WO2022110289A1 - 压电式麦克风及压电式麦克风装置 - Google Patents

压电式麦克风及压电式麦克风装置 Download PDF

Info

Publication number
WO2022110289A1
WO2022110289A1 PCT/CN2020/134498 CN2020134498W WO2022110289A1 WO 2022110289 A1 WO2022110289 A1 WO 2022110289A1 CN 2020134498 W CN2020134498 W CN 2020134498W WO 2022110289 A1 WO2022110289 A1 WO 2022110289A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
cantilever beam
layer
structural layer
fixed
Prior art date
Application number
PCT/CN2020/134498
Other languages
English (en)
French (fr)
Inventor
石正雨
沈宇
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022110289A1 publication Critical patent/WO2022110289A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones

Definitions

  • the present application relates to the technical field of acoustic-electrical conversion, and in particular, to a piezoelectric microphone and a piezoelectric microphone device.
  • Microphone is an acoustic-electrical conversion transducer, which can convert the sound pressure signal of external conditions into electrical signal for output, and form different electrical signals according to the different characteristics of the sound pressure signal for storage and transportation, and transmit the signal.
  • the piezoelectric microphone of the prior art first grows a sacrificial layer on a silicon substrate, grows a piezoelectric unit on the sacrificial layer, then etches a gap to form a cantilever beam structure, and releases the sacrificial layer to allow the cantilever beam to vibrate freely.
  • it is difficult to control the release of the sacrificial layer at the anchoring position of the cantilever beam. Too much or too little release of the sacrificial layer will affect the sensitivity and resonant frequency of the microphone, resulting in reduced sensitivity and product consistency deteriorates.
  • the purpose of the present application is to provide a piezoelectric microphone and a piezoelectric microphone device, which can accurately control the anchoring position of the cantilever beam, thereby improving the sensitivity of the microphone and at the same time improving the consistency of the sensitivity and the resonance frequency.
  • One aspect provides a piezoelectric microphone, comprising:
  • a sacrificial layer disposed between the substrate and the cantilever beam
  • the thickness of the structural layer is greater than the thickness of the piezoelectric laminated structure, and the length of the structural layer is less than the length of the cantilever beam.
  • the cantilever beam includes a fixed part fixed on the base and a free part extended from the fixed part and suspended on the receiving cavity, and one end of the structural layer is fixed on On the base, the other end of the structural layer is fixed on the fixing part.
  • the fixing portion is provided with a preset anchoring position, and the structural layer extends from an end of the fixing portion to the preset anchoring position.
  • the shape and fixed position of the structural layer are controlled by etching.
  • the structural layer is made of silicon nitride material.
  • the shape of the cantilever beam is one of a rectangle, a trapezoid, a triangle and a fan.
  • a plurality of the cantilever beams are provided, and a gap is provided between two adjacent cantilever beams, and the structural layer is provided on each of the cantilever beams.
  • the piezoelectric stacked structure includes an upper electrode layer, a piezoelectric layer, and a lower electrode layer that are sequentially stacked from top to bottom.
  • the piezoelectric stacked structure includes an upper electrode layer, an upper piezoelectric layer, a middle electrode layer, a lower piezoelectric layer, and a lower electrode layer that are sequentially stacked from top to bottom.
  • a piezoelectric microphone device comprising: a plurality of the piezoelectric microphones, and the plurality of the piezoelectric microphones are distributed in an array structure.
  • the beneficial effect of the present application is that: by arranging a structural layer on the cantilever beam, the structural layer can be used as the anchoring position of the cantilever beam due to its high rigidity, and by controlling the fixed position of the structural layer, the sensitivity of the microphone is improved, and the sensitivity is improved at the same time.
  • the consistency with the resonant frequency avoids using the release sacrificial layer to control the anchoring position of the cantilever beam, so that the release of the sacrificial layer can fluctuate in a wide range without affecting the performance of the microphone.
  • FIG. 1 is a schematic three-dimensional structure diagram of a piezoelectric microphone according to an embodiment of the present application
  • Fig. 2 is the partial enlarged schematic diagram of B region in Fig. 1;
  • Fig. 3 is the sectional view along the line A-A of Fig. 1;
  • Fig. 4 is the partial enlarged schematic diagram of C area in Fig. 3;
  • FIG. 5 is a schematic structural diagram of a piezoelectric microphone device according to an embodiment of the present application.
  • the piezoelectric microphone 100 includes a substrate 10 , a cantilever beam 20 fixed on the substrate 10 , a sacrificial layer 30 disposed between the substrate 10 and the cantilever beam 20 , and a structural layer disposed on the cantilever beam 20 40.
  • the traditional piezoelectric microphone controls the anchoring position of the cantilever beam 20 by releasing the sacrificial layer 30. Too much or too little release of the sacrificial layer 30 will affect the vibration intensity of the cantilever beam 20, thereby affecting the sensitivity and resonant frequency of the microphone.
  • the structural layer 40 with greater rigidity is used as the anchoring position of the cantilever beam 20 to ensure that the microphone can maintain a high sensitivity and a consistent resonant frequency, and the use of the sacrificial layer 30 to control the anchoring position of the cantilever beam 20 is avoided, so that the The release of the sacrificial layer 30 can fluctuate over a wide range without affecting the performance of the microphone.
  • the base 10 includes a receiving cavity 11 and an annular peripheral wall 12 surrounding the receiving cavity 11 , and the shape of the base 10 may be a circle or a polygon.
  • the substrate 10 is a micro-silicon substrate.
  • the cantilever beam 20 is provided with a piezoelectric laminated structure 50 , and the cantilever beam 20 includes a fixed portion 21 fixed on the base 10 and a free portion extending from the fixed portion 21 and suspended on the receiving cavity 11 .
  • the fixed part 21 is provided with a preset anchoring position.
  • the preset anchoring position in this embodiment can ensure a large deformation of the cantilever beam 20, thereby ensuring better sensitivity of the microphone and consistency of the resonance frequency.
  • the shape of the cantilever beam 20 is one of a rectangle, a trapezoid, a triangle and a fan.
  • a plurality of cantilever beams 20 are provided, and a gap 23 is provided between two adjacent cantilever beams 20 .
  • each cantilever beam 20 includes a fixed portion 21 and a free portion 22 , and each cantilever beam 20 is provided with a structural layer 40 .
  • the cantilever beams 20 in this embodiment are rectangular and the number is two.
  • the thickness of the structural layer 40 is greater than the thickness of the piezoelectric laminated structure 50 , and the length of the structural layer 40 is less than the length of the cantilever beam 20 .
  • One end of the structural layer 40 is fixed on the substrate 10 , and the other end of the structural layer 40 is fixed on the fixing portion 21 . Further, the structural layer 40 extends from the end of the fixing portion 21 to a predetermined anchoring position.
  • the shape and fixed position of the structural layer 40 in this embodiment are controlled by etching, so that the anchoring position of the cantilever beam 20 can be accurately controlled, which further improves the sensitivity of the microphone and the consistency of the resonance frequency.
  • the structural layer 40 in this embodiment is made of a material with a larger Young's modulus.
  • the structural layer 40 is made of a silicon nitride material to ensure that the structural layer 40 has greater rigidity and can replace the sacrificial layer 30 to control the cantilever. The anchoring position of the beam 20, thereby liberating the sacrificial layer 30.
  • the piezoelectric laminated structure 50 is five layers, including an upper electrode layer 51 , an upper piezoelectric layer 52 , and an intermediate electrode layer stacked in sequence from top to bottom 53 , the lower piezoelectric layer 54 and the lower electrode layer 55 .
  • the upper piezoelectric layer 52 and the lower piezoelectric layer 54 are made of aluminum nitride, scandium-doped aluminum nitride, zinc oxide, or lead zirconate titanate piezoelectric ceramic material, or a combination of the above-mentioned materials.
  • the electrode layer 53 and the lower electrode layer 55 are made of aluminum, molybdenum or titanium, or a combination of the above materials.
  • the piezoelectric laminated structure 50 is three-layered, including an upper electrode layer, a piezoelectric layer, and a lower electrode layer stacked sequentially from top to bottom.
  • the piezoelectric layer is made of aluminum nitride, scandium-doped aluminum nitride, zinc oxide or lead zirconate titanate piezoelectric ceramic material, or a combination of the above materials, and the upper electrode layer and the lower electrode layer are made of aluminum, molybdenum or titanium. , or a combination of the above materials.
  • the number of layers of the piezoelectric laminated structure 50 may also be four layers, six layers or more, which is not limited in this embodiment.
  • the piezoelectric microphone 100 of this embodiment when an external sound signal is transmitted from the sound hole, under the action of sound pressure, the free portion 22 vibrates, which drives the piezoelectric laminated structure 50 to vibrate, so that the fixed portion 21 is close to the piezoelectric microphone 100 .
  • the piezoelectric laminate structure 50 generates a voltage signal.
  • the piezoelectric microphone device 200 includes a plurality of the aforementioned piezoelectric microphones 100 , and the plurality of piezoelectric microphones 100 are distributed in an array structure.
  • a plurality of piezoelectric microphones 100 may be connected in parallel or in series.
  • the piezoelectric microphone device 200 of this embodiment includes, but is not limited to, a microphone, a mobile phone, a PC, a vehicle-mounted voice recognition, etc.
  • a plurality of piezoelectric microphones 100 the generated voltage signals are superimposed on each other, thereby effectively enhancing the piezoelectric microphone Sensitivity of the device 200 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

本申请提供了压电式麦克风及压电式麦克风装置,其中,压电式麦克风包括:具有收容腔的基底;固定于基底的悬臂梁,悬臂梁上设有压电叠层结构;设于基底与悬臂梁之间的牺牲层,以及设于悬臂梁上的结构层,结构层的厚度大于压电叠层结构的厚度,结构层的长度小于悬臂梁的长度。通过上述方式,本申请的压电式麦克风可以准确控制悬臂梁的锚定位置,从而提高麦克风的灵敏度,同时提高灵敏度和谐振频率的一致性。

Description

压电式麦克风及压电式麦克风装置 技术领域
本申请涉及声电转换技术领域,具体涉及一种压电式麦克风及压电式麦克风装置。
背景技术
麦克风是一种声电转换类的换能器,能够把外界条件的声压信号转换成电信号进行输出,根据声压信号的不同特点形成不同的电信号,进行存储和运输,传递信号。
现有技术的压电麦克风首先在硅基底上生长一层牺牲层,在牺牲层上生长压电单元,之后刻蚀缝隙以形成悬臂梁结构,释放牺牲层使悬臂梁可以自由振动。但是,现有结构在释放牺牲层时难以将牺牲层的释放控制在悬臂梁的锚定位置,牺牲层释放的过多或过少都将影响麦克风的灵敏度以及谐振频率,从而导致灵敏度降低以及产品的一致性变差。
因此,有必要提供一种新的压电式麦克风及压电式麦克风装置以解决上述缺陷。
技术问题
本申请的目的在于提供一种压电式麦克风及压电式麦克风装置,能够准确控制悬臂梁的锚定位置,从而提高麦克风的灵敏度,同时提高灵敏度和谐振频率的一致性。
技术解决方案
本申请的技术方案如下:
一方面提供一种压电式麦克风,包括:
具有收容腔的基底;
固定于所述基底的悬臂梁,所述悬臂梁上设有压电叠层结构;
设于所述基底与所述悬臂梁之间的牺牲层,以及
设于所述悬臂梁上的结构层,所述结构层的厚度大于所述压电叠层结构的厚度,所述结构层的长度小于所述悬臂梁的长度。
根据本申请的一个实施例,所述悬臂梁包括固定于所述基底上的固定部和自所述固定部延伸并悬设置于所述收容腔上的自由部,所述结构层的一端固定在所述基底上,所述结构层的另一端固定在所述固定部上。
根据本申请的一个实施例,所述固定部上设有预设锚定位置,所述结构层从所述固定部的端部延伸至所述预设锚定位置。
根据本申请的一个实施例,所述结构层的形状和固定位置通过刻蚀方式控制。
根据本申请的一个实施例,所述结构层采用氮化硅材料制成。
根据本申请的一个实施例,所述悬臂梁的形状为矩形、梯形、三角形和扇形中的一种。
根据本申请的一个实施例,所述悬臂梁设置多个,且相邻两个悬臂梁之间设置有间隙,每个所述悬臂梁上均设有所述结构层。
根据本申请的一个实施例,所述压电叠层结构包括自上而下依次叠设的上电极层、压电层以及下电极层。
根据本申请的一个实施例,所述压电叠层结构包括自上而下依次叠设的上电极层、上压电层、中间电极层、下压电层以及下电极层。
另一方面提供一种压电式麦克风装置,包括:多个所述的压电式麦克风,多个所述压电式麦克风呈阵列结构分布。
有益效果
本申请的有益效果在于:通过在悬臂梁上设置结构层,由于结构层的刚性较大,可以作为悬臂梁的锚定位置,通过控制结构层的固定位置,从而提高麦克风的灵敏度,同时提高灵敏度和谐振频率的一致性,避免了利用释放牺牲层控制悬臂梁的锚定位置,从而使牺牲层的释放可以在较大范围内波动而不影响麦克风的性能。
附图说明
图1为本申请实施例的压电式麦克风的立体结构示意图;
图2为图1中B区域的局部放大示意图;
图3为图1沿A-A向线的截面图;
图4为图3中C区域的局部放大示意图;
图5为本申请的实施例的压电式麦克风装置的结构示意图。
本发明的实施方式
下面结合附图和实施方式对本申请作进一步说明。
请参见图1和图2,压电式麦克风100包括基底10、固定于基底10的悬臂梁20、设于基底10和悬臂梁20之间的牺牲层30以及设于悬臂梁20上的结构层40。
传统的压电式麦克风通过释放牺牲层30来控制悬臂梁20的锚定位置,牺牲层30释放的过多或过少均影响悬臂梁20的振动强度,从而影响麦克风的灵敏度以及谐振频率,本实施例通过刚度较大的结构层40作为悬臂梁20的锚定位置,保证麦克风能够保持较高的灵敏度以及一致的谐振频率,避免了利用牺牲层30来控制悬臂梁20的锚定位置,使得牺牲层30的释放可以在较大范围内波动而不影响麦克风的性能。
进一步地,请参见图3,基底10包括收容腔11以及围设形成收容腔11的环形周壁12,基底10的形状可以为圆形或多边形。基底10为微硅基片。
进一步地,请参见图3,悬臂梁20上设有压电叠层结构50,悬臂梁20包括固定于基底10上的固定部21和自固定部21延伸并悬设置于收容腔11上的自由部22,固定部21上设有预设锚定位置,本实施例的预设锚定位置能够保证悬臂梁20产生较大的变形,从而保证麦克风较佳的灵敏度以及谐振频率的一致性。更进一步地,悬臂梁20的形状为矩形、梯形、三角形和扇形中的一种。悬臂梁20设置多个,且相邻两个悬臂梁20之间设置有间隙23。在本实施例中,每个悬臂梁20均包括固定部21和自由部22,每个悬臂梁20上均设有结构层40。本实施例的悬臂梁20为矩形,数量为两个。
进一步地,结构层40的厚度大于压电叠层结构50的厚度,结构层40的长度小于悬臂梁20的长度。结构层40的一端固定在基底10上,结构层40的另一端固定在固定部21上。进一步地,结构层40从固定部21的端部延伸至预设锚定位置。
本实施例的结构层40的形状和固定位置通过刻蚀方式控制,从而对悬臂梁20的锚定位置能够准确控制,进一步提高了麦克风的灵敏度以及谐振频率的一致性。
本实施例的结构层40采用杨氏模量较大的材料制成,优选地,结构层40采用氮化硅材料制成,保证结构层40具有较大的刚度,可以替代牺牲层30控制悬臂梁20的锚定位置,从而解放牺牲层30。
进一步地,在一实施例中,请参见图2和图4,压电叠层结构50为五层,包括自上而下依次叠设的上电极层51、上压电层52、中间电极层53、下压电层54以及下电极层55。其中,上压电层52和下压电层54为氮化铝、掺钪氮化铝、氧化锌或锆钛酸铅压电陶瓷材质,或者上述多种材料的组合,上电极层51、中间电极层53和下电极层55为铝、钼或钛材质,或者上述多种材料的组合。
在另一实施例中,压电叠层结构50为三层,包括自上而下依次叠设的上电极层、压电层以及下电极层。其中,压电层为氮化铝、掺钪氮化铝、氧化锌或锆钛酸铅压电陶瓷材质,或者上述多种材料的组合,上电极层和下电极层为铝、钼或钛材质,或者上述多种材料的组合。
在其他实施例中,压电叠层结构50的层数还可以为四层、六层或更多,本实施例对此不做限制。
本实施例的压电式麦克风100在外部声音信号从声孔中传入时,在声压的作用下,自由部22发生振动,带动压电叠层结构50发生振动,从而使靠近固定部21的压电叠层结构50产生电压信号。通过刚度较大的结构层40作为悬臂梁20的锚定位置,保证麦克风能够保持较高的灵敏度以及谐振频率的一致性,避免了利用牺牲层30来控制悬臂梁20的锚定位置,使得牺牲层30的释放可以在较大范围内波动而不影响麦克风的性能。
请参见图5,压电式麦克风装置200包括多个前述的压电式麦克风100,多个压电式麦克风100呈阵列结构分布。多个压电式麦克风100可以并联或串联。
本实施例的压电式麦克风装置200包括但不限于话筒、手机、PC和车载语音识别等,通过采用多个压电式麦克风100,使产生的电压信号相互叠加,从而有效增强压电式麦克风装置200的灵敏度。
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (10)

1、一种压电式麦克风,其特征在于,包括:
具有收容腔的基底;
固定于所述基底的悬臂梁,所述悬臂梁上设有压电叠层结构;
设于所述基底与所述悬臂梁之间的牺牲层,以及
设于所述悬臂梁上的结构层,所述结构层的厚度大于所述压电叠层结构的厚度,所述结构层的长度小于所述悬臂梁的长度。
2、根据权利要求1所述的压电式麦克风,其特征在于,所述悬臂梁包括固定于所述基底上的固定部和自所述固定部延伸并悬设置于所述收容腔上的自由部,所述结构层的一端固定在所述基底上,所述结构层的另一端固定在所述固定部上。
3、根据权利要求2所述的压电式麦克风,其特征在于,所述固定部上设有预设锚定位置,所述结构层从所述固定部的端部延伸至所述预设锚定位置。
4、根据权利要求2所述的压电式麦克风,其特征在于,所述结构层的形状和固定位置通过刻蚀方式控制。
5、根据权利要求1所述的压电式麦克风,其特征在于,所述结构层采用氮化硅材料制成。
6、根据权利要求1所述的压电式麦克风,其特征在于,所述悬臂梁的形状为矩形、梯形、三角形和扇形中的一种。
7、根据权利要求1所述的压电式麦克风,其特征在于,所述悬臂梁设置多个,且相邻两个悬臂梁之间设置有间隙,每个所述悬臂梁上均设有所述结构层。
8、根据权利要求1所述的压电式麦克风,其特征在于,所述压电叠层结构包括自上而下依次叠设的上电极层、压电层以及下电极层。
9、根据权利要求1所述的压电式麦克风,其特征在于,所述压电叠层结构包括自上而下依次叠设的上电极层、上压电层、中间电极层、下压电层以及下电极层。
10、一种压电式麦克风装置,其特征在于,包括多个如权利要求1至9任一项所述的压电式麦克风,多个所述压电式麦克风呈阵列结构分布。
PCT/CN2020/134498 2020-11-25 2020-12-08 压电式麦克风及压电式麦克风装置 WO2022110289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011337571.6A CN112492472B (zh) 2020-11-25 2020-11-25 压电式麦克风及压电式麦克风装置
CN202011337571.6 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022110289A1 true WO2022110289A1 (zh) 2022-06-02

Family

ID=74934619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134498 WO2022110289A1 (zh) 2020-11-25 2020-12-08 压电式麦克风及压电式麦克风装置

Country Status (2)

Country Link
CN (1) CN112492472B (zh)
WO (1) WO2022110289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008132A1 (zh) * 2022-07-06 2024-01-11 华为技术有限公司 一种压电感应装置及其使用方法、智能设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123129A1 (zh) * 2021-12-29 2023-07-06 华为技术有限公司 一种压电感应单元、压电麦克风和终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138338A (zh) * 2008-06-30 2011-07-27 密执安大学评议会 压电mems麦克风
CN103460721A (zh) * 2011-03-31 2013-12-18 巴克-卡琳公司 具有间隙控制几何形状的声换能器以及声换能器制造方法
CN108140723A (zh) * 2015-12-02 2018-06-08 株式会社村田制作所 压电元件、压电传声器、压电谐振子以及压电元件的制造方法
CN208987175U (zh) * 2018-10-11 2019-06-14 东莞希越电子有限公司 压电薄膜麦克风改良结构
CN110475191A (zh) * 2019-08-29 2019-11-19 武汉大学 一种低空气阻尼mems压电式麦克风
CN111050256A (zh) * 2019-12-17 2020-04-21 武汉大学 一种小型化的高灵敏度压电式麦克风
CN111328005A (zh) * 2020-03-10 2020-06-23 瑞声声学科技(深圳)有限公司 压电式mems麦克风

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138338A (zh) * 2008-06-30 2011-07-27 密执安大学评议会 压电mems麦克风
CN103460721A (zh) * 2011-03-31 2013-12-18 巴克-卡琳公司 具有间隙控制几何形状的声换能器以及声换能器制造方法
CN108140723A (zh) * 2015-12-02 2018-06-08 株式会社村田制作所 压电元件、压电传声器、压电谐振子以及压电元件的制造方法
CN208987175U (zh) * 2018-10-11 2019-06-14 东莞希越电子有限公司 压电薄膜麦克风改良结构
CN110475191A (zh) * 2019-08-29 2019-11-19 武汉大学 一种低空气阻尼mems压电式麦克风
CN111050256A (zh) * 2019-12-17 2020-04-21 武汉大学 一种小型化的高灵敏度压电式麦克风
CN111328005A (zh) * 2020-03-10 2020-06-23 瑞声声学科技(深圳)有限公司 压电式mems麦克风

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008132A1 (zh) * 2022-07-06 2024-01-11 华为技术有限公司 一种压电感应装置及其使用方法、智能设备

Also Published As

Publication number Publication date
CN112492472A (zh) 2021-03-12
CN112492472B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2022110289A1 (zh) 压电式麦克风及压电式麦克风装置
WO2007083497A1 (ja) 圧電アクチュエータおよび電子機器
US11902740B2 (en) High-sensitivity piezoelectric microphone
WO2021179345A1 (zh) 压电式mems麦克风
JP2009260723A (ja) トランスデューサ
IT201900001017A1 (it) Trasduttore elettroacustico microelettromeccanico ad attuazione piezoelettrica e relativo procedimento di fabbricazione
JP7460343B2 (ja) トランスデューサ
JP2013243512A (ja) 超音波トランスデューサー、超音波プローブおよび超音波検査装置
JPWO2013099512A1 (ja) 振動装置,音響発生装置,スピーカーシステム,電子機器
US9337773B2 (en) Oscillation device and electronic apparatus
WO2022016735A1 (zh) Mems 声传感器
CN117376794A (zh) Mems压电声学换能器及其制备方法
KR100565202B1 (ko) 압전 구동형 초음파 미세기전 시스템 스피커 및 그 제조방법
WO2022104932A1 (zh) 压电式麦克风
KR20230103727A (ko) 음향 장치
WO2012060045A1 (ja) 発振装置および電子機器
WO2024140310A1 (zh) 压电振膜、压电换能器及制备方法、发声装置和电子设备
WO2024087998A1 (zh) 压电mems换能器及其加工方法、封装结构及电子设备
CN218679384U (zh) 一种压电微机械扬声器
CN219384782U (zh) 一种mems结构
JP6790981B2 (ja) スピーカ素子及びアレイスピーカ
JP2012165308A (ja) 超音波トランスデューサー
WO2022219716A1 (ja) 超音波トランスデューサー、距離測定装置および超音波トランスデューサーの製造方法
WO2021134669A1 (zh) 压电mems麦克风
WO2021134671A1 (zh) 压电mems麦克风及压电mems麦克风的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963177

Country of ref document: EP

Kind code of ref document: A1