WO2023202417A1 - 一种麦克风组件及电子设备 - Google Patents

一种麦克风组件及电子设备 Download PDF

Info

Publication number
WO2023202417A1
WO2023202417A1 PCT/CN2023/087479 CN2023087479W WO2023202417A1 WO 2023202417 A1 WO2023202417 A1 WO 2023202417A1 CN 2023087479 W CN2023087479 W CN 2023087479W WO 2023202417 A1 WO2023202417 A1 WO 2023202417A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
diaphragm
microphone assembly
back plate
area
Prior art date
Application number
PCT/CN2023/087479
Other languages
English (en)
French (fr)
Inventor
荣根兰
刘青
Original Assignee
苏州敏芯微电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州敏芯微电子技术股份有限公司 filed Critical 苏州敏芯微电子技术股份有限公司
Publication of WO2023202417A1 publication Critical patent/WO2023202417A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the present application relates to the field of microphone technology, and more specifically to a microphone assembly and electronic equipment.
  • a microphone is a pressure sensor that ultimately converts sound pressure signals into electrical signals.
  • Small microphones manufactured using microelectromechanical technology are called MEMS (Micro-Electro-Mechanical System) microphones or micromicrophones.
  • MEMS microphone chips generally include a substrate, diaphragm and back plate. The diaphragm and the back plate are important components in the MEMS microphone chip. The diaphragm and the back plate are arranged in parallel and spaced apart. They constitute the two electrode plates of the flat capacitor. The diaphragm is used to vibrate under the action of sound waves. This causes the relative distance between the back plate and the diaphragm to change, thereby causing the capacitance value of the flat capacitor to change. The change in capacitance value is converted into an electrical signal through the peripheral circuit, thereby realizing the conversion of sound and electricity.
  • MEMS microphones are composed of an inductive diaphragm and a rigid back plate. This type of microphone has low linearity and large harmonic distortion. With the expansion of MEMS microphone application scenarios (such as singing on mobile phones, etc.), users have increasingly higher requirements for the voice quality of MEMS microphones.
  • MEMS microphones In order to improve the signal-to-noise ratio of the electrical signals induced by MEMS microphones, in the existing technology, MEMS microphones generally use a multi-diaphragm method or a multi-back plate method to obtain differential electrical signals, but this increases the size of the MEMS microphone. , unable to adapt to the demand for thinner and lighter electronic products. Therefore, there is a need to improve existing technologies.
  • Embodiments of the present application provide a microphone assembly and electronic equipment to solve the technical problem of the larger size of the MEMS microphone caused by improving the signal-to-noise ratio of the electrical signal induced by the existing MEMS microphone, and at the same time enhance the performance of the microphone. performance.
  • Embodiments of the present application provide a microphone assembly and electronic equipment.
  • an embodiment of the present application provides a microphone assembly, including: providing a base, a diaphragm, and a back plate. In a direction perpendicular to the plane of the base, the diaphragm is located between the base and the back plate.
  • the diaphragm has a sound wave conduction area, and the sound wave conduction area is provided with at least one sound hole penetrating the diaphragm in the thickness direction to transmit sound waves from the external space; part of the base
  • the region constitutes the first electrode, and the first electrode has at least one first hollow region;
  • the partial region of the back plate constitutes the second electrode, and the second electrode has at least one second hollow region;
  • the diaphragm has The acoustic wave conduction area constitutes a third electrode; wherein, in a direction perpendicular to the plane of the substrate, the projections of the first electrode, the third electrode and the second electrode overlap, and the substrate It also has at least one fourth hollowed area, and the at least one fourth hollowed area surrounds the first electrode to form a back cavity.
  • the first electrode has only one first hollow area
  • the second electrode has only one second hollow area
  • the first hollow area of the first electrode is located at the center of the first electrode, and the second hollow area of the second electrode is located at the center of the second electrode.
  • the first electrode has at least two first hollow areas and/or the second electrode has at least two second hollow areas, and in a direction perpendicular to the plane of the substrate, direction, the projections of the area formed by all the first hollow areas and the area formed by all the second hollow areas at least partially overlap.
  • the back plate also has at least one third hollow area surrounding the second electrode to reduce the distance between the back plate and the diaphragm. film damping.
  • a first supporting body for supporting the diaphragm is provided on a side of the base close to the diaphragm, and a first supporting body is provided on a side of the diaphragm away from the base for supporting the back electrode.
  • the second support body of the plate; the first support body is located at the edge of the base, so that the diaphragm is suspended above the first electrode, and the first electrode and the diaphragm form a first variable capacitor; the second support The body is located at the edge of the diaphragm, so that the back plate is suspended above the diaphragm, and the second electrode and the diaphragm form a second variable capacitor.
  • the substrate further includes: at least one first cross beam, the at least one first cross beam fixedly connects the first electrode and the first support part.
  • At least one of the at least one first beam includes a conductive medium to transmit electrical signals between the first electrode and external circuitry.
  • the back plate further includes: a second support part and at least one second cross beam, and the at least one second cross beam fixedly connects the second electrode to the second support part.
  • At least one of the at least one second beam includes a conductive medium to transmit electrical signals between the second electrode and external circuitry.
  • At least one first support structure is disposed between the first electrode and the second electrode, and the first support structure is passed through the sound hole of the diaphragm, and the first support structure is disposed between the first electrode and the second electrode.
  • a support structure is in contact with the first electrode and the second electrode respectively.
  • the first support structure is composed of one of silicon nitride, silicon oxide, and a composite material of silicon nitride and silicon oxide.
  • the backplate further includes: at least one backplate through hole surrounding the second electrode to reduce the vibration between the backplate and the vibration. Pressure film damping between membranes.
  • a dust-proof structure for protecting the second electrode is provided on a side of the back plate away from the diaphragm.
  • a third support body for supporting the dust-proof structure is provided on the side of the back plate away from the diaphragm; the third support body is located at the edge of the back plate to The dust-proof structure is suspended above the back plate.
  • a first baffle structure facing the second electrode is provided on an edge of the sound wave conduction area, and there is a gap between the first baffle structure and the second electrode.
  • the edge of the second electrode is provided with a second baffle structure facing the diaphragm, and there is a gap between the second baffle structure and the diaphragm.
  • the edge of the diaphragm is further provided with at least one annular protrusion, the annular protrusion is in a continuous annular shape or an intermittent annular shape, and the annular protrusion faces the back cavity.
  • At least one gap structure is provided on the edge of the diaphragm to relieve stress of the diaphragm.
  • a plurality of slit structures are provided on the edge of the diaphragm, and the plurality of slit structures are arranged in an annular shape.
  • an embodiment of the present application further provides an electronic device, which includes the microphone assembly described in any of the above embodiments.
  • the microphone assembly and electronic device of the embodiment of the present application can implement a single-diaphragm differential capacitance solution and improve the performance of the microphone assembly.
  • the back plate of the microphone assembly has a large third hollow area, which can significantly reduce the pressure film damping between the back plate and the diaphragm.
  • FIG. 1A is a three-dimensional schematic diagram of a microphone assembly according to an embodiment of the present application.
  • FIG. 1B is a partial cross-sectional structural diagram of the microphone assembly in FIG. 1A.
  • FIG. 1C is a partial top structural schematic diagram of the diaphragm in FIG. 1A.
  • FIG. 1D is a partial top structural schematic diagram of the back plate in FIG. 1A .
  • FIG. 1E is a partial top structural schematic diagram of the substrate in FIG. 1A .
  • Figure 2 is a partial cross-sectional structural schematic diagram of a microphone assembly provided according to yet another embodiment of the present application.
  • FIG. 3A is a three-dimensional schematic diagram of a microphone assembly according to another embodiment of the present application.
  • FIG. 3B is a partial top structural schematic diagram of the back plate in FIG. 3A .
  • FIG. 3C is a partial top structural schematic diagram of the substrate in FIG. 3A .
  • Figure 4 is a three-dimensional schematic diagram of a microphone assembly according to yet another embodiment of the present application.
  • 5 to 6 are schematic three-dimensional views of a microphone assembly according to another embodiment of the present application.
  • FIG. 7 is a three-dimensional schematic diagram of a microphone assembly according to another embodiment of the present application.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be mechanical connection, electrical connection or mutual communication; it can be directly connected, it can be indirectly connected through an intermediate medium, it can be internal connection between two components or the interaction between two components.
  • Embodiments of the present application provide a microphone assembly, which is the core component of a MEMS microphone and can be used in electronic devices with sound collection functions, such as smartphones, tablet computers, recording pens, hearing aids, vehicle-mounted equipment, etc.
  • the embodiments of this application are not limited to the above application scenarios.
  • Figure 1A is a schematic three-dimensional view of a microphone assembly according to an embodiment of the present application.
  • Figure 1B is a partial cross-sectional structural schematic view of the microphone assembly in Figure 1A;
  • Figure 1C is a partial top structural schematic view of the diaphragm in Figure 1A;
  • FIG. 1D is a partial top structural schematic diagram of the back plate in FIG. 1A ;
  • FIG. 1E is a partial top structural schematic diagram of the substrate in FIG. 1A .
  • an embodiment of the present application provides a microphone assembly 1000 that includes a base 100 , a diaphragm 200 , and a back plate 300 .
  • the The diaphragm 200 is located between the base 100 and the back plate 300; the diaphragm 200 has a sound wave conduction area 211, and the sound wave conduction area 211 is provided with at least one layer penetrating the diaphragm 200 in the thickness direction.
  • the second electrode 310 is formed, and the second electrode 310 has at least one second hollow area 318; the sound wave conduction area 211 of the diaphragm 200 forms the third electrode 213; wherein, in the direction perpendicular to the plane of the substrate 100 On the top, the projections of the first electrode 110, the third electrode 213 and the second electrode 310 overlap; and the substrate 100 also has at least one fourth hollow area 130, and the at least one fourth The hollow area 130 surrounds the first electrode 110 to form a back cavity 131 .
  • the at least one fourth hollow area 130 is an annular back cavity 131, so that the space of the annular back cavity 131 is large enough to reduce the surface vibration of the diaphragm 200 caused by reflected waves, Thereby improving the sensitivity and accuracy of the microphone's electrical signal detection.
  • the diaphragm 200 includes a vibration area 210 and a support area 220.
  • the vibration area 210 includes the sound wave conduction area 211.
  • the sound wave conduction area 211 Located in the center of the vibration area 210, the sound wave conduction area 211 is provided with at least one sound hole 212 penetrating the diaphragm 200 in the thickness direction to transmit sound waves from the external space; therefore, the sound wave conduction area 211 is not only the effective sound wave transmission area of the diaphragm 200 , but also the effective vibration area of the diaphragm 200 .
  • the third electrode 213 formed by the sound wave conduction area 211 of the diaphragm 200 is located between the first electrode 110 and the second electrode 310 , and the third electrode 213 is located between the first electrode 110 and the second electrode 310 .
  • the second electrode 310 and the third electrode 213 form a second capacitor structure of the microphone assembly 1000.
  • the first capacitor structure and the second capacitor structure share the same diaphragm 200, and the sound wave is transmitted through the diaphragm 200.
  • the amplitude change in the conductive region 211 causes the capacitance values in the first capacitor structure and the second capacitor structure to change, so that the first capacitor structure and the second capacitor structure can form a differential capacitor structure, so that the microphone can
  • the signal-to-noise ratio of the component 1000 is improved to achieve acoustic-to-electrical conversion; and since the first electrode 110 is composed of a partial area of the substrate 100, there is no need between the substrate 100 and the diaphragm 200.
  • the first electrode 110 is additionally provided to form a differential capacitance structure. Therefore, the volume of the microphone assembly 1000 can be reduced, thereby adapting to the demand for thinner and lighter electronic products.
  • the side of the base 100 close to the diaphragm 200 is provided with a first supporting body 101 for supporting the diaphragm 200
  • the side of the diaphragm 200 away from the base 100 is provided with a first supporting body 101 for supporting the back.
  • the second support body 102 of the pole plate 300 is provided.
  • the sound pressure load during normal operation and the blowing load during abnormal operation are both loaded to the diaphragm 200 through the back cavity 131 .
  • the first support body 101 is supported between the base 100 and the diaphragm 200 to electrically isolate the diaphragm 200 from the base 100 and provide support for the diaphragm 200 so that the diaphragm 200 (The third electrode 213 ) and the first electrode 110 are arranged oppositely and spaced apart, so that a first oscillating sound cavity for the vibration of the diaphragm 200 is formed between the first electrode 110 and the diaphragm 200 .
  • the second support body 102 is supported between the diaphragm 200 and the back plate 300 to electrically isolate the back plate 300 and the diaphragm 200 and provide support for the back plate 300, so that
  • the diaphragm 200 (the third electrode 213) and the second electrode 310 are arranged oppositely and spaced apart, so that a third electrode for the diaphragm to vibrate is formed between the second electrode 310 and the diaphragm 200.
  • the first support body 101 is located at the edge of the base 100 to support the diaphragm 200 so that the diaphragm 200 is suspended above the first electrode 110 and connected with the first electrode.
  • 110 insulation interval, the first electrode 110 and the sound wave conduction area 211 of the diaphragm 200 form a first variable capacitance;
  • the diaphragm 200 includes a vibration area 210 and a support area 220, wherein the support The region 220 lifts the diaphragm 200 above the first electrode 110 through the first support body 101 , and forms a gap with a predetermined spacing between the region 220 and the first electrode 110 .
  • the second support body 102 is located at the edge of the diaphragm 200 to support the back plate 300 so that the back plate 300 is suspended above the diaphragm 200 and is insulated from the diaphragm 200 , the second electrode 310 and the sound wave conduction area 211 of the diaphragm 200 form a second variable capacitance.
  • the output electrical signal can be increased to improve the signal-to-noise ratio of the microphone.
  • the substrate 100 further includes: a first support part 120 and at least one first beam 133 .
  • the at least one first beam 133 fixes the first electrode 110 and the first support part 120 connect.
  • the first electrode 110 is supported and fixed by at least one first beam 133 extending outwardly toward the periphery of the substrate 100, and the at least one first beam 133 is connected to the first support part 120, To achieve support and fixation of the first electrode 110; wherein at least one of the at least one first beam 133 contains a conductive medium to achieve transmission between the first electrode 110 and an external circuit (not shown) electrical signals between.
  • the area of the substrate 100 where the first electrode 110 is located is made of conductive material, and the area of the substrate 100 other than the first electrode 110 is made of non-conductive material.
  • a conductive film layer such as copper electroplating, can be formed on at least one of the at least one cross beam 133 to enable an external circuit to apply a first voltage signal to the first electrode 110 .
  • the substrate 100 is a semiconductor substrate, the substrate 100 includes a semiconductor material layer, and the semiconductor material layer can be doped, so that at least part of the semiconductor material layer has Conductive properties for preparing the first electrode 110 .
  • the area where the first electrode 110 of the substrate 100 is located can be doped in the semiconductor material layer to form an N-type dopant or a P-type impurity, and the at least one beam 133 of the substrate 100 is located At least one of the regions can be similarly doped in the semiconductor material layer to form an N-type dopant or a P-type impurity, so that an external circuit can apply a first voltage signal to the first electrode 110 .
  • the first support part 120 is located at an edge area of the base 100, and the first The support part 120 is used to support the diaphragm 200, the back plate 300, each conductive electrode (not shown), and the like.
  • a first support body 101 is provided on one side surface of the first support part 120 to support the diaphragm 200 , and on the diaphragm 200
  • a second supporting body 102 is provided on a side surface away from the first supporting part 120 to support the back plate 300 .
  • the first support body 101 and the second support body 102 are insulating support bodies, such as silicon oxide or silicon nitride.
  • the thickness of the first support body 101 and the second support body 102 is between 2 and 3 ⁇ m. For example, the thickness of the first support body 101 and the second support body 102 is around 2.5 ⁇ m.
  • the projection of the second support body 102 and/or the projection of the first support body 101 is located within the projection range of the first support part 120, This enables the first support part 120 to better carry the above-mentioned first support body 101 and second support body 102 .
  • the projection of the second support body 102 is located within the projection range of the first support body 101 in a direction perpendicular to the surface of the substrate 100 in a direction perpendicular to the surface of the substrate 100 .
  • At least one annular protrusion 215 is provided on the edge of the vibration region 210 close to the support region 220 .
  • the raised portion 215 is in a continuous annular shape or an intermittent annular shape, and the annular raised portion 215 bulges toward the back cavity 131 or away from the back cavity 131 to release the diaphragm. 200 stress, thereby improving the sensitivity of the microphone; wherein the at least one annular protrusion 215 surrounds the sound wave conduction area 211.
  • the back plate 300 also has at least one third hollow region 330, and the at least one third hollow region 330 surrounds the second electrode. 310, used to reduce the pressure film damping between the back plate 300 and the diaphragm 200.
  • the gap between the second electrode 310 and the diaphragm 200 and the gap between the first electrode 110 and the diaphragm 200 will produce pressure film damping, which The frequency response bandwidth of the microphone will be limited. Therefore, at least one third hollow area 330 needs to be provided on the back plate 300 to reduce the pressure film damping.
  • arranging the at least one third hollow area 330 on the back plate 300 can enable more sound pressure load (sound wave airflow) to be transmitted to the sound wave conduction area of the diaphragm 200, which can be used to increase the number of microphones. Sensitivity to sonic airflow improves the performance of microphone products.
  • the first electrode 110 has only one first hollowed area 118
  • the second electrode 310 has only one second hollowed area 318, and are arranged perpendicular to the In the direction of the plane of the substrate 100 , the projections of the first hollow area 118 and the second hollow area 318 overlap.
  • the first hollow area 118 of the first electrode 110 is located in the center of the first electrode 110
  • the second hollow area 318 of the second electrode 310 is located in the center of the first electrode 110 .
  • the center of the second electrode 310 This is because the center of the diaphragm 200 is usually the area where the diaphragm 200 deforms the most.
  • the external sound wave airflow enters from the side of the base 100 away from the diaphragm 200, if the area facing the center of the diaphragm 200 is If blocked, the external sound wave airflow can only be diffracted through the annular back cavity 131 to the sound wave conduction area 211 on the side of the diaphragm 200 close to the back cavity 131.
  • the first hollow area 118 of the first electrode 110 is located in the center of the first electrode 110 to increase the efficiency of the differential capacitance structure. electrical signal, thereby improving the signal-to-noise ratio of the microphone. Or, when the external acoustic airflow enters from the side of the back plate 300 away from the diaphragm 200, if the area facing the center of the diaphragm 200 is blocked, the external acoustic airflow can only pass through the third hollow area 330.
  • the sound wave conduction area 211 on the side of the diaphragm 200 close to the third hollow area 330 is diffracted to the sound wave conduction area 211 on the side of the diaphragm 200 close to the third hollow area 330.
  • the diaphragm 200 can maximize the Displacement deformation occurs following the sound wave airflow, so the second hollow area 318 of the second electrode 310 is located in the center of the second electrode 310 to increase the electrical signal of the differential capacitance structure, thereby improving the signal-to-noise ratio of the microphone.
  • overlapping the projection of the first hollow region 118 and the projection of the second hollow region 318 in a direction perpendicular to the plane of the base 100 can also facilitate the displacement and deformation of the diaphragm 200 .
  • Figure 2 is a partial cross-sectional structural schematic diagram of a microphone assembly provided according to yet another embodiment of the present application.
  • At least one gap structure 214 is provided at the edge of the diaphragm 200 near the support area 220 to release the diaphragm. stress, thereby improving the sensitivity of the microphone.
  • a plurality of slot structures 214 are provided on the edge of the diaphragm 200 close to the support area 220 , and the plurality of slot structures 214 are arranged in an annular shape.
  • the edge of the vibration area 210 can be distributed with holes (not shown) according to design requirements. The holes The gap is set for the release process during wet etching.
  • the insulating film layer located under the diaphragm 200 is etched away using a solution release method to obtain the insulating first support 101 and air. gap.
  • the pore can also be used to balance the internal and external air pressure to reduce the air pressure impact on the diaphragm 200 during the vibration process, so that the high-pressure airflow generated in the first oscillating sound cavity and the second oscillating sound cavity during the vibration process of the diaphragm 200 can partially pass through.
  • the pores are discharged to the external space, improving the acoustic effect, and preventing damage to the diaphragm 200 due to uneven vibration caused by the pressure difference on both sides of the diaphragm 200 during the vibration process.
  • the back plate 300 further includes: a second support part 320 and at least one second cross beam 303 .
  • the at least one second cross beam 303 connects the second electrode 310 to Fixedly connected to the second support part 320 .
  • the at least one second cross beam 303 is electrically connected to the second electrode 310, and at least one of the at least one second cross beam 303 contains a conductive medium to transmit between the second electrode 310 and an external circuit. electrical signals between.
  • the back plate 300 in order to reduce the pressure film damping between the back plate 300 and the diaphragm 200, the back plate 300 has at least one third hollow area 330 surrounding the second electrode 310,
  • the second electrode 310 is fixedly connected to the second support part 320 through the at least one second cross beam 303.
  • the second cross beam 303 has insufficient supporting force when supporting and fixing the second electrode 310, so This causes the second electrode 310 to vibrate when the microphone assembly is working. Therefore, in order to prevent the second electrode 310 from vibrating or to prevent the failure of the second capacitor structure due to insufficient support strength of the second electrode 310 .
  • At least one first support structure 112 is provided between the first electrode 110 and the second electrode 310.
  • the first support structure 112 is disposed in the sound hole 212 of the diaphragm 200 .
  • the first support structure 112 is in contact with the first electrode 110 and the second electrode 310 respectively for supporting and fixing.
  • the second electrode 310 prevents the second electrode 310 from shaking and insufficient support strength, thereby achieving relative position fixation between the first electrode 110 and the second electrode 310 .
  • the first support structure 112 is made of one of silicon nitride, silicon oxide, and a composite material of silicon nitride and silicon oxide to ensure electrical insulation between the first electrode 110 and the second electrode 310 .
  • At least one first support structure 112 is formed on a side surface of the first electrode 110 facing the second electrode 310 , and the first support structure 112 passes through Disposed in the sound hole 212 of the diaphragm 200 , the first support structure 112 is in contact with the second electrode 310 for supporting and fixing the second electrode 310 to prevent the second electrode 310 from Problems of shaking and insufficient support strength occur, thereby achieving relative position fixation between the first electrode 110 and the second electrode 310 .
  • at least one first support structure 112 may also be formed on a side surface of the second electrode 310 facing the first electrode 110, which will not be described again here.
  • the upper and lower plates (first electrode 110, second electrode 310) of the microphone assembly with a differential capacitance structure provided by the embodiment of the present application are both fixed.
  • the second electrode 310) can be called a "static plate”
  • the middle diaphragm 200 is called a "moving plate”.
  • the initial gap of the first capacitor structure C1 is d0
  • the initial gap of the second capacitor structure C2 is also d0
  • the initial capacitance size of the first capacitor structure C1 is C0
  • the initial capacitance size of the second capacitor structure C2 is C0.
  • Figure 3A is a schematic three-dimensional view of a microphone assembly according to another embodiment of the present application.
  • Figure 3B is a partial top structural schematic view of the back plate in Figure 3A.
  • Figure 3C is a schematic view of the base in Figure 3A Partial top view structural diagram.
  • the first electrode 110 has at least two first hollow regions 118 and/or the second electrode 310 has at least two second hollow regions 318 , and in In a direction perpendicular to the plane of the substrate 100 , the projections of the area formed by all the first hollow areas 118 and the area formed by all the second hollow areas 318 at least partially overlap.
  • the second electrode 310 has more than two second hollow regions 318 .
  • the first electrode 110 can also have more than two first hollow regions 118 .
  • Figure 4 is a three-dimensional schematic diagram of a microphone assembly according to yet another embodiment of the present application.
  • the difference between the microphone assembly in FIG. 4 and FIG. 1A is that the back plate 300 in FIG. 1A has at least one third hollow region 330 surrounding the at least one third hollow region 330 .
  • the second electrode 310 is used to reduce the pressure film damping between the back plate 300 and the diaphragm 200 .
  • the backplate 300 in FIG. 4 includes at least one backplate through hole 340 surrounding the second electrode 310 to reduce the distance between the backplate 300 and the second electrode 310 .
  • the function of the back plate through hole 340 in FIG. 4 is similar to the function of the third hollow area 330 and will not be described again.
  • the method of arranging the back plate through hole 340 can significantly improve the mechanical reliability of the second electrode 310 and prevent the second electrode 310 from being damaged.
  • the electrode 310 jitters due to insufficient supporting force or the second capacitor structure fails.
  • the back plate through hole 340 can also be used as a release hole for removing the insulating film layer between the back plate 300 and the diaphragm 200 through a solution release method.
  • 5 to 6 are schematic three-dimensional views of a microphone assembly according to another embodiment of the present application.
  • the difference between the microphone assembly in Figure 5 and Figure 1A is that the edge of the sound wave conduction area 211 is provided with a first baffle structure 201 facing the second electrode 310, There is a gap between the first baffle structure 201 and the second electrode 310 .
  • the first baffle structure 201 can form a continuous or intermittent ring shape at the edge of the sound wave conduction area 211.
  • the first baffle structure 201 is made of insulating material.
  • It has a limiting function to prevent the diaphragm 200 from adhering to the back plate 300 in a humid environment, and also has a dust-proof function to block entry through at least one third hollow area 330 of the back plate 300 The dust contaminates the sound hole 212 in the sound wave conduction area 211, thereby affecting the sensitivity and accuracy of the microphone's electrical signal detection.
  • the difference between the microphone assembly in FIG. 6 and FIG. 1A is that the edge of the second electrode 310 is provided with a second baffle structure 301 facing the diaphragm 200 .
  • the second baffle structure 301 can form a continuous or intermittent ring shape at the edge of the second electrode 310.
  • the second baffle structure 301 is made of insulating material.
  • It has a limiting function to prevent the diaphragm 200 from adhering to the back plate 300 in a humid environment, and also has a dust-proof function to block entry through at least one third hollow area 330 of the back plate 300 The dust contaminates the sound hole 212 in the sound wave conduction area 211, thereby affecting the sensitivity and accuracy of the microphone's electrical signal detection.
  • FIG. 7 is a three-dimensional schematic diagram of a microphone assembly according to another embodiment of the present application.
  • a dust-proof structure 400 for protecting the second electrode 310 is provided on the side of the back plate 300 away from the diaphragm 200 to prevent dust in the environment from passing through as shown in Figures 1A, 3A, 5, and 6 , the third hollow area 330 on the back plate 300 as shown in Figure 7 or the back plate through hole 340 on the back plate 300 as shown in Figure 4, or to prevent dust in the environment from passing through the
  • the second hollow area 318 on the second electrode 310 enters the sound hole 212 in the sound wave conduction area 211 .
  • a third support body 103 for supporting the dust-proof structure 400 is provided on the side of the back plate 300 away from the diaphragm 200; the third support The body 103 is located at the edge of the back plate 300 so that the dust-proof structure 400 is suspended above the back plate 300 .
  • the above-mentioned dust-proof structure 400 is detachably or movably installed above the back plate 300 to avoid blocking the transmission of the sound pressure load.
  • the present application also provides an electronic device, which includes any of the microphone components mentioned above.
  • the above-mentioned microphone components can be used in various electronic devices, such as smartphones, tablet computers, voice recorders, hearing aids, vehicle-mounted equipment, etc.
  • the microphone assembly includes a base, a diaphragm, and a back plate.
  • the diaphragm In a direction perpendicular to the plane of the base, the diaphragm is located between the base and the back plate; the diaphragm The sound wave conduction area is provided with at least one sound hole penetrating the diaphragm in the thickness direction, a partial area of the base constitutes a first electrode, the first electrode has at least one first hollow area; the back electrode A partial area of the plate constitutes a second electrode, and the second electrode has at least one second hollow area; the sound wave conduction area of the diaphragm constitutes a third electrode; in a direction perpendicular to the plane of the base, the third electrode Projections of an electrode, the third electrode and the second electrode overlap.
  • the technical solution provided by the present invention realizes the differential capacitance solution of a single diaphragm and improves the performance of the microphone assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

公开一种麦克风组件及电子设备,其中,所述麦克风组件包括基底、振膜、以及背极板,在垂直于所述基底所在平面的方向上,所述振膜位于所述基底与所述背极板之间;所述振膜的声波传导区域上设置有在厚度方向上贯通所述振膜的至少一个声孔,所述基底的部分区域构成第一电极,所述第一电极具有至少一个第一镂空区域;所述背极板的部分区域构成第二电极,所述第二电极具有至少一个第二镂空区域;所述振膜的声波传导区域构成第三电极;在垂直于所述基底所在平面的方向上,所述第一电极、所述第三电极以及所述第二电极三者的投影交叠。本发明所提供的技术方案实现了单振膜的差分电容方案,并且提升了麦克风组件的性能。

Description

一种麦克风组件及电子设备
本申请要求于2022年04月20日提交中国专利局、申请号为202210414860.4、发明名称为“一种麦克风组件及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及麦克风技术领域,更为具体的说涉及一种麦克风组件及电子设备。
背景技术
麦克风是一种将声压信号最终转换为电信号的压力传感器,使用微机电工艺技术制造的小型麦克风称为MEMS(Micro-Electro-Mechanical System)麦克风或微麦克风。MEMS麦克风芯片一般包括衬底、振膜以及背极板。其中的振膜、背极板是MEMS麦克风芯片中的重要部件,振膜、背极板平行且间隔设置,两者构成平板电容的两个电极板,振膜用于在声波的作用下振动,导致背极板和振膜之间的相对距离发生变化,从而使得平板电容的电容值发生变化,电容值的变化经外围电路转化成电信号,实现声电的转换。
现有的MEMS麦克风大多数是由一个感应振膜以及一个刚性背极板组成,这种麦克风的线性度较低,谐波失真较大。随着MEMS麦克风应用场景的扩展(例如利用手机唱歌的应用场景等),用户对MEMS麦克风的语音质量的要求越来越高。为了提高MEMS麦克风所感应的电信号的信噪比,在现有技术中,MEMS麦克风一般采用多振膜的方式或者多背极板的方式来获取差分电信号,但这增加了MEMS麦克风的尺寸,无法适应电子产品轻薄化的需求。因此,需要对现有技术进行改进。
技术问题
本申请实施例提供一种麦克风组件及电子设备,用以解决在提高现有的MEMS麦克风所感应的电信号的信噪比时所引起的MEMS麦克风的尺寸较大的技术问题,同时增强麦克风的性能。
技术解决方案
本申请实施例提供了一种麦克风组件及电子设备。
第一方面,本申请实施例提供一种麦克风组件,包括:提供基底、振膜以及背极板,在垂直于所述基底所在平面的方向上,所述振膜位于所述基底与所述背极板之间;所述振膜具有声波传导区域,所述声波传导区域上设置有在厚度方向上贯通所述振膜的至少一个声孔,以传递来自外部空间的声波;所述基底的部分区域构成第一电极,所述第一电极具有至少一个第一镂空区域;所述背极板的部分区域构成第二电极,所述第二电极具有至少一个第二镂空区域;所述振膜的声波传导区域构成第三电极;其中,在垂直于所述基底所在平面的方向上,所述第一电极、所述第三电极以及所述第二电极三者的投影交叠,并且所述基底还具有至少一个第四镂空区域,所述至少一个第四镂空区域环绕所述第一电极,以形成背腔。
在一些实施方式中,所述第一电极仅具有一个所述第一镂空区域,所述第二电极仅具有一个所述第二镂空区域,并且在垂直于所述基底所在平面的方向上,所述第一镂空区域和所述第二镂空区域的投影交叠。
在一些实施方式中,所述第一电极的所述第一镂空区域位于所述第一电极的中央,并且所述第二电极的所述第二镂空区域位于所述第二电极的中央。
在一些实施方式中,所述第一电极具有至少两个所述第一镂空区域和/或所述第二电极具有至少两个所述第二镂空区域,并且在垂直于所述基底所在平面的方向上,所有第一镂空区域构成的区域和所有第二镂空区域构成的区域的投影至少部分交叠。
在一些实施方式中,所述背极板还具有至少一个第三镂空区域,所述至少一个第三镂空区域环绕所述第二电极,用以降低所述背极板与所述振膜之间的压膜阻尼。
在一些实施方式中,所述基底靠近所述振膜的一侧设置有用于支撑所述振膜的第一支撑体,所述振膜远离所述基底的一侧设置有用于支撑所述背极板的第二支撑体;所述第一支撑体位于所述基底的边缘,使得所述振膜悬空于所述第一电极的上方,所述第一电极与所述振膜形成第一可变电容;所述第二支撑 体位于所述振膜的边缘,使得所述背极板悬空于所述振膜的上方,所述第二电极与所述振膜形成第二可变电容。
在一些实施方式中,所述基底还包括:至少一个第一横梁,所述至少一个第一横梁将所述第一电极与所述第一支持部固定连接。
在一些实施方式中,所述至少一个第一横梁中的至少一个包含导电介质,以传输所述第一电极与外部电路之间的电信号。
在一些实施方式中,所述背极板还包括:第二支持部,至少一个第二横梁,所述至少一个第二横梁将所述第二电极与所述第二支持部固定连接。
在一些实施方式中,所述至少一个第二横梁中的至少一个包含导电介质,以传输所述第二电极与外部电路之间的电信号。
在一些实施方式中,所述第一电极与所述第二电极之间设置有至少一个第一支撑结构,所述第一支撑结构穿设于所述振膜的声孔之中,所述第一支撑结构分别与所述第一电极和所述第二电极抵接。
在一些实施方式中,所述第一支撑结构由氮化硅、氧化硅以及氮化硅和氧化硅的复合材料中的其中一种构成。
在一些实施方式中,所述背极板还包括:至少一个背极板通孔,所述至少一个背极板通孔环绕所述第二电极,用以降低所述背极板与所述振膜之间的压膜阻尼。
在一些实施方式中,在垂直于所述基底所在平面的方向上,所述背极板远离所述振膜的一侧设置有用于保护所述第二电极的防尘结构。
在一些实施方式中,所述背极板远离所述振膜的一侧设置有用于支撑所述防尘结构的第三支撑体;所述第三支撑体位于所述背极板的边缘,以使所述防尘结构悬空于所述背极板的上方。
在一些实施方式中,所述声波传导区域的边缘设置有朝向所述第二电极的第一挡板结构,所述第一挡板结构与所述第二电极之间具有间隙。
在一些实施方式中,所述第二电极的边缘设置有朝向所述振膜的第二挡板结构,所述第二挡板结构与所述振膜之间具有间隙。
在一些实施方式中,所述振膜的边缘还设置有至少一个环形凸起部,所述环形凸起部呈连续的环形或断续的环形,并且所述环形凸起部朝向所述背腔方 向凸起或者朝向背离所述背腔的方向凸起,用以释放所述振膜的应力,其中,所述至少一个环形凸起部环绕所述声波传导区域。
在一些实施方式中,所述振膜的边缘设有至少一个缝隙结构,用以释放所述振膜的应力。
在一些实施方式中,所述振膜的边缘设有多个缝隙结构,所述多个缝隙结构呈环形布置。
第二方面,本申请实施例还提供一种电子设备,所述电子设备包括上述的任意实施例所述的麦克风组件。
有益效果
本申请实施例的麦克风组件及电子设备,能够实现单振膜的差分电容方案,并且提升了麦克风组件的性能。
本申请实施例的麦克风组件的背极板上具有大的第三镂空区域,能够显著降低背极板与振膜之间的压膜阻尼,此外,在第一电极与第二电极之间还设置有第一支撑结构,该第一支撑结构分别与所述第一电极和所述第二电极抵接,能够防止第二电极由于第二横梁的支撑力不足所引起的第二电极抖动以及第二电容结构失效的问题,从而提升了麦克风产品的可靠性。
本发明实施方式的各个方面、特征、优点等将在下文结合附图进行具体描述。根据以下结合附图的具体描述,本发明的上述方面、特征、优点等将会变得更加清楚。
参照后文的说明和附图,详细公开了本发明的特定实施例,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施例在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施例包括许多改变、修改和等同。
针对一种实施例描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施例中使用,与其它实施例中的特征相组合,或替代其它实施例中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是根据本申请的一实施例提供的一种麦克风组件的立体示意图。
图1B是图1A中的麦克风组件的部分剖面结构示意图。
图1C是图1A中的振膜的部分俯视结构示意图。
图1D是图1A中的背极板的部分俯视结构示意图。
图1E是图1A中的基底的部分俯视结构示意图。
图2是根据本申请的又一实施例提供的麦克风组件的部分剖面结构示意图。
图3A是根据本申请的又一实施例提供的一种麦克风组件的立体示意图。
图3B是图3A中的背极板的部分俯视结构示意图。
图3C是图3A中的基底的部分俯视结构示意图。
图4是根据本申请的又一实施例提供的一种麦克风组件的立体示意图。
图5至图6是根据本申请的又一实施例提供的一种麦克风组件的立体示意图。
图7是根据本申请的另一实施例提供的一种麦克风组件的立体示意图。
本发明的实施方式
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通 或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本申请实施例提供了一种麦克风组件,是MEMS麦克风的核心部件,能够应用于具有声音采集功能的电子设备中,比如智能手机、平板电脑、录音笔、助听器、车载设备等。本申请实施例不限于上述应用场景。
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
图1A是根据本申请的一实施例提供的一种麦克风组件的立体示意图,图1B是图1A中的麦克风组件的部分剖面结构示意图;图1C是图1A中的振膜的部分俯视结构示意图;图1D是图1A中的背极板的部分俯视结构示意图;图1E是图1A中的基底的部分俯视结构示意图。
请参阅图1A-图1E所示,本申请实施例提供了一种麦克风组件1000包括基底100、振膜200、以及背极板300,在垂直于所述基底100所在平面的方向上,所述振膜200位于所述基底100与所述背极板300之间;所述振膜200具有声波传导区域211,所述声波传导区域211上设置有在厚度方向上贯通所述振膜200的至少一个声孔212,以传递来自外部空间的声波;所述基底100的部分区域构成第一电极110,所述第一电极110具有至少一个第一镂空区域118;所述背极板300的部分区域构成第二电极310,所述第二电极310具有至少一个第二镂空区域318;所述振膜200的声波传导区域211构成第三电极213;其中,在垂直于所述基底100所在平面的方向上,所述第一电极110、所述第三电极213以及所述第二电极310三者的投影交叠;并且所述基底100还具有至少一个第四镂空区域130,所述至少一个第四镂空区域130环绕所述第一电极110,以形成背腔131。
在一些实施方式中,所述至少一个第四镂空区域130是一个环形背腔131,使得该环形背腔131的空间足够较大,以减少反射波所引起的所述振膜200的表面振动,从而提高麦克风的电信号侦测的灵敏度和准确性。
在本申请实施例中,所述振膜200包括振动区域210和支撑区域220,所述振动区域210包括所述声波传导区域211,优选地,所述声波传导区域211 位于所述振动区域210的中央,所述声波传导区域211上设置有在厚度方向上贯通所述振膜200的至少一个声孔212,以传递来自外部空间的声波;故,所述声波传导区域211不仅是所述振膜200的声波有效传导区域,也是所述振膜200的有效振动区域。
在垂直于所述基底100所在平面的方向上,所述振膜200的声波传导区域211构成的第三电极213位于所述第一电极110与所述第二电极310之间,并且所述第一电极110、所述声波传导区域211以及所述第二电极310三者的投影交叠,故,所述第一电极110与所述第三电极213构成了麦克风组件1000的第一电容结构,所述第二电极310与所述第三电极213构成了麦克风组件1000的第二电容结构,该第一电容结构、第二电容结构共用同一振膜200,通过所述振膜200在所述声波传导区域211内的振幅变化使得该第一电容结构、第二电容结构中的电容值发生变化,由此使得该第一电容结构、第二电容结构可以构成差分电容结构,从而可使所述麦克风组件1000的信噪比的性能提高,以实现声电转换;并且由于所述第一电极110为所述基底100的部分区域构成,故,在所述基底100与所述振膜200之间无需额外设置第一电极110以形成差分电容结构,因此,能够减小麦克风组件1000的体积,从而适应电子产品的轻薄化需求。
并且所述基底100靠近所述振膜200的一侧设置有用于支撑所述振膜200的第一支撑体101,所述振膜200远离所述基底100的一侧设置有用于支撑所述背极板300的第二支撑体102。
正常工作时的声压负载和非正常工作时受到的吹击负载均通过背腔131加载至振膜200。所述第一支撑体101支撑于基底100和振膜200之间,用于电性隔绝所述振膜200与所述基底100,并为所述振膜200提供支撑,使得所述振膜200(所述第三电极213)和所述第一电极110之间相对且间隔设置,以使得所述第一电极110与所述振膜200之间形成供振膜200振动的第一振荡声腔。所述第二支撑体102支撑于振膜200与背极板300之间,用于电性隔绝所述背极板300与所述振膜200,并为所述背极板300提供支撑,使得所述振膜200(所述第三电极213)和所述第二电极310之间相对且间隔设置,以使得所述第二电极310与所述振膜200之间形成供振膜振动的第二振荡声腔。
示例性地,所述第一支撑体101位于所述基底100的边缘以支撑所述振膜200,使得所述振膜200悬空于所述第一电极110的上方,并与所述第一电极110绝缘间隔,所述第一电极110与所述振膜200的声波传导区域211形成第一可变电容;在此,所述振膜200包括振动区域210和支撑区域220,其中,所述支撑区域220通过所述第一支撑体101将所述振膜200架空于所述第一电极110的上方,并且与所述第一电极110之间形成预设间距的缝隙。所述第二支撑体102位于所述振膜200的边缘以支撑所述背极板300,使得所述背极板300悬空于所述振膜200的上方,并与所述振膜200绝缘间隔,所述第二电极310与所述振膜200的声波传导区域211形成第二可变电容。通过上述所述第一可变电容和第二可变电容,可以增加输出的电信号,以提高麦克风的信噪比。
如图1E所示,所述基底100还包括:第一支持部120,至少一个第一横梁133,所述至少一个第一横梁133将所述第一电极110与所述第一支持部120固定连接。具体地,所述第一电极110通过由至少一个朝向所述基底100的四周向外延伸的第一横梁133支撑固定,所述至少一个第一横梁133连接至所述第一支持部120上,以实现所述第一电极110的支撑与固定;其中,所述至少一个第一横梁133中的至少一个包含导电介质,以实现传输所述第一电极110与外部电路(图未示出)之间的电信号。示例性地,在本发明的一些实施例中,所述基底100的所述第一电极110所在区域为导电材料构成,所述基底100的除所述第一电极110以外的区域为非导电材料构成,可通过在所述至少一个横梁133中的至少一个上方制作有导电膜层,例如电镀铜等,以实现外部电路向所述第一电极110上施加第一电压信号。示例性地,在本发明的另一些实施例中,所述基底100为半导体基底,所述基底100包括半导体材料层,所述半导体材料层可以进行掺杂,使得至少部分所述半导体材料层具有导电特性,以用于制备所述第一电极110。具体地,所述基底100的所述第一电极110所在区域可通过在半导体材料层中掺杂以形成N型掺杂体或者P型杂体,所述基底100的所述至少一个横梁133所在区域中的至少一个可通过在半导体材料层中同样掺杂以形成N型掺杂体或者P型杂体,以实现外部电路向所述第一电极110上施加第一电压信号。
示例性地,所述第一支持部120位于所述基底100的边缘区域,所述第一 支持部120为了支撑所述振膜200、所述背极板300、以及各个导电电极(图未示出)等。具体地,在垂直于所述基底100所在平面的方向上,所述第一支持部120的一侧表面上设有第一支撑体101以支撑所述振膜200,以及在所述振膜200远离所述第一支持部120的一侧表面上设有第二支撑体102以支持所述背极板300。所述第一支撑体101和所述第二支撑体102为绝缘支撑体,例如可为氧化硅或者氮化硅等。所述第一支撑体101和所述第二支撑体102的厚度在2~3um之间,例如,所述第一支撑体101和所述第二支撑体102的厚度在2.5um附近。
进一步地,在垂直于所述基底100所在的表面方向上,所述第二支撑体102的投影和/或所述第一支撑体101投影均位于所述第一支持部120的投影范围内,使得所述第一支持部120能够较好的承载上述的第一支撑体101和第二支撑体102。在一些实施方式中,在垂直于所述基底100所在的表面方向上,所述第二支撑体102的投影位于所述第一支撑体101的投影范围内。
示例性地,如图1A-图1B所示,在本申请实施例中,在所述振动区域210的边缘靠近所述支撑区域220处还设置有至少一个环形凸起部215,所述环形凸起部215呈连续的环形或断续的环形,并且所述环形凸起部215朝向所述背腔131方向凸起或者朝向背离所述背腔131的方向凸起,用以释放所述振膜200的应力,从而提高麦克风的灵敏度;其中,所述至少一个环形凸起部215环绕所述声波传导区域211。
请继续参考图1D所示,示例性地,在本申请实施例中,所述背极板300还具有至少一个第三镂空区域330,所述至少一个第三镂空区域330环绕所述第二电极310,用以降低所述背极板300与所述振膜200之间的压膜阻尼。这是因为,当麦克风的尺寸较小时,所述第二电极310与所述振膜200之间、所述第一电极110和所述振膜200之间的空隙均会产生压膜阻尼,这会限制麦克风的频响带宽,因此,需要在所述背极板300上设置至少一个第三镂空区域330来降低压膜阻尼。此外,在所述背极板300上设置所述至少一个第三镂空区域330能够使得更多的声压负载(声波气流)能够传导至所述振膜200的声波传导区域上,可用于增加麦克风对声波气流的敏感性,提升麦克风产品的性能。
示例性地,在本申请实施例中,所述第一电极110仅具有一个所述第一镂空区域118,所述第二电极310仅具有一个所述第二镂空区域318,并且在垂直于所述基底100所在平面的方向上,所述第一镂空区域118和所述第二镂空区域318的投影交叠。
进一步地,在本申请实施例中,所述第一电极110的所述第一镂空区域118位于所述第一电极110的中央,并且所述第二电极310的所述第二镂空区域318位于所述第二电极310的中央。这是因为,在振膜200的中央通常是振膜200发生形变最大的区域,当外部的声波气流是从基底100背离振膜200的一侧进入时,如果正对振膜200中央的区域被遮挡的话,那么外部的声波气流仅能经由环形背腔131处绕射至振膜200靠近背腔131的一侧的声波传导区域211,为了能够增大振膜200的中央正对声波气流的有效振动面积,使得振膜200能够最大限度的跟随声波气流产生位移形变,故将所述第一电极110的所述第一镂空区域118位于所述第一电极110的中央,以增加差分电容结构的电信号,从而提高麦克风的信噪比。亦或者,当外部的声波气流是从背极板300背离振膜200的一侧进入时,如果正对振膜200中央的区域被遮挡的话,那么外部的声波气流仅能经由第三镂空区域330处绕射至振膜200靠近所述第三镂空区域330的一侧的声波传导区域211,为了能够增大振膜200的中央正对声波气流的有效振动面积,使得振膜200能够最大限度的跟随声波气流产生位移形变,故将所述第二电极310的所述第二镂空区域318位于所述第二电极310的中央,以增加差分电容结构的电信号,从而提高麦克风的信噪比。并且在垂直于基底100所在平面的方向上,将上述的第一镂空区域118的投影与第二镂空区域318的投影交叠,还能够有利于振膜200的位移形变。
图2是根据本申请的又一实施例提供的麦克风组件的部分剖面结构示意图。
示例性地,如图2所示,在本发明的又一实施例中,在所述振膜200的边缘靠近所述支撑区域220处设有至少一个缝隙结构214,用以释放所述振膜的应力,从而提高麦克风的灵敏度。可选地,所述振膜200的边缘靠近所述支撑区域220处设有多个缝隙结构214,所述多个缝隙结构214呈环形布置。并且所述振动区域210的边缘可以根据设计需要分布有孔隙(图未示出),所述孔 隙为生成时为进行湿法刻蚀期间释放工艺所设置的,例如,利用溶液释放法将位于所述振膜200下方的绝缘膜层刻蚀掉,以得到绝缘的第一支撑体101以及空气间隙。并且该孔隙还可用于平衡内外气压,以减小振膜200振动过程中受到的气压冲击,使振膜200在振动过程中,在第一振荡声腔和第二振荡声腔中产生的高压气流部分通过孔隙排放到外部空间,提高声学效果,且能防止在振动过程中,由于振膜200两侧的压力差所导致的振动不均而造成振膜200损坏的问题。
在本申请实施例中,如图1D所示,所述背极板300还包括:第二支持部320,至少一个第二横梁303,所述至少一个第二横梁303将所述第二电极310与所述第二支持部320固定连接。进一步地,所述至少一个第二横梁303与所述第二电极310电性连接,所述至少一个第二横梁303中的至少一个包含导电介质,以传输所述第二电极310与外部电路之间的电信号。
本申请实施例中,由于为了降低所述背极板300与所述振膜200之间的压膜阻尼,所述背极板300具有至少一个环绕所述第二电极310第三镂空区域330,所述第二电极310通过所述至少一个第二横梁303与所述第二支持部320进行固定连接,但是由于第二横梁303在支撑固定所述第二电极310时会存在支撑力不足、从而导致该麦克风组件在工作时会出现第二电极310的抖动问题,故为了防止第二电极310发生抖动或者为了防止由于第二电极310的支撑强度不足所导致的第二电容结构的失效问题。可选地,如图1A、图1B以及图2所示,在本申请实施例中,所述第一电极110与所述第二电极310之间设置有至少一个第一支撑结构112,所述第一支撑结构112穿设于所述振膜200的声孔212之中,所述第一支撑结构112分别与所述第一电极110和所述第二电极310抵接,以用于支撑固定所述第二电极310,防止所述第二电极310出现抖动以及支撑强度不足的问题,从而实现所述第一电极110与所述第二电极310之间的相对位置固定。并且所述第一支撑结构112由氮化硅、氧化硅以及氮化硅和氧化硅的复合材料中的其中一种构成,以保证所述第一电极110和第二电极310之间电性绝缘。
示例性地,如图1B和图2所示,至少一个第一支撑结构112形成在所述第一电极110朝向所述第二电极310的一侧表面上,所述第一支撑结构112穿 设于所述振膜200的声孔212之中,所述第一支撑结构112与所述第二电极310抵接,以用于支撑固定所述第二电极310,防止所述第二电极310出现抖动以及支撑强度不足的问题,从而实现所述第一电极110与所述第二电极310之间的相对位置固定。当然,在本发明的其他实施例中,也可以是至少一个第一支撑结构112形成在所述第二电极310朝向所述第一电极110的一侧表面上,在此不再赘述。
在此,本申请实施例所提供的具有差分电容结构的麦克风组件的上、下极板(第一电极110、第二电极310)均实现固定,此时,上、下极板(第一电极110、第二电极310)可称之为“静极板”,而中间的振膜200称之为“动极板”,当声压负载施加在该麦克风组件上时,中间的振膜200随之发生振动,就改变了上、下极板之间(第一电极110与第二电极310之间)的电容量C,并且可知C-d特性是一条曲线。
示例性地,在该具有差分电容结构的麦克风组件中,第一电容结构C1的初始间隙为d0,第二电容结构C2的初始间隙也为d0,第一电容结构C1的初始电容大小为C0,第二电容结构C2的初始电容大小为C0,当振膜200的移动距离为Dd时,第一电容结构C1的间隙d1变为d0-Dd,第二电容结构C2的间隙d2变为d0+Dd,也即,Δd=Dd。第一电容结构C1的电容变化量为ΔC,第二电容结构C2的电容变化量为ΔC。当Dd/d0≤1时,得到进似的线性关系:
该差分电容结构的灵敏度为:
由此可见,在该具有差分电容结构的麦克风组件中,麦克风的灵敏度提高了接近一倍,并且也能实现相对非线性误差减小了一个数量级,从而能够最大限度地减小环境影响所造成的误差。
实施例二
图3A是根据本申请的又一实施例提供的一种麦克风组件的立体示意图,图3B是图3A中的背极板的部分俯视结构示意图,图3C是图3A中的基底的 部分俯视结构示意图。
请参阅图3A-图3C所示,所述第一电极110具有至少两个所述第一镂空区域118和/或所述第二电极310具有至少两个所述第二镂空区域318,并且在垂直于所述基底100所在平面的方向上,所有第一镂空区域118构成的区域和所有第二镂空区域318构成的区域的投影至少部分交叠。
示例性地,由图3A-图3C中可知,第二电极310具有2个以上的第二镂空区域318,同样地,第一电极110也可以具有2个以上的第一镂空区域118,通过上述设置,不仅能够增大振膜200的中央正对声波气流的有效振动面积,而且还能够将声波气流进行分散,以均匀地作用到振膜200上的声波传导区域211,使得振膜200的声波传导区域211能够均匀的发生形变,从而提高麦克风侦测的灵敏度和准确性。
实施例三
图4是根据本申请的又一实施例提供的一种麦克风组件的立体示意图。
如图4所示,示例性地,图4中的麦克风组件与图1A的区别在于:图1A中的背极板300具有至少一个第三镂空区域330,所述至少一个第三镂空区域330环绕所述第二电极310,用以降低所述背极板300与所述振膜200之间的压膜阻尼。而在图4中的背极板300包括至少一个背极板通孔340,所述至少一个背极板通孔340环绕所述第二电极310,用以降低所述背极板300与所述振膜200之间的压膜阻尼。图4中的背极板通孔340的作用与第三镂空区域330的作用类似,在此不再赘述。但是,设置背极板通孔340的方式相比于图1A中的设置大的第三镂空区域330的方式,能够显著地提升所述第二电极310的机械可靠性,能防止所述第二电极310由于支撑力不足所引起的抖动或者第二电容结构失效的问题。此外,该背极板通孔340还可以作为释放孔,以用于通过溶液释放法去除位于背极板300与振膜200之间的绝缘膜层。
实施例四
图5至图6是根据本申请的又一实施例提供的一种麦克风组件的立体示意图。
如图5所示,示例性地,图5中的麦克风组件与图1A的区别在于:所述声波传导区域211的边缘设置有朝向所述第二电极310的第一挡板结构201, 所述第一挡板结构201与所述第二电极310之间具有间隙。具体地,在本申请实施例中,所述第一挡板结构201可在所述声波传导区域211的边缘形成连续或断续的环形,所述第一挡板结构201为绝缘材质,一方面具有限位作用,可防止所述振膜200在潮湿环境下与所述背极板300粘连在一起,同时还具有防尘作用,能够阻挡经由背极板300的至少一个第三镂空区域330进入的灰尘污染所述声波传导区域211内的声孔212,进而影响麦克风电信号侦测的灵敏度和准确性。
如图6所示,示例性地,图6中的麦克风组件与图1A的区别在于:所述第二电极310的边缘设置有朝向所述振膜200的第二挡板结构301,所述第二挡板结构301与所述振膜200之间具有间隙。具体地,在本申请实施例中,所述第二挡板结构301可在所述第二电极310的边缘形成连续或断续的环形,所述第二挡板结构301为绝缘材质,一方面具有限位作用,可防止所述振膜200在潮湿环境下与所述背极板300粘连在一起,同时还具有防尘作用,能够阻挡经由背极板300的至少一个第三镂空区域330进入的灰尘污染所述声波传导区域211内的声孔212,进而影响麦克风电信号侦测的灵敏度和准确性。
实施例五
图7是根据本申请的另一实施例提供的一种麦克风组件的立体示意图。
如图7所示,示例性地,图7中的麦克风组件与图1A、图3A、图4-图6的区别在于:在图7中,在垂直于所述基底100所在平面的方向上,所述背极板300远离所述振膜200的一侧设置有用于保护所述第二电极310的防尘结构400,以防止环境中的灰尘经由如图1A、图3A、图5、图6、图7所示的所述背极板300上的第三镂空区域330或者如图4所示所述背极板300上的背极板通孔340,亦或者防止环境中的灰尘经由所述第二电极310上的第二镂空区域318进入至所述声波传导区域211内的声孔212之中。
可选地,为了不影响声压负载的传输,所述背极板300远离所述振膜200的一侧设置有用于支撑所述防尘结构400的第三支撑体103;所述第三支撑体103位于所述背极板300的边缘,以使所述防尘结构400悬空于所述背极板300的上方。优选地,上述防尘结构400可拆卸地或者可以移动式地安装于所述背极板300的上方,以避免对声压负载的传输的阻挡。
本申请还提供了一种电子设备,所述电子设备包括如上所述任一种麦克风组件。上述麦克风组件可应用于各种电子设备中,比如智能手机、平板电脑、录音笔、助听器、车载设备等。
因此,采用本申请实施例提供的麦克风组件及电子设备不仅能够显著提升麦克风的信噪比,而且体积小。其中,所述麦克风组件包括基底、振膜、以及背极板,在垂直于所述基底所在平面的方向上,所述振膜位于所述基底与所述背极板之间;所述振膜的声波传导区域上设置有在厚度方向上贯通所述振膜的至少一个声孔,所述基底的部分区域构成第一电极,所述第一电极具有至少一个第一镂空区域;所述背极板的部分区域构成第二电极,所述第二电极具有至少一个第二镂空区域;所述振膜的声波传导区域构成第三电极;在垂直于所述基底所在平面的方向上,所述第一电极、所述第三电极以及所述第二电极三者的投影交叠。本发明所提供的技术方案实现了单振膜的差分电容方案,并且提升了麦克风组件的性能。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (21)

  1. 一种麦克风组件,其特征在于,包括基底、振膜以及背极板,在垂直于所述基底所在平面的方向上,所述振膜位于所述基底与所述背极板之间;
    所述振膜具有声波传导区域,所述声波传导区域上设置有在厚度方向上贯通所述振膜的至少一个声孔,以传递来自外部空间的声波;
    所述基底的部分区域构成第一电极,所述第一电极具有至少一个第一镂空区域;
    所述背极板的部分区域构成第二电极,所述第二电极具有至少一个第二镂空区域;
    所述振膜构成第三电极;
    其中,在垂直于所述基底所在平面的方向上,所述第一电极、所述第三电极以及所述第二电极三者的投影交叠,并且所述基底还具有至少一个第四镂空区域,所述至少一个第四镂空区域环绕所述第一电极,以形成背腔。
  2. 如权利要求1所述的麦克风组件,其特征在于,所述第一电极仅具有一个所述第一镂空区域,所述第二电极仅具有一个所述第二镂空区域,并且在垂直于所述基底所在平面的方向上,所述第一镂空区域和所述第二镂空区域的投影交叠。
  3. 如权利要求2所述的麦克风组件,其特征在于,所述第一电极的所述第一镂空区域位于所述第一电极的中央,并且所述第二电极的所述第二镂空区域位于所述第二电极的中央。
  4. 如权利要求1所述的麦克风组件,其特征在于,所述第一电极具有至少两个所述第一镂空区域和/或所述第二电极具有至少两个所述第二镂空区域,并且在垂直于所述基底所在平面的方向上,所有第一镂空区域构成的区域和所有第二镂空区域构成的区域的投影至少部分交叠。
  5. 如权利要求1-4中任一项所述的麦克风组件,其特征在于,所述背极板还具有至少一个第三镂空区域,所述至少一个第三镂空区域环绕所述第二电极。
  6. 如权利要求5所述的麦克风组件,其特征在于,
    所述基底靠近所述振膜的一侧设置有用于支撑所述振膜的第一支撑体,所 述振膜远离所述基底的一侧设置有用于支撑所述背极板的第二支撑体;
    所述第一支撑体位于所述基底的边缘,使得所述振膜悬空于所述第一电极的上方,所述第一电极与所述振膜形成第一可变电容;
    所述第二支撑体位于所述振膜的边缘,使得所述背极板悬空于所述振膜的上方,所述第二电极与所述振膜形成第二可变电容。
  7. 如权利要求6所述的麦克风组件,其特征在于,所述基底还包括:
    第一支持部,
    至少一个第一横梁,所述至少一个第一横梁将所述第一电极与所述第一支持部固定连接。
  8. 如权利要求7所述的麦克风组件,其特征在于,
    所述至少一个第一横梁中的至少一个包含导电介质,以传输所述第一电极与外部电路之间的电信号。
  9. 如权利要求8所述的麦克风组件,其特征在于,所述背极板还包括:
    第二支持部,
    至少一个第二横梁,所述至少一个第二横梁将所述第二电极与所述第二支持部固定连接。
  10. 如权利要求9所述的麦克风组件,其特征在于,所述至少一个第二横梁中的至少一个包含导电介质,以传输所述第二电极与外部电路之间的电信号。
  11. 如权利要求5所述的麦克风组件,其特征在于,
    所述第一电极与所述第二电极之间设置有至少一个第一支撑结构,所述第一支撑结构穿设于所述振膜的声孔之中,所述第一支撑结构分别与所述第一电极和所述第二电极抵接。
  12. 如权利要求11所述的麦克风组件,其特征在于,
    所述第一支撑结构由氮化硅、氧化硅以及氮化硅和氧化硅的复合材料中的其中一种构成。
  13. 如权利要求5所述的麦克风组件,其特征在于,所述背极板还包括:
    至少一个背极板通孔,所述至少一个背极板通孔环绕所述第二电极。
  14. 如权利要求1所述的麦克风组件,其特征在于,
    在垂直于所述基底所在平面的方向上,所述背极板远离所述振膜的一侧设置有用于保护所述第二电极的防尘结构。
  15. 如权利要求14所述的麦克风组件,其特征在于,
    所述背极板远离所述振膜的一侧设置有用于支撑所述防尘结构的第三支撑体;
    所述第三支撑体位于所述背极板的边缘,以使所述防尘结构悬空于所述背极板的上方。
  16. 如权利要求5所述的麦克风组件,其特征在于,
    所述声波传导区域的边缘设置有朝向所述第二电极的第一挡板结构,所述第一挡板结构与所述第二电极之间具有间隙。
  17. 如权利要求5所述的麦克风组件,其特征在于,
    所述第二电极的边缘设置有朝向所述振膜的第二挡板结构,所述第二挡板结构与所述振膜之间具有间隙。
  18. 如权利要求5所述的麦克风组件,其特征在于,
    所述振膜的边缘还设置有至少一个环形凸起部,所述环形凸起部呈连续的环形或断续的环形,并且所述环形凸起部朝向所述背腔方向凸起或者朝向背离所述背腔的方向凸起,其中,所述至少一个环形凸起部环绕所述声波传导区域。
  19. 如权利要求5所述的麦克风组件,其特征在于,
    所述振膜的边缘设有至少一个缝隙结构。
  20. 如权利要求19所述的麦克风组件,其特征在于,
    所述振膜的边缘设有多个缝隙结构,所述多个缝隙结构呈环形布置。
  21. 一种电子设备,其特征在于,包括上述权利要求1至20中任意一项所述的麦克风组件。
PCT/CN2023/087479 2022-04-20 2023-04-11 一种麦克风组件及电子设备 WO2023202417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210414860.4A CN114513731B (zh) 2022-04-20 2022-04-20 一种麦克风组件及电子设备
CN202210414860.4 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023202417A1 true WO2023202417A1 (zh) 2023-10-26

Family

ID=81555337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087479 WO2023202417A1 (zh) 2022-04-20 2023-04-11 一种麦克风组件及电子设备

Country Status (2)

Country Link
CN (1) CN114513731B (zh)
WO (1) WO2023202417A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513731B (zh) * 2022-04-20 2022-06-21 苏州敏芯微电子技术股份有限公司 一种麦克风组件及电子设备
CN115159439A (zh) * 2022-05-26 2022-10-11 歌尔微电子股份有限公司 Mems装置和电子设备
CN114885264B (zh) * 2022-07-11 2022-11-18 苏州敏芯微电子技术股份有限公司 一种麦克风组件及电子设备
CN117376796B (zh) * 2023-12-08 2024-02-06 瑞声光电科技(常州)有限公司 微机电麦克风的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808262A (zh) * 2010-03-22 2010-08-18 瑞声声学科技(深圳)有限公司 电容式麦克风
CN101835080A (zh) * 2010-05-10 2010-09-15 瑞声声学科技(深圳)有限公司 硅基麦克风
JP2011055087A (ja) * 2009-08-31 2011-03-17 New Japan Radio Co Ltd Memsマイクロフォンおよびその製造方法
CN102014332A (zh) * 2010-04-12 2011-04-13 瑞声声学科技(深圳)有限公司 电容mems麦克风
CN103139691A (zh) * 2013-02-22 2013-06-05 上海微联传感科技有限公司 采用多孔soi硅硅键合的mems硅麦克风及其制造方法
CN204681591U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 一种mems麦克风元件
CN107360526A (zh) * 2016-05-09 2017-11-17 上海微联传感科技有限公司 硅麦克风及其制造方法
CN114513731A (zh) * 2022-04-20 2022-05-17 苏州敏芯微电子技术股份有限公司 一种麦克风组件及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126167B2 (en) * 2006-03-29 2012-02-28 Yamaha Corporation Condenser microphone
KR102056287B1 (ko) * 2013-11-27 2019-12-16 한국전자통신연구원 마이크로폰
CN104378724A (zh) * 2014-11-18 2015-02-25 缪建民 一种无背部大声学腔体的mems硅麦克风
CN207061862U (zh) * 2017-03-09 2018-03-02 歌尔科技有限公司 一种mems芯片
CN212850999U (zh) * 2020-09-27 2021-03-30 潍坊歌尔微电子有限公司 压电式麦克风芯片、麦克风及电子设备
CN112203201A (zh) * 2020-09-30 2021-01-08 苏州敏芯微电子技术股份有限公司 麦克风芯片和mems麦克风
CN215935098U (zh) * 2021-09-10 2022-03-01 瑞声声学科技(深圳)有限公司 双背板mems麦克风

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055087A (ja) * 2009-08-31 2011-03-17 New Japan Radio Co Ltd Memsマイクロフォンおよびその製造方法
CN101808262A (zh) * 2010-03-22 2010-08-18 瑞声声学科技(深圳)有限公司 电容式麦克风
CN102014332A (zh) * 2010-04-12 2011-04-13 瑞声声学科技(深圳)有限公司 电容mems麦克风
CN101835080A (zh) * 2010-05-10 2010-09-15 瑞声声学科技(深圳)有限公司 硅基麦克风
CN103139691A (zh) * 2013-02-22 2013-06-05 上海微联传感科技有限公司 采用多孔soi硅硅键合的mems硅麦克风及其制造方法
CN204681591U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 一种mems麦克风元件
CN107360526A (zh) * 2016-05-09 2017-11-17 上海微联传感科技有限公司 硅麦克风及其制造方法
CN114513731A (zh) * 2022-04-20 2022-05-17 苏州敏芯微电子技术股份有限公司 一种麦克风组件及电子设备

Also Published As

Publication number Publication date
CN114513731B (zh) 2022-06-21
CN114513731A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023202417A1 (zh) 一种麦克风组件及电子设备
WO2023202418A1 (zh) 一种麦克风组件及电子设备
US10484798B2 (en) Acoustic transducer and microphone using the acoustic transducer
US10433068B2 (en) MEMS acoustic transducer with combfingered electrodes and corresponding manufacturing process
WO2019033854A1 (zh) 具有双振膜的差分电容式麦克风
KR101431370B1 (ko) 음향 트랜스듀서, 및 그 음향 트랜스듀서를 이용한 마이크로폰
US9930453B2 (en) Silicon microphone with high-aspect-ratio corrugated diaphragm and a package with the same
CN112601169B (zh) 一种宽频带高灵敏度谐振式压电mems麦克风
CN215453273U (zh) 一种麦克风组件及电子设备
CN111048660B (zh) 压电换能器、制备压电换能器的方法及电子设备
EP2592844A1 (en) Microphone unit
CN114885264B (zh) 一种麦克风组件及电子设备
CN114513730B (zh) 麦克风组件及电子设备
CN217363312U (zh) Mems麦克风
CN113596690B (zh) 新型压电式mems麦克风的结构及装置
US11516569B1 (en) Capacitive microphone
CN216649988U (zh) 一种mems麦克风
WO2021248928A1 (zh) 硅基麦克风装置及电子设备
WO2022007100A1 (zh) Mems 声传感器
CN217428355U (zh) 一种麦克风组件及电子设备
CN218634295U (zh) 一种麦克风组件及电子设备
CN219145557U (zh) 一种麦克风结构及电子设备
CN217509036U (zh) 一种麦克风组件及电子设备
WO2023185736A1 (zh) 一种微机电系统麦克风及电子设备
CN219659911U (zh) Mems麦克风

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791072

Country of ref document: EP

Kind code of ref document: A1