WO2022007100A1 - Mems 声传感器 - Google Patents

Mems 声传感器 Download PDF

Info

Publication number
WO2022007100A1
WO2022007100A1 PCT/CN2020/108370 CN2020108370W WO2022007100A1 WO 2022007100 A1 WO2022007100 A1 WO 2022007100A1 CN 2020108370 W CN2020108370 W CN 2020108370W WO 2022007100 A1 WO2022007100 A1 WO 2022007100A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
acoustic sensor
diameter
mems acoustic
diaphragm
Prior art date
Application number
PCT/CN2020/108370
Other languages
English (en)
French (fr)
Inventor
赵转转
柏杨
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022007100A1 publication Critical patent/WO2022007100A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the MEMS acoustic sensor in the related art includes a substrate with a back cavity and a capacitive system fixed on the substrate.
  • the capacitive system includes a diaphragm and a back plate opposite to the diaphragm and spaced apart, and an insulating gap is formed between the diaphragm and the back plate.
  • the diaphragm of the MEMS acoustic sensor in the related art is too damped, resulting in an unsatisfactory signal-to-noise ratio of the MEMS acoustic sensor.
  • the present invention provides a MEMS acoustic sensor, comprising a substrate with a back cavity and a capacitive system fixed on the substrate, the capacitive system comprising a diaphragm and a back opposite to the diaphragm and arranged at intervals plate, an insulating gap is formed between the vibrating film and the back plate, the back plate includes an electrode layer and a first insulating layer disposed on the side of the electrode layer facing the vibrating film, the back plate A through hole is formed through the plate, and the through hole includes a first through hole penetrating the electrode layer and a second through hole penetrating the first insulating layer, and the second through hole is close to the first through hole of the vibrating membrane.
  • the hole diameter of the side is larger than the hole diameter of the first through hole.
  • the inner wall of the second through hole is an arc surface, and the center of curvature of the inner wall of the second through hole is located on the side facing the diaphragm. .
  • the diameter of the third through hole is smaller than the diameter of the first through hole.
  • the inner wall of the third through hole is an arc surface, and the center of curvature of the inner wall of the third through hole is located at a point away from the third through hole. side of the axis.
  • the diameter of the third through hole gradually increases.
  • the inner wall of the third through hole is an arc surface, and the center of curvature of the inner wall of the third through hole is located on the side of the inner wall away from the diaphragm .
  • the first through hole and the second through hole have the same pore diameter adjacent to each other, and the first through hole and the third through hole have the same pore diameter adjacent to each other.
  • the aperture of the second through hole on the side close to the vibrating membrane is set to be larger than the aperture of the first through hole to reduce the difference between the first insulating layer and the first insulating layer.
  • the area of the side facing the vibrating membrane, and by reducing the area of the first insulating layer and the side facing the vibrating membrane, the constraining effect of the first insulating layer on the air flow can be reduced, so that The viscous force when the air flows through the first insulating layer can be reduced, thereby reducing the damping force of the diaphragm. This ensures that the signal-to-noise ratio of the MEMS acoustic sensor is improved without reducing the sensitivity of the MEMS acoustic sensor.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of the MEMS acoustic sensor of the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 3 of the MEMS acoustic sensor of the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 5 of the MEMS acoustic sensor of the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 6 of the MEMS acoustic sensor of the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 7 of the MEMS acoustic sensor of the present invention.
  • the MEMS acoustic sensor includes a substrate 1 having a back cavity 1A and a capacitive system 3 fixed on the substrate 1 .
  • the capacitive system 3 includes a diaphragm 5 and a back opposite and spaced from the diaphragm 5 .
  • Electrode plate 7, an insulating gap 9 is formed between the diaphragm 5 and the back plate 7.
  • the back plate 7 includes an electrode layer 71 and a first insulating layer 73 disposed on the side of the electrode layer 71 facing the vibrating membrane 5 .
  • a through hole 7A is formed through the back plate 7 .
  • the hole 7A includes a first through hole 71A penetrating the electrode layer 71 and a second through hole 73A penetrating the first insulating layer 73.
  • the diameter of the second through hole 73A on the side close to the diaphragm 5 is larger than The diameter of the first through hole 71A is set in this way, which reduces the area of the first insulating layer 73 on the side facing the vibrating membrane 5 .
  • the diameters of the adjacent parts of the first through hole 71A and the second through hole 73A are equal.
  • the diameters of the first through holes 71A and the second through holes 73A are gradually reduced.
  • the inner walls of the first through hole 71A and the second through hole 73A are both flat surfaces.
  • the difference between the second embodiment and the first embodiment is that on a cross section perpendicular to the back plate 7 , the inner wall of the first through hole 71A and the inner wall of the second through hole 73A are both The center of curvature of the inner wall of the first through hole 71A is located on the side facing the diaphragm 5, and the center of curvature of the inner wall of the second through hole 73A is located on the side facing the diaphragm 5. side.
  • the diameter of the third through hole 75A gradually decreases.
  • the inner wall of the third through hole 75A is a plane.
  • the back plate 7 further includes a second insulating layer 75 disposed on the side of the electrode layer 71 away from the vibrating membrane 5 , and the through hole 7A It also includes a third through hole 75A penetrating the second insulating layer 75 , and the diameter of the third through hole 75A is smaller than that of the first through hole 71A.
  • the diameters of the adjacent portions of the third through hole 75A and the first through hole 71A are equal.
  • the inner wall of the third through hole 75A is an arc surface, and the center of curvature of the inner wall of the third through hole 75A is located away from it. one side of the axis of the third through hole 75A.
  • the back plate 7 further includes a second insulating layer 75 disposed on the side of the electrode layer 71 away from the vibrating membrane 5 , and the through hole 7A further includes a third through hole penetrating the second insulating layer 75 . 75A, the diameter of the third through hole 75A is larger than the diameter of the first through hole 71A.
  • the diameters of the adjacent portions of the third through hole 75A and the first through hole 71A are equal.
  • the diameter of the third through hole 75A gradually increases.
  • the inner wall of the third through hole 75A is flat.
  • the difference between the sixth embodiment and the fifth embodiment is that: on the cross section perpendicular to the back plate 7 , the inner wall of the second through hole 73A is an arc surface, and the second through hole 73A The center of curvature of the inner wall is located on the side facing the diaphragm 5 .
  • the difference between the seventh embodiment and the sixth embodiment is that on a cross section perpendicular to the back plate 7 , the inner wall of the first through hole 71A is an arc surface, and the first through hole 71A is The center of curvature of the inner wall is located on the side away from the diaphragm 5 .
  • the problem of short circuit of the MEMS acoustic sensor caused by the entry of large dust particles into the MEMS acoustic sensor can be avoided;
  • the through hole 7A can be reduced
  • the sensitivity of the MEMS acoustic sensor can be improved, and the short circuit problem of the MEMS acoustic sensor caused by the entry of large dust particles into the MEMS acoustic sensor can be avoided.

Abstract

本发明提供了一种MEMS声传感器,其包括具有背腔的基底以及固定于所述基底的电容系统,所述电容系统包括振膜及与所述振膜相对且间隔设置的背极板,所述振膜和所述背极板之间形成绝缘间隙,所述背极板包括电极层及设于所述电极层朝向所述振膜一侧的第一绝缘层,所述背极板上贯穿设有通孔,所述通孔包括贯穿所述电极层的第一通孔和贯穿所述第一绝缘层的第二通孔,所述第二通孔靠近所述振膜一侧的孔径大于所述第一通孔的孔径。与相关技术相比,本发明的MEMS声传感器设计减小振膜阻尼的结构来提高信噪比。

Description

MEMS声传感器 技术领域
本发明涉及声电领域,尤其涉及一种MEMS声传感器。
背景技术
随着无线通讯的发展,全球移动电话用户越来越多,用户对移动电话的要求己不仅满足于通话,而且要能够提供高质量的通话效果,尤其是目前移动多媒体技术的发展,移动电话的通话质量更显重要,移动电话的麦克风作为移动电话的语音拾取装置,其设计好坏直接影响通话质量,而作为麦克风的重要组成部件的MEMS声传感器显得尤为重要。
相关技术中的MEMS声传感器包括具有背腔的基底以及固定于基底的电容系统,电容系统包括振膜及与振膜相对且间隔设置的背极板,振膜和背极板之间形成绝缘间隙,当声压作用于振膜时,振膜朝向背极板和背离背极板的相对两侧存在压强差,使得振膜做靠近背极板或远离背极板的运动,从而引起振膜与背极板间电容的变化,实现声音信号到电信号的转换。然而,由于MEMS声传感器的信噪比受振膜阻尼的影响,相关技术中的MEMS声传感器的振膜因其阻尼过大,导致MEMS声传感器的信噪比的不理想。
技术问题
本发明的目的在于提供一种MEMS声传感器,该MEMS声传感器通过设计减小振膜阻尼的结构来提高信噪比。
技术解决方案
为了达到上述目的,本发明提供了一种MEMS声传感器,包括具有背腔的基底以及固定于所述基底的电容系统,所述电容系统包括振膜及与所述振膜相对且间隔设置的背极板,所述振膜和所述背极板之间形成绝缘间隙,所述背极板包括电极层及设于所述电极层朝向所述振膜一侧的第一绝缘层,所述背极板上贯穿设有通孔,所述通孔包括贯穿所述电极层的第一通孔和贯穿所述第一绝缘层的第二通孔,所述第二通孔靠近所述振膜一侧的孔径大于所述第一通孔的孔径。
优选地,沿所述第一绝缘层至所述电极层方向,所述第二通孔的孔径逐渐减小。
优选地,在垂直于所述背极板的横截面上,所述第二通孔的内壁为弧面,且所述第二通孔的内壁的曲率中心位于其朝向所述振膜的一侧。
优选地,所述背极板还包括设于所述电极层背离所述振膜一侧的第二绝缘层,所述通孔还包括贯穿所述第二绝缘层的第三通孔。
优选地,所述第三通孔的孔径小于所述第一通孔的孔径。
优选地,沿所述电极层至所述第二绝缘层的方向,所述第三通孔的孔径逐渐减小。
优选地,在垂直于所述背极板的横截面上,所述第三通孔的内壁为弧面,且所述第三通孔的内壁的曲率中心位于其背离所述第三通孔的轴线的一侧。
优选地,所述第三通孔背离所述电极层一侧的孔径大于所述第一通孔的孔径。
优选地,沿所述电极层至所述第一绝缘层的方向,所述第三通孔的孔径逐渐增大。
优选地,在垂直于所述背极板的横截面上,所述第三通孔的内壁为弧面,所述第三通孔的内壁的曲率中心位于其内壁背离所述振膜的一侧。
优选地,所述第一通孔与所述第二通孔相邻处的孔径相同,所述第一通孔和所述第三通孔相邻处的孔径相同。
有益效果
与相关技术相比,本发明的MEMS声传感器通过将所述第二通孔靠近所述振膜一侧的孔径设置成大于所述第一通孔的孔径以减小所述第一绝缘层与所述振膜正对一侧的面积,而通过减小所述第一绝缘层与所述振膜正对一侧的面积,可以减小所述第一绝缘层对空气流动的约束作用,从而可以减小空气流经所述第一绝缘层时的粘滞力,进而可以降低振膜的阻尼力。这样可以保证在不降低MEMS声传感器的灵敏度的情况下提高MEMS声传感器的信噪比。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中。
图1为本发明的MEMS声传感器实施例一的结构示意图。
图2为本发明的MEMS声传感器实施例二的结构示意图。
图3为本发明的MEMS声传感器实施例三的结构示意图。
图4为本发明的MEMS声传感器实施例四的结构示意图。
图5为本发明的MEMS声传感器实施例五的结构示意图。
图6为本发明的MEMS声传感器实施例六的结构示意图。
图7为本发明的MEMS声传感器实施例七的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
请参阅图1,MEMS声传感器包括具有背腔1A的基底1以及固定于所述基底1的电容系统3,所述电容系统3包括振膜5及与所述振膜5相对且间隔设置的背极板7,所述振膜5和所述背极板7之间形成绝缘间隙9。
当压力(声波)作用在所述振膜5上时。所述振膜5向靠近和远离所述背极板方向振动以使得所述振膜5与所述背极板7之间电容的电容量产生变化。因此,可以生成与压力(声波)的变化相对应的电信号,该电信号通过与所述电容系统3连接的外部电路输出。
如图1所示,所述振膜5和所述背极板7通过绝缘部件10固定在所述基底1上。所述背极板7包括电极层71及设于所述电极层71朝向所述振膜5一侧的第一绝缘层73,所述背极板7上贯穿设有通孔7A,所述通孔7A包括贯穿所述电极层71的第一通孔71A和贯穿所述第一绝缘层73的第二通孔73A,所述第二通孔73A靠近所述振膜5一侧的孔径大于所述第一通孔71A的孔径,如此设置,减小了所述第一绝缘层73与所述振膜5正对一侧的面积。由于振膜振动时,引起振膜与第一绝缘层之间的空气流动,而空气流动受到振膜以及第一绝缘层的约束作用,由于空气流动时的粘滞性,空气流动会产生粘滞力,进而导致振膜阻尼力增大,而通过减小所述第一绝缘层与所述振膜正对一侧的面积,可以减小所述第一绝缘层对空气流动的约束作用,从而可以减小空气流经所述第一绝缘层时的粘滞力,进而可以降低振膜的阻尼力。
在本实施例中,所述第一通孔71A和所述第二通孔73A相邻处的孔径相等。
在本实施例中,沿所述第一绝缘层73至所述电极层71方向,所述第一通孔71A和所述第二通孔73A的孔径均逐渐减小。如图1所示,在垂直于所述背极板7的横截面上,所述第一通孔71A和所述第二通孔73A的内壁均为平面。
实施例二
请参阅图2,实施例二与实施一的区别在于:在垂直于所述背极板7的横截面上,所述第一通孔71A的内壁和所述第二通孔73A的内壁均为弧面,且所述第一通孔71A的内壁的曲率中心位于其朝向所述振膜5的一侧,所述第二通孔73A的内壁的曲率中心位于其朝向所述振膜5的一侧。
实施例三
请参阅图3,实施例三与实施一的区别在于:所述背极板7还包括设于所述电极层71背离所述振膜5一侧的第二绝缘层75,所述通孔7A还包括贯穿所述第二绝缘层75的第三通孔75A,所述第三通孔75A的孔径小于所述第一通孔71A的孔径。
在本实施例中,所述第三通孔75A和所述第一通孔71A相邻处的孔径相等。
在本实施例中,沿所述电极层71至所述第二绝缘层75方向,所述第三通孔75A的孔径逐渐减小。如图3所示,在垂直于所述背极板7的横截面上,所述第三通孔75A的内壁为平面。
实施例四
请参阅图4,实施例四与实施二的区别在于:所述背极板7还包括设于所述电极层71背离所述振膜5一侧的第二绝缘层75,所述通孔7A还包括贯穿所述第二绝缘层75的第三通孔75A,所述第三通孔75A的孔径小于所述第一通孔71A的孔径。
在本实施例中,所述第三通孔75A和所述第一通孔71A相邻处的孔径相等。
如图4所示,在垂直于所述背极板7的横截面上,所述第三通孔75A的内壁为弧面,且所述第三通孔75A的内壁的曲率中心位于其背离所述第三通孔75A的轴线的一侧。
实施例五
请参阅图5,实施例五与实施一的区别在于:在垂直于所述背极板7的横截面上,所述第一通孔71A的内壁为平面并垂直于所述振膜5。
所述背极板7还包括设于所述电极层71背离所述振膜5一侧的第二绝缘层75,所述通孔7A还包括贯穿所述第二绝缘层75的第三通孔75A,所述第三通孔75A的孔径大于所述第一通孔71A的孔径。
在本实施例中,所述第三通孔75A和所述第一通孔71A相邻处的孔径相等。
在本实施例中,沿所述电极层71至所述第二绝缘层75方向,所述第三通孔75A的孔径逐渐增大。如图5所示,在垂直于所述背极板7的横截面上,所述第三通孔75A的内壁为平面。
实施例六
请参阅图6,实施例六与实施五的区别在于:在垂直于所述背极板7的横截面上,所述第二通孔73A的内壁为弧面,且所述第二通孔73A的内壁的曲率中心位于其朝向所述振膜5的一侧。
实施例七
请参阅图7,实施例七与实施六的区别在于:在垂直于所述背极板7的横截面上,所述第一通孔71A的内壁为弧面,且所述第一通孔71A的内壁的曲率中心位于其背离所述振膜5的一侧。
在上述实施例中,实施例三和实施例四所示实施例,由于所述第一通孔71A的孔径大于所述第三通孔75A的孔径,可以在保证MEMS声传感器的灵敏度不变的情况下(即所述电极层71的有效面积不变的情况下,相当于增大第二绝缘层的有效面积),可以避免大颗粒尘埃粒子进入MEMS声传感器导致的MEMS声传感器短路的问题;实施例五至实施例七所示实施例,由于所述第一通孔71A的孔径均小于所述第二通孔73A和所述第三通孔75A的孔径,可以在降低所述通孔7A的阻抗的同时,增大所述电极层71的有效面积,不仅可以提高MEMS声传感器的灵敏度,而且可以避免大颗粒尘埃粒子进入MEMS声传感器导致的MEMS声传感器短路的问题。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种MEMS声传感器,包括具有背腔的基底以及固定于所述基底的电容系统,所述电容系统包括振膜及与所述振膜相对且间隔设置的背极板,所述振膜和所述背极板之间形成绝缘间隙,其特征在于,所述背极板包括电极层及设于所述电极层朝向所述振膜一侧的第一绝缘层,所述背极板上贯穿设有通孔,所述通孔包括贯穿所述电极层的第一通孔和贯穿所述第一绝缘层的第二通孔,所述第二通孔靠近所述振膜一侧的孔径大于所述第一通孔的孔径。
  2. 根据权利要求1所述的MEMS声传感器,其特征在于,沿所述第一绝缘层至所述电极层方向,所述第二通孔的孔径逐渐减小。
  3. 根据权利要求2所述的MEMS声传感器,其特征在于,在垂直于所述背极板的横截面上,所述第二通孔的内壁为弧面,且所述第二通孔的内壁的曲率中心位于其朝向所述振膜的一侧。
  4. 根据权利要求1-3中任一项所述的MEMS声传感器,其特征在于,所述背极板还包括设于所述电极层背离所述振膜一侧的第二绝缘层,所述通孔还包括贯穿所述第二绝缘层的第三通孔。
  5. 根据权利要求4所述的MEMS声传感器,其特征在于,所述第三通孔的孔径小于所述第一通孔的孔径。
  6. 根据权利要求5所述的MEMS声传感器,其特征在于,沿所述电极层至所述第二绝缘层的方向,所述第三通孔的孔径逐渐减小。
  7. 根据权利要求5所述的MEMS声传感器,其特征在于,在垂直于所述背极板的横截面上,所述第三通孔的内壁为弧面,且所述第三通孔的内壁的曲率中心位于其背离所述第三通孔的轴线的一侧。
  8. 根据权利要求4所述的MEMS声传感器,其特征在于,所述第三通孔背离所述电极层一侧的孔径大于所述第一通孔的孔径。
  9. 根据权利要求8所述的MEMS声传感器,其特征在于,沿所述电极层至所述第一绝缘层的方向,所述第三通孔的孔径逐渐增大。
  10. 根据权利要求9所述的MEMS声传感器,其特征在于,在垂直于所述背极板的横截面上,所述第三通孔的内壁为弧面,所述第三通孔的内壁的曲率中心位于其内壁背离所述振膜的一侧。
  11. 根据权利要求4所述的MEMS声传感器,其特征在于,所述第一通孔与所述第二通孔相邻处的孔径相同,所述第一通孔和所述第三通孔相邻处的孔径相同。
PCT/CN2020/108370 2020-07-10 2020-08-11 Mems 声传感器 WO2022007100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010664854.5 2020-07-10
CN202010664854.5A CN111787474A (zh) 2020-07-10 2020-07-10 Mems声传感器

Publications (1)

Publication Number Publication Date
WO2022007100A1 true WO2022007100A1 (zh) 2022-01-13

Family

ID=72767366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108370 WO2022007100A1 (zh) 2020-07-10 2020-08-11 Mems 声传感器

Country Status (2)

Country Link
CN (1) CN111787474A (zh)
WO (1) WO2022007100A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174722A (zh) * 2022-05-26 2022-10-11 歌尔微电子股份有限公司 传感器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404699A (zh) * 2016-05-19 2017-11-28 美商楼氏电子有限公司 降阻尼音孔
CN207070354U (zh) * 2017-06-26 2018-03-02 歌尔科技有限公司 一种mems麦克风
US20180072567A1 (en) * 2010-06-25 2018-03-15 International Business Machines Corporation Planar cavity mems and related structures, methods of manufacture and design structures
EP3534129A1 (en) * 2018-03-02 2019-09-04 Kabushiki Kaisha Toshiba Mems device
CN111277936A (zh) * 2019-12-30 2020-06-12 瑞声声学科技(深圳)有限公司 一种mems麦克风

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160160B2 (ja) * 2013-03-26 2017-07-12 オムロン株式会社 マイクロフォン
CN206948616U (zh) * 2017-06-26 2018-01-30 歌尔股份有限公司 一种mems麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180072567A1 (en) * 2010-06-25 2018-03-15 International Business Machines Corporation Planar cavity mems and related structures, methods of manufacture and design structures
CN107404699A (zh) * 2016-05-19 2017-11-28 美商楼氏电子有限公司 降阻尼音孔
CN207070354U (zh) * 2017-06-26 2018-03-02 歌尔科技有限公司 一种mems麦克风
EP3534129A1 (en) * 2018-03-02 2019-09-04 Kabushiki Kaisha Toshiba Mems device
CN111277936A (zh) * 2019-12-30 2020-06-12 瑞声声学科技(深圳)有限公司 一种mems麦克风

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174722A (zh) * 2022-05-26 2022-10-11 歌尔微电子股份有限公司 传感器及电子设备

Also Published As

Publication number Publication date
CN111787474A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5799619B2 (ja) マイクロホンユニット
JP5636796B2 (ja) マイクロホンユニット
JP5022261B2 (ja) マイクロホンユニット
JP5166122B2 (ja) 音声入力装置
WO2023202417A1 (zh) 一种麦克风组件及电子设备
WO2023202418A1 (zh) 一种麦克风组件及电子设备
KR100854310B1 (ko) 케이스의 음향홀에 방진 및 방습 수단이 구비된 콘덴서마이크로폰
JP2020167670A (ja) マイクとスマート音声機器
JP4416835B2 (ja) マイクロホンユニット
WO2022007100A1 (zh) Mems 声传感器
EP1949749A1 (en) Arrangement for optimizing the frequency response of an electro-acoustic transducer
EP2369855B1 (en) Electronic device with electret electro-acoustic transducer
CN112565987A (zh) 一种双面超薄扬声器
WO2021248929A1 (zh) 硅基麦克风装置及电子设备
CN217363312U (zh) Mems麦克风
JP5834818B2 (ja) マイクロホンユニット、及び、それを備えた音声入力装置
CN216960188U (zh) Mems麦克风
JP5419254B2 (ja) マイクロホンユニット
CN218959124U (zh) Mems麦克风
US20230212003A1 (en) MEMS Microphone
CN109451383A (zh) 一种麦克风
JP2024519235A (ja) Memsマイクロフォン
CN218634295U (zh) 一种麦克风组件及电子设备
CN219659911U (zh) Mems麦克风
CN214481239U (zh) 双面超薄扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944215

Country of ref document: EP

Kind code of ref document: A1