WO2021248928A1 - 硅基麦克风装置及电子设备 - Google Patents

硅基麦克风装置及电子设备 Download PDF

Info

Publication number
WO2021248928A1
WO2021248928A1 PCT/CN2021/075876 CN2021075876W WO2021248928A1 WO 2021248928 A1 WO2021248928 A1 WO 2021248928A1 CN 2021075876 W CN2021075876 W CN 2021075876W WO 2021248928 A1 WO2021248928 A1 WO 2021248928A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
microphone
based microphone
differential
circuit board
Prior art date
Application number
PCT/CN2021/075876
Other languages
English (en)
French (fr)
Inventor
王云龙
吴广华
蓝星烁
Original Assignee
通用微(深圳)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通用微(深圳)科技有限公司 filed Critical 通用微(深圳)科技有限公司
Priority to EP21822788.2A priority Critical patent/EP4138414A4/en
Priority to JP2022576149A priority patent/JP2023530638A/ja
Priority to KR1020227041782A priority patent/KR20230003171A/ko
Priority to US17/922,697 priority patent/US20230171551A1/en
Publication of WO2021248928A1 publication Critical patent/WO2021248928A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/03Reduction of intrinsic noise in microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • This application relates to the technical field of acoustic-electric conversion. Specifically, this application relates to a silicon-based microphone device and electronic equipment.
  • the silicon-based microphone chip in the microphone When the existing silicon-based microphone acquires sound signals, the silicon-based microphone chip in the microphone generates vibrations under the action of the acquired sound waves, and the vibrations bring about changes in capacitance that can form electrical signals, thereby converting the sound waves into electrical signals for output.
  • the current silicon-based microphones are still unsatisfactory in handling external noise interference, and the improvement of the signal-to-noise ratio is limited, which is not conducive to improving the audio output effect.
  • this application proposes a silicon-based microphone device and electronic equipment to solve the technical problem of the low signal-to-noise ratio of the existing silicon-based microphone.
  • an embodiment of the present application provides a silicon-based microphone device, including: a circuit board, a shielding shell, and at least two differential silicon-based microphone chips; the circuit board is provided with at least two sound inlets; The shielding shell is closed on one side of the circuit board to form an acoustic cavity with the circuit board; the silicon-based microphone chips are all located in the acoustic cavity; each of the differential silicon-based microphone chips is arranged in a one-to-one correspondence At each of the sound inlets, and the back cavity of each of the differential silicon-based microphone chips communicates with the sound inlet at a corresponding position; each of the differential silicon-based microphone chips includes a first microphone structure With the second microphone structure, all the first microphone structures are electrically connected, and all the second microphone structures are electrically connected.
  • the differential silicon-based microphone chip includes a silicon substrate, and the second microphone structure and the first microphone structure are stacked on one side of the silicon substrate;
  • the through hole of the back cavity, the through hole corresponds to the main body of the first microphone structure and the main body of the second microphone structure;
  • the circuit board is fixedly connected, and the through hole is communicated with the sound inlet hole.
  • the differential silicon-based microphone chip specifically includes a lower back plate, a semiconductor diaphragm, and an upper back plate that are stacked in sequence; between the upper back plate and the semiconductor diaphragm , And there is a gap between the semiconductor diaphragm and the lower back plate; the upper back plate and the lower back plate are provided with airflow holes in the regions corresponding to the through holes; the upper The back plate and the semiconductor diaphragm constitute the main body of the first microphone structure; the semiconductor diaphragm and the lower back plate constitute the main body of the second microphone structure.
  • all the upper back plates of the first microphone structure are electrically connected to form the first signal; all the lower back plates of the second microphone structure are electrically connected to Form the second signal.
  • the semiconductor diaphragms of all the differential silicon-based microphone chips are electrically connected, and the semiconductor diaphragms are used for electrical connection with a constant voltage source.
  • the silicon-based microphone device further includes a control chip; the control chip is located in the acoustic cavity and is connected to the circuit board; a signal between the upper back plate and the control chip The input terminal is electrically connected; the lower back plate is electrically connected to another signal input terminal of the control chip.
  • the upper back plate includes an upper back plate electrode, and all the upper back plates of the first microphone structure are electrically connected through the upper back plate electrode;
  • the lower back plate includes a lower back plate electrode, and all the lower back plates of the second microphone structure are electrically connected through the lower back plate electrode;
  • the semiconductor diaphragm includes a semiconductor diaphragm electrode, and all the semiconductor diaphragms are electrically connected through the semiconductor diaphragm electrode.
  • the differential silicon-based microphone chip further includes a patterned: a first insulating layer, a second insulating layer, and a third insulating layer;
  • the silicon substrate, the first insulating layer, the lower back electrode plate, the second insulating layer, the semiconductor diaphragm, the third insulating layer, and the upper back electrode plate are stacked in sequence.
  • the silicon-based microphone device has any one or more of the following features: the differential silicon-based microphone chip is fixedly connected to the circuit board through silica gel; the shielding shell includes a metal shell, The metal shell is electrically connected to the circuit board; the shielding shell is fixedly connected to one side of the circuit board through solder paste or conductive glue; the circuit board includes a printed circuit board.
  • an embodiment of the present application also provides an electronic device, including: the silicon-based microphone device as described in the first aspect.
  • each differential silicon-based microphone chip is electrically connected, and at the same time, the first microphone structure of each differential silicon-based microphone chip is electrically connected.
  • the two microphone structures are electrically connected.
  • the use of multiple differential silicon-based microphone chips can increase the sound signal and noise signal at the same time, because the amount of change of the sound signal is greater than that of the noise signal.
  • the amount of change can reduce the common mode noise, increase the signal-to-noise ratio and the sound pressure overload point, and then improve the sound quality.
  • FIG. 1 is a schematic diagram of the internal structure of a silicon-based microphone device according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a single differential silicon-based microphone chip in a silicon-based microphone device according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the connection of two differential silicon-based microphone chips in a silicon-based microphone device according to an embodiment of the present application.
  • 320-second microphone structure 321-lower back plate; 321a-lower air hole; 321b-lower back plate electrode; 322-lower air gap;
  • an embodiment of the present application provides a silicon-based microphone device, including: a circuit board 100, a shielding shell 200, and at least two differential silicon-based microphone chips 300 (only two differential silicon microphone chips are shown in the figure). Silicon-based microphone chip 300).
  • the shielding shell 200 is enclosed on one side of the circuit board 100 and forms the acoustic cavity 210 of the silicon-based microphone device with the circuit board 100.
  • the circuit board 100 is provided with at least two sound inlet holes 110 (only two sound inlet holes 110 are shown in the figure), and the sound inlet holes 110 penetrate through the circuit board 100 to ensure that the external sound source enters from the sound inlet hole 110
  • Differential silicon-based microphone chip 300 Each differential silicon-based microphone chip 300 is located in the acoustic cavity 210, and the differential silicon-based microphone chip 300 is arranged in a one-to-one correspondence with the sound inlet 110, and the back cavity 301 of each differential silicon-based microphone chip 300 and the corresponding position The sound inlet 110 is connected.
  • Each differential silicon-based microphone chip 300 includes a first microphone structure 310 and a second microphone structure 320. All the first microphone structures 310 are electrically connected, and all the second microphone structures 320 are electrically connected.
  • each differential silicon-based microphone chip 300 is provided, and the first microphone structure 310 of each differential silicon-based microphone chip 300 is electrically connected, and at the same time, each differential silicon-based microphone chip 300 is electrically connected.
  • the second microphone structures 320 of the microphone chip 300 are electrically connected.
  • the use of multiple differential silicon-based microphone chips 300 can simultaneously increase the sound signal and noise Signal, because the change of the sound signal is greater than the change of the noise signal, it can reduce common mode noise, increase the signal-to-noise ratio and sound pressure overload point, and then improve the sound quality.
  • the increase in sensitivity (corresponding to the sound signal) is twice the increase in the noise signal, and the capacitance change corresponding to the increased sound signal is 2
  • the unit dB represents decibels.
  • the back cavity 301 of the differential silicon-based microphone chip 300 is the entrance of the sound wave source, and the sound waves enter the second microphone structure 320 and the first microphone structure 310 of the differential silicon-based microphone chip 300 from the back cavity 301, which can be respectively
  • the capacitance of the second microphone structure 320 and the first microphone structure 310 is caused to change, thereby converting the acoustic signal into an electrical signal.
  • the cross-sectional shape of the back cavity 301 may be a circle, an ellipse, or a square.
  • the silicon-based microphone device in FIG. 1 is only an example of two differential silicon-based microphone chips 300.
  • the two differential silicon-based microphone chips 300 are respectively a first differential silicon-based microphone chip and a second differential silicon-based microphone chip, and the corresponding sound inlet holes 110 are the first sound inlet hole and the second sound inlet hole.
  • the differential silicon-based microphone chip 300 on the left in FIG. 1 is a first differential silicon-based microphone chip
  • the differential silicon-based microphone chip 300 on the right is a second differential silicon-based microphone chip.
  • the first microphone structure 310 of the first differential silicon-based microphone chip is electrically connected to the first microphone structure 310 of the second differential silicon-based microphone chip
  • the second microphone structure 320 of the first differential silicon-based microphone chip is electrically connected to The second microphone structure 320 of the second differential silicon-based microphone chip is electrically connected.
  • the relative positional relationship between the first microphone structure 310 and the second microphone structure 320 in each differential silicon-based microphone chip 300 and the circuit board 100 is consistent.
  • the circuit board 100 is a printed circuit board 100. Since the printed circuit board 100 is a rigid structure, it has the structural strength to carry the shielding shell 200 and the differential silicon-based microphone chip 300.
  • the shielding shell 200 is usually a metal shell made of conductive metal materials.
  • the shielding shell 200 is fixedly connected to the circuit board 100 by solder paste or conductive glue, thereby forming an electrical connection, which can prevent external interference.
  • the differential silicon-based microphone chip 300 further includes a silicon substrate 340, and the second microphone structure 320 and the first microphone structure 310 are stacked on one side of the silicon substrate 340.
  • the silicon substrate 340 has a through hole 341 for forming the back cavity 301.
  • the through hole 341 corresponds to the main body of the first microphone structure 310 and the main body of the second microphone structure 320 to ensure that the sound waves entering from the through hole 341 can be This causes the capacitance of the first microphone structure 310 and the second microphone structure 320 to change.
  • the side of the silicon substrate 340 away from the second microphone structure 320 is fixedly connected to the circuit board 100, and the through hole 341 communicates with the sound inlet hole 110 at the corresponding position, so that the sound can enter the back cavity 301 from the sound inlet hole 110.
  • the sound inlet 110 on the circuit board 100 is connected to the back cavity 301 of the differential silicon-based microphone chip 300, and the sound is introduced into the semiconductor diaphragm 330 of the differential silicon-based microphone chip 300 through the sound inlet 110.
  • the vibration of the semiconductor diaphragm 330 is caused to generate a sound signal.
  • the differential silicon-based microphone chip 300 further includes a lower back plate 321, a semiconductor diaphragm 330 and an upper back plate 311.
  • the lower back electrode plate 321, the semiconductor diaphragm 330 and the upper back electrode plate 311 are stacked on the side of the silicon substrate 340 away from the circuit board 100.
  • the areas of the upper back electrode plate 311 and the lower back electrode plate 321 corresponding to the through holes 341 are both provided with air flow holes.
  • the semiconductor diaphragm 330 may be arranged in parallel with the upper back plate 311 and separated by the upper air gap 312 to form the first microphone structure 310; the semiconductor diaphragm 330 may be arranged in parallel with the lower back plate 321 and be separated by the lower air gap. The gaps 322 are separated, thereby forming the second microphone structure 320. It can be understood that both between the semiconductor diaphragm 330 and the upper back plate 311 and between the semiconductor diaphragm 330 and the lower back plate 321 are used to form an electric field (non-conduction). Since the semiconductor silicon substrate 340 is provided with a through hole 341 for forming the back cavity 301, the sound waves contact the semiconductor diaphragm 330 through the back cavity 301 and the lower air flow holes 321a on the lower back plate 321.
  • the semiconductor diaphragm 330 may be made of polysilicon material.
  • the thickness of the semiconductor diaphragm 330 is less than 1 micrometer, and it will deform under the action of a small sound wave, and the sensitivity is relatively high.
  • the upper back electrode plate 311 and the lower back electrode plate 321 are generally made of materials with strong rigidity and much thicker than the thickness of the semiconductor diaphragm 330, and a plurality of upper air currents are etched on the upper back electrode plate 311 Holes 311a and a plurality of lower airflow holes 321a are etched on the lower back plate 321. Therefore, when the semiconductor diaphragm 330 is deformed by the sound wave, neither the upper back electrode plate 311 nor the lower back electrode plate 321 will be affected and deformed.
  • the side of the silicon substrate 340 away from the lower back plate 321 is fixedly connected to the circuit board 100 through silica gel.
  • the lower back plate 321 and the silicon substrate 340 are separated by a patterned first insulating layer 350, and the semiconductor diaphragm 330 and the lower back plate 321 are separated by a patterned second insulating layer 360.
  • the semiconductor diaphragm 330 and the upper back plate 311 are separated by a patterned third insulating layer 370, so that the silicon substrate 340, the first insulating layer 350, the lower back plate 321, the second insulating layer 360, and the semiconductor vibration
  • the film 330, the third insulating layer 370 and the upper back plate 311 are stacked in sequence.
  • the first insulating layer 350, the second insulating layer 360, and the third insulating layer 370 can be patterned through an etching process after the entire film is formed to remove the insulating layer corresponding to the through hole 341 area and use The insulating layer in the area where the electrode is prepared.
  • the upper back plates 311 of all the first microphone structures 310 are electrically connected to form a first Signals; all the lower back plates 321 of the second microphone structure 320 are electrically connected to form a second signal.
  • the first signal is the signal after the upper back plate 311 of all the first microphone structures 310 are electrically connected, and the signal is the signal between the upper back plate 311 of each first microphone structure 310 and its corresponding semiconductor diaphragm 330 The sum of the capacitance changes, and used as an input of the differential signal processing chip.
  • the second signal is the signal after all the lower back plates 321 of the second microphone structures 320 are electrically connected, and the signal is the capacitance between the lower back plates 321 of each second microphone structure 320 and the corresponding semiconductor diaphragm 330 The sum of the changes is used as another input of the differential signal processing chip.
  • the semiconductor diaphragm 330 of all the differential silicon-based microphone chips 300 are electrically connected, and the semiconductor diaphragm 330 is used to electrically connect with a constant voltage source, so that the first microphone structure 310 and the second structure A stable electric field is formed inside.
  • the constant voltage source may be zero voltage.
  • the silicon-based microphone device further includes a control chip 400, which is located in the acoustic cavity 210 and connected to the circuit board 100.
  • the control chip 400 can be electrically connected with the upper back plate 311 of one of the first microphone structures 310 and a signal input terminal of the control chip 400, thereby connecting the first signal to the control chip 400 input terminal; one of the lower back plate 321 of the first microphone structure 310 is electrically connected to the other signal input terminal of the control chip 400, so that the second signal is connected to the input terminal of the control chip 400.
  • the control chip 400 performs differential signal processing on the two signals to improve the signal-to-noise ratio.
  • control chip 400 adopts an application specific integrated circuit (ASIC, Application Specific Integrated Circuit) chip, and the ASIC chip can be customized according to the design requirements of the microphone.
  • ASIC application specific integrated circuit
  • the ASIC chip is a differential amplifying signal processing chip, and reserves pins for the first signal and the second signal.
  • control chip 400 is usually also fixed on the circuit board 100 by silica gel or red glue.
  • the upper back plate 311 includes upper back plate electrodes 311 b, and all the upper back plate electrodes 311 b of the first microphone structure 310 are electrically connected by wires 380.
  • the lower back plate 321 includes a lower back plate electrode 321 b, and all the lower back plate electrodes 321 b of the second microphone structure 320 are electrically connected by a wire 380.
  • the semiconductor diaphragm 330 includes semiconductor diaphragm electrodes 331, and all the semiconductor diaphragm electrodes 331 are electrically connected by wires 380.
  • a bias voltage can be applied to the diaphragm electrode connected to the semiconductor diaphragm 330 and the upper back plate electrode 311 b connected to the upper back plate 311.
  • a lower electric field will be formed in the lower air gap 322 of the second microphone structure 320, which can be specifically connected to the semiconductor diaphragm 330
  • a bias voltage is applied to the diaphragm electrode and the lower back plate electrode 321b connected to the lower back plate 321. Since the polarities of the upper electric field and the lower electric field are exactly opposite, when the semiconductor diaphragm 330 bends up and down under the action of sound waves, the capacitance change of the first microphone structure 310 and the result of the second microphone have the same magnitude and opposite sign .
  • the semiconductor diaphragm electrode 331 of the first differential silicon-based microphone chip (left side) and the second differential silicon-based microphone chip (right side) The semiconductor diaphragm electrodes 331 are electrically connected through wires 380; the upper back plate electrode 311b of the first differential silicon-based microphone chip and the upper back plate electrode 311b of the second differential silicon-based microphone chip are electrically connected by wires 380 achieves electrical connection; the lower back plate electrode 321b of the first differential silicon-based microphone chip and the lower back plate electrode 321b of the second differential silicon-based microphone chip are electrically connected through a wire 380.
  • the first microphone structure 310 of a differential silicon-based microphone chip by the first sound wave and the capacitance change of the first microphone structure 310 of the second differential silicon-based microphone chip by the second sound wave The amplitudes are equal and coincide with the same.
  • the second microphone structure 320 of the first differential silicon-based microphone chip is affected by the change in capacitance generated by the first sound wave, and the second microphone structure 320 of the second differential silicon-based microphone chip is generated by the second sound wave.
  • the silicon-based microphone device packaged by the two differential silicon-based microphone chips 300 of this embodiment can increase the sound signal The ratio of the signal to the noise signal, thereby reducing the common mode noise, thereby achieving a higher signal-to-noise ratio of the silicon-based microphone.
  • the silicon-based microphone device in the foregoing embodiments of the present application is implemented by using a single diaphragm (such as a semiconductor diaphragm 330) and a double back pole (such as an upper back plate 311 and a lower back plate 321) Take the differential silicon-based microphone chip 300 as an example.
  • the differential silicon-based microphone chip 300 may be a dual-diaphragm, a single-back pole, or other differential structure in addition to a single diaphragm and double back pole arrangement.
  • an embodiment of the present application also provides an electronic device, including: the silicon-based microphone device in the foregoing embodiments.
  • the electronic device provided in this embodiment includes a silicon-based microphone device having at least two differential silicon-based microphone chips 300.
  • the first microphone structure 310 of each differential silicon-based microphone chip 300 is electrically powered.
  • the second microphone structure 320 of each differential silicon-based microphone chip 300 is electrically connected, which can increase the sound signal and the noise signal at the same time. Since the change of the sound signal is greater than the change of the noise signal, the common mode noise can be reduced. , Improve the signal-to-noise ratio.
  • the electronic device in the foregoing embodiment may be a mobile phone, a voice recorder, or a translator.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, unless otherwise specified, “plurality” means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Silicon Compounds (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本申请提供了一种硅基麦克风装置及电子设备,该硅基麦克风装置包括:电路板、屏蔽外壳以及至少两个差分式硅基麦克风芯片;电路板上开设有至少两个进声孔;屏蔽外壳罩合在电路板的一侧,与电路板形成声腔;硅基麦克风芯片均位于声腔内;各差分式硅基麦克风芯片一一对应地设置于各进声孔处,且每个差分式硅基麦克风芯片的背腔与对应位置处的进声孔连通;各差分式硅基麦克风芯片均包括第一麦克风结构和第二麦克风结构,所有的第一麦克风结构电连接,所有的第二麦克风结构电连接。利用多个差分式硅基麦克风芯片可同时增加声音信号与噪声信号,由于声音信号的变化量大于噪声信号的变化量,从而可减小共模噪声,提高信噪比和声压过载点,进而改善音质。

Description

硅基麦克风装置及电子设备 技术领域
本申请涉及声电转换技术领域,具体而言,本申请涉及一种硅基麦克风装置及电子设备。
背景技术
随着无线通讯的发展,移动电话等终端用户越来越多。用户对移动电话的要求已不仅满足于通话,而且要能够提供高质量的通话效果,尤其是目前移动多媒体技术的发展,移动电话的通话质量更显重要,移动电话的麦克风作为移动电话的语音拾取装置,其设计好坏直接影响通话质量。目前应用较多的麦克风包括传统的驻极体麦克风和硅基麦克风。
现有的硅基麦克风在获取声音信号时,通过麦克风中的硅基麦克风芯片受获取的声波作用而产生振动,该振动带来可以形成电信号的电容变化,从而将声波转换成电信号输出。但是,目前的硅基麦克风对外界噪声的干扰处理仍不理想,信噪比提升有限,不利于提高音频输出效果。
发明内容
本申请针对现有方式的缺点,提出一种硅基麦克风装置及电子设备,以解决现有硅基麦克风信噪比不高的技术问题。
第一个方面,本申请实施例提供了一种硅基麦克风装置,包括:电路板、屏蔽外壳以及至少两个差分式硅基麦克风芯片;所述电路板上开设有至少两个进声孔;所述屏蔽外壳罩合在所述电路板的一侧,与所述电路板形成声腔;所述硅基麦克风芯片均位于所述声腔内;各所述差分式硅基麦克风芯片一一对应地设置于各所述进声孔处,且每个所述差分式硅基麦克风芯片的背腔与对应位置处的所述进声孔连通;各所述差分式硅基麦克风芯片均包括第一麦克风结构和第二麦克风结构,所有的所述第一麦克风结 构电连接,所有的所述第二麦克风结构电连接。
在一个可能的实现方式中,所述差分式硅基麦克风芯片包括硅基板,所述第二麦克风结构和第一麦克风结构层叠设置于所述硅基板的一侧;所述硅基板具有用于形成所述背腔的通孔,所述通孔与所述第一麦克风结构的主体、所述第二麦克风结构的主体均对应;所述硅基板的远离所述第二麦克风结构的一侧与所述电路板固连,所述通孔与所述进声孔连通。
在一个可能的实现方式中,所述差分式硅基麦克风芯片具体包括依次层叠设置的下背极板、半导体振膜和上背极板;所述上背极板和所述半导体振膜之间、以及所述半导体振膜和所述下背极板之间均具有间隙;所述上背极板和所述下背极板对应于所述通孔的区域均设置有气流孔;所述上背极板与所述半导体振膜构成所述第一麦克风结构的主体;所述半导体振膜与所述下背极板构成所述第二麦克风结构的主体。
在一个可能的实现方式中,所有的所述第一麦克风结构的上背极板电连接,用于形成第一路信号;所有的所述第二麦克风结构的下背极板电连接,用于形成第二路信号。
在一个可能的实现方式中,所有的所述差分式硅基麦克风芯片的半导体振膜电连接,且所述半导体振膜用于与恒压源电连接。
在一个可能的实现方式中,所述硅基麦克风装置还包括控制芯片;所述控制芯片位于所述声腔内,与所述电路板连接;所述上背极板与所述控制芯片的一个信号输入端电连接;所述下背极板与所述控制芯片的另一个信号输入端电连接。
在一个可能的实现方式中,所述上背极板包括上背极板电极,所有的所述第一麦克风结构的上背极板通过所述上背极板电极电连接;
和/或,所述下背极板包括下背极板电极,所有的所述第二麦克风结构的下背极板通过所述下背极板电极电连接;
和/或,所述半导体振膜包括半导体振膜电极,所有的所述半导体振膜通过所述半导体振膜电极电连接。
在一个可能的实现方式中,所述差分式硅基麦克风芯片还包括图案化 的:第一绝缘层、第二绝缘层以及第三绝缘层;
所述硅基板、所述第一绝缘层、所述下背极板、所述第二绝缘层、所述半导体振膜、所述第三绝缘层以及所述上背极板,依次层叠设置。
在一个可能的实现方式中,所述硅基麦克风装置具有如下任意一种或几种特征:所述差分式硅基麦克风芯片通过硅胶与所述电路板固定连接;所述屏蔽外壳包括金属外壳,所述金属外壳与所述电路板电连接;所述屏蔽外壳通过锡膏或导电胶与所述电路板的一侧固连;所述电路板包括印制电路板。
第二个方面,本申请实施例还提供了一种电子设备,包括:如第一个方面所述的硅基麦克风装置。
本申请实施例提供的技术方案带来的有益技术效果是:
本申请实施例提供的硅基麦克风装置,通过设置至少两个差分式硅基麦克风芯片,且各差分式硅基麦克风芯片的第一麦克风结构均电连接、同时各差分式硅基麦克风芯片的第二麦克风结构均电连接,当同一声波源从各进声孔分别进入各差分式硅基麦克风芯片的背腔时,各第一麦克风结构受同一声波所产生的电容变化量幅度相等,符号相同;同样地,各第二麦克风结构受同一声波所产生的电容变化幅度相同,符号相同,利用多个差分式硅基麦克风芯片可同时增加声音信号与噪声信号,由于声音信号的变化量大于噪声信号的变化量,从而可减小共模噪声,提高信噪比和声压过载点,进而改善音质。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例的硅基麦克风装置的内部结构示意图;
图2为根据本申请实施例的硅基麦克风装置中的单个差分式硅基麦 克风芯片的结构示意图;
图3为根据本申请实施例的硅基麦克风装置中的两个差分式硅基麦克风芯片的连接示意图。
其中:
100-电路板;110-进声孔;
200-屏蔽外壳;210-声腔;
300-差分式硅基麦克风芯片;301-背腔;
310-第一麦克风结构;311-上背极板;311a-上气流孔;311b-上背极板电极;312-上气隙;
320-第二麦克风结构;321-下背极板;321a-下气流孔;321b-下背极板电极;322-下气隙;
330-半导体振膜;331-半导体振膜电极;
340-硅基板;341-通孔;
350-第一绝缘层;
360-第二绝缘层;
370-第三绝缘层;
380-导线;
400-控制芯片。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除 非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
如图1所示,本申请实施例提供了一种硅基麦克风装置,包括:电路板100、屏蔽外壳200以及至少两个差分式硅基麦克风芯片300(图中仅示出了两个差分式硅基麦克风芯片300)。屏蔽外壳200罩合在电路板100的一侧,并且与电路板100形成硅基麦克风装置的声腔210。
其中,电路板100上开设有至少两个进声孔110(图中仅示出了两个进声孔110),进声孔110贯穿于电路板100,保证外部声源从进声孔110进入差分式硅基麦克风芯片300。各差分式硅基麦克风芯片300均位于声腔210内,差分式硅基麦克风芯片300与进声孔110一一对应设置,且每个差分式硅基麦克风芯片300的背腔301与对应位置处的进声孔110连通。
各差分式硅基麦克风芯片300均包括第一麦克风结构310和第二麦克风结构320,所有的第一麦克风结构310电连接,所有的第二麦克风结构320电连接。
在本实施例提供的硅基麦克风装置中,通过设置至少两个差分式硅基麦克风芯片300,且各差分式硅基麦克风芯片300的第一麦克风结构310均电连接、同时各差分式硅基麦克风芯片300的第二麦克风结构320均电连接,当同一声波源从各进声孔110分别进入各差分式硅基麦克风芯片300的背腔301时,各第一麦克风结构310受同一声波所产生的电容变化 量幅度相等,符号相同;同样地,各第二麦克风结构320受同一声波所产生的电容变化幅度相同,符号相同,利用多个差分式硅基麦克风芯片300可同时增加声音信号与噪声信号,由于声音信号的变化量大于噪声信号的变化量,从而可减小共模噪声,提高信噪比和声压过载点,进而改善音质。
具体地,当多个差分式硅基麦克风芯片300的电容变化幅度叠加后,灵敏度(对应声音信号)的增加量是噪声信号增加量的一倍,以增加的声音信号所对应的电容变化量为2为例进行说明,灵敏度信号(对应声音信号)增加是20*log(2)=6dB,以log(2)等于0.3进行计算;噪声信号增加是
Figure PCTCN2021075876-appb-000001
因此,增加的信噪比=灵敏度-噪声信号=3dB。其中,单位dB表示分贝。
本实施例中,差分式硅基麦克风芯片300的背腔301为声波源的入口,声波从背腔301进入差分式硅基麦克风芯片300的第二麦克风结构320和第一麦克风结构310,可分别引起第二麦克风结构320和第一麦克风结构310的电容变化,从而将声信号转变为电信号。在一种实施方式中,背腔301的横截面形状可以为圆形、椭圆形或者方形。
需要说明的是,图1中的硅基麦克风装置仅示例为两个差分式硅基麦克风芯片300。两个差分式硅基麦克风芯片300分别为第一差分式硅基麦克风芯片和第二差分式硅基麦克风芯片,对应的进声孔110为第一进声孔和第二进声孔。其中,图1中左侧的差分式硅基麦克风芯片300为第一差分式硅基麦克风芯片,右侧的差分式硅基麦克风芯片300为第二差分式硅基麦克风芯片。
具体地,第一差分式硅基麦克风芯片的第一麦克风结构310与第二差分式硅基麦克风芯片的第一麦克风结构310电连接,第一差分式硅基麦克风芯片的第二麦克风结构320与第二差分式硅基麦克风芯片的第二麦克风结构320电连接。其中,各差分式硅基麦克风芯片300中的第一麦克风结构310与第二麦克风结构320与电路板100的相对位置关系一致。
在一种实施方式中,电路板100为印制电路板100,由于印制电路板100为刚性结构,具有承载屏蔽外壳200以及差分式硅基麦克风芯片300 的结构强度。
在一种实施方式中,为了提高对声腔210内的差分式硅基麦克风芯片300屏蔽电磁干扰的作用,屏蔽外壳200通常是采用导电的金属材料制造而成的金属外壳。
在一种实施方式中,屏蔽外壳200通过锡膏或导电胶与电路板100固连,从而形成电连接,可防止外部干扰。
在一些实施例中,结合图1和图2所示,差分式硅基麦克风芯片300还包括硅基板340,第二麦克风结构320和第一麦克风结构310层叠设置在硅基板340的一侧。
硅基板340上具有用于形成背腔301的通孔341,该通孔341与第一麦克风结构310的主体、以及第二麦克风结构320的主体均对应,以保证从通孔341进入的声波能够引起第一麦克风结构310和第二麦克风结构320的电容变化。
硅基板340的远离第二麦克风结构320的一侧与电路板100固连,且通孔341与对应位置处的进声孔110连通,使得声音能够从进声孔110进入到背腔301内。
本实施例中,电路板100上的进声孔110与差分式硅基麦克风芯片300的背腔301相连通,声音通过进声孔110导入到差分式硅基麦克风芯片300的半导体振膜330,引起半导体振膜330的振动而产生声音信号。
在一些实施例中,继续参阅图1和图2,差分式硅基麦克风芯片300还包括下背极板321、半导体振膜330和上背极板311。其中,下背极板321、半导体振膜330和上背极板311层叠设置在硅基板340的远离电路板100的一侧。
上背极板311和半导体振膜330之间、以及半导体振膜330和下背极板321之间均具有间隙。上背极板311和下背极板321对应于通孔341的区域均设置有气流孔。上背极板311和半导体振膜330存在间隙以充当电容结构,从而构成第一麦克风结构310的主体。同样地,半导体振膜330和下背极板321之间存在间隙以充当电容结构,从而构成第二麦克风结构 320的主体。
具体地,半导体振膜330可以与上背极板311平行布置并由上气隙312隔开,从而形成第一麦克风结构310;半导体振膜330可以与下背极板321平行布置并由下气隙322隔开,从而形成第二麦克风结构320。可以理解的是,半导体振膜330与上背极板311之间、以及半导体振膜330与下背极板321之间均用于形成电场(不导通)。由于半导体硅基板340上设有用于形成背腔301的通孔341,这样声波通过背腔301、下背极板321上的下气流孔321a与半导体振膜330接触。
在一种实施方式中,半导体振膜330的制备材料可以为多晶硅材料,半导体振膜330的厚度小于1微米,在较小的声波作用下也会产生变形,灵敏度较高。上背极板311和下背极板321一般都是采用刚性较强、且厚度远大于半导体振膜330的厚度的材料制造而成,而且在上背极板311上刻蚀有多个上气流孔311a并且在下背极板321上刻蚀有多个下气流孔321a。因此,当半导体振膜330受声波作用产生形变时,上背极板311和下背极板321都不会受到影响而产生形变。
对于单个差分式硅基麦克风芯片300而言,通过在半导体振膜330与上背极板311之间施加偏压后,在第一麦克风结构310的上气隙312内就会形成上电场。同样,通过在半导体振膜330与下背极板321之间施加偏压后,在第二麦克风结构320的下气隙322内就会形成下电场。由于上电场和下电场的极性正好相反,当半导体振膜330受声波作用而上、下弯曲时,第一麦克风结构310的电容变化量与第二麦克风结果的电容变化量幅度相同、符号相反。
在一种实施方式中,硅基板340的远离下背极板321的一侧通过硅胶与电路板100固连。
在一些实施例中,如图2所示,硅基板340与下背极板321之间、下背极板321与半导体振膜330之间、以及半导体振膜330与上背极板311之间均绝缘布置。
具体地,下背极板321与硅基板340之间通过图案化的第一绝缘层 350隔开,而半导体振膜330与下背极板321之间通过图案化的第二绝缘层360隔开,半导体振膜330与上背极板311之间通过图案化的第三绝缘层370隔开,使得硅基板340、第一绝缘层350、下背极板321、第二绝缘层360、半导体振膜330、第三绝缘层370以及上背极板311,依次层叠设置。
在一种实施方式中,第一绝缘层350、第二绝缘层360以及第三绝缘层370均可在全面成膜后通过刻蚀工艺实现图案化,去除对应通孔341区域的绝缘层以及用于制备电极的区域的绝缘层。
在一些实施例中,如图3所示,对于硅基麦克风装置中的多个差分式硅基麦克风芯片300,所有的第一麦克风结构310的上背极板311电连接,用于形成第一路信号;所有的第二麦克风结构320的下背极板321电连接,用于形成第二路信号。
具体地,第一路信号为所有第一麦克风结构310的上背极板311电连接之后的信号,该信号为各第一麦克风结构310的上背极板311与其对应的半导体振膜330之间的电容变化量的总和,并作为差分式信号处理芯片的一个输入。第二路信号为所有的第二麦克风结构320的下背极板321电连接之后的信号,该信号为各第二麦克风结构320的下背极板321与其对应的半导体振膜330之间的电容变化量的总和,并作为差分式信号处理芯片的另一个输入。
在一些实施例中,所有的差分式硅基麦克风芯片300的半导体振膜330电连接,且半导体振膜330用于与恒压源电连接,以便于在第一麦克风结构310和第二个结构内形成稳定的电场。在一种实施方式中,恒压源可以为零电压。
在上述各实施例的基础上,如图1所示,硅基麦克风装置还包括控制芯片400,该控制芯片400位于声腔210内,并且与电路板100连接。控制芯片400作为差分式信号处理的核心部件,可由其中一个第一麦克风结构310的上背极板311与该控制芯片400的一个信号输入端电连接,从而将第一路信号接入该控制芯片400的输入端;其中一个第一麦克风结构 310的下背极板321与该控制芯片400的另一个信号输入端电连接,从而将第二路信号接入该控制芯片400的输入端。由该控制芯片400对这两路信号进行差分信号处理,以提高信噪比。
在一种实施方式中,控制芯片400采用专用集成电路(ASIC,Application Specific Integrated Circuit)芯片,ASIC芯片可根据麦克风的设计需求进行定制。ASIC芯片为差分放大信号处理芯片,并预留供第一路信号和第二路信号接入的引脚。
在一种实施方式中,控制芯片400通常也是通过硅胶或红胶固定在电路板100上。
在一些实施例中,如图3所示,上背极板311包括上背极板电极311b,所有的第一麦克风结构310的上背极板电极311b通过导线380电连接。
在一种实施方式中,下背极板321包括下背极板电极321b,所有的第二麦克风结构320的下背极板电极321b通过导线380电连接。
在一种实施方式中,半导体振膜330包括半导体振膜电极331,所有的半导体振膜电极331通过导线380电连接。
对于单个差分式硅基麦克风芯片300而言,通过在半导体振膜330与上背极板311之间施加偏压后,在第一麦克风结构310的上气隙312内就会形成上电场,具体可通过在与半导体振膜330相连的振膜电极、以及与上背极板311相连的上背极板电极311b上施加偏压。同样,通过在半导体振膜330与下背极板321之间施加偏压后,在第二麦克风结构320的下气隙322内就会形成下电场,具体可通过在与半导体振膜330相连的振膜电极、以及与下背极板321相连的下背极板电极321b上施加偏压。由于上电场和下电场的极性正好相反,当半导体振膜330受声波作用而上、下弯曲时,第一麦克风结构310的电容变化量与第二麦克风结果的电容变化量幅度相同、符号相反。
在图3示例的两个差分式硅基麦克风芯片300的连接方式中,第一差分式硅基麦克风芯片(左侧)的半导体振膜电极331与第二差分式硅基麦克风芯片(右侧)的半导体振膜电极331之间通过导线380实现电连接; 第一差分式硅基麦克风芯片的上背极板电极311b与第二差分式硅基麦克风芯片的上背极板电极311b之间通过导线380实现电连接;第一差分式硅基麦克风芯片的下背极板电极321b与第二差分式硅基麦克风芯片的下背极板电极321b之间通过导线380实现电连接。
当从第一进声孔进入的第一声波与从第二进声孔进入的第二声波为同一个声波源时,根据本申请实施例的两个差分式基麦克风芯片的连接方式,第一差分式硅基麦克风芯片的第一麦克风结构310受第一声波所产生的电容变化量、与第二差分式硅基麦克风芯片的第一麦克风结构310受第二声波所产生的电容变化量幅度相等、符合相同。同理,第一差分式硅基麦克风芯片的第二麦克风结构320受第一声波所产生的电容变化量、与第二差分式硅基麦克风芯片的第二麦克风结构320受第二声波所产生的电容变化量幅度相等、符合相同。由于两个第一麦克风结构310并联相接并且两个第二麦克风结构320并联相接,采用本实施例的两颗差分式硅基麦克风芯片300所封装的硅基麦克风装置,可以增大声音信号与噪声信号的比值,从而减小共模噪声,进而实现更高的硅基麦克风信噪比。
需要说明的是,本申请上述各实施例中的硅基麦克风装置采用单振膜(如:半导体振膜330)、双背极(如:上背极板311和下背极板321)所实现的差分式硅基麦克风芯片300来示例。其中,差分式硅基麦克风芯片300除了单振膜、双背极的设置方式之外,也可以是双振膜、单背极的方式,或者是其他的差分式结构。
基于同一发明构思,本申请实施例还提供了一种电子设备,包括:前述各实施例中的硅基麦克风装置。
本实施例提供的电子设备,包括了具有至少两个差分式硅基麦克风芯片300的硅基麦克风装置,该硅基麦克风装置中,各差分式硅基麦克风芯片300的第一麦克风结构310均电连接、同时各差分式硅基麦克风芯片300的第二麦克风结构320均电连接,可同时增加声音信号与噪声信号,由于声音信号的变化量大于噪声信号的变化量,从而可减小共模噪声,提高信噪比。
在一种实施方式中,上述实施例中的电子设备可以是手机、录音笔或者翻译机。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种硅基麦克风装置,包括:
    电路板,开设有至少两个进声孔;
    屏蔽外壳,罩合在所述电路板的一侧,与所述电路板形成声腔;
    至少两个差分式硅基麦克风芯片,所述硅基麦克风芯片均位于所述声腔内;各所述差分式硅基麦克风芯片一一对应地设置于各所述进声孔处,且每个所述差分式硅基麦克风芯片的背腔与对应位置处的所述进声孔连通;
    各所述差分式硅基麦克风芯片均包括第一麦克风结构和第二麦克风结构,所有的所述第一麦克风结构电连接,所有的所述第二麦克风结构电连接。
  2. 根据权利要求1所述的硅基麦克风装置,其中,所述差分式硅基麦克风芯片包括硅基板,所述第二麦克风结构和所述第一麦克风结构层叠于所述硅基板的一侧;
    所述硅基板具有用于形成所述背腔的通孔,所述通孔与所述第一麦克风结构的主体和所述第二麦克风结构的主体均对应;
    所述硅基板的远离所述第二麦克风结构的一侧与所述电路板固连,所述通孔与所述进声孔连通。
  3. 根据权利要求2所述的硅基麦克风装置,其中,所述差分式硅基麦克风芯片包括下背极板、半导体振膜和上背极板;
    所述下背极板、半导体振膜和上背极板层叠于所述硅基板上;所述上背极板和所述半导体振膜之间、以及所述半导体振膜和所述下背极板之间均具有间隙;所述上背极板和所述下背极板对应于所述通孔的区域均设置有气流孔;
    所述上背极板与所述半导体振膜构成所述第一麦克风结构的主体;所述半导体振膜与所述下背极板构成所述第二麦克风结构的主体。
  4. 根据权利要求3所述的硅基麦克风装置,其中,所有的所述第一麦克风结构的上背极板电连接,用于形成第一路信号;并且所有的所述第二麦克风结构的下背极板电连接,用于形成第二路信号。
  5. 根据权利要求4所述的硅基麦克风装置,其中,所有的所述差分式硅基麦克风芯片的半导体振膜电连接,且所述半导体振膜用于与恒压源电连接。
  6. 根据权利要求5所述的硅基麦克风装置,其中,所述硅基麦克风装置还包括控制芯片;
    所述控制芯片位于所述声腔内,并且与所述电路板连接;
    所述上背极板与所述控制芯片的一个信号输入端电连接;并且所述下背极板与所述控制芯片的另一个信号输入端电连接。
  7. 根据权利要求5所述的硅基麦克风装置,其中,所述上背极板包括上背极板电极,所有的所述第一麦克风结构的上背极板电极电连接;
    和/或,所述下背极板包括下背极板电极,所有的所述第二麦克风结构的下背极板电极电连接;
    和/或,所述半导体振膜包括半导体振膜电极,所有的所述半导体振膜电极电连接。
  8. 根据权利要求3所述的硅基麦克风装置,其中,所述差分式硅基麦克风芯片还包括图案化的第一绝缘层、第二绝缘层以及第三绝缘层;
    所述硅基板、所述第一绝缘层、所述下背极板、所述第二绝缘层、所述半导体振膜、所述第三绝缘层以及所述上背极板,依次层叠设置。
  9. 根据权利要求1所述的硅基麦克风装置,其中,所述硅基麦克风装置具有如下任意一种或几种特征:
    所述差分式硅基麦克风芯片通过硅胶与所述电路板固定连接;
    所述屏蔽外壳包括金属外壳,所述金属外壳与所述电路板电连接;
    所述屏蔽外壳通过锡膏或导电胶与所述电路板的一侧固连;
    所述电路板包括印制电路板。
  10. 一种电子设备,包括:如上述权利要求1-9中任一项所述的硅基麦克风装置。
PCT/CN2021/075876 2020-06-09 2021-02-07 硅基麦克风装置及电子设备 WO2021248928A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21822788.2A EP4138414A4 (en) 2020-06-09 2021-02-07 SILICONE BASED MICROPHONE DEVICE AND ELECTRONIC DEVICE
JP2022576149A JP2023530638A (ja) 2020-06-09 2021-02-07 シリコンベースマイクロフォン装置及び電子機器
KR1020227041782A KR20230003171A (ko) 2020-06-09 2021-02-07 실리콘 기반 마이크 장치 및 전자 기기
US17/922,697 US20230171551A1 (en) 2020-06-09 2021-02-07 Silicon-Based Microphone Device And Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010526138.0A CN113784266A (zh) 2020-06-09 2020-06-09 硅基麦克风装置及电子设备
CN202010526138.0 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021248928A1 true WO2021248928A1 (zh) 2021-12-16

Family

ID=78835330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075876 WO2021248928A1 (zh) 2020-06-09 2021-02-07 硅基麦克风装置及电子设备

Country Status (7)

Country Link
US (1) US20230171551A1 (zh)
EP (1) EP4138414A4 (zh)
JP (1) JP2023530638A (zh)
KR (1) KR20230003171A (zh)
CN (1) CN113784266A (zh)
TW (1) TWI824236B (zh)
WO (1) WO2021248928A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114422923B (zh) * 2022-03-29 2022-12-02 之江实验室 谐振式mems麦克风、声学成像仪和光声光谱检测仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111344A1 (en) * 2008-11-05 2010-05-06 Fortemedia, Inc. Silicon-based microphone structure with electromagnetic interference shielding means
WO2012122696A1 (en) * 2011-03-11 2012-09-20 Goertek Inc. Cmos compatible silicon differential condenser microphone and method for manufacturing the same
CN204362303U (zh) * 2014-12-11 2015-05-27 科大讯飞股份有限公司 一种带差分降噪阵列的麦克风装置
CN204681591U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 一种mems麦克风元件
US20180041840A1 (en) * 2015-05-29 2018-02-08 Goertek.Inc Differential-capacitance type mems microphone

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080192963A1 (en) * 2007-02-09 2008-08-14 Yamaha Corporation Condenser microphone
CN101321413B (zh) * 2008-07-04 2012-03-28 瑞声声学科技(深圳)有限公司 电容式麦克风
JP5691181B2 (ja) * 2010-01-27 2015-04-01 船井電機株式会社 マイクロホンユニット、及び、それを備えた音声入力装置
JP2012019322A (ja) * 2010-07-07 2012-01-26 Yamaha Corp コンデンサマイクロホン
JP5741487B2 (ja) * 2012-02-29 2015-07-01 オムロン株式会社 マイクロフォン
JP2014158140A (ja) * 2013-02-15 2014-08-28 Funai Electric Co Ltd 音声入力装置
US9602930B2 (en) * 2015-03-31 2017-03-21 Qualcomm Incorporated Dual diaphragm microphone
CN204652659U (zh) * 2015-05-29 2015-09-16 歌尔声学股份有限公司 一种差分电容式mems麦克风
CN104936116B (zh) * 2015-06-01 2018-12-04 山东共达电声股份有限公司 一种集成的差分硅电容麦克风
CN205510403U (zh) * 2016-01-25 2016-08-24 歌尔声学股份有限公司 一种mems麦克风芯片及mems麦克风

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111344A1 (en) * 2008-11-05 2010-05-06 Fortemedia, Inc. Silicon-based microphone structure with electromagnetic interference shielding means
WO2012122696A1 (en) * 2011-03-11 2012-09-20 Goertek Inc. Cmos compatible silicon differential condenser microphone and method for manufacturing the same
US20140239352A1 (en) * 2011-03-11 2014-08-28 Goertek Inc. Cmos compatible silicon differential condenser microphone and method for manufacturing the same
CN204362303U (zh) * 2014-12-11 2015-05-27 科大讯飞股份有限公司 一种带差分降噪阵列的麦克风装置
CN204681591U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 一种mems麦克风元件
US20180041840A1 (en) * 2015-05-29 2018-02-08 Goertek.Inc Differential-capacitance type mems microphone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4138414A4 *

Also Published As

Publication number Publication date
TWI824236B (zh) 2023-12-01
EP4138414A1 (en) 2023-02-22
US20230171551A1 (en) 2023-06-01
EP4138414A4 (en) 2023-10-11
CN113784266A (zh) 2021-12-10
KR20230003171A (ko) 2023-01-05
JP2023530638A (ja) 2023-07-19
TW202147867A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
JP2013030822A (ja) マイクロホンユニット、及び、それを備えた音声入力装置
WO2023202417A1 (zh) 一种麦克风组件及电子设备
WO2023202418A1 (zh) 一种麦克风组件及电子设备
WO2021248928A1 (zh) 硅基麦克风装置及电子设备
CN212259333U (zh) 硅基麦克风装置及电子设备
WO2021248929A1 (zh) 硅基麦克风装置及电子设备
TWI790575B (zh) 矽基麥克風裝置及電子設備
WO2022083592A1 (zh) Mems芯片
TWI790574B (zh) 矽基麥克風裝置及電子設備
WO2021248930A1 (zh) 硅基麦克风装置及电子设备
WO2022057199A1 (zh) 硅基麦克风装置及电子设备
CN217428355U (zh) 一种麦克风组件及电子设备
WO2024008132A1 (zh) 一种压电感应装置及其使用方法、智能设备
US20230300537A1 (en) Sound Collection Device, Sound Processing Apparatus And Method, Device, And Storage Medium
CN115086846A (zh) Mems麦克风封装结构以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021822788

Country of ref document: EP

Effective date: 20221114

ENP Entry into the national phase

Ref document number: 20227041782

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022576149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE