WO2018214321A1 - 一种压电式麦克风 - Google Patents

一种压电式麦克风 Download PDF

Info

Publication number
WO2018214321A1
WO2018214321A1 PCT/CN2017/099519 CN2017099519W WO2018214321A1 WO 2018214321 A1 WO2018214321 A1 WO 2018214321A1 CN 2017099519 W CN2017099519 W CN 2017099519W WO 2018214321 A1 WO2018214321 A1 WO 2018214321A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
substrate
piezoelectric film
gap
hollow hole
Prior art date
Application number
PCT/CN2017/099519
Other languages
English (en)
French (fr)
Inventor
詹竣凱
周宗燐
蔡孟錦
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US15/739,935 priority Critical patent/US10382870B2/en
Priority to EP17844630.8A priority patent/EP3432602A4/en
Priority to JP2018532395A priority patent/JP6750147B2/ja
Publication of WO2018214321A1 publication Critical patent/WO2018214321A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Definitions

  • the present invention relates to the field of microphones, and more particularly to a piezoelectric microphone.
  • a conventional MEMS microphone is mainly a condenser microphone including a substrate and a back electrode and a diaphragm formed on the substrate.
  • the diaphragm and the back electrode constitute a capacitor structure.
  • piezoelectric silicon microphones have gradually developed, and the fabrication process of piezoelectric microphones is simple. Due to the single-layer membrane design, it is not limited by air damping, and the SNR is naturally improved. In addition, due to the simple structure of the piezoelectric silicon microphone, its environmental adaptability to anti-fouling, dustproof and waterproof is also greatly improved. In recent years, with the breakthrough of AIN and PZT materials, piezoelectric MEMS microphones will be the mainstream of the development of a new generation of MEMS microphones.
  • the biggest disadvantage of piezoelectric microphones compared to capacitor microphones is that the sensitivity of piezoelectric microphones is too low. That is to say, the ability of the piezoelectric film to sense an audio signal is much lower than that of a diaphragm in a condenser microphone.
  • this hollow design makes the leakage of low frequency signals and even the intermediate frequency signal very serious; and it also reduces the effectiveness of the piezoelectric film. The area makes it impossible to receive the sound signal effectively, and the performance of the product is far from the theoretical data, and the expected performance cannot be achieved.
  • a piezoelectric microphone comprising a back cavity a substrate, and a piezoelectric film connected to the substrate through an insulating layer; a plurality of hollow holes are disposed on the piezoelectric film at a position inside the connection point of the piezoelectric film and the substrate, on the piezoelectric film
  • the voided holes are at least partially overlapped with the substrate, and the position of the hollowed holes on the piezoelectric film has a gap with the substrate, the gap being configured as a channel together with the hollowed holes.
  • the plurality of hollow holes are distributed around the back cavity of the substrate.
  • the insulating layer between the substrate and the piezoelectric film has a continuous uninterrupted annular structure.
  • the insulating layer between the substrate and the piezoelectric film has a discontinuous annular structure.
  • the hollow hole penetrates to an edge of the piezoelectric film, and the hollow hole is relatively distributed between the two intermittent insulating layers.
  • a portion of the piezoelectric film between the vent hole and the center of the piezoelectric film overlaps the substrate.
  • a gap between the piezoelectric film and the substrate is 0.5 um to 3 um.
  • the hollow hole is circular, rectangular, elliptical, fan-shaped or trapezoidal.
  • the piezoelectric film sequentially includes a first electrode layer, a piezoelectric material intermediate layer, and a second electrode layer that are combined together.
  • the first electrode layer, the piezoelectric material intermediate layer, and the second electrode layer are compounded by deposition.
  • the utility model provides a piezoelectric microphone suitable for two-side sound source.
  • the hollow hole can only form a channel connecting the two sides of the piezoelectric film only through the gap, so that the normal pronunciation can only flow out through the gap.
  • the gap of the invention can prevent the sound from being directly transmitted through the hollow hole, thereby greatly reducing the leakage amount of the low frequency signal and the intermediate frequency signal of the piezoelectric microphone, and improving the performance of the piezoelectric microphone.
  • the gap can also effectively prevent dust, particles, and water from invading the chip.
  • the inventors of the present invention have found that in the prior art, the hollow structure provided on the piezoelectric film causes the leakage of the low frequency signal or even the intermediate frequency signal to be very serious; and also reduces the effective area of the piezoelectric film, making it impossible to effectively Receiving sound signals, product performance and theoretical data are very different, and can not achieve the expected performance. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • Figure 1 is a plan view of a piezoelectric film of the present invention.
  • FIG. 2 is a schematic illustration of a sound source under the microphone of the present invention.
  • Figure 3 is a schematic illustration of a sound source on a microphone of the present invention.
  • Fig. 4 is a plan view showing another embodiment of the piezoelectric film of the present invention.
  • the present invention provides a piezoelectric microphone comprising a substrate 1 and a piezoelectric film 3 connected to the substrate 1 through an insulating layer 2.
  • a central portion of the substrate 1 is formed with a back cavity 10, and an edge of the piezoelectric film 3 is supported above the substrate 1 through the insulating layer 2, thereby ensuring insulation between the piezoelectric film 3 and the substrate 1, and pressing Other areas of the electric film 3 except the edge connection position
  • the domain is suspended above the back cavity 10 of the substrate 1.
  • the microphone of the present invention can be fabricated by a MEMS process
  • the substrate 1 can be made of single crystal silicon
  • the insulating layer 2 can be made of silicon dioxide
  • the piezoelectric film 3 can be made of AIN or PZT materials.
  • the piezoelectric film 3 sequentially includes a first electrode layer 30, a piezoelectric material intermediate layer 31, and a second electrode layer 32 which are combined together. This recombination can be achieved by sequential deposition in a MEMS process, or by other means well known in the art of piezoelectric materials, and will not be described in detail herein.
  • the piezoelectric film 3 of the present invention is matched to the shape of the substrate 1, which may be selected from a circular shape, a rectangular shape, or other shapes well known to those skilled in the art.
  • a plurality of hollow holes 4 are provided in the piezoelectric film 3, and the plurality of hollow holes 4 are provided at positions inside the connection position of the piezoelectric film 3 and the substrate 1. That is, the edge position of the piezoelectric film 3 is supported by the insulating layer 2 and is connected above the substrate 1, and the hollow hole 4 is provided in the vibration region of the piezoelectric film 3, so that the hollow hole 4 can be improved
  • the hollow holes 4 on the piezoelectric film 3 are at least partially overlapped with the substrate 1.
  • the hollow hole 4 on the piezoelectric film 3 is at least partially located directly above the substrate 1, such that the position of the hollow hole 4 on the piezoelectric film 3 and the substrate 1 have a gap 5. That is, the piezoelectric film 3 has no insulating layer 2 between the position of the cutout 4 and the substrate 1, so that the hollow hole 4 on the piezoelectric film 3 is suspended directly above the substrate 1.
  • the gap 5 is configured together with the hollow hole 4 to communicate the passage above the back cavity 10 and the piezoelectric film 3.
  • the hollow hole can only form a passage connecting the two sides of the piezoelectric film only through the gap, so that the normal pronunciation can only flow out through the gap.
  • the gap of the invention can prevent the sound from being directly transmitted through the hollow hole, thereby greatly reducing the leakage amount of the low frequency signal and the intermediate frequency signal of the piezoelectric microphone, and improving the performance of the piezoelectric microphone.
  • the gap can also effectively prevent dust, particles, and water from invading the chip.
  • the piezoelectric microphone of the present invention can be applied to both an upper sound source and a lower sound source, with reference to Figs. 2 and 3.
  • Fig. 2 shows a schematic diagram of the lower sound source, the sound entering from below the back chamber 10, at which time the gap 5 can reduce the leakage of the low frequency and intermediate frequency signals from the hollow hole 4.
  • Fig. 3 shows a schematic view of the upper sound source, the sound entering from above the piezoelectric film 3, entering the gap 5 through the hollow hole 4. In the middle, the gap 5 can also block the leakage of the low frequency and intermediate frequency signals.
  • the hollow holes 4 are relatively distributed outside the back chamber 10, it is possible to control and adjust the amount of leakage of the sound pressure.
  • the length and height of the gap 5 can be controlled to achieve the purpose of adjusting the gap 5 to impede the ability.
  • the height of the gap 5 may be, for example, 0.5 um to 3 um.
  • the hollow holes 4 on the piezoelectric film 3 may be partially overlapped with the substrate 1, or may be entirely overlapped, thereby achieving adjustment of the lateral dimension of the gap 5. It is further preferred that a portion of the piezoelectric film 3 between the position of the hollow hole 4 and the center position of the piezoelectric film 3 is overlapped with the substrate 1. That is, not only the positions of the hollow holes 4 are all overlapped with the substrate 1, but also the region between the hollow holes 4 to the center of the piezoelectric film 3 on the piezoelectric film 3 partially extends directly above the substrate 1, and Participate in the formation of the gap 5. This greatly extends the lateral dimension of the gap 5, increasing the ability of the gap 5 to be obstructed; and the longer gap 5 is also effective in preventing dust particles from invading into the interior of the chip.
  • the plurality of hollow holes 4 of the present invention are uniformly surrounded around the back cavity 10 of the substrate 1.
  • the plurality of hollow holes 4 can be arranged, for example, in a circular ring structure as shown in FIG. 1, or arranged as shown in the figure. 4 shows a rectangular ring structure.
  • the hollow hole 4 may be circular, rectangular, elliptical, fan-shaped or trapezoidal or the like.
  • the insulating layer 2 between the substrate 1 and the piezoelectric film 3 may have a continuous uninterrupted ring shape or a discontinuous ring structure.
  • the insulating layer 2 between the substrate 1 and the piezoelectric film 3 has a continuous uninterrupted annular structure, that is, the insulating layer 2 is a closed ring shape, which places the substrate 1 and the piezoelectric film 3 The circumferential direction is completely closed, and at this time, there is only a passage formed by the gap 5 and the hollow hole 4.
  • the insulating layer 2 between the substrate 1 and the piezoelectric film 3 has a discontinuous annular structure, a plurality of channels are formed between the gap 5, the two intermittent insulating layers 2, and the hollow holes 4, which The structure increases the leakage of the microphone relative to the case where there is only one channel described above.
  • the hollow hole 4 of the present invention may be disposed inside the piezoelectric film 3.
  • the hollow hole 4 can also penetrate to the edge of the piezoelectric film 3, and at this time, the hollow hole 4 can be relatively distributed at a position between the two intermittent insulating layers 2 to prevent the insulating layer 2 from contacting.
  • the hollow hole 4 is provided to ensure that the effect of the piezoelectric film 3 is not affected by the hollow hole 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

本发明公开了一种压电式麦克风,包括具有背腔的衬底,以及通过绝缘层连接在衬底上方的压电膜;在所述压电膜上位于压电膜与衬底连接点内侧的位置设置有多个镂空孔,所述压电膜上的镂空孔至少部分地与衬底重叠在一起,所述压电膜上镂空孔的位置与衬底之间具有间隙,所述间隙与镂空孔一起被构造为通道。相对传统的镂空结构而言,本发明的间隙可以阻碍声音直接通过镂空孔传出,从而可以大大降低该压电式麦克风低频信号、中频信号的泄漏量,提高了压电式麦克风的性能。而且该间隙还可有效防止粉尘、微粒、水入侵对芯片产生伤害。

Description

一种压电式麦克风 技术领域
本发明涉及麦克风领域,更具体地,涉及一种压电式麦克风。
背景技术
MEMS麦克风现已应用普及在消费性电子产品中。传统的MEMS麦克风主要为电容式麦克风,其包括衬底以及形成在衬底上的背极、振膜。所述振膜与背极构成了电容器结构。采用这种双层膜的设计,无法避免背极与振膜之间的空气阻尼问题,因此其SNR参数停留在65dB层次。后续MEMS电容式麦克风的效能要升级,必需靠材料技术及设计架构上的突破。
随着科技的发展,压电式硅麦克风逐渐开始发展起来,压电麦克风的制作工艺简单。因采用单层膜的设计架构使其不受空气阻尼的限制,SNR自然提升。此外因压电式硅麦克风的结构简单,其对防污、防尘、防水等环境适应能力也大大提升。近年来,随着AIN、PZT材料的突破,压电式MEMS麦克风将为新一代MEMS麦克风的开发主流。
但是压电麦克风与电容器麦克风相比,影响其普及应用的最大缺点在于压电麦克风的灵敏度太低。也就是说压电膜感应音频信号的能力远低于电容式麦克风中振膜的能力。为了提升压电式麦克风的灵敏度,大多数厂商皆采用在压电膜上进行镂空的设计,但这种镂空的设计使得低频信号甚至中频信号的泄漏非常严重;而且还降低了压电膜的有效面积,使其无法有效地接收声音讯号,产品性能与理论数据有很大的差距,无法达成预期性能。
发明内容
本发明的一个目的是提供一种压电式麦克风的新技术方案。
根据本发明的第一方面,提供了一种压电式麦克风,包括具有背腔的 衬底,以及通过绝缘层连接在衬底上方的压电膜;在所述压电膜上位于压电膜与衬底连接点内侧的位置设置有多个镂空孔,所述压电膜上的镂空孔至少部分地与衬底重叠在一起,所述压电膜上镂空孔的位置与衬底之间具有间隙,所述间隙与镂空孔一起被构造为通道。
可选地,所述多个镂空孔环绕所述衬底的背腔分布。
可选地,所述衬底与压电膜之间的绝缘层呈连续不间断的环状结构。
可选地,所述衬底与压电膜之间的绝缘层呈间断的环状结构。
可选地,所述镂空孔贯通至压电膜的边缘,所述镂空孔相对分布在间断的两个绝缘层之间。
可选地,所述压电膜上镂空孔至压电膜中心之间的部分与衬底重叠在一起。
可选地,所述压电膜与衬底之间的间隙为0.5um~3um。
可选地,所述镂空孔呈圆形、矩形、椭圆形、扇形或梯形。
可选地,所述压电膜依次包括复合在一起的第一电极层、压电材料中间层、第二电极层。
可选地,所述第一电极层、压电材料中间层、第二电极层通过沉积的方式复合在一起。
本发明提供的一种适用于两侧声源的压电式麦克风,镂空孔只有通过间隙才能构成连通压电膜两侧的通道,这就使得正常的发音只有通过间隙才能流通出去。相对传统的镂空结构而言,本发明的间隙可以阻碍声音直接通过镂空孔传出,从而可以大大降低该压电式麦克风低频信号、中频信号的泄漏量,提高了压电式麦克风的性能。而且该间隙还可有效防止粉尘、微粒、水入侵对芯片产生伤害。
本发明的发明人发现,在现有技术中,在压电膜上设置的镂空结构会使得低频信号甚至中频信号的泄漏非常严重;而且还降低了压电膜的有效面积,使其无法有效地接收声音讯号,产品性能与理论数据有很大的差距,无法达成预期性能。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明压电膜的俯视图。
图2是本发明麦克风下声源的示意图。
图3是本发明麦克风上声源的示意图。
图4是本发明压电膜另一实施方式的俯视图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参考图1至图2,本发明提供了一种压电式麦克风,包括衬底1,以及通过绝缘层2连接在衬底1上方的压电膜3。衬底1的中部区域形成有背腔10,所述压电膜3的边缘通过绝缘层2支撑在衬底1的上方,从而保证压电膜3与衬底1之间的绝缘,并使压电膜3除边缘连接位置的其它区 域悬置在衬底1背腔10的上方。
本发明的麦克风可以采用MEMS工艺制造,衬底1可选用单晶硅材质,绝缘层2可以采用二氧化硅材质,压电膜3可以采用AIN、PZT材料。在本发明一个具体的实施方式中,所述压电膜3依次包括复合在一起的第一电极层30、压电材料中间层31、第二电极层32。这种复合可以通过MEMS工艺中的依次沉积来实现,也可以通过压电材料领域所熟知的其它方式进行,在此不再具体说明。
本发明的压电膜3与衬底1的形状相配,其可以选择圆形、矩形或者本领域技术人员所熟知的其它形状。其中,在所述压电膜3上设置有多个镂空孔4,该多个镂空孔4设置在压电膜3与衬底1连接位置的内侧位置上。也就是说,压电膜3的边缘位置通过绝缘层2支撑并连接在衬底1的上方,所述镂空孔4设置在压电膜3的振动区域,从而使得该镂空孔4可以起到提高压电膜3灵敏度的目的。
其中,所述压电膜3上的镂空孔4至少部分地与衬底1重叠在一起。参考图2,所述压电膜3上的镂空孔4至少部分地位于衬底1的正上方,使得压电膜3上的镂空孔4位置与衬底1之间具有间隙5。也就是说,压电膜3镂空孔4位置与衬底1之间没有绝缘层2,使得压电膜3上的镂空孔4位置悬空在衬底1的正上方。所述间隙5与镂空孔4一起被构造为连通所述背腔10与压电膜3上方的通道。
本发明的压电式麦克风,镂空孔只有通过间隙才能构成连通压电膜两侧的通道,这就使得正常的发音只有通过间隙才能流通出去。相对传统的镂空结构而言,本发明的间隙可以阻碍声音直接通过镂空孔传出,从而可以大大降低该压电式麦克风低频信号、中频信号的泄漏量,提高了压电式麦克风的性能。而且该间隙还可有效防止粉尘、微粒、水入侵对芯片产生伤害。
本发明的压电式麦克风既可适用于上声源,也可适用于下声源,参考图2、图3。图2示意出了下声源的示意图,声音从背腔10的下方进入,此时间隙5可以降低低频、中频信号从镂空孔4的泄漏量。图3示出了上声源的示意图,声音从压电膜3的上方进入,通过镂空孔4进入到间隙5 中时,该间隙5同样可以阻碍低频、中频信号的泄漏量。
本发明的压电式麦克风,由于镂空孔4相对分布在背腔10的外侧,这就使得可以控制、调节声压的泄漏量。例如可以控制间隙5的长度以及高度,从而到达调节间隙5阻碍能力的目的。
例如在本发明一个具体的实施方式中,所述间隙5的高度例如可以为0.5um~3um。
在本发明另一个具体的实施方式中,所述压电膜3上的镂空孔4可以部分地与衬底1重叠在一起,也可以全部重叠在一起,从而实现间隙5横向尺寸的调节。进一步优选的是,所述压电膜3上镂空孔4位置至压电膜3中心位置之间的部分与衬底1重叠在一起。也就是说,不但镂空孔4的位置全部与衬底1重叠在一起,压电膜3上镂空孔4至压电膜3中心之间的区域也部分地延伸到衬底1的正上方,并参与间隙5的形成。这大大延长了间隙5的横向尺寸,提高了间隙5阻碍的能力;并且较长的间隙5还可有效避免粉尘微粒入侵至芯片的内部。
本发明的多个镂空孔4均匀环绕在衬底1背腔10的四周,所述多个镂空孔4例如可排布呈如图1示出的圆形环状结构,或者排布呈如图4示出的矩形环状结构。其中,镂空孔4可以呈圆形、矩形、椭圆形、扇形或梯形等。所述衬底1与压电膜3之间的绝缘层2可以呈连续不间断的环状,也可以呈间断的环状结构。
当衬底1与压电膜3之间的绝缘层2呈连续不间断的环状结构时,也就是说,该绝缘层2为封闭的环状,其把衬底1、压电膜3的周向全部封闭住,此时,只存在间隙5与镂空孔4构成的通道。
当衬底1与压电膜3之间的绝缘层2呈间断的环状结构时,所述间隙5、间断的两个绝缘层2之间以及镂空孔4之间会构成多个通道,该结构相对于上述只有一个通道情况而言,会加大麦克风的泄露量。
本发明的镂空孔4可以设置在压电膜3的内部。与此相对的是,镂空孔4也可以贯通至压电膜3的边缘,此时,所述镂空孔4可以相对分布在间断的两个绝缘层2之间的位置上,防止绝缘层2接触所述镂空孔4,以保证不会影响到镂空孔4提高压电膜3灵敏度的作用。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种压电式麦克风,其特征在于:包括具有背腔(10)的衬底(1),以及通过绝缘层(2)连接在衬底(1)上方的压电膜(3);在所述压电膜(3)上位于压电膜(3)与衬底(1)连接点内侧的位置设置有多个镂空孔(4),所述压电膜(3)上的镂空孔(4)至少部分地与衬底(1)重叠在一起,所述压电膜(3)上镂空孔(4)的位置与衬底(1)之间具有间隙(5),所述间隙(5)与镂空孔(4)一起被构造为通道。
  2. 根据权利要求1所述的压电式麦克风,其特征在于:所述多个镂空孔(4)环绕所述衬底(1)的背腔(10)分布。
  3. 根据权利要求1或2所述的压电式麦克风,其特征在于:所述衬底(1)与压电膜(3)之间的绝缘层(2)呈连续不间断的环状结构。
  4. 根据权利要求1所述的压电式麦克风,其特征在于:所述衬底(1)与压电膜(3)之间的绝缘层(2)呈间断的环状结构。
  5. 根据权利要求4所述的压电式麦克风,其特征在于:所述镂空孔(4)贯通至压电膜(3)的边缘,所述镂空孔(4)相对分布在间断的两个绝缘层(2)之间。
  6. 根据权利要求1至3任一项所述的压电式麦克风,其特征在于:所述压电膜(3)上镂空孔(4)至压电膜(3)中心之间的部分与衬底(1)重叠在一起。
  7. 根据权利要求1至6任一项所述的压电式麦克风,其特征在于:所述压电膜(3)与衬底(1)之间的间隙(5)为0.5um~3um。
  8. 根据权利要求1至7任一项所述的压电式麦克风,其特征在于:所述镂空孔(4)呈圆形、矩形、椭圆形、扇形或梯形。
  9. 根据权利要求1至8任一项所述的压电式麦克风,其特征在于:所述压电膜(3)依次包括复合在一起的第一电极层(30)、压电材料中间层(31)、第二电极层(32)。
  10. 根据权利要求9所述的压电式麦克风,其特征在于:所述第一电极层(30)、压电材料中间层(31)、第二电极层(32)通过沉积的方式 复合在一起。
PCT/CN2017/099519 2017-05-22 2017-08-29 一种压电式麦克风 WO2018214321A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/739,935 US10382870B2 (en) 2017-05-22 2017-08-29 Piezoelectric microphone
EP17844630.8A EP3432602A4 (en) 2017-05-22 2017-08-29 PIEZOELECTRIC MICROPHONE
JP2018532395A JP6750147B2 (ja) 2017-05-22 2017-08-29 圧電型マイクロホン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710364823.6A CN107071672B (zh) 2017-05-22 2017-05-22 一种压电式麦克风
CN201710364823.6 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018214321A1 true WO2018214321A1 (zh) 2018-11-29

Family

ID=59609650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099519 WO2018214321A1 (zh) 2017-05-22 2017-08-29 一种压电式麦克风

Country Status (5)

Country Link
US (1) US10382870B2 (zh)
EP (1) EP3432602A4 (zh)
JP (1) JP6750147B2 (zh)
CN (1) CN107071672B (zh)
WO (1) WO2018214321A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071672B (zh) * 2017-05-22 2020-08-21 潍坊歌尔微电子有限公司 一种压电式麦克风
CN110121138B (zh) * 2018-02-06 2021-02-12 中芯国际集成电路制造(上海)有限公司 一种高灵敏度、高信噪比的mems麦克风及其制造方法
CN108337617A (zh) * 2018-03-02 2018-07-27 上海微联传感科技有限公司 压电式麦克风
CN109803217B (zh) * 2018-12-31 2021-06-15 瑞声声学科技(深圳)有限公司 压电式麦克风
CN110113700B (zh) * 2019-05-18 2024-09-27 安徽奥飞声学科技有限公司 一种mems结构
CN110099345B (zh) * 2019-05-18 2024-05-03 安徽奥飞声学科技有限公司 一种mems结构
CN110099344B (zh) * 2019-05-18 2024-03-08 安徽奥飞声学科技有限公司 一种mems结构
CN110113699B (zh) * 2019-05-18 2021-06-29 安徽奥飞声学科技有限公司 一种mems结构的制备方法
CN110149574B (zh) * 2019-05-18 2024-09-03 安徽奥飞声学科技有限公司 一种mems结构
CN110113702B (zh) * 2019-05-18 2021-10-01 安徽奥飞声学科技有限公司 一种mems结构的制造方法
WO2021000069A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 压电式与电容式相结合的mems麦克风
WO2021000070A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 Mems麦克风
CN110417375B (zh) * 2019-08-30 2024-10-01 华景传感科技(无锡)有限公司 一种体声波谐振器
CN110798788B (zh) * 2019-11-12 2021-05-11 安徽奥飞声学科技有限公司 一种mems结构及其形成方法
CN212572962U (zh) * 2020-06-08 2021-02-19 瑞声声学科技(深圳)有限公司 一种压电式mems麦克风
CN112138972B (zh) * 2020-09-28 2022-09-09 京东方科技集团股份有限公司 一种声波换能单元及其制备方法、声波换能器
CN113526456A (zh) * 2021-06-30 2021-10-22 青岛芯笙微纳电子科技有限公司 一种mems压电芯片及mems器件
CN113460949A (zh) * 2021-06-30 2021-10-01 青岛芯笙微纳电子科技有限公司 一种mems压电芯片及mems器件
CN113490120A (zh) * 2021-07-07 2021-10-08 瑞声开泰科技(武汉)有限公司 Mems扬声器
CN113596690B (zh) * 2021-08-13 2023-03-14 中北大学 新型压电式mems麦克风的结构及装置
DE102022117678A1 (de) 2022-07-14 2024-01-25 OQmented GmbH Verfahren zur herstellung eines schichtaufbaus für eine mems-vorrichtung und mems-vorrichtung mit einem derartigen schichtaufbau

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889352A (en) * 1995-10-13 1999-03-30 Ngk Insulators, Ltd. Piezo-electric/electrostrictive film type element
CN102545827A (zh) * 2012-01-04 2012-07-04 华为技术有限公司 薄膜体声波谐振器、通信器件和射频模块
CN104202010A (zh) * 2014-08-28 2014-12-10 中国工程物理研究院电子工程研究所 一种镂空空腔型薄膜体声波谐振器及其制作方法
CN206164826U (zh) * 2016-08-31 2017-05-10 歌尔股份有限公司 一种敏感膜及mems 麦克风
CN107071672A (zh) * 2017-05-22 2017-08-18 歌尔股份有限公司 一种压电式麦克风

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452268A (en) * 1994-08-12 1995-09-19 The Charles Stark Draper Laboratory, Inc. Acoustic transducer with improved low frequency response
JP3465675B2 (ja) * 2000-09-11 2003-11-10 日本碍子株式会社 圧電/電歪膜型素子
JP2004364334A (ja) * 2004-08-13 2004-12-24 Taiheiyo Cement Corp 圧電音響変換器
JP2007124306A (ja) * 2005-10-28 2007-05-17 Sanyo Electric Co Ltd 情報表示装置
EP2297976B1 (en) * 2008-06-30 2020-09-30 The Regents of the University of Michigan Piezoelectric mems microphone
JP5332373B2 (ja) * 2008-07-25 2013-11-06 オムロン株式会社 静電容量型振動センサ
KR101545271B1 (ko) * 2008-12-19 2015-08-19 삼성전자주식회사 압전형 음향 변환기 및 이의 제조방법
KR20120061422A (ko) * 2010-12-03 2012-06-13 한국전자통신연구원 멤스 음향 센서
EP3105572B1 (en) * 2014-02-13 2019-04-10 Robert Bosch GmbH Capacitive bubble detection
JPWO2015190429A1 (ja) * 2014-06-13 2017-04-20 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
US20160037263A1 (en) * 2014-08-04 2016-02-04 Knowles Electronics, Llc Electrostatic microphone with reduced acoustic noise
CN105848074B (zh) * 2015-01-15 2020-07-28 联华电子股份有限公司 微机电麦克风
CN206908855U (zh) * 2017-05-22 2018-01-19 歌尔股份有限公司 一种压电式麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889352A (en) * 1995-10-13 1999-03-30 Ngk Insulators, Ltd. Piezo-electric/electrostrictive film type element
CN102545827A (zh) * 2012-01-04 2012-07-04 华为技术有限公司 薄膜体声波谐振器、通信器件和射频模块
CN104202010A (zh) * 2014-08-28 2014-12-10 中国工程物理研究院电子工程研究所 一种镂空空腔型薄膜体声波谐振器及其制作方法
CN206164826U (zh) * 2016-08-31 2017-05-10 歌尔股份有限公司 一种敏感膜及mems 麦克风
CN107071672A (zh) * 2017-05-22 2017-08-18 歌尔股份有限公司 一种压电式麦克风

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432602A4 *

Also Published As

Publication number Publication date
US20190052974A1 (en) 2019-02-14
JP6750147B2 (ja) 2020-09-02
CN107071672A (zh) 2017-08-18
JP2019520718A (ja) 2019-07-18
EP3432602A1 (en) 2019-01-23
EP3432602A4 (en) 2019-06-26
CN107071672B (zh) 2020-08-21
US10382870B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2018214321A1 (zh) 一种压电式麦克风
JP6542918B2 (ja) Memsマイクロホン
US20130243234A1 (en) Component having a micromechanical microphone structure
US9686619B2 (en) MEMS device with acoustic leak control features
WO2016078561A1 (zh) 一种扬声器结构
CN206908855U (zh) 一种压电式麦克风
CN103796139A (zh) 声学金属振膜
US20180376248A1 (en) Micro Loudspeaker
WO2016176994A1 (zh) 一种mems麦克风的封装结构
WO2020000647A1 (zh) 麦克风
US10277968B2 (en) Microphone with dustproof through holes
JPH10304496A (ja) 境界層マイクロホン
US20200322731A1 (en) Acoustic transducer
TWI520625B (zh) 具振膜支撐結構的聲波傳感器
JP2020048007A (ja) スピーカ用振動板
KR20110114253A (ko) 정전용량형 멤스 마이크로폰의 제조방법
US20020110250A1 (en) Miniature microphone with improved wind protection
JP2005244427A (ja) 単一指向性コンデンサマイクロホンユニット
US8019101B2 (en) Condenser microphone
JP2006270140A (ja) スピーカ用振動板の製造方法およびこの製造方法により製造されたスピーカ用振動板およびこのスピーカ用振動板を用いたスピーカ
WO2018103309A1 (zh) 锥盆式的扬声器膜片和扬声器
CN215529302U (zh) 一种mems麦克风
US20130010989A1 (en) Component having a micromechanical microphone structure, and method for manufacturing same
WO2018103310A1 (zh) 锥盆式的扬声器膜片和扬声器
JP3977829B2 (ja) スピーカ用振動板及びこれを用いたスピーカ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018532395

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE