WO2018216264A1 - 共振子及び共振装置 - Google Patents

共振子及び共振装置 Download PDF

Info

Publication number
WO2018216264A1
WO2018216264A1 PCT/JP2018/002628 JP2018002628W WO2018216264A1 WO 2018216264 A1 WO2018216264 A1 WO 2018216264A1 JP 2018002628 W JP2018002628 W JP 2018002628W WO 2018216264 A1 WO2018216264 A1 WO 2018216264A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating
resonator
holes
base
arm
Prior art date
Application number
PCT/JP2018/002628
Other languages
English (en)
French (fr)
Inventor
河合 良太
義久 井上
ヴィレ カーヤカリ
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019519459A priority Critical patent/JP6886646B2/ja
Priority to CN201880033623.5A priority patent/CN110663176A/zh
Publication of WO2018216264A1 publication Critical patent/WO2018216264A1/ja
Priority to US16/690,550 priority patent/US11196407B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5621Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks the devices involving a micromechanical structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0595Holders; Supports the holder support and resonator being formed in one body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1057Mounting in enclosures for microelectro-mechanical devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2468Tuning fork resonators
    • H03H9/2478Single-Ended Tuning Fork resonators
    • H03H9/2489Single-Ended Tuning Fork resonators with more than two fork tines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials

Definitions

  • the present invention relates to a resonator and a resonance device in which a plurality of vibrating arms vibrate in an out-of-plane bending vibration mode.
  • a resonance apparatus using a MEMS (Micro Electro Mechanical Systems) technology is used as a timing device, for example.
  • This resonance device is mounted on a printed circuit board incorporated in an electronic device such as a smartphone.
  • the resonance device includes a lower substrate, an upper substrate that forms a cavity between the lower substrate, and a resonator that is disposed in the cavity between the lower substrate and the upper substrate.
  • Patent Document 1 discloses a resonator including a plurality of vibrating arms.
  • the vibrating arm is connected to the front end of the base at its fixed end, and the base is connected to the support at the rear end opposite to the front end.
  • the length of the base portion (direction from the front end toward the rear end) is set smaller than the width, so that the base portion itself is easily bent and displaced.
  • DLD Drive Level Dependency
  • the shape accuracy of the etching itself is almost constant regardless of the length of the base. For this reason, if the base length is shortened in order to improve the DLD, the ratio of the etching variation to the base length length increases, and this has a large influence on the DLD variation, so there is room for further improvement.
  • the present invention has been made in view of such circumstances, and an object thereof is to improve DLD while suppressing variations in DLD in a resonator.
  • a resonator includes: Three or more vibrating arms each having a fixed end and an open end, at least two of which are connected to a plurality of vibrating arms bent out of plane at different phases, and to the fixed ends of the plurality of vibrating arms A vibration portion having a front end and a base portion having a rear end facing the front end; A holding part provided in at least a part of the periphery of the vibrating part; A holding arm provided between the vibrating part and the holding part, one end connected to the base and the other end connected to the holding part; A plurality of holes formed in the vibrating portion; With Each of the plurality of holes is formed in a region in the base portion between any adjacent vibrating arms of the plurality of vibrating arms.
  • the plurality of holes are formed in a region closer to the front end than the rear end in the base portion.
  • the base portion is formed in a region between adjacent vibrating arms that vibrate in mutually opposite phases.
  • a resonator includes: Three or more vibrating arms each having a fixed end and an open end, at least two of which are bent out of plane at different phases, and connected to the fixed ends of the plurality of vibrating arms.
  • a vibration portion having a front end and a base portion having a rear end facing the front end;
  • a holding part provided in at least a part of the periphery of the vibrating part;
  • a holding arm provided between the vibrating part and the holding part, one end connected to the base and the other end connected to the holding part;
  • the plurality of holes are preferably formed in the vicinity of the center of the vibrating arm in the direction in which the plurality of vibrating arms are arranged.
  • each of the plurality of vibrating arms has a shape having a major axis along the extending direction.
  • the plurality of holes are preferably through holes.
  • the plurality of holes are preferably concave portions.
  • a resonator device includes the resonator described above, An upper lid and a lower lid provided opposite to each other with the resonator interposed therebetween, An external electrode.
  • FIG. 1 is a perspective view schematically showing an appearance of a resonance device according to a first embodiment of the present invention.
  • 1 is an exploded perspective view schematically showing a structure of a resonance device according to a first embodiment of the present invention. It is a top view of the resonator which concerns on 1st Embodiment of this invention which removed the upper side board
  • FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. 3.
  • FIG. 4 is a cross-sectional view taken along the line BB ′ in FIG. 3. It is a graph which shows the result of having verified the function of the crevice. It is a top view of the resonator which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a perspective view schematically showing the appearance of the resonance device 1 according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing the structure of the resonance device 1 according to the first embodiment of the present invention.
  • the resonance device 1 includes a resonator 10 and an upper lid 30 and a lower lid 20 provided to face each other with the resonator 10 interposed therebetween. That is, the resonance device 1 is configured by stacking the lower lid 20, the resonator 10, and the upper lid 30 in this order.
  • the resonator 10, the lower lid 20, and the upper lid 30 are joined, whereby the resonator 10 is sealed and a vibration space of the resonator 10 is formed.
  • the resonator 10, the lower lid 20, and the upper lid 30 are each formed using a Si substrate.
  • the resonator 10, the lower lid 20, and the upper lid 30 are joined to each other by bonding the Si substrates together.
  • the resonator 10 and the lower lid 20 may be formed using an SOI substrate.
  • the resonator 10 is a MEMS resonator manufactured using MEMS technology.
  • the resonator 10 is described as an example formed using a silicon substrate.
  • each configuration of the resonance device 1 will be described in detail.
  • the upper lid 30 extends in a flat plate shape along the XY plane, and a flat rectangular parallelepiped concave portion 31 is formed on the back surface thereof.
  • the recess 31 is surrounded by the side wall 33 and forms part of a vibration space that is a space in which the resonator 10 vibrates.
  • the lower lid 20 includes a rectangular flat plate-shaped bottom plate 22 provided along the XY plane, and a side wall 23 extending in the Z-axis direction (that is, the stacking direction of the lower lid 20 and the resonator 10) from the peripheral edge of the bottom plate 22.
  • the lower lid 20 is provided with a recess 21 formed by the surface of the bottom plate 22 and the inner surface of the side wall 23 on the surface facing the resonator 10.
  • the recess 21 forms part of the vibration space of the resonator 10.
  • the vibration space is hermetically sealed by the upper lid 30 and the lower lid 20 described above, and a vacuum state is maintained.
  • the vibration space may be filled with a gas such as an inert gas.
  • FIG. 3 is a plan view schematically showing the structure of the resonator 10 according to the present embodiment. Each configuration of the resonator 10 according to the present embodiment will be described with reference to FIG.
  • the resonator 10 includes a vibrating unit 120, a holding unit 140, and holding arms 111 and 112.
  • the vibration unit 120 has a rectangular outline extending along the XY plane in the orthogonal coordinate system of FIG.
  • the vibrating unit 120 is provided inside the holding unit 140, and a space is formed between the vibrating unit 120 and the holding unit 140 at a predetermined interval.
  • the vibration unit 120 includes a base 130, four vibration arms 135 ⁇ / b> A to 135 ⁇ / b> D (collectively referred to as “vibration arms 135”), and a hole 17.
  • the number of vibrating arms is not limited to four, and is set to an arbitrary number of three or more, for example.
  • each vibrating arm 135 and the base 130 are integrally formed.
  • the base 130 has long sides 131a and 131b in the X-axis direction and short sides 131c and 131d in the Y-axis direction in plan view.
  • the long side 131a is one side of the front end surface 131A (hereinafter also referred to as “front end 131A”) of the base 130
  • the long side 131b is the rear end surface 131B (hereinafter referred to as “rear end 131B”) of the base 130. It is also called one side.
  • the front end 131A and the rear end 131B are provided to face each other.
  • the base 130 is connected to a vibrating arm 135 described later at the front end 131A, and is connected to holding arms 111 and 112 described later at the rear end 131B.
  • the base portion 130 has a substantially rectangular shape in plan view in the example of FIG. 3, but is not limited to this, and the base portion 130 is on a virtual plane P defined along the vertical bisector of the long side 131a.
  • the base 130 may be, for example, a trapezoid whose long side 131b is shorter than 131a, or a semicircular shape whose diameter is the long side 131a.
  • each surface of the base 130 is not limited to a flat surface, and may be a curved surface.
  • the virtual plane P is a plane including a central axis that passes through the center of the vibrating unit 120 in the direction in which the vibrating arms 135 are arranged.
  • the base length L (the length of the short sides 131c and 131d in FIG. 3), which is the longest distance between the front end 131A and the rear end 131B in the direction from the front end 131A to the rear end 131B, is about 45 ⁇ m.
  • the base width W (the length of the long sides 131a and 131b in FIG. 3), which is the width direction orthogonal to the base length direction and is the longest distance between the side ends of the base 130, is about 280 ⁇ m.
  • the vibrating arms 135 extend in the Y-axis direction and have the same size.
  • Each of the resonating arms 135 is provided between the base portion 130 and the holding portion 140 in parallel with the Y-axis direction, and one end is connected to the front end 131A of the base portion 130 to be a fixed end, and the other end is an open end. It has become.
  • the vibrating arms 135 are provided in parallel at predetermined intervals in the X-axis direction.
  • the vibrating arm 135 has a width in the X-axis direction of about 50 ⁇ m and a length in the Y-axis direction of about 465 ⁇ m.
  • Each vibrating arm 135 has a weight G at the open end.
  • the weight part G is wider in the X-axis direction than other parts of the vibrating arm 135.
  • the weight G has a width in the X-axis direction of about 70 ⁇ m.
  • the weight part G is integrally formed by the same process as the vibrating arm 135.
  • the vibrating arm 135 has a weight per unit length that is heavier on the open end side than on the fixed end side. Therefore, the vibration arm 135 has the weight portion G on the open end side, so that the amplitude of vibration in the vertical direction in each vibration arm can be increased.
  • two vibrating arms 135A and 135D are arranged on the outside in the X-axis direction, and two vibrating arms 135B and 135C are arranged on the inside.
  • the interval W1 between the vibrating arms 135B and 135C in the X-axis direction is the outer vibrating arm 135A (135D) and the inner vibrating arm 135B (135C) adjacent to the outer vibrating arm 135A (135D) in the X-axis direction.
  • the interval W1 is, for example, about 10 ⁇ m
  • the interval W2 is, for example, about 5 ⁇ m.
  • the interval W1 may be set smaller than the interval W2, or may be set at an equal interval.
  • holes 17 are respectively formed in regions between the outer vibrating arms 135A and 135D and the inner vibrating arms 135B and 135C in the base portion 130 (that is, between the extension lines of the vibrating arms). ing.
  • the hole 17 is a through hole having an arc-shaped opening having a width along the X-axis direction of about 5 ⁇ m and a length along the Y-axis direction of about 18 ⁇ m.
  • the hole 17 is formed in the region on the front end 131A side of the base portion 130 so as to have a long diameter in a direction in which the vibrating arm 135 extends (a direction from the front end 131A toward the rear end 131B).
  • the holes 17 are formed in the thickness direction of the base portion 130 (vibration direction of the vibrating arm 135).
  • the shape and position of the hole 17 are not limited to the example of FIG.
  • the shape of the hole 17 may be a polygon, a circle, an ellipse, or the like, and is not limited to a through-hole, and may be a depression (concave).
  • the hole 17 is formed in a polygonal shape, it is preferable from the viewpoint of the strength of the base portion 130 and the like that the shape of the opening be chamfered.
  • the positions where the holes 17 are formed may be substantially symmetric with respect to the virtual plane P.
  • the holes 17 are (1) one in a region between the outermost vibrating arm and the second vibrating arm from the outside (two in total).
  • Configuration formed (2) Configuration formed one by one in the region between the second and third vibrating arms from the outside (two in total), and (3) Outermost and second from the outside
  • a configuration in which one (a total of four) is formed between the first and third vibrating arms, a configuration in which one (four) is formed between all the vibrating arms, and the like are conceivable. .
  • the hole 17 when the hole 17 is hollow, the hole 17 may be formed from the region on the front end 131A side to the region on the rear end 131B side.
  • the number of holes 17 formed in the region between the vibrating arms 135 is not limited to one, and may be plural. In this case, it is preferable that the holes 17 have a long diameter in the direction along the front end 131A, and the plurality of holes 17 are aligned at substantially equal intervals in the direction from the front end 131A to the rear end 131B.
  • a protective film 235 is formed on the surface of the vibration unit 120 (the surface facing the upper lid 30) so as to cover the entire surface. Further, frequency adjustment films 236A to 236D (hereinafter, frequency adjustment films 236A to 236D are collectively referred to as “frequency adjustment film 236”) are formed on part of the surface of the protective film 235 in the vibrating arms 135A to 135D, respectively. Is formed.
  • the resonance frequency of the vibration unit 120 can be adjusted by the protective film 235 and the frequency adjustment film 236.
  • the protective film 235 does not necessarily cover the entire surface of the vibration unit 120, but damages to the underlying electrode film (for example, the metal layer E2 in FIG. 4) and the piezoelectric film (for example, the piezoelectric thin film F3 in FIG. 4) in frequency adjustment. Is desirable to protect the entire surface of the vibration part 120.
  • the frequency adjustment film 236 is formed on the protective film 235 so that the surface of the vibration part 120 is exposed in at least a part of a region where displacement due to vibration is relatively larger than other regions. Specifically, the frequency adjustment film 236 is formed on the tip of the vibrating arm 135, that is, the weight part G. On the other hand, the surface of the protective film 235 is exposed in other regions of the vibrating arm 135. In this embodiment, the frequency adjustment film 236 is formed up to the tip of the vibrating arm 135, and the protective film 235 is not exposed at the tip, but the frequency adjustment film 236 is formed so that a part of the protection film 235 is exposed. A configuration in which the vibration arm 135 is not formed on the tip portion is also possible.
  • the holding part 140 is formed in a rectangular frame shape along the XY plane.
  • the holding unit 140 is provided so as to surround the outside of the vibrating unit 120 along the XY plane in plan view.
  • maintenance part 140 should just be provided in at least one part of the circumference
  • the holding unit 140 may be provided around the vibrating unit 120 to such an extent that the holding unit 140 holds the vibrating unit 120 and can be joined to the upper lid 30 and the lower lid 20.
  • the holding portion 140 is formed of prismatic frame bodies 140a to 140d that are integrally formed.
  • the frame body 140 a faces the open end of the resonating arm 135 and is provided with a longitudinal direction parallel to the X axis.
  • the frame 140b faces the rear end 131B of the base 130, and the longitudinal direction is provided in parallel with the X axis.
  • the frame body 140c faces the side end (short side 131c) of the base portion 130 and the vibrating arm 135A, the longitudinal direction is provided in parallel to the Y axis, and is connected to one end of each of the frame bodies 140a and 140b at both ends thereof. .
  • the frame body 140d faces the side end (short side 131d) of the base portion 130 and the vibrating arm 135D, and the longitudinal direction is provided parallel to the Y axis, and is connected to the other ends of the frame bodies 140a and 140b at both ends thereof.
  • the holding unit 140 is described as being covered with the protective film 235, but the present invention is not limited to this, and the protective film 235 may not be formed on the surface of the holding unit 140.
  • (C) Holding arms 111 and 112 The holding arm 111 and the holding arm 112 are provided inside the holding portion 140 and connect the rear end 131B of the base portion 130 and the frame bodies 140c and 140d. As shown in FIG. 3, the holding arm 111 and the holding arm 112 are formed in substantially plane symmetry with respect to a virtual plane P defined parallel to the YZ plane along the center line of the base portion 130 in the X-axis direction. .
  • the holding arm 111 has arms 111a, 111b, 111c, and 111d. One end of the holding arm 111 is connected to the rear end 131B of the base portion 130, and extends therefrom toward the frame body 140b.
  • the holding arm 111 is bent in the direction toward the frame body 140c (that is, the X-axis direction), further bent in the direction toward the frame body 140a (that is, the Y-axis direction), and again in the direction toward the frame body 140c ( That is, it is bent in the X-axis direction) and the other end is connected to the frame 140c.
  • the arm 111a is provided between the base portion 130 and the frame body 140b so as to face the frame body 140c so that the longitudinal direction thereof is parallel to the Y axis.
  • One end of the arm 111a is connected to the base portion 130 at the rear end 131B, and extends substantially perpendicular to the rear end 131B, that is, in the Y-axis direction.
  • the axis passing through the center in the X-axis direction of the arm 111a is preferably provided inside the center line of the vibrating arm 135A.
  • the arm 111a is provided between the vibrating arms 135A and 135B. ing.
  • the other end of the arm 111a is connected to one end of the arm 111b on the side surface.
  • the arm 111a has a width defined in the X-axis direction of about 20 ⁇ m and a length defined in the Y-axis direction of 40 ⁇ m.
  • the arm 111b is provided between the base portion 130 and the frame body 140b so as to face the frame body 140b so that the longitudinal direction is parallel to the X-axis direction.
  • One end of the arm 111b is connected to the side surface on the side opposite to the frame 140c, which is the other end of the arm 111a, and extends substantially perpendicular to the arm 111a, that is, in the X-axis direction.
  • the other end of the arm 111b is connected to a side surface that is one end of the arm 111c and faces the vibrating unit 120.
  • the arm 111b has a width defined in the Y-axis direction of about 20 ⁇ m and a length defined in the X-axis direction of about 75 ⁇ m.
  • the arm 111c is provided between the base 130 and the frame 140c so as to face the frame 140c so that the longitudinal direction is parallel to the Y-axis direction.
  • One end of the arm 111c is connected to the other end of the arm 111b on its side surface, and the other end is one end of the arm 111d and connected to the side surface on the frame 140c side.
  • the arm 111c has a width defined in the X-axis direction of about 20 ⁇ m and a length defined in the Y-axis direction of about 140 ⁇ m.
  • the arm 111d is provided between the base portion 130 and the frame body 140c so as to face the frame body 140a so that the longitudinal direction is parallel to the X-axis direction.
  • One end of the arm 111d is connected to the side surface on the side opposite to the frame 140c, which is the other end of the arm 111c.
  • the arm 111d is connected to the frame 140c at a position where the other end faces the vicinity of the connection portion between the vibrating arm 135A and the base 130, and from there, it is substantially perpendicular to the frame 140c, that is, X It extends in the axial direction.
  • the arm 111d has a width defined in the Y-axis direction of about 20 ⁇ m and a length defined in the X-axis direction of about 10 ⁇ m.
  • the holding arm 111 is connected to the base portion 130 in the arm 111a, and is bent at a connection place between the arms 111a and 111b, a connection place between the arms 111b and 111c, and a connection place between the arms 111c and 111d. In this configuration, it is connected to the holding unit 140.
  • the holding arm 112 has arms 112a, 112b, 112c, and 112d.
  • One end of the holding arm 112 is connected to the rear end 131B of the base 130, and extends therefrom toward the frame 140b.
  • the holding arm 112 is bent in the direction toward the frame body 140d (that is, the X-axis direction), is further bent in the direction toward the frame body 140a (that is, the Y-axis direction), and is again directed toward the frame body 140d. It is bent (that is, in the X-axis direction) and the other end is connected to the frame body 140d.
  • the configurations of the arms 112a, 112b, 112c, and 112d are symmetrical to the arms 111a, 111b, 111c, and 111d, respectively, and thus detailed description thereof is omitted.
  • the holding arms 111 and 112 are not limited to a shape that is bent at a right angle at a connection portion of each arm, but may be a curved shape. Further, the number of times the holding arms 111 and 112 are bent is not limited to the above-described one. For example, a configuration in which the holding arms 111 and 112 are bent only once and connected to the rear end 131B of the base 130 and the frame bodies 140c and 140d, or twice. It may be configured to be bent and connected to the rear end 131B of the base portion 130 and the frame body 140a, or to be connected to the rear end 131B of the base portion 130 and the frame body 140b without being bent once. Moreover, the connection location of the holding arms 111 and 112 in the base portion 130 is not limited to the rear end 131B, but may be configured to be connected to a side surface connecting the front end 131A and the rear end 131B.
  • FIG. 4A is a schematic diagram schematically showing the AA ′ cross section of FIG. 3 and the electrical connection mode of the resonator 10.
  • 4B is a schematic view showing a BB ′ cross section of FIG.
  • the holding portion 140, the base portion 130, the vibrating arm 135, and the holding arms 111 and 112 are integrally formed by the same process.
  • the metal layer E1 is first laminated on the Si (silicon) substrate F2.
  • a piezoelectric thin film F3 is laminated on the metal layer E1 so as to cover the metal layer E1, and a metal layer E2 is laminated on the surface of the piezoelectric thin film F3.
  • a protective film 235 is laminated on the metal layer E2 so as to cover the metal layer E2.
  • a frequency adjustment film 236 is further laminated on the protective film 235. Note that by using a degenerate silicon substrate having low resistance, the Si substrate F2 itself can also serve as the metal layer E1, so that the metal layer E1 can be omitted.
  • the Si substrate F2 is formed of, for example, a degenerate n-type Si semiconductor having a thickness of about 6 ⁇ m, and can include P (phosphorus), As (arsenic), Sb (antimony), and the like as n-type dopants.
  • the resistance value of degenerate Si used for the Si substrate F2 is, for example, less than 1.6 m ⁇ ⁇ cm, and more preferably 1.2 m ⁇ ⁇ cm or less.
  • a silicon oxide (for example, SiO 2 ) layer (temperature characteristic correction layer) F21 is formed on the lower surface of the Si substrate F2. This makes it possible to improve temperature characteristics.
  • the silicon oxide layer (temperature characteristic correction layer) F21 is a vibration part when the temperature correction layer is formed on the Si substrate F2 as compared with the case where the silicon oxide layer F21 is not formed on the Si substrate F2.
  • the vibration unit 120 includes the silicon oxide layer F21, for example, the resonance frequency of the laminated structure including the Si substrate F2, the metal layers E1, E2, the piezoelectric thin film F3, and the silicon oxide layer (temperature correction layer) F21 depends on the temperature. Changes can be reduced.
  • the silicon oxide layer F21 is desirably formed with a uniform thickness.
  • uniform thickness means that the dispersion
  • the silicon oxide layer F21 may be formed on the upper surface of the Si substrate F2, or may be formed on both the upper surface and the lower surface of the Si substrate F2. In the holding unit 140, the silicon oxide layer F21 may not be formed on the lower surface of the Si substrate F2.
  • the metal layers E2 and E1 are formed using, for example, Mo (molybdenum) or aluminum (Al) having a thickness of about 0.1 to 0.2 ⁇ m.
  • the metal layers E2 and E1 are formed in a desired shape by etching or the like.
  • the metal layer E ⁇ b> 1 is formed to function as a lower electrode on the vibration unit 120.
  • the metal layer E ⁇ b> 1 is formed on the holding arms 111 and 112 and the holding unit 140 so as to function as wiring for connecting the lower electrode to an AC power source provided outside the resonator 10.
  • the metal layer E2 is formed on the vibrating part 120 so as to function as an upper electrode. Further, the metal layer E ⁇ b> 2 is formed on the holding arms 111, 112 and the holding unit 140 so as to function as a wiring for connecting the upper electrode to a circuit provided outside the resonator 10.
  • an electrode (an example of an external electrode) is formed on the outer surface of the upper lid 30, and the electrode connects the circuit to the lower wiring or the upper wiring.
  • a configuration or a configuration in which a via is formed in the upper lid 30 and a conductive material is filled in the via to provide a wiring, and the wiring connects the AC power source and the lower wiring or the upper wiring may be used.
  • the piezoelectric thin film F3 is a piezoelectric thin film that converts an applied voltage into vibration, and can be mainly composed of a nitride or oxide such as AlN (aluminum nitride). Specifically, the piezoelectric thin film F3 can be formed of ScAlN (scandium aluminum nitride). ScAlN is obtained by replacing a part of aluminum in aluminum nitride with scandium.
  • the piezoelectric thin film F3 has a thickness of 1 ⁇ m, for example, but it is also possible to use about 0.2 ⁇ m to 2 ⁇ m.
  • the piezoelectric thin film F3 expands and contracts in the in-plane direction of the XY plane, that is, the Y-axis direction, according to the electric field applied to the piezoelectric thin film F3 by the metal layers E2 and E1.
  • the expansion and contraction of the piezoelectric thin film F3 causes the vibrating arm 135 to displace its open ends toward the inner surfaces of the lower lid 20 and the upper lid 30 and vibrate in an out-of-plane bending vibration mode.
  • the protective film 235 is an insulating layer and is formed of a material whose mass reduction rate by etching is slower than that of the frequency adjustment film 236.
  • the protective film 235 is formed of a nitride film such as AlN or SiN, or an oxide film such as Ta 2 O 5 (tantalum pentoxide) or SiO 2 .
  • the mass reduction rate is represented by the product of the etching rate (thickness removed per unit time) and the density.
  • the thickness of the protective film 235 is less than half the thickness of the piezoelectric thin film F3, and is about 0.2 ⁇ m in this embodiment, for example.
  • the frequency adjustment film 236 is a conductor layer, and is formed of a material whose mass reduction rate by etching is faster than that of the protective film 235.
  • the frequency adjustment film 236 is made of, for example, a metal such as molybdenum (Mo), tungsten (W), gold (Au), platinum (Pt), nickel (Ni), aluminum (Al), or titanium (Ti).
  • the protective film 235 and the frequency adjusting film 236 may have any etching rate relationship as long as the mass reduction rate relationship is as described above.
  • the frequency adjustment film 236 is formed on substantially the entire surface of the vibration part 120 and then formed only in a predetermined region by processing such as etching.
  • Etching of the protective film 235 and the frequency adjustment film 236 is performed, for example, by simultaneously irradiating the protective film 235 and the frequency adjustment film 236 with an ion beam (for example, an argon (Ar) ion beam).
  • an ion beam for example, an argon (Ar) ion beam.
  • the ion beam can be irradiated over a wider range than the resonator 10. Note that the etching method is not limited to an ion beam.
  • the function of the resonator 10 will be described with reference to FIG. 4A.
  • the phase of the electric field applied to the outer vibrating arms 135A and 135D and the phase of the electric field applied to the inner vibrating arms 135B and 135C are set to be opposite to each other.
  • the outer vibrating arms 135A and 135D and the inner vibrating arms 135B and 135C are displaced in directions opposite to each other.
  • the outer vibrating arms 135 ⁇ / b> A and 135 ⁇ / b> D displace the open end toward the inner surface of the upper lid 30
  • the inner vibrating arms 135 ⁇ / b> B and 135 ⁇ / b> C displace the open end toward the inner surface of the lower lid 20.
  • twisting moments in opposite directions are generated between the central axes r 1 and r 2
  • bending vibration is generated in the vibration unit 120.
  • distortion is concentrated in the region near the central axes r1 and r2 in the base 130.
  • the resonance frequency of the resonator 10 is measured, and the deviation from the target frequency is calculated.
  • the film thickness of the frequency adjustment film 236 is adjusted based on the calculated frequency deviation.
  • the film thickness of the frequency adjustment film 236 can be adjusted, for example, by irradiating the entire surface of the resonance device 1 with an argon (Ar) ion beam and etching the frequency adjustment film 236. Furthermore, when the film thickness of the frequency adjustment film 236 is adjusted, it is desirable to clean the resonator 10 and remove the scattered film.
  • FIG. 5 is a graph showing the results of verifying DLD for the resonator 10 according to the present embodiment and the resonator 10 ′ in the comparative example having no hole 17.
  • the resonator 10 ′ of the comparative example does not have the hole 17, but the other configuration is the same as that of the resonator 10.
  • the horizontal axis indicates the drive level
  • the vertical axis indicates the frequency change rate.
  • the solid line indicates the verification result of the resonator 10
  • the broken line indicates the verification result of the resonator 10 ′.
  • the outer vibrating arms 135A and 135D and the inner vibrating arms 135B and 135C vibrate in opposite phases. Therefore, when the resonator 10 vibrates, the region of the base 130 between the outer vibrating arms 135A and 135D and the inner vibrating arms 135B and 135C (regions near the central axes r1 and r2 in FIG. 4A) Distortion due to vibration will be concentrated.
  • the hole 17 is formed in a region where the strain is concentrated, so that the rigidity of the region is reduced. As a result, since the concentration of strain in the region is relaxed, the influence of vibration attenuation due to holding is reduced, so that DLD is improved.
  • FIG. 6 is a plan view schematically showing an example of the structure of the resonator 10 according to the present embodiment.
  • the resonator 10 according to the present embodiment is different from the first embodiment in the configuration of the base 130 and the position where the hole 17 is formed.
  • the base 130 is adjusted to have a base length L with respect to the base width W so as to be easily bent in the Z-axis direction. Specifically, the base length L is adjusted by etching or the like when forming the base 130 so that L / W ⁇ 0.3. When the base length L is shortened, the base 130 is easily bent in the Z-axis direction, and as a result, DLD is improved (frequency shifts in the negative direction).
  • the hole 17 is formed in the vicinity of the roots of the vibrating arms 135A to 135D. Specifically, the hole 17 is formed in the vicinity of the center of the vibration plate 135 in the width direction from the connection point with the front end 131 ⁇ / b> A of the vibration arm 135 to a length of about 7 ⁇ m toward the open end. The width of the hole 17 is about 5 ⁇ m.
  • the shape and position of the hole 17 are not limited to the example in FIG. 6.
  • the shape of the hole 17 may be a polygon, a circle, an ellipse, or the like, and is not limited to a through hole. It may be a depression.
  • the position where the hole 17 is formed may be a position that is substantially symmetric with respect to the virtual plane P. Further, the hole 17 may be formed from the vibrating arm 135 to the base portion 130.
  • the resonator 10 is caused by the fact that the size of the hole 17 is increased while the base length L of the base portion 130 is shortened and the DLD is improved by increasing the etching amount. DLD deteriorates. As a result, the improvement and the deterioration of the DLD are offset, so that the DLD can be improved while reducing variations in the DLD due to etching.
  • Other configurations and functions of the resonator 10 are the same as those in the first embodiment.
  • the resonator 10 includes three or more vibrating arms 135 each having a fixed end and an open end, and at least two of the vibrating arms 135 are bent out of plane at different phases. And at least a part of the periphery of the vibrating part 120, and a vibrating part 120 having a front end 131A connected to fixed ends of the plurality of vibrating arms 135 and a base part 130 having a rear end 131B opposite to the front end 131A.
  • the holding unit 140 provided, the holding arm 111 (112) provided between the vibrating unit 120 and the holding unit 140, having one end connected to the base 130 and the other end connected to the holding unit 140, and the vibrating unit 120.
  • the plurality of holes 17 are formed in the region between any adjacent vibrating arms 135 of the plurality of vibrating arms 135 in the base portion 130, respectively.Thereby, the rigidity of the region where the distortion due to vibration is concentrated in the base portion 130 can be reduced. As a result, since the concentration of strain in the region is relaxed, the influence of vibration attenuation due to holding is reduced, and DLD can be improved.
  • the plurality of holes 17 are preferably formed in a region closer to the front end 131A than to the rear end 131B in the base portion 130. It is also preferable that the plurality of holes 17 be formed in a region in the base portion 130 between adjacent vibrating arms that vibrate in mutually opposite phases. In the region between adjacent vibrating arms that vibrate in opposite phases in the base portion 130, distortion due to vibration tends to concentrate. Therefore, this preferred embodiment can effectively reduce the concentration of distortion, so that DLD can be further improved.
  • the resonator 10 includes three or more vibrating arms 135 each having a fixed end and an open end, and at least two of them are bent out of plane at different phases. At least one of the periphery of the vibration part 120 and the vibration part 120 having the arm 135, the front end 131A connected to the fixed ends of the plurality of vibration arms 135, and the base part 130 having the rear end 131B facing the front end 131A.
  • the resonator 10 is improved in DLD by decreasing the base length L of the base 130 due to an increase in the etching amount, while the DLD is deteriorated due to the increase in the size of the hole 17. .
  • the improvement and the deterioration of the DLD are offset, so that the DLD can be improved while reducing variations in the DLD due to etching.
  • the plurality of holes 17 are preferably formed in the vicinity of the center of the vibrating arm 135 in the direction in which the plurality of vibrating arms 135 are arranged. Moreover, it is preferable that the plurality of holes 17 have a shape having a long diameter along a direction in which each of the plurality of vibrating arms 135 extends. According to this preferable aspect, it can reduce that the intensity
  • the plurality of holes 17 are formed at positions symmetrical to each other with respect to the central axis passing through the center of the vibrating unit 120 in the direction in which the plurality of vibrating arms 135 are arranged. Moreover, it is preferable that the plurality of holes 17 are through holes or recesses.
  • a resonator 10 according to an embodiment of the present invention includes the resonator 10 described above, an upper lid 30 and a lower lid 20 that are provided to face each other with the resonator 10 interposed therebetween, and an external electrode. .
  • each embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • the laminated body composed of the metal layer E2 and the piezoelectric thin film F3 has been described as a single layer, but is not limited thereto.
  • the resonator 10 may have a configuration in which a laminated body including the metal layer E2 and the piezoelectric thin film F3 is a multilayer, and a protective film 235 is formed on the surface of the uppermost layer (on the upper lid 30 side).
  • a laminated body including the metal layer E2 and the piezoelectric thin film F3 is a multilayer, and a protective film 235 is formed on the surface of the uppermost layer (on the upper lid 30 side).

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

共振子において、DLDのばらつきを抑制しつつ、DLDを改善する。 各々が固定端と開放端とを有する3本以上の振動腕であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕、並びに、前記複数の振動腕の固定端に接続される前端、及び当該前端に対向する後端を有する基部、を有する振動部と、前記振動部の周囲の少なくとも一部に設けられた保持部と、前記振動部と前記保持部との間に設けられ、一端が前記基部に接続され、他端が前記保持部に接続された保持腕と、前記振動部に形成された複数の孔と、を備え、前記複数の孔は、それぞれ、前記基部における、前記複数の振動腕におけるいずれかの隣同士の振動腕の間の領域に形成された。

Description

共振子及び共振装置
 本発明は、複数の振動腕が面外の屈曲振動モードで振動する共振子及び共振装置に関する。
 従来、MEMS(Micro Electro Mechanical Systems)技術を用いた共振装置が例えばタイミングデバイスとして用いられている。この共振装置は、スマートフォンなどの電子機器内に組み込まれるプリント基板上に実装される。共振装置は、下側基板と、下側基板との間でキャビティを形成する上側基板と、下側基板及び上側基板の間でキャビティ内に配置された共振子と、を備えている。
 例えば特許文献1には、複数の振動腕を備えた共振子が開示されている。この共振子では、振動腕はその固定端で基部の前端に接続されており、基部は、前端とは反対側の後端で支持部に接続されている。特許文献1に記載された共振子において、基部はその長さ(前端から後端へ向かう方向)が幅に対して小さく設定されることにより、基部自体が屈曲変位しやすい構造となっている。これによってDLD(Drive Level Dependency)の改善が図られている。
国際公開第2016/175218号
 エッチングに伴う形状精度自体は、基部長の長短によらずほぼ一定である。このため、DLDを改善しようとして基部長を短くすると、基部長長さに対するエッチングばらつきの比率が大きくなる、これによりDLDばらつきへの影響が大きくなるため、さらなる改善の余地がある。
 本発明はこのような事情に鑑みてなされたものであり、共振子において、DLDのばらつきを抑制しつつ、DLDを改善することを目的とする。
 本発明の一側面に係る共振子は、
 各々が固定端と開放端とを有する3本以上の振動腕であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕、並びに、前記複数の振動腕の固定端に接続される前端、及び当該前端に対向する後端を有する基部、を有する振動部と、
 前記振動部の周囲の少なくとも一部に設けられた保持部と、
 前記振動部と前記保持部との間に設けられ、一端が前記基部に接続され、他端が前記保持部に接続された保持腕と、
 前記振動部に形成された複数の孔と、
を備え、
 前記複数の孔は、それぞれ、前記基部における、前記複数の振動腕におけるいずれかの隣同士の振動腕の間の領域に形成された、ものである。
 また、前記複数の孔は、前記基部における前記後端よりも前記前端に近い領域に形成された、ものであることが好ましい。
 また、前記複数の孔は、
 前記基部における、互いに逆相で振動する隣同士の振動腕の間の領域に形成された、ものであることが好ましい。
 本発明の一側面に係る共振子は、
 各々が固定端と開放端とを有する3本以上の振動腕であって、少なくとも2本が異なる位相で面外屈曲する、複数の振動腕、並びに、前記複数の振動腕の固定端に接続される前端、及び当該前端に対向する後端を有する基部、を有する振動部と、
 前記振動部の周囲の少なくとも一部に設けられた保持部と、
 前記振動部と前記保持部との間に設けられ、一端が前記基部に接続され、他端が前記保持部に接続された保持腕と、
 前記振動部に形成された複数の孔と、
を備え、
 前記複数の孔は、それぞれ、前記複数の振動腕のうちのいずれかの振動腕における前記開放端よりも前記固定端に近い領域に形成された、ものである。
 また、前記複数の孔は、それぞれ、前記複数の振動腕が並ぶ方向における当該振動腕の中央近傍に形成された、ものであることが好ましい。
 また、前記複数の孔は、
 前記複数の振動腕のそれぞれが延在する方向に沿った長径を有する形状である、ことが好ましい。
 前記複数の孔は、それぞれ、前記振動部における、前記複数の振動腕が並ぶ方向の中心を通る中心軸について互いに対称な位置に形成された、請求項1乃至6の何れか一項に記載の共振子。
 また、前記複数の孔は、貫通孔である、ことが好ましい。
 また、前記複数の孔は、凹部である、ことが好ましい。
 本発明の一側面に係る共振装置は、上記の共振子と、
 前記共振子を間に挟んで互いに対向して設けられた上蓋及び下蓋と、
 外部電極と、を備える。
 本発明によれば、共振子において、DLDのばらつきを抑制しつつ、DLDを改善することができる。
本発明の第1実施形態に係る共振装置の外観を概略的に示す斜視図である。 本発明の第1実施形態に係る共振装置の構造を概略的に示す分解斜視図である。 上側基板を取り外した本発明の第1実施形態に係る共振子の平面図である。 図3のAA’線に沿った断面図である。 図3のBB’線に沿った断面図である。 凹部の機能を検証した結果を示すグラフである。 本発明の第2実施形態に係る共振子の平面図である。
[第1実施形態]
 以下、添付の図面を参照して本発明の第1実施形態について説明する。図1は、本発明の第1実施形態に係る共振装置1の外観を概略的に示す斜視図である。また、図2は、本発明の第1実施形態に係る共振装置1の構造を概略的に示す分解斜視図である。
 この共振装置1は、共振子10と、共振子10を挟んで互いに対向するように設けられた上蓋30及び下蓋20と、を備えている。すなわち、共振装置1は、下蓋20と、共振子10と、上蓋30とがこの順で積層されて構成されている。
 また、共振子10と下蓋20及び上蓋30とが接合され、これにより、共振子10が封止され、共振子10の振動空間が形成される。共振子10、下蓋20及び上蓋30は、それぞれSi基板を用いて形成されている。そして、共振子10、下蓋20及び上蓋30は、Si基板同士が互いに接合されて、互いに接合される。共振子10及び下蓋20は、SOI基板を用いて形成されてもよい。
 共振子10は、MEMS技術を用いて製造されるMEMS共振子である。なお、本実施形態においては、共振子10はシリコン基板を用いて形成されるものを例として説明する。以下、共振装置1の各構成について詳細に説明する。
(1.上蓋30)
 上蓋30はXY平面に沿って平板状に広がっており、その裏面に例えば平たい直方体形状の凹部31が形成されている。凹部31は、側壁33に囲まれており、共振子10が振動する空間である振動空間の一部を形成する。
(2.下蓋20)
 下蓋20は、XY平面に沿って設けられる矩形平板状の底板22と、底板22の周縁部からZ軸方向(すなわち、下蓋20と共振子10との積層方向)に延びる側壁23とを有する。下蓋20には、共振子10と対向する面において、底板22の表面と側壁23の内面とによって形成される凹部21が設けられる。凹部21は、共振子10の振動空間の一部を形成する。上述した上蓋30と下蓋20とによって、この振動空間は気密に封止され、真空状態が維持される。この振動空間には、例えば不活性ガス等の気体が充填されてもよい。
(3.共振子10)
 図3は、本実施形態に係る、共振子10の構造を概略的に示す平面図である。図3を用いて本実施形態に係る共振子10の、各構成について説明する。共振子10は、振動部120と、保持部140と、保持腕111、112とを備えている。
(a)振動部120
 振動部120は、図3の直交座標系におけるXY平面に沿って広がる矩形の輪郭を有している。振動部120は、保持部140の内側に設けられており、振動部120と保持部140との間には、所定の間隔で空間が形成されている。図3の例では、振動部120は、基部130と4本の振動腕135A~135D(まとめて「振動腕135」とも呼ぶ。)と、孔17とを有している。なお、振動腕の数は、4本に限定されず、例えば3本以上の任意の数に設定される。本実施形態において、各振動腕135と、基部130とは、一体に形成されている。
・基部130
 基部130は、平面視において、X軸方向に長辺131a、131b、Y軸方向に短辺131c、131dを有している。長辺131aは、基部130の前端の面131A(以下、「前端131A」とも呼ぶ。)の一つの辺であり、長辺131bは基部130の後端の面131B(以下、「後端131B」とも呼ぶ。)の一つの辺である。基部130において、前端131Aと後端131Bとは、互いに対向するように設けられている。
 基部130は、前端131Aにおいて、後述する振動腕135に接続され、後端131Bにおいて、後述する保持腕111、112に接続されている。なお、基部130は、図3の例では平面視において、略長方形の形状を有しているがこれに限定されず、長辺131aの垂直二等分線に沿って規定される仮想平面Pに対して略面対称に形成されていればよい。基部130は、例えば、長辺131bが131aより短い台形や、長辺131aを直径とする半円の形状であってもよい。また、基部130の各面は平面に限定されず、湾曲した面であってもよい。なお、仮想平面Pは、振動部120における、振動腕135が並ぶ方向の中心を通る中心軸を含む平面である。
 基部130において、前端131Aから後端131Bに向かう方向における、前端131Aと後端131Bとの最長距離である基部長L(図3においては短辺131c、131dの長さ)は45μm程度である。また、基部長方向に直交する幅方向であって、基部130の側端同士の最長距離である基部幅W(図3においては長辺131a、131bの長さ)は280μm程度である。
・振動腕135
 振動腕135は、Y軸方向に延び、それぞれ同一のサイズを有している。振動腕135は、それぞれが基部130と保持部140との間にY軸方向に平行に設けられ、一端は、基部130の前端131Aと接続されて固定端となっており、他端は開放端となっている。また、振動腕135は、それぞれ、X軸方向に所定の間隔で、並列して設けられている。なお、振動腕135は、例えばX軸方向の幅が50μm程度、Y軸方向の長さが465μm程度である。
 振動腕135はそれぞれ開放端に、錘部Gを有している。錘部Gは、振動腕135の他の部位よりもX軸方向の幅が広い。錘部Gは、例えば、X軸方向の幅が70μm程度である。錘部Gは、振動腕135と同一プロセスによって一体形成される。錘部Gが形成されることで、振動腕135は、単位長さ当たりの重さが、固定端側よりも開放端側の方が重くなっている。従って、振動腕135が開放端側にそれぞれ錘部Gを有することで、各振動腕における上下方向の振動の振幅を大きくすることができる。
 本実施形態の振動部120では、X軸方向において、外側に2本の振動腕135A、135Dが配置されており、内側に2本の振動腕135B、135Cが配置されている。X軸方向における、振動腕135Bと135Cとの間隔W1は、X軸方向における、外側の振動腕135A(135D)と当該外側の振動腕135A(135D)に隣接する内側の振動腕135B(135C)との間の間隔W2よりも大きく設定される。間隔W1は例えば10μ程度、間隔W2は例えば5μm程度である。間隔W2は間隔W1より小さく設定することにより、振動特性が改善される。ただし、共振装置1を小型化を図る場合には、間隔W1を間隔W2よりも小さく設定してもよいし、等間隔にしても良い。
・孔17
 本実施形態では、基部130における外側の振動腕135A、135Dと内側の振動腕振動腕135B、135Cとの間(すなわち、振動腕の延長線の間)の領域には、それぞれ孔17が形成されている。本実施形態では、孔17は、X軸方向に沿った幅が5μm程度、Y軸方向に沿った長さが18μm程度の円弧形の開口を有する貫通孔である。また、孔17は、基部130における前端131A側の領域において、振動腕135が延在する方向(前端131Aから後端131Bに向かう方向)に長径を有するように形成されている。なお、図3から明らかなとおり孔17は、基部130の厚み方向(振動腕135の振動方向)に形成されている。
 なお、孔17の形状や位置は図3の例に限定されない。例えば孔17の形状は、多角形や円形や楕円等でもよく、さらに貫通孔に限定されず、窪み(凹部)でもよい。ただし、孔17を多角形の形状で形成する場合は、その開口の角を面取りした形状にした方が、基部130の強度等の観点から好ましい。
 また、孔17が形成される位置は、仮想平面Pに対して略対称な位置であればよく、すべての振動腕135の間に形成される構成や、一部の振動腕135の間に形成される構成でもよい。例えば、振動腕が6本以上の構成を想定した場合、孔17は、(1)最も外側の振動腕と、外側から2番目の振動腕との間の領域に1つずつ(合計2つ)形成される構成や、(2)外側から2番目と3番目との振動腕の間の領域に1つずつ(合計2つ)形成される構成や、(3)最も外側と、外側から2番目と3番目との振動腕の間に1つずつ(合計4つ)形成される構成や、(4)すべての振動腕の間に1つずつ(合計5つ)形成される構成等が考えられる。
 また、孔17が窪みの場合は、前端131A側の領域から後端131B側の領域に亘って形成される構成でもよい。
 また、振動腕135の間の領域に形成される孔17の数は1つに限定されず、複数でもよい。この場合、孔17は前端131Aに沿った方向に長径を有し、前端131Aから後端131Bへ向かう方向に複数の孔17がほぼ等間隔で整列することが好ましい。
・その他
 振動部120の表面(上蓋30に対向する面)には、その全面を覆うように保護膜235が形成されている。さらに、振動腕135A~135Dにおける保護膜235の表面の一部には、それぞれ、周波数調整膜236A~236D(以下、周波数調整膜236A~236Dをまとめて「周波数調整膜236」とも呼ぶ。)が形成されている。保護膜235及び周波数調整膜236によって、振動部120の共振周波数を調整することができる。尚、必ずしも保護膜235は振動部120の全面を覆う必要はないが、周波数調整における下地の電極膜(例えば図4の金属層E2)及び圧電膜(例えば図4の圧電薄膜F3)へのダメージを保護する上で、振動部120の全面の方が望ましい。
 周波数調整膜236は、振動部120における、他の領域よりも振動による変位の比較的大きい領域の少なくとも一部において、その表面が露出するように、保護膜235上に形成されている。具体的には、周波数調整膜236は、振動腕135の先端、即ち錘部Gに形成される。他方、保護膜235は、振動腕135におけるその他の領域において、その表面が露出している。この実施例では、振動腕135の先端まで周波数調整膜236が形成され、先端部では保護膜235は全く露出していないが、保護膜235の一部が露出する様に、周波数調整膜236を振動腕135の先端部には形成されない構成も可能である。
(b)保持部140
 保持部140は、XY平面に沿って矩形の枠状に形成される。保持部140は、平面視において、XY平面に沿って振動部120の外側を囲むように設けられる。なお、保持部140は、振動部120の周囲の少なくとも一部に設けられていればよく、枠状の形状に限定されない。例えば、保持部140は、振動部120を保持し、また、上蓋30及び下蓋20と接合できる程度に、振動部120の周囲に設けられていればよい。
 本実施形態においては、保持部140は一体形成される角柱形状の枠体140a~140dからなる。枠体140aは、図3に示すように、振動腕135の開放端に対向して、長手方向がX軸に平行に設けられる。枠体140bは、基部130の後端131Bに対向して、長手方向がX軸に平行に設けられる。枠体140cは、基部130の側端(短辺131c)及び振動腕135Aに対向して、長手方向がY軸に平行に設けられ、その両端で枠体140a、140bの一端にそれぞれ接続される。枠体140dは、基部130の側端(短辺131d)及び振動腕135Dに対向して、長手方向がY軸に平行に設けられ、その両端で枠体140a、140bの他端にそれぞれ接続される。
 本実施形態においては、保持部140は、保護膜235で覆われているとして説明するが、これに限定されず、保護膜235は、保持部140の表面には形成されていなくてもよい。
(c)保持腕111、112
 保持腕111及び保持腕112は、保持部140の内側に設けられ、基部130の後端131Bと枠体140c、140dとを接続する。図3に示すように、保持腕111と保持腕112とは、基部130のX軸方向の中心線に沿ってYZ平面に平行に規定される仮想平面Pに対して略面対称に形成される。
 保持腕111は、腕111a、111b、111c、111dを有している。保持腕111は、一端が基部130の後端131Bに接続しており、そこから枠体140bに向かって延びている。そして、保持腕111は、枠体140cに向かう方向(すなわち、X軸方向)に屈曲し、さらに枠体140aに向かう方向(すなわち、Y軸方向)に屈曲し、再度枠体140cに向かう方向(すなわち、X軸方向)に屈曲して、他端が枠体140cに接続している。
 腕111aは、基部130と枠体140bとの間に、枠体140cに対向して、長手方向がY軸に平行になるように設けられている。腕111aは、一端が、後端131Bにおいて基部130と接続しており、そこから後端131Bに対して略垂直、すなわち、Y軸方向に延びている。腕111aのX軸方向の中心を通る軸は、振動腕135Aの中心線よりも内側に設けられることが望ましく、図3の例では、腕111aは、振動腕135Aと135Bとの間に設けられている。また腕111aの他端は、その側面において、腕111bの一端に接続されている。腕111aは、X軸方向に規定される幅が20μm程度であり、Y軸方向に規定される長さが40μmである。
 腕111bは、基部130と枠体140bとの間に、枠体140bに対向して、長手方向がX軸方向に平行になるように設けられている。腕111bは、一端が、腕111aの他端であって枠体140cに対向する側の側面に接続し、そこから腕111aに対して略垂直、すなわち、X軸方向に延びている。また、腕111bの他端は、腕111cの一端であって振動部120と対向する側の側面に接続している。腕111bは、例えばY軸方向に規定される幅が20μm程度であり、X軸方向に規定される長さが75μm程度である。
 腕111cは、基部130と枠体140cとの間に、枠体140cに対向して、長手方向がY軸方向に平行になるように設けられている。腕111cの一端は、その側面において、腕111bの他端に接続されており、他端は、腕111dの一端であって、枠体140c側の側面に接続されている。腕111cは、例えばX軸方向に規定される幅が20μm程度、Y軸方向に規定される長さが140μm程度である。
 腕111dは、基部130と枠体140cとの間に、枠体140aに対向して、長手方向がX軸方向に平行になるように設けられている。腕111dの一端は、腕111cの他端であって枠体140cと対向する側の側面に接続している。また、腕111dは、他端が、振動腕135Aと基部130との接続箇所付近に対向する位置において、枠体140cと接続しており、そこから枠体140cに対して略垂直、すなわち、X軸方向に延びている。腕111dは、例えばY軸方向に規定される幅が20μm程度、X軸方向に規定される長さが10μm程度である。
 このように、保持腕111は、腕111aにおいて基部130と接続し、腕111aと腕111bとの接続箇所、腕111bと111cとの接続箇所、及び腕111cと111dとの接続箇所で屈曲した後に、保持部140へと接続する構成となっている。
 保持腕112は、腕112a、112b、112c、112dを有している。保持腕112は、一端が基部130の後端131Bに接続しており、そこから枠体140bに向かって延びている。そして、保持腕112は、枠体140dに向かう方向(すなわち、X軸方向)に屈曲し、さらに枠体140aに向かう方向(すなわち、Y軸方向)に屈曲して、再度枠体140dに向かう方向(すなわち、X軸方向)屈曲し、他端が枠体140dに接続している。腕112a、112b、112c、112dの構成は、それぞれ腕111a、111b、111c、111dと対称な構成であるため、詳細な説明については省略する。
 なお、保持腕111、112は、各腕の接続箇所において直角に折れ曲がっている形状に限定されず、湾曲する形状でもよい。また、保持腕111、112が屈曲する回数は既述のものに限定されず、例えば1回だけ屈曲して基部130の後端131Bと枠体140c、140dとに接続される構成や、2回屈曲して基部130の後端131Bと枠体140aとに接続される構成や、一度も屈曲せず基部130の後端131Bと枠体140bとに接続される構成でもよい。また、基部130における保持腕111、112の接続箇所は後端131Bに限定されず、前端131Aと後端131Bとをつなぐ側面に接続される構成でもよい。
(4.積層構造)
 図4A及び図4Bを用いて共振子10の積層構造について説明する。図4Aは、図3のAA’断面、及び共振子10の電気的な接続態様を模式的に示す概略図である。また、図4Bは図3のBB’断面を示す概略図である。
 共振子10では、保持部140、基部130、振動腕135、保持腕111,112は、同一プロセスで一体的に形成される。共振子10では、まず、Si(シリコン)基板F2の上に、金属層E1が積層されている。そして、金属層E1の上には、金属層E1を覆うように、圧電薄膜F3が積層されており、さらに、圧電薄膜F3の表面には、金属層E2が積層されている。金属層E2の上には、金属層E2を覆うように、保護膜235が積層されている。振動部120上においては、さらに、保護膜235上に、周波数調整膜236が積層されている。尚、低抵抗となる縮退シリコン基板を用いる事で、Si基板F2自体が金属層E1を兼ねる事で、金属層E1を省略する事も可能である。
 Si基板F2は、例えば、厚さ6μm程度の縮退したn型Si半導体から形成されており、n型ドーパントとしてP(リン)やAs(ヒ素)、Sb(アンチモン)などを含むことができる。Si基板F2に用いられる縮退Siの抵抗値は、例えば1.6mΩ・cm未満であり、より好ましくは1.2mΩ・cm以下である。さらにSi基板F2の下面には酸化ケイ素(例えばSiO)層(温度特性補正層)F21が形成されている。これにより、温度特性を向上させることが可能になる。
 本実施形態において、酸化ケイ素層(温度特性補正層)F21とは、当該酸化ケイ素層F21をSi基板F2に形成しない場合と比べて、Si基板F2に温度補正層を形成した時の振動部における周波数の温度係数(すなわち、温度当たりの変化率)を、少なくとも常温近傍において低減する機能を持つ層をいう。振動部120が酸化ケイ素層F21を有することにより、例えば、Si基板F2と金属層E1、E2と圧電薄膜F3及び酸化ケイ素層(温度補正層)F21による積層構造体の共振周波数の、温度に伴う変化を低減することができる。
 共振子10においては、酸化ケイ素層F21は、均一の厚みで形成されることが望ましい。なお、均一の厚みとは、酸化ケイ素層F21の厚みのばらつきが、厚みの平均値から±20%以内であることをいう。
 なお、酸化ケイ素層F21は、Si基板F2の上面に形成されてもよいし、Si基板F2の上面と下面の双方に形成されてもよい。また、保持部140においては、Si基板F2の下面に酸化ケイ素層F21が形成されなくてもよい。
 金属層E2、E1は、例えば厚さ0.1~0.2μm程度のMo(モリブデン)やアルミニウム(Al)等を用いて形成される。金属層E2、E1は、エッチング等により、所望の形状に形成される。金属層E1は、例えば振動部120上においては、下部電極として機能するように形成される。また、金属層E1は、保持腕111,112や保持部140上においては、共振子10の外部に設けられた交流電源に下部電極を接続するための配線として機能するように形成される。
 他方で、金属層E2は、振動部120上においては、上部電極として機能するように形成される。また、金属層E2は、保持腕111、112や保持部140上においては、共振子10の外部に設けられた回路に上部電極を接続するための配線として機能するように形成される。
 なお、交流電源から下部配線または上部配線への接続にあたっては、上蓋30の外面に電極(外部電極の一例である。)を形成して、当該電極が回路と下部配線または上部配線とを接続する構成や、上蓋30内にビアを形成し、当該ビアの内部に導電性材料を充填して配線を設け、当該配線が交流電源と下部配線または上部配線とを接続する構成が用いられてもよい。
 圧電薄膜F3は、印加された電圧を振動に変換する圧電体の薄膜であり、例えば、AlN(窒化アルミニウム)等の窒化物や酸化物を主成分とすることができる。具体的には、圧電薄膜F3は、ScAlN(窒化スカンジウムアルミニウム)により形成することができる。ScAlNは、窒化アルミニウムにおけるアルミニウムの一部をスカンジウムに置換したものである。また、圧電薄膜F3は、例えば、1μmの厚さを有するが、0.2μmから2μm程度を用いることも可能である。
 圧電薄膜F3は、金属層E2、E1によって圧電薄膜F3に印加される電界に応じて、XY平面の面内方向すなわちY軸方向に伸縮する。この圧電薄膜F3の伸縮によって、振動腕135は、下蓋20及び上蓋30の内面に向かってその開放端を変位させ、面外の屈曲振動モードで振動する。
 保護膜235は、絶縁体の層であり、エッチングによる質量低減の速度が周波数調整膜236より遅い材料により形成される。例えば、保護膜235は、AlNやSiN等の窒化膜やTa(5酸化タンタル)やSiO等の酸化膜により形成される。なお、質量低減速度は、エッチング速度(単位時間あたりに除去される厚み)と密度との積により表される。保護膜235の厚さは、圧電薄膜F3の厚さの半分以下で形成され、本実施形態では、例えば0.2μm程度である。
 周波数調整膜236は、導電体の層であり、エッチングによる質量低減の速度が保護膜235より速い材料により形成される。周波数調整膜236は、例えば、モリブデン(Mo)やタングステン(W)や金(Au)、白金(Pt)、ニッケル(Ni)、アルミニウム(Al)、チタン(Ti)等の金属により形成される。
 なお、保護膜235と周波数調整膜236とは、質量低減速度の関係が上述のとおりであれば、エッチング速度の大小関係は任意である。
 周波数調整膜236は、振動部120の略全面に形成された後、エッチング等の加工により所定の領域のみに形成される。
 保護膜235及び周波数調整膜236に対するエッチングは、例えば、保護膜235及び周波数調整膜236に同時にイオンビーム(例えば、アルゴン(Ar)イオンビーム)を照射することによって行われる。イオンビームは共振子10よりも広い範囲に照射することが可能である。なお、エッチング方法は、イオンビームによるものに限られない。
(5.共振子の機能)
 図4Aを参照して共振子10の機能について説明する。本実施形態では、外側の振動腕135A、135Dに印加される電界の位相と、内側の振動腕135B、135Cに印加される電界の位相とが互いに逆位相になるように設定される。これにより、外側の振動腕135A、135Dと内側の振動腕135B、135Cとが互いに逆方向に変位する。例えば、外側の振動腕135A、135Dが上蓋30の内面に向かって開放端を変位すると、内側の振動腕135B、135Cは下蓋20の内面に向かって開放端を変位する。
 これによって、本実施形態に係る共振子10では、逆位相の振動時、すなわち、図4Aに示す振動腕135Aと振動腕135Bとの間でY軸に平行に延びる中心軸r1回りに振動腕135Aと振動腕135Bとが上下逆方向に振動する。また、振動腕135Cと振動腕135Dとの間でY軸に平行に延びる中心軸r2回りに振動腕135Cと振動腕135Dとが上下逆方向に振動する。これによって、中心軸r1とr2とで互いに逆方向の捩れモーメントが生じ、振動部120で屈曲振動が発生する。このとき、基部130における中心軸r1、r2近傍の領域には歪みが集中することになる。
(6.周波数調整膜の機能)
 次に周波数調整膜236の機能について説明する。本実施形態に係る共振装置1では、上述のような共振子10が形成された後、周波数調整膜236の膜厚を調整するトリミング工程が行われる。
 トリミング工程では、まず共振子10の共振周波数を測定し、狙い周波数に対する偏差を算出する。次に、算出した周波数偏差に基づき、周波数調整膜236の膜厚を調整する。周波数調整膜236の膜厚の調整は、例えばアルゴン(Ar)イオンビームを共振装置1の全面に対して照射して、周波数調整膜236をエッチングすることによって行うことができる。さらに、周波数調整膜236の膜厚が調整されると、共振子10の洗浄を行い、飛び散った膜を除去することが望ましい。
 このようにトリミング工程によって、周波数調整膜236の膜厚が調整されることによって、同一ウエハにおいて製造される複数の共振装置1の間で、周波数のばらつきを抑えることができる。
(7.孔17の機能)
 図5を用いて本実施形態に係る共振子10における、孔17の機能について説明する。図5は、本実施形態に係る共振子10と、孔17を有していない比較例における共振子10’とについて、DLDを検証した結果を示すグラフである。比較例の共振子10’は孔17を有していないが、それ以外の構成は、共振子10と同様の構成である。図5において、横軸はドライブレベルを示し、縦軸は周波数変化率を示している。また、図5のグラフにおいて、実線は共振子10の検証結果を示し、破線は共振子10’の検証結果を示している。
 図5に示すように、ドライブレベルが上がると、比較例の共振子10’は周波数が正の方向にシフトするのに対し、本実施形態に係る共振子10は負の方向にシフトしている。図5の結果から、孔17を形成することにより、DLDが向上することが分かる。
 上述のとおり、外側の振動腕135A、135Dと内側の振動腕135B、135Cは逆相で振動する。したがって、共振子10が振動した場合、基部130における、外側の振動腕135A、135Dと内側の振動腕135B、135Cとの間の領域(図4Aの中心軸r1、r2近傍の領域)には、振動による歪みが集中してしまう。本実施形態に係る共振子10は、この歪みが集中する領域に孔17が形成されることにより、当該領域の剛性が小さくなる。この結果、当該領域への歪みの集中が緩和されるため、保持による振動減衰の影響が小さくなることによって、DLDが改善する。
[第2実施形態]
 第2実施形態以降では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図6は、本実施形態に係る、共振子10の構造の一例を概略的に示す平面図である。以下に、本実施形態に係る共振子10の詳細構成のうち、第1の実施形態との差異点を中心に説明する。本実施形態に係る共振子10は、基部130の構成、及び孔17が形成される位置が第1実施形とは異なる。
(1)基部130
 本実施形態では、基部130は、Z軸方向に撓みやすいように基部幅Wに対する基部長Lが調整される。具体的には、L/W≦0.3となるように基部130の形成時において、エッチング等によって基部長Lが調整される。基部長Lが短くなることによって、基部130がZ軸方向に撓みやすくなり、この結果、DLDが改善される(周波数が負の方向にシフトする)。
(2)孔17
 本実施形態では、孔17は、振動腕135A~135Dの根元近傍に形成される。具体的には、孔17は、振動版135の幅方向の中央近傍において、振動腕135における前端131Aとの接続箇所から、開放端側に向かって、長さ7μm程度形成されている。また、孔17の幅は5μm程度である。振動腕135の根元に孔17が形成されることにより、振動腕135の剛性が低下する。これによって基部130の撓みが低下するため、DLDは悪化する(周波数が正の方向にシフトする)。
 なお、第1実施形態と同様、孔17の形状や位置は図6の例に限定されず、例えば孔17の形状は、多角形や円形や楕円等でもよく、さらに貫通孔に限定されず、窪みでもよい。また、孔17が形成される位置は、仮想平面Pに対して略対称な位置であればよい。さらに、孔17は振動腕135から基部130に亘って形成されてもよい。
 このように本実施形態に係る共振子10は、エッチング量の増加によって、基部130の基部長Lが短くなることによってDLDが改善される一方で、孔17の大きさが大きくなることに起因して、DLDが悪化する。結果的に、DLDの改善と悪化とが相殺されることによって、エッチングによるDLDのばらつきを低減しつつ、DLDを改善することができる。
 その他の共振子10の構成、機能は第1の実施形態と同様である。
 以上、本発明の例示的な実施形態について説明した。本発明の一実施形態に係る共振子10は、各々が固定端と開放端とを有する3本以上の振動腕135であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕135、並びに、複数の振動腕135の固定端に接続される前端131A、及び当該前端131Aに対向する後端131Bを有する基部130、を有する振動部120と、振動部120の周囲の少なくとも一部に設けられた保持部140と、振動部120と保持部140の間に設けられ、一端が基部130に接続され、他端が保持部140に接続された保持腕111(112)と、振動部120に形成された複数の孔17と、を備え、複数の孔17は、それぞれ、基部130における、複数の振動腕135におけるいずれかの隣同士の振動腕135の間の領域に形成された。これによって、基部130における、振動による歪みの集中する領域の剛性を小さくすることができる。この結果、当該領域への歪みの集中が緩和されるため、保持による振動減衰の影響が小さくなり、DLDを改善することが可能になる
 また、複数の孔17は、基部130における後端131Bよりも前端131Aに近い領域に形成されることが好ましい。また、複数の孔17は、基部130における、互いに逆相で振動する隣同士の振動腕の間の領域に形成されることも好ましい。基部130における逆相で振動する隣同士の振動腕の間の領域には、振動による歪みが集中しやすい。したがって、この好ましい態様により、歪みの集中を効果的に低減することができるため、DLDをより改善することができる。
 また、本発明の一実施形態に係る共振子10は、各々が固定端と開放端とを有する3本以上の振動腕135であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕135、並びに、複数の振動腕135の固定端に接続される前端131A、及び当該前端131Aに対向する後端131Bを有する基部130、を有する振動部120と、振動部120の周囲の少なくとも一部に設けられた保持部140と、振動部120と保持部140の間に設けられ、一端が基部130に接続され、他端が保持部140に接続された保持腕111(112)と、振動部120に形成された複数の孔17と、を備え、複数の孔17は、それぞれ、複数の振動腕135のうちのいずれかの振動腕135における開放端よりも固定端に近い領域に形成された。これによって共振子10は、エッチング量の増加によって、基部130の基部長Lが短くなることによってDLDが改善される一方で、孔17の大きさが大きくなることに起因して、DLDが悪化する。結果的に、DLDの改善と悪化とが相殺されることによって、エッチングによるDLDのばらつきを低減しつつ、DLDを改善することができる。
 複数の孔17は、それぞれ、複数の振動腕135が並ぶ方向における当該振動腕135の中央近傍に形成されることが好ましい。また、複数の孔17は、複数の振動腕135のそれぞれが延在する方向に沿った長径を有する形状であることが好ましい。この好ましい態様によると、孔17が形成されることにより振動部120の強度が劣化してしまうことを低減することができる。
 また、複数の孔17は、それぞれ、振動部120における、複数の振動腕135が並ぶ方向の中心を通る中心軸について互いに対称な位置に形成されることが好ましい。また、複数の孔17は、貫通孔や凹部であることが好ましい。
 また、本発明の一実施形態に係る共振子10は、上記の共振子10と、共振子10を間に挟んで互いに対向して設けられた上蓋30及び下蓋20と、外部電極とを備える。
 以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。例えば、既述の実施形態において、金属層E2と圧電薄膜F3とから成る積層体は単層である構成について説明したが、これに限定されない。共振子10は、金属層E2と圧電薄膜F3とから成る積層体は多層であり、最上層(上蓋30側)の表面に保護膜235が形成される構成でもよい。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
 1            共振装置
 10           共振子
 30           上蓋
 20           下蓋
 140          保持部
 140a~d       枠体
 111、112      保持腕
 120          振動部
 130          基部
 135A~D       振動腕
 F2           Si基板
 F21          酸化ケイ素層(温度特性補正層)
 235          保護膜
 236          周波数調整膜
 17           孔

Claims (10)

  1.  各々が固定端と開放端とを有する3本以上の振動腕であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕、並びに、前記複数の振動腕の固定端に接続される前端、及び当該前端に対向する後端を有する基部、を有する振動部と、
     前記振動部の周囲の少なくとも一部に設けられた保持部と、
     前記振動部と前記保持部との間に設けられ、一端が前記基部に接続され、他端が前記保持部に接続された保持腕と、
     前記振動部に形成された複数の孔と、
    を備え、
     前記複数の孔は、それぞれ、前記基部における、前記複数の振動腕におけるいずれかの隣同士の振動腕の間の領域に形成された、
    共振子。
  2.  前記複数の孔は、
     前記基部における前記後端よりも前記前端に近い領域に形成された、
    請求項1に記載の共振子。
  3.  前記複数の孔は、
     前記基部における、互いに逆相で振動する隣同士の振動腕の間の領域に形成された、
    請求項1又は2に記載の共振子。
  4.  各々が固定端と開放端とを有する3本以上の振動腕であって、少なくとも2本が異なる位相で面外屈曲する、複数の振動腕、並びに、前記複数の振動腕の固定端に接続される前端、及び当該前端に対向する後端を有する基部、を有する振動部と、
     前記振動部の周囲の少なくとも一部に設けられた保持部と、
     前記振動部と前記保持部との間に設けられ、一端が前記基部に接続され、他端が前記保持部に接続された保持腕と、
     前記振動部に形成された複数の孔と、
    を備え、
     前記複数の孔は、それぞれ、前記複数の振動腕のうちのいずれかの振動腕における前記開放端よりも前記固定端に近い領域に形成された、
    共振子。
  5.  前記複数の孔は、それぞれ、前記複数の振動腕が並ぶ方向における当該振動腕の中央近傍に形成された、
    請求項4に記載の共振子。
  6.  前記複数の孔は、
     前記複数の振動腕のそれぞれが延在する方向に沿った長径を有する形状である、
    請求項1乃至5の何れか一項に記載の共振子。
  7.  前記複数の孔は、それぞれ、前記振動部における、前記複数の振動腕が並ぶ方向の中心を通る中心軸について互いに対称な位置に形成された、請求項1乃至6の何れか一項に記載の共振子。
  8.  前記複数の孔は、貫通孔である、請求項1乃至7の何れか一項に記載の共振子。
  9.  前記複数の孔は、凹部である、請求項1乃至7の何れか一項に記載の共振子。
  10.  請求項1乃至7の何れか一項に記載の共振子と、
     前記共振子を間に挟んで互いに対向して設けられた上蓋及び下蓋と、
     外部電極と、
    を備える共振装置。
PCT/JP2018/002628 2017-05-25 2018-01-29 共振子及び共振装置 WO2018216264A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019519459A JP6886646B2 (ja) 2017-05-25 2018-01-29 共振子及び共振装置
CN201880033623.5A CN110663176A (zh) 2017-05-25 2018-01-29 谐振器以及谐振装置
US16/690,550 US11196407B2 (en) 2017-05-25 2019-11-21 Resonator and resonant device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762510796P 2017-05-25 2017-05-25
US62/510,796 2017-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/690,550 Continuation US11196407B2 (en) 2017-05-25 2019-11-21 Resonator and resonant device

Publications (1)

Publication Number Publication Date
WO2018216264A1 true WO2018216264A1 (ja) 2018-11-29

Family

ID=64395445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002628 WO2018216264A1 (ja) 2017-05-25 2018-01-29 共振子及び共振装置

Country Status (4)

Country Link
US (1) US11196407B2 (ja)
JP (2) JP6886646B2 (ja)
CN (1) CN110663176A (ja)
WO (1) WO2018216264A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220535A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 共振子及び共振装置
CN113826322A (zh) * 2019-06-26 2021-12-21 株式会社村田制作所 谐振装置
CN113826322B (zh) * 2019-06-26 2024-05-31 株式会社村田制作所 谐振装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278142A (ja) * 1995-04-04 1996-10-22 Matsushita Electric Ind Co Ltd 角速度センサ
JP2000249558A (ja) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd 角速度センサ振動子の製造方法
JP2011234072A (ja) * 2010-04-27 2011-11-17 Seiko Epson Corp 圧電振動片および圧電デバイス
WO2016175218A1 (ja) * 2015-04-28 2016-11-03 株式会社村田製作所 共振子及び共振装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393792A (en) * 1977-01-26 1978-08-17 Seiko Instr & Electronics Ltd Crystal vibrator
JP3477618B2 (ja) * 2000-10-31 2003-12-10 有限会社ピエデック技術研究所 屈曲水晶振動子
ATE467268T1 (de) * 2004-09-03 2010-05-15 Eta Sa Mft Horlogere Suisse Quartzresonator mit sehr kleinen abmessungen
JP2008113098A (ja) * 2006-10-28 2008-05-15 Nippon Dempa Kogyo Co Ltd 音叉型圧電振動片
JP2008249489A (ja) * 2007-03-30 2008-10-16 Tdk Corp 角速度センサ素子および角速度センサ装置
JP5071058B2 (ja) * 2007-11-07 2012-11-14 セイコーエプソン株式会社 圧電振動片
JP2010147953A (ja) * 2008-12-22 2010-07-01 Nippon Dempa Kogyo Co Ltd 圧電フレーム及び圧電デバイス
US20110227450A1 (en) * 2010-03-18 2011-09-22 Seiko Epson Corporation Resonator body, resonator device, and electronic device
JP5839919B2 (ja) * 2011-09-28 2016-01-06 エスアイアイ・クリスタルテクノロジー株式会社 圧電振動片、圧電振動子、発振器、電子機器、および電波時計
JPWO2014002892A1 (ja) * 2012-06-27 2016-05-30 株式会社村田製作所 音叉型水晶振動子
JP6056265B2 (ja) * 2012-08-27 2017-01-11 セイコーエプソン株式会社 振動片、振動子、発振器、電子機器、および移動体
JP6003994B2 (ja) * 2012-09-13 2016-10-05 株式会社村田製作所 振動装置及びその製造方法
JP6148881B2 (ja) * 2013-03-11 2017-06-14 エスアイアイ・クリスタルテクノロジー株式会社 圧電振動片、圧電振動子、発振器、電子機器及び電波時計
JP2014200039A (ja) * 2013-03-29 2014-10-23 セイコーエプソン株式会社 振動片、振動子、発振器、電子機器および移動体
JP2015179933A (ja) * 2014-03-19 2015-10-08 セイコーエプソン株式会社 振動素子、ジャイロセンサー素子、電子デバイス、電子機器および移動体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278142A (ja) * 1995-04-04 1996-10-22 Matsushita Electric Ind Co Ltd 角速度センサ
JP2000249558A (ja) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd 角速度センサ振動子の製造方法
JP2011234072A (ja) * 2010-04-27 2011-11-17 Seiko Epson Corp 圧電振動片および圧電デバイス
WO2016175218A1 (ja) * 2015-04-28 2016-11-03 株式会社村田製作所 共振子及び共振装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113826322A (zh) * 2019-06-26 2021-12-21 株式会社村田制作所 谐振装置
CN113826322B (zh) * 2019-06-26 2024-05-31 株式会社村田制作所 谐振装置
WO2021220535A1 (ja) * 2020-04-27 2021-11-04 株式会社村田製作所 共振子及び共振装置
US11824517B2 (en) 2020-04-27 2023-11-21 Murata Manufacturing Co., Ltd. Resonator and resonance device
JP7459937B2 (ja) 2020-04-27 2024-04-02 株式会社村田製作所 共振子及び共振装置

Also Published As

Publication number Publication date
CN110663176A (zh) 2020-01-07
US11196407B2 (en) 2021-12-07
JPWO2018216264A1 (ja) 2020-03-26
JP6886646B2 (ja) 2021-06-16
JP2020191663A (ja) 2020-11-26
US20200144989A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6742601B2 (ja) 共振子及び共振装置
JP6641676B2 (ja) 共振装置製造方法
WO2018008480A1 (ja) 共振子及び共振装置
JP7099469B2 (ja) 共振子及び共振装置
US10673402B2 (en) Resonator and resonance device
JP6994164B2 (ja) 共振子及び共振装置
WO2018216264A1 (ja) 共振子及び共振装置
JP6856127B2 (ja) 共振子及び共振装置
JP6829823B2 (ja) 共振子及び共振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805421

Country of ref document: EP

Kind code of ref document: A1