同様に樹脂フィルムを作製し、成形板を得た。
得られた熱硬化性樹脂組成物(C-2)~(C-7)、およびこれらの熱硬化性樹脂組成物から得られた成形板の評価結果を表2に示す。
各成分の組成および樹脂含有量を表2に示すように変更した以外は、実施例1と同様にして熱硬化性樹脂組成物(C-2)~(C-7)を調製した。
得られた熱硬化性樹脂組成物(C-2)~(C-7)を用い、実施例1と同様に樹脂フィルムを作製し、成形板を得た。
得られた熱硬化性樹脂組成物(C-2)~(C-7)、およびこれらの熱硬化性樹脂組成物から得られた成形板の評価結果を表2に示す。
[比較例1~4]
各成分の組成および樹脂含有量を表2に示すように変更した以外は、実施例1と同様にして熱硬化性樹脂組成物(X-1)~(X-4)を調製した。
得られた熱硬化性樹脂組成物(X-1)~(X-4)を用い、実施例1と同様に樹脂フィルムを作製し、成形板を得た。
得られた熱硬化性樹脂組成物(X-1)~(X-4)、およびこれらの熱硬化性樹脂組成物から得られた成形板の評価結果を表2に示す。
各成分の組成および樹脂含有量を表2に示すように変更した以外は、実施例1と同様にして熱硬化性樹脂組成物(X-1)~(X-4)を調製した。
得られた熱硬化性樹脂組成物(X-1)~(X-4)を用い、実施例1と同様に樹脂フィルムを作製し、成形板を得た。
得られた熱硬化性樹脂組成物(X-1)~(X-4)、およびこれらの熱硬化性樹脂組成物から得られた成形板の評価結果を表2に示す。
なお、表2中、原料の数値は使用した質量部を示す。また、マスターバッチにおけるカッコ内の記号は使用したマスターバッチの種類を示し、数値は使用したマスターバッチの質量部を示す。
表2に示すように、熱硬化性樹脂組成物(C-1)~(C-5)を用いた実施例1~5では、繊維強化複合材料が高い耐熱性と高い90度曲げ強度を両立しつつ、ハイサイクルプレス成形が可能な速硬化性とプリプレグ製造に必要な保存安定性を兼ね備えている樹脂組成物であることが示された。
実施例6と実施例7では、ハイサイクルプレス成形が可能な速硬化性を発揮することが示された。
実施例6と実施例7では、ハイサイクルプレス成形が可能な速硬化性を発揮することが示された。
熱硬化性樹脂組成物(X-1)を用いた比較例1では、ジシアンジアミドまたはその誘導体が含まれていなかったため、60℃における安定性が低く、ハイサイクルプレス成形に適した速硬化性を有していなかった。また、得られた成形板は耐熱性、90度曲げ強度がともに低かった。
熱硬化性樹脂組成物(X-2)を用いた比較例2では、イミダゾール化合物が含まれていなかったため、ハイサイクルプレス成形に適した速硬化性を有していなかった。また、得られた成形板は耐熱性が低かった。
硬化性樹脂組成物(X-3)もしくは硬化性樹脂組成物(X-4)を用いた比較例3および4では、分子内に2つジメチルウレイド基を持つ尿素誘導体が含まれていなかったため、ハイサイクルプレス成形に適した速硬化性を有していなかった。また、得られた成形板は90度曲げ強度が低かった。
熱硬化性樹脂組成物(X-2)を用いた比較例2では、イミダゾール化合物が含まれていなかったため、ハイサイクルプレス成形に適した速硬化性を有していなかった。また、得られた成形板は耐熱性が低かった。
硬化性樹脂組成物(X-3)もしくは硬化性樹脂組成物(X-4)を用いた比較例3および4では、分子内に2つジメチルウレイド基を持つ尿素誘導体が含まれていなかったため、ハイサイクルプレス成形に適した速硬化性を有していなかった。また、得られた成形板は90度曲げ強度が低かった。
本発明は様々な用途に適用することができ、特に産業用途、なかでも自動車用の材料として有用である。
1 プリプレグ積層体
2 繊維強化複合材料
3 平板部
4 側部
10 プリプレグ
100 金型
110 下型
112 凸部
120 上型
122 凹部
2 繊維強化複合材料
3 平板部
4 側部
10 プリプレグ
100 金型
110 下型
112 凸部
120 上型
122 凹部
Claims (15)
- エポキシ樹脂、エポキシ樹脂硬化剤、イミダゾール化合物、およびエポキシ樹脂硬化促進剤を含む熱硬化性樹脂組成物であって、
前記エポキシ樹脂硬化剤がジシアンジアミドまたはその誘導体であり、
前記エポキシ樹脂硬化促進剤が分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体を含む、熱硬化性樹脂組成物。 - キュラストメーターで測定した硬化完了時間が、140℃において6分以下である、請求項1に記載の熱硬化性樹脂組成物。
- 60℃で5分間保持した後の粘度をV0、60℃で5時間保持した後の粘度をV1としたときに、V1/V0が1.0~4.5である、請求項1または2に記載の熱硬化性樹脂組成物。
- 前記イミダゾール化合物が、硬化開始温度が100℃以上のイミダゾール化合物である、請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。
[硬化開始温度の測定方法]
エポキシ当量が180~220のビスフェノールA型エポキシ樹脂100質量部に、イミダゾール化合物を10質量部加えて混合して調整した試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC)により発熱量を測定し、得られたDSC曲線の変曲点における接線とベースラインとの交点の温度を、そのイミダゾール化合物の硬化開始温度とする。 - 前記イミダゾール化合物が、イミダゾール誘導体、イミダゾールアダクト、包接イミダゾール、マイクロカプセル型イミダゾール、およびイミダゾール付加物からなる群より選ばれる1種を含む、請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。
- 前記イミダゾール化合物が前記イミダゾール付加物であり、前記イミダゾール付加物が、イミダゾールまたはイミダゾール誘導体のイソシアヌル酸付加物である、請求項5に記載の熱硬化性樹脂組成物。
- 前記分子内に2つ以上のジメチルウレイド基を持つ尿素誘導体が、2,4-ビス(3,3-ジメチルウレイド)トルエンおよび4,4’-メチレンビス(フェニルジメチルウレア)の一方または両方である、請求項1~6のいずれか一項に記載の熱硬化性樹脂組成物。
- 100質量部の前記エポキシ樹脂に対して、1~9質量部の前記ジシアンジアミドまたはその誘導体、1~8質量部の前記イミダゾール化合物、および1~8質量部の前記分子内に2つ以上ジメチルウレイド基を持つ尿素誘導体を含有する、請求項1~7のいずれか一項に記載の熱硬化性樹脂組成物。
- 前記エポキシ樹脂が、分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂を含有する、請求項1~8のいずれか一項に記載の熱硬化性樹脂組成物。
- 前記分子内に3つ以上のエポキシ基を有する多官能エポキシ樹脂が、フェノールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、およびテトラグリシジルジアミノジフェニルメタンからなる群より選ばれる1種を含む、請求項9に記載の熱硬化性樹脂組成物。
- 請求項1~11のいずれか一項に記載の熱硬化性樹脂組成物と、強化繊維基材とを含んだプリプレグ。
- 請求項12に記載のプリプレグの硬化物である繊維強化複合材料。
- 請求項12に記載のプリプレグを1枚で、もしくは2枚以上重ね合わせて賦形することにより所望する成形品形状とほぼ正味形状を有するプリフォームを製作し、前記プリフォームを所望する成形品形状に加熱加圧成形することを含む繊維強化複合材料の製造方法。
- 自動車材料用である請求項1~11のいずれか一項に記載の熱硬化性樹脂組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880070429.4A CN111278886B (zh) | 2017-11-16 | 2018-10-31 | 热固性树脂组合物、预浸料、纤维增强复合材料及其制造方法 |
EP18877422.8A EP3712192B1 (en) | 2017-11-16 | 2018-10-31 | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
JP2018561737A JP6766888B2 (ja) | 2017-11-16 | 2018-10-31 | 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 |
US16/861,289 US10988589B2 (en) | 2017-11-16 | 2020-04-29 | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
US17/202,419 US11618803B2 (en) | 2017-11-16 | 2021-03-16 | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-220688 | 2017-11-16 | ||
JP2017220688 | 2017-11-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/861,289 Continuation US10988589B2 (en) | 2017-11-16 | 2020-04-29 | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019098028A1 true WO2019098028A1 (ja) | 2019-05-23 |
Family
ID=66540330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040504 WO2019098028A1 (ja) | 2017-11-16 | 2018-10-31 | 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10988589B2 (ja) |
EP (1) | EP3712192B1 (ja) |
JP (2) | JP6766888B2 (ja) |
CN (1) | CN111278886B (ja) |
WO (1) | WO2019098028A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021169552A (ja) * | 2020-04-15 | 2021-10-28 | 横浜ゴム株式会社 | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2021529224A (ja) * | 2018-06-15 | 2021-10-28 | ダウ グローバル テクノロジーズ エルエルシー | 強化エポキシ組成物 |
JP7536082B2 (ja) | 2019-08-06 | 2024-08-19 | アルツヒエム トローストベアク ゲー・エム・べー・ハー | 貯蔵安定性のあるエポキシ樹脂組成物 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0810744B1 (pt) * | 2007-05-10 | 2018-10-30 | Constar Int Inc | moléculas absorventes de oxigênio, objetos que as contêm, e métodos de sua utilização |
EP3712192B1 (en) * | 2017-11-16 | 2024-08-21 | Mitsubishi Chemical Corporation | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
JP6806234B2 (ja) | 2018-01-16 | 2021-01-06 | 三菱ケミカル株式会社 | プリプレグおよび繊維強化複合材料 |
CN111117162A (zh) * | 2019-12-30 | 2020-05-08 | 长春工业大学 | 基于白藜芦醇的生物基碳纤维复合材料及其制备方法 |
CN115109385A (zh) * | 2021-08-12 | 2022-09-27 | 上海蒂姆新材料科技有限公司 | 一种预浸料用环氧树脂组合物及制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004048435A1 (ja) | 2002-11-28 | 2004-06-10 | Mitsubishi Rayon Co., Ltd. | プリプレグ用エポキシ樹脂、プリプレグ、繊維強化複合材料およびこれらの製造方法 |
WO2014030636A1 (ja) * | 2012-08-20 | 2014-02-27 | 三菱レイヨン株式会社 | エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック |
WO2016087935A1 (en) * | 2014-12-02 | 2016-06-09 | Toray Industries, Inc. | Epoxy resin composition, prepreg, fiber-reinforced plastic material, and manufacturing method for fiber-reinforced plastic material |
WO2016199857A1 (ja) | 2015-06-11 | 2016-12-15 | 三菱レイヨン株式会社 | エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体 |
JP2017002202A (ja) * | 2015-06-11 | 2017-01-05 | 三菱レイヨン株式会社 | エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体 |
JP2017220688A (ja) | 2014-10-03 | 2017-12-14 | 太陽誘電株式会社 | 太陽光発電システム用の電流検出回路 |
WO2018190329A1 (ja) * | 2017-04-12 | 2018-10-18 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
JP2018172603A (ja) * | 2017-03-31 | 2018-11-08 | 三菱ケミカル株式会社 | 樹脂組成物及びその製造方法、プリプレグ、並びに成型体 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054860B2 (ja) | 1979-06-15 | 1985-12-02 | 松下電工株式会社 | 銅張フエノ−ル樹脂積層板 |
JPS56104925A (en) | 1980-01-25 | 1981-08-21 | Hitachi Ltd | Epoxy resin composition |
JPH0692572B2 (ja) * | 1988-11-28 | 1994-11-16 | 日立化成工業株式会社 | 銅張積層板用銅箔接着剤 |
JP2011079983A (ja) | 2009-10-08 | 2011-04-21 | Toray Ind Inc | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 |
KR101806152B1 (ko) | 2009-11-17 | 2017-12-07 | 니폰 가야꾸 가부시끼가이샤 | 신규 열래디컬 발생제, 그 제조방법, 액정 실링제 및 액정 표시셀 |
JP5817206B2 (ja) | 2011-05-09 | 2015-11-18 | 横浜ゴム株式会社 | 繊維強化複合材料用エポキシ樹脂組成物 |
CN107033550A (zh) * | 2017-03-07 | 2017-08-11 | 珠海辉帛复合材料有限公司 | 一种纤维预浸料用快速固化树脂及其制备方法 |
US11661484B2 (en) * | 2017-05-24 | 2023-05-30 | Toray Industries, Inc. | Epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material |
EP3712192B1 (en) * | 2017-11-16 | 2024-08-21 | Mitsubishi Chemical Corporation | Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor |
-
2018
- 2018-10-31 EP EP18877422.8A patent/EP3712192B1/en active Active
- 2018-10-31 JP JP2018561737A patent/JP6766888B2/ja active Active
- 2018-10-31 CN CN201880070429.4A patent/CN111278886B/zh active Active
- 2018-10-31 WO PCT/JP2018/040504 patent/WO2019098028A1/ja unknown
-
2020
- 2020-04-29 US US16/861,289 patent/US10988589B2/en active Active
- 2020-09-15 JP JP2020154797A patent/JP6977842B2/ja active Active
-
2021
- 2021-03-16 US US17/202,419 patent/US11618803B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004048435A1 (ja) | 2002-11-28 | 2004-06-10 | Mitsubishi Rayon Co., Ltd. | プリプレグ用エポキシ樹脂、プリプレグ、繊維強化複合材料およびこれらの製造方法 |
WO2014030636A1 (ja) * | 2012-08-20 | 2014-02-27 | 三菱レイヨン株式会社 | エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック |
JP2017220688A (ja) | 2014-10-03 | 2017-12-14 | 太陽誘電株式会社 | 太陽光発電システム用の電流検出回路 |
WO2016087935A1 (en) * | 2014-12-02 | 2016-06-09 | Toray Industries, Inc. | Epoxy resin composition, prepreg, fiber-reinforced plastic material, and manufacturing method for fiber-reinforced plastic material |
WO2016199857A1 (ja) | 2015-06-11 | 2016-12-15 | 三菱レイヨン株式会社 | エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体 |
JP2017002202A (ja) * | 2015-06-11 | 2017-01-05 | 三菱レイヨン株式会社 | エポキシ樹脂組成物、成形品、プリプレグ、繊維強化複合材料および構造体 |
JP2018172603A (ja) * | 2017-03-31 | 2018-11-08 | 三菱ケミカル株式会社 | 樹脂組成物及びその製造方法、プリプレグ、並びに成型体 |
WO2018190329A1 (ja) * | 2017-04-12 | 2018-10-18 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3712192A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021529224A (ja) * | 2018-06-15 | 2021-10-28 | ダウ グローバル テクノロジーズ エルエルシー | 強化エポキシ組成物 |
JP7536082B2 (ja) | 2019-08-06 | 2024-08-19 | アルツヒエム トローストベアク ゲー・エム・べー・ハー | 貯蔵安定性のあるエポキシ樹脂組成物 |
JP2021169552A (ja) * | 2020-04-15 | 2021-10-28 | 横浜ゴム株式会社 | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP7028276B2 (ja) | 2020-04-15 | 2022-03-02 | 横浜ゴム株式会社 | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
CN115397898A (zh) * | 2020-04-15 | 2022-11-25 | 横滨橡胶株式会社 | 纤维增强复合材料用环氧树脂组合物、预浸料及纤维增强复合材料 |
CN115397898B (zh) * | 2020-04-15 | 2023-11-14 | 横滨橡胶株式会社 | 纤维增强复合材料用环氧树脂组合物、预浸料及纤维增强复合材料 |
Also Published As
Publication number | Publication date |
---|---|
CN111278886B (zh) | 2023-02-17 |
EP3712192A1 (en) | 2020-09-23 |
EP3712192B1 (en) | 2024-08-21 |
US20200255614A1 (en) | 2020-08-13 |
US11618803B2 (en) | 2023-04-04 |
EP3712192A4 (en) | 2020-11-25 |
US10988589B2 (en) | 2021-04-27 |
JP2021006633A (ja) | 2021-01-21 |
CN111278886A (zh) | 2020-06-12 |
JP6977842B2 (ja) | 2021-12-08 |
JP6766888B2 (ja) | 2020-10-14 |
JPWO2019098028A1 (ja) | 2019-11-14 |
US20210198440A1 (en) | 2021-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019098028A1 (ja) | 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 | |
JP6292345B2 (ja) | 成形材料および繊維強化複合材料 | |
JP6521090B2 (ja) | 熱硬化性樹脂組成物、プリプレグ、及び繊維強化プラスチック成形体とその製造方法 | |
WO2014030638A1 (ja) | エポキシ樹脂組成物、及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック | |
JP6771884B2 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
WO2014030636A1 (ja) | エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック | |
JP6771885B2 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
KR20200125579A (ko) | 열경화성 수지 조성물, 프리프레그 및 섬유 강화 복합재료 | |
WO2016104314A1 (ja) | エポキシ樹脂組成物、並びにこれを用いたフィルム、プリプレグ及び繊維強化プラスチック | |
WO2018216643A1 (ja) | 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 | |
JP2018053065A (ja) | 繊維強化複合材料用エポキシ樹脂組成物、および繊維強化複合材料 | |
WO2017056653A1 (ja) | エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料 | |
JP2003096163A (ja) | エポキシ樹脂組成物及び該エポキシ樹脂組成物を使用したプリプレグ | |
JP6844740B2 (ja) | プリプレグおよび繊維強化複合材料、並びにそれらの製造方法 | |
KR20210077674A (ko) | 프리프레그, 섬유 강화 복합 수지 성형체, 관상 성형체의 제조 방법, 에폭시 수지 조성물 및 관상 성형체 | |
WO2018207509A1 (ja) | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料およびその製造方法 | |
JP6079943B1 (ja) | エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料 | |
JP2010248481A (ja) | エポキシ樹脂組成物、プリプレグ、および繊維強化複合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018561737 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18877422 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018877422 Country of ref document: EP Effective date: 20200616 |