WO2021248930A1 - 硅基麦克风装置及电子设备 - Google Patents

硅基麦克风装置及电子设备 Download PDF

Info

Publication number
WO2021248930A1
WO2021248930A1 PCT/CN2021/075883 CN2021075883W WO2021248930A1 WO 2021248930 A1 WO2021248930 A1 WO 2021248930A1 CN 2021075883 W CN2021075883 W CN 2021075883W WO 2021248930 A1 WO2021248930 A1 WO 2021248930A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
based microphone
differential
microphone
chip
Prior art date
Application number
PCT/CN2021/075883
Other languages
English (en)
French (fr)
Inventor
王云龙
吴广华
蓝星烁
Original Assignee
通用微(深圳)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通用微(深圳)科技有限公司 filed Critical 通用微(深圳)科技有限公司
Priority to JP2022576185A priority Critical patent/JP2023530647A/ja
Priority to EP21822793.2A priority patent/EP4138415A4/en
Priority to KR1020227041807A priority patent/KR20230003173A/ko
Priority to US17/923,107 priority patent/US20230179927A1/en
Publication of WO2021248930A1 publication Critical patent/WO2021248930A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/03Reduction of intrinsic noise in microphones

Definitions

  • This application relates to the technical field of acoustic-electric conversion. Specifically, this application relates to a silicon-based microphone device and electronic equipment.
  • the existing silicon-based microphone acquires sound signals
  • the silicon-based microphone chip in the microphone When the existing silicon-based microphone acquires sound signals, the silicon-based microphone chip in the microphone generates vibrations under the action of the acquired sound waves, and the vibrations bring about changes in capacitance that can form electrical signals, thereby converting the sound waves into electrical signals for output.
  • the existing microphones are not ideal for noise processing, which affects the quality of the output audio signal.
  • the present application proposes a silicon-based microphone device and electronic equipment to solve the technical problem of the prior art that the microphone does not ideally process noise and affects the quality of the output audio signal.
  • an embodiment of the present application provides a silicon-based microphone device, including:
  • the circuit board is provided with at least two sound inlet holes
  • the shielding shell is closed on one side of the circuit board to form an acoustic cavity with the circuit board;
  • each differential silicon-based microphone chip is arranged at each sound inlet in a one-to-one correspondence, and the back cavity of each differential silicon-based microphone chip is corresponding to the sound inlet Hole connection; in every two differential silicon-based microphone chips, the first microphone structure of one differential silicon-based microphone chip is electrically connected to the second microphone structure of the other differential silicon-based microphone chip, and a differential silicon-based microphone chip The second microphone structure of is electrically connected to the first microphone structure of another differential silicon-based microphone chip;
  • the mounting plate is arranged on the side of the circuit board away from the shielding shell.
  • the mounting plate is provided with an even number of openings, which are connected with the sound inlet; at least one opening is used to obtain sound waves in the first area, and at least another opening is used To obtain the sound waves in the second area.
  • an embodiment of the present application provides an electronic device, including: the silicon-based microphone device provided in the first aspect.
  • the beneficial technical effect brought about by the technical solution provided by the embodiments of this application is that an even number of differential silicon-based microphone chips are used for acoustic-electric conversion, and in every two differential silicon-based microphone chips, one of the backsides of the differential silicon-based microphone chip is The cavity acquires the sound waves in the first area through the sound inlet holes on the circuit board and the openings on the mounting board, so that the sound waves in the first area can act on the differential silicon-based microphone chip and be generated by the differential silicon-based microphone chip The first sonic electric signal;
  • the back cavity of the other differential silicon-based microphone chip obtains the sound wave in the second area through the sound inlet hole on the circuit board and the opening on the mounting board, so that the sound wave in the second area can act on the differential silicon-based microphone chip. And generate a second acoustic wave electric signal by the differential silicon-based microphone chip;
  • the first microphone structure and the second microphone structure in the differential silicon-based microphone chip will respectively generate electrical signals with the same variation amplitude and opposite signs. Therefore, in the embodiment of the present application, every two differential silicon microphones In the base microphone chip, the first microphone structure of a differential silicon-based microphone chip is electrically connected to the second microphone structure of another differential silicon-based microphone chip, and the second microphone structure of a differential silicon-based microphone chip is electrically connected to the other differential silicon-based microphone chip.
  • the first microphone structure of the silicon-based microphone chip is electrically connected, so that the first acoustic wave electrical signal generated by a differential silicon-based microphone chip can be superimposed with the first acoustic wave electrical signal generated by another differential silicon-based microphone chip This can attenuate or cancel the homogenous acoustic signal parts (usually noise signals) with the same variation amplitude and opposite signs in the first acoustic wave electrical signal and the second acoustic wave electrical signal, thereby improving the quality of the audio signal.
  • the homogenous acoustic signal parts usually noise signals
  • Fig. 1 is a schematic diagram of the internal structure of a silicon-based microphone device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of the mounting board and the connecting ring in the silicon-based microphone device according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the structure of a single differential silicon-based microphone chip in a silicon-based microphone device according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the connection of two differential silicon-based microphone chips in a silicon-based microphone device according to an embodiment of the present application.
  • 300-differential silicon-based microphone chip 300a-first differential silicon-based microphone chip; 300b-second differential silicon-based microphone chip;
  • 301-first microphone structure 301a-first microphone structure of the first differential silicon-based microphone chip; 301b-first microphone structure of the second differential silicon-based microphone chip;
  • 302-Second microphone structure 302a-Second microphone structure of the first differential silicon-based microphone chip; 302b-Second microphone structure of the second differential silicon-based microphone chip;
  • 303-back cavity 303-back cavity; 303a-back cavity of the first differential silicon-based microphone chip; 303b-back cavity of the second differential silicon-based microphone chip;
  • 310-Upper back plate 310a-First upper back plate; 310b-Second upper back plate;
  • 320-lower back plate 320a-first lower back plate; 320b-second lower back plate;
  • 330-semiconductor diaphragm 330a-first semiconductor diaphragm; 330b-second semiconductor diaphragm;
  • 331-semiconductor diaphragm electrode 331a-semiconductor diaphragm electrode of the first semiconductor diaphragm; 331b-semiconductor diaphragm electrode of the second semiconductor diaphragm;
  • 340-silicon substrate 340a-first silicon substrate; 340b-second silicon substrate;
  • 500-mounting board 510-first opening; 520-second opening;
  • the inventor of this application has conducted research and found that with the popularization of IOT (The Internet of Things) devices such as smart speakers, it is not easy for users to use voice commands on smart devices that are speaking. For example: When the functional speaker that plays music sends out voice commands such as interruption, wake-up, or uses the hands-free mode of the mobile phone (that is, hands-free operation) to communicate. Users often need to get close to the IOT device as much as possible, interrupt the music being played with a special wake-up word, and then perform human-computer interaction.
  • IOT The Internet of Things
  • the silicon-based microphone device and electronic equipment provided in this application aim to solve the above technical problems in the prior art.
  • the embodiment of the present application provides a silicon-based microphone device.
  • the schematic structural diagram of the silicon-based microphone device is shown in FIGS. 1 and 2.
  • the silicon-based microphone device includes a circuit board 100, a shielding case 200, and an even number of differential silicon-based Microphone chip 300 and mounting board 500.
  • the circuit board 100 may be provided with at least two sound inlet holes.
  • the shielding shell 200 is enclosed on one side of the circuit board 100 and forms an acoustic cavity 210 with the circuit board 100.
  • the even number of differential silicon-based microphone chips 300 are all located in the acoustic cavity 210.
  • Each differential silicon-based microphone chip 300 is arranged at each sound inlet in a one-to-one correspondence, and the back cavity 303 of each differential silicon-based microphone chip 300 is in communication with the corresponding sound inlet.
  • the first microphone structure 301 of one differential silicon-based microphone chip 300 is electrically connected to the second microphone structure 302 of the other differential silicon-based microphone chip 300, and one differential silicon-based microphone chip 300
  • the second microphone structure 302 of the microphone chip 300 is electrically connected to the first microphone structure 301 of another differential silicon-based microphone chip 300.
  • the mounting board 500 is disposed on a side of the circuit board 100 away from the shielding shell 200, and the mounting board 500 is provided with an even number of openings, and the openings are connected to the sound inlet. At least one opening is used to obtain sound waves in the first area, and at least another opening is used to obtain sound waves in the second area.
  • differential silicon-based microphone chips 300 are used for acoustic-electric conversion. It should be noted that the silicon-based microphone device in FIG. 1 is only an example of two differential silicon-based microphone chips 300, but the number of differential silicon-based microphone chips 300 is not limited to this.
  • one opening is used to obtain sound waves in the first area
  • the other opening is used to obtain sound waves in the second area. That is, in every two differential silicon-based microphone chips 300, the back cavity 303 of a differential silicon-based microphone chip 300 obtains the sound waves of the first area through the sound inlet hole on the circuit board 100 and an opening on the mounting board 500 , The back cavity 303 of another differential silicon-based microphone chip 300, another sound inlet hole on the circuit board 100, and another hole on the mounting board 500 acquire sound waves in the second area.
  • the back cavity 303a of the first differential silicon-based microphone chip 300a communicates with the first area through the first sound inlet hole 110a on the circuit board 100 and the first opening 510 on the mounting board 500, so that the first area
  • the acoustic wave can act on the first differential silicon-based microphone chip 300a, and the first differential silicon-based microphone chip 300a generates a first acoustic wave electric signal.
  • the back cavity 303b of the second differential silicon-based microphone chip 300b, the second sound inlet 110b on the circuit board 100 and the second opening 520 on the mounting board 500 are connected to the second area, so that the sound wave energy of the second area can act
  • the second differential silicon-based microphone chip 300b generates a second acoustic wave electric signal.
  • this article defines a microphone structure on the side far from the circuit board 100 in the differential silicon-based microphone chip 300 as the first microphone structure 301, and defines the side of the differential silicon-based microphone chip 300 on the side close to the circuit board 100 as the first microphone structure 301.
  • One microphone structure is defined as the second microphone structure 302.
  • the first microphone structure 301 and the second microphone structure 302 in the differential silicon-based microphone chip 300 will respectively generate electrical signals with the same amplitude and opposite signs. Therefore, the embodiment of the present application uses the first differential The first microphone structure 301a of the silicon-based microphone chip 300a is electrically connected to the second microphone structure 302b of the second differential silicon-based microphone chip 300b, and the second microphone structure 302a of the first differential silicon-based microphone chip 300a is electrically connected to the second microphone structure 302a of the first differential silicon-based microphone chip 300a.
  • the first microphone structure 301b of the two differential silicon-based microphone chips 300b is electrically connected, so the first acoustic wave electrical signal generated by the first differential silicon-based microphone chip 300a can be connected to the second differential silicon-based microphone chip 300b.
  • the two electrical sonic signals are superimposed to attenuate or cancel the homologous acoustic signal parts (usually noise signals) with the same variation amplitude and opposite signs in the first sonic electrical signal and the second sonic electrical signal, thereby improving the audio frequency The quality of the signal.
  • the differential silicon-based microphone chip 300 is fixedly connected to the circuit board 100 through silica gel.
  • a relatively closed acoustic cavity 210 is enclosed between the shielding shell 200 and the circuit board 100.
  • the shielding shell 200 may include a metal shell, which is electrically connected to the circuit board 100.
  • the shielding shell 200 may be fixedly connected to one side of the circuit board 100 by solder paste or conductive glue.
  • the circuit board 100 may include a PCB (Printed Circuit Board, printed circuit board).
  • PCB Print Circuit Board, printed circuit board
  • the silicon-based microphone device may further include: at least two input channel structures.
  • the input channel structure is connected to the side of the mounting board 500 away from the circuit board 100.
  • One end of one of the at least two inlet channel structures is connected to the at least one opening, and the other end is used to obtain sound waves in the first area.
  • One end of the other inlet channel structure of the at least two inlet channel structures is communicated with at least another opening, and the other end thereof is used to obtain sound waves in the second area.
  • At least two input channel structures can respectively guide sound waves in different regions to each differential silicon-based microphone chip 300, so that each differential silicon-based microphone chip 300 generates a corresponding acoustic wave electrical signal.
  • one end of the first sound channel structure 710 communicates with the first opening 510 of the mounting board 500, and passes through the first sound hole 110a of the circuit board and the first differential silicon-based microphone chip.
  • the back cavity 303a of 300a is connected.
  • the other end of the first input channel structure 710 can extend to the first area, so that the sound waves in the first area can be guided by the first input channel structure 710 to the first differential silicon-based microphone chip 300a, so that the first differential The silicon-based microphone chip 300a generates a first acoustic wave electric signal.
  • One end of the second sound channel structure 720 communicates with the second opening 520 of the mounting board 500, and communicates with the back cavity 303b of the second differential silicon-based microphone chip 300b through the second sound inlet hole 110b of the circuit board.
  • the other end of the second input channel structure 720 can be extended to the second area, so that the sound waves in the second area can be guided by the second input channel structure 720 to the second differential silicon-based microphone chip 300b, so that the second differential The silicon-based microphone chip 300b generates a second acoustic wave electric signal.
  • the differential silicon-based microphone chip 300 further includes an upper back plate 310, a semiconductor diaphragm 330 and a lower back plate 320 stacked and spaced apart. Specifically, there are gaps, such as air gaps, between the upper back electrode plate 310 and the semiconductor diaphragm 330, and between the semiconductor diaphragm 330 and the lower back electrode plate 320.
  • the upper back plate 310 and the semiconductor diaphragm 330 constitute the main body of the first microphone structure 301.
  • the semiconductor diaphragm 330 and the lower back plate 320 constitute the main body of the second microphone structure 302.
  • the upper back electrode plate 310 and the lower back electrode plate 320 are respectively provided with a plurality of airflow holes in the parts corresponding to the sound inlet holes.
  • this paper refers to the back plate 310 of the differential silicon-based microphone chip 300 on the side far from the circuit board 100 as the upper back plate 310, and the one of the differential silicon-based microphone chip 300 close to the circuit board 100
  • One back plate on the side is defined as the lower back plate 320.
  • the semiconductor diaphragm 330 is shared by the first microphone structure 301 and the second microphone structure 302.
  • the semiconductor diaphragm 330 can adopt a thinner and more flexible structure, and can be bent and deformed under the action of sound waves.
  • Both the upper back electrode plate 310 and the lower back electrode plate 320 can adopt a structure that is much thicker than the semiconductor diaphragm 330 and has stronger rigidity, and is not prone to deformation.
  • the semiconductor diaphragm 330 may be arranged in parallel with the upper back plate 310 and separated by the upper air gap 313, thereby forming the main body of the first microphone structure 301.
  • the semiconductor diaphragm 330 may be arranged in parallel with the lower back plate 320 and separated by the lower air gap 323 to form the main body of the second microphone structure 302. It can be understood that both between the semiconductor diaphragm 330 and the upper back plate 310 and between the semiconductor diaphragm 330 and the lower back plate 320 are used to form an electric field (non-conduction).
  • the sound waves entering through the sound inlet can pass through the back cavity 303 and the lower air flow hole 321 on the lower back plate 320 to contact the semiconductor diaphragm 330.
  • the semiconductor diaphragm 330 When the sound wave enters the back cavity 303 of the differential silicon-based microphone chip 300, the semiconductor diaphragm 330 will be deformed by the sound wave. This deformation will cause the semiconductor diaphragm 330 to be separated from the upper back plate 310 and the lower back plate 320. Changes in the gap between the semiconductor diaphragm 330 and the upper back plate 310, as well as the capacitance between the semiconductor diaphragm 330 and the lower back plate 320, realizes the conversion of sound waves into electricity. Signal.
  • a gap between the semiconductor diaphragm 330 and the upper back plate 310 will be formed. On the electric field.
  • a bias voltage is applied between the semiconductor diaphragm 330 and the lower back plate 320, a lower electric field is formed in the gap between the semiconductor diaphragm 330 and the lower back plate 320.
  • the capacitance change of the first microphone structure 301 and the capacitance change of the second microphone structure 302 have the same amplitude and sign on the contrary.
  • the semiconductor diaphragm 330 may be made of polysilicon material, and the thickness of the semiconductor diaphragm 330 is not greater than 1 micrometer, and it will deform under the action of a small sound wave, and the sensitivity is relatively high.
  • Both the upper back electrode plate 310 and the lower back electrode plate 320 can be made of materials with relatively strong rigidity and a thickness of several microns, and a plurality of upper airflow holes 311 are etched on the upper back electrode plate 310, and the lower back electrode plate 320 A plurality of lower air flow holes 321 are etched on the upper side. Therefore, when the semiconductor diaphragm 330 is deformed by the action of sound waves, neither the upper back electrode plate 310 nor the lower back electrode plate 320 will be affected and deformed.
  • the gap between the semiconductor diaphragm 330 and the upper back electrode plate 310 or the lower back electrode plate 320 is a few micrometers, ie, micrometer level.
  • every two differential silicon-based microphone chips 300 include a first differential silicon-based microphone chip 300a and a second differential silicon-based microphone chip 300b.
  • the first upper back plate 310a of the first differential silicon-based microphone chip 300a is electrically connected to the second lower back plate 320b of the second differential silicon-based microphone chip 300b for forming the first signal.
  • the first lower back plate 320a of the first differential silicon-based microphone chip 300a and the second upper back plate 310b of the second differential silicon-based microphone chip 300b are electrically connected to form a second signal.
  • the capacitance variation of the first microphone structure 301 and the capacitance variation of the second microphone structure 302 are the same in amplitude and opposite in sign. The same goes for every two differential silicon microphone chips.
  • the capacitance changes at the upper back plate 310 of one differential silicon-based microphone chip 300 and the lower back plate 320 of the other differential silicon-based microphone chip 300 have the same amplitude and opposite signs.
  • the first upper acoustic wave electrical signal generated at the first upper back plate 310a of the first differential silicon-based microphone chip 300a is in accordance with the second lower back of the second differential silicon-based microphone chip 300b.
  • the first signal obtained by superposing the second lower acoustic wave electric signal generated at the plate 320b can weaken or cancel the homologous noise signal in the first upper acoustic wave electric signal and the second lower acoustic wave electric signal, thereby improving the first channel The quality of the signal.
  • the first lower acoustic wave electrical signal generated at the first lower back plate 320a of the first differential silicon-based microphone chip 300a is generated at the second upper back plate 310b of the second differential silicon-based microphone chip 300b
  • the second signal obtained by superimposing the second upper acoustic wave electrical signal of can attenuate or cancel the homologous noise signal in the first lower acoustic wave electrical signal and the second lower acoustic wave electrical signal, thereby improving the quality of the second signal.
  • the upper back plate electrode 312a of the first upper back plate 310a and the lower back plate electrode 322b of the second lower back plate 320b can be electrically connected by a wire 380 to form the first signal;
  • the wire 380 electrically connects the lower back plate electrode 322 a of the first lower back plate 320 a and the upper back plate electrode 312 b of the second upper back plate 310 b for forming a second signal.
  • the first semiconductor diaphragm 330a of the first differential silicon-based microphone chip 300a is electrically connected to the second semiconductor diaphragm 330b of the second differential silicon-based microphone chip 300b,
  • at least one of the first semiconductor diaphragm 330a and the second semiconductor diaphragm 330b is used for electrical connection with a constant voltage source.
  • the first semiconductor diaphragm 330a of the first differential silicon-based microphone chip 300a and the second semiconductor diaphragm 330b of the second differential silicon-based microphone chip 300b are electrically connected, so that two differential silicon
  • the semiconductor diaphragm 330 of the base microphone chip 300 has the same potential, that is, the reference for the electrical signals generated by the two differential silicon-based microphone chips 300 can be unified.
  • the wires 380 may be electrically connected to the semiconductor diaphragm electrode 331a of the first semiconductor diaphragm 330a and the semiconductor diaphragm electrode 331b of the second semiconductor diaphragm 330b, respectively.
  • the semiconductor diaphragms 330 of all the differential silicon-based microphone chips 300 may be electrically connected to make the reference of the electrical signals generated by the differential silicon-based microphone chips 300 consistent.
  • the silicon-based microphone device further includes a control chip 400.
  • the control chip 400 is located in the acoustic cavity 210 and is electrically connected to the circuit board 100.
  • One of the first upper back plate 310 a and the second lower back plate 320 b is electrically connected to a signal input terminal of the control chip 400.
  • One of the first lower back plate 320 a and the second upper back plate 310 b is electrically connected to the other signal input terminal of the control chip 400.
  • control chip 400 is used to receive the two channels of signals output by the aforementioned differential silicon-based microphone chips 300 that have been physically denoised, and can perform secondary denoising and other processing on the two channels of signals, and then down First-level equipment or component output.
  • control chip 400 is fixedly connected to the circuit board 100 through silica gel or red glue.
  • control chip 400 includes an application specific integrated circuit (ASIC, Application Specific Integrated Circuit) chip.
  • ASIC Application Specific Integrated Circuit
  • the ASIC chip can use a differential amplifier with two inputs.
  • the output signal of the ASIC chip may be single-ended or differential output.
  • the differential silicon-based microphone chip 300 includes a silicon substrate 340.
  • the first microphone structure 301 and the second microphone structure 302 are stacked on one side of the silicon substrate 340.
  • the silicon substrate 340 has a through hole 341 for forming the back cavity 303, and the through hole 341 corresponds to both the first microphone structure 301 and the second microphone structure 302.
  • the silicon substrate 340 is far away from the side of the first microphone structure 301 and the second microphone structure 302, and is fixedly connected to the circuit board 100, and the through hole 341 communicates with the sound inlet hole.
  • the silicon substrate 340 provides a bearing for the first microphone structure 301 and the second microphone structure 302, and the silicon substrate 340 has a through hole 341 for forming the back cavity 303, which can facilitate sound waves to enter the differential silicon-based microphone chip 300, and can act on the first microphone structure 301 and the second microphone structure 302 respectively, so that the first microphone structure 301 and the second microphone structure 302 generate differential electrical signals.
  • the differential silicon-based microphone chip 300 further includes a patterned first insulating layer 350, a second insulating layer 360, and a third insulating layer 370.
  • the substrate, the first insulating layer 350, the lower back plate 320, the second insulating layer 360, the semiconductor diaphragm 330, the third insulating layer 370, and the upper back plate 310 are stacked in sequence.
  • the lower back plate 320 and the silicon substrate 340 are separated from each other by the patterned first insulating layer 350, and the semiconductor diaphragm 330 and the upper back plate 310 are separated from each other by the patterned second insulating layer 360.
  • the upper back plate 310 and the semiconductor diaphragm 330 are separated from each other by the patterned third insulating layer 370, thereby forming electrical isolation between the conductive layers, preventing short circuits of the conductive layers and reducing signal accuracy.
  • the first insulating layer 350, the second insulating layer 360, and the third insulating layer 370 can be patterned through an etching process after the entire film is formed to remove the insulating layer portion corresponding to the through hole 341 area and Part of the insulating layer used to prepare the electrode area.
  • the silicon-based microphone device further includes a connecting ring.
  • the connecting ring is connected between the opening of the mounting board 500 and the sound inlet of the circuit board 100, so that an airtight sound channel is formed between the opening and the sound inlet.
  • the connecting ring can form an air-tight sound inlet channel between the opening of the mounting board 500 and the sound inlet hole of the circuit board 100, which can guide the sound waves in the first area or the second area to act on Differential silicon-based microphone chip 300.
  • the first connecting ring 610 forms an air-tight sound inlet channel between the first opening 510 of the mounting board 500 and the first sound inlet hole 110 a of the circuit board 100.
  • the second connecting ring 620 forms an air-tight sound inlet channel between the second opening 520 of the mounting board 500 and the second sound inlet hole 110 b of the circuit board 100.
  • the silicon-based microphone devices in the foregoing embodiments of the present application are implemented by using a single diaphragm (such as a semiconductor diaphragm 330) and double back poles (such as an upper back plate 310 and a lower back plate 320) Take the differential silicon-based microphone chip 300 as an example.
  • the differential silicon-based microphone chip 300 may be in a dual-diaphragm, single-back-pole manner, or other differential structures in addition to a single-diaphragm and double-back pole arrangement.
  • an embodiment of the present application provides an electronic device, including: the silicon-based microphone device provided in any of the foregoing embodiments.
  • the electronic device may be a mobile phone, a TWS (True Wireless Stereo) headset, a sweeping robot, a smart air conditioner, a smart range hood, and other smart home products with large internal noise. Since each electronic device adopts the silicon-based microphone device provided in the foregoing embodiments, please refer to the foregoing embodiments for the principle and technical effect, and will not be repeated here.
  • TWS Truste Wireless Stereo
  • the outside of the electronic device is the first area, and the inside of the electronic device is the second area.
  • the other end of one input channel structure extends from the electronic device to obtain external sound waves of the electronic device.
  • the other end of the other input channel structure is located inside the electronic device to obtain the internal sound waves of the electronic device.
  • the other end of the first input channel structure 710 can be extended to the outside of the electronic device, so that sound waves outside the electronic device can be guided by the first input channel structure 710
  • the first differential silicon-based microphone chip 300a generates the first acoustic wave electrical signal.
  • the sound waves external to the electronic device may include target sound waves, and noise generated by the electronic device during operation and diffused to the outside of the device.
  • the target sound wave may be a voice command.
  • the other end of the second input channel structure 720 can be left inside the electronic device, so that the sound waves inside the electronic device can be guided by the second input channel structure 720 to the second differential silicon-based microphone chip 300b, so that the second differential The silicon-based microphone chip 300b generates a second acoustic wave electric signal.
  • the sound waves inside the electronic device may include: noise generated by the electronic device when it is working.
  • the mounting board 500 in the silicon-based microphone device is the main board of the electronic device. This can make full use of the own structure of the electronic device, reduce manufacturing costs, and also help control the volume of the device.
  • the connecting ring 600 can be made of conductive materials, which can realize the electrical connection between the circuit board 100 and the main board, thereby realizing the electrical signal interaction between the circuit board 100 and the main board.
  • differential silicon-based microphone chips 300 are used for acoustic-electric conversion.
  • the back cavity 303 of a differential silicon-based microphone chip 300 passes through the sound inlet hole on the circuit board 100 And the opening on the mounting board 500 acquires the sound wave in the first area, so that the sound wave in the first area can act on the differential silicon-based microphone chip 300, and the differential silicon-based microphone chip 300 generates the first acoustic wave electrical signal ;
  • the back cavity 303 of the other differential silicon-based microphone chip 300 obtains the sound wave in the second area through the sound inlet hole on the circuit board 100 and the opening on the mounting board 500, so that the sound wave in the second area can act on the difference.
  • a silicon-based microphone chip 300, and the differential silicon-based microphone chip 300 generates a second acoustic wave electric signal;
  • the first microphone structure 301 of one differential silicon-based microphone chip 300 is electrically connected to the second microphone structure 302 of the other differential silicon-based microphone chip 300, and one is differentially connected.
  • the second microphone structure 302 of the silicon-based microphone chip 300 is electrically connected to the first microphone structure 301 of another differential silicon-based microphone chip 300, so that the first acoustic wave electric signal generated by one differential silicon-based microphone chip 300 can be connected. It is superimposed with the first acoustic wave electric signal generated by another differential silicon-based microphone chip 300, which can combine the homologous acoustic wave signal parts of the first acoustic wave electric signal and the second acoustic wave electric signal with the same amplitude and opposite sign. (Usually noise signals) attenuate or cancel each other, thereby improving the quality of audio signals;
  • At least two input channel structures can respectively guide sound waves in different areas to each differential silicon-based microphone chip 300, so that each differential silicon-based microphone chip 300 generates a corresponding acoustic wave electric signal;
  • a relatively closed acoustic cavity 210 is formed between the shielding shell 200 and the circuit board 100.
  • the shielding shell 200 includes a metal shell.
  • the metal shell is electrically connected to the circuit board 100, and can be used to counter the differential silicon-based microphone chip 300 in the acoustic cavity 210.
  • the semiconductor diaphragm 330 is shared by the first microphone structure 301 and the second microphone structure 302.
  • the semiconductor diaphragm 330 will be deformed by the sound wave.
  • the resulting change in the gap between the semiconductor diaphragm 330 and the upper back plate 310 and the lower back plate 320 will result in a change in the capacitance between the semiconductor diaphragm 330 and the upper back plate 310, as well as the difference between the semiconductor diaphragm 330 and the upper back plate 310.
  • the change of the capacitance between the lower back plate 320 realizes the conversion of sound waves into electrical signals;
  • the control chip 400 is used to receive the two-channel signals output by the aforementioned differential silicon-based microphone chips 300 that have completed physical noise removal, and can perform secondary noise removal and other processing on the two channels of signals, and then the next-level equipment or Component output;
  • the lower back plate 320 and the silicon substrate 340 are separated from each other by the first insulating layer 350, the semiconductor diaphragm 330 and the upper back plate 310 are separated from each other by the second insulating layer 360, and the upper back plate 310 and the semiconductor diaphragm are separated from each other.
  • 330 are separated from each other by the third insulating layer 370, thereby forming electrical isolation between the conductive layers, avoiding short circuits in the conductive layers, and reducing signal accuracy;
  • the connecting ring can form an air-tight sound inlet channel between the opening of the mounting board 500 and the sound inlet hole of the circuit board 100, so as to guide the sound waves in the first area or the second area to act on the differential silicon Base microphone chip 300.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, unless otherwise specified, “plurality” means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Silicon Compounds (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

提供了一种硅基麦克风装置及电子设备。该硅基麦克风装置包括:电路板,开设有至少两个进声孔;屏蔽外壳,罩合在电路板的一侧;偶数个差分式硅基麦克风芯片,都位于声腔内;每两个差分式硅基麦克风芯片中,一个差分式硅基麦克风芯片的第一麦克风结构与另一个差分式硅基麦克风芯片的第二麦克风结构电连接,所述一个差分式硅基麦克风芯片的第二麦克风结构与所述另一个差分式硅基麦克风芯片的第一麦克风结构电连接;安装板,开设有与进声孔连通的偶数个开孔;至少一个开孔用于获取第一区域的声波,至少另一个开孔用于获取第二区域的声波。

Description

硅基麦克风装置及电子设备 技术领域
本申请涉及声电转换技术领域,具体而言,本申请涉及一种硅基麦克风装置及电子设备。
背景技术
随着无线通讯的发展,移动电话等终端用户越来越多。用户对移动电话的要求已不仅满足于通话,而且要能够提供高质量的通话效果,尤其是目前移动多媒体技术的发展,移动电话的通话质量更显重要,移动电话的麦克风作为移动电话的语音拾取装置,其设计好坏直接影响通话质量。目前应用较多的麦克风包括传统的驻极体麦克风和硅基麦克风。
现有的硅基麦克风在获取声音信号时,通过麦克风中的硅基麦克风芯片受获取的声波作用而产生振动,该振动带来可以形成电信号的电容变化,从而将声波转换成电信号输出。但是,现有的麦克风对噪声的处理不理想,影响输出的音频信号的质量。
发明内容
本申请针对现有方式的缺点,提出一种硅基麦克风装置及电子设备,用以解决现有技术存在的麦克风对噪声的处理不理想而影响输出的音频信号的质量的技术问题。
根据第一方面,本申请实施例提供了一种硅基麦克风装置,包括:
电路板,开设有至少两个进声孔;
屏蔽外壳,罩合在电路板的一侧,与电路板形成声腔;
偶数个差分式硅基麦克风芯片,都位于声腔内;各差分式硅基麦克风芯片一一对应地设置于各进声孔处,且每个差分式硅基麦克风芯片的背腔 与对应的进声孔连通;每两个差分式硅基麦克风芯片中,一个差分式硅基麦克风芯片的第一麦克风结构与另一个差分式硅基麦克风芯片的第二麦克风结构电连接,一个差分式硅基麦克风芯片的第二麦克风结构与另一个差分式硅基麦克风芯片的第一麦克风结构电连接;
安装板,设置于电路板远离屏蔽外壳的一侧,安装板开设有偶数个开孔,开孔与进声孔连通;至少一个开孔用于获取第一区域的声波,至少另一个开孔用于获取第二区域的声波。
根据第二方面,本申请实施例提供了一种电子设备,包括:如第一方面提供的硅基麦克风装置。
本申请实施例提供的技术方案带来的有益技术效果是:采用偶数个差分式硅基麦克风芯片进行声电转换,每两个差分式硅基麦克风芯片中,一个差分式硅基麦克风芯片的背腔通过电路板上的进声孔以及安装板上的开孔获取第一区域的声波,使得第一区域的声波能作用到该差分式硅基麦克风芯片,并由该差分式硅基麦克风芯片生成第一声波电信号;
另一个差分式硅基麦克风芯片的背腔通过电路板上的进声孔以及安装板上的开孔获取第二区域的声波,使得第二区域的声波能作用到该差分式硅基麦克风芯片,并由该差分式硅基麦克风芯片生成第二声波电信号;
由于在声波的作用下,差分式硅基麦克风芯片中的第一麦克风结构与第二麦克风结构会分别产生变化量幅度相同、符号相反的电信号,因此本申请实施例将每两个差分式硅基麦克风芯片中,一个差分式硅基麦克风芯片的第一麦克风结构与另一个差分式硅基麦克风芯片的第二麦克风结构电连接,一个差分式硅基麦克风芯片的第二麦克风结构与另一个差分式硅基麦克风芯片的第一麦克风结构电连接,从而可以将一个差分式硅基麦克风芯片生成的第一声波电信号与另一个差分式硅基麦克风芯片生成的第一声波电信号进行叠加,这能够将第一声波电信号和第二声波电信号中变化量幅度相同、符号相反的同源声波信号部分(通常为噪音信号)相互削弱或抵消,进而提高音频信号的质量。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例的硅基麦克风装置的内部结构的示意图;
图2为根据本申请实施例的硅基麦克风装置中的安装板与连接环的结构的示意图;
图3为根据本申请实施例的硅基麦克风装置中的单个差分式硅基麦克风芯片的结构的示意图;
图4为根据本申请实施例的硅基麦克风装置中的两个差分式硅基麦克风芯片的连接的示意图。
图中:
100-电路板;110a-第一进声孔;110b-第二进声孔;
200-屏蔽外壳;210-声腔;
300-差分式硅基麦克风芯片;300a-第一差分式硅基麦克风芯片;300b-第二差分式硅基麦克风芯片;
301-第一麦克风结构;301a-第一差分式硅基麦克风芯片的第一麦克风结构;301b-第二差分式硅基麦克风芯片的第一麦克风结构;
302-第二麦克风结构;302a-第一差分式硅基麦克风芯片的第二麦克风结构;302b-第二差分式硅基麦克风芯片的第二麦克风结构;
303-背腔;303a-第一差分式硅基麦克风芯片的背腔;303b-第二差分式硅基麦克风芯片的背腔;
310-上背极板;310a-第一上背极板;310b-第二上背极板;
311-上气流孔;
312-上背极板电极;312a-第一上背极板的上背极板电极;312b-第二上背极板的上背极板电极;
313-上气隙;
320-下背极板;320a-第一下背极板;320b-第二下背极板;
321-下气流孔;
322-下背极板电极;322a-第一下背极板的下背极板电极;322b-第二下背极板的下背极板电极;
323-下气隙;
330-半导体振膜;330a-第一半导体振膜;330b-第二半导体振膜;
331-半导体振膜电极;331a-第一半导体振膜的半导体振膜电极;331b-第二半导体振膜的半导体振膜电极;
340-硅基板;340a-第一硅基板;340b-第二硅基板;
341-通孔;
350-第一绝缘层;
360-第二绝缘层;
370-第三绝缘层;
380-导线;
400-控制芯片;
500-安装板;510-第一开孔;520-第二开孔;
610-第一连接环;620-第二连接环;
710-第一进声道结构;720-第二进声道结构。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本申请的发明人进行研究发现,随着智能音箱等IOT(The Internet of Things,物联网)设备的普及,用户要对正在发声的智能设备使用语音命令不是一件容易的事情,例如:对正在播放音乐的职能音箱发出打断、唤醒等语音指令,或是利用手机的免提模式(即hands-free operation)进行通话交流时。用户往往需要尽量靠近IOT设备,用专设的唤醒词打断正在播放的音乐,随后再进行人机交互。在这些典型的语音交互场景中,由于IOT设备在使用中,因为自身在播放音乐或通过扬声器发声,形成了机身内部的噪音,而这类噪音又被IOT设备上的麦克风所拾取,使得回声消除的效果不佳。这个现象,在播放着音乐的手机、TWS(True Wireless Stereo,真正无线立体声)耳机、扫地机器人、智能空调、智能油烟机等内部噪音较大的智能家居产品上表现得尤其明显。
本申请提供的硅基麦克风装置及电子设备,旨在解决现有技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
本申请实施例提供了一种硅基麦克风装置,该硅基麦克风装置的结构示意图如图1和图2所示,该硅基麦克风装置包括电路板100、屏蔽外壳200、偶数个差分式硅基麦克风芯片300以及安装板500。
电路板100可以开设有至少两个进声孔。
屏蔽外壳200罩合在电路板100的一侧,并且与电路板100形成声腔 210。
偶数个差分式硅基麦克风芯片300都位于声腔210内。各差分式硅基麦克风芯片300一一对应地设置于各进声孔处,且每个差分式硅基麦克风芯片300的背腔303与对应的进声孔连通。每两个差分式硅基麦克风芯片300中,一个差分式硅基麦克风芯片300的第一麦克风结构301与另一个差分式硅基麦克风芯片300的第二麦克风结构302电连接,一个差分式硅基麦克风芯片300的第二麦克风结构302与另一个差分式硅基麦克风芯片300的第一麦克风结构301电连接。
安装板500设置于电路板100的远离屏蔽外壳200的一侧,安装板500开设有偶数个开孔,开孔与进声孔连通。至少一个开孔用于获取第一区域的声波,至少另一个开孔用于获取第二区域的声波。
在本实施例中,采用偶数个差分式硅基麦克风芯片300进行声电转换。需要说明的是,图1中的硅基麦克风装置仅示例为两个差分式硅基麦克风芯片300,但是差分式硅基麦克风芯片300的数量不限于此。
在一些可能的实施方式中,每两个开孔中,一个开孔用于获取第一区域的声波,另一个开孔用于获取第二区域的声波。即,每两个差分式硅基麦克风芯片300中,一个差分式硅基麦克风芯片300的背腔303通过电路板100上的进声孔以及安装板500上的一个开孔获取第一区域的声波,另一个差分式硅基麦克风芯片300的背腔303与电路板100上的另一个进声孔以及安装板500上的另一个开孔获取第二区域的声波。
具体地,第一差分式硅基麦克风芯片300a的背腔303a通过电路板100上的第一进声孔110a以及安装板500上的第一开孔510与第一区域连通,使得第一区域的声波能作用到第一差分式硅基麦克风芯片300a,并由第一差分式硅基麦克风芯片300a生成第一声波电信号。
第二差分式硅基麦克风芯片300b的背腔303b与电路板100上的第二进声孔110b以及安装板500上的第二开孔520与第二区域连通,使得第二区域的声波能作用到第二差分式硅基麦克风芯片300a,并由第二差分式硅基麦克风芯片300b生成第二声波电信号。
为便于描述,本文将差分式硅基麦克风芯片300中远离电路板100的一侧的一个麦克风结构定义为第一麦克风结构301,将差分式硅基麦克风芯片300中靠近电路板100的一侧的一个麦克风结构定义为第二麦克风结构302。
由于在声波的作用下,差分式硅基麦克风芯片300中的第一麦克风结构301与第二麦克风结构302会分别产生变化量幅度相同、符号相反的电信号,因此本申请实施例将第一差分式硅基麦克风芯片300a的第一麦克风结构301a与第二差分式硅基麦克风芯片300b的第二麦克风结构302b电连接,并且将第一差分式硅基麦克风芯片300a的第二麦克风结构302a与第二差分式硅基麦克风芯片300b的第一麦克风结构301b电连接,因此可以将第一差分式硅基麦克风芯片300a生成的第一声波电信号与第二差分式硅基麦克风芯片300b生成的第二声波电信号进行叠加,从而能够将第一声波电信号和第二声波电信号中变化量幅度相同、符号相反的同源声波信号部分(通常为噪音信号)相互削弱或抵消,进而提高音频信号的质量。
在一种实施方式中,差分式硅基麦克风芯片300通过硅胶与电路板100固定连接。
屏蔽外壳200与电路板100之间围合成相对封闭的声腔210。为了起到对声腔210内的各差分式硅基麦克风芯片300等器件屏蔽电磁干扰的作用,屏蔽外壳200可以包括金属外壳,金属外壳与电路板100电连接。
在一种实施方式中,屏蔽外壳200可以通过锡膏或导电胶与电路板100的一侧固连。
在一种实施方式中,电路板100可以包括PCB(Printed Circuit Board,印制电路板)。
在一些可能的实施方式中,硅基麦克风装置还可以包括:至少两个进声道结构。
进声道结构连接于安装板500的远离电路板100的一侧。
至少两个进声道结构中的一个进声道结构的一端与至少一个开孔连 通,而其另一端用于获取第一区域的声波。
至少两个进声道结构中的另一个进声道结构的一端与至少另一个开孔连通,而其另一端用于获取第二区域的声波。
在本实施例中,至少两个进声道结构可以分别将不同区域的声波引导至各差分式硅基麦克风芯片300,使各差分式硅基麦克风芯片300生成对应的声波电信号。
具体地,如图1所示,第一进声道结构710的一端与安装板500的第一开孔510连通,并通过电路板的第一进声孔110a与第一差分式硅基麦克风芯片300a的背腔303a连通。第一进声道结构710的另一端可延伸到第一区域,以使第一区域的声波能够由第一进声道结构710引导至第一差分式硅基麦克风芯片300a,使第一差分式硅基麦克风芯片300a生成第一声波电信号。
第二进声道结构720的一端与安装板500的第二开孔520连通,并通过电路板的第二进声孔110b与第二差分式硅基麦克风芯片300b的背腔303b连通。第二进声道结构720的另一端可延伸到第二区域,以使第二区域的声波能够由第二进声道结构720引导至第二差分式硅基麦克风芯片300b,使第二差分式硅基麦克风芯片300b生成第二声波电信号。
在一些可能的实施方式中,如图3所示,差分式硅基麦克风芯片300还包括层叠并间隔设置的上背极板310、半导体振膜330和下背极板320。具体地,上背极板310和半导体振膜330之间、以及半导体振膜330和下背极板320之间均具有间隙,例如气隙。
上背极板310和半导体振膜330构成第一麦克风结构301的主体。半导体振膜330和下背极板320构成第二麦克风结构302的主体。
上背极板310和下背极板320分别与进声孔对应的部分均设有若干气流孔。
为便于描述,本文将差分式硅基麦克风芯片300中的远离电路板100的一侧的一个背极板为上背极板310,将差分式硅基麦克风芯片300中的靠近电路板100的一侧的一个背极板定义为下背极板320。
在本实施例中,半导体振膜330被第一麦克风结构301和第二麦克风结构302共享。半导体振膜330可采用较薄、韧性较好的结构,可以在声波的作用下发生弯曲形变。上背极板310和下背极板320均可采用比半导体振膜330的厚度大许多、且刚性较强的结构,不易发生形变。
具体地,半导体振膜330可以与上背极板310平行布置并由上气隙313隔开,从而形成第一麦克风结构301的主体。半导体振膜330可以与下背极板320平行布置并由下气隙323隔开,从而形成第二麦克风结构302的主体。可以理解的是,半导体振膜330与上背极板310之间、以及半导体振膜330与下背极板320之间均用于形成电场(不导通)。由进声孔进入的声波可以通过背腔303、下背极板320上的下气流孔321与半导体振膜330接触。
当声波进入差分式硅基麦克风芯片300的背腔303时,半导体振膜330受声波的作用会发生形变,该形变会引起半导体振膜330与上背极板310、下背极板320之间的间隙发生变化,这会带来半导体振膜330与上背极板310之间电容的变化,以及半导体振膜330与下背极板320之间电容的变化,即实现了将声波转换为电信号。
对于单个差分式硅基麦克风芯片300而言,通过在半导体振膜330与上背极板310之间施加偏压后,在半导体振膜330与上背极板310之间的间隙内就会形成上电场。同样,通过在半导体振膜330与下背极板320之间施加偏压后,在半导体振膜330与下背极板320的间隙内就会形成下电场。由于上电场和下电场的极性正好相反,当半导体振膜330受声波作用而上、下弯曲时,第一麦克风结构301的电容变化量与第二麦克风结构302的电容变化量幅度相同、符号相反。
在一种实施方式中,半导体振膜330可采用多晶硅材料制成,并且半导体振膜330的厚度不大于1微米,在较小的声波作用下也会产生变形,灵敏度较高。上背极板310和下背极板320均可采用刚性比较强、且厚度为几微米的材料制造,并在上背极板310上刻蚀有多个上气流孔311、在下背极板320上刻蚀有多个下气流孔321。因此,当半导体振膜330受声 波作用产生形变时,上背极板310、下背极板320都不会受到影响而产生形变。
在一种实施方式中,半导体振膜330与上背极板310或下背极板320之间的间隙分别为几微米,即微米级。
在一些可能的实施方式中,如图4所示,每两个差分式硅基麦克风芯片300包括第一差分式硅基麦克风芯片300a和第二差分式硅基麦克风芯片300b。
第一差分式硅基麦克风芯片300a的第一上背极板310a与第二差分式硅基麦克风芯片300b的第二下背极板320b电连接,用于形成第一路信号。
第一差分式硅基麦克风芯片300a的第一下背极板320a与第二差分式硅基麦克风芯片300b的第二上背极板310b电连接,用于形成第二路信号。
前文已经详细说明,在单个差分式硅基麦克风芯片300中,第一麦克风结构301的电容变化量与第二麦克风结构302的电容变化量幅度相同、符号相反,同理,在每两个差分式硅基麦克风芯片300中,一个差分式硅基麦克风芯片300的上背极板310和另一个差分式硅基麦克风芯片300的下背极板320处的电容变化量幅度相同、符号相反。
因此,在本实施例中,由第一差分式硅基麦克风芯片300a的第一上背极板310a处生成的第一上声波电信号与第二差分式硅基麦克风芯片300b的第二下背极板320b处生成的第二下声波电信号相叠加得到的第一路信号,可以削弱或抵消第一上声波电信号与第二下声波电信号中的同源噪音信号,进而提高第一路信号的质量。
同样地,由第一差分式硅基麦克风芯片300a的第一下背极板320a处生成的第一下声波电信号与第二差分式硅基麦克风芯片300b的第二上背极板310b处生成的第二上声波电信号相叠加得到的第二路信号,可以削弱或抵消第一下声波电信号与第二下声波电信号中的同源噪音信号,进而提高第二路信号的质量。
具体地,可通过导线380将第一上背极板310a的上背极板电极312a与第二下背极板320b的下背极板电极322b电连接,用于形成第一路信号; 可通过导线380将第一下背极板320a的下背极板电极322a与第二上背极板310b的上背极板电极312b电连接,用于形成第二路信号。
在一些可能的实施方式中,如图4所示,第一差分式硅基麦克风芯片300a的第一半导体振膜330a与第二差分式硅基麦克风芯片300b的第二半导体振膜330b电连接,且第一半导体振膜330a与第二半导体振膜330b中的至少一个用于与恒压源电连接。
在本实施例中,第一差分式硅基麦克风芯片300a的第一半导体振膜330a与第二差分式硅基麦克风芯片300b的第二半导体振膜330b电连接,从而可以使两个差分式硅基麦克风芯片300的半导体振膜330具有相同的电位,即可以统一两个差分式硅基麦克风芯片300产生电信号的基准。
具体地,可通过导线380分别与第一半导体振膜330a的半导体振膜电极331a和第二半导体振膜330b的半导体振膜电极331b电连接。
在一种实施方式中,可将所有差分式硅基麦克风芯片300的半导体振膜330电连接,以使各差分式硅基麦克风芯片300产生电信号的基准一致。
在一些可能的实施方式中,如图1所示,硅基麦克风装置还包括控制芯片400。
控制芯片400位于声腔210内,并且与电路板100电连接。
第一上背极板310a与第二下背极板320b中的一个与控制芯片400的一个信号输入端电连接。第一下背极板320a与第二上背极板310b中的一个与控制芯片400的另一个信号输入端电连接。
在本实施例中,控制芯片400用于接收前述各差分式硅基麦克风芯片300输出的已完成物理除噪的两路信号,可以对该两路信号进行二级除噪等处理,再向下一级设备或元器件输出。
在一种实施方式中,控制芯片400通过硅胶或红胶与电路板100固定连接。
在一种实施方式中,控制芯片400包括专用集成电路(ASIC,Application Specific Integrated Circuit)芯片。专用集成电路芯片可采用具备两路输入的差分放大器。针对不同的应用场景,专用集成电路芯片的输 出信号可能是单端的,也可能是差分输出。
在一些可能的实施方式中,如图3所示,差分式硅基麦克风芯片300包括硅基板340。
第一麦克风结构301和第二麦克风结构302层叠设置于硅基板340的一侧。
硅基板340上具有用于形成背腔303的通孔341,通孔341与第一麦克风结构301和第二麦克风结构302均对应。硅基板340远离第一麦克风结构301和第二麦克风结构302的一侧,与电路板100固连,通孔341与进声孔连通。
在本实施例中,硅基板340为第一麦克风结构301和第二麦克风结构302提供承载,硅基板340上具有用于形成背腔303的通孔341,可利于声波进入差分式硅基麦克风芯片300,并可以分别作用于第一麦克风结构301和第二麦克风结构302,使得第一麦克风结构301和第二麦克风结构302生成差分电信号。
在一些可能的实施方式中,如图3所示,差分式硅基麦克风芯片300还包括图案化的第一绝缘层350、第二绝缘层360和第三绝缘层370。
基板、第一绝缘层350、下背极板320、第二绝缘层360、半导体振膜330、第三绝缘层370以及上背极板310依次层叠设置。
在本实施例中,下背极板320与硅基板340通过图案化的第一绝缘层350彼此隔开,半导体振膜330与上背极板310通过图案化的第二绝缘层360彼此隔开,上背极板310与半导体振膜330通过图案化的第三绝缘层370彼此隔开,从而形成各导电层之间的电隔离、避免各导电层发生短路并且降低信号精度。
在一种实施方式中,第一绝缘层350、第二绝缘层360以及第三绝缘层370均可在全面成膜后通过刻蚀工艺实现图案化,去除对应通孔341区域的绝缘层部分以及用于制备电极的区域的绝缘层部分。
在一些可能的实施方式中,硅基麦克风装置还包括连接环。
连接环连接于安装板500的开孔与电路板100的进声孔之间,使开孔 与进声孔之间形成气密声道。
在本实施例中,连接环可使安装板500的开孔与电路板100的进声孔之间形成了具有气密性的进声通道,可以引导第一区域或第二区域的声波作用于差分式硅基麦克风芯片300。
具体地,如图2所示,第一连接环610使安装板500的第一开孔510与电路板100的第一进声孔110a之间形成了具有气密性的进声通道。第二连接环620使安装板500的第二开孔520与电路板100的第二进声孔110b之间形成了具有气密性的进声通道。
需要说明的是,本申请上述各实施例中的硅基麦克风装置采用单振膜(如:半导体振膜330)、双背极(如:上背极板310和下背极板320)所实现的差分式硅基麦克风芯片300来示例。然而,差分式硅基麦克风芯片300除了单振膜、双背极的设置方式之外,也可以是双振膜、单背极的方式,或者是其他的差分式结构。
基于同一发明构思,本申请实施例提供了一种电子设备,包括:前述任一实施例提供的硅基麦克风装置。
在本实施例中,电子设备可以是手机、TWS(True Wireless Stereo,真正无线立体声)耳机、扫地机器人、智能空调、智能油烟机等内部噪音较大的智能家居产品。由于各电子设备采用了前述各实施例提供的硅基麦克风装置,其原理和技术效果请参阅前述各实施例,在此不再赘述。
在一些可能的实施方式中,电子设备的外部为第一区域,电子设备的内部为第二区域。
硅基麦克风装置的至少两个进声道结构中,一个进声道结构的另一端伸出于电子设备,以获取电子设备的外部的声波。另一个进声道结构的另一端位于电子设备的内部,以获取电子设备的内部的声波。
在本实施例中,具体地,如图1所示,第一进声道结构710的另一端可延伸到电子设备的外部,以使电子设备外部的声波能够由第一进声道结构710引导至第一差分式硅基麦克风芯片300a,使第一差分式硅基麦克风芯片300a生成第一声波电信号。该电子设备外部的声波可包括:目标声 波,和由电子设备工作时产生并扩散到设备外部的噪音。可选地,目标声波可以是语音指令。
第二进声道结构720的另一端可留在电子设备的内部,以使电子设备内部的声波能够由第二进声道结构720引导至第二差分式硅基麦克风芯片300b,使第二差分式硅基麦克风芯片300b生成第二声波电信号。该电子设备内部的声波可包括:由电子设备工作时产生的噪音。
在一些可能的实施方式中,硅基麦克风装置中的安装板500是电子设备的主板。这样可以充分利用电子设备的自身结构,减少制造成本,也有利于控制设备的体积。
可选地,连接环600可以采用导电材料,可实现电路板100与主板之间形成电连接,进而实现电路板100与主板之间的电信号交互。
应用本申请实施例,至少能够实现如下有益效果:
1、采用偶数个差分式硅基麦克风芯片300进行声电转换,每两个差分式硅基麦克风芯片300中,一个差分式硅基麦克风芯片300的背腔303通过电路板100上的进声孔以及安装板上500的开孔获取第一区域的声波,使得第一区域的声波能作用到该差分式硅基麦克风芯片300,并由该差分式硅基麦克风芯片300生成第一声波电信号;
2、另一个差分式硅基麦克风芯片300的背腔303通过电路板100上的进声孔以及安装板500上的开孔获取第二区域的声波,使得第二区域的声波能作用到该差分式硅基麦克风芯片300,并由该差分式硅基麦克风芯片300生成第二声波电信号;
3、将每两个差分式硅基麦克风芯片300中,一个差分式硅基麦克风芯片300的第一麦克风结构301与另一个差分式硅基麦克风芯片300的第二麦克风结构302电连接,一个差分式硅基麦克风芯片300的第二麦克风结构302与另一个差分式硅基麦克风芯片300的第一麦克风结构301电连接,从而可以将一个差分式硅基麦克风芯片300生成的第一声波电信号与另一个差分式硅基麦克风芯片300生成的第一声波电信号进行叠加,这能够将第一声波电信号和第二声波电信号中变化量幅度相同、符号相反的同源声波信号部分(通常为噪音信号)相互削弱或抵消,进而提高音频信号 的质量;
4、至少两个进声道结构可以分别将不同区域的声波引导至各差分式硅基麦克风芯片300,使各差分式硅基麦克风芯片300生成对应的声波电信号;
5、屏蔽外壳200与电路板100之间围合成相对封闭的声腔210,屏蔽外壳200包括金属外壳,金属外壳与电路板100电连接,可起到对声腔210内的差分式硅基麦克风芯片300等器件屏蔽电磁干扰的作用;
6、半导体振膜330被第一麦克风结构301和第二麦克风结构302共享,当声波进入差分式硅基麦克风芯片300的背腔303,半导体振膜330受声波的作用会发生形变,该形变会引起的半导体振膜330与上背极板310、下背极板320之间的间隙发生变化,会带来半导体振膜330与上背极板310之间电容的变化,以及半导体振膜330与下背极板320之间电容的变化,即实现了将声波转换为电信号;
7、通过在半导体振膜330与上背极板310之间施加偏压后,在半导体振膜330与上背极板310之间的间隙内就会形成上电场。同样,通过在半导体振膜330与下背极板320之间施加偏压后,在半导体振膜330与下背极板320的间隙内就会形成下电场。由于上电场和下电场的极性正好相反,当半导体振膜330受声波作用而上、下弯曲时,第一麦克风结构301的电容变化量与第二麦克风结构302的电容变化量幅度相同、符号相反;
8、控制芯片400用于接收前述各差分式硅基麦克风芯片300输出的已完成物理除噪的两路信号,可以对该两路信号进行二级除噪等处理,再向下一级设备或元器件输出;
9、下背极板320与硅基板340通过第一绝缘层350彼此隔开,半导体振膜330与上背极板310通过第二绝缘层360彼此隔开,上背极板310与半导体振膜330通过第三绝缘层370彼此隔开,从而形成各导电层之间的电隔离,避免各导电层发生短路,并且降低信号精度;
10、连接环可使安装板500的开孔与电路板100的进声孔之间形成了具有气密性的进声通道,从而可以引导第一区域或第二区域的声波作用于 差分式硅基麦克风芯片300。
本技术领域技术人员可以理解,本申请中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本申请中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本申请中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (14)

  1. 一种硅基麦克风装置,包括:
    电路板,开设有至少两个进声孔;
    屏蔽外壳,罩合在所述电路板的一侧,并且与所述电路板形成声腔;
    偶数个差分式硅基麦克风芯片,都位于所述声腔内;各所述差分式硅基麦克风芯片一一对应地设置于各所述进声孔处,且每个所述差分式硅基麦克风芯片的背腔与对应的所述进声孔连通;每两个所述差分式硅基麦克风芯片中,一个所述差分式硅基麦克风芯片的第一麦克风结构与另一个所述差分式硅基麦克风芯片的第二麦克风结构电连接,并且所述一个所述差分式硅基麦克风芯片的第二麦克风结构与所述另一个所述差分式硅基麦克风芯片的第一麦克风结构电连接;
    安装板,设置于所述电路板的远离所述屏蔽外壳的一侧,所述安装板开设有偶数个开孔,所述开孔与所述进声孔连通;至少一个所述开孔用于获取第一区域的声波,至少另一个所述开孔用于获取第二区域的声波。
  2. 根据权利要求1所述的硅基麦克风装置,其中,每两个所述开孔中,一个所述开孔用于获取第一区域的声波,另一个所述开孔用于获取第二区域的声波。
  3. 根据权利要求1或2所述的硅基麦克风装置,其中,所述硅基麦克风装置还包括至少两个进声道结构;
    所述进声道结构连接于所述安装板的远离所述电路板的一侧;
    所述至少两个进声道结构中的一个所述进声道结构的一端与所述至少一个所述开孔连通,并且其另一端用于获取第一区域的声波;
    所述至少两个进声道结构中的另一个所述进声道结构的一端与所述至少另一个所述开孔连通,并且其另一端用于获取第二区域的声波。
  4. 根据权利要求1或2所述的硅基麦克风装置,其中,所述差分式硅基麦克风芯片还包括层叠并间隔设置的上背极板、半导体振膜和下背极板;
    所述上背极板和所述半导体振膜构成所述第一麦克风结构的主体;所述半导体振膜和所述下背极板构成所述第二麦克风结构的主体;
    所述上背极板和所述下背极板分别与所述进声孔对应的部分均设有多个气流孔。
  5. 根据权利要求4所述的硅基麦克风装置,其中,每两个所述差分式硅基麦克风芯片包括第一差分式硅基麦克风芯片和第二差分式硅基麦克风芯片;
    所述第一差分式硅基麦克风芯片的第一上背极板与第二差分式硅基麦克风芯片的第二下背极板电连接,用于形成第一路信号;
    所述第一差分式硅基麦克风芯片的第一下背极板与第二差分式硅基麦克风芯片的第二上背极板电连接,用于形成第二路信号。
  6. 根据权利要求5所述的硅基麦克风装置,其中,所述第一差分式硅基麦克风芯片的第一半导体振膜与所述第二差分式硅基麦克风芯片的第二半导体振膜电连接,且所述第一半导体振膜与所述第二半导体振膜中的至少一个用于与恒压源电连接。
  7. 根据权利要求6所述的硅基麦克风装置,其中,所述硅基麦克风装置还包括控制芯片;
    所述控制芯片位于所述声腔内,并且与所述电路板电连接;
    所述第一上背极板与所述第二下背极板中的一个与所述控制芯片的一个信号输入端电连接;所述第一下背极板与所述第二上背极板中的一个与所述控制芯片的另一个信号输入端电连接。
  8. 根据权利要求4所述的硅基麦克风装置,其中,所述差分式硅基麦克风芯片包括硅基板;
    所述第一麦克风结构和所述第二麦克风结构层叠设置于所述硅基板的一侧;
    所述硅基板上具有用于形成所述背腔的通孔,所述通孔与所述第一麦克风结构和所述第二麦克风结构均对应;所述硅基板远离所述第一麦克风结构和所述第二麦克风结构的一侧并且与所述电路板固连,所述通孔与所述进声孔连通。
  9. 根据权利要求8所述的硅基麦克风装置,其中,所述差分式硅基麦克风芯片还包括图案化的第一绝缘层,第二绝缘层和第三绝缘层;
    所述基板、所述第一绝缘层、所述下背极板、所述第二绝缘层、所述半导体振膜、第三绝缘层以及所述上背极板依次层叠设置。
  10. 根据权利要求1所述的硅基麦克风装置,其中,所述硅基麦克风装置还包括连接环;
    所述连接环连接于所述安装板的所述开孔与所述电路板的所述进声孔之间,使所述开孔与所述进声孔之间形成气密声道。
  11. 根据权利要求1所述的硅基麦克风装置,其中,所述硅基麦克风装置具有如下至少一种特征:
    所述差分式硅基麦克风芯片通过硅胶与所述电路板固定连接;
    所述屏蔽外壳包括金属外壳,所述金属外壳与所述电路板电连接;
    所述屏蔽外壳通过锡膏或导电胶与所述电路板的一侧固连;
    所述电路板包括印制电路板。
  12. 一种电子设备,包括如上述权利要求1-11中任一项所述的硅基麦克风装置。
  13. 根据权利要求12所述的电子设备,其中,所述电子设备的外部为第一区域,所述电子设备的内部为第二区域;
    在所述硅基麦克风装置的至少两个进声道结构中,一个进声道结构的另一端伸出于所述电子设备,以获取所述电子设备的外部的声波;另一个进声道结构的另一端位于所述电子设备的内部,以获取所述电子设备的内部的声波。
  14. 根据权利要求12或13所述的电子设备,其中,所述硅基麦克风装置中的安装板是所述电子设备的主板。
PCT/CN2021/075883 2020-06-09 2021-02-07 硅基麦克风装置及电子设备 WO2021248930A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022576185A JP2023530647A (ja) 2020-06-09 2021-02-07 シリコンベースマイクロフォン装置及び電子機器
EP21822793.2A EP4138415A4 (en) 2020-06-09 2021-02-07 SILICON-BASED MICROPHONE APPARATUS AND ELECTRONIC DEVICE
KR1020227041807A KR20230003173A (ko) 2020-06-09 2021-02-07 실리콘 기반 마이크 장치 및 전자 기기
US17/923,107 US20230179927A1 (en) 2020-06-09 2021-02-07 Silicon-Based Microphone Apparatus And Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010520020.7 2020-06-09
CN202010520020.7A CN113784265B (zh) 2020-06-09 2020-06-09 硅基麦克风装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021248930A1 true WO2021248930A1 (zh) 2021-12-16

Family

ID=78834543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075883 WO2021248930A1 (zh) 2020-06-09 2021-02-07 硅基麦克风装置及电子设备

Country Status (7)

Country Link
US (1) US20230179927A1 (zh)
EP (1) EP4138415A4 (zh)
JP (1) JP2023530647A (zh)
KR (1) KR20230003173A (zh)
CN (1) CN113784265B (zh)
TW (1) TWI790577B (zh)
WO (1) WO2021248930A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201403197Y (zh) * 2009-03-31 2010-02-10 比亚迪股份有限公司 电容式麦克风
US20100111344A1 (en) * 2008-11-05 2010-05-06 Fortemedia, Inc. Silicon-based microphone structure with electromagnetic interference shielding means
CN103563399A (zh) * 2011-03-11 2014-02-05 歌尔声学股份有限公司 Cmos兼容的硅差分电容器麦克风及其制造方法
CN204362303U (zh) * 2014-12-11 2015-05-27 科大讯飞股份有限公司 一种带差分降噪阵列的麦克风装置
CN104902415A (zh) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 一种差分电容式mems麦克风
CN204681591U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 一种mems麦克风元件

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664713B2 (en) * 2001-12-04 2003-12-16 Peter V. Boesen Single chip device for voice communications
JP2010177901A (ja) * 2009-01-28 2010-08-12 Funai Electric Co Ltd マイクロホンユニット
JP5691181B2 (ja) * 2010-01-27 2015-04-01 船井電機株式会社 マイクロホンユニット、及び、それを備えた音声入力装置
JP5834383B2 (ja) * 2010-06-01 2015-12-24 船井電機株式会社 マイクロホンユニット及びそれを備えた音声入力装置
TW201322366A (zh) * 2011-11-18 2013-06-01 Chuan-Wei Wang 感測器製程
JP2014155144A (ja) * 2013-02-13 2014-08-25 Funai Electric Co Ltd 音声入力装置及び雑音抑圧方法
US9503814B2 (en) * 2013-04-10 2016-11-22 Knowles Electronics, Llc Differential outputs in multiple motor MEMS devices
CN104113810A (zh) * 2014-07-18 2014-10-22 瑞声声学科技(深圳)有限公司 Mems麦克风及其制备方法与电子设备
US9602930B2 (en) * 2015-03-31 2017-03-21 Qualcomm Incorporated Dual diaphragm microphone
CN204652659U (zh) * 2015-05-29 2015-09-16 歌尔声学股份有限公司 一种差分电容式mems麦克风
CN104936116B (zh) * 2015-06-01 2018-12-04 山东共达电声股份有限公司 一种集成的差分硅电容麦克风
CN204993854U (zh) * 2015-06-24 2016-01-20 瑞声声学科技(深圳)有限公司 Mems麦克风
CN108432265A (zh) * 2015-11-19 2018-08-21 美商楼氏电子有限公司 差分式mems麦克风
CN205510403U (zh) * 2016-01-25 2016-08-24 歌尔声学股份有限公司 一种mems麦克风芯片及mems麦克风
DE102017212748B4 (de) * 2017-07-25 2021-02-11 Infineon Technologies Ag Sensorvorrichtungen und Verfahren zum Herstellen von diesen
CN108682428A (zh) * 2018-08-27 2018-10-19 珠海市微半导体有限公司 机器人语音控制系统和机器人对语音信号的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111344A1 (en) * 2008-11-05 2010-05-06 Fortemedia, Inc. Silicon-based microphone structure with electromagnetic interference shielding means
CN201403197Y (zh) * 2009-03-31 2010-02-10 比亚迪股份有限公司 电容式麦克风
CN103563399A (zh) * 2011-03-11 2014-02-05 歌尔声学股份有限公司 Cmos兼容的硅差分电容器麦克风及其制造方法
CN204362303U (zh) * 2014-12-11 2015-05-27 科大讯飞股份有限公司 一种带差分降噪阵列的麦克风装置
CN104902415A (zh) * 2015-05-29 2015-09-09 歌尔声学股份有限公司 一种差分电容式mems麦克风
CN204681591U (zh) * 2015-05-29 2015-09-30 歌尔声学股份有限公司 一种mems麦克风元件

Also Published As

Publication number Publication date
CN113784265B (zh) 2022-06-14
EP4138415A1 (en) 2023-02-22
EP4138415A4 (en) 2023-10-11
US20230179927A1 (en) 2023-06-08
KR20230003173A (ko) 2023-01-05
CN113784265A (zh) 2021-12-10
TW202147866A (zh) 2021-12-16
TWI790577B (zh) 2023-01-21
JP2023530647A (ja) 2023-07-19

Similar Documents

Publication Publication Date Title
CN212259333U (zh) 硅基麦克风装置及电子设备
TWI807285B (zh) 聲音採集裝置、聲音處理設備及方法、裝置、存儲介質
WO2021248929A1 (zh) 硅基麦克风装置及电子设备
TWI790574B (zh) 矽基麥克風裝置及電子設備
WO2022057197A1 (zh) 硅基麦克风装置及电子设备
WO2021248930A1 (zh) 硅基麦克风装置及电子设备
TWI824236B (zh) 矽基麥克風裝置及電子設備
WO2022057199A1 (zh) 硅基麦克风装置及电子设备
TWI807284B (zh) 聲音採集裝置、聲音處理設備及方法、裝置、存儲介質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021822793

Country of ref document: EP

Effective date: 20221114

ENP Entry into the national phase

Ref document number: 20227041807

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022576185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE