WO2018212374A1 - 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 - Google Patents
전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 Download PDFInfo
- Publication number
- WO2018212374A1 WO2018212374A1 PCT/KR2017/005155 KR2017005155W WO2018212374A1 WO 2018212374 A1 WO2018212374 A1 WO 2018212374A1 KR 2017005155 W KR2017005155 W KR 2017005155W WO 2018212374 A1 WO2018212374 A1 WO 2018212374A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tofu
- carbide
- producing
- lithium secondary
- mill
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0018—Evaporation of components of the mixture to be separated
- B01D9/0031—Evaporation of components of the mixture to be separated by heating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D2009/0086—Processes or apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode active material, a method of manufacturing the same, and a lithium secondary battery comprising the same.
- lithium secondary batteries have been in the spotlight as power sources for electric vehicles driven by electric motors, with increasing interest and demand for eco-friendly green cars.
- the utilization of electronic devices such as smart phones, tablet PCs, and ultrabooks is increasing.
- higher performance is required than conventional lithium secondary batteries.
- most of the anode active material for a lithium secondary battery is composed of a graphite-based active material, and as the size of the battery becomes larger, the price competitiveness of the battery becomes a commercially important factor, and thus the price competitiveness of the battery material also becomes important.
- Activated carbon is a material mainly applied to environmental purification and energy storage due to its unique pore characteristics. These existing activated carbons have been focused only on precursors and activation processes. However, the activation process is to form pores by oxidizing the graphite grains, it is necessary to study the carbonization process as well as precursors that affect the crystallinity of activated carbon. Activated carbon is manufactured from various raw materials such as plant-based (wood, palm), coal / petroleum pitch, polymer-based, and bio-mass. Any can be used as a raw material of activated carbon. However, the production of activated carbon, which is cheaper and whose specific surface area and pore structure are effectively controlled, is in a very important position in the industrial field.
- the tofu is very short shelf life, so a large amount of tofu that has passed the expiration date, there is a problem such as environmental pollution and waste disposal costs.
- the present invention is to solve the above-mentioned problems, the object of the present invention is to shorten the expiration date to recycle food waste using tofu or waste tofu as a raw material, and to control the crystallinity excellent pore characteristics and An electrode active material that implements electrochemical properties, a method of manufacturing the same, and a lithium secondary battery comprising the same.
- the step of drying the tofu or tofu head the step of drying the tofu or tofu head; Heat-treating the dried tofu or waste tofu under an air atmosphere; And carbonizing the heat treated tofu or waste tofu under an inert gas atmosphere.
- the drying may be performed for 24 hours to 100 hours at a temperature of 40 °C to 200 °C.
- the drying may be performed in at least one dryer selected from the group consisting of a hot air dryer, an air flow dryer, a cake dryer and a ring dryer.
- the heat treatment may be performed for 30 minutes to 10 hours at a temperature of 200 °C to 500 °C.
- the carbonization may be performed for 30 minutes to 3 hours at a temperature of 500 °C to 900 °C.
- the carbonized tofu or the tofu head to crystallize in an inert gas atmosphere may further include.
- the crystallization may be performed for 30 minutes to 3 hours at a temperature of 1,000 °C to 1,500 °C.
- the step of grinding the crystallized carbide may further include.
- the grinding is at least one selected from the group consisting of a pin mill, a fine impact mill, a ball mill, a bead mill, a rotor-mounted air classifier, a dyno mill, a disk mill, a roll mill and a cyclone It may be performed in a grinder.
- the inert gas at least one selected from the group consisting of nitrogen (N 2 ), argon (Ar), helium (He), neon (Ne), krypton (Kr) and xenon (Xe). It may be to include.
- the (002) average interlayer distance (d002) obtained by the X-ray diffraction method is 3.7 kPa to 4.0 kPa
- the crystallite diameter Lc (002) in the C-axis direction is 0.8 nm to 2 nm.
- the carbide may be manufactured by a manufacturing method according to an embodiment.
- the average particle size (D50) of the carbide may be from 10 nm to 50 ⁇ m.
- the specific surface area of the carbide may be 50 m 2 / g to 500 m 2 / g, the average pore size may be 1 nm to 2 nm.
- a lithium secondary battery comprising a negative electrode active material including a carbide
- the irreversible capacity of the lithium secondary battery is 200 mAh / g to 600 mAh / g, 50
- a lithium secondary battery having an annual cycle capacity retention of 90% or more.
- Carbide according to an embodiment of the present invention can implement higher porosity, higher specific surface area and electrochemical characteristics than conventional commercially available activated carbon, so the electrode material for lithium electrochemical capacitors, supercapacitors, hydrogen storage It can be usefully used as a material for energy storage and environmental purification, such as electrode material, carbon dioxide storage material.
- Lithium secondary battery comprising a negative electrode active material including a carbide according to an embodiment of the present invention, it is possible to improve the battery characteristics such as initial efficiency improvement, life characteristics, charge and discharge output, low temperature storage characteristics, the initial charge of the battery As well as the discharge efficiency, the 50 cycle capacity retention rate can be significantly improved.
- FIG. 1 is a flow chart illustrating a method for producing carbide using tofu or tofu in accordance with an embodiment of the present invention.
- Figure 2 is a flow chart illustrating a method for producing carbide using tofu or tofu according to another embodiment of the present invention.
- Example 3 is a scanning electron microscope (SEM) photograph of the surface of the carbide of Examples 1 to 4 of the present invention ((a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4).
- XRD 4 is X-ray diffraction (XRD) data of Examples 1 to 4 of the present invention.
- FIG. 5 is a diagram illustrating cycling stability of Examples 1 to 3 of the present invention.
- FIG. 6 is a view showing the cycling stability of Examples 1 to 3 of the present invention.
- the step of drying the tofu or tofu head the step of drying the tofu or tofu head; Heat-treating the dried tofu or waste tofu under an air atmosphere; And carbonizing the heat treated tofu or waste tofu under an inert gas atmosphere.
- a method of manufacturing carbide using tofu or tofu includes a drying step 110, a heat treatment step 120, and a carbonization step 130.
- the drying step 110 may be to dry the tofu or tofu head.
- Tofu may be a drying step to remove moisture of the tofu or tofu head because of the high water content in the material properties.
- the drying may be performed for 24 hours to 100 hours at a temperature of 40 °C to 200 °C. At this time, the residual moisture may be to dry to less than 10%.
- the drying may be performed in at least one dryer selected from the group consisting of a hot air dryer, an air flow dryer, a cake dryer and a ring dryer.
- the dryer may be a device having a chamber and an exhaust port.
- the drying may be made by hot air drying the hot air dryer of 40 °C to 200 °C, the speed of the hot air may be 3 m / sec to 15 m / sec, but is not limited thereto.
- the heat treatment step 120 may be to heat the dried tofu or closed head in an air atmosphere.
- the heat treatment may be performed for 30 minutes to 10 hours at a temperature of 200 °C to 500 °C.
- the carbon material may be obtained from the head or the closed head by heat treatment performed during the temperature range and the time range.
- the carbonization step 130 may be to carbonize the heat-treated tofu or closed head under an inert gas atmosphere.
- the carbonization may be carried out in a high temperature furnace under an inert gas atmosphere.
- the inert gas may include at least one selected from the group consisting of nitrogen (N 2 ), argon (Ar), helium (He), neon (Ne), krypton (Kr), and xenon (Xe). .
- the carbonization may be performed for 30 minutes to 3 hours at a temperature of 500 °C to 900 °C.
- a temperature of 500 °C to 900 °C When the carbonization is carried out at a temperature of less than 500 °C carbonization is not made completely, if carried out at a temperature of more than 900 °C causes a rise in manufacturing costs by supplying more calories than necessary, tar gas discharged from the raw material due to the high temperature
- the pyrolysis product may cause contamination of carbides.
- Figure 2 is a flow chart illustrating a method for producing carbide using tofu or tofu according to another embodiment of the present invention.
- a method of manufacturing carbide using tofu or tofu according to another embodiment of the present invention includes crystallization after the drying step 110, the heat treatment step 120, and the carbonization step 130 described with reference to FIG. 1.
- a step 140 and a grinding step 150 may be further included.
- the crystallization step 140 may be to crystallize the carbonized tofu or the tofu head in an inert gas atmosphere.
- carbonization and crystallization may be performed at once, or after carbonization, crystallization may be performed sequentially.
- the crystallization may be performed in an inert gas atmosphere as in the carbonization step.
- the inert gas may include at least one selected from the group consisting of nitrogen (N 2 ), argon (Ar), helium (He), neon (Ne), krypton (Kr), and xenon (Xe). .
- the crystallization may be performed for 30 minutes to 3 hours at a temperature of 1000 °C to 1500 °C.
- the crystallization temperature is carried out at a temperature of less than 1000 °C activating reaction is not well done, when the produced carbide is used as a negative electrode active material of the lithium secondary battery, the remaining hydrogen in the carbon irreversibly reacts with lithium ions There may be a problem that the capacity decrease of the battery occurs in about 5 cycles.
- the grinding step 150 may be to grind the crystallized carbide.
- the pulverization is a process to remove the fusion between particles of carbide to separate into individual particles.
- the grinding may be applied to any general grinding machine.
- the carbide can be pulverized using a rotary rotor type grinder, the grinder is rotated by a circular rotor rotated by a motor, at least two grinding bars are mounted to the rotary rotor, the cross-sectional shape of the grinding bar is circular To a polygonal mill.
- the grinding is at least one selected from the group consisting of a pin mill, a fine impact mill, a ball mill, a bead mill, a rotor-mounted air classifier, a dyno mill, a disk mill, a roll mill and a cyclone It may be performed in a grinder.
- the average particle size (D50) of the pulverized particles may be 10 nm to 50 ⁇ m.
- the average interlayer distance (d 002) is 3.7 ⁇ to 4.0 ⁇ , and the C-axis crystallite size Lc (002) is 0.8 nm to 2 nm, having an R value of 1.3 to 2 and a peak intensity ratio (5 ° peak / 002 peak) of 2 ° to 4 °.
- the carbide may be manufactured by a manufacturing method according to an embodiment.
- the average particle size (D50) of the carbide may be from 10 nm to 50 ⁇ m. If the average particle size (D50) is less than 10 nm, there is a problem that can increase the irreversible capacity by the reaction of lithium ions and moisture in the battery reaction by increasing the amount of fines generated to adsorb moisture in the air, As this increases, the porosity between the particles increases, so that the filling density of the particles decreases, and high temperature storage characteristics such as lithium ions inserted into the carbon particles easily elute at a high temperature of 65 ° C. or higher during the battery reaction. May occur.
- the average particle size (D50) is greater than 50 ⁇ m, since the interface of the particles is small and the entrance and exit area of the lithium ion is narrowed, there may be a problem that the input and output characteristics of the lithium ion during the battery reaction is reduced.
- the specific surface area of the carbide may be 50 m 2 / g to 500 m 2 / g, the average pore size is 1 nm to 2 nm.
- Specific surface area is sampled according to KS A 0094, KS L ISO 18757 standard and degassed for 3 hours at 300 °C by pretreatment device, and then pressure section by nitrogen gas adsorption BET method through surface area and pore size analyzer device. (P / P0)
- the specific surface area of the sample can be measured from 0.05 to 0.3.
- the average pore size may be degassed at 300 ° C. for 3 hours through a pretreatment device, followed by analysis of pores on the surface of the sample by nitrogen gas adsorption through a Pore Size Analyzer (Bellsorp mini II).
- Carbide according to an embodiment of the present invention can implement higher porosity, higher specific surface area, and electrochemical characteristics than conventional commercially available activated carbon, so the electrode material for electrochemical capacitors such as lithium secondary batteries, supercapacitors, hydrogen storage It can be usefully used as a material for energy storage and environmental purification, such as electrode material, carbon dioxide storage material.
- a lithium secondary battery comprising a negative electrode active material including a carbide according to another embodiment, wherein the irreversible capacity of the lithium secondary battery is 200 mAh / g to 600 mAh / g, Provided is a lithium secondary battery having a 50-cycle capacity retention of 90% or more.
- Lithium secondary battery comprising a negative electrode active material including a carbide according to an embodiment of the present invention, it is possible to improve the battery characteristics such as initial efficiency improvement, life characteristics, charge and discharge output, low temperature storage characteristics, the initial charge of the battery As well as the discharge efficiency, the 50 cycle capacity retention rate can be significantly improved.
- Tofu was dried at 80 ° C. for 3 days to remove moisture. The dried tofu was then heat treated at 400 ° C. for 3 hours. The heat treated tofu was carbonized at 800 ° C. for 2 hours under a nitrogen atmosphere, and crystallized at 1100 ° C. for 2 hours under a nitrogen atmosphere to prepare a carbide.
- Carbide was prepared under the same conditions and methods as in Example 1 except that the crystallization temperature was changed to 1200 ° C.
- Carbide was prepared under the same conditions and methods as in Example 1 except that the crystallization temperature was 1300 ° C.
- Carbide was prepared under the same conditions and methods as in Example 1 except that the crystallization temperature was 1400 ° C.
- Carbide was prepared under the same conditions and methods as in Example 1 except that the crystallization temperature was 800 ° C.
- Carbide was prepared under the same conditions and methods as in Example 1 except that the crystallization temperature was 2500 ° C.
- Example 3 is a scanning electron microscope (SEM) photograph of the surface of the carbide of Examples 1 to 4 of the present invention ((a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4).
- SEM scanning electron microscope
- XRD X-ray diffraction
- NMP by adding 2.0 parts by weight of polyvinylidene fluoride (PVDF) and 1.0 parts by weight of carbon black (Ketjen black) to 7.0 parts by weight of the negative electrode active material (N-methyl-2-pyrrolidinone solvent) was added and uniformly stirred in the form of sludge and uniformly coated on the copper foil.
- the coating was uniformly coated to 20 ⁇ m using a doctor blade and dried for 12 hours in an oven at 100 ° C. to press.
- the electrodes on the foil were punched into circles 1 cm 2 wide.
- the negative electrode active materials of Examples 1 to 4 and Comparative Examples 1 to 3 were used for the negative electrode of the non-aqueous electrolyte secondary battery, and the charge (lithium insertion) capacity and discharge (lithium tally) capacity of the negative electrode active material were not affected by the performance of the counter electrode.
- a lithium secondary battery was constructed using lithium metal as a counter electrode, and characteristics were evaluated.
- the lithium secondary battery is a 2032 size (20.0 mm diameter, 3.2 mm thick) coin-type battery assembled in a glove box under argon atmosphere, and 1 mm thick metal lithium is pressed onto the bottom of a coin-type battery can, and polypropylene is placed thereon. A separator of the material was formed and the cathode faced lithium.
- the electrolyte used was prepared by adding 1.0 M LiPF 6 salt to a solvent prepared by mixing EC (Ethylene Carbonate) and DMC (Dimethyl Carbonate) in a volume ratio of 1: 1. Closed and pressed to assemble a lithium secondary battery.
- High rate charge / discharge characteristics analysis of the assembled lithium secondary battery was performed at 25 ° C. by charge and discharge in the same manner as in (c).
- High-rate charge and discharge characteristics by increasing a constant current density by changing the current density during the charge and discharge, the supply or discharge per cycle (100 mAg -1, 300 mAg -1 , 500 mAg -1, 700 mAg -1, 1000 mAg -1 , 2000 mAg -1 and 100 mAg -1 ) is expressed as the capacity (mAh / g) measured by charging and discharging at the current density.
- Example 5 is a diagram illustrating cycling stability of Examples 1 to 3 of the present invention. It can be seen that the cycling stability of all the samples is excellent. This is because all the samples are made of carbon material, so that the insertion and desorption of lithium ions is reversible. However, especially Example 1 shows high capacity and excellent cycling stability. It can be seen that since the crystallization temperature of Example 1 is the most suitable temperature, the crystallization of carbon is well performed, showing high capacity and excellent cycling stability.
- Example 6 is a view showing the stability according to the current density of Examples 1 to 3 of the present invention. It can be seen that all samples show stability at high current densities. This is because all the samples are carbon materials, so that the insertion and desorption of lithium ions at a high current density is reversible. However, it can be seen that especially Example 1 shows high capacity and stability. This is because the crystallization temperature of Example 1 is the most appropriate temperature, the crystallization of carbon is well achieved, it can be seen that the insertion and desorption of lithium ions occurs stably even at high current density.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Environmental & Geological Engineering (AREA)
Abstract
본 발명은 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지에 관한 것으로서, 본 발명의 일 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법은 두부 또는 폐두부를 건조하는 단계; 상기 건조된 두부 또는 폐두부를 공기 분위기 하에서 열처리하는 단계; 및 상기 열처리된 두부 또는 폐두부를 비활성 기체 분위기 하에서 탄화하는 단계;를 포함한다.
Description
본 발명은 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지에 관한 것이다.
최근 리튬이차전지는 친환경 그린카에 대한 관심과 수요가 높아지고 있는 가운데 전기모터로 구동되는 전기자동차의 전원으로 각광받고 있다. 뿐만 아니라, 소형 전자기기분야에서도 스마트폰, 태블릿 PC 및 울트라북 등의 전자기기의 기술발전에 힘입어 그 활용도가 점점 넓어지고 있다. 리튬이차전지의 사용 분야가 점점 넓어지고 소비자의 요구도 다양해짐에 따라 기존의 리튬이차전지에 비해 더 높은 성능이 요구되고 있다. 현재 리튬이차전지용 음극 활물질의 대부분은 흑연계 활물질로 이루어져 있으며, 전지의 사이즈가 대형화되는 추세에 따라 전지의 가격 경쟁력이 상업적으로 중요한 요소가 되면서 전지용 소재도 가격 경쟁력이 중요하게 되었다. 따라서, 음극 활물질은 흑연계 중에서도 가격 경쟁력이 있는 탄소계 활물질의 점유율이 점점 높아지고 있는 추세이다. 그러나 천연 흑연은 인조 흑연에 비해 층간 거리 및 비표면적이 넓고, 결정 구조의 결함 및 인편상의 입자 형태 등의 요인으로 인하여, 전지용 활물질로 사용되었을 때 전해액과의 부반응이 심해지거나, 전극에서 흑연 결정 배향성이 높아져 출력 성능이 현저히 저하된다.
활성탄은 특유의 기공특성으로 인하여 환경 정화 및 에너지 저장 등에 주요하게 적용되는 소재이다. 이러한 기존의 활성탄은 전구체 및 활성화 공정에만 연구가 집중되어 있었다. 하지만, 활성화 공정은 흑연 결정립을 산화하여 기공을 생성되는 것으로 활성탄의 결정성에 영향을 주는 전구체뿐만 아니라 탄화공정에 대한 연구가 필요하다. 활성탄은 출발물질에 따라 식물계(목질, 야자곽), 석탄/석유 피치(pitch)계, 고분자계, 바이오매스(bio-mass) 등 다종다양한 원료에 의해 제조되며, 출발물질 내에 탄소가 함유되어 있으면 어느 것이나 활성탄의 원료로 사용될 수 있다. 그러나, 보다 저렴하면서 비표면적과 세공구조가 효과적으로 제어된 활성탄 제조는 공업적인 면에서 매우 중요한 위치에 있다.
한편, 두부는 유통기한이 매우 짧아 유통기한이 지난 많은 양의 두부가 대량 폐기되고 있는 바, 환경 오염 및 폐기 처리 비용 발생 등의 문제가 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 유통기한이 짧아 대량으로 폐기되는 두부 또는 폐두부를 원료로 이용하여 음식폐기물을 자원화하고, 결정성을 제어하여 우수한 기공 특성 및 전기 화학적 특성을 구현하는 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지를 제공하는 것에 있다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따르면, 두부 또는 폐두부를 건조하는 단계; 상기 건조된 두부 또는 폐두부를 공기 분위기 하에서 열처리하는 단계; 및 상기 열처리된 두부 또는 폐두부를 비활성 기체 분위기 하에서 탄화하는 단계;를 포함하는, 두부 또는 폐두부를 이용한 탄화물의 제조방법을 제공한다.
일 측에 따르면, 상기 건조는, 40 ℃ 내지 200 ℃의 온도에서 24 시간 내지 100 시간 동안 수행하는 것일 수 있다.
일 측에 따르면, 상기 건조는, 열풍건조기, 기류건조기, 케이크 드라이어 및 링 드라이어로 이루어진 군으로부터 선택되는 적어도 어느 하나의 건조기에서 수행되는 것일 수 있다.
일 측에 따르면, 상기 열처리는, 200 ℃ 내지 500 ℃의 온도에서 30분 내지 10 시간 동안 수행하는 것일 수 있다.
일 측에 따르면, 상기 탄화는 500 ℃ 내지 900 ℃의 온도에서 30분 내지 3 시간 동안 수행하는 것일 수 있다.
일 측에 따르면, 상기 탄화하는 단계 이후에, 상기 탄화된 두부 또는 폐두부를 비활성 기체 분위기 하에서 결정화하는 단계;를 더 포함할 수 있다.
일 측에 따르면, 상기 결정화는 1,000 ℃ 내지 1,500 ℃의 온도에서 30분 내지 3 시간 동안 수행하는 것일 수 있다.
일 측에 따르면, 상기 결정화하는 단계 이후에, 상기 결정화된 탄화물을 분쇄하는 단계;를 더 포함할 수 있다.
일 측에 따르면, 상기 분쇄는, 핀 밀, 파인 임팩트 밀, 볼밀, 비즈밀, 로터가 장착된 기류방식의 분급기, 다이노밀, 디스크밀, 롤밀 및 사이클론으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 분쇄기에서 수행되는 것일 수 있다.
일 측에 따르면, 상기 비활성 기체는, 질소(N2), 아르곤(Ar), 헬륨(He), 네온(Ne), 크립톤(Kr) 및 제논(Xe)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
본 발명의 다른 실시예에 따르면, X선 회절법에 의해 구해지는 (002) 평균 층간거리 (d002)가 3.7 Å 내지 4.0 Å이고, C축 방향의 결정자 직경 Lc(002)가 0.8 nm 내지 2 nm이고, R값이 1.3 내지 2이고, 피크강도비(5°피크/002 피크)가 2° 내지 4°인, 탄화물을 제공한다.
일 측에 따르면, 상기 탄화물은 일 실시예에 따른 제조방법에 의하여 제조된 것일 수 있다.
일 측에 따르면, 상기 탄화물의 평균 입자 크기(D50)가 10 nm 내지 50 ㎛인 것일 수 있다.
일 측에 따르면, 상기 탄화물의 비표면적은 50 m2/g 내지 500 m2/g이고, 평균 기공크기가 1 nm 내지 2 nm인 것일 수 있다.
본 발명의 또 다른 실시예에 따르면, 다른 실시예에 따른 탄화물을 포함하는 음극 활물질;을 포함하는 리튬이차전지로서, 상기 리튬이차전지의 비가역 용량은 200 mAh/g 내지 600 mAh/g 이고, 50 회 사이클 용량 유지율이 90 % 이상인 것인, 리튬이차전지를 제공한다.
본 발명의 일 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법에 의하여, 활성탄의 결정성을 제어하여 더 높은 기공 특성 및 전기화학적 특성을 구현할 수 있으며, 종래의 약품활성화제와 같은 화학약품을 사용하지 않으므로 친환경적일 뿐만 아니라 활성탄을 저렴하게 제조할 수 있다. 또한, 폐기되는 두부를 원료로 하여 탄화물을 제조하는 것으로서, 폐기 비용이 절감되고, 버려지는 음식폐기물을 자원화하여 새로운 시장을 창출할 수 있다.
본 발명의 일 실시예에 따른 탄화물은 종래 상용화된 활성탄에 비해 더 높은 기공특성, 높은 비표면적 특성 및 전기화학적 특성을 구현할 수 있으므로 리튬이차전지, 수퍼커패시터와 같은 전기화학축전기용 전극소재, 수소저장용 전극소재, 이산화탄소 저장소재 등의 에너지 저장 및 환경정화용 소재로서 유용하게 사용될 수 있다.
본 발명의 일 실시예에 따른 탄화물을 포함하는 음극 활물질을 포함하는 리튬이차전지는, 초기효율 향상, 수명 특성, 충방전 출력, 저온저장특성 등의 전지 특성을 향상시킬 수 있고, 전지의 초기 충방전효율 뿐만 아니라 50 회 사이클 용량 유지율이 현저히 향상될 수 있다.
도 1은 본 발명의 일 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법을 설명하는 순서도이다.
도 2는 본 발명의 다른 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법을 설명하는 순서도이다.
도 3은 본 발명의 실시예 1 내지 4의 탄화물의 표면을 측정한 주사전자현미경(SEM) 사진이다 ((a) 실시예 1, (b) 실시예 2, (c) 실시예 3, (d) 실시예 4).
도 4는 본 발명의 실시예 1 내지 4의 X선 회절(XRD) 데이터이다.
도 5는 본 발명의 실시예 1 내지 3의 사이클링 안정성을 나타내는 도면이다.
도 6은 본 발명의 실시예 1 내지 3의 사이클링 안정성을 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.
본 발명의 일 실시예에 따르면, 두부 또는 폐두부를 건조하는 단계; 상기 건조된 두부 또는 폐두부를 공기 분위기 하에서 열처리하는 단계; 및 상기 열처리된 두부 또는 폐두부를 비활성 기체 분위기 하에서 탄화하는 단계;를 포함하는, 두부 또는 폐두부를 이용한 탄화물의 제조방법을 제공한다.
도 1은 본 발명의 일 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법을 설명하는 순서도이다. 도 1을 참조하면 본 발명의 일 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법은, 건조 단계(110), 열처리 단계(120) 및 탄화 단계(130)를 포함한다.
일 측에 따르면, 건조 단계(110)는, 두부 또는 폐두부를 건조하는 것일 수 있다. 두부는 재료 특성상 수분 함유율이 높기 때문에 두부 또는 폐두부의 수분을 제거하기 위해 건조단계를 수행하는 것일 수 있다.
일 측에 따르면, 상기 건조는, 40 ℃ 내지 200 ℃의 온도에서 24 시간 내지 100 시간 동안 수행하는 것일 수 있다. 이때 잔류수분이 10 % 미만이 되도록 건조시키는 것일 수 있다.
일 측에 따르면, 상기 건조는, 열풍건조기, 기류건조기, 케이크 드라이어 및 링 드라이어로 이루어진 군으로부터 선택되는 적어도 어느 하나의 건조기에서 수행되는 것일 수 있다. 상기 건조기는 챔버 및 배기구가 구비된 장치인 것일 수 있다.
일 측에 따르면, 상기 건조는 열풍건조기로 40 ℃ 내지 200 ℃의 열풍 가열로 이루어질 수 있으며, 열풍의 속도는 3 m/sec 내지 15 m/sec일 수 있으나, 이에 제한되는 것은 아니다.
일 측에 따르면, 열처리 단계(120)는, 상기 건조된 두부 또는 폐두부를 공기 분위기 하에서 열처리하는 것일 수 있다.
일 측에 따르면, 상기 열처리는, 200 ℃ 내지 500 ℃의 온도에서 30분 내지 10 시간 동안 수행하는 것일 수 있다. 상기 온도 범위 및 시간 범위 동안 수행된 열처리에 의해 두부 또는 폐두부에서 탄소 물질을 얻을 수 있다.
일 측에 따르면, 탄화 단계(130)는 열처리된 두부 또는 폐두부를 비활성 기체 분위기 하에서 탄화하는 것일 수 있다.
일 측에 따르면, 상기 탄화는 비활성 기체 분위기 하의 고온로에서 수행될 수 있다. 상기 비활성 기체는, 질소(N2), 아르곤(Ar), 헬륨(He), 네온(Ne), 크립톤(Kr) 및 제논(Xe)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 측에 따르면, 상기 탄화는 500 ℃ 내지 900 ℃의 온도에서 30분 내지 3 시간 동안 수행하는 것일 수 있다. 상기 탄화가 500 ℃ 미만의 온도에서 수행되는 경우 탄화가 완벽히 이루어지지 않고, 900 ℃ 초과의 온도에서 수행되는 경우 필요 이상의 열량 공급으로 제조비 상승의 원인이 되며, 높은 온도로 인하여 원료에서 배출된 타르 가스의 열분해 생성물로 탄화물의 오염이 발생할 수 있다.
도 2는 본 발명의 다른 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법을 설명하는 순서도이다. 도 2를 참조하면 본 발명의 다른 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법은, 도 1에서 설명한 상기 건조 단계(110), 열처리 단계(120), 탄화 단계(130) 이후에 결정화 단계(140) 및 분쇄 단계(150)를 더 포함할 수 있다.
일 측에 따르면, 결정화 단계(140)는, 상기 탄화된 두부 또는 폐두부를 비활성 기체 분위기 하에서 결정화하는 것일 수 있다.
일 측에 따르면, 본 발명의 일 실시예에 따른 음극 활물질로서 사용하기 위한 탄화물의 물성을 달성하기 위하여 탄화 및 결정화를 한번에 수행하거나, 탄화 후 결정화를 순차적으로 수행할 수 있다.
일 측에 따르면, 상기 결정화는 상기 탄화 단계와 마찬가지로 비활성 기체 분위기 하에서 수행될 수 있다. 상기 비활성 기체는, 질소(N2), 아르곤(Ar), 헬륨(He), 네온(Ne), 크립톤(Kr) 및 제논(Xe)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 측에 따르면, 상기 결정화는 1000 ℃ 내지 1500 ℃의 온도에서 30분 내지 3 시간 동안 수행하는 것일 수 있다. 상기 결정화 온도가 1000 ℃ 미만의 온도에서 수행되는 경우 활성화 반응이 잘 이루어지지 않으며, 추후 제조된 탄화물이 리튬이차전지의 음극 활물질로서 사용될 때 탄소 내의 잔류하는 수소가 리튬 이온과 비가역적으로 반응하여 초기 5 사이클 정도에서 전지의 용량 저하가 발생하는 문제가 있을 수 있다. 1500 ℃ 초과의 온도에서 결정화할 경우에는, 과한 활성화 반응으로 인하여 수율이 낮게 되고, 리튬 이온의 저장능력인 가역용량이 감소하여 전지 제조시 에너지밀도가 크게 저하되고, 비표면적이 증가하여 대기 중의 수분을 흡착하는 성질이 증가함으로써, 전지 반응에서 리튬 이온과 수분이 반응하여 비가역 용량을 증가시킬 수 있다. 상업적인 측면에서도 전기로가 1500 ℃ 초과의 열처리 온도를 견디기 위해서는 전기로의 재질 및 구성이 열에 강한 소재로 바뀌어야 하므로 제조비용 및 공정비용이 상승하는 문제가 발생할 수 있다.
일 측에 따르면, 분쇄 단계(150)는 상기 결정화된 탄화물을 분쇄하는 것일 수 있다.
일 측에 따르면, 분쇄는 탄화물의 입자간 융착 현상을 해소하여 낱개의 입자로 분리하기 위하여 수행하는 공정이다. 상기 분쇄는 일반적인 분쇄기라면 어떤 것이라도 적용 가능하다. 상기 탄화물을 회전식 로터 방식의 분쇄기를 이용해 분쇄할 수 있으며, 상기 분쇄기는 모터에 의해 회전하는 원형 로터에 의해 회전하고, 회전 로터에 적어도 2개 이상의 분쇄바가 장착되어 있고, 분쇄바의 단면 형상은 원형 내지는 다각형인 형태의 분쇄기로 처리할 수 있다.
일 측에 따르면, 상기 분쇄는, 핀 밀, 파인 임팩트 밀, 볼밀, 비즈밀, 로터가 장착된 기류방식의 분급기, 다이노밀, 디스크밀, 롤밀 및 사이클론으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 분쇄기에서 수행되는 것일 수 있다.
일 측에 따르면, 사용 용도에 맞게 10 메쉬 내지 1500 메쉬로 분쇄할 수 있으며, 분쇄된 입자의 평균입자크기(D50)가 10 nm내지 50 ㎛인 것일 수 있다.
본 발명의 일 실시예에 따른 두부 또는 폐두부를 이용한 탄화물의 제조방법에 의하여, 활성탄의 결정성을 제어하여 더 높은 기공 특성 및 전기화학적 특성을 구현할 수 있으며, 종래의 약품활성화제와 같은 화학약품을 사용하지 않으므로 친환경적일 뿐만 아니라 활성탄을 저렴하게 제조할 수 있다. 또한, 폐기되는 두부를 원료로 하여 탄화물을 제조하는 것으로서, 폐기 비용이 절감되고, 버려지는 음식폐기물을 자원화하여 새로운 시장을 창출할 수 있다.
본 발명의 다른 실시예에 따르면, X선 회절법에 의해 구해지는 (002) 평균 층간거리 (d002)가 3.7 Å 내지 4.0 Å이고, C축 방향의 결정자 직경 Lc(002)가 0.8 nm 내지 2 nm이고, R값이 1.3 내지 2이고, 피크강도비(5°피크/002 피크)가 2° 내지 4°인, 탄화물을 제공한다. 탄화물의 평균 층간거리(d002) 분석은, X선 회절법을 이용하여 측정한 2θ값의 그래프를 얻어 그래프의 피크 위치를 적분법에 의해 구하여 Bragg 공식에 의해 d002(d002 = λ/2sinθ)를 계산할 수 있다.
일 측에 따르면, 상기 탄화물은 일 실시예에 따른 제조방법에 의하여 제조된 것일 수 있다.
일 측에 따르면, 상기 탄화물의 평균 입자 크기(D50)가 10 nm 내지 50 ㎛인 것일 수 있다. 평균 입자 크기(D50)가 10 nm 미만일 경우에는, 미분발생량이 증가하여 대기 중의 수분을 흡착하는 성질이 증가함으로써 전지 반응에서 리튬이온과 수분이 반응하여 비가역용량을 증가시킬 수 있는 문제가 있으며, 미분이 증가함에 따라, 입자간의 공극률이 증가하여 입자의 충진밀도가 낮아지고, 전지반응 시 65℃ 이상의 고온에서 탄소입자 내부에 삽입되어 있는 리튬이온이 쉽게 용출되는 등의 고온저장특성이 저하되는 문제가 발생할 수 있다. 또한, 평균 입자 크기(D50)가 50㎛ 초과일 경우에는 입자의 계면이 작아져 리튬이온의 출입면적이 좁아지므로 전지반응 시 리튬이온의 입출력 특성이 저하되는 문제가 발생할 수 있다.
일 측에 따르면, 상기 탄화물의 비표면적은 50 m2/g 내지 500 m2/g이고, 평균 기공 크기가 1 nm 내지 2 nm인 것일 수 있다. 비표면적은 KS A 0094, KS L ISO 18757 규격에 따라 시료를 채취하여 전처리 장치를 통해 300 ℃에서 3 시간 탈가스 처리 후 Surface Area, Pore Size Analyzer 장치를 통해 질소가스 기체 흡착 BET법에 의한 압력구간(P/P0) 0.05 내지 0.3에서 시료의 비표면적을 측정할 수 있다. 평균 기공크기는 전처리 장치를 통해 300 ℃에서 3 시간 동안 탈가스 처리 후 Pore Size Analyzer(Bellsorp mini Ⅱ)를 통해 질소 가스 기체 흡착법에 의해 시료 표면의 기공을 분석할 수 있다.
본 발명의 일 실시예에 따른 탄화물은 종래 상용화된 활성탄에 비해 더 높은 기공특성, 높은 비표면적 특성 및 전기화학적 특성을 구현할 수 있으므로 리튬이차전지, 수퍼 커패시터와 같은 전기화학축전기용 전극소재, 수소저장용 전극소재, 이산화탄소 저장소재 등의 에너지 저장 및 환경정화용 소재로서 유용하게 사용될 수 있다.
본 발명의 또 다른 실시예에 따르면, 다른 실시예에 따른 탄화물을 포함하는 음극 활물질;을 포함하는, 리튬이차전지로서, 상기 리튬이차전지의 비가역 용량은 200 mAh/g 내지 600 mAh/g 이고, 50 회 사이클 용량 유지율이 90 % 이상인 리튬이차전지를 제공한다.
본 발명의 일 실시예에 따른 탄화물을 포함하는 음극 활물질을 포함하는 리튬이차전지는, 초기효율 향상, 수명 특성, 충방전 출력, 저온저장특성 등의 전지 특성을 향상시킬 수 있고, 전지의 초기 충방전효율 뿐만 아니라 50 회 사이클 용량 유지율이 현저히 향상될 수 있다.
이하, 하기 실시예 및 비교예를 참조하여 본 발명을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.
[
실시예
]
실시예
1
두부를 80 ℃에서 3일 동안 수분을 제거하기 위해 건조하였다. 이어서, 건조된 두부를 400 ℃에서 3 시간 동안 열처리하였다. 열처리된 두부를 질소 분위기 하에서 800 ℃에서 2 시간 동안 탄화시키고, 질소 분위기 하에서 1100 ℃에서 2 시간 동안 결정화하여 탄화물을 제조하였다.
실시예
2
결정화 온도를 1200 ℃로 한 것을 제외하고 실시예 1과 동일한 조건 및 방법으로 탄화물을 제조하였다.
실시예
3
결정화 온도를 1300 ℃로 한 것을 제외하고 실시예 1과 동일한 조건 및 방법으로 탄화물을 제조하였다.
실시예
4
결정화 온도를 1400 ℃로 한 것을 제외하고 실시예 1과 동일한 조건 및 방법으로 탄화물을 제조하였다.
비교예
1
결정화 온도를 800 ℃로 한 것을 제외하고 실시예 1과 동일한 조건 및 방법으로 탄화물을 제조하였다.
비교예
2
결정화 온도를 2500 ℃로 한 것을 제외하고 실시예 1과 동일한 조건 및 방법으로 탄화물을 제조하였다.
비교예
3
상용 탄화물을 준비하였다.
도 3은 본 발명의 실시예 1 내지 4의 탄화물의 표면을 측정한 주사전자현미경(SEM) 사진이다 ((a) 실시예 1, (b) 실시예 2, (c) 실시예 3, (d) 실시예 4). 도 3을 참조하면, 미세한 기공을 형성하는 것을 확인할 수 있다. 기공이 형성되는 이유는 결정화 공정에 따른 활성화 반응으로 더 많은 가스를 배출하기 때문이다. 미세 기공이 비표면적 값을 향상시킬 수 있고, 미세 기공 구조가 형성됨에 따라 전극과 전해질 사이에 전기적으로 활성화된 영역이 개선되어 추후 리튬이차전지의 전기화학적 특성이 더 향상될 수 있다.
도 4는 본 발명의 실시예 1 내지 4의 X선 회절(XRD) 데이터이다. 도 4를 참조하면, 실시예 1 내지 4의 탄화물의 상변화는 없다. 이는 탄화물의 열화는 없다는 것을 예상할 수 있다. 탄화물이 열화되는 경우 전기화학적 특성이 저하될 수 있다. 하지만, 본 발명의 실시예 1 내지 4에 의해 제조된 탄화물은 우수한 전기화학적 특성을 나타낼 수 있다.
[
실험예
]
리튬이차전지의
제조
전극 제조
음극으로 상기 실시예 1 내지 4, 비교예 1 내지 3의 탄화물을 음극 활물질로서 사용하고, 음극 활물질 7.0 중량부에 PVdF(Polyvinylidene fluoride) 2.0 중량부, Carbon black(Ketjen black) 1.0 중량부를 첨가하여 NMP(N-methyl-2-pyrrolidinone solvent)를 첨가하며 슬러지 형태로 균일하게 교반하여 구리 호일 상에 균일하게 코팅하였다. 코팅은 닥터블레이드를 사용하여 20 ㎛로 균일하게 코팅하였고 100 ℃ 오븐에서 12 시간 건조하여 프레스를 시행하였다. 호일 상의 전극을 넓이 1 cm2의 원형으로 펀칭하였다.
시험 전지의 제조
실시예 1 내지 4, 비교예 1 내지 3의 음극 활물질은 비수계전해질 이차전지의 음극에 사용하였으며, 음극활물질의 충전(리튬삽입) 용량 및 방전(리튬탈리) 용량이 대극의 성능에 영향을 받지 않고 단독적으로 정밀하게 평가하기 위하여 리튬 금속을 대극으로 사용하여 리튬이차전지를 구성하고, 특성을 평가하였다.
리튬이차전지는 2032 사이즈(직경 20.0 mm, 두께 3.2 mm)의 코인형 전지로 아르곤 분위기 하의 글로브 박스 내에서 조립되었으며, 1 mm 두께의 금속 리튬을 코인형 전지캔의 바닥에 압착하였고 그 위에 폴리프로필렌 재질의 분리막을 형성하고, 음극을 리튬과 마주보게 하였다. 이때, 사용된 전해질은 EC(Ethylene Carbonate)와 DMC(Dimethyl Carbonate)를 부피비 1:1로 혼합하여 제조된 용매에 1.0 M의 LiPF6 염을 첨가하여 제조된 것으로 코인형 전지에 투입하여 캔 커버를 닫고 압착하여 리튬이차전지를 조립하였다.
전지 용량 측정
상기 조립된 리튬이차전지에 대한 특성 분석은 WonATech Corp.에서 제조된 WMPG 3000 충방전 시험장치를 이용하여 25℃에서 충방전을 시행하였다. 여기서, '충전'은 음극에 리튬이 삽입되는 반응으로 코인형 전지의 전압이 낮아지는 반응이고, '방전'은 리튬이 음극에서 탈리되어 대극쪽으로 이동하는 반응으로, 코인형 전지의 전압이 높아지는 반응이다. 또한 여기서 충방전 조건은 코인형 전지의 전압이 0.005 V - 3.0 V가 될 때까지 일정한 전류밀도(100 mAg-1)로 100 cylcles까지 충전과 방전을 행한다.
고율
충방전
특성 측정
상기 조립된 리튬이차전지에 대한 고율 충방전 특성 분석은 (c)와 동일하게 충방전에 의해 25 ℃에서 시행하였다. 고율 충방전 특성은 충방전시의 전류밀도를 변화시켜, 공급 또는 방전되는 일정한 전류밀도를 사이클 별로 증가시켜(100 mAg-1, 300 mAg-1, 500 mAg-1, 700 mAg-1, 1000 mAg-1, 2000 mAg-1 및 100 mAg-1) 그 전류밀도에서 충방전 되어 측정되는 용량(mAh/g)으로 나타내었다.
도 5는 본 발명의 실시예 1 내지 3의 사이클링 안정성을 나타내는 도면이다. 이는 모든 샘플의 사이클링 안정성이 우수하다는 것을 알 수 있다. 이는 모든 샘플이 탄소물질로 되어있어서 리튬이온의 삽입과 탈리가 가역적으로 이루어지기 때문이다. 그러나, 특히 실시예 1은 높은 용량과 훌륭한 사이클링 안정성을 보여주고 있다. 이것은 실시예 1의 결정화 온도가 가장 적절한 온도이기에 탄소의 결정화가 잘 이루어져, 높은 용량과 훌륭한 사이클링 안정성을 보여준다는 것을 알 수 있다.
도 6은 본 발명의 실시예 1 내지 3의 전류밀도에 따른 안정성을 나타내는 도면이다. 이는 모든 샘플이 높은 전류밀도에서 안정성을 보인다는 것을 알 수 있다. 이는 모든 샘플이 탄소물질이기 때문에, 높은 전류밀도에서 리튬이온의 삽입과 탈리가 가역적으로 이루어지기 때문이다. 그러나, 특히 실시예 1은 높은 용량과 안정성을 보인다는 것을 알 수 있다. 이것은 실시예 1의 결정화 온도가 가장 적절한 온도이기에 탄소의 결정화가 잘 이루어져, 높은 전류밀도에서도 리튬이온의 삽입과 탈리가 안정적으로 발생한다는 것을 알 수 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 제한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
Claims (15)
- 두부 또는 폐두부를 건조하는 단계;상기 건조된 두부 또는 폐두부를 공기 분위기 하에서 열처리하는 단계; 및상기 열처리된 두부 또는 폐두부를 비활성 기체 분위기 하에서 탄화하는 단계;를 포함하는,두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제1항에 있어서,상기 건조는, 40 ℃ 내지 200 ℃의 온도에서 24 시간 내지 100 시간 동안 수행하는 것인, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제1항에 있어서,상기 건조는, 열풍건조기, 기류건조기, 케이크 드라이어 및 링 드라이어로 이루어진 군으로부터 선택되는 적어도 어느 하나의 건조기에서 수행되는 것인, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제1항에 있어서,상기 열처리는, 200 ℃ 내지 500 ℃의 온도에서 30분 내지 10 시간 동안 수행하는 것인, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제1항에 있어서,상기 탄화는 500 ℃ 내지 900 ℃의 온도에서 30분 내지 3 시간 동안 수행하는 것인, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제1항에 있어서,상기 탄화하는 단계 이후에,상기 탄화된 두부 또는 폐두부를 비활성 기체 분위기 하에서 결정화하는 단계;를 더 포함하는, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제6항에 있어서,상기 결정화는 1000 ℃ 내지 1500 ℃의 온도에서 30분 내지 3 시간 동안 수행하는 것인, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제6항에 있어서,상기 결정화하는 단계 이후에,상기 결정화된 탄화물을 분쇄하는 단계;를 더 포함하는, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제8항에 있어서,상기 분쇄는, 핀 밀, 파인 임팩트 밀, 볼밀, 비즈밀, 로터가 장착된 기류방식의 분급기, 다이노밀, 디스크밀, 롤밀 및 사이클론으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 분쇄기에서 수행되는 것인, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- 제1항에 있어서,상기 비활성 기체는, 질소(N2), 아르곤(Ar), 헬륨(He), 네온(Ne), 크립톤(Kr) 및 제논(Xe)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인, 두부 또는 폐두부를 이용한 탄화물의 제조방법.
- X선 회절법에 의해 구해지는 (002) 평균 층간거리 (d002)가 3.7 Å 내지 4.0 Å이고, C축 방향의 결정자 직경 Lc(002)가 0.8 nm 내지 2 nm이고, R값이 1.3 내지 2이고, 피크강도비(5°피크/002 피크)가 2° 내지 4°인, 탄화물.
- 제11항에 있어서,상기 탄화물은, 제1항의 제조방법에 의하여 제조된 것인, 탄화물.
- 제11항에 있어서,상기 탄화물의 평균 입자 크기(D50)가 10 nm 내지 50 ㎛인 것인, 탄화물.
- 제11항에 있어서,상기 탄화물의 비표면적은 50 m2/g 내지 500 m2/g이고, 평균 기공크기가 1 nm 내지 2 nm인 것인, 탄화물.
- 제11항의 탄화물을 포함하는 음극 활물질;을 포함하는 리튬이차전지로서,상기 리튬이차전지의 비가역 용량은 200 mAh/g 내지 600 mAh/g 이고, 50 회 사이클 용량 유지율이 90 % 이상인 것인, 리튬이차전지.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/613,795 US11440802B2 (en) | 2017-05-17 | 2017-05-18 | Electrode active material, method for manufacturing same, and lithium secondary battery comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170060939A KR101957017B1 (ko) | 2017-05-17 | 2017-05-17 | 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 |
KR10-2017-0060939 | 2017-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018212374A1 true WO2018212374A1 (ko) | 2018-11-22 |
Family
ID=64274043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/005155 WO2018212374A1 (ko) | 2017-05-17 | 2017-05-18 | 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11440802B2 (ko) |
KR (1) | KR101957017B1 (ko) |
WO (1) | WO2018212374A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112290026A (zh) * | 2020-11-11 | 2021-01-29 | 瓮福(集团)有限责任公司 | 一种基于碳化豆腐的电极材料的制备方法和锂硫电池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112938967A (zh) * | 2021-05-07 | 2021-06-11 | 桂林电子科技大学 | 一种腐乳基多孔碳材料及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08231273A (ja) * | 1995-02-24 | 1996-09-10 | Asahi Organic Chem Ind Co Ltd | 炭化物の製造方法及びその炭化物の粒子を含んでなる負極 |
US20040053136A1 (en) * | 2002-09-13 | 2004-03-18 | Bauman William C. | Lithium carbide composition, cathode, battery and process |
WO2012091515A2 (ko) * | 2010-12-31 | 2012-07-05 | 애경유화 주식회사 | 리튬이차전지용 음극 활물질 및 그 제조방법, 이를 이용한 리튬이차전지 |
KR20140017496A (ko) * | 2010-10-08 | 2014-02-11 | 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 | 격자왜곡을 가지는 리튬이온 이차전지 음극용 흑연 재료 및 리튬이온 이차전지 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100277792B1 (ko) * | 1998-09-08 | 2001-02-01 | 김순택 | 리튬 계열 전지용 음극 활물질 및 그 제조 방법 |
JP2000178017A (ja) | 1998-12-15 | 2000-06-27 | Koichi Hara | 活性炭の製造方法 |
KR100878262B1 (ko) | 2007-05-18 | 2009-01-12 | 주식회사 에이엠오 | 비지를 이용한 고성능 활성탄의 제조방법 |
CN103250283B (zh) * | 2010-12-31 | 2016-01-13 | 爱敬油化株式会社 | 用于锂二次电池的阴极活性物质及其制备方法,以及利用其的锂二次电池 |
-
2017
- 2017-05-17 KR KR1020170060939A patent/KR101957017B1/ko active IP Right Grant
- 2017-05-18 WO PCT/KR2017/005155 patent/WO2018212374A1/ko active Application Filing
- 2017-05-18 US US16/613,795 patent/US11440802B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08231273A (ja) * | 1995-02-24 | 1996-09-10 | Asahi Organic Chem Ind Co Ltd | 炭化物の製造方法及びその炭化物の粒子を含んでなる負極 |
US20040053136A1 (en) * | 2002-09-13 | 2004-03-18 | Bauman William C. | Lithium carbide composition, cathode, battery and process |
KR20140017496A (ko) * | 2010-10-08 | 2014-02-11 | 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 | 격자왜곡을 가지는 리튬이온 이차전지 음극용 흑연 재료 및 리튬이온 이차전지 |
WO2012091515A2 (ko) * | 2010-12-31 | 2012-07-05 | 애경유화 주식회사 | 리튬이차전지용 음극 활물질 및 그 제조방법, 이를 이용한 리튬이차전지 |
Non-Patent Citations (1)
Title |
---|
LEE, DO-YOUNG ET AL.: "High-surface-area Tofu Based Activated Porous Carbon for Electrical Double-layer Capacitors", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 52, 27 March 2017 (2017-03-27), pages 121 - 127, XP085009550 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112290026A (zh) * | 2020-11-11 | 2021-01-29 | 瓮福(集团)有限责任公司 | 一种基于碳化豆腐的电极材料的制备方法和锂硫电池 |
CN112290026B (zh) * | 2020-11-11 | 2023-04-25 | 瓮福(集团)有限责任公司 | 一种基于碳化豆腐的电极材料的制备方法和锂硫电池 |
Also Published As
Publication number | Publication date |
---|---|
US20210147241A1 (en) | 2021-05-20 |
US11440802B2 (en) | 2022-09-13 |
KR101957017B1 (ko) | 2019-03-12 |
KR20180126216A (ko) | 2018-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022121136A1 (zh) | 一种高倍率锂离子电池人造石墨负极材料及其制备方法 | |
KR101131937B1 (ko) | 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
US8999580B2 (en) | Composite graphite particles and lithium rechargeable battery using the same | |
JP5439701B2 (ja) | リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池 | |
WO2013180411A1 (ko) | 규소계 물질과 탄소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지 | |
CN101151748A (zh) | 锂二次电池及其正极材料 | |
AU2020272993A1 (en) | Process for preparing and use of hard-carbon containing materials | |
WO2011162529A2 (ko) | 안전성이 향상된 음극활물질 및 이를 포함하는 이차전지 | |
WO2016121711A1 (ja) | リチウムイオン二次電池負極材用黒鉛粉の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
CN117673358A (zh) | 电极用导电性组合物及使用了其的电极、电池 | |
JP2009059676A (ja) | リチウムイオン二次電池用負極活物質及び負極 | |
US20120328954A1 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery | |
CN111656582A (zh) | 锂离子二次电池用负极活性物质、锂离子二次电池用负极和锂离子二次电池 | |
WO2018212374A1 (ko) | 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지 | |
CN110870114A (zh) | 锂离子二次电池用负极材料的制造方法及锂离子二次电池用负极材料 | |
KR101417588B1 (ko) | 고전도성 음극활물질 및 이의 제조방법 | |
JP5590159B2 (ja) | リチウムイオン二次電池用負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池 | |
JP2000003708A (ja) | 被覆炭素材料、その製造方法、ならびにそれを用いたリチウム二次電池 | |
JP7518899B2 (ja) | 複合黒鉛材料及びその製造方法、二次電池並びに装置 | |
CN108242546B (zh) | 一种无定型碳负极材料及其制备方法和电池 | |
US20150221948A1 (en) | Method of producing carbonaceous material for non-aqueous electrolyte secondary battery negative electrodes | |
KR100356636B1 (ko) | 비수성의 전해액 2차전지 및 양극재료의 제조방법 | |
KR101349066B1 (ko) | 표면 개질된 흑연 입자로 이루어진 음극 활물질 및 이를 포함하는 리튬 이차 전지 | |
US20050202317A1 (en) | Nonaqueous secondary battery, method for making negative electrode component therefor, and apparatuses for evaluating and making graphite material for negative electrode component | |
JP2002124256A (ja) | 非水溶媒二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17910438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17910438 Country of ref document: EP Kind code of ref document: A1 |