WO2016176994A1 - 一种mems麦克风的封装结构 - Google Patents

一种mems麦克风的封装结构 Download PDF

Info

Publication number
WO2016176994A1
WO2016176994A1 PCT/CN2015/096913 CN2015096913W WO2016176994A1 WO 2016176994 A1 WO2016176994 A1 WO 2016176994A1 CN 2015096913 W CN2015096913 W CN 2015096913W WO 2016176994 A1 WO2016176994 A1 WO 2016176994A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
sound
absorbing layer
frequency
sound absorbing
Prior art date
Application number
PCT/CN2015/096913
Other languages
English (en)
French (fr)
Inventor
郑国光
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US15/554,623 priority Critical patent/US10805716B2/en
Publication of WO2016176994A1 publication Critical patent/WO2016176994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2876Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to a microphone, and belongs to the field of acoustic-electrical conversion, and more particularly to a package structure of a MEMS microphone.
  • MEMS Micro Electro Mechanical Systems
  • the diaphragm and back plate are important components in MEMS microphones.
  • the diaphragm and back plate form capacitors and are integrated on silicon wafers to realize acoustic electricity. Conversion.
  • the package structure of the MEMS microphone is as shown in FIG. 1.
  • the MEMS chip 3 and the ASIC chip 2 are mounted on the package substrate 1, and the two are connected by wire bonding, and then the package case 4 with the sound hole 5 is mounted on the package.
  • a front cavity of the MEMS microphone is formed on the substrate 1, a front cavity of the MEMS microphone is formed.
  • the front cavity of the MEMS microphone forms a Helm Hertz resonant cavity, and the incident acoustic wave enters the anterior cavity of the MEMS microphone from the acoustic hole 5.
  • the acoustic wave intensity also increases, when the acoustic wave frequency and the Helmholtz resonant cavity
  • the resonance frequency is the same, resonance occurs and the intensity of the sound wave in the front cavity is the strongest.
  • Figure 2 shows the frequency response curve of the MEMS microphone.
  • the sensitivity of the MEMS microphone increases with increasing frequency. When the resonance frequency of the front cavity is reached, the sensitivity increases sharply. The sharp increase in the output amplitude of the high frequency limits the operating bandwidth of the MEMS microphone.
  • a package structure of a MEMS microphone includes a package substrate and a package housing, the package housing being disposed on the package substrate and forming a sealed cavity with the package substrate, and further comprising a sound flowing into the sealed cavity a sound hole of the cavity; the package housing, the package substrate, and the sound hole together constitute a Helmholtz resonant cavity, wherein the Helmtz resonant cavity is provided with a MEMS chip and an ASIC chip; and at least part of the Helmtz resonant cavity A sound absorbing layer is provided on the inner wall.
  • the sound absorbing layer is disposed on an inner wall of the top and/or side of the package housing.
  • the sound absorbing layer is disposed on an inner wall of the package substrate.
  • the sound absorbing layer is a mesh structure.
  • the sound absorbing layer is provided in a coating manner.
  • the sound absorbing layer is polyimide.
  • a sound-transmitting layer covering the sound hole is further disposed at the sound hole of the package casing.
  • a sound absorbing layer is further provided on the surface of the ASIC chip.
  • the MEMS chip and the ASIC chip are disposed on the package substrate; and the sound hole is disposed on the package housing.
  • the package housing has a flat shape, and is further provided with a side wall portion for supporting the package housing on the package substrate.
  • the package structure of the present invention is provided with a sound absorbing layer on the inner wall of the Helmholtz resonant cavity.
  • the sound absorbing layer has a certain absorption capacity for high frequency sound waves, and has little absorption of low frequency sound waves, and can be equivalent to a "low pass filter".
  • the inventors of the present invention have found that in the prior art, as the incident frequency increases, the intensity of the acoustic wave also increases.
  • the incident acoustic wave frequency is the same as the resonant frequency of the Helmholtz resonant cavity, resonance occurs.
  • the intensity of the sound waves in the front cavity will be the strongest, while the sharp increase in the output amplitude of the high frequency limits the working bandwidth of the MEMS microphone. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • FIG. 1 is a schematic structural view of a MEMS microphone package structure in the prior art.
  • FIG. 2 is a frequency response curve of the package structure of FIG. 1.
  • FIG. 3 is a schematic structural view of a MEMS microphone package structure of the present invention.
  • the present invention provides a package structure of a MEMS microphone, which includes a package substrate 1 and a package housing 4, which are mounted together with the package substrate 1 to form a sealed cavity of the MEMS microphone.
  • the package housing 4 may also be in the form of a flat plate. In this case, a side wall portion is also required to support the package housing 4 on the package substrate 1 to form an external package of the microphone.
  • An acoustic hole 5 through which the sound flows into the sealed cavity is provided on the package casing 4 or the package substrate 1.
  • the package housing 4, the package substrate 1, and the sound hole 5 together constitute a Helm hertz resonant cavity structure.
  • the package structure of the present invention further includes a MEMS chip 3 and an ASIC chip 2 disposed in a Helmtz cavity, the MEMS chip 3 is a transducing component for converting a sound signal into an electrical signal, and the MEMS chip 3 utilizes MEMS (Micro Electromechanical) System) process production.
  • the ASIC chip 2 is a signal amplifying device and is mainly used to amplify an electrical signal output from the MEMS chip 3 for subsequent processing.
  • the MEMS chip 3 and the ASIC chip 2 may be disposed on the package substrate 1. Of course, for those skilled in the art, it may also be disposed on the package housing 4, which will not be specifically described herein.
  • the sound absorbing layer 6 is provided on at least part of the inner wall of the Helmhertz resonant cavity.
  • the sound absorbing layer 6 can be provided, for example, by coating, which can be applied to the inner wall of the entire Helmtz resonator.
  • a sound absorbing layer 6 having a mesh structure can be selected.
  • the sound absorbing layer 6 may be a sound absorbing material well known to those skilled in the art, such as sound absorbing cotton, polyimide, etc., or other soft organic materials.
  • the package structure of the present invention is provided with a sound absorbing layer on the inner wall of the Helmholtz resonant cavity.
  • the sound absorbing layer itself has a certain absorption capacity for high frequency sound waves, and has little absorption of low frequency sound waves, and can be equivalent to a low pass.
  • Filter by absorbing high-frequency sound waves, can suppress the high-frequency amplitude of the sound wave, reducing the high-frequency response of the Helmholtz resonator, that is, improving the high-frequency cutoff frequency of the sound wave, and improving The working bandwidth of the MEMS microphone.
  • the peak of the high frequency response is high, which makes the high frequency cutoff frequency lower, and the working bandwidth of the MEMS microphone is narrow; after the sound absorbing layer, the MEMS The high frequency response peak of the microphone is suppressed, increasing its high frequency cutoff frequency, which ultimately increases the operating bandwidth of the MEMS microphone.
  • the sound absorbing layer 6 may be disposed at any position of the Helm Hertz resonator, for example, on the inner wall of the top of the package casing 4, or on the inner wall of the side of the package casing 4, or It is disposed on the entire package casing 4 and the inner wall of the entire package substrate 1. If possible, the sound absorbing layer 6 can also be placed on the surface of the ASIC chip 2 located in the Helm Hertz resonator. On the basis of not excessively destroying the resonance characteristics of the Helm Hertz resonator, by adjusting the thickness of the sound absorbing layer 6 and the proportion of coating, the absorption rate of the high frequency sound wave can be adjusted, thereby achieving the purpose of adjusting the working bandwidth of the MEMS microphone.
  • a sound transmission layer covering the sound hole 5 is also provided at the sound hole 5 of the package casing 4 (not shown).
  • the sound permeable layer can be made of a material such as non-woven fabric, which covers the sound port 5 and can be used to adjust the quality factor of the MEMS microphone.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种MEMS麦克风的封装结构,包括封装基板(1)以及封装外壳(4),所述封装外壳(4)设置在封装基板(1)上并与封装基板(1)形成密闭容腔,还包括供声音流入密闭容腔的声孔(5);所述封装外壳(4)、封装基板(1)、声孔(5)共同构成了亥姆赫兹共振腔,所述亥姆赫兹共振腔内设有MEMS芯片(3)、ASIC芯片(2);所述亥姆赫兹共振腔的至少部分内壁上设有吸音层(6),该吸音层(6)对高频声波具有一定的吸收能力,对低频声波的吸收较少,可以等效为一"低通滤波器";通过对高频声波的吸收,可以对声波的高频幅值进行抑制,降低了亥姆赫兹共振腔的高频响应,也就是说,提高了声波的高频截止频率,提高了MEMS麦克风的工作带宽。

Description

一种MEMS麦克风的封装结构 技术领域
本发明涉及一种麦克风,属于声电转换领域,更具体地,涉及一种MEMS麦克风的封装结构。
背景技术
MEMS(微型机电系统)麦克风是基于MEMS技术制造的麦克风,其中的振膜、背极板是MEMS麦克风中的重要部件,振膜、背极板构成了电容器并集成在硅晶片上,实现声电的转换。
MEMS麦克风的封装结构如图1所示,MEMS芯片3和ASIC芯片2贴装在封装基板1上,通过打线将二者连接在一起,再将带有声孔5的封装外壳4贴装在封装基板1上,形成MEMS麦克风的前腔。该MEMS麦克风的前腔形成了亥姆赫兹共振腔,入射声波自声孔5进入MEMS麦克风的前腔,随着入射频率的增加,声波强度也会增强,当声波频率与亥姆霍兹共振腔的共振频率相同时,就会发生谐振现象,前腔内的声波强度会达到最强。图2为MEMS麦克风的频响曲线,MEMS麦克风的灵敏度随频率升高而提高,到达前腔的共振频率时,灵敏度会急剧增加。而高频的输出幅值的急剧增加则限制了MEMS麦克风的工作带宽。
发明内容
本发明的一个目的是提供一种MEMS麦克风的封装结构的新技术方案。
根据本发明的第一方面,提供了一种MEMS麦克风的封装结构,包括封装基板以及封装外壳,所述封装外壳设置在封装基板上并与封装基板形成密闭容腔,还包括供声音流入密闭容腔的声孔;所述封装外壳、封装基板、声孔共同构成了亥姆赫兹共振腔,所述亥姆赫兹共振腔内设有MEMS芯片、ASIC芯片;所述亥姆赫兹共振腔的至少部分内壁上设有吸音层。
优选地,所述吸音层设置在封装外壳顶部和/或侧部的内壁上。
优选地,所述吸音层设置在封装基板的内壁上。
优选地,所述吸音层为网状结构。
优选地,所述吸音层以涂覆的方式设置。
优选地,所述吸音层为聚酰亚胺。
优选地,在所述封装外壳的声孔处还设置有覆盖声孔的透音层。
优选地,在所述ASIC芯片的表面还设有吸音层。
优选地,所述MEMS芯片、ASIC芯片设置在封装基板上;所述声孔设置在封装外壳上。
优选地,所述封装外壳呈平板状,还设置有将封装外壳支撑在封装基板上的侧壁部。
本发明的封装结构,在亥姆赫兹共振腔的内壁上设置有吸音层,该吸音层对高频声波具有一定的吸收能力,对低频声波的吸收很少,可以等效为一“低通滤波器”;通过对高频声波的吸收,可以对声波的高频幅值进行抑制,降低了亥姆赫兹共振腔的高频响应,也就是说,提高了声波的高频截止频率,提高了MEMS麦克风的工作带宽。
本发明的发明人发现,在现有技术中,随着入射频率的增加,声波强度也会增强,当入射的声波频率与亥姆霍兹共振腔的共振频率相同时,就会发生谐振现象,前腔内的声波强度会达到最强,而高频的输出幅值的急剧增加则限制了MEMS麦克风的工作带宽。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是现有技术中MEMS麦克风封装结构的结构示意图。
图2是图1中封装结构的频响曲线。
图3是本发明MEMS麦克风封装结构的结构示意图。
图4是图3中封装结构的频响曲线。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参考图3,本发明提供的一种MEMS麦克风的封装结构,其包括封装基板1、封装外壳4,所述封装外壳4与封装基板1贴装在一起,形成了MEMS麦克风的密闭容腔。其中,该封装外壳4也可以是呈平板状,此时,还需要设置一侧壁部将封装外壳4支撑在封装基板1上,共同形成麦克风的外部封装。在所述封装外壳4或者封装基板1上设置有供声音流入密闭容腔的声孔5。其中,封装外壳4、封装基板1、声孔5共同构成了亥姆赫兹共振腔结构。
本发明的封装结构,还包括设置在亥姆赫兹共振腔内的MEMS芯片3和ASIC芯片2,MEMS芯片3为将声音信号转化为电信号的换能部件,该MEMS芯片3利用MEMS(微机电系统)工艺制作。ASIC芯片2为信号放大器件,主要用来将MEMS芯片3输出的电信号进行放大,以便后续处理。本 发明中,所述MEMS芯片3和ASIC芯片2可以设置在封装基板1上,当然,对于本领域的技术人员来说,其也可以选择设置在封装外壳4上,在此不再具体说明。
其中,在所述亥姆赫兹共振腔的至少部分内壁上设有吸音层6。该吸音层6例如可以通过涂覆的方式进行设置,其可以涂覆在整个亥姆赫兹共振腔的内壁上,为了调整吸音层6的涂覆比例,可以选择呈网状结构的吸音层6。吸音层6可以采用本领域技术人员所熟知的吸音材料,例如吸音棉、聚酰亚胺等,或其它软性的有机物材料。
本发明的封装结构,在亥姆赫兹共振腔的内壁上设置有吸音层,该吸音层本身对高频声波具有一定的吸收能力,对低频声波的吸收很少,可以等效为一“低通滤波器”,通过对高频声波的吸收,可以对声波的高频幅值进行抑制,降低了亥姆赫兹共振腔的高频响应,也就是说,提高了声波的高频截止频率,提高了MEMS麦克风的工作带宽。
图4为本发明封装结构的频响曲线,采用吸音层前,其高频响应的峰值较高,这就使得高频截止频率较低,MEMS麦克风的工作带宽较窄;采用吸音层后,MEMS麦克风的高频响应峰值被抑制,使其高频截止频率增加,从而最终提高了MEMS麦克风的工作带宽。
在本发明一个具体的实施方式中,所述吸音层6可以设置亥姆赫兹共振腔的任意位置,例如设置在封装外壳4顶部的内壁上,或者设置在封装外壳4侧部的内壁上,或者设置在整个封装外壳4、整个封装基板1的内壁上。如果可能,还可以将吸音层6设置在位于亥姆赫兹共振腔内的ASIC芯片2的表面。在不过度破坏亥姆赫兹共振腔共振特性的基础上,通过调整吸音层6的厚度和涂覆的比例,可以调整其对高频声波的吸收率,进而达到调节MEMS麦克风工作带宽的目的。
为了对入射前的声波进行调节,在所述封装外壳4的声孔5处还设置有覆盖声孔5的透音层(视图未给出)。该透音层可以由不织布等材料制成,其覆盖在声口5上,可以用来调节MEMS麦克风的品质因素。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限 制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种MEMS麦克风的封装结构,其特征在于:包括封装基板(1)以及封装外壳(4),所述封装外壳(4)设置在封装基板(1)上并与封装基板(1)形成密闭容腔,还包括供声音流入密闭容腔的声孔(5);所述封装外壳(4)、封装基板(1)、声孔(5)共同构成了亥姆赫兹共振腔,所述亥姆赫兹共振腔内设有MEMS芯片(3)、ASIC芯片(2);所述亥姆赫兹共振腔的至少部分内壁上设有吸音层(6)。
  2. 根据权利要求1所述的封装结构,其特征在于:所述吸音层(6)设置在封装外壳(4)顶部和/或侧部的内壁上。
  3. 根据权利要求1所述的封装结构,其特征在于:所述吸音层(6)设置在封装基板(1)的内壁上。
  4. 根据权利要求1至3任一项所述的封装结构,其特征在于:所述吸音层(6)为网状结构。
  5. 根据权利要求1至3任一项所述的封装结构,其特征在于:所述吸音层(6)以涂覆的方式设置。
  6. 根据权利要求1至3任一项所述的封装结构,其特征在于:所述吸音层(6)为聚酰亚胺。
  7. 根据权利要求1至3任一项所述的封装结构,其特征在于:在所述封装外壳(4)的声孔(5)处还设置有覆盖声孔(5)的透音层。
  8. 根据权利要求1所述的封装结构,其特征在于:在所述ASIC芯片(2)的表面还设有吸音层(6)。
  9. 根据权利要求1所述的封装结构,其特征在于:所述MEMS芯片(3)、ASIC芯片(2)设置在封装基板(1)上;所述声孔(5)设置在封装外壳(4)上。
  10. 根据权利要求1所述的封装结构,其特征在于:所述封装外壳(4)呈平板状,还设置有将封装外壳(4)支撑在封装基板(1)上的侧壁部。
PCT/CN2015/096913 2015-05-06 2015-12-10 一种mems麦克风的封装结构 WO2016176994A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/554,623 US10805716B2 (en) 2015-05-06 2015-12-10 Package structure of MEMS microphone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510227099.3 2015-05-06
CN201510227099.3A CN104822117B (zh) 2015-05-06 2015-05-06 一种mems麦克风的封装结构

Publications (1)

Publication Number Publication Date
WO2016176994A1 true WO2016176994A1 (zh) 2016-11-10

Family

ID=53732261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096913 WO2016176994A1 (zh) 2015-05-06 2015-12-10 一种mems麦克风的封装结构

Country Status (3)

Country Link
US (1) US10805716B2 (zh)
CN (1) CN104822117B (zh)
WO (1) WO2016176994A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822117B (zh) * 2015-05-06 2018-08-03 歌尔股份有限公司 一种mems麦克风的封装结构
WO2018226731A1 (en) * 2017-06-05 2018-12-13 Robert Bosch Gmbh Microphone with encapsulated moving electrode
CN112637738B (zh) * 2018-04-26 2022-10-21 深圳市韶音科技有限公司 一种耳机系统
US11553265B2 (en) * 2019-07-24 2023-01-10 Google Llc Compact home assistant having a controlled sound path
WO2021152922A1 (ja) * 2020-01-27 2021-08-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 収音装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198235A (zh) * 2006-12-08 2008-06-11 美商富迪科技股份有限公司 电子装置以及将麦克风安装于该电子装置中的方法
CN202364373U (zh) * 2011-11-16 2012-08-01 瑞声声学科技(常州)有限公司 微电机系统麦克风
CN104822117A (zh) * 2015-05-06 2015-08-05 歌尔声学股份有限公司 一种mems麦克风的封装结构
CN204559881U (zh) * 2015-05-06 2015-08-12 歌尔声学股份有限公司 一种mems麦克风的封装结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781231B2 (en) * 2002-09-10 2004-08-24 Knowles Electronics Llc Microelectromechanical system package with environmental and interference shield
CN2812465Y (zh) * 2005-06-17 2006-08-30 瑞声声学科技(深圳)有限公司 微机电系统传声器封装结构
DE102005053765B4 (de) * 2005-11-10 2016-04-14 Epcos Ag MEMS-Package und Verfahren zur Herstellung
TW201019453A (en) * 2008-11-05 2010-05-16 Windtop Technology Corp MEMS package
US8325951B2 (en) * 2009-01-20 2012-12-04 General Mems Corporation Miniature MEMS condenser microphone packages and fabrication method thereof
JP5636796B2 (ja) * 2010-08-02 2014-12-10 船井電機株式会社 マイクロホンユニット
KR101303954B1 (ko) * 2012-12-14 2013-09-05 주식회사 비에스이 광대역 및 방수 특성을 위한 보텀 포트형 마이크로폰 조립체
CN103347224B (zh) * 2013-06-05 2016-02-03 歌尔声学股份有限公司 降低麦克风拾音风噪的声腔结构
CN103347239A (zh) * 2013-06-08 2013-10-09 歌尔声学股份有限公司 Mems麦克风及其组装方法
CN103686568B (zh) * 2013-12-23 2017-01-18 山东共达电声股份有限公司 一种指向性mems传声器及受音装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198235A (zh) * 2006-12-08 2008-06-11 美商富迪科技股份有限公司 电子装置以及将麦克风安装于该电子装置中的方法
CN202364373U (zh) * 2011-11-16 2012-08-01 瑞声声学科技(常州)有限公司 微电机系统麦克风
CN104822117A (zh) * 2015-05-06 2015-08-05 歌尔声学股份有限公司 一种mems麦克风的封装结构
CN204559881U (zh) * 2015-05-06 2015-08-12 歌尔声学股份有限公司 一种mems麦克风的封装结构

Also Published As

Publication number Publication date
US10805716B2 (en) 2020-10-13
CN104822117B (zh) 2018-08-03
CN104822117A (zh) 2015-08-05
US20180054669A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2016176994A1 (zh) 一种mems麦克风的封装结构
US10250962B2 (en) Package structure of MEMS microphone
WO2018214321A1 (zh) 一种压电式麦克风
US20180041840A1 (en) Differential-capacitance type mems microphone
WO2016184080A1 (zh) 一种电声转换装置
US9359188B1 (en) MEMS microphone with tensioned membrane
US9860649B2 (en) Integrated package forming wide sense gap micro electro-mechanical system microphone and methodologies for fabricating the same
KR101452396B1 (ko) 복수의 음향통과홀을 구비한 멤스 마이크로폰
US20060090955A1 (en) Microphone diaphragms defined by logarithmic curves and microphones for use therewith
US20110235841A1 (en) Microphone unit
KR20110054529A (ko) 멤스 마이크로폰 패키지 및 패키징 방법
US10412491B2 (en) Band-pass acoustic filter and acoustic sensing apparatus
CN103796139A (zh) 声学金属振膜
WO2019153916A1 (zh) 一种扬声器模组
TW200932024A (en) Artificial mouth and process for testing microphone
CN111147992A (zh) 用于mems器件的防尘结构及mems麦克风封装结构
CN104105041B (zh) 硅基mems麦克风及其制作方法
CN106162476B (zh) 抗低频噪音的麦克风单体
JP2014011703A (ja) コンデンサマイクロホン
CN108696812B (zh) 光纤光栅麦克风
CN102547535A (zh) 压电陶瓷片及由其制备的压电陶瓷扬声器
WO2018170940A1 (zh) 一种发声装置及电子设备
CN204634015U (zh) 扬声器模组
US9420365B2 (en) Silicon condenser microphone
Yi et al. Performance of packaged piezoelectric microspeakers depending on the material properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15891237

Country of ref document: EP

Kind code of ref document: A1