WO2024008132A1 - 一种压电感应装置及其使用方法、智能设备 - Google Patents

一种压电感应装置及其使用方法、智能设备 Download PDF

Info

Publication number
WO2024008132A1
WO2024008132A1 PCT/CN2023/106004 CN2023106004W WO2024008132A1 WO 2024008132 A1 WO2024008132 A1 WO 2024008132A1 CN 2023106004 W CN2023106004 W CN 2023106004W WO 2024008132 A1 WO2024008132 A1 WO 2024008132A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
cantilevers
piezoelectric
shaped
piezoelectric induction
Prior art date
Application number
PCT/CN2023/106004
Other languages
English (en)
French (fr)
Inventor
邢增平
阮盛杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024008132A1 publication Critical patent/WO2024008132A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers

Definitions

  • the present application relates to the field of acoustics and electronics, the field of audio equipment and the field of multimedia equipment, and in particular, to a piezoelectric induction device and its use method, and intelligent equipment.
  • the piezoelectric induction device is a vibration detection device. Because of its passive transducer characteristics, there is no need for a charge pump. As long as there is sound pressure, the piezoelectric effect can be used to convert it into charge output. The front end consumes Low energy. Lower energy consumption allows the device to be used longer and the user experience is better. Therefore, piezoelectric sensing devices are widely used in smart devices such as hearing aids, mobile phones, and smart speakers.
  • the embodiments of the present application describe a piezoelectric induction device, a method of using the same, and an intelligent device.
  • the device is composed of a base, multiple cantilevers, and a piezoelectric induction unit. It can improve the sound pressure effect and produce a stable output signal.
  • embodiments of the present application provide a piezoelectric induction device, which includes a base with a hollow structure; multiple cantilevers are on the same plane, one end of the cantilever is fixed on the base, and is the fixed end of the cantilever, and the other end
  • the hollow structure extending to the base is the free end of the cantilever.
  • the width ratio between the free end and the fixed end of the cantilever is within a reasonable range.
  • each cantilever is connected through connecting parts to avoid excessive sound pressure. Large pressure will damage and distort the cantilever, thereby producing a nonlinear effect on the output part; in addition, the piezoelectric sensing device also includes a piezoelectric sensing unit, which is plated on the cantilever to generate charge.
  • the middle part of the base is a quadrilateral cavity structure formed by etching the back cavity; the cantilever covers the entire cavity part of the base as much as possible, leaving a gap of about 100nm ⁇ 20um to maintain the up and down circulation of air.
  • the cantilevers can be arranged in various arrays within the cavity.
  • the piezoelectric sensing unit is composed of piezoelectric material and conductive electrodes, which are plated on the cantilever. This area has piezoelectric and reverse piezoelectric effects and can generate charges.
  • At least one of the plurality of cantilevers is L-shaped or J-shaped. Because the width ratio between the fixed end and the free end of the L-shaped or J-shaped cantilever is about 0.3-3, if the difference between the fixed end and the free end of the cantilever is too large, for example, the fixed end is too thin and the width is much smaller than the free end, it will cause the input audio The phase of the signal and the output audio signal are out of sync, resulting in confusion in signal transmission; or the fixed end is too wide, and when the sound pressure is transmitted to the free end of the cantilever, the deformation of the cantilever is small, and the effect of piezoelectric induction is poor. , the sound energy is successfully converted into less electrical energy, and the signal-to-noise ratio is smaller.
  • the connecting component connecting the free ends of multiple cantilevers can be made into a device integrated with the cantilevers.
  • multiple cantilevers may also include T-shaped or I-shaped cantilevers.
  • multiple cantilevers are of different lengths. It is possible that all cantilevers are of the same length, or that some of the cantilevers are of equal length and the remaining cantilevers are of unequal length.
  • multiple cantilevers are coated with a damping layer composed of material with a Young's modulus of less than 10 Gpa.
  • mass cells on both the cantilever and the connecting part, and the mass cell has an acceleration pickup function.
  • the piezoelectric sensing unit is composed of a single chip configuration (Unimorph), a bimorph configuration (Bimorph), a push-pull chip (Push-Pull) or a multilayer configuration (Multilayer).
  • the piezoelectric induction device consists of a cantilever, It consists of a base and a piezoelectric induction unit; among them, the cantilever is located above the air inlet cavity of the microphone. When the sound signal passes through the air inlet cavity, sound pressure is generated on the cantilever, and then the cantilever deforms. Under the action of piezoelectric induction, the pressure The electric induction area of the electric induction unit generates charges and outputs electrical signals.
  • the solution provided by this application enables the cantilever to effectively fill the cavity area of the base, improves the utilization rate of the cavity area of the base and the energy utilization rate of the cantilever, can improve the signal-to-noise ratio, and can be achieved using a relatively easy process.
  • an intelligent device including the above-mentioned piezoelectric induction device and a circuit board, and the piezoelectric induction device is coupled to the circuit board.
  • Figure 1 is a schematic diagram of a piezoelectric sensing device
  • Figure 2 is a schematic diagram of the cantilever structure
  • Figure 3 is a schematic diagram of the base cavity structure
  • Figure 4 is a schematic diagram of a four-L-shaped cantilever
  • Figure 5 is a schematic diagram of a double L-shaped cantilever with a wide fixed end and a double L-shaped cantilever with a narrow fixed end;
  • Figure 6 is a schematic diagram of four L-shaped cantilevers with two long and two short arms
  • Figure 7 is a schematic diagram of a double L-single T-shaped cantilever
  • Figure 8 is a schematic diagram of a double J-shaped cantilever
  • Figure 9 is a schematic diagram of the L-J type cantilever
  • Figure 10 is a schematic diagram of the four J-shaped cantilever
  • Figure 11 is a schematic diagram of a multi-L-shaped cantilever array.
  • An embodiment of the present application provides an electronic device.
  • the smart device has a function of collecting vibration signals.
  • the smart devices are, for example, consumer products, household products, vehicle-mounted products, wearable products, financial terminal products, communication products, and intelligent detection products.
  • the smart device is a mobile phone (mobile phone), tablet computer (pad), tire pressure monitoring system (tire pressure monitoring system, TPMS), vibration detector, true wireless stereo (true wireless stereo, TWS) headset, virtual reality (virtual reality, VR) terminal equipment, augmented reality (AR) terminal equipment, smart watches, smart bracelets, smart door locks, stethoscopes, etc.
  • TWS headset is taken as an example to schematically illustrate the smart device provided by the embodiment of the present application.
  • Smart devices mainly include a casing and a printed circuit board (PCB), battery, pickup module, speaker, and Bluetooth module installed in the casing.
  • the battery, sound pickup module, speaker and Bluetooth module located inside the casing are not shown.
  • the battery, sound pickup module, speaker and Bluetooth module can be reasonably divided into the casing.
  • the battery is used to power smart devices, the sound pickup module is used to pick up voice signals, the speaker is used to play voice signals, and the Bluetooth module is used to communicate voice signals with external terminals.
  • the battery, sound pickup module, speaker and Bluetooth module are all arranged on the PCB.
  • a microphone is a common sound capture device that can be used as a pickup module in smart devices to convert sound signals into electrical signals.
  • microphones include dynamic coil type, aluminum ribbon type, electret microphone (ECM), micro-electromechanical systems (MEMS) capacitive type, and micro-electromechanical system piezoelectric type. Modern Mike The electret type and micro-electromechanical system type winds are more common.
  • electret microphones are far inferior to MEMS microphones in terms of production consistency and temperature stability, and are being gradually replaced by MEMS microphones.
  • P-MIC MEMS piezoelectric microphone
  • Figure 1 is a cross-sectional view of an acceleration pickup, which includes a piezoelectric induction device, a signal amplification dedicated integrated circuit device, a printed circuit board, connecting electrodes and a packaging casing.
  • a piezoelectric induction device When the sound signal passes through the air cavity of the microphone, the sound pressure causes the cantilever of the piezoelectric induction device to deform. Under the action of piezoelectric induction, the piezoelectric induction unit generates charges and outputs electrical signals to a dedicated integrated circuit for signal processing.
  • the piezoelectric induction device is composed of multiple cantilevers, a piezoelectric induction unit and a base with a hollow structure.
  • the base has a hollow structure.
  • the four cantilevers shown in Figure 2 have different patterns and backgrounds.
  • the multiple cantilevers are on the same plane. One end of the cantilever is fixed on the base and is the fixed end of the cantilever. The other end extends to The hollow structure of the base is the free end of the cantilever.
  • multiple cantilevers are covered with a damping layer.
  • the piezoelectric induction unit is plated on the cantilever and used to generate charges.
  • the piezoelectric induction unit can be a single-chip configuration, a dual-chip configuration, or a multi-chip configuration.
  • the middle part of the base is a quadrilateral cavity structure formed by etching the back cavity; at least one of the multiple cantilevers is L-shaped or J-shaped, because the L-shaped or J-shaped cantilever is fixed There is not much difference in the width between the fixed end and the free end of the cantilever.
  • the elastic coefficient of the fixed end of the cantilever is too small, which will cause the input audio signal to be different from the output
  • the phase of the audio signal is out of sync, resulting in confusion in signal transmission; or the fixed end is too wide, and when the sound pressure is transmitted to the free end of the cantilever, the deformation of the cantilever is small, the effect of piezoelectric induction is poor, and the sound energy Less electrical energy is successfully converted, resulting in a smaller signal-to-noise ratio.
  • Various arrays can be arranged in the cavity.
  • the L-shaped cantilever covers the entire cavity of the base as much as possible, leaving a gap of about 100nm ⁇ 20um to maintain the up and down circulation of air. This gap cannot be too large, otherwise it will cause air leakage, affect the air pressure effect of the sound signal, and fail to apply reasonable pressure to the piezoelectric sensing unit to generate electrical signals.
  • the piezoelectric sensing unit is composed of piezoelectric material and conductive electrodes, which are plated on the cantilever. This area has piezoelectric and reverse piezoelectric effects.
  • a cantilever does not only have one piezoelectric sensing unit area, but can have multiple piezoelectric sensing unit areas, and the piezoelectric sensing unit area is not limited to a rectangular shape, and can also be in other shapes.
  • the piezoelectric sensing unit can output individually or form an array output.
  • the array output can be formed by connecting the conductive electrodes on the cantilever through wires.
  • the connection method can be series connection, parallel connection, or mixed connection, and finally output electrical signals to the A and B electrodes.
  • the cantilever structure of the embodiment of the present application is L-shaped-J-shaped (ie, L-shaped rotating body).
  • the design of this structure allows the cantilever to cover the entire cavity of the base as much as possible, thereby improving the energy utilization of the cantilever and the space utilization of the cavity.
  • the following specific embodiments will focus on the different arrangement structures of the cantilevers to conduct a detailed analysis of their respective technical effects, advantages, disadvantages, and feasibility.
  • 4 to 9 are schematic diagrams of various embodiments of the present application.
  • Figure 4a is a schematic diagram of a four-L-shaped cantilever. As shown in Figure 4a, the four L-shaped cantilevers have different patterns and colors.
  • the spatial position of cantilever 402 relative to the spatial position of cantilever 401 is that the latter is rotated 90 degrees counterclockwise.
  • the spatial position of cantilever 403 is relative to the spatial position of cantilever 402. The latter position is rotated 90 degrees counterclockwise, and the spatial position of the cantilever 404 relative to the spatial position of the cantilever 403 is such that the latter is rotated 90 degrees counterclockwise.
  • the square frame part on the cantilever is the piezoelectric sensing unit.
  • the piezoelectric sensing unit is composed of piezoelectric material and conductive electrodes, which are plated on the cantilever. Usually, a layer of electrodes is first plated on the cantilever, then a layer of piezoelectric material is plated, then another layer of electrodes is plated, and finally a damping layer is sprayed. As shown in Figure 4a, the conductive electrodes on the cantilever are connected through wires.
  • the connection method can be series connection, parallel connection or mixed connection, and finally output electrical signals to the two electrodes A and B.
  • the piezoelectric sensing unit area has piezoelectric and inverse piezoelectric effects.
  • a cantilever does not only have one piezoelectric sensing unit area, it can have multiple piezoelectric sensing unit areas, and the piezoelectric sensing unit area is not limited to rectangles, and can also be in other shapes.
  • One end of the cantilever is fixed on the base, and the other end extends toward the cavity of the base, covering the entire cavity of the base as much as possible, leaving a certain size of gap (the white line in Figure 4a), about 100nm ⁇ 20um, To maintain the up and down circulation of air.
  • the connecting parts passing through the middle connect the non-fixed ends of the cantilevers 401-404 to prevent the cantilevers from being damaged and distorted by excessive pressure caused by the sound pressure, thereby causing non-linear effects on the output part.
  • the connecting part can be made of the same material as the cantilever, bonded together, or formed in one piece, as shown in Figure 4b.
  • FIG. 5 is a schematic diagram of double L-shaped cantilevers. As shown in (a) of Figure 5, the fixed end (the portions 501, 503 connected to the base cavity) is wider than the free end (the portions 502, 504 extending toward the cavity). In this case, there is no need for connecting parts, because the function of the connecting parts is to connect the non-fixed ends of each cantilever to make the non-fixed ends of the cantilever stronger, so as to prevent excessive sound pressure from causing damage and distortion to the cantilever, thereby causing damage to the output part. Non-linear effects.
  • the fixed end of the cantilever is wider, and the free ends 502 and 504 are narrower, so most of the area of the cantilever has been fixed, and the probability of distortion is small.
  • Another case is the cantilever The fixed end of the cantilever is narrower than the free end. As shown in (b) in Figure 5, 502 and 504 are close to the fixed end. In this case, connecting components are required because most of the cantilever area is not fixed, so it is necessary to Connect and secure most of the area of the cantilever (i.e., the free end) to reduce the chance of twisting when it is subjected to air pressure.
  • the reliability is greatly improved and can be used as one of the engineering solutions; while for the embodiment (b) in Figure 5, the sensitivity is improved.
  • FIG. 6 is a schematic diagram of four L-shaped cantilevers with unequal lengths. As shown in Figure 6, four L-shaped cantilevers are spliced in pairs. Different from the first solution, the four cantilevers are of unequal length, and the relative positions of the four cantilevers are also different from the first solution. Among them, 601 and 604 are long cantilevers, and 602 and 603 are short cantilevers. The spatial position of cantilever 603 is rotated 180 degrees clockwise relative to the spatial position of cantilever 602. The spatial position of cantilever 604 is backward relative to the spatial position of cantilever 601. Or rotate 180 degrees clockwise.
  • the connecting component can connect the non-fixed ends of the four cantilevers to prevent excessive sound pressure from damaging the cantilevers and causing distortion and deformation, thereby causing non-linear effects on the output part.
  • This kind of L-shaped cantilevers with unequal lengths can suppress each other under the action of resonance, which reduces the quality factor Q value of the device and simultaneously increases the bandwidth of the device.
  • FIG. 7 is a schematic diagram of a double L-single T-shaped cantilever. As shown in the figure, there are three cantilevers spliced together, 701 is an L-shaped cantilever, the middle 702 is a T-shaped cantilever, and the relative position of the rightmost cantilever 703 is axially symmetrical with the relative position of the cantilever 701. The thin white strips are gaps.
  • the connecting component can connect the non-fixed ends of the three cantilevers to prevent excessive sound pressure from damaging the cantilevers and causing distortion and deformation, thereby causing non-linear effects on the output part.
  • Figure 8 is a schematic diagram of double J-shaped cantilevers. As shown in Figure 8, it is composed of two J-shaped cantilevers 801 and 802. The spatial position of the cantilever 802 is rotated 180 degrees clockwise relative to the spatial position of the cantilever 801.
  • the connecting component can connect the non-fixed ends of the two cantilevers to prevent excessive sound pressure from causing damage and distortion to the cantilever, thereby causing non-linear effects on the output part.
  • the advantage of this solution is that the gap between the two J-shaped cantilevers can better release the membrane stress.
  • Another solution is a combination of short L-shaped cantilever, long J-shaped cantilever and connecting parts.
  • Figure 9 is a schematic diagram of short L-shaped-long J-shaped cantilever.
  • the cantilever 901 is a short L-shaped cantilever
  • the cantilever 902 is a long J-shaped cantilever.
  • the folded corner of the cantilever 901 just fits into the groove of the cantilever 902.
  • the white thin strips are gaps.
  • the connecting component can connect the non-fixed ends of the two cantilevers to prevent excessive sound pressure from damaging the cantilevers and causing distortion and deformation, thereby causing non-linear effects on the output part. This solution has a certain improvement in signal-to-noise ratio.
  • FIG 10 is a schematic diagram of the four J-shaped cantilevers.
  • 1001, 1002, 1003 and 1004 are four different J-shaped cantilevers respectively.
  • the spatial position of cantilever 1002 relative to the spatial position of cantilever 1001 is that the latter is rotated 90 degrees counterclockwise.
  • the space of cantilever 1003 The position is rotated 90 degrees counterclockwise relative to the spatial position of the cantilever 1002, and the spatial position of the cantilever 1004 is rotated 90 degrees counterclockwise relative to the spatial position of the cantilever 1003.
  • 1005 in the middle is the connecting component.
  • the connecting component connects the non-fixed ends of the four J-shaped cantilevers to make them more firmly connected to each other to prevent excessive sound pressure from causing damage and distortion to each cantilever, thus causing non-linear effects on the output part. . Since it is a splicing of four J-shaped cantilevers, compared with the previous splicing of double J-shaped cantilevers, this solution has more gaps at the joints of the cantilevers. This is better for acoustic overload and can relieve stress to a certain extent.
  • Figure 11 is a schematic diagram of multiple L-shaped cantilevers. As shown in Figure 11, six L-shaped cantilevers are arranged and spliced in sequence. The spatial position of cantilever 1102 is rotated 180 degrees counterclockwise relative to the spatial position of cantilever 1101. The non-fixed ends of cantilever 1101 and cantilever 1102 are connected by connecting parts. The connection makes the connection between the two tighter to prevent damage and distortion to the cantilever when the sound pressure is too high, thus causing non-linear effects on the output part.
  • the spatial position of cantilever 1104 is rotated 180 degrees counterclockwise relative to the spatial position of cantilever 1103, and the spatial position of cantilever 1106 is rotated 180 degrees counterclockwise relative to the spatial position of cantilever 1105.
  • the two are spliced together. form a multi-array.
  • the conductive electrodes plated on the array cantilever are connected through wires, and the connection methods include series connection, parallel connection or mixed connection. This solution can effectively improve the signal-to-noise ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本申请涉及声电领域,尤其涉及在移动应用场景里,如助听器、手机、智能音箱等,负责各类声音的采集技术。本申请描述了一种压电感应装置及其使用方法,其在工艺上较易实现,信噪比高,且压电感应装置的能量利用率高,气传导时不易漏风,起到更好的声压效果,产生更稳定的输出信号。该装置由多个悬臂,压电感应单元和基座共同组成,主要应用于麦克风等声电技术领域,也可用作音频设备、多媒体设备领域。

Description

一种压电感应装置及其使用方法、智能设备 技术领域
本申请涉及声电领域、音频设备领域以及多媒体设备领域,尤其涉及一种压电感应装置及其使用方法、智能设备。
背景技术
压电感应装置是一种振动检测装置,因其具有被动(passive)换能(transducer)的特性,所以无需电荷泵,只要有声压,就可以利用压电效应转换为电荷输出,其前端消耗的能量低。而较低的能量消耗可以使得设备使用时间更长,用户的体验更好。因此,压电感应装置广泛的应用于助听器、手机、智能音箱等智能设备中。
目前针对压电感应装置的研究有很多,但是这些现有的设计方法耗电较高,信噪比不够高,并且在工艺上实现也比较困难。
发明内容
本申请的实施例描述了一种压电感应装置及其使用方法、智能设备,该装置由基座,多个悬臂和压电感应单元共同组成。能改善的声压效果,产生稳定的输出信号。一方面,本申请的实施例提供了一种压电感应装置,其包括具有中空结构的基座;多个悬臂处于同一平面,悬臂的一端固定在基座上,为悬臂的固定端,另一端延伸至基座的中空结构,为悬臂的自由端,悬臂的自由端与固定端宽度比例相差在合理的区间内,通过连接部件将各个悬臂的非固定端即自由端相连,以免声压造成过大的压强将悬臂损坏、扭曲变形,从而对输出部分产生非线性影响;此外该压电感应装置还包括压电感应单元,压电感应单元镀在悬臂上用于产生电荷。
其中,基座的中间部分是通过腐蚀背腔而形成的四边形空腔结构;悬臂尽可能地覆盖整个基座的空腔部分,留有约100nmˉ20um的间隙,用以保持空气的上下流通。悬臂在空腔内可以排布成各式各样的阵列形式。压电感应单元由压电材料和导电电极构成,其镀在悬臂之上,此区域具有压电和逆压电效应,可以产生电荷。
在一个可能的设计中,多个悬臂中至少一个悬臂是L型或J型。因为L型或者J型悬臂的固定端和自由端的宽度比例大概在0.3-3,如果悬臂的固定端和自由端差别过大,比如固定端过细,宽度远小于自由端,则会造成输入的音频信号与输出的音频信号相位不同步现象,从而发生信号传输中的错乱;又或者固定端过宽,当声压传送到悬臂的自由端,引起的悬臂形变较小,压电感应的效果较差,声能成功转化为的电能较少,进而信噪比较小。
在一个可能的设计中,将多个悬臂的自由端相连的连接部件,可以做成与悬臂连为一体的器件。
在一个可能的设计中,多个悬臂中还可以包括T型或者I型的悬臂,多种形状的悬臂和L型悬臂共同构成各种可能的搭配组合方案。
在一个可能的设计中,多个悬臂长短各异,有可能所有悬臂全部都是等长的,也有可能多个悬臂中的部分悬臂等长,剩余部分悬臂不等长。
在一个可能的设计中,多个悬臂镀阻尼层,其由小于10Gpa的杨氏模量材料构成。
在一个可能的设计中,悬臂和连接部件上均有质量单元,而该质量单元具有加速度拾取功能。
在一个可能的设计中,压电感应单元是由单晶片构型(Unimorph)、双晶片构型(Bimorph)、推挽片(Push-Pull)或多晶片(Multilayer)构型等。
另一方面,本申请的实施例提供了一种压电感应装置的使用方法,该压电感应装置由悬臂, 基座和压电感应单元组成;其中,悬臂位于麦克风的进气腔上方,当声音信号经过进气腔时,对悬臂产生了声压,进而悬臂发生形变,在压电感应的作用下,压电感应单元的电感应区产生电荷,输出电信号。
本申请提供的方案使得悬臂有效地布满基座的空腔区,提高基座的空腔区利用率和悬臂的能量利用率,可以提高信噪比,采用较为容易的工艺也可以实现。
再一方面,提供一种智能设备,包括上述压电感应装置和电路板,压电感应装置与电路板耦接。
附图说明
下面将参照所示附图对本发明实施例进行更详细的描述:
图1为压电感应装置的示意图;
图2为悬臂结构示意图;
图3为基座空腔结构示意图;
图4为四L型悬臂示意图;
图5为固定端宽的双L型悬臂和固定端窄的双L型悬臂示意图;
图6为四L型悬臂双长双短示意图;
图7为双L-单T型悬臂示意图;
图8为双J型悬臂示意图;
图9为L-J型悬臂示意图;
图10为四J型悬臂示意图;
图11为多L型悬臂阵列示意图。
附图标记
1-基座;
2-压电感应单元;
3-空隙;
4-悬臂;
5-连接部件;
6-电极。
具体实施方式
本申请的实施例描述的业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,本申请实施例提供的技术方案对于类似的声电领域音频处理技术问题,同样适用。
本申请实施例提供一种电子设备,该智能设备具有振动信号采集的功能。该智能设备例如为消费性产品、家居式产品、车载式产品、穿戴式产品、金融终端产品、通信产品、智能检测产品。示例的,该智能设备为手机(mobile phone)、平板电脑(pad)、轮胎压力监测系统(tire pressure monitoring system,TPMS)、震动检测仪、真正无线立体声(true wireless stereo,TWS)耳机、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、智能手表、智能手环、智能门锁、听诊器等。
下面,以TWS耳机为例,对本申请实施例提供的智能设备进行示意说明。
智能设备主要包括壳体以及设置在壳体内的印刷电路板(printed circuit board,PCB)、电池、拾音模块、扬声器、蓝牙模块。位于壳体内部的电池、拾音模块、扬声器以及蓝牙模块均未示意出,电池、拾音模块、扬声器以及蓝牙模块合理的分部在壳体内即可。电池用于为智能设备供电,拾音模块用于拾取语音信号,扬声器用于播放语音信号,蓝牙模块用于与外部终端互通语音信号。示例的,电池、拾音模块、扬声器以及蓝牙模块均设置于PCB上。
麦克风是一种常见的声音捕捉设备,可以用作智能设备中的拾音模块,用于将声音信号转换为电信号。按种类来分,麦克风有动圈式、铝带式、驻极体式(electret microphone,简称ECM)、微机电系统(Micro-electromechanical systems,简称MEMS)电容式和微机电系统压电式等。近代麦克 风以驻极体式和微机电系统式的较多。然而,驻极体式麦克风由于工艺的原因,在生产的一致性、温度稳定性上远不如MEMS式麦克风,其正逐步被MEMS式麦克风替代。随着MEMS式麦克风需求的不断增加,其技术发展也很快,特别是MEMS压电式麦克风(Piezoelectric MEMS Microphone,简称P-MIC),具有被动(passive)换能(transducer)的特性而被广泛的应用。
图1为加速度拾取器的剖面图,其包括,压电感应装置、信号放大专用集成电路器件、印制电路板、连接电极和封装外壳。当声音信号经过麦克风的气腔,声压使得压电感应装置的悬臂产生形变,从而在压电感应的作用下,压电感应单元产生电荷,输出电信号传输给专用集成电路做信号处理。
本申请实施例提供一种压电感应装置,示例性的,如图1所示的,该压电感应装置由多个悬臂,压电感应单元和具有中空结构的基座共同组成。其中,基座具有中空结构。在一些实施例中,如图2所示的四个悬臂,分别为不同的图案花色背景,多个悬臂处于同一平面,悬臂的一端固定在基座上,为悬臂的固定端,另一端延伸至基座的中空结构,为悬臂的自由端。在一些实施例中,多个悬臂上覆盖有阻尼层。另外,悬臂或是悬臂之间的连接部件上有质量单元,该质量单元具有加速度拾取功能。压电感应单元,其镀在悬臂上用于产生电荷,压电感应单元可以是单晶片的构型,也可以是双晶片构型,还可以是多晶片构型。示例的,如图3所示,基座的中间部分是通过腐蚀背腔而形成的四边形空腔结构;多个悬臂中至少一个悬臂是L型或J型,因为L型或者J型悬臂的固定端和自由端的宽度差别不大,如果悬臂的固定端和自由端差别过大,比如固定端过细,宽度远小于自由端,那么悬臂固定端的弹性系数过小,则会造成输入的音频信号与输出的音频信号相位不同步现象,从而发生信号传输中的错乱;又或者固定端过宽,当声压传送到悬臂的自由端,引起的悬臂形变较小,压电感应的效果较差,声能成功转化为的电能较少,进而信噪比较小。在空腔内可以排布成各式各样的阵列形式。L型悬臂尽可能地覆盖整个基座的空腔部分,留有约100nmˉ20um的间隙,用以保持空气的上下流通。此间隙不能过大,否则会造成漏气,影响声音信号的气压效果,不能够给压电感应单元施加合理的压力产生电信号。压电感应单元由压电材料和导电电极构成,其镀在悬臂之上,此区域具有压电和逆压电效应。当然,一个悬臂不仅仅只有一个压电感应单元区域,可以有多个压电感应单元区,且压电感应单元区域也不限于矩形,也可以是其他形状。压电感应单元可以单独输出,也可以形成阵列输出。形成阵列输出例如可以是悬臂上的导电电极通过连线进行连接,连接方式可以是串联、并联和混联,最终输出电信号到A、B电极。
本申请实施例的悬臂结构为L型-J型(即L型的旋转体)。该结构的设计有利于悬臂可以尽可能的覆盖整个基座的空腔,从而提高悬臂的能量利用率和空腔的空间利用率。以下几个具体实施例将围绕悬臂的不同排布结构,对其各自的技术效果优劣势和可行性进行具体分析。图4至图9为本申请的各个实施例的示意图。
本申请实施例所采用的方案是四个L型等长悬臂依次逆时针旋转90度,交叠拼接而成。图4a为四L型悬臂的示意图。如图4a所示,四个L型悬臂为不同图案花色,其中,悬臂402的空间位置相对于悬臂401的空间位置是后者逆时针旋转90度,悬臂403的空间位置相对于悬臂402的空间位置是后者逆时针旋转90度,悬臂404的空间位置相对于悬臂403的空间位置是后者逆时针旋转90度。悬臂上的方框部分为压电感应单元。压电感应单元由压电材料和导电电极构成,其镀在悬臂之上。通常在悬臂上先镀一层电极,再镀一层压电材料,然后再镀一层电极,最后喷涂阻尼层。如图4a所示,悬臂上的导电电极通过连线进行连接,其连接方式可以是串联、并联或者混联,最终输出电信号到A、B两个电极。该压电感应单元区域具有压电和逆压电效应。一个悬臂不仅仅只有一个压电感应单元区域,它可以有多个压电感应单元区,且压电感应单元区域也不仅仅限于矩形,也可以是其他形状。悬臂的一端固定在基座上,另一端向着基座的空腔部分延伸,尽可能的覆盖整个基座的空腔,并留有一定大小的空隙(图4a中白色线条部分),大约100nmˉ20um,用以保持空气的上下流通。中间通过的连接部件将悬臂401-404的非固定端相连,以免声压造成过大的压强将悬臂损坏、扭曲变形,从而对输出部分产生非线性影响。其中,连接部件可以跟悬臂用同样的材料,黏合成一体,或者一体成型,如图4b所示。
另一个方案是双L型悬臂的拼接,图5为双L型悬臂的示意图。如图5中的(a)所示,固定端(与基座空腔相连的部分501、503)比自由端(向着空腔延展的部分502、504)更宽。此情况下不需要连接部件,因为连接部件的作用是将各个悬臂的非固定端相连,使得悬臂的非固定端更加牢固,以免声压过大对悬臂造成损坏、扭曲变形,从而对输出部分产生非线性影响。而该方案中悬臂的固定端更宽,自由端502和504较为窄,所以悬臂的大部分区域已经被固定,发生扭曲的几率小。另一种情况是悬臂 的固定端比自由端窄,如图5中的(b)所示,502、504为其近固定端,这种情况就需要连接部件,因为悬臂的大部分区域并没有被固定住,故需要将悬臂的大部分区域(即自由端)进行连接固定,使其在经受气压时能够减少扭曲的几率。其中,对于图5中的(a)的实施例,可靠性大幅度提高,可以作为工程方案之一;而对于图5中的(b)实施例,灵敏度有所提升。
另一方案,四个L型不等长悬臂的拼接,图6为四L型不等长悬臂的示意图。如图6所示,四个L型悬臂两两拼接,与方案一不同的是,此四个悬臂是不等长的,且四个悬臂彼此之间的相对位置和方案一也有所不同。其中601和604是长悬臂,602和603是短悬臂,悬臂603的空间位置相对于悬臂602的空间位置是后者顺时针旋转180度,悬臂604的空间位置相对于悬臂601的空间位置是后者顺时针旋转180度。连接部件可以将四个悬臂的非固定端相连,以免声压过大对悬臂损坏、扭曲变形,从而对输出部分产生非线性影响。这种不等长的L型悬臂在谐振的作用下,彼此之间可以起到互相压制的作用,使得该器件的品质因数Q值降低,也同步提高了器件的带宽。
另一个方案是双L型和单T型悬臂的拼接,图7为双L-单T型悬臂的示意图。如图所示,共有3个悬臂拼接而成,701为L型悬臂,中间702为T型悬臂,最右边悬臂703的相对位置与悬臂701的相对位置成轴对称。白色细条部分为空隙。连接部件可以将3个悬臂的非固定端相连,以免声压过大对悬臂损坏、扭曲变形,从而对输出部分产生非线性影响。此方案通过T型、L型和J型悬臂的拼接组合,理论上,可以很好地覆盖基座的空腔部分。
另一个方案是双J型悬臂排布组合,图8为双J型悬臂的示意图。如图8所示,由两个J型悬臂801和802拼接而成,悬臂802的空间位置相对于悬臂801的空间位置是后者顺时针旋转180度。连接部件可以将2个悬臂的非固定端相连,以免声压过大对悬臂造成损坏、扭曲变形,从而对输出部分产生非线性影响。此方案的好处是,两个J型悬臂相拼接的缝隙之处可以较好地释放膜应力。另一个方案是短L型悬臂、长J型悬臂和连接部件的组合,图9为短L型-长J型的示意图。如图9所示,悬臂901为短L型悬臂,悬臂902为长J型悬臂。悬臂901的折角刚好卡在悬臂902的凹槽里。其中,白色细条部分为空隙。连接部件可以将2个悬臂的非固定端相连,以免声压过大对悬臂损坏、扭曲变形,从而对输出部分产生非线性影响。此方案信噪比有一定的提高。
另一个方案是四个J型悬臂的组合,图10为四J型的示意图。如图10所示,1001、1002、1003和1004分别为四个不同的J型悬臂,其中,悬臂1002的空间位置相对于悬臂1001的空间位置是后者逆时针旋转90度,悬臂1003的空间位置相对于悬臂1002的空间位置为后者逆时针旋转90度,悬臂1004的空间位置相对于悬臂1003的空间位置为后者逆时针旋转90度。中间1005为连接部件,连接部件将四个J型悬臂的非固定端相连,使其彼此连接更加牢固,以免声压过大,对各个悬臂造成损坏、扭曲变形,从而对输出部分产生非线性影响。由于是四个J型的悬臂拼接,故比起之前双J型悬臂的拼接,此方案悬臂彼此连接处的缝隙更多,这对声学过载有较好的帮助,一定程度上可以去除应力。
最后一种方案为多L型悬臂的阵列组合,图11为多L型悬臂的示意图。如图11所示,由6个L型悬臂依次排布拼接,悬臂1102的空间位置相对于悬臂1101的空间位置为后者逆时针旋转180度,悬臂1101和悬臂1102的非固定端由连接部件连接,使得二者连接更加紧固,以免声压出现过大时,对悬臂造成损坏、扭曲变形,从而对输出部分产生非线性影响。同理,悬臂1104的空间位置相对于悬臂1103的空间位置为后者逆时针旋转180度,悬臂1106的空间位置相对于悬臂1105的空间位置为后者逆时针旋转180度,两两拼接,共同组成多阵列的形式。阵列式悬臂上所镀的导电电极通过连线进行连接,其连接方式包括串联、并联或混联。此方案可以有效的提高信噪比。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (9)

  1. 一种压电感应装置,其特征在于,所述装置包括:
    基座,所述基座具有中空结构;
    对称设置的多个悬臂,所述多个悬臂覆盖于所属基座的中空结构之上;
    所述多个悬臂中的每一个悬臂的固定端固定于所述基座,所述多个悬臂中的每一个悬臂的自由端端延伸至所述基座的中空结构上方;
    所述悬臂的自由端宽度大于或等于固定端宽度,所述多个悬臂设置于同一平面内,相邻的所述每一个悬臂之间设置有间隙;
    连接件,设置于所述悬臂的间隙之间,用于固定所述多个悬臂的自由端;;
    压电感应单元,所述压电感应单元镀在所述多个悬臂上。
  2. 如权利要求1所述的压电感应装置,其特征在于,所述多个悬臂中每一个悬臂都是L型或J型。
  3. 如权利要求1或2所述的压电感应装置,其特征在于,所述多个悬臂和所述连接部件一体成型。
  4. 如权利要求1至3任意一项所述的压电感应装置,其特征在于,所述多个悬臂还包括至少一个T型或I型悬臂。
  5. 如权利要求1至4任意一项所述的压电感应装置,其特征在于,所述多个悬臂上设置有阻尼层。
  6. 如权利要求2或3所述的压电感应装置,其特征在于,所述多个悬臂或所述连接部件上有质量单元,所述质量单元具有加速度拾取功能。
  7. 如权利要求1至6任意一项所述的压电感应装置,其特征在于,所述压电感应单元是单晶片构型、双晶片构型或多晶片构型。
  8. 一种如权利要求1至7任意一项所述的压电感应装置的工作方法,其特征在于,所述方法包括:
    声音信号经过麦克风的进气腔;
    对所述压电感应装置的悬臂产生声压;
    所述压电感应装置的悬臂发生形变;
    所述压电感应单元的感应区产生电荷,输出电信号。
  9. 一种电子设备,其特征在于,包括权利要求1-8任一项所述的压电感应装置和电路板,所述压电感应装置与所述电路板耦接。
PCT/CN2023/106004 2022-07-06 2023-07-06 一种压电感应装置及其使用方法、智能设备 WO2024008132A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210788916 2022-07-06
CN202210788916.2 2022-07-06
CN202310131268.8A CN117376790A (zh) 2022-07-06 2023-02-10 一种压电感应装置及其使用方法、智能设备
CN202310131268.8 2023-02-10

Publications (1)

Publication Number Publication Date
WO2024008132A1 true WO2024008132A1 (zh) 2024-01-11

Family

ID=89389875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106004 WO2024008132A1 (zh) 2022-07-06 2023-07-06 一种压电感应装置及其使用方法、智能设备

Country Status (2)

Country Link
CN (1) CN117376790A (zh)
WO (1) WO2024008132A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022576A (ja) * 2015-07-10 2017-01-26 ローム株式会社 圧電薄膜マイクロフォンの構造および製造方法
WO2022110349A1 (zh) * 2020-11-30 2022-06-02 瑞声声学科技(深圳)有限公司 一种压电式麦克风及其制作方法
WO2022110289A1 (zh) * 2020-11-25 2022-06-02 瑞声声学科技(深圳)有限公司 压电式麦克风及压电式麦克风装置
CN114697822A (zh) * 2020-12-31 2022-07-01 深圳市韶音科技有限公司 一种传声器装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022576A (ja) * 2015-07-10 2017-01-26 ローム株式会社 圧電薄膜マイクロフォンの構造および製造方法
WO2022110289A1 (zh) * 2020-11-25 2022-06-02 瑞声声学科技(深圳)有限公司 压电式麦克风及压电式麦克风装置
WO2022110349A1 (zh) * 2020-11-30 2022-06-02 瑞声声学科技(深圳)有限公司 一种压电式麦克风及其制作方法
CN114697822A (zh) * 2020-12-31 2022-07-01 深圳市韶音科技有限公司 一种传声器装置

Also Published As

Publication number Publication date
CN117376790A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN209964302U (zh) 骨传导mems麦克风和移动终端
WO2022000793A1 (zh) 振动传感器
US20170055081A1 (en) A silicon microphone with high-aspect-ratio corrugated diaphragm and a package with the same
CN208971808U (zh) 一种mems麦克风
CN109413554A (zh) 一种指向性mems麦克风
KR20110089664A (ko) 초소형 보청기
CN116405857B (zh) 一种降噪式mems麦克风及电子设备
KR20160108518A (ko) 다중 진동막 스피커
WO2024008132A1 (zh) 一种压电感应装置及其使用方法、智能设备
CN203933949U (zh) 单指向性mems传声器
JP2023541474A (ja) シリコンベースマイクロフォン装置及び電子機器
CN210629859U (zh) 一种新型的抗射频干扰的微机电系统麦克风结构
CN109068250B (zh) 一种麦克风和电子设备
WO2022083592A1 (zh) Mems芯片
TWI824236B (zh) 矽基麥克風裝置及電子設備
JP4336256B2 (ja) コンデンサマイクロホン
CN107087239B (zh) 声音信号的处理方法及装置、麦克风
WO2021248929A1 (zh) 硅基麦克风装置及电子设备
CN114205721B (zh) 硅基麦克风装置及电子设备
WO2022000791A1 (zh) 振动传感器
CN216600075U (zh) 反向心形驻极体电容式传声器
JPH0110060Y2 (zh)
CN109246514A (zh) 一种无线喇叭和耳机
CN217428355U (zh) 一种麦克风组件及电子设备
WO2021248930A1 (zh) 硅基麦克风装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834899

Country of ref document: EP

Kind code of ref document: A1