WO2021000069A1 - 压电式与电容式相结合的mems麦克风 - Google Patents

压电式与电容式相结合的mems麦克风 Download PDF

Info

Publication number
WO2021000069A1
WO2021000069A1 PCT/CN2019/093948 CN2019093948W WO2021000069A1 WO 2021000069 A1 WO2021000069 A1 WO 2021000069A1 CN 2019093948 W CN2019093948 W CN 2019093948W WO 2021000069 A1 WO2021000069 A1 WO 2021000069A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrode
electrode sheet
piezoelectric diaphragm
acoustic
Prior art date
Application number
PCT/CN2019/093948
Other languages
English (en)
French (fr)
Inventor
童贝
占瞻
李杨
黎家健
钟晓辉
段炼
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/093948 priority Critical patent/WO2021000069A1/zh
Priority to CN201910605926.6A priority patent/CN110267185B/zh
Priority to US16/986,302 priority patent/US11159895B2/en
Publication of WO2021000069A1 publication Critical patent/WO2021000069A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/02Transducers using more than one principle simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the invention relates to the technical field of acoustic-electric conversion devices, in particular to a MEMS microphone combined with a piezoelectric type and a capacitive type.
  • MEMS microphone is an electro-acoustic transducer made by micro-machining technology, which has the characteristics of small size, good frequency response characteristics, and low noise. With the development of smaller and thinner electronic devices, MEMS microphones are more and more widely used in these devices.
  • the MEMS microphone in the related art includes a silicon substrate and a flat capacitor composed of a diaphragm and a back plate.
  • the diaphragm and the back plate are opposite and separated by a certain distance.
  • the diaphragm vibrates under the action of sound waves, which causes the distance between the diaphragm and the back plate to change, which causes the capacitance of the plate capacitor to change, thereby converting the sound wave signal into an electrical signal.
  • capacitive MEMS microphones seem to have reached a performance bottleneck, and there has been no considerable improvement in recent years; in addition, this MEMS
  • the performance of the microphone is greatly affected by dust, water and pollutants, and when the diaphragm is operated in a high sound pressure environment, the reliability will be worse.
  • the manufacturing process is also relatively complicated, and the production cost is relatively high.
  • the object of the present invention is to provide a piezoelectric and capacitive MEMS microphone with high sensitivity.
  • a new MEMS microphone includes a base with a back cavity and a capacitor system arranged on the base.
  • the capacitor system includes a back plate and a diaphragm.
  • the back plate and the diaphragm are relatively spaced apart
  • a first acoustic cavity is formed, a piezoelectric diaphragm structure is also provided between the capacitor system and the base, a second acoustic cavity is formed between the capacitor system and the piezoelectric diaphragm structure, and the second The acoustic cavity is in communication with at least the first acoustic cavity or the back cavity.
  • the first acoustic cavity, the second acoustic cavity and the back cavity are in communication, and the capacitor system is provided with a first acoustic hole that communicates the first acoustic cavity and the second acoustic cavity, A second acoustic hole connecting the second acoustic cavity and the back cavity is formed through the piezoelectric diaphragm structure.
  • the piezoelectric membrane structure includes a first electrode sheet, a piezoelectric membrane, and a second electrode sheet stacked in sequence, and the first electrode sheet is arranged in the direction of the piezoelectric membrane.
  • the second electrode sheet is arranged on the side of the piezoelectric diaphragm facing the base.
  • the center of the first electrode sheet, the center of the piezoelectric diaphragm, and the center of the second electrode sheet are all on the same vertical line, and the area of the first electrode sheet is smaller than that of the second electrode sheet.
  • the area of the piezoelectric diaphragm, the second acoustic hole is formed through the piezoelectric diaphragm and the second electrode sheet correspondingly, and the second acoustic hole is surrounded on the outer peripheral side of the first electrode sheet .
  • the first electrode sheet is round or square.
  • the center of the first electrode sheet, the center of the piezoelectric diaphragm, and the center of the second electrode sheet are all on the same vertical line, and the piezoelectric diaphragm and the first
  • the second acoustic holes are correspondingly penetrated through the two electrode sheets, and the second acoustic holes are arranged on the inner peripheral side of the first electrode sheets.
  • the first electrode sheet has a circular ring shape or a "back" shape.
  • the center of the first electrode sheet, the center of the piezoelectric diaphragm, and the center of the second electrode sheet are all on the same vertical line, and the piezoelectric diaphragm and the first The second acoustic holes are correspondingly penetrated through the two electrode sheets.
  • the first electrode sheet includes at least two electrode bodies. A slit is formed between two adjacent electrode bodies. The slit is connected to the first The two acoustic holes are connected, and two or more of the above-mentioned electrode bodies form a circle or a square.
  • the piezoelectric membrane structure further includes a first electrode wire and a first electrode terminal, and the first electrode sheet is connected to the first electrode terminal through the first electrode wire.
  • the piezoelectric membrane structure further includes an insulating base layer, the second electrode sheet is disposed on the insulating base layer, and the shape of the insulating base layer is the same as that of the second electrode sheet. the same.
  • a first insulating layer is provided between the piezoelectric diaphragm structure and the base, and the first insulating layer is connected to the piezoelectric diaphragm structure or the base.
  • a second insulating layer is provided between the capacitor system and the piezoelectric diaphragm structure, the second insulating layer is connected to the capacitor system or the piezoelectric diaphragm structure, and the diaphragm is connected to the back plate.
  • a third insulating layer is provided therebetween, and the third insulating layer is connected to the diaphragm or the back plate.
  • the piezoelectric and capacitive combined MEMS microphone of the present invention is coupled into the piezoelectric diaphragm structure on the basis of the capacitive MEMS microphone, so that the microphone can not only cooperate with the diaphragm and the back plate.
  • the sound pressure acts on the piezoelectric diaphragm structure to deform the piezoelectric diaphragm structure, thereby generating a charge output, that is, the piezoelectric and capacitive MEMS microphone of the present invention It can output two sets of electrical signals, including a set of electrical signals output by the capacitor system and a set of electrical signals output by the piezoelectric diaphragm structure, so the sensitivity of the microphone can be improved, and the piezoelectric diaphragm structure is set to a certain extent It also plays a role in dust prevention.
  • FIG. 1 is a cross-sectional view of a piezoelectric and capacitive MEMS microphone combined according to Embodiment 1 of the present invention
  • FIG. 2 is a top view of the piezoelectric membrane structure of the piezoelectric and capacitive combined MEMS microphone provided by Embodiment 1 of the present invention
  • FIG. 3 is a cross-sectional view of a piezoelectric and capacitive combined MEMS microphone provided by Embodiment 2 of the present invention.
  • FIG. 4 is a top view of the piezoelectric membrane structure of the piezoelectric and capacitive combined MEMS microphone provided by Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view of a piezoelectric and capacitive combined MEMS microphone provided by Embodiment 3 of the present invention.
  • FIG. 6 is a top view of the piezoelectric membrane structure of the piezoelectric and capacitive combined MEMS microphone provided by Embodiment 3 of the present invention.
  • this embodiment provides a piezoelectric and capacitive MEMS microphone 1, including a base 10 and a capacitor system arranged on the base 10 and insulated and connected to the base 10.
  • the capacitor A piezoelectric diaphragm structure 12 is also provided between the system and the base 10, a first insulating layer 131 is provided between the piezoelectric diaphragm structure 12 and the base, and a first insulating layer 131 is provided between the capacitor system and the piezoelectric diaphragm structure 12 Two insulation 132.
  • the base 10 is made of a semiconductor material and has a back cavity 101, an upper surface and a lower surface opposite to the upper surface.
  • the back cavity 101 penetrates the upper surface and the lower surface.
  • the back cavity 101 can be formed by a bulk silicon micromachining process or etching.
  • the capacitor system is disposed on the piezoelectric diaphragm structure 12 through the second insulating layer 132.
  • the capacitor system includes a back plate 111, a diaphragm 112 arranged opposite to the back plate 111, and a third diaphragm located between the back plate 111 and the diaphragm 112.
  • the insulating layer 133, the back plate 111 and the diaphragm 112 are arranged at intervals to form a first acoustic cavity 113
  • the capacitor system and the piezoelectric diaphragm structure 12 are arranged at intervals to form a second acoustic cavity 114
  • the first acoustic cavity 113 penetrates the third insulating layer 133
  • the second acoustic cavity 114 penetrates through the second insulating layer 132
  • the surface of the back plate 111 facing the first acoustic cavity 113 is also provided with a plurality of insulating protrusions for preventing electrical conduction between the back plate 111 and the diaphragm 112.
  • the back plate 111 and the diaphragm 112 are both It is a conductor, made of polysilicon doped or single crystal silicon doped conductive material.
  • the MEMS microphone When the MEMS microphone is energized, the two will carry charges of opposite polarity to form a capacitive system.
  • the diaphragm 112 vibrates under the action of sound waves, the distance between the diaphragm 112 and the back plate 111 will change, resulting in a change in the capacitance of the capacitor system, thereby converting the sound wave signal into an electrical signal, and realizing the corresponding function of the microphone .
  • the positions of the back plate 111 and the diaphragm 112 can be adjusted, as long as the two can form a capacitive system, that is, the back plate 111 can be located between the diaphragm 112 and the base 10, or it can be a vibration
  • the membrane 112 is located between the back plate 111 and the base 10.
  • the back plate 111 is located between the diaphragm 112 and the base 10, the second insulating layer 132 is provided between the back plate 111 and the piezoelectric diaphragm structure 12, and the back plate 111 is penetrated with the first The first acoustic hole 1111 of the acoustic cavity 113 and the second acoustic cavity 114, the diaphragm 112 is provided with a diaphragm electrode 115 connected to the diaphragm, the third insulating layer 133 is penetrated with a connecting hole 1331, and the connecting hole 1331 is provided with The back plate electrode 116 connected to the back plate 111, the second insulating layer 132 is connected to the back plate 111 or the piezoelectric diaphragm structure 12, the second insulating layer 132 can not only support the back plate, but also ensure the back plate 111 Insulation with the piezoelectric diaphragm structure 12, the third insulating layer 133 can not only support the diaphragm
  • the first acoustic hole 1111 does not necessarily need to be provided on the back plate 111, that is, the first acoustic cavity 113 and the second acoustic cavity 114 do not necessarily need to be connected, and the piezoelectric diaphragm structure 12 It is not necessary to open the second acoustic hole 125, because the piezoelectric and capacitive combined MEMS microphones 1 are installed in different ways, and the directions of sound propagation to the diaphragm 112 and the piezoelectric diaphragm structure 12 are also different. However, as long as the sound can reach the diaphragm 112 and the piezoelectric diaphragm structure 12, the presence or absence of the first acoustic hole 1111 and the second acoustic hole 125 can be adjusted as needed.
  • a through hole 1121 is formed through the diaphragm 112, so that when the diaphragm 112 vibrates, the airflow generated between the diaphragm 112 and the back plate 111 is more easily discharged, thereby reducing the noise of the microphone and improving the signal-to-noise ratio.
  • the through hole 1121 formed in the diaphragm 112 may play other roles, for example, when the sound does not propagate from the back cavity 101 to the direction of the capacitor system, but from the capacitor system to the direction of the back cavity 101 A through hole 1121 is penetrated through the diaphragm 112 to allow sound to reach the diaphragm 112 and the piezoelectric diaphragm structure 12.
  • the piezoelectric diaphragm structure 12 is a middle curved structure, which includes a first electrode sheet 121, a piezoelectric diaphragm 122, a second electrode sheet 123, a first electrode wire 1211, and a first electrode terminal 1212 stacked in sequence.
  • the center of the electrode sheet 121, the center of the piezoelectric diaphragm 122 and the center of the second electrode sheet 123 are all on the same vertical line.
  • the first electrode sheet 121 is compounded on the side of the piezoelectric diaphragm 122 facing the back plate 111, The first electrode sheet 121 is connected to the first electrode terminal 1212 through the first electrode wire 1211, and the area of the first electrode sheet 121 is smaller than the area of the piezoelectric diaphragm 122, and the second electrode 123 is combined on the facing base of the piezoelectric diaphragm 122.
  • the two ends of the second electrode sheet 123 and the piezoelectric diaphragm 122 are provided between the base 10 and the second insulating layer 132, which are equivalent to the fixed end, then the second electrode sheet 123 and the piezoelectric diaphragm 122
  • the middle part of is the reaction area.
  • the first electrode sheet 121 is compounded on the reaction area of the piezoelectric diaphragm 122.
  • the piezoelectric diaphragm 122 and the second electrode sheet 123 are provided with a corresponding second connection between the fixed end and the free end.
  • the second acoustic holes 125 are evenly distributed with the center of the piezoelectric diaphragm 122 as the center.
  • the second acoustic holes 125 are arranged on the outer peripheral side of the first electrode plate 121,
  • the second acoustic hole 125 includes an arc-shaped groove 1251 opened through the piezoelectric diaphragm 122 and a circular hole 1252 opened through the second electrode sheet 123 that are connected to each other.
  • the area of the arc-shaped groove 1251 is larger than that of the circular hole 1252.
  • the first electrode sheet 121 is circular or square.
  • the shape of the first electrode sheet 121 is not limited to a circle or a square.
  • the shapes of the piezoelectric diaphragm 122 and the second electrode sheet 123 are not limited. .
  • the two sets of electrical signals include a set of electrical signals output by the capacitor system and a set of electrical signals output by the piezoelectric diaphragm structure 12, so the sensitivity of the microphone can be improved.
  • the piezoelectric diaphragm structure 12 further includes an insulating base layer 124 disposed on the base 10 through the first insulating layer 131, the second electrode sheet 123 is disposed on the insulating base layer 124, and the shape of the insulating base layer 124 is the same as the first insulating layer 131.
  • the two electrode sheets 123 have the same shape.
  • the insulating base layer 124 is made of materials such as single crystal silicon, polysilicon, or silicon nitride, and plays a protective role.
  • the first insulating layer 131 functions to support the insulating base layer 124.
  • the difference between this embodiment and the first embodiment is the piezoelectric diaphragm structure 12, the piezoelectric diaphragm structure 12 of this embodiment is an edge-bending structure, which includes the first stacked in sequence
  • the electrode sheet 121, the piezoelectric diaphragm 122, the second electrode sheet 123, the first electrode wire 1211 and the first electrode terminal 1212, the center of the first electrode sheet 121, the center of the piezoelectric diaphragm 122 and the second electrode sheet 123 The centers are all on the same vertical line.
  • the first electrode sheet 121 is combined on the side of the piezoelectric diaphragm 122 facing the back plate 111.
  • the first electrode sheet 121 is connected to the first electrode terminal 1212 through the first electrode wire 1211, and the second electrode 123 pieces are compounded on the side of the piezoelectric diaphragm 122 facing the base 10, and both ends of the piezoelectric diaphragm 122 and the second electrode piece 123 are arranged between the first insulating layer 131 and the second insulating layer 132.
  • the piezoelectric The middle part of the diaphragm 122 and the second electrode sheet 123 is provided with a second acoustic hole 125 connecting the second acoustic cavity 114 and the back cavity 101.
  • the second acoustic hole 125 includes a large circular hole 1251 connected to each other and opened through the piezoelectric diaphragm 122.
  • the small circular hole 1252 opened through the second electrode sheet 123, the part from the inner side wall of the piezoelectric diaphragm 122 to the fixed end is the reaction area
  • the first electrode sheet 121 is compounded on the reaction area of the piezoelectric diaphragm 122
  • the large circular hole 1251 And small round holes 1252 are both provided on the inner peripheral side of the first electrode sheet 121
  • the large round holes 1251 are evenly arranged with the center of the piezoelectric diaphragm 122 as the center
  • four small round holes 1252 are provided
  • the small round holes 1252 are piezoelectric
  • the center of the diaphragm 122 is uniformly distributed at the center of the circle, and the total area of the small circular holes 1252 is much smaller than the area of the large circular holes 1251. Therefore, the second electrode sheet 123 can also play a role of dust prevention, as far as possible to prevent dust from entering the second acoustic cavity 114 and First sound cavity 113.
  • the first electrode sheet 121 has a circular ring shape or a "back" shape.
  • the shape of the first electrode sheet 121 is not limited to a circular ring shape or a "back” shape.
  • the shapes of the piezoelectric diaphragm 122 and the second electrode sheet 122 are not limited.
  • the two sets of electrical signals include a set of electrical signals output by the capacitor system and a set of electrical signals output by the piezoelectric diaphragm structure 12, so the sensitivity of the microphone can be improved.
  • the piezoelectric diaphragm structure 12 further includes an insulating base layer 124 disposed on the base 10 through the first insulating layer 131, the second electrode sheet 123 is disposed on the insulating base layer 124, and the shape of the insulating base layer 124 is the same as the first insulating layer 131.
  • the two electrode sheets 123 have the same shape.
  • the insulating base layer 124 is made of materials such as single crystal silicon, polysilicon, or silicon nitride, and plays a protective role.
  • the first insulating layer 131 functions to support the insulating base layer 124.
  • the piezoelectric diaphragm structure 12 of this embodiment is a four-cantilevered beam structure, which includes successively laminated
  • the centers of 123 are all on the same vertical line.
  • the first electrode sheet 121 is combined on the side of the piezoelectric diaphragm 122 facing the back plate 111.
  • the first electrode sheet 121 is connected to the first electrode terminal 1212 through the first electrode wire 1211.
  • the two electrodes 123 are combined on the side of the piezoelectric diaphragm 122 facing the base 10, and the piezoelectric diaphragm 122 and the second electrode 123 are correspondingly penetrated with a second acoustic hole 125 connecting the second acoustic cavity 114 and the back cavity 101
  • the first electrode sheet 121 has a split structure, including four electrode bodies 1213, a slit is formed between two adjacent electrode bodies 1213, and the slit is in communication with the second acoustic hole 125, and,
  • the shape of the slit is the same as that of the second acoustic hole 125, and the four electrode bodies 1213 are the same in size and shape, or may be different, that is, the first electrode sheet 121 may have a symmetric structure or an asymmetric structure.
  • the size and shape of the four electrode bodies 1213 are all the same, and they have a symmetrical structure, and the four electrode bodies 1213 cooperate to form a circular structure. In other embodiments, the four electrode bodies 1213 cooperate to form a square structure.
  • the electrode body 1213 is not limited to forming a circular structure or a square structure.
  • the size and shape of each electrode body 1213 can be set according to actual needs.
  • the shapes of the piezoelectric diaphragm 122 and the second electrode sheet 123 are different. Do restrictions.
  • the two sets of electrical signals include a set of electrical signals output by the capacitor system and a set of electrical signals output by the piezoelectric diaphragm structure 12, so the sensitivity of the microphone can be improved.
  • the piezoelectric membrane structure 121 further includes an insulating base layer 124 disposed on the base 10 through the first insulating layer 131, the second electrode sheet 123 is disposed on the insulating base layer 124, and the shape of the insulating base layer 124 is the same as the first insulating layer 131.
  • the two electrode sheets 123 have the same shape.
  • the insulating base layer 124 is made of materials such as single crystal silicon, polysilicon, or silicon nitride, and plays a protective role.
  • the first insulating layer 131 functions to support the insulating base layer 124.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Micromachines (AREA)

Abstract

本发明提供了压电式与电容式相结合的MEMS麦克风,包括具有背腔的基座以及设于基座上的电容系统,电容系统包括背板和振膜,背板和振膜相对间隔设置以形成第一声腔,在电容系统与基座之间还设有压电膜片结构,电容系统与压电膜片结构之间形成有第二声腔,第二声腔至少与第一声腔或背腔连通,该压电式与电容式相结合的MEMS麦克风能够输出两组电信号,包括一组由电容系统输出的电信号和一组由压电膜片结构输出的电信号,因此能够提高麦克风的灵敏度。

Description

压电式与电容式相结合的MEMS麦克风 技术领域
本发明涉及声电转换装置技术领域,具体涉及一种压电式与电容式相结合的MEMS麦克风。
背景技术
MEMS麦克风是一种用微机械加工技术制作出来的电声换能器,其具有 体积小、频响特性好、噪声低等特点。随着电子设备的小巧化、薄型化发展,MEMS麦克风被越来越广泛地运用到这些设备上。
相关技术中的MEMS麦克风包括硅基底以及由振膜和背板组成的平板 电容,振膜与背板相对并相隔一定距离。振膜在声波的作用下产生振动, 导致振膜和背板之间的距离发生变化,导致平板电容的电容发生改变,从 而将声波信号转化为了电信号。目前,电容式MEMS麦克风似乎达到了性能瓶颈,而且在最近几年也没有可观的改进;此外,这种 MEMS 麦克风的性能受灰尘、水及污染物的影响较大,而且当振膜在高声压环境下工作时,可靠性会变差。此外,制作工艺也比较复杂,生产成本也比较高。
因此,有必要提供一种新的MEMS麦克风以解决上述问题。
技术问题
本发明的目的在于提供一种灵敏度高的压电式与电容式相结合的MEMS麦克风。
技术解决方案
本发明的技术方案如下:
一种新的MEMS麦克风,包括具有背腔的基座以及设于所述基座上的电容系统,所述电容系统包括背板和振膜,所述背板和所述振膜相对间隔设置以形成第一声腔,在所述电容系统与所述基座之间还设有压电膜片结构,所述电容系统与所述压电膜片结构之间形成有第二声腔,所述第二声腔至少与所述第一声腔或所述背腔连通。
作为一种改进方式,所述第一声腔、所述第二声腔和所述背腔连通,所述电容系统上开设有连通所述第一声腔与所述第二声腔的第一声学孔,所述压电膜片结构上贯穿开设有连通所述第二声腔与所述背腔的第二声学孔。
作为一种改进方式,所述压电膜片结构包括依次叠压的第一电极片、压电膜片、第二电极片,所述第一电极片设于所述压电膜片之朝向所述电容系统的一侧,所述第二电极片设于所述压电膜片之朝向所述基座的一侧。
作为一种改进方式,所述第一电极片的中心、所述压电膜片的中心和所述第二电极片的中心均在同一竖直线上,所述第一电极片的面积小于所述压电膜片的面积,所述压电膜片和所述第二电极片对应贯穿开设有所述第二声学孔,所述第二声学孔围设于所述第一电极片的外周侧。
作为一种改进方式,所述第一电极片呈圆形或者方形。
作为一种改进方式,所述第一电极片的中心、所述压电膜片的中心和所述第二电极片的中心均在同一竖直线上,所述压电膜片和所述第二电极片对应贯穿开设有所述第二声学孔,所述第二声学孔设于所述第一电极片的内周侧。
作为一种改进方式,所述第一电极片呈圆环形或者“回”字形。
作为一种改进方式,所述第一电极片的中心、所述压电膜片的中心和所述第二电极片的中心均在同一竖直线上,所述压电膜片和所述第二电极片对应贯穿开设有所述第二声学孔,所述第一电极片包括至少两个电极体,相邻两个所述电极体之间形成有狭缝,所述狭缝与所述第二声学孔连通,两个或多个以上所述电极体围合成圆形或方形。
作为一种改进方式,所述压电膜片结构还包括第一电极线和第一电极端子,所述第一电极片通过所述第一电极线与所述第一电极端子连接。
作为一种改进方式,所述压电膜片结构还包括绝缘基底层,所述第二电极片设于所述绝缘基底层上,所述绝缘基底层的形状与所述第二电极片的形状相同。
作为一种改进方式,所述压电膜片结构与所述基座之间设有第一绝缘层,所述第一绝缘层与所述压电膜片结构或所述基座相连,所述电容系统与所述压电膜片结构之间设有第二绝缘层,所述第二绝缘层与所述电容系统或所述压电膜片结构相连,所述振膜与所述背板之间设有第三绝缘层,所述第三绝缘层与所述振膜或所述背板相连。
有益效果
本发明的有益效果在于:
与现有技术相比,本发明的压电式与电容式相结合的MEMS麦克风,在电容式的MEMS麦克风的基础上耦合进压电膜片结构,使得麦克风除了振膜与背板的配合作用将声波信号转变为电信号之外,声压作用于压电膜片结构上,使压电膜片结构发生形变,从而产生电荷输出,即本发明的压电式与电容式相结合的MEMS麦克风能够输出两组电信号,包括一组由电容系统输出的电信号和一组由压电膜片结构输出的电信号,因此能够提高麦克风的灵敏度,而且,压电膜片结构的设置在一定程度上也起到了防尘的作用。
附图说明
图1为本发明实施例1提供的压电式与电容式相结合的MEMS麦克风的剖面图;
图2为本发明实施例1提供的压电式与电容式相结合的MEMS麦克风的压电膜结构的俯视图;
图3为本发明实施例2提供的压电式与电容式相结合的MEMS麦克风的剖面图;
图4为本发明实施例2提供的压电式与电容式相结合的MEMS麦克风的压电膜结构的俯视图;
图5为本发明实施例3提供的压电式与电容式相结合的MEMS麦克风的剖面图;
图6为本发明实施例3提供的压电式与电容式相结合的MEMS麦克风的压电膜结构的俯视图。
本发明的实施方式
下为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产 品或设备固有的其它步骤或单元。
需要说明的是,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
实施例1
请参阅图1及图2,本实施例提供一种压电式与电容式相结合的MEMS麦克风1,包括基座10以及设于基座10上并与基座10绝缘相连的电容系统,电容系统与基座10之间还设有压电膜片结构12,压电膜片结构12与基座之间设有第一绝缘层131,电容系统与压电膜片结构12之间设有第二绝缘132。
基座10由半导体材料制成,具有背腔101、上表面和与上表面相对的下表面,背腔101贯穿上表面及下表面,其中背腔101可以通过体硅微加工工艺或蚀刻形成。电容系统通过第二绝缘层132设于压电膜片结构12上,电容系统包括背板111、与背板111相对间隔设置的振膜112和位于背板111与振膜112之间的第三绝缘层133,背板111与振膜112间隔设置并形成第一声腔113,电容系统与压电膜片结构12间隔设置并形成第二声腔114,第一声腔113贯穿第三绝缘层133,第二声腔114贯穿第二绝缘层132,背板111朝向第一声腔113的表面还设有多个用于防止背板111与振膜112电导通的绝缘凸起,背板111和振膜112均为导体,由多晶硅掺杂或单晶硅掺杂导电材料制成,在MEMS麦克风的通电工作状态下,两者会带上极性相反的电荷,形成电容系统。当振膜112在声波的作用下产生振动,振膜112与背板111之间的距离会发生变化,从而导致电容系统的电容发生改变,从而将声波信号转化为了电信号,实现麦克风的相应功能。
值得注意的是,背板111和振膜112的位置是可以调整的,只要两者能够形成电容系统即可,即可以是背板111位于振膜112与基座10之间,也可以是振膜112位于背板111与基座10之间。
在本实施例中,背板111位于振膜112与基座10之间,第二绝缘层132设于背板111与压电膜片结构12之间,背板111上贯穿开设有连通第一声腔113和第二声腔114的第一声学孔1111,振膜112上方设有与振膜相连的振膜电极115,第三绝缘层133上贯穿设有连接孔1331,连接孔1331内设有与背板111相连的背板电极116,第二绝缘层132与背板111或压电膜片结构12相连,第二绝缘层132既可以起到支撑背板的作用,又可以保证背板111与压电膜片结构12之间的绝缘,第三绝缘层133既可以起到支撑振膜112的作用,又可以保证振膜112与背板111之间的绝缘,第一绝缘层131、第二绝缘层132和第三绝缘层133均由半导体氧化硅绝缘层材料制成。
需要说明的是,在其他实施例中,背板111上不一定需要开设第一声学孔1111,也就是说第一声腔113和第二声腔114不一定需要连通,压电膜片结构12上也不一定需要开设第二声学孔125,因为压电式与电容式相结合的MEMS麦克风1的安装方式不同,声音传播到振膜112和压电膜片结构12的方向也会不同,在应用中,只要声音能够到达振膜112和压电膜片结构12即可,因此,第一声学孔1111和第二声学孔125的有无可以根据需要调整。
进一步地, 振膜112上贯穿开设有通孔1121,使得振膜112振动时,与背板111之间产生的气流更为容易排泄,从而降低麦克风的噪音,提高信噪比。
值得注意的是,振膜112上贯穿开设通孔1121有可能起到其他作用,比如,当声音不是从背腔101往电容系统的方向传播,而是从电容系统往背腔101的方向传播时,在振膜112上贯穿开设通孔1121是为了使声音能够到达振膜112和压电膜片结构12。
压电膜片结构12为中间弯曲式结构,其包括依次叠压的第一电极片121、压电膜片122、第二电极片123、第一电极线1211和第一电极端子1212,第一电极片121的中心、压电膜片122的中心和第二电极片123的中心均在同一竖直线上,第一电极片121复合在压电膜片122之朝向背板111的一侧,第一电极片121通过第一电极线1211连接第一电极端子1212,且第一电极片121的面积小于压电膜片122的面积,第二电极123片复合在压电膜片122之朝向基座10的一侧,第二电极片123和压电膜片122两端设于基座10与第二绝缘层132之间,相当于固定端,则第二电极片123和压电膜片122的中间部分为反应区域,第一电极片121复合在压电膜片122的反应区域上,压电膜片122和第二电极片123在固定端与自由端之间对应贯穿开设有连通第二声腔114和背腔101的第二声学孔125,第二声学孔125以压电膜片122中心为圆心均布设置,第二声学孔125围设于第一电极片121的外周侧,在本实施例中,第二声学孔125包括相互连通的贯穿压电膜片122开设的弧形槽1251和贯穿第二电极片123开设的圆孔1252,弧形槽1251的面积大于圆孔1252的面积,弧形槽1251对称设置有两个,圆孔1252设有四个,第二声学孔125起到连通第二声腔114和背腔101的作用,而且合理布置第二声学孔125的数量与位置,还能起到防尘作用,尽可能地避免灰尘进入第二声腔114和第一声腔113。
可选地,第一电极片121呈圆形或者方形,当然,第一电极片121的形状并不限于圆形或方形,此外,压电膜片122和第二电极片123的形状不做限制。
麦克风工作时,声压作用于压电膜片结构12上,从而引起压电膜片122发生变形,从而产生电荷输出,即本实施例的压电式与电容式相结合的MEMS麦克风1能够输出两组电信号,包括一组由电容系统输出的电信号和一组由压电膜片结构12输出的电信号,因此能够提高麦克风的灵敏度。
进一步地,压电膜片结构12还包括通过第一绝缘层131设于基座10上的绝缘基底层124,第二电极片123设于绝缘基底层124上,绝缘基底层124的形状与第二电极片123的形状相同。绝缘基底层124由单晶硅、多晶硅或氮化硅等材料制成,起保护作用,第一绝缘层131起到支撑绝缘基底层124的作用。
实施例2
请参阅图3及图4,本实施例与实施例1的不同之处在于压电膜片结构12,本实施的压电膜片结构12为边缘弯曲式结构,其包括依次叠压的第一电极片121、压电膜片122、第二电极片123、第一电极线1211和第一电极端子1212,第一电极片121的中心、压电膜片122的中心和第二电极片123的中心均在同一竖直线上,第一电极片121复合在压电膜片122朝向背板111的一侧面,第一电极片121通过第一电极线1211连接第一电极端子1212,第二电极123片复合在压电膜片122之朝向基座10的一侧,压电膜片122和第二电极片123的两端设于第一绝缘层131与第二绝缘层132之间,压电膜片122和第二电极片123中间部分贯穿开设有连通第二声腔114和背腔101的第二声学孔125,第二声学孔125包括相互连通的贯穿压电膜片122开设的大圆孔1251和贯穿第二电极片123开设的小圆孔1252,则压电膜片122内侧壁到固定端的部分为反应区域,第一电极片121复合在压电膜片122的反应区域上,大圆孔1251和小圆孔1252均设于第一电极片121的内周侧,大圆孔1251以压电膜片122中心为圆心均布设置,小圆孔1252设有四个,小圆孔1252以压电膜片122中心为圆心均布设置,小圆孔1252的总面积远小于大圆孔1251的面积,因此第二电极片123还能起到防尘作用,尽可能地避免灰尘进入第二声腔114和第一声腔113。
可选地,第一电极片121呈圆环形或者 “回”字形。当然,第一电极片121的形状并不限于圆环形或者 “回”字形。此外,压电膜片122和第二电极片122的形状不做限制。
麦克风工作时,声压作用于压电膜片结构12上,从而引起压电膜片122发生变形,从而产生电荷输出,即本实施例的压电式与电容式相结合的MEMS麦克风1能够输出两组电信号,包括一组由电容系统输出的电信号和一组由压电膜片结构12输出的电信号,因此能够提高麦克风的灵敏度。
进一步地,压电膜片结构12还包括通过第一绝缘层131设于基座10上的绝缘基底层124,第二电极片123设于绝缘基底层124上,绝缘基底层124的形状与第二电极片123的形状相同。绝缘基底层124由单晶硅、多晶硅或氮化硅等材料制成,起保护作用,第一绝缘层131起到支撑绝缘基底层124的作用。
实施例3
请参阅图5及图6,本实施例与实施例1的不同之处在于压电膜片结构12,本实施的压电膜片结构12为四悬壁梁式结构,其包括依次叠压的第一电极片121、压电膜片122、第二电极片123、第一电极线1211和第一电极端子1212,第一电极片121的中心、压电膜片122的中心和第二电极片123的中心均在同一竖直线上,第一电极片121复合在压电膜片122朝向背板111的一侧面,第一电极片121通过第一电极线1211连接第一电极端子1212,第二电极123片复合在压电膜片122之朝向基座10的一侧,压电膜片122和第二电极片123对应贯穿开设有连通第二声腔114与背腔101的第二声学孔125,在本实施例中,第一电极片121为分体结构,包括四个电极体1213,相邻两个电极体1213之间形成有狭缝,狭缝与第二声学孔125连通,且,狭缝的形状与第二声学孔125的形状相同,四个电极体1213大小和形状相同,也可以不同,即第一电极片121可以是对称结构,也可以是非对称结构。在本实施中,四个电极体1213的大小和形状均相同,为对称结构,且四个电极体1213配合围成圆形结构,在其他实施例中,四个电极体1213配合围成方形结构,当然,电极体1213并不限于配合围成圆形结构或方形结构,可以根据实际需要设置每个电极体1213的大小和形状,此外,压电膜片122和第二电极片123的形状不做限制。
麦克风工作时,声压作用于压电膜片结构12上,从而引起压电膜片122发生变形,从而产生电荷输出,即本实施例的压电式与电容式相结合的MEMS麦克风1能够输出两组电信号,包括一组由电容系统输出的电信号和一组由压电膜片结构12输出的电信号,因此能够提高麦克风的灵敏度。
进一步地,压电膜片结构121还包括通过第一绝缘层131设于基座10上的绝缘基底层124,第二电极片123设于绝缘基底层124上,绝缘基底层124的形状与第二电极片123的形状相同。绝缘基底层124由单晶硅、多晶硅或氮化硅等材料制成,起保护作用,第一绝缘层131起到支撑绝缘基底层124的作用。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种压电式与电容式相结合的MEMS麦克风,包括具有背腔的基座以及设于所述基座上的电容系统,所述电容系统包括背板和振膜,所述背板和所述振膜相对间隔设置以形成第一声腔,其特征在于:在所述电容系统与所述基座之间还设有压电膜片结构,所述电容系统与所述压电膜片结构之间形成有第二声腔,所述第二声腔至少与所述第一声腔或所述背腔连通。
  2. 根据权利要求1所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述第一声腔、所述第二声腔和所述背腔连通,所述电容系统上开设有连通所述第一声腔与所述第二声腔的第一声学孔,所述压电膜片结构上贯穿开设有连通所述第二声腔与所述背腔的第二声学孔。
  3. 根据权利要求2所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述压电膜片结构包括依次叠压的第一电极片、压电膜片、第二电极片,所述第一电极片设于所述压电膜片之朝向所述电容系统的一侧,所述第二电极片设于所述压电膜片之朝向所述基座的一侧。
  4. 根据权利要求3所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述第一电极片的中心、所述压电膜片的中心和所述第二电极片的中心均在同一竖直线上,所述第一电极片的面积小于所述压电膜片的面积,所述压电膜片和所述第二电极片对应贯穿开设有所述第二声学孔,所述第二声学孔围设于所述第一电极片的外周侧。
  5. 根据权利要求4所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述第一电极片呈圆形或者方形。
  6. 根据权利要求3所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述第一电极片的中心、所述压电膜片的中心和所述第二电极片的中心均在同一竖直线上,所述压电膜片和所述第二电极片对应贯穿开设有所述第二声学孔,所述第二声学孔设于所述第一电极片的内周侧。
  7. 根据权利要求6所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述第一电极片呈圆环形或者“回”字形。
  8. 根据权利要求3所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述第一电极片的中心、所述压电膜片的中心和所述第二电极片的中心均在同一竖直线上,所述压电膜片和所述第二电极片对应贯穿开设有所述第二声学孔,所述第一电极片包括至少两个电极体,相邻两个所述电极体之间形成有狭缝,所述狭缝与所述第二声学孔连通,两个或多个以上所述电极体围合成圆形或方形。
  9. 根据权利要求3-8任一项所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述压电膜片结构还包括第一电极线和第一电极端子,所述第一电极片通过所述第一电极线与所述第一电极端子连接。
  10. 根据权利要求3-8任一项所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述压电膜片结构还包括绝缘基底层,所述第二电极片设于所述绝缘基底层上,所述绝缘基底层的形状与所述第二电极片的形状相同。
  11. 根据权利要求2-8任一项所述的压电式与电容式相结合的MEMS麦克风,其特征在于:所述压电膜片结构与所述基座之间设有第一绝缘层,所述第一绝缘层与所述压电膜片结构或所述基座相连,所述电容系统与所述压电膜片结构之间设有第二绝缘层,所述第二绝缘层与所述电容系统或所述压电膜片结构相连,所述振膜与所述背板之间设有第三绝缘层,所述第三绝缘层与所述振膜或所述背板相连。
PCT/CN2019/093948 2019-06-29 2019-06-29 压电式与电容式相结合的mems麦克风 WO2021000069A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/093948 WO2021000069A1 (zh) 2019-06-29 2019-06-29 压电式与电容式相结合的mems麦克风
CN201910605926.6A CN110267185B (zh) 2019-06-29 2019-07-05 压电式与电容式相结合的mems麦克风
US16/986,302 US11159895B2 (en) 2019-06-29 2020-08-06 Piezoelectric type and capacitive type combined MEMS microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093948 WO2021000069A1 (zh) 2019-06-29 2019-06-29 压电式与电容式相结合的mems麦克风

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/986,302 Continuation US11159895B2 (en) 2019-06-29 2020-08-06 Piezoelectric type and capacitive type combined MEMS microphone

Publications (1)

Publication Number Publication Date
WO2021000069A1 true WO2021000069A1 (zh) 2021-01-07

Family

ID=67924681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093948 WO2021000069A1 (zh) 2019-06-29 2019-06-29 压电式与电容式相结合的mems麦克风

Country Status (3)

Country Link
US (1) US11159895B2 (zh)
CN (1) CN110267185B (zh)
WO (1) WO2021000069A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708649B (zh) * 2019-09-29 2020-12-18 潍坊歌尔微电子有限公司 一种mems芯片以及电子设备
CN112565949B (zh) * 2020-11-18 2023-06-20 杭州士兰集昕微电子有限公司 压电式微机电系统麦克风及其制造方法
CN112565948B (zh) * 2020-11-18 2023-05-12 杭州士兰集昕微电子有限公司 微机电系统麦克风及其制造方法
CN112565947B (zh) * 2020-11-18 2023-05-12 杭州士兰集昕微电子有限公司 微机电系统麦克风及其制造方法
DE102021211813A1 (de) * 2021-10-20 2023-04-20 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrofluidisches Bauelement, entsprechende Anordnung und entsprechendes Betriebsverfahren
CN114014254A (zh) * 2021-10-29 2022-02-08 安徽奥飞声学科技有限公司 一种mems结构
CN114125613A (zh) * 2021-12-16 2022-03-01 国网湖北省电力有限公司电力科学研究院 一种mems麦克风防护结构及mems麦克风阵列结构
CN114885264B (zh) * 2022-07-11 2022-11-18 苏州敏芯微电子技术股份有限公司 一种麦克风组件及电子设备
CN218387805U (zh) * 2022-08-25 2023-01-24 瑞声声学科技(深圳)有限公司 麦克风芯片及麦克风
CN115914962B (zh) * 2023-01-05 2023-05-30 苏州敏芯微电子技术股份有限公司 麦克风组件、制备方法及电子设备
CN116193342B (zh) * 2023-01-09 2023-11-24 武汉敏声新技术有限公司 一种电容-压电式耦合麦克风

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959106A (zh) * 2009-07-16 2011-01-26 鸿富锦精密工业(深圳)有限公司 微机电系统麦克风的封装结构及其封装方法
CN107071672A (zh) * 2017-05-22 2017-08-18 歌尔股份有限公司 一种压电式麦克风
CN109005490A (zh) * 2018-06-25 2018-12-14 歌尔股份有限公司 Mems电容式麦克风
CN109495829A (zh) * 2018-12-31 2019-03-19 瑞声声学科技(深圳)有限公司 压电式mems麦克风

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067838B (zh) * 2012-12-28 2015-10-28 缪建民 一种高灵敏度压电式硅麦克风的制备方法
US9479875B2 (en) * 2015-01-23 2016-10-25 Silicon Audio Directional, Llc Multi-mode microphones
US9503820B2 (en) * 2015-01-23 2016-11-22 Silicon Audio Directional, Llc Multi-mode microphones
US10277988B2 (en) * 2016-03-09 2019-04-30 Robert Bosch Gmbh Controlling mechanical properties of a MEMS microphone with capacitive and piezoelectric electrodes
KR101807062B1 (ko) * 2016-11-08 2018-01-18 현대자동차 주식회사 마이크로폰 및 이의 제조방법
CN206948610U (zh) * 2017-06-16 2018-01-30 歌尔科技有限公司 一种压电麦克风及电子设备
JP2019041349A (ja) * 2017-08-29 2019-03-14 新日本無線株式会社 Mems素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959106A (zh) * 2009-07-16 2011-01-26 鸿富锦精密工业(深圳)有限公司 微机电系统麦克风的封装结构及其封装方法
CN107071672A (zh) * 2017-05-22 2017-08-18 歌尔股份有限公司 一种压电式麦克风
CN109005490A (zh) * 2018-06-25 2018-12-14 歌尔股份有限公司 Mems电容式麦克风
CN109495829A (zh) * 2018-12-31 2019-03-19 瑞声声学科技(深圳)有限公司 压电式mems麦克风

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIEN-MING CHEN, CHIN-FU KUO, DI-BAO WANG, CHIN-WEN HUANG, SHANG-CHING SUN, YU-SHENG HSIEH, WU-ZHONG ZHON: "Low bias voltage and high sensitivity CMOS condenser microphone using combined stress relaxation design", MICROSYSTEMS PACKAGING ASSEMBLY AND CIRCUITS TECHNOLOGY CONFERENCE (IMPACT), 2010 5TH INTERNATIONAL, 20 January 2011 (2011-01-20), pages 1 - 3, XP031858664, ISBN: 978-1-4244-9783-6 *
SHEN GUOHAO, WEIPING ZHANG, WU LIU, ZHIFANG WEI, YIFEI ZOU: "Structure Optimization Design for the Capacitive Silicon-Based MEMS Microphone", SEMICONDUCTOR TECHNOLOGY, vol. 43, no. 12, 23 December 2018 (2018-12-23), pages 912 - 917, XP055771327, ISSN: 1003-353X, DOI: 10.13290/j.cnki.bdtjs.2018.12.006 *

Also Published As

Publication number Publication date
US20200413203A1 (en) 2020-12-31
CN110267185B (zh) 2021-12-17
US11159895B2 (en) 2021-10-26
CN110267185A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2021000069A1 (zh) 压电式与电容式相结合的mems麦克风
WO2021000070A1 (zh) Mems麦克风
US8265309B2 (en) Condenser microphone
US10743111B2 (en) MEMS microphone
CN105792084B (zh) Mems麦克风及其制造方法
CN101262959A (zh) 压电致动器、声学部件、以及电子装置
EP1312241B1 (en) Electrostatic electroacoustical transducer
CN209897223U (zh) Mems麦克风
WO2023202417A1 (zh) 一种麦克风组件及电子设备
WO2023202418A1 (zh) 一种麦克风组件及电子设备
KR20160127212A (ko) 멤스 마이크로폰 및 그 제조방법
CN217985406U (zh) 一种mems压电扬声器
CN115696158A (zh) 差分mems芯片、麦克风及电子设备
US8103028B2 (en) Electrostatic loudspeaker
CN110337056B (zh) 一种高密度指向性压电电声换能器阵列的制作方法
CN114885264B (zh) 一种麦克风组件及电子设备
CN104219598B (zh) 双振膜声波传感器
US20230192473A1 (en) Mems microphone
CN213694144U (zh) Mems传感器芯片、麦克风和电子设备
KR101700571B1 (ko) 멤스 마이크로폰
KR20050076150A (ko) 압전 구동형 초음파 미세기전 시스템 스피커 및 그 제조방법
CN101867860B (zh) 一种具有分割电极的电容传声器
JP2023541474A (ja) シリコンベースマイクロフォン装置及び電子機器
CN212486784U (zh) Mems芯片和mems麦克风
CN219145557U (zh) 一种麦克风结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936224

Country of ref document: EP

Kind code of ref document: A1