WO2018210183A1 - 3d打印设备和方法 - Google Patents

3d打印设备和方法 Download PDF

Info

Publication number
WO2018210183A1
WO2018210183A1 PCT/CN2018/086489 CN2018086489W WO2018210183A1 WO 2018210183 A1 WO2018210183 A1 WO 2018210183A1 CN 2018086489 W CN2018086489 W CN 2018086489W WO 2018210183 A1 WO2018210183 A1 WO 2018210183A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
melt
printing
discharge
nozzle
Prior art date
Application number
PCT/CN2018/086489
Other languages
English (en)
French (fr)
Inventor
成森平
李霄凌
邓飞黄
卢皓晖
刘海利
姚涓
王晓飞
吴伟
Original Assignee
南京三迭纪医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020197036147A priority Critical patent/KR102455404B1/ko
Priority to CN202111400828.2A priority patent/CN114311659A/zh
Priority to AU2018267821A priority patent/AU2018267821B2/en
Priority to EP18802440.0A priority patent/EP3626439A4/en
Priority to US16/614,301 priority patent/US11364674B2/en
Priority to CA3063797A priority patent/CA3063797A1/en
Application filed by 南京三迭纪医药科技有限公司 filed Critical 南京三迭纪医药科技有限公司
Priority to JP2019564009A priority patent/JP7174432B2/ja
Priority to CN202111376607.6A priority patent/CN114290669A/zh
Priority to CN201880001232.5A priority patent/CN109311232A/zh
Publication of WO2018210183A1 publication Critical patent/WO2018210183A1/zh
Priority to US17/752,729 priority patent/US20220339857A1/en
Priority to JP2022160181A priority patent/JP2022177311A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/329Feeding using hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present application relates to an apparatus and method related to additive manufacturing techniques, and more particularly to a 3D printing apparatus and a 3D printing method.
  • 3D printing is a rapid prototyping technology based on a digital model that uses a bondable material such as metal or plastic to produce a product by layer-by-layer printing. With the rapid development of related technologies, 3D printing is widely used in the jewelry, engineering, automotive, dental, aerospace and medical industries.
  • the melt layer forming technology is a commonly used 3D printing technology.
  • the 3D printing device adopting the technology generally heats the filamentous material composed of materials such as ABS and PLA to a temperature slightly higher than the melting point, and under the control of a computer or a controller, the layer-by-layer extrusion melt is stacked and stacked into a desired product.
  • Existing such 3D printing devices typically have limitations on the material of the starting material prior to melting, such as 3D printing equipment using melt lamination molding techniques.
  • the generally applicable feed must be linear or filamentary, which obviously limits this type of material. The scope of application of 3D printing equipment.
  • a major problem with existing devices for additive manufacturing is the accidental leakage of material through the nozzle, which can result in printing over the required amount of material.
  • the problem is even more complicated when using two or more nozzles that may print different materials and need to alternately turn the switch on or off. For example, if the first nozzle leaks the first material when the second nozzle prints the second material, manufacturing defects or material waste may occur.
  • the devices and systems of the present invention can handle a range of pharmaceutical materials with high accuracy and high precision material deposition, these devices and systems are well suited for the manufacture of pharmaceutical dosage forms having complex geometries and compositions.
  • the devices, systems and methods described herein also facilitate personalized medicine, including personalized dosage and/or personalized release profiles.
  • Personalized medicine refers to the stratification of patient populations based on biomarkers to aid in treatment decisions and personalized dosage form design.
  • the personalized pharmaceutical dosage form allows the dosage and release profile to be adjusted based on the patient's quality and metabolism.
  • Pharmaceutical dosage forms made using the devices described herein can ensure an accurate dose of growth for a child and allow for personalized dosing of highly effective drugs.
  • Personalized dosage forms can also combine all patient's medications into a single daily dose to improve patient compliance and treatment adherence. Modifying digital designs is easier than modifying physical devices.
  • automated small three-dimensional printing can have negligible operating costs.
  • the use of the additive manufacturing apparatus described herein allows a plurality of small, personalized batches to be economically viable and enables personalized dosage forms designed to enhance compliance.
  • continuous production of drugs uses process analysis technology (PAT) to provide quality information (such as near-infrared technology) in real time and continuously, so that the final product can be directly put on the market.
  • PAT process analysis technology
  • This production process greatly improves the efficiency of the manufacturing equipment and improves the quality of the medicine.
  • continuous quality inspection during the production process can effectively avoid batch waste, eliminating the need for intermediate links and saving the storage and transportation costs of intermediate products. It can be predicted that in the near future, the "continuous production” method, like 3D drug printing, may become the mainstream of drug production.
  • continuous production requires a fully enclosed vacuum feed to avoid cross-contamination and requires all testing to be done during the production process.
  • a 3D printing apparatus including a first melt extrusion module, a first printing module, and a platform module.
  • the first melt extrusion module includes a processing chamber having a feed port and a discharge port, and an extrusion device and a heating device disposed at the process chamber.
  • the first melt extrusion module is configured to receive a first initial material through a feed port of the processing chamber and to heat and extrude the first initial material such that the first initial material is converted to A first melt, the first melt being extruded from a discharge port of the processing chamber.
  • the first printing module is in communication with a discharge opening of the processing chamber and has a first nozzle.
  • the first printing module is configured to receive the first melt extruded from a discharge opening of the processing chamber and direct the first melt to be extruded through the first nozzle.
  • the platform module is configured to receive the first melt extruded through the first nozzle.
  • the first printing module is for melting and applying pressure
  • the first printing module includes a supply channel connected to the printhead
  • the printhead includes a nozzle
  • the nozzle includes a cone An inner surface and an extrusion port for printing material
  • a pressure sensor for detecting a pressure of a material in the feed passage in the nozzle or near the nozzle
  • a control switch including an openable position and Closing a position-switching sealing needle, the sealing needle extending through a portion of the supply passage and including a tapered end; wherein a tapered end of the sealing needle engages a tapered inner surface of the nozzle to block Material flows through the nozzle when the sealing needle is in the closed position.
  • a product eg, a pharmaceutical dosage form
  • the control switch of the sealing needle prevents material from flowing through the nozzle.
  • the nozzle includes a tapered inner surface and the sealing needle includes a tapered end that engages the tapered inner surface of the nozzle to limit material leakage.
  • the sealing needle is preferably sharp, thin and has no protrusions, which may push the material out of the nozzle when in the closed position.
  • the pressure of the material is preferably kept approximately constant in the apparatus, and the pressure of the material can be controlled by monitoring the pressure and applying pressure to the material using a feedback system.
  • any portion of the sealing needle of the contact material has no protrusions.
  • the tapered end of the sealing needle includes a pointed end.
  • the tapered end of the sealing needle is frustoconical.
  • the tapered inner surface of the nozzle has a first taper angle and the tapered end of the sealing needle has a second taper angle; and the second taper angle is the same as or smaller than the first taper angle a cone angle.
  • the second taper angle is about 60° or less.
  • the second cone angle is about 45° or less.
  • the ratio of the first cone angle to the second cone angle is between about 1:1 and 4:1.
  • the extrusion port has a diameter of from about 0.1 mm to 1 mm. In some embodiments, the tapered end has a maximum diameter of from about 0.2 mm to about 3.0 mm. In some embodiments, the extrusion port has a diameter, the tapered end has a maximum diameter, and a ratio of a maximum diameter of the tapered end to a diameter of the extrusion port is about 1:0.8 to about 1:0.1.
  • control switch includes an actuator that can position the sealing needle in an open position or a closed position.
  • the actuator is a pneumatic actuator.
  • the actuator is a mechanical actuator.
  • the sealing needle passes through a gasket that is fixed relative to the position of the nozzle, wherein the gasket closes the supply passage.
  • the tapered end of the sealing needle or the tapered inner surface of the nozzle comprises a flexible liner or bushing.
  • the material is non-wire. In some embodiments, the material has a viscosity of about 100 Pa.s or greater when extruded from the device. In some embodiments, the material has a viscosity of about 400 Pa.s or greater when extruded from the device. In some embodiments, the material melts at a temperature of from about 50 °C to 400 °C. In some embodiments, the material is extruded from the nozzle at a temperature of from about 50 °C to about 400 °C. In some embodiments, the material is extruded from the nozzle at a temperature of from about 90 °C to 300 °C.
  • a first feed module is further included.
  • the first charging module includes a hopper having a feed port and a discharge port, and configured to receive a first initial material through a feed port of the hopper, and pass through a discharge port of the hopper The feed port of the processing chamber of the first melt extrusion module discharges the first initial material.
  • the 3D printing device further includes a control module.
  • the control module includes a computerized controller for controlling the 3D printing device based on status parameters of the 3D printing device.
  • the 3D printing device further includes a first temperature detecting device communicatively coupled to the control module.
  • the first temperature detecting device is configured to detect a temperature of the first melt at the processing chamber and to communicate a first temperature detection signal to the control module.
  • the processing chamber heating device is communicatively coupled to the control module, and the control module controls heating power of the processing chamber heating device based on the first temperature detection signal.
  • the extrusion device is in communication with the control module, and the control module controls the extrusion power of the extrusion device based on the first temperature detection signal.
  • the extrusion device comprises a screw device.
  • the screw device is disposed in the processing chamber to extrude the first initial material or first melt and deliver the first melt to a discharge port of the processing chamber.
  • the screw device is a single screw device, a twin screw device, or a combination thereof.
  • the first melt extrusion module includes a melt extrusion discharge control device that is configured to control a discharge port of the processing chamber The discharge rate of the first melt.
  • the 3D printing apparatus further includes: a first pressure detecting device communicatively coupled to the control module, configured to detect the first printing module a pressure of the first melt and transmitting a first pressure detection signal to the control module; a pressure adjustment device disposed to the first print module, the microphone is configured to adjust the first print a pressure of the first melt at the module; wherein the control module is communicatively coupled to the pressure regulating device and adjusts the at the first printing module by the pressure regulating device based on the first pressure detection signal The pressure of the first melt.
  • a first pressure detecting device communicatively coupled to the control module, configured to detect the first printing module a pressure of the first melt and transmitting a first pressure detection signal to the control module
  • a pressure adjustment device disposed to the first print module, the microphone is configured to adjust the first print a pressure of the first melt at the module
  • the control module is communicatively coupled to the pressure regulating device and adjusts the at the first printing module by the pressure regulating device based on the first pressure detection signal The
  • a pressure sensor is coupled to the computer system that controls the first printing module in response to the pressure reported by the pressure sensor and pressurizes the material to a desired pressure.
  • the pressure of the material is within 0.05 MPa of the desired pressure.
  • the first printing module includes a piston and a barrel coupled to the feed flow passage, wherein the piston is driven to control the pressure of material within the barrel.
  • a stepper motor is used to drive the piston.
  • the 3D printing apparatus further includes: a second temperature detecting device communicatively coupled to the control module, configured to detect the first printing module a temperature of the first melt and transmitting a second temperature detection signal to the control module; a temperature adjustment device disposed at the first printing module, configured to adjust the first print a temperature of the first melt at the module; wherein the control module is communicatively coupled to the temperature adjustment device and adjusts the at the first print module by the temperature adjustment device based on the second temperature detection signal The temperature of the first melt.
  • the second temperature detecting device is coupled to a computer system that controls the respective temperature regulating device based on the temperature monitored by the second temperature detecting device.
  • the present invention provides a more accurate system for depositing materials or manufacturing products (e.g., pharmaceutical dosage forms) by additive control of the pressure in the feed channel in the vicinity of the nozzle or nozzle, and utilizing when the sealing needle is closed In position, a control switch with a sealing pin prevents material from flowing through the nozzle.
  • the nozzle includes a tapered inner surface and the sealing needle includes a tapered end that engages the tapered inner surface of the nozzle to limit material leakage.
  • the sealing needle is preferably sharp, thin and has no protrusions, which may push the material out of the nozzle when in the closed position.
  • the pressure of the material is preferably kept approximately constant in the apparatus, and the pressure of the material can be controlled by monitoring the pressure and applying pressure to the material using a feedback system.
  • the first charging module further includes a hopper discharge control device, the hopper discharge control device being configured to control the first initial material of the discharge port of the hopper Discharge speed.
  • the hopper discharge control device is a screw device, and the screw device is disposed in the hopper, and controls a discharge port of the hopper by a change in the rotation speed of the screw The discharge rate of the first initial material.
  • a second charging module is further included that is configured to receive a second initial material through a feed port of the hopper and to discharge the second initial material through a discharge port of the hopper.
  • the 3D printing apparatus further includes: a first component detecting device communicatively coupled to the control module, configured to detect the 3D printing device a component of the first melt at any position and transmitting a first component detection signal to the control module; a hopper discharge control device of the first and second feed modules and the control module a communication connection, the control module respectively controlling the hoppers of the first feeding module and the second feeding module through the hopper discharging control device of the first feeding module and the second feeding module according to the first component detecting signal The discharge rate of the first initial material and the second initial material of the discharge port.
  • a first component detecting device communicatively coupled to the control module, configured to detect the 3D printing device a component of the first melt at any position and transmitting a first component detection signal to the control module
  • a hopper discharge control device of the first and second feed modules and the control module a communication connection, the control module respectively controlling the hoppers of the first feeding module and the second feeding module through the hopper discharging control device of the first feeding module and the
  • the 3D printing apparatus further includes: a first cache module, the first cache module including a storage chamber having a feed port and a discharge port, the feed of the storage chamber a port communicating with a discharge opening of the processing chamber, the discharge opening of the storage chamber being in communication with the first printing module, the first buffer module being configured to receive a discharge from the processing chamber The first melt is extruded from the mouth and directs the first melt to enter the first printing module through a discharge opening of the storage chamber.
  • the first cache module further includes a stock discharge control device for controlling a discharge rate of the first melt of the discharge port of the storage chamber.
  • the first cache module further includes a storage compartment heating device, the storage compartment heating apparatus being configured to heat the first melt within the storage compartment.
  • the 3D printing apparatus further includes: a third temperature detecting device communicatively coupled to the control module, configured to detect at the storage chamber a temperature of the first melt and a third temperature detection signal to the control module; the control module controlling a heating power of the storage chamber heating device according to the third temperature detection signal.
  • a third temperature detecting device communicatively coupled to the control module, configured to detect at the storage chamber a temperature of the first melt and a third temperature detection signal to the control module; the control module controlling a heating power of the storage chamber heating device according to the third temperature detection signal.
  • the 3D printing apparatus further includes: a volume detecting device communicatively coupled to the control module, configured to detect a remaining volume of the storage chamber, and to The control module transmits a volume detection signal.
  • the first melt extrusion module further comprises: a melt extrusion discharge control device configured to control the first melt of the discharge port of the processing chamber Discharge speed; wherein the melt extrusion discharge control device is communicatively coupled to the control module, and the control module controls the processing chamber through the melt extrusion discharge control device according to the volume detection signal The discharge rate of the first melt of the discharge port.
  • the 3D printing apparatus further includes a return circuit configured to direct the first melt recirculation that is at least partially extruded from the discharge port of the processing chamber To the processing chamber.
  • the 3D printing apparatus further includes: a second charging module, the second charging module including a hopper having a feed opening and a discharge opening, and configured to pass through the hopper Receiving and discharging a second initial material; a second melt extrusion module, the second melt extrusion module comprising a processing chamber having a feed port and a discharge port, and an extrusion device disposed at the processing chamber Processing a chamber heating device configured to receive the second initial material through a feed port of a processing chamber of the second melt extrusion module and to heat and extrude the second initial material such that The second initial material is converted into a second melt, the second melt is extruded from a discharge port of the processing chamber of the second melt extrusion module; and a first mixing module, the first The mixing module includes a mixing chamber having a feed port and a discharge port, the feed port of the mixing chamber and the discharge port of the processing chamber of the first melt extrusion module and the second melt extrusion module Connected, the discharge port
  • the first melt extrusion module and the second melt extrusion module each comprise a melt extrusion discharge control device configured to control the first melt extrusion module and The discharge rate of the first melt and the second melt of the discharge port of the processing chamber of the second melt extrusion module.
  • the 3D printing apparatus further includes: a second component detecting device communicatively coupled to the control module, configured to detect the mixing chamber a component of the first mixed melt extruded from the discharge port and transmitting a second component detection signal to the control module; melt extrusion of the first melt extrusion module and the second melt extrusion module
  • the discharge control device is respectively communicably connected to the control module, and the control module passes the melt extrusion discharge control device of the first melt extrusion module and the second melt extrusion module according to the second component detection signal
  • the discharge rates of the first melt and the second melt of the discharge ports of the processing chambers of the first melt extrusion module and the second melt extrusion module are separately controlled.
  • the first mixing module further comprises a mixing chamber heating device arranged to heat the first mixed melt at the mixing chamber.
  • the 3D printing apparatus further includes: a fourth temperature detecting device communicatively coupled to the control module and configured to detect at the mixing chamber Temperature of the first mixed melt and transmitting a fourth temperature detection signal to the control module; the control module controls heating power of the mixing chamber heating device according to the fourth temperature detection signal.
  • the first mixing module further includes a mixing chamber discharge control device for controlling a discharge speed of the first mixed melt of the discharge port of the mixing chamber .
  • the first nozzle has an inner diameter of 0.05 to 2 mm.
  • the first printing module further includes a second nozzle.
  • the communication paths of the first nozzle and the second nozzle to the discharge port of the processing chamber are equidistant.
  • the nozzle device includes a plurality of nozzles arranged in an array.
  • the 3D printing device further includes a print module drive mechanism configured to drive the first nozzle of the first print module to move relative to the platform module.
  • the print module drive mechanism is configured to drive a first nozzle of the print module to move along a Cartesian coordinate system Z-axis relative to the platform module.
  • the platform module includes: a first deposition platform configured to receive the first melt extruded through the first nozzle; and a platform drive a mechanism that drives the first deposition platform to move relative to the first nozzle of the first printing module.
  • the platform drive mechanism is configured to drive the first deposition platform to move relative to the first nozzle along a Cartesian coordinate system X-axis and/or Y-axis.
  • the 3D printing apparatus further includes: a second melt extrusion module, the second melt extrusion module including a processing chamber having a feed port and a discharge port and being disposed in the processing chamber An extrusion device at the chamber and a processing chamber heating device, the second melt extrusion module being configured to receive a second initial material through a feed port of the processing chamber and to heat the second initial material And extruding to convert the second initial material into a second melt, the second melt being extruded from a discharge opening of the processing chamber; the first printing module further comprising a second nozzle The second nozzle is in communication with a discharge opening of a processing chamber of the second melt extrusion module, the first print module being configured to receive a discharge from a processing chamber of the second melt extrusion module The second melt extruded from the port and directing the second melt to be extruded through the second nozzle; the platform drive mechanism drives the deposition platform below the first nozzle and second Move between the lower part of the nozzle.
  • the platform module further includes: a second deposition platform configured to receive the first melt extruded through the first nozzle; A platform drive mechanism drives the first deposition platform and the second deposition platform sequentially through the lower portion of the first nozzle.
  • the 3D printing device further includes a product collection module configured to collect the final product formed on the platform module.
  • the 3D printing device further includes an inspection module configured to detect product parameters of the final product formed on the platform module.
  • the 3D printing device further includes an automatic screening module configured to pick the final product formed on the platform module.
  • the 3D printing apparatus further includes an automatic feed module configured to deliver the first initial material to the first feed module.
  • all of the various components in communication with each other are in communication via a hose.
  • the hose has an inner diameter of from 1 to 100 millimeters.
  • the first starting material comprises a thermoplastic material.
  • the 3D printing device further includes a second printing module located above the Z-axis of the Cartesian coordinate system of the first printing module.
  • the 3D printing device further includes a plurality of the above devices, wherein each of the printing modules is configured with a control switch.
  • the system includes a first device loaded with a first material and a second device loaded with a second material, wherein the first material and the second material are different.
  • the system includes a computer system including one or more processors and computer readable memory, wherein the computer system is used to control the system.
  • a computer readable memory stores instructions for printing a product using the system.
  • the computer readable memory stores instructions for controlling the pressure of material in each print module in response to pressure detected by a pressure sensor in the respective print module.
  • the computer readable memory stores instructions for controlling the temperature of the material in each of the printing modules in response to temperatures detected by temperature sensors in the respective printing modules.
  • a 3D printing method comprising: adding a first initial material to a processing chamber of a first melt extrusion module; An initial material is heated and extruded to convert it into a first melt, and the first melt is extruded from a discharge port of the processing chamber; and a discharge port of the processing chamber is guided The first melt is extruded through a first nozzle of the first printing module and deposited onto the platform module.
  • the 3D printing method further includes adding a first starting material to the first melt extrusion module through a hopper of the first charging module.
  • the 3D printing method further includes: detecting a pressure of the first melt at the first printing module; and controlling the first printing module according to the detected pressure The pressure of the first melt.
  • the method uses a feedback system to control the pressure of the first melt based on the monitored pressure.
  • the pressure of the first melt within the nozzle remains approximately constant.
  • the 3D printing method further includes: detecting a temperature of the first melt at the first printing module; and adjusting a first portion at the first printing module according to the detected temperature The temperature of a melt.
  • the method uses a feedback system to control the temperature of the first melt based on the monitored temperature.
  • the temperature of the first melt within the nozzle remains approximately constant.
  • the step of directing the first melt of the discharge opening of the processing chamber through the first nozzle of the first printing module and depositing onto the platform module further comprises the step of further comprising: Passing a first melt through an extrusion port of the nozzle, the nozzle including a tapered inner surface; engaging a tapered end of the sealing needle with a tapered inner surface of the nozzle to close the extrusion port to prevent flow of the first melt Retracting the tapered end of the sealing needle to restore the flow of the first melt through the extrusion port.
  • the first melt comprises a pharmaceutically acceptable material. In some embodiments, the first melt comprises a drug. In some embodiments, the method includes receiving an instruction to manufacture a pharmaceutical dosage form.
  • the material is non-wired. In some embodiments, the material has a viscosity of about 100 Pa.s or greater.
  • any portion of the sealing needle that contacts the material has no protrusions.
  • the tapered end of the sealing needle includes a sharpened tip.
  • the tapered end of the sealing needle is frustoconical.
  • the tapered inner surface of the nozzle has a first taper angle and the tapered end of the sealing needle has a second taper angle; wherein the second taper angle is equal to or less than the first taper angle.
  • the second taper angle is about 60° or less.
  • the second cone angle is about 45° or less.
  • the ratio of the first cone angle to the second cone angle is between about 1:1 and 4:1.
  • the extrusion port has a diameter of from about 0.1 mm to 1 mm.
  • the tapered end has a maximum diameter of from about 0.2 to about 3.0 mm. In some embodiments, the extrusion port has a diameter and the tapered end has a maximum diameter, and the ratio of the largest diameter of the tapered end to the diameter of the extrusion port is from about 1:0.8 to about 1:0.1.
  • the method uses a feedback system to control the pressure of the first melt based on the monitored pressure. In certain embodiments of the invention, the pressure of the first melt within the nozzle remains approximately constant.
  • the method uses a feedback system to control the temperature of the first melt based on the monitored temperature. In certain embodiments of the invention, the temperature of the first melt within the nozzle remains approximately constant. In some embodiments of the present invention, the 3D printing method further includes: detecting a temperature of the first melt at the processing chamber; and controlling a portion of the processing chamber according to the detected temperature The heating power of a melt or first starting material and/or the extrusion power to the first melt or first starting material.
  • the step of guiding the first melt of the discharge port of the processing chamber through the first nozzle of the first printing module and depositing it onto the platform module comprises: Directing a first melt of the discharge port of the processing chamber into a storage chamber of the first cache module; guiding the first melt of the discharge port of the storage chamber through the first of the first printing module The nozzle is extruded and deposited onto the platform module.
  • the 3D printing method further includes: detecting a temperature of the first melt at the storage chamber; and controlling a first of the storage chambers according to the detected temperature The heating power of a melt.
  • the 3D printing method detecting a remaining volume of the storage chamber; and controlling the first of the discharge ports of the processing chamber according to a remaining volume of the storage chamber The discharge rate of the melt.
  • the 3D printing method further includes directing the first melt that is at least partially extruded from the discharge opening of the processing chamber to flow back into the processing chamber.
  • the 3D printing method further comprises: adding a second initial material to a processing chamber of the second melt extrusion module through a hopper of the second charging module; and the second melt extrusion module
  • the second starting material in the processing chamber is heated and extruded to convert it into a second melt and is extruded from the discharge port of the processing chamber of the second melt extrusion module; Mixing the first melt and the second melt in a chamber to form a first mixed melt; and directing the first mixed melt of the mixing chamber discharge port through the first nozzle of the first printing module And deposited on the platform module.
  • the 3D printing method further comprises: detecting a composition of the first mixed melt extruded from the discharge opening of the mixing chamber; according to the detected first mixed melt The components control the discharge rates of the first melt and the second melt at the discharge ports of the processing chambers of the first melt extrusion module and the second melt extrusion module, respectively.
  • the 3D printing method further comprises: detecting a temperature of the first mixed melt at the mixing chamber; and controlling a portion at the mixing chamber based on the detected temperature The heating power of a mixed melt.
  • the 3D printing method further comprises: adding a second initial material to a processing chamber of the first melt extrusion module through a hopper of the second charging module; An initial material and a second starting material are heated and extruded to convert them into a first melt.
  • the 3D printing method further includes detecting a composition of the first melt at an arbitrary position of the 3D printing apparatus, and separately controlling the component according to the detected composition of the first melt The discharge rates of the first initial material and the second initial material of the discharge ports of the first charging module and the second charging module.
  • the 3D printing method further comprises: adding a second initial material to a processing chamber of the second melt extrusion module through a hopper of the second charging module; and performing the second melt extrusion
  • the second initial material in the processing chamber of the module is heated and extruded to convert it into a second melt and extruded from a discharge port of the processing chamber of the second melt extrusion module; a second melt of the discharge port of the processing chamber of the second melt extrusion module is extruded through a second nozzle of the first printing module and deposited onto the platform module; and driving the platform module at the first Move between the lower side of the nozzle and the lower side of the second nozzle.
  • the method further comprises monitoring the pressure of the first melt within the first nozzle or adjacent the first nozzle; or monitoring the pressure of the second melt within the second nozzle or adjacent the second nozzle .
  • the pressure of the first melt within the first nozzle or the pressure of the second melt within the second nozzle remains approximately constant.
  • the method includes using a feedback system to control the pressure of the first melt or the second melt based on the monitored pressure.
  • the first melt or the second melt has a viscosity of about 100 Pa.s or greater.
  • the first starting material or the second starting material is non-wired.
  • any portion of the first sealing needle that contacts the first melt or any portion of the second sealing needle that contacts the second melt has no protrusions.
  • the temperature of the first melt within the first nozzle or the temperature of the second melt within the second nozzle remains approximately constant.
  • the method includes monitoring the temperature of the first melt or the temperature of the second melt.
  • the method includes using a feedback system to control the temperature of the first melt based on the monitored temperature of the first melt, or using a feedback system to control the second melt based on the monitored temperature of the second melt Body temperature.
  • the tapered end of the first sealing needle or the tapered end of the second sealing needle comprises a pointed end.
  • the tapered end of the first sealing needle or the tapered end of the second sealing needle is frustoconical.
  • the tapered inner surface of the first nozzle has a first taper angle and the tapered end of the first sealing needle has a second taper angle; wherein the second taper angle is equal to or less than a first taper angle; or a tapered inner surface of the second nozzle has a third taper angle and a tapered end of the second seal needle has a fourth taper angle; wherein the fourth taper angle and the fourth taper angle
  • the cone angle is equal to or smaller than the third cone angle.
  • the fourth cone angle is about 60° or less.
  • the second or fourth cone angle is about 45 or less.
  • the ratio of the first cone angle to the second cone angle or the ratio of the third cone angle to the fourth cone angle is from about 1:1 to about 4:1.
  • the first extrusion port or the second extrusion port has a diameter of from about 0.1 mm to about 1 mm.
  • the tapered end of the first sealing needle or the tapered end of the second sealing needle has a maximum diameter of from about 0.2 to about 3.0 mm.
  • the 3D printing method further includes driving a first nozzle of the first printing module to move relative to the platform module.
  • the 3D printing method further includes driving a first nozzle of the first printing module to move along a Z-axis of a Cartesian coordinate system relative to the platform module.
  • the 3D printing method further includes: driving a first deposition platform of the platform module to move relative to a first nozzle of the first printing module; wherein the first deposition platform is Disposed to receive the first melt extruded through the first nozzle.
  • the 3D printing method further includes driving the first deposition platform to move relative to the first nozzle along a Cartesian coordinate system X-axis and/or Y-axis.
  • the 3D printing method further includes collecting the final product formed on the platform module.
  • the 3D printing method further includes detecting product parameters of a final product formed on the platform module.
  • the 3D printing method further includes sorting the final product formed on the platform module.
  • the 3D printing method further includes conveying the first initial material to the charging module via an automatic feed module.
  • the first starting material comprises a thermoplastic material.
  • Another aspect of the present invention provides a printing module for a 3D printing apparatus comprising n ⁇ m nozzles forming an array arrangement (n and m are integers ⁇ 2, respectively), wherein the (x, y) The position of the nozzle is the xth column and the yth row (1 ⁇ x ⁇ n, 1 ⁇ y ⁇ m).
  • the printing module is configured to extrude m melts, wherein the (x, y)th nozzle is configured to extrude the yth melt.
  • the n x m nozzles are connected to n x m processing chambers, respectively.
  • the discharge rates of the n x m nozzles are each controlled by n x m melt extrusion discharge control devices.
  • the y-th row nozzles of the n x m nozzles are arranged to have substantially the same discharge rate.
  • a 3D printing method comprising: melting a material and pressurizing a material; flowing material passing through an extrusion nozzle, the nozzle including a tapered inner surface; The nozzle or the position close to the nozzle monitors the pressure of the material; the tapered end of the sealing needle engages the tapered inner surface of the nozzle, thereby closing the extrusion port to prevent the flow of molten material; and withdrawing the tapered end of the sealing needle to recover The flow of material through the extrusion port.
  • the method includes receiving an instruction to manufacture the product.
  • the 3D printing method further includes: melting and pressurizing the first material; flowing the first material through a first extrusion port of the first nozzle including the tapered inner surface; a tapered end of the sealing needle engages the tapered inner surface of the first nozzle to close the first extrusion port and prevent flow of the molten first material; to melt and pressurize the second material; from within the cone of the second nozzle The surface withdraws the tapered end of the second sealing needle to begin flowing the second material through the second extrusion port.
  • the method includes receiving an instruction to manufacture a product.
  • a method of producing a pharmaceutical dosage form by 3D printing comprising: melting and pressurizing a first pharmaceutical material; flowing a first pharmaceutical material through a first nozzle comprising a tapered inner surface An extrusion port; engaging a tapered end of the first sealing needle with the tapered inner surface of the first nozzle to seal the first extrusion port to prevent the flow of the molten first material; and melting and pressurizing the second pharmaceutical material; The tapered end of the second sealing needle is withdrawn from the tapered inner surface of the second nozzle such that the second pharmaceutical material flows through the second extrusion port.
  • the first pharmaceutical material or the second pharmaceutical material is an erodable material.
  • the first pharmaceutical material or the second pharmaceutical material comprises a drug.
  • the pharmaceutical dosage form has a specified drug release profile.
  • the method further comprises receiving a control instruction for making a pharmaceutical dosage form.
  • the product or pharmaceutical dosage form is manufactured in a batch mode. In some embodiments of the above methods, the product or pharmaceutical dosage form is manufactured in a continuous mode.
  • the invention also provides a product or pharmaceutical dosage form prepared according to any of the methods described above.
  • FIG. 1 exemplarily shows a schematic diagram of a 3D printing apparatus in accordance with an embodiment of the present invention.
  • FIG. 2 exemplarily shows a schematic diagram of a 3D printing apparatus in accordance with another embodiment of the present invention.
  • FIG. 3 exemplarily shows a schematic diagram of a 3D printing apparatus in accordance with still another embodiment of the present invention.
  • FIG. 4 exemplarily shows a perspective view of a 3D printing apparatus in accordance with an embodiment of the present invention.
  • Fig. 5 exemplarily shows an arrangement of nozzles of a 3D printing apparatus according to an embodiment of the present invention on a printing module.
  • FIG. 6 exemplarily shows a schematic diagram of a 3D printing apparatus according to still another embodiment of the present invention.
  • FIG. 7A and 7B exemplarily illustrate models of a drug product that a 3D printing device can print according to an embodiment of the present invention.
  • FIG. 8 exemplarily shows a flowchart of a 3D printing method in accordance with an embodiment of the present invention.
  • FIG. 9A exemplarily shows a schematic diagram of a 3D printing apparatus according to still another embodiment of the present invention.
  • FIG. 9B exemplarily shows a perspective view of a 3D printing apparatus in accordance with still another embodiment of the present invention.
  • Figure 9C exemplarily shows an enlarged view of a printhead in accordance with yet another embodiment of the present invention.
  • 9D exemplarily illustrates an exploded view of a component of a pneumatic actuator that seals a needle to control a sealing needle in accordance with yet another embodiment of the present invention.
  • Fig. 10 exemplarily shows an enlarged view of a sealing needle and an extrusion port according to still another embodiment of the present invention.
  • FIG. 11 exemplarily shows a schematic diagram of a 3D printing apparatus according to still another embodiment of the present invention.
  • FIG. 12 exemplarily shows a schematic diagram of a 3D printing apparatus according to still another embodiment of the present invention.
  • FIG. 13 exemplarily shows a schematic diagram of a 3D printing apparatus according to still another embodiment of the present invention.
  • FIG. 1 exemplarily shows a schematic diagram of a 3D printing apparatus in accordance with an embodiment of the present invention.
  • the 3D printing apparatus 100 includes a melt extrusion module 102, a printing module 103, and a platform module 104.
  • the melt extrusion module 102 performs extrusion heating on the received initial material to melt it into a melt, and transfers the melt to the printing module 103, and the printing module 103 follows a predetermined data model or The program extrudes the melt to a designated location on the platform module 104, by laminating the melt on the platform module 104, ultimately forming the desired printed 3D product.
  • the 3D printing apparatus may further include a charging module 101 having a hopper 111 for containing and transferring the initial material, the hopper 111 having a feed port 112 and a discharge port 113.
  • the feeding module 101 receives the initial material through the feed port 112 of the hopper 111 and discharges the initial material through the discharge port 113 to the melt extrusion module 102.
  • the initial material for the 3D printing apparatus 100 may be a powdery, granular material.
  • the hopper 111 is a funnel-shaped casing having a horn opening. In some embodiments, the initial material may also be filamentous.
  • a hopper discharge control device 114 is further disposed in the hopper 111, and the hopper discharge control device 114 controls the discharge speed of the initial material of the discharge port 113 of the hopper 111.
  • the hopper discharge control device 114 shown in the drawing is a single screw device which is disposed near the discharge port and coupled with a motor and a transmission (not shown) for driving the movement thereof, and is adjusted by a drive mechanism. The rotation speed of the screw device 114 can control the discharge speed of the initial material at the discharge port 113.
  • the hopper discharge control device 114 is a single screw device as shown, in some embodiments, the hopper discharge control device can be a twin screw device, or a combination of a twin screw device and a single screw device. In some embodiments, the hopper discharge control device 114 may also include a conventional mechanism that can control the initial material discharge rate of the discharge port 113. In some embodiments, the hopper discharge control device further includes a baffle or flap disposed at the discharge port 113 through which the discharge port 113 is controlled to discharge.
  • the hopper discharge control device 114 may also include a flow control valve disposed at the discharge port 113, such as a pneumatic flow control valve, an electromagnetic flow control valve, a hydraulic flow control valve, and the like.
  • a flow control valve disposed at the discharge port 113, such as a pneumatic flow control valve, an electromagnetic flow control valve, a hydraulic flow control valve, and the like.
  • the discharge rate of the initial material at the discharge port 113 is controlled by the flow control valve size.
  • the 3D printing device 100 may also include a second charging module 201.
  • the second charging module 201 is identical or similar in structure to the first charging module 101, and also includes a second hopper 211 having a feed port 212 and a discharge port 213, and also includes a hopper disposed in the hopper 211.
  • the discharge control device 214 is configured to control the discharge speed of the initial material of the discharge port 212.
  • the feeding module 201 can receive the second initial material different from the initial material received by the feeding module 101 through the feeding port 212 of the hopper 211, and discharge the molten material to the melt extrusion module 102 through the discharging port 213. Two initial materials.
  • the ratio of the initial material and the second initial material received by the melt extrusion module 102 can be controlled. , thereby ultimately controlling the ratio of the above-mentioned initial material to the second initial material in the printed product.
  • the melt extrusion module 102 includes a processing chamber 121, an extrusion device 122, and a processing chamber heating device 123.
  • the processing chamber 121 is a hollow housing having a feed port 124 and a discharge port 125.
  • the initial material discharged from the discharge port 113 enters the processing chamber 121 through the feed port 124.
  • a processing chamber heating device 123 is disposed on the peripheral wall of the processing chamber 121 for heating the material in the processing chamber 121.
  • the extrusion device 122 performs extrusion and/or shear work on the material in the processing chamber 121. Under the joint action of the processing chamber heating device 123 and the extrusion device 122, the initial material is melted into a melt and passed through the discharge port. 125 discharged.
  • the extrusion device 122 may be a twin screw device 122 disposed in the processing chamber 121 .
  • the twin screw device 122 is coupled to the drive motor 129 via a shifting device 128. Under the drive of the drive motor 129, the twin screw of the twin screw device 122 rotates and extrudes the material in the processing chamber 121 and drives the material to move toward the discharge port 125. At the same time, the internal heat generated by the twin-screw rotary extrusion of the twin-screw unit 122 heats the material in the processing chamber 121.
  • the extrusion device 122 as shown is a twin screw device, in some embodiments, the hopper discharge control device can also be a single screw device. In some embodiments, the extrusion device 122 can also be a conventional screwless extruder, such as a piston device or the like.
  • the processing chamber heating device 123 can be configured to segment the outer wall of the processing chamber 121 for segmented heating to achieve more precise heating temperature control.
  • the processing chamber heating device 123 is a conventional electric heating device, such as a thermocouple wound around the outside of the processing chamber 121. It can be understood that although the processing chamber heating device 123 as shown is disposed on the outer wall of the processing chamber 121, in some embodiments, the processing chamber heating device 123 may be disposed in the processing chamber 121, such as a setting. A heating rod or the like inside the processing chamber 121.
  • the melt extrusion module 102 also has a melt extrusion discharge control device 126 (not shown) that is configured to control the melt of the discharge port 125 of the processing chamber 121. Material speed. Similar to the structure of the hopper discharge control device 114 described above, the melt extrusion discharge control device 126 may be a flow control valve disposed at the discharge port 125, for example, a pneumatic flow control valve, a hydraulic flow control valve, an electromagnetic flow control valve, etc. Etc., the flow rate control valve controls the discharge rate of the melt at the discharge port 125. In some embodiments, the melt extrusion discharge control device 126 may also have a baffle or flap disposed at the discharge port 125 to control whether the melt is discharged at the discharge port 125.
  • the extrusion device 122 of the melt extrusion module 102 can also control the discharge rate of the melt at the discharge port 125 by controlling the extrusion power of the initial material and the melt in the extrusion processing chamber 121.
  • the discharge speed of the melt at the discharge port 125 can be controlled by controlling the rotational speed of the screw device 122.
  • the discharge rate of the discharge port 125 of the melt extrusion module 102 can also be adjusted by controlling the feed rate of the feed port 124, such as by increasing the feed port 124 thereof. The feed rate in turn increases the discharge rate of the discharge port 125.
  • the feed rate of the feed port 124 of the melt extrusion module 102 described above can be achieved by adjusting the discharge rate of the discharge port 113 of the feed module 101 as described above.
  • the 3D printing apparatus 100 further includes a return circuit 127 (not shown), one end of the return circuit 127 is in communication with the melt passage after the outlet of the discharge port 125 of the processing chamber 121, and the other end is The processing chamber 121 is in communication such that a portion of the melt is returned to the processing chamber 121.
  • the return circuit 127 is further provided with a flow control valve that regulates the amount and velocity of the melt flowing back to the processing chamber 121 through the return circuit 127.
  • the printing module 103 can include a cartridge 133 having a discharge opening and a feed opening, the cartridge 133 being formed of a hollow housing having a nozzle 131 disposed at a lower portion thereof.
  • the feed port of the cylinder 133 of the printing module 103 communicates with the discharge port 125 of the processing chamber 121.
  • the initial material is heated and melted into a melt, then transported into the cylinder 133, and finally extruded through the nozzle 131.
  • the printing module 103 shown in the figure has only a single nozzle 131, in some embodiments, the printing module 103 may include a plurality of nozzles, so that mass production can be realized, and the conventional general-purpose fused deposition molding 3D printing apparatus cannot be applied.
  • the printing module 103 further includes a printing module driving mechanism 132 (not shown), which may be a hydraulic cylinder, a stepping motor or other commonly used driving mechanism, and the printing module 103 is disposed on the driving mechanism 132 to drive the printing.
  • the nozzle 131 of the module 103 moves relative to the platform module 104.
  • the cartridge 133 of the printing module 103 can also be provided with a temperature regulating device 134 having the same or similar arrangement and arrangement as the processing chamber heating device 123 described above, and can be an electrical heating device that is segmented around the cartridge 133. .
  • the temperature adjustment device 134 may also be a heating rod disposed on the cartridge 133. It should be noted that the temperature adjustment device may also have a cooling function to lower the temperature of the melt at the printing module 103 when the temperature of the melt is too high. Temperature, such as a semiconductor heating and cooling sheet, and the like.
  • the temperature adjusting device 134 described above is preferably disposed at a position close to the nozzle 131, so that the temperature of the melt extruded from the nozzle 131 can be quickly and accurately controlled.
  • the cartridge 133 also includes a pressure regulating device 135 (not shown) for adjusting the pressure of the melt at the printing module 103.
  • the pressure regulating device may be a screw extrusion device as described above, specifically a single screw device, a twin screw device, or a combination thereof, the screw extrusion device being disposed in the barrel 133 through the speed of the screw
  • the extrusion power to the melt is controlled to control the pressure of the melt at the print module 103, particularly at the nozzle 131.
  • the pressure regulating device may also be a piston extrusion mechanism disposed in the barrel 133 to drive the piston movement by pneumatic or hydraulic control to control the printing module 103, especially the nozzle 131. The pressure of the melt at the location.
  • the platform module 104 includes a deposition platform 141 and a platform drive mechanism 142 that drives the movement of the deposition platform 141.
  • the deposition platform 141 may be a plate-like structure configured to receive a melt extruded through the nozzle 131 to be stacked on the deposition platform.
  • the platform module 104 may also include multiple deposition platforms to accommodate the mass production requirements for simultaneous high volume printing. The configuration between the plurality of deposition platforms will be described in detail below in conjunction with other figures.
  • the deposition platform 141 is disposed on a deposition platform drive mechanism 142 that can drive the deposition platform 141 to move relative to the nozzle 131.
  • the platform drive mechanism 142 can be a stepper motor based on a Cartesian coordinate system that can drive the deposition platform 141 to move along one or more of the X, Y, and Z axes.
  • the 3D printing device 100 further includes a print module drive mechanism for driving the nozzle 131 of the print module 103 to move relative to the platform module 104.
  • the platform drive mechanism 142 can be a transfer track. Along with the relative movement of the deposition platform 141 and the nozzle 131, the melt deposits on the deposition platform 141 into the final product of the various complex structures and configurations required.
  • the 3D printing device 100 further includes a cache module 107.
  • the buffer module 107 has a storage chamber 171 for storing a melt, and the storage chamber 171 has a feed port 172 and a discharge port 173, wherein the feed port 172 communicates with the discharge port of the processing chamber 121, and the discharge port 173
  • the print module 103 is in communication with the feed channel 135.
  • the melt extruded from the discharge port of the processing chamber 121 flows into the storage chamber 171 through the inlet port 172 for temporary storage, and flows into the printing module 103 through the discharge port 173 for printing.
  • the buffer module 107 further has a heating device 174 for heating the melt in the storage chamber 171, and the heating device 174 is disposed on the outer wall of the storage chamber 171.
  • the heating device 174 is a thermocouple that surrounds the storage chamber 171.
  • the heating device 174 may also be disposed in the storage chamber 171, such as a heating rod or the like disposed inside the storage chamber 171.
  • the outer wall of the storage chamber 171 is further provided with a thermal insulation sleeve for holding the molten body in the storage chamber.
  • the cache module 107 further includes a stock discharge control device 175 (not shown) for controlling the discharge rate of the melt of the discharge port 173 of the storage chamber 171.
  • the storage chamber discharge control device 175 may be a single screw device or a twin screw device disposed at a position close to the discharge port 173, or a combination thereof, or may be disposed at the discharge port 173.
  • Flow control valves such as pneumatic flow control valves, electromagnetic flow control valves, hydraulic flow control valves, and the like.
  • the discharge port 173 of the storage chamber 171 is further provided with a baffle or a flap for controlling whether the discharge port 173 is discharged.
  • FIG. 2 exemplarily shows a schematic diagram of a 3D printing apparatus in accordance with another embodiment of the present invention.
  • the 3D printing apparatus 200 further includes a first charging module 301 and a second feeding module 401 disposed in parallel, and a first melt extrusion module 302 and a second melt extrusion module 402 disposed in parallel.
  • the structure of the above module is the same as that of the first charging module 101 and the first melt extrusion module 102 as described above.
  • the first charging module 301 and the second charging module 401 receive the initial materials, which are respectively heated and extruded into a melt by the first melt extrusion module 302 and the second melt extrusion module 402, and then discharged into the mixing module 308.
  • the 3D printing device 200 still further includes a mixing module 308.
  • the mixing module 308 includes a mixing chamber 381 having a feed port 382 and a discharge port 383, wherein the feed port 382 of the mixing chamber 381 is in communication with the first melt extrusion module 302 and the second melt extrusion module 402.
  • a mixing mechanism 386 (not shown) is provided in the mixing chamber 308 for mixing different melts from the first melt extrusion module 302 and the second melt extrusion module 402.
  • the mixing mechanism 386 is a mechanical agitation device, but in other embodiments, the mixing mechanism 386 can also be a pneumatic agitation mechanism.
  • the mixing module 308 also has a heating device 384 for heating and holding the melt in the mixing chamber 381.
  • the heating device 384 may be disposed on an outer wall of the mixing chamber 381.
  • heating device 384 is a thermocouple that surrounds mixing chamber 381.
  • the heating device 384 can also be disposed within the mixing chamber 381, such as a heating rod or the like disposed within the mixing chamber 381.
  • the mixing module 308 also includes a mixing chamber discharge control device 385 (not shown) for controlling the discharge rate of the melt of the discharge port 383 of the mixing chamber 381.
  • the mixing chamber discharge control device 385 can be a single screw device or a twin screw device disposed at a position near the discharge port 383, or a combination thereof, or disposed at the discharge port 383.
  • Flow control valves such as pneumatic flow control valves, electromagnetic flow control valves, hydraulic flow control valves, and the like.
  • the mixing chamber also has a baffle or flap disposed at the discharge port 383 for controlling whether the discharge port 383 is discharged.
  • the mixing module 308 can cause some of the initial materials that are not sufficiently mixed or not easily mixed in the solid state to be sufficiently mixed to form a uniform mixed melt, and the mixed melt discharged from the discharge port 383 enters the printing module 303 and The extruded layer of nozzles 331 is stacked on the platform module 304 to form a final product having mixed components.
  • FIG. 9A exemplarily shows a schematic view of a printing module and nozzle in accordance with an embodiment of the present invention.
  • the apparatus includes a cartridge 133 for melting and pressurizing the material.
  • the molten and pressurized material flows through a feed passage that is connected to the nozzle 131.
  • the pressure sensor 106 is located near the end of the nozzle and the feed channel and can detect the pressure of the material in the feed channel. Alternatively, the pressure sensor 106 can be designed to directly detect the pressure of the material within the nozzle 131.
  • the control switch 108 includes a linear actuator and a sealing needle that can control the sealing needle to switch between an open position and a closed position.
  • the linear actuator may be a mechanical actuator (which may include a lead screw), a hydraulic actuator, a pneumatic actuator (which may include a pneumatic valve), or an electromagnetic actuator (which may include a solenoid valve).
  • the actuator comprises a syringe, such as a pneumatic syringe.
  • the actuator includes a spring assisted cylinder.
  • the spring-assisted cylinder includes a spring that assists in sealing the needle action (ie, pulling the sealing needle from the open position to the closed position).
  • the spring-assisted cylinder includes a spring that assists in withdrawing the sealing needle (ie, pulling the sealing needle from the closed position to the open position).
  • the control switch 108 When the sealing needle is in the open position, the pressurized molten material can flow through the feed passage and through the extrusion port of the nozzle 131.
  • the control switch 108 When a signal is issued to the control switch 108, the control switch 108 lowers the sealing needle to the closed position and the end of the sealing needle engages the inner surface of the nozzle 131.
  • the material is a non-linear material such as a powder, granule, gel or paste.
  • the non-linear material is melted and pressurized so that it can be extruded through the extrusion port of the nozzle. Further described herein, the pressure of the particularly viscous material is finely controlled to ensure that the material can be deposited accurately and accurately.
  • the material may be heated and melted within the printing module using one or more heaters disposed within the printing module (eg, inside or around the cartridge, the feed channel, and/or the printhead).
  • the material has a melting temperature of about 50 ° C or higher, such as about 60 ° C or higher, about 70 ° C or higher, about 80 ° C or higher, about 100 ° C or higher, about 120 ° C. Or higher, about 150 ° C or higher, about 200 ° C or higher, or about 250 ° C or higher. In some embodiments, the material has a melting temperature of about 400 ° C or less, such as about 350 ° C or less, about 300 ° C or less, about 260 ° C or less, about 200 ° C or less, about 150 ° C. Or lower, about 100 ° C or lower, or about 80 ° C or lower.
  • the material extruded from the nozzle can be extruded at a temperature equal to or higher than the melting temperature of the material.
  • the material is at about 50 ° C or higher, such as about 60 ° C or higher, about 70 ° C or higher, about 80 ° C or higher, about 100 ° C or higher, about 120 ° C or higher.
  • the material is at about 400 ° C or lower, such as about 350 ° C or lower, about 300 ° C or lower, about 260 ° C or lower, about 200 ° C or lower, about 150 ° C or lower.
  • the apparatus of the present invention can be used to accurately and accurately extrude viscous materials.
  • the material viscosity when extruded from the apparatus has a viscosity of about 100 Pa.s or greater, such as about 200 Pa.s or greater, about 300 Pa.s or greater, about 400 Pa.s or greater. It is about 500 Pa ⁇ s or more, about 750 Pa ⁇ s or more, or about 1000 Pa ⁇ s or more.
  • the viscosity of the material has a viscosity of about 2000 Pa.s or less, such as about 1000 Pa.s or less, about 750 Pa.s or less, about 500 Pa.s or less, about 400 Pa.s or less. It is about 300 Pa ⁇ s or lower, or about 200 Pa ⁇ s or lower.
  • the material is a pharmaceutical material. In some embodiments, the material is inert or biologically inert. In some embodiments, the material is an erodable material or a bioerodible material. In some embodiments, the material is an insoluble material or a non-biosoluble material. In some embodiments, the material is a pharmaceutical material. In some embodiments, the material comprises one or more thermoplastic materials, one or more non-thermoplastic materials, or a combination of one or more thermoplastic materials and one or more non-thermoplastic materials. In some embodiments, the material is a polymer or copolymer.
  • the material comprises a thermoplastic material.
  • the material is a thermoplastic material.
  • the material is or comprises an erodable thermoplastic material.
  • the thermoplastic material is edible (ie, suitable for individual digestion and absorption).
  • the thermoplastic material is selected from the group consisting of hydrophilic polymers, hydrophobic polymers, swollen polymers, non-swelling polymers, porous polymers, non-porous polymers, eroded polymers (eg, soluble polymers), pH Sensitive polymers, natural polymers, waxy materials and combinations thereof.
  • the thermoplastic material is a cellulose ether, a cellulose ester, an acrylic resin, an ethyl cellulose, a hydroxypropyl methyl cellulose, a hydroxypropyl cellulose, a hydroxymethyl cellulose, a C12-C30 fatty acid.
  • the erodable material comprises a non-thermoplastic material.
  • the erodable material is a non-thermoplastic material.
  • the non-thermoplastic material is a non-thermoplastic starch, sodium starch glycolate (CMS-Na), sucrose, dextrin, lactose, microcrystalline cellulose (MCC), mannitol, magnesium stearate (MS), powder Silica gel, glycerin, syrup, lecithin, soybean oil, tea oil, ethanol, propylene glycol, glycerin, tween, animal fat, silicone oil, cocoa butter, fatty acid glycerides, petrolatum, chitosan, cetyl alcohol, stearyl alcohol , polymethacrylate, non-toxic polyvinyl chloride, polyethylene, ethylene-vinyl acetate copolymer, silicone rubber or a combination thereof.
  • Exemplary materials that may employ the apparatus of the present invention or employ the methods described herein include, but are not limited to, poly(meth)acrylate copolymers (e.g., containing one or more aminoalkyl methacrylic acids, Methacrylic acid, methacrylate and/or ammonium alkyl methacrylate, for example under the trade name Copolymer sold by RSPO) and hydroxypropyl cellulose (HPC).
  • poly(meth)acrylate copolymers e.g., containing one or more aminoalkyl methacrylic acids, Methacrylic acid, methacrylate and/or ammonium alkyl methacrylate, for example under the trade name Copolymer sold by RSPO
  • HPC hydroxypropyl cellulose
  • the material comprises a drug. In some embodiments, the material is mixed with a drug.
  • the material can be pressurized using a pressure regulating device.
  • the material is preloaded into the cartridge and a pressure regulating device 135 (not shown) can apply pressure to the material preloaded within the cartridge 133.
  • the pressure regulating device can be a motor (eg, a stepper motor), a valve or any other suitable control device that can drive a mechanism such as a piston, a pressure screw or a compressed air (ie, a pneumatic controller) to the barrel
  • the material is applied with pressure.
  • the cartridge includes one or more heaters that can melt the material.
  • the heater is disposed within the cartridge.
  • the heater is disposed on or around the barrel.
  • the heater is an electric radiant heater, such as an electric heating tube or a heating coil.
  • the heater of the cartridge is preferably a high efficiency heater with high voltage and high power output.
  • the heater of the cartridge has a nominal voltage between 110V and 600V.
  • the heater of the cartridge has a nominal voltage from 210V to 240V.
  • the heater of the cartridge is a 220V heater.
  • the power of the heater of the cartridge is between about 30 W and about 100 W, such as between 40 W and 80 W, or about 60 W.
  • the heater is an electrical heating coil that surrounds the exterior of the barrel.
  • the cartridge is made of a heat resistant material such as stainless steel (e.g., 316L stainless steel).
  • the apparatus includes one or more temperature sensors located adjacent to or within the feed channel, the temperature sensor for measuring within the feed channel The temperature of the material.
  • the feed channel is relatively wide compared to the extrusion port of the nozzle.
  • the feed channel has a diameter between about 1 mm and about 15 mm, such as between about 1 mm and about 5 mm, between about 5 mm and about 10 mm, or between about 10 mm and about 15 mm. In an exemplary embodiment, the feed channel has a diameter of about 8 mm.
  • the printhead of the apparatus includes a nozzle 131 that includes an extrusion port through which molten material is extruded.
  • the extrusion port is located at the distal end of the nozzle relative to the feed channel. When the sealing needle is in the open position, molten material exits the extrusion port through the nozzle from the feed passage.
  • the nozzle includes a tapered inner surface that is adjacent the apex of the tapered inner surface.
  • the inner surface of the nozzle includes a liner or liner.
  • the liner or liner can be made of polytetrafluoroethylene (PTFE) or any other suitable material.
  • the printhead includes one or more heaters that can be located within, around or adjacent to the nozzle of the printhead.
  • the one or more heaters are used to heat the material in the nozzle, which can reach the same temperature or a different temperature than the material in the cartridge or feed channel.
  • the nozzle heater is an electric radiant heater, such as an electric heating tube or a heating coil.
  • the heater can use a lower voltage and/or lower power than the cartridge heater or the feed channel heater.
  • the nozzle heater has a nominal voltage between 6V and 60V.
  • the nozzle heater is a 12V heater.
  • the power of the nozzle heater is between about 10 W and about 60 W, such as between 20 W and 45 W or about 30 W.
  • the device includes one or more temperature sensors.
  • the printhead includes one or more temperature sensors located near or inside the nozzle for measuring the temperature of the material within the nozzle.
  • the device includes a temperature sensor located within or adjacent to the tube, or a temperature sensor for detecting the temperature within the tube.
  • the device includes a temperature sensor located in or near the feed channel or for detecting temperature within the feed channel.
  • the device includes a temperature sensor located in or near the printhead or a temperature sensor for detecting temperature within the nozzle.
  • one or more temperature sensors are coupled to a computer system that controls one or more heaters based on temperatures reported by one or more temperature sensors.
  • the computer system can control one or more heaters to adjust the temperature of the cartridge, the feed channel, and/or the material within the nozzle.
  • the system operates as a closed loop feedback system to maintain an approximately constant temperature of the device or device components (ie, the cartridge, nozzle or feed channel). The temperatures of the materials within the different components of the device may be the same or different.
  • the feedback system is controlled using proportional integral derivative (PID) control, bang-bang control, predictive controller, fuzzy control system, expert control, or any other suitable algorithm.
  • PID proportional integral derivative
  • the device includes one or more pressure sensors 106 that can detect the pressure of the material within the device.
  • the pressure sensor is used to detect the pressure of the material within the printhead or the feed channel adjacent the printhead.
  • the pressure sensor is placed in or adjacent to the printhead and adjacent the printhead.
  • the pressure sensor can operate with a pressure regulating device in a closed loop feedback system to provide an approximately constant pressure to the material in the device. For example, when the pressure sensor detects a pressure drop, the feedback system can signal the pressure regulating device to increase the pressure of the material (eg, by lowering the piston, increasing the air pressure in the barrel, rotating the pressure screw, etc.).
  • the feedback system can signal the pressure regulating device to reduce the pressure of the material (eg, by raising the piston, reducing the air pressure in the barrel, rotating the pressure screw, etc.) ).
  • the constant pressure ensures that the molten material in the device passes through the extrusion port of the nozzle at a constant rate when the sealing needle is in the open position.
  • a constant pressure increase e.g., by raising the piston, lowering the air pressure in the barrel, rotating the pressure screw, etc.
  • the feedback system including the pressure sensor and the pressure regulating device maintains an approximately constant pressure in the system when the sealing needle is re-switched from the open position to the closed position or from the closed position to the open position. This minimizes the "inclined rise" of the extrusion rate when the sealing needle is switched from the closed position to the open position because there is no need to increase the pressure of the material in the system.
  • the pressure sensor 106 is coupled to a computer system that controls the cartridge to pressurize the material to a particular pressure in response to the pressure reported by the pressure sensor 106.
  • the computer system can control the pressure regulating device to adjust the pressure value of the material applied within the cartridge.
  • the system acts as a closed loop feedback system to maintain an approximately constant pressure within the device.
  • the feedback system operates using proportional integral derivative (PID) control, bang-bang control, predictive control, fuzzy control, expert control, or any other suitable algorithm.
  • PID proportional integral derivative
  • the pressure sensor accuracy is within 0.005 MPa, within 0.008 MPa, within 0.05 MPa, within 0.1 MPa, within 0.2 MPa, within 0.5 MPa, or within 1 MPa.
  • the sampling time of the pressure sensor is about 20 ms or faster, such as about 10 ms or faster, about 5 ms or faster, or about 2 ms or faster.
  • the pressure of the material floats at a desired pressure of about 0.005 MPa, about 0.008 MPa, about 0.05 MPa, about 0.1 MPa, about 0.2 MPa, about 0.5 MPa, or about 1 MPa.
  • the device includes a control switch 108.
  • Control switch 108 can be controlled to block or allow molten material to flow from the extrusion port of the apparatus.
  • the control switch 108 includes a sealing needle that is switchable between an open position and a closed position, wherein material is prevented from flowing through the nozzle 131 when the sealing needle is in the closed position.
  • a sealing needle extends through at least a portion of the feed passage and includes a tapered end. The tapered end of the sealing needle engages the tapered inner surface of the nozzle 131 (e.g., at the extrusion port of the nozzle) when the sealing needle is in the closed position.
  • any portion of the sealing needle that contacts the material has no protrusions.
  • Protrusion refers to any portion of the sealing needle having a larger diameter than the sealing needle shaft, or any portion of the sealing needle extending axially outward.
  • the projections on the sealing needle push the molten material through the extrusion port when the sealing needle is closed.
  • the entire sealing needle (whether or not the sealing needle contacts the material) has no protrusions.
  • the portion of the sealing needle that does not contact the material includes one or more protrusions that can, for example, engage the components of the actuator or serve as a deep break to prevent the sealing needle from being driven too far within the feed chamber.
  • the portion of the sealing needle that contacts the material is relatively thin compared to the feed channel, which allows the molten material to flow around the sealing needle rather than being squeezed Out of the extrusion port.
  • the portion of the sealing needle that is in contact with the material has a maximum diameter of from about 0.2 mm to about 3.0 mm, such as from about 0.2 mm to about 0.5 mm, from about 0.5 mm to about 1.0 mm, from about 1.0 mm to about 1.5 mm. From about 1.5 mm to about 2.0 mm, from about 2.0 mm to about 2.5 mm or from about 2.5 mm to about 3.0 mm.
  • the sealing needle (including the portion of the sealing needle that contacts the material and the portion of the sealing needle that does not contact the material) has a maximum diameter of from about 0.2 mm to 3.0 mm, such as from about 0.2 mm to about 0.5 mm, about 0.5 mm.
  • a maximum diameter of from about 0.2 mm to 3.0 mm, such as from about 0.2 mm to about 0.5 mm, about 0.5 mm.
  • To about 1.0 mm from about 1.0 mm to about 1.5 mm, from about 1.5 mm to about 2.0 mm, from about 2.0 mm to about 2.5 mm or from about 2.5 mm to about 3.0 mm.
  • the sealing needle includes a pointed end at the tapered end, as shown in Figure 10A.
  • the tapered end of the tip is frustoconical as shown in Figure 10B.
  • Both the nozzle and the sealing needle comprise a tapered surface such that the tapered end of the sealing needle faces the tapered inner surface of the nozzle.
  • the "taper angle” herein refers to the angle of the apex of the joint surface. In the case of a frustoconical tip, “taper angle” refers to the apex of the extrapolated engagement surface.
  • the taper angle of the tapered end of the sealing needle is indicated by ⁇ in Figs. 10A and 10B. As shown in Fig.
  • the taper angle of the nozzle is represented by ⁇ .
  • the tapered end of the sealing needle has a taper angle of about 60° or less, such as about 50° or less, 45° or less, 40° or less, 35° or less, 30° or less, 25° or less, 20° or less, or 15° or less.
  • the taper angle ( ⁇ ) of the sealing needle is equal to or smaller than the taper angle ( ⁇ ) of the inner surface of the nozzle.
  • the ratio of the taper angle of the inner surface ( ⁇ ) of the nozzle to the taper angle ( ⁇ ) of the sealing needle is from about 1:1 to about 4:1, or from about 1:1 to about 3:1, or about 1:1 to about 2:1.
  • the sealing needle By lowering the sealing needle toward the extrusion port, the sealing needle is positioned in the closed position, at which point the sealing needle is aligned with the extrusion port.
  • the sealing needle When the sealing needle is in the open position, the compressed and molten material can flow through the extrusion port, but when the sealing needle is in the closed position, it is prevented from flowing, in which it engages the inner surface of the nozzle.
  • the taper angle ( ⁇ ) of the inner surface of the nozzle is larger than the taper angle ( ⁇ ) of the sealing needle, the tapered end of the sealing needle engages with the inner surface of the nozzle at the extrusion port.
  • the extrusion port has a diameter of about 0.1 mm or greater, such as about 0.15 mm or greater, about 0.25 mm or greater, about 0.5 mm or greater, 0.75 mm or greater. In some embodiments, the extrusion port has a diameter of about 1 mm or less, such as about 0.75 mm or less, about 0.5 mm or less, about 0.25 mm or less, about 0.15 mm or less.
  • the tapered needle end base is preferably sealed to limit the molten material as it is forced through the extrusion port as the sealing needle travels to the closed position.
  • the ratio of the largest diameter of the tapered end of the sealing needle (ie, the bottom of the cone) to the diameter of the extrusion port is from about 1:0.8 to about 1:0.1, such as from about 1:0.8 to about 1: 0.7, from about 1:0.7 to about 1:0.6, from about 1:0.6 to about 1:0.5, from about 1:0.5 to about 1:0.4, from about 1:0.4 to about 1:0.3, from about 1:0.3 to about 1: 0.2, or about 1:0.2 to about 1:0.1.
  • the sealing needle preferably comprises a strong and flexible material.
  • Exemplary materials include, but are not limited to, stainless steel, polytetrafluoroethylene (PTFE), and carbon fibers.
  • the inner surface of the nozzle includes a flexible liner or liner that limits damage to the needle or nozzle when the sealing needle is repeatedly switched in the open or closed position.
  • the liner or liner is made of polytetrafluoroethylene (PTFE).
  • the sealing needle of the control switch is controlled by an actuator that can position the sealing needle in the open position (ie, by lifting the sealing needle such that the tapered end of the sealing needle no longer engages the inner surface of the nozzle) or the closed position ( That is, the tapered end of the sealing needle is engaged with the inner surface of the nozzle by lowering the sealing needle.
  • the actuator is a pneumatic actuator that can be controlled using air pressure within the actuator.
  • the actuator is a mechanical actuator that can raise or lower the sealing needle by using one or more gears and motors.
  • the actuator comprises a solenoid valve or an electrostrictive polymer.
  • Figure 9B shows a cross-sectional view of an exemplary apparatus for depositing material by additive manufacturing in accordance with the present invention.
  • Material can be loaded into the barrel 902 and the piston 904 applies pressure to the material by pushing it into the barrel 902.
  • Piston 904 is coupled to the pressure regulating device by a guide arm 906.
  • the piston 904 is lowered by a motor such as a stepper motor to increase the pressure of the material in the barrel 902, or the piston is raised to reduce the pressure of the material.
  • the material in the barrel 902 can be heated to or above the melting temperature of the material using a heater in or around the barrel.
  • the molten material from the cartridge 902 flows through a feed passage 908 that is coupled to a printhead 910 that includes a nozzle 912.
  • Pressure sensor 914 is located at the end of feed channel 908 and is adjacent to printhead 910 and is used to detect the pressure of the material adjacent the printhead. In some embodiments, the pressure sensor 914 is positioned to detect the pressure of the material within the printhead 910. Pressure sensor 914 can transmit the detected pressure to a computer system that can operate the pressure regulating device (or the motor of the pressure regulating device) to reposition piston 904 and control the pressure of the material within cartridge 902. This can be operated in a feedback system where the change in pressure is detected by pressure sensor 914 and the computer system further operates the pressure regulating device.
  • the device includes a control switch 916 that includes a sealing needle 918 and a linear actuator 920.
  • Sealing pin 918 includes an upper end 922 that engages actuator 920 and a tapered lower end 924. Sealing pin 918 extends through feed passage 908 into printhead 910.
  • Actuator 920 controls sealing needle 918 between an open position (raised) and a closed position (lower). When the sealing needle 918 is placed in the closed position, the tapered end 924 of the sealing needle 918 engages the tapered inner surface of the nozzle 912 to prevent molten material from flowing through the nozzle.
  • the actuator 920 controls the sealing needle 918 to position the sealing needle 918 in the open position by lifting the sealing needle 918, thereby separating the tapered lower end 924 from the inner surface of the nozzle 912.
  • FIG. 9C shows an enlarged view of the printhead 910 with the sealing needle 918 in the closed position and engaging the nozzle 912.
  • the tapered end 924 of the sealing needle 918 is inserted into the extrusion port 926 by being coupled to the tapered inner surface 912 of the nozzle.
  • the molten material in the feed passage 908 is thus prevented from flowing through the extrusion port 926.
  • the pressure of the material in or near the printhead 910 is detected by pressure sensor 914 and the pressure regulating device can be operated to prevent excessive pressure build up in the device when the sealing needle 918 is in the closed position.
  • Sealing pin 918 extends through feed passage 908 and into printhead 910.
  • the sealing needle 918 is carefully designed to prevent molten material in the feed passage 908 from being pushed out of the extrusion port 926.
  • the tapered end 924 of the sealing needle 918 allows the sealing needle 918 to pierce the molten material, allowing the molten material to flow upwardly and around the closed sealing needle 918 instead of being pushed down.
  • the pneumatic actuator 920 includes a solenoid valve for controlling the flow of gas into the air chamber 926, which can drive the center rod 928 attached to the upper end 922 of the sealing needle 918 up or down.
  • High pressure gas flows from below the partition 930 into the plenum 926 or removes gas from above the partition 930, thereby moving the partition 930 upward, thus positioning the sealing needle 918 in the open position. Removal of gas from below the separator 930 or application of high pressure gas over the separator 930 can cause the separator 930 to move downward, which positions the sealing needle 918 in the closed position.
  • Figure 9D shows an exploded view of the components of the pneumatic actuator connected to the sealing needle to control the sealing needle.
  • the partition 942 is located within the air chamber of the pneumatic actuator and is coupled to the center rod 974, such as by a threaded fit.
  • the center rod 974 is coupled to the adapter 976, such as by a threaded fit.
  • the adapter 976 is attached to the sealing needle 978, for example by a threaded fit or by a press fit.
  • the lower portion of the adapter 976 can include an opening, and the upper portion of the sealing needle 978 can be tightly fitted into the opening by inserting the sealing needle 978 into the opening of the adapter 976.
  • the sealing needle 978 passes through a washer 980 that is positioned by a retaining nut 982.
  • a retaining nut 982 and a washer are attached to the adapter block to connect with the rest of the device.
  • the transition block 932 is positioned above the feed channel 908 in alignment with the nozzle 912 of the printhead 910.
  • the transfer block channel 934 passes through the transfer block 932 into the feed channel.
  • a washer 936 is embedded in the opening in the top of the transition block 932 that is wider than the passage 934 to prevent the washer 936 from moving toward the printhead 910.
  • the gasket 936 can be made of an inert, pliable material, such as plastic or synthetic rubber, and seals the feed passage 908 to prevent leakage of molten material.
  • the gasket is made of polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the retaining nut 938 is secured, such as by a threaded fit, to the adaptor block 932 and secures the position of the washer 936.
  • the washer 936 is in a fixed position relative to the printhead 910 and nozzle 912.
  • Sealing pin 918 passes through holes in retaining nut 938 and washer 936 to reach feed passage 908.
  • the aperture is sized to allow the needle to pass, and the movement can be controlled by the actuator 916, but not too much to cause leakage of molten material.
  • the print module includes one or more heaters for melting the material.
  • the heater can be placed in or around the drum containing the material, the feed channel and/or the printhead.
  • Fig. 13A shows a longitudinal cross-sectional view of a portion of the device
  • Fig. 13B shows a cross-sectional view at plane "A-A”
  • Fig. 13C shows a non-sectional view of the device.
  • the apparatus includes a heater 1302 that surrounds the barrel 1304 of the apparatus, which heater 1302 can heat and melt the material contained within the barrel 1304.
  • the heater 1302 can be, for example, a coil heater that surrounds the exterior of the cartridge 1304.
  • the heater is disposed within the cartridge.
  • one or more heaters can be placed adjacent to or within the feed channel 1308.
  • Figures 13B and 13C show two heaters 1310a and 1310b, each located on either side of the supply channel 1308 and adjacent to the supply channel 1308.
  • the heaters 1310a and/or 1310b cover the length of the feed channel 1308 or cover the sides of the feed channel 1308.
  • one or more heaters adjacent to the feed channel 1308 or within the feed channel 1308 are heating bars.
  • one or more heaters adjacent to the feed channel 1308 or within the feed channel 1308 are coils that surround the feed channel 1308. Heating one or more heaters within the feed channel 1308 ensures that the material remains molten and has a suitable viscosity at a given pressure to achieve the desired flow.
  • the printhead 1312 of the device includes one or more heaters 1314 that ensure that the material remains molten and has a suitable viscosity within the nozzle 1316.
  • the device includes one or more temperature sensors that can be located at one or more locations within the device and can detect the temperature of the material within the device, such as within a cartridge, within a feed channel, or printed Inside the head.
  • a first temperature sensor 1318 adjacent the feed channel 1308 and a second temperature sensor 1320 adjacent the printhead 1312 are included.
  • a temperature sensor 1318 adjacent the feed channel 1308 is on the side of the feed channel 1308 in the figure, but the temperature sensor 1318 is optionally located anywhere along the length of the feed channel 1308.
  • a temperature sensor 1318 and one or more heaters can be used as a closed loop feedback system for the material within the melt feed channel 1308, which ensures that the material within the feed channel maintains an approximately constant temperature .
  • temperature sensor 1318 can transmit the measured temperature to a computer system, and the computer system can operate one or more heaters 1310a and 1310b to ensure an approximately constant temperature.
  • Temperature sensor 1320 in printhead 1312 of the device can operate in conjunction with one or more heaters 1314 in the printhead in a closed loop feedback system to ensure an approximately constant temperature of the material within the printhead.
  • the feedback system can use a proportional-integral-derivative (PID) controller, a bang-bang controller, a predictive controller, a fuzzy control system, an expert system controller, or any other suitable control algorithm.
  • PID proportional-integral-derivative
  • one or more heaters in the apparatus heat the material within the system to a temperature equal to or higher than the melting temperature of the material. In some embodiments, one or more heaters heat the material to a temperature of about 60 ° C or higher, such as about 70 ° C or higher, 80 ° C or higher, 100 ° C or higher, 120 ° C or higher. , 150 ° C or higher, 200 ° C or higher, or 250 ° C or higher.
  • the one or more heaters heat the material to about 300 ° C or lower, such as about 260 ° C or lower, 200 ° C or lower, 150 ° C or lower, 100 ° C or lower, or 80 ° C or lower.
  • one or more heaters heat the material to different temperatures at different locations of the device.
  • the material is heated to a first temperature within the cartridge, a second temperature within the feed channel, and a third temperature within the printhead, each of which may be the same temperature or a different temperature.
  • a material can be heated to 140 ° C in the drum and feed channels, but can be heated to 160 ° C in the printhead.
  • the feedback control system enables high-precision temperature control.
  • the temperature is controlled within 0.1 ° C of the target temperature, within 0.2 ° C of the target temperature, within 0.5 ° C of the target temperature, or within 1 ° C of the target temperature.
  • Figure 11 shows another example of the device of the present invention.
  • Material is loaded into the cartridge 1102 of the printing module, and a pressure screw (or piston) 1104 can apply pressure to the material in the cartridge 1102.
  • a pressure controller 1106 eg, a stepper motor
  • the material in the cartridge 1102 can be heated by a heater 1114 that surrounds the cartridge.
  • the molten material from the barrel 1102 flows through the feed channel 1116 to the printhead 1118 including the nozzle 1120.
  • the apparatus can include a pressure sensor 1130 that is used to detect the pressure of the material in the cartridge 1102, channel 1116, and/or printhead 1118.
  • the pressure sensor 1130 can transmit the detected pressure to a computer system that can operate the pressure controller 1108 to reposition the pressure screw 1104 and control the pressure of the material within the cartridge 1102. This control can be operated in a feedback system where the change in pressure is detected by pressure sensor 1130 and the computer system further operates the pressure controller.
  • the device shown in Figure 11 includes a control switch that includes a sealing needle 1122 and an actuator 1124 along the same axis as the cartridge 1102. Sealing pin 1122 includes an upper end and a lower tapered end (not shown) that are coupled to actuator 1124.
  • the actuator 1124 controls the sealing needle 1122 between an open position (raised) and a closed position (lower).
  • Printhead 1118 may also include one or more heaters 1126 and temperature sensors 1128 that may operate in a feedback system.
  • the additive manufacturing system includes a plurality (eg, two or more, three or more, four or more, five or More, or six or more devices, including a printing module equipped with a control switch (including a sealing needle and a nozzle having a tapered end switchable in an open position and a closed position).
  • the materials in each individual unit can be the same or different.
  • the system includes two devices and two different materials (ie, a first material and a second material).
  • the system includes three devices and three different materials (ie, a first material, a second material, and a third material).
  • the system includes four devices and four different materials (i.e., a first material, a second material, a third material, and a fourth material). In some embodiments, the system includes five devices and five different materials (ie, a first material, a second material, a third material, a fourth material, and a fifth material). In some embodiments, the system includes six devices and six different materials (ie, a first material, a second material, a third material, a fourth material, a fifth material, and a sixth material). In some embodiments, the additive manufacturing system includes a first device loaded with a first material and a second device loaded with a second material, wherein the first material and the second material are different.
  • FIG. 12 shows a portion of an exemplary system that includes three printing modules, each having a different printhead 1202, 1204, and 1206.
  • the printing station 1208 is movable on the x, y, and z axes, with the product under the correct printhead, which can extrude the material to produce a product 1210 (e.g., a tablet).
  • FIG. 3 exemplarily shows a schematic diagram of a 3D printing apparatus in accordance with an embodiment of the present invention.
  • the 3D printing device 300 also has a control module 505 that can be comprised of one or more PLC controllers, microcontrollers, or electronic computers and has a computerized user interface.
  • the control module 505 is in communication with the loading module 501, the melt extrusion module 502, the printing module 503, the platform module 504, the cache module 507, and the mixing module 508 of the 3D printing device 300, and controls the specific operation of each module according to the state parameters.
  • the above state parameters may be, but are not limited to, a digital model of the product, the melting point of the starting material, the pressure at the nozzle, the amount of product desired and the actual product obtained, and the composition, weight, moisture, and number of colonies of the desired product, and the like. These parameters may be implemented in a digital storage device of an electronic computer of the control module 505, or may be input and selected by a user through a computerized user interface.
  • the 3D printing device 300 further includes a plurality of detecting devices disposed in each of the above modules for real-time monitoring of some specific state parameters at the respective modules.
  • the specific state parameters can include the temperature, composition, pressure, weight, moisture, and shape of the melt.
  • the specific state parameter can also be the weight, shape, moisture of the initial material, the heating temperature thereto, and the like.
  • the particular state parameter can also be the composition, pressure, weight, moisture, shape, and the like of the printed product.
  • the detecting means included in the 3D printing apparatus 300 may also be a temperature sensor, a component sensor, a pressure sensor, a weight sensor, a moisture sensor, a shape sensor, and the like.
  • the component sensor may be a near-infrared spectroscopy analyzer, and the near-infrared spectroscopy analyzer has a probe that can be inserted into an object to be measured, and the near-infrared spectroscopy analyzer can acquire various substances in the substance.
  • the specific content of the components is mainly used for measuring a component of a fluid such as a melt, and in some embodiments, the near-infrared spectroscopy analyzer may further have a probe for measuring a component of a powdery substance, the probe It can be inserted into the starting material to determine the content of the powder, moisture and so on. Therefore, in some embodiments, the moisture sensor provided may also be a near infrared spectroscopy analyzer.
  • the detecting device of the 3D printing device 100 as shown in FIG. 1 may further include a camera or other imaging device, which may be configured to detect the feeding module 101 to detect its melt extrusion in real time.
  • the camera or imaging device may be disposed below the feeding module 101 or at the position of the discharge opening 113.
  • the camera or imaging device may also be configured to detect the printing module 103 or the platform module 104, specifically for the state parameters of the discharge condition of the real-time image detecting nozzle 131, such as the discharging speed and the continuous degree of discharge.
  • the above camera or imaging device may be disposed on the printing module 103 or the platform module 104 or disposed therebetween.
  • the position of the camera or the imaging device may be set to the alignment nozzle 131, and the nozzle 131 is further provided with a plane mirror, and the plane of the plane mirror is at an angle to the plane where the deposition platform 141 is located, thereby being capable of Light reflected on the deposition platform 141 is reflected toward the above-described camera or imaging device.
  • the placement of such a camera or imaging device can simultaneously satisfy the detection requirements of the above-described specific state parameters at the nozzle 131 and at the deposition platform 141.
  • a first temperature sensor in communication with the control module 505 is provided at the processing chamber of the melt extrusion module for measuring melting at the processing chamber of the melt extrusion module 502.
  • the temperature of the body is passed to the control module 505 to communicate a first temperature detection signal.
  • the control module 505 determines the temperature of the melt at the processing chamber of the melt extrusion module 502 based on the first temperature detection signal and determines if the temperature is in the first desired temperature range.
  • the melt temperature at the processing chamber of the melt extrusion module 502 should be slightly higher than the melting point of the initial material to ensure that the initial material in the processing chamber is sufficiently melted.
  • the first ideal temperature range has a specific correspondence with the structural structure of the product to be printed and the type of the original material. Whether the temperature of the melt of the melt extrusion module 502 is in a desired range directly determines the viscosity and adhesion properties of the melt during printing, thereby affecting the continuity and accuracy of 3D printing.
  • the control module 505 can determine the first desired temperature range based on the printed product or a status parameter input by the user through the user interface.
  • control module 505 can increase the placement of the melt extrusion module 502 when the first temperature detection signal indicates that the temperature of the melt at the processing chamber of the melt extrusion module 502 is below a first desired temperature range.
  • the heating power of the one or more processing chamber heating devices to the melt may also control the melt extrusion according to the first temperature detection signal. The extrusion power of module 502 is passed to adjust the temperature of the melt at the processing chamber of melt extrusion module 502.
  • control module 505 performs the reverse operation to stop one or more of the processes disposed at the melt extrusion module 502. Heating of the chamber heating device or reducing its heating power.
  • a second temperature sensor (not shown) is further disposed at the printing module 503 for measuring the temperature of the melt at the printing module and transmitting a second temperature detection signal to the control module 505.
  • the control module 505 controls the temperature of the melt temperature at the printing module 503 to a second desired temperature range based on the second temperature detection signal.
  • the melt temperature at the print module 503 has a significant effect on the molding accuracy and continuity of the final printed product, typically set above the melting point of the melt.
  • the second ideal temperature range is related to the structure and configuration of the product to be printed, the type of the original material, and the like, and the control module 505 can be input according to the printed product or the user through the user interface.
  • the status parameter is determined.
  • the control module 505 can increase the temperature adjustment device disposed at the printing module 503 (not shown in the figure) The heating power to the melt.
  • the arrangement and structure of the temperature adjustment device can be referred to the temperature adjustment device 134 of the print module of the above 3D printing device.
  • the control module 505 performs the reverse operation to stop the heating of the melt by the temperature adjustment device disposed in the printing module 503, or to decrease Its heating power.
  • the temperature of the melt at the printing module 503 can be lowered by the temperature adjustment device to maintain a state slightly above the melting point of the initial material for better product printing.
  • a third temperature sensor (not shown) is further disposed at the storage chamber of the buffer module 507 for measuring the temperature of the melt at the storage chamber thereof and transmitting the control module 505 to the control module 505.
  • Three temperature detection signals The control module 505 controls the temperature of the melt at the storage chamber of the cache module 507 to a third desired temperature range based on the third temperature detection signal.
  • the melt temperature in the storage chamber of the cache module 507 should be slightly above the melting point of the melt to maintain the molten state of the initial material in the chamber.
  • the third ideal temperature range is related to the structure and configuration of the product to be printed, the type of the original material, and the like, and the control module 505 can input according to the printed product or the user through the user interface.
  • the status parameter is determined.
  • the control module 505 can increase the storage chamber heating provided at the storage chamber of the buffer module 507.
  • the storage compartment heating device disposed at the storage compartment of the cache module 507 has the same structure as the corresponding components of the 3D printing apparatus shown in FIGS. 1 and 2.
  • the control module 505 performs the reverse operation to stop the heating device disposed at the storage chamber of the buffer module 507 against the melt. Heat, or reduce its heating power.
  • a fourth temperature sensor (not shown) is further disposed at the mixing chamber of the mixing module 508 for measuring the temperature of the melt at its mixing chamber and communicating to the control module 505 Four temperature detection signals.
  • the control module 505 controls the temperature of the melt temperature at the mixing chamber of the mixing module 508 to a fourth desired temperature range based on the fourth temperature detection signal.
  • the melt temperature within the mixing chamber of mixing module 508 should be slightly above the melting point of the melt to maintain the molten state of the melt in the chamber.
  • the fourth ideal temperature range is related to the structure and configuration of the product to be printed, the type of the original material, and the like, and the control module 505 can input according to the printed product or the user through the user interface.
  • the status parameter is determined.
  • the control module 505 can increase the mixing chamber heating disposed at the mixing chamber of the mixing module 508 when the fourth temperature detection signal indicates that the temperature of the melt at the mixing chamber is below a fourth desired range.
  • the heating power of the melt by the device (not shown).
  • the mixing chamber heating device disposed at the mixing chamber of the mixing module 508 is identical in construction to the corresponding components of the 3D printing device illustrated in Figures 1 and 2.
  • the control module 505 performs the reverse operation to stop the heating device disposed at the mixing chamber of the mixing module 508 to the melt. Heat, or reduce its heating power.
  • a first pressure sensor in communication with the control module 505 is disposed at the printing module 503 for measuring the pressure of the melt at the printing module 503, and A first pressure detection signal is communicated to control module 505.
  • the control module 505 controls the pressure of the melt at the printing module 503 within a first desired pressure range based on the first pressure detection signal.
  • the pressure of the melt extruded at the printing module of the 3D printing device, and whether the pressure value is stable, directly affects the continuity and accuracy of 3D printing.
  • the first ideal pressure range is related to the structure and configuration of the product to be printed, the type of the original material, and the like, and the control module 505 can be based on the printed product or the state input by the user through the user interface. The parameters are determined.
  • the print module 503 has a cartridge and a nozzle disposed below the cartridge, wherein the first pressure sensor is disposed inside the cartridge of the printing module 503 for testing the pressure of the melt within the cartridge.
  • the first pressure sensor is disposed at the nozzle of the printing module 503 to accurately measure the pressure of the melt extruded by the nozzle of the printing module.
  • the first pressure sensor is a piezoelectric pressure sensor, a diffused silicon pressure sensor or a strain gauge pressure sensor, or the like. In some embodiments, the first pressure sensor is a float type liquid level gauge disposed in the cartridge to determine the pressure of the current melt within the cartridge by determining the level of the melt in the cartridge.
  • the control module 505 when the pressure of the melt at the nozzle of the printing module 503 represented by the first pressure detecting signal or somewhere in the cartridge is lower than the first ideal pressure range, the control module 505 can set the 3D printing through the above setting.
  • the pressure regulating device of apparatus 100 increases the pressure of the melt at the nozzle of the printing module 503 or within the cartridge.
  • the control module 505 performs an opposite operation, which can lower the nozzle of the printing module 503 by the pressure adjusting device 135 disposed at 100 Or the pressure of the melt in the barrel.
  • the 3D printing apparatus 300 further includes a feed module 701 for receiving the initial material and transferring it to the melt extrusion module 502.
  • the initial material received by the feeding module 501 and the feeding module 701 may be different.
  • the feeding module 501 receives the first initial material
  • the feeding module 701 receives the second initial material.
  • a melt extrusion module 502 is used to extrude and heat the mixed first initial material and second initial material.
  • Any one of the 3D printing devices 300 is provided with a first component detector (not shown) communicatively coupled to the control module 505, such as a mixing chamber disposed in the storage chamber of the buffer module 507 and the mixing module 508. , the printing module 503, and the communication channel between the modules.
  • the first component detector is configured to detect a composition ratio of the first initial material and the second initial material in the melt at any position of the 3D printing apparatus 300, and deliver a first component detection signal to the control module 505.
  • the first component detection signal can be a near infrared spectroscopy analyzer as previously described.
  • the control module 505 determines the composition of the melt at any position of the 3D printing apparatus 300 based on the first component detection signal and determines whether the component is in the first ideal component range.
  • the composition of the melt of the 3D printing device will affect the physical and chemical properties of the final product such as structural strength, disintegration rate, etc. In the case of 3D drug printing, the composition of the melt may affect the release rate of the pharmaceutically active ingredient of the final product.
  • the first ideal component range is related to the physicochemical properties, strength requirements, structure, configuration, and type of raw materials of the product to be printed, and the control module 505 can be based on the printed product, or The user determines the status parameter entered through the user interface.
  • the control module 505 can control the discharge of the hopper provided to the feeding module 501 and the feeding module 701.
  • the control device reduces the discharge speed of the first initial material or increases the discharge speed of the second initial material.
  • the specific structure of the above-described hopper discharge control device is the same as that of the corresponding components of the 3D printing device shown in Figs. 1 and 2 as described above.
  • the control module 505 performs the reverse operation, which can increase the number by controlling the hopper discharge control device provided to the feeding module 501 and the feeding module 701. The exit velocity of an initial material or the discharge velocity of the second initial material.
  • the 3D printing apparatus 300 further includes a charging module 601 and a melt extrusion module 602 for receiving the initial material and transferring it to the melt extrusion module 602.
  • the initial material received by the charging module 601 can be different from the feeding module 501 and the feeding module 701.
  • the melt extruded from the melt extrusion module 502 and the melt extrusion module 602 may be different, such as a first melt and a second melt, respectively. As shown, the first melt and the second melt are introduced into mixing module 508 for mixing.
  • the 3D printing apparatus 300 is provided at any place after the discharge port of the mixing chamber of the mixing module 508 with a second component detector (not shown) communicatively coupled to the control module 505 for detecting the slave
  • the ratio of the composition of the first melt and the second melt and the components contained therein in the mixed melt extruded from the discharge port of the mixing chamber, and the second component detection signal is transmitted to the control module 505.
  • the control module 505 determines the composition of the melt after the discharge port of the processing chamber of the melt extrusion module 502 based on the second component detection signal and determines whether the component is in the second desired component range.
  • the second ideal component range is related to the physical and chemical properties, strength requirements, structure, configuration, and type of raw materials of the product to be printed, and the control module 505 can be printed according to The product, or the status parameter entered by the user through the user interface.
  • the control module 505 can control the placement of the melt extrusion module. 502 and a melt extrusion discharge control device of the melt extrusion module 602 to reduce the discharge rate of the first melt or to increase the discharge rate of the second melt.
  • the specific structure of the above-described melt extrusion discharge control device is the same as that of the corresponding components of the 3D printing device shown in Figs. 1 and 2 as described above.
  • control module 505 When the first melt or a component thereof contains a low proportion, the control module 505 performs the reverse operation to control the melt extrusion control device of the melt extrusion module 502 and the melt extrusion module 602 to increase The discharge rate of the first melt or the discharge rate of the second initial material.
  • the 3D printing apparatus 300 has a cache module 507 having a storage chamber for storing a melt extruded from a discharge port of the melt extrusion module 502.
  • a first volume sensor (not shown) is provided at the storage chamber of the cache module 507, which is configured to detect the remaining volume in the storage chamber of the cache module 507 and to communicate a first volume detection signal to the control module 505.
  • the control module 505 determines that the material in the storage chamber is too much or too small according to the first volume detection signal, thereby avoiding the occurrence of excess melt or the like in the storage chamber, thereby affecting the melt pressure in the 3D printing apparatus 300.
  • the first volume sensor may be a flow meter respectively disposed at the feed port and the discharge port of the storage chamber of the buffer module 507, and the remaining volume in the storage chamber is determined by separately calculating the flow rates of the inflow and the outflow.
  • the flow meter can be a differential pressure, rotor or positive displacement flow meter.
  • the control module 505 can reduce the discharge speed of the corresponding discharge port by controlling one or more discharge control devices provided to the 3D printing device 300.
  • the one or more discharge control devices disposed in the 3D printing apparatus 300 include, but are not limited to, a hopper discharge control device of the charging module 501, and a melt extrusion discharge control device of the melt extrusion module 502.
  • the specific structure of the above-described discharge control device is the same as that of the corresponding components of the 3D printing device shown in Figs. 1 and 2 as described above.
  • FIG. 4 exemplarily shows a perspective view of a 3D printing apparatus in accordance with still another embodiment of the present invention.
  • the printing module 703 of the 3D printing apparatus 400 includes a plurality of nozzles 731, and a plurality of nozzles 731 are arranged in an array, wherein each nozzle 731 is discharged to the processing chamber, the mixing chamber, or the storage chamber.
  • the distance between the ports is equal, which ensures that the pressure of each nozzle is equal during the printing process, which is suitable for mass production.
  • the plurality of nozzles may also be arranged in other manners in which the distances of the communication paths to the discharge ports of the processing chamber, the mixing chamber or the storage chamber are equal, such as a circular shape, a fan-shaped arrangement, or the like.
  • the plurality of nozzles 731 of the above-described 3D printing apparatus 400 have the same inner diameter of 0.05 to 2 mm, and the constituent materials thereof may be steel, brass, aluminum alloy or the like. In some embodiments, the inner diameter of each nozzle of the above-described 3D printing apparatus 400 is preferably 0.3, 0.4, or 0.5 mm.
  • the print module 703 is in communication with a processing chamber, a mixing chamber, or a storage chamber via a hose (not shown).
  • all of the interconnected modules of the 3D printing device are connected by a hose, and the molten body flows from the processing chamber of the melt extrusion module into the storage chamber of the cache module and the mixing module through the hose. Mix the chamber or the nozzle of the print module.
  • the hoses that communicate with the various modules described above have an inner diameter of from 1 to 100 millimeters. In some embodiments, the inner diameter of the hose connecting the various modules described above is preferably 4 mm.
  • FIG. 5 exemplarily illustrates an arrangement of nozzles of a 3D printing apparatus according to an embodiment of the present invention on a printing module.
  • each hose is connected to the printing module 703 and then passed through four nozzles 714, wherein the four nozzles 714 are equally distributed on the same circumference.
  • Such a design allows the nozzle to be sprayed onto the platform module to form a final product that can be placed horizontally and vertically for subsequent packaging and cutting processes.
  • the 3D printing device 400 further includes a platform module 704 that includes a plurality of deposition platforms 741, 742, 743, etc., the plurality of deposition platforms being disposed on the platform drive mechanism 745.
  • the plurality of deposition platforms 741, 742, and 743 are sequentially disposed in the form of track connections to the track drive mechanism 746, and the track drive mechanism 746 is disposed on the horizontal drive mechanism 747 and can be integrated along with the horizontal drive mechanism 747. Horizontal movement.
  • the crawler drive mechanism 746 and the horizontal drive mechanism 747 together form a platform drive mechanism 745, wherein the crawler drive mechanism 746 can drive the deposition platforms 741, 742, 743 along the Cartesian coordinate system as shown by the motor.
  • the horizontal drive mechanism 747 is a stepper motor that can drive the deposition platforms 741, 742, and 743 to move in the X-axis direction of the Cartesian coordinate system as shown.
  • the 3D printing device 400 also includes a print module drive mechanism 735, which is a stepper motor as shown, which can drive the nozzle 731 of the print module 703 as shown along the Descartes as shown The Z-axis motion of the coordinate system.
  • the structure of the above printing module driving mechanism and the platform driving mechanism may be any combination of the movement of the nozzle 731 relative to the deposition platform along the X-axis, the Y-axis and the Z-axis of the Cartesian coordinate system, such as in some embodiments.
  • the nozzle of the print module drive mechanism print module moves along the Cartesian coordinate system X-axis, Y-axis, and Z-axis, and the platform module 704 remains stationary during printing of the product.
  • the print module driving mechanism 735 and the horizontal driving mechanism 747 as shown in the figure are stepping motors, they may be other transmission mechanisms such as hydraulic piston cylinders and the like.
  • the 3D printing device 400 can also include a product collection module (not shown) that is configured to collect the final products formed on the deposition platforms 741, 742, and 743.
  • the product collection module described above can be a squeegee or robot for transporting the final product formed on deposition platforms 741, 742, and 743 to a designated platform or conveyor for packaging.
  • the product collection module has a package laying and heat sealing function, and a lower layer package is laid on the platform module in advance, and the product is directly printed on the package, and after the final printing of the product is completed, the product collection module will The upper package directly covers the final product, and the pressurized thermoplastic seal completes the packaging, and the package may be aluminum foil, plastic film or the like.
  • the 3D printing device 400 also has an automatic feed mechanism (not shown) that is in direct communication with the feed port of the feed module and delivers the initial charge to the feed port.
  • the automatic feeding mechanism may be a belt conveyor, a buried scraper conveyor, a vibrating conveyor, a screw conveyor, or the like.
  • the automatic feeding mechanism may be provided with a piezoelectric sensor for measuring the weight of the delivered initial material and controlling the quantitative transfer of the initial material based on the measurement.
  • the control module of the 3D printing device 400 can control the transmission speed of various initial materials according to the state parameters of the device or the instructions input by the user through the user interface, thereby improving production efficiency.
  • the 3D printing device 400 further includes a verification module (not shown) that is configured to detect product parameters of the final product on the platform module.
  • the product parameters of the above final product include, but are not limited to, the number of products and the components, weight, moisture and colonies of the desired product.
  • the inspection module is communicatively connected with the control module, and transmits the detected product parameters to the control module, and the control module determines whether the above product parameters conform to the final according to the preset product requirements or the instructions input by the user through the user interface. Product requirements, and based on the judgment results to determine whether the product is qualified, and implement corresponding measures to correct the failure of equipment operation.
  • the verification module can include a near infrared spectroscopy analyzer as described above to verify that the components of the final product are acceptable.
  • the inspection module may further include a camera for imaging or optically detecting the final formed product, and comparing the control module with the standard requirements to verify whether the size and shape of the final product formed on the deposition platforms 741, 742, and 743 are consistent. standard.
  • the above-described near-infrared spectrum analyzer can also function as a moisture sensor.
  • the inspection module described above may also include a piezoelectric sensor to measure the weight of the final product.
  • the measured product parameters may be transmitted to the control module, and the control module may adjust the operation of the automatic 3D printing device 400 based on the parameter.
  • the specific adjustment manner may refer to the control module as described above and the above modules disposed in the 3D printing device 400.
  • the adjusting device corresponding to the detecting device of the state parameter includes, but is not limited to, the above various heating devices and discharging control devices.
  • the 3D printing device 400 further includes an automated screening module configured to sort the final products formed on the deposition platforms 741, 742, and 743.
  • the automatic screening module described above has a high-precision weighing sensor, such as a piezoelectric sensor, that delivers the product to a different location based on the weight of the final product formed on the automated screening module, such as entering a product that does not meet the weight requirements. To the waste department.
  • a 3D printing method comprising: a step of melting and pressing a material; an extrusion port for flowing a material through a nozzle including a tapered inner surface; and a monitoring nozzle The pressure of the material in or near the nozzle; the tapered end of the sealing needle engages the tapered inner surface of the nozzle, thereby closing the extrusion port and preventing the flow of molten material; and withdrawing the tapered end of the sealing needle to recover the material The flow through the extrusion port.
  • the method is performed using a device as described herein.
  • the apparatus includes a plurality of cartridges, wherein each cartridge is configured with a control switch.
  • the method can include printing a first material from a first cartridge and printing a second material from a second cartridge, wherein when the second material is printed from the second cartridge, the sealing needle of the first cartridge is in a closed position, and When the first material is printed from the first cartridge, the sealing needle of the second supply system is in the closed position.
  • the method is performed in a batch processing mode.
  • the device or system is controlled to operate in a batch mode.
  • batch mode refers to the mode of operation in which a predetermined quantity of product, such as a pharmaceutical dosage form, is made.
  • the method is performed in a continuous mode of operation.
  • the device or system operates in a continuous mode.
  • continuous mode refers to an operational mode in which a device or system is operated for a predetermined period of time or until a predetermined amount of single or multiple materials has been used.
  • the 3D printing method includes: melting and pressurizing the first material; flowing the first material through a first extrusion port of the first nozzle including the tapered inner surface; causing the first sealing needle The tapered end engages the tapered inner surface of the first nozzle to close the first extrusion port and prevent flow of the molten first material; melt and pressurize the second material; and taper from the second nozzle The surface withdraws the tapered end of the second sealing needle to begin flowing the second material through the second extrusion port.
  • the method includes, for example, receiving an instruction to manufacture a product from a computer system.
  • the method of making a pharmaceutical dosage form (eg, a tablet) using the 3D printing method includes the steps of: melting and pressurizing the medicinal material; monitoring the pressure of the material in or near the nozzle; flowing the material through An extrusion port of the nozzle including the tapered inner surface; engaging the tapered end of the sealing needle with the tapered inner surface of the nozzle to close the extrusion port and prevent the flow of the molten material; and withdrawing the tapered end of the sealing needle, thereby Restore the flow of material through the extrusion port.
  • the pharmaceutical material comprises a drug.
  • the method is performed using a device as described herein.
  • the apparatus includes a plurality of cartridges, wherein each cartridge is configured with a control switch.
  • the method can include printing a first material from a first cartridge and printing a second material from a second cartridge, wherein when the second material is printed from the second cartridge, the sealing needle of the first cartridge is in a closed position, and When the first material is printed from the first cartridge, the sealing needle of the second feeding module is in the closed position.
  • the method further includes monitoring a pressure of the first material in the first nozzle or adjacent the first nozzle; or monitoring a pressure of the second material in the vicinity of the second nozzle or the second nozzle.
  • the method of making a pharmaceutical dosage form using the 3D printing method comprises melting and pressurizing a first pharmaceutical material; flowing a first pharmaceutical material through a first extrusion of a first nozzle comprising a tapered inner surface An outlet; engaging a tapered end of the first sealing needle with the tapered inner surface of the first nozzle to seal the first extrusion port and prevent flow of the molten first material; melting and pressurizing the second pharmaceutical material; And withdrawing the tapered end of the second sealing needle from the tapered inner surface of the second nozzle, thereby flowing the second pharmaceutical material through the second extrusion port.
  • the first pharmaceutical material or the second pharmaceutical material is aerobic material.
  • the first pharmaceutical material or the second pharmaceutical material comprises a drug.
  • the method further includes receiving an instruction to manufacture a pharmaceutical dosage form, for example, from a computer system. In some embodiments, the method further includes monitoring a pressure of the first material in the first nozzle or adjacent the first nozzle; or monitoring a pressure of the second material in the vicinity of the second nozzle or the second nozzle.
  • FIG. 6 exemplarily shows a schematic diagram of a 3D printing apparatus according to still another embodiment of the present invention.
  • FIG. 7A and 7B exemplarily illustrate models of a drug product that a 3D printing device can print according to an embodiment of the present invention.
  • the 3D printing apparatus 600 includes a plurality of melt extrusion modules 961, 962, 963, 964, 965, and 966 and a plurality of nozzles 951, 952, 953, 954, 955, and 956.
  • the 3D printing device 600 also includes a plurality of deposition platforms 941, 942, 943, 944, 945, and 946.
  • the structure and functional arrangement of the above plurality of deposition platforms can also be referred to the deposition platform as shown in FIGS. 1 and 2.
  • the melt extruded from the plurality of melt extrusion modules of the 3D printing apparatus 600 is deposited on the plurality of deposition platforms, and the deposition platforms 941, 942, 943, 944, 945, and 946 can be driven one by one through the plurality of nozzles 951.
  • 952, 953, 954, 955, and 956 receive the melt and operate in a cycle with respect to the plurality of nozzles as a whole.
  • the plurality of deposition platforms may also reciprocate between one or more of the plurality of nozzles, as will be described in more detail in connection with Figures 7A and 7B.
  • the 3D printing apparatus 600 shown in FIG. 6 includes a plurality of nozzles 951, 952, 953, 954, 955, and 956, wherein the nozzles 951, 952, 953, 954, 955, and 956 may be a single nozzle, or may be A combination of a plurality of nozzles that are arranged in a certain order.
  • the 3D printing device 600 can have a plurality of printing modules corresponding to the plurality of nozzles 951, 952, 953, 954, 955, and 956, respectively.
  • the melt extrusion modules 961, 962, 963, 964, 965, and 966 of the 3D printing apparatus 600 shown in FIG. 6 and the plurality of nozzles 951, 952, 953, 954, 955, and 956 There may also be one or more hybrid modules or cache modules. The arrangement and structure of the hybrid modules or cache modules may be as shown in FIGS. 1 and 2.
  • Figure 7A illustrates a model of a drug 990 that a 3D printing device can print in accordance with an embodiment of the present invention.
  • the drug 990 includes a drug housing 992 and a drug core 993. Wherein 992 can be a drug coating formed by an enteric, gastric-soluble material, and core portion 993 is a pharmaceutically active ingredient.
  • Figure 7B illustrates a model of a drug 991 that can be printed by a 3D printing device in accordance with an embodiment of the present invention.
  • the drug 991 includes drug shells 994 and 995 and drug cores 996 and 997. Wherein the shells 994 and 995 may be drug coatings having different dissolution and release characteristics formed by enteric, gastric-soluble materials, and the core portions 996 and 997 may be different pharmaceutically active ingredients.
  • the control module In the process of printing the above-mentioned drugs, the control module first reads the drug digital model as shown in Figs. 7A and 7B and the state parameters of the components, moisture, weight, and the like of the drug, and the requirements of the final product parameters. The control module then controls the aforementioned automatic feed mechanism to feed the melt extrusion module through the feed module.
  • the melt extrusion module 961 receives the starting material of the enteric material, extrudes it into a melt, and extrudes it from the nozzle 951.
  • the melt extrusion module 962 is for receiving the raw material of the above pharmaceutically active ingredient, extruding it into a molten body, and then extruding it from the nozzle of the nozzle 952.
  • the platform drive mechanism drives the deposition platform 941 to move below the nozzle 951, and through the relative movement between the nozzle and the deposition platform 941, the lower half of the concave portion of the drug casing 992 is finally deposited on the deposition platform 941, and then
  • the re-driving deposition platform 941 is moved below the nozzle 952, and by its relative movement between the nozzle and the deposition platform 941, layered deposition on the deposition platform 941 finally forms a drug core 993 in the concave lower half of the drug casing 992. .
  • the deposition platform 941 is driven back below the nozzle 951, and the upper half of the drug casing 992 is finally deposited on the deposition platform 941 by the relative movement between the nozzle and the deposition platform 941, and finally formed as shown in FIG. 7A.
  • the melt extrusion module 963 as shown in FIG. 6 can have the same raw material as the melt extrusion module 961, which is extruded from the nozzle 953 after it is extruded and heated into a melt. Therefore, after the printing of the drug core 993 is completed, the deposition platform 941 can be moved below the nozzle 953 to complete the printing of the drug model as shown in FIG. 7A.
  • the plurality of deposition platforms 941, 942, 943, 944, 945 and 946 can sequentially pass under the nozzles 951, 952 and 953 in order to complete the printing of the drug model shown in FIG. 7A in a pipeline manner.
  • This setting can effectively improve the efficiency of printing drugs and meet the needs of mass production.
  • the deposition platform 941 may also reciprocate between the nozzles 951 and 952 to complete the printing of the drug model as shown in FIG. 7A.
  • the deposition platform 942 may also be in the nozzle 952 and Reciprocating motion between 953 to complete the printing of the drug model shown in Fig. 7A.
  • the drug model as shown in FIG. 7A can also be strictly layered.
  • the 3D printing apparatus 600 can layer the drug model shown in FIG. 7A from top to bottom and drive the deposition platform 941 to move under the nozzle 951 through the platform driving mechanism, through the relative relationship between the nozzle and the deposition platform 941. Movement, layered deposition on the deposition platform 941 ultimately results in a single layered portion comprising only the drug shell 992.
  • the 3D printing device 600 is driven by the platform drive mechanism to drive the deposition platform 941 to reciprocate below the nozzle 951 and below the nozzle 952 through the nozzle
  • the relative motion with the deposition platform 941, layered on the deposition platform 941, ultimately forms a single layer comprising both the drug shell 992 and the drug core 993.
  • the drug model shown in Fig. 7B is printed in a manner similar to that shown in Fig. 7A, and the concave lower half of the drug casings 994 and 995 can be printed first, followed by printing the drug core portions of the cores 996 and 997, and finally printing the drug.
  • the drug model shown in Figure 7B can also be layered for printing in strict accordance with the layering.
  • a drug model comprising a plurality of different component portions can be printed by a plurality of different melt extrusion modules and/or printing modules.
  • the drug model shown in FIG. 7B may be composed of an enteric material, the core 997 is a pharmaceutically active ingredient that needs to be released in the intestine, and the drug model 995 may be composed of a stomach-soluble material, and the core 996 is a drug that needs to be released in the stomach.
  • the active ingredient therefore, the drug model shown in FIG. 7B can achieve different efficiency release of different organs.
  • various special structures as shown in FIG. 7B can be printed efficiently, quickly and in batches. And the required pharmaceutical products.
  • the 3D printing device disclosed by the invention also meets the requirements for continuous production of drugs (CMP).
  • CMP continuous production of drugs
  • the 3D printing device can or product parameters can monitor the printed drugs in real time.
  • FIG. 8 exemplarily shows a flowchart of a 3D printing method in accordance with an embodiment of the present invention.
  • the present invention also discloses a 3D printing method for printing a product using the 3D printing device disclosed in the present invention.
  • the 3D printing method will be described in detail below with reference to FIGS. 1, 2 and 3, and the specific functions in the specific steps of the method are Implementation, reference may be made to the specific components and functional settings in the embodiment of the 3D printing device of the present invention as described above.
  • the above 3D printing method includes first adding a first starting material to the processing chamber 121 of the melt extrusion module 102 of the 3D printing apparatus 100. Subsequently, the first initial material in the processing chamber 121 is heated and extruded to convert it into a first melt, and the first melt is discharged from the processing chamber 121. 125 extrusion. The first melt that then directs the discharge opening 125 of the processing chamber 121 is extruded through the nozzle 131 of the printing module 103 and deposited onto the platform module 104.
  • the 3D printing method described above further includes adding a first initial material to the melt extrusion module 102 through a hopper of the charging module 101.
  • the above 3D printing method further includes detecting a pressure of the first melt at the printing module 103 and controlling a pressure of the first melt at the printing module 103 according to the detected pressure.
  • the above 3D printing method further includes detecting a temperature of the first mixed melt at the printing module 103; and adjusting a temperature of the first mixed melt at the printing module 103 according to the detected temperature.
  • the above 3D printing method further includes detecting a temperature of the first melt at the processing chamber 121; and controlling a first melt in the processing chamber 121 according to the detected temperature. Heating power and/or extrusion power to the first melt.
  • the step of guiding the first melt of the discharge port of the processing chamber 121 through the nozzle 131 of the printing module 103 and depositing it onto the platform module 104 specifically includes: guiding the processing chamber 121.
  • the first melt of the discharge port 125 enters the storage chamber 171 of the buffer module 107; the first melt that guides the discharge port of the storage chamber 171 is extruded through the nozzle 131 of the printing module 103 and deposited onto the platform module 104.
  • the above 3D printing method further includes detecting a temperature of the first melt at the storage chamber 171; and controlling the first melt in the storage chamber 171 according to the detected temperature. heating power.
  • the above 3D printing method further includes detecting the remaining volume of the storage chamber 171; and controlling the discharge of the first melt of the discharge port 125 of the processing chamber 121 according to the remaining volume of the storage chamber 171. speed.
  • the 3D printing method described above further includes directing a first melt that is at least partially extruded from the discharge port 125 of the processing chamber 121 to flow into the processing chamber 121.
  • the above 3D printing method further includes adding a second initial material to the processing chamber of the second melt extrusion module 402 through the hopper of the second charging module 401;
  • the second initial material in the processing chamber of extrusion module 402 is heated and extruded to convert it into a second melt and extrude it from the discharge port of the processing chamber of the second melt extrusion module Mixing the first melt and the second melt in the mixing chamber 308 to form a first mixed melt; and directing the first mixed melt of the discharge port of the mixing chamber 308 through the nozzle of the printing module 303 331 is extruded and deposited onto the platform module 304.
  • the above 3D printing method further includes detecting a composition of the first mixed melt extruded from the discharge port of the mixing chamber 308; respectively controlling the first component according to the detected composition of the first mixed melt The discharge rates of the first melt and the second melt at the discharge port of the processing chamber of the melt extrusion module 302 and the second melt extrusion module 402.
  • the above 3D printing method further includes detecting a temperature of the first mixed melt at the mixing chamber 308; and controlling heating power to the first mixed melt at the mixing chamber 308 according to the detected temperature.
  • the above 3D printing method further includes adding a second initial material to the processing chamber 121 of the first melt extrusion module 102 through the hopper 211 of the second charging module 201;
  • the first initial material and the second initial material in 121 are heated and extruded to convert them into a first melt.
  • the above 3D printing method further includes detecting a composition of the first melt at an arbitrary position of the 3D printing apparatus 100, and separately controlling the first feeding according to the detected composition of the first melt.
  • the above 3D printing method further includes adding a second initial material to a processing chamber of the second melt extrusion module 962 through a hopper of a second charging module (not shown); Heating and extruding a second initial material in the processing chamber of the second melt extrusion module 962 to convert it into a second melt and from the processing chamber of the second melt extrusion module 962 Extrusion of the discharge port; the second melt guiding the discharge port of the processing chamber of the second melt extrusion module 962 is extruded through the second nozzle 952 of the printing module and deposited onto the platform module; The platform module 941 is driven to move between the lower side of the first nozzle 951 and the lower side of the second nozzle 952.
  • the 3D printing method described above further includes moving a nozzle 731 of the printing module relative to the platform module.
  • the 3D printing method described above further includes driving the nozzle 731 of the printing module relative to the platform module to move along a Z-axis as shown in FIG.
  • the above 3D printing method further includes driving a first deposition platform 741 of the platform module to move relative to a nozzle 731 of the printing module; wherein the first deposition 741 platform is configured to receive via the nozzle 731 The first melt extruded.
  • the 3D printing method described above further includes driving the deposition platform 741 to move relative to the nozzle 731 along an X-axis and/or a Y-axis as shown in FIG.
  • the 3D printing method described above further includes collecting the final product formed on the platform module 104.
  • the 3D printing method described above further includes detecting product parameters of the final product formed on the platform module 104.
  • the 3D printing method described above further includes sorting the final product formed on the platform module 104.
  • the 3D printing method described above further includes delivering the first initial material to the loading module 101 via an automatic feeding module.
  • the above 3D printing method can be used for printing of thermoplastic materials, especially for continuous production of pharmaceuticals, personalized production, and mass production.
  • modules or sub-modules of a 3D printing device are mentioned in the above detailed description, such division is merely exemplary and not mandatory.
  • the features and functions of the two or more modules described above may be embodied in one module.
  • the features and functions of one of the modules described above may be further divided into multiple modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种3D打印设备(100),包括熔融挤出模块(102)、打印模块(103)和平台模块(104)。所述熔融挤出模块(102)包括具有进料口(124)和出料口(125)的处理腔室(121)和设置于所述处理腔室(121)处的挤出装置(122)及加热装置(123),所述熔融挤出模块(102)被设置为通过所述处理腔室(121)的进料口(124)接收初始物料,并对所述初始物料进行加热和挤出,使得所述初始物料转变为熔融体,所述熔融体从所述处理腔室(121)的出料口(125)被挤出。所述打印模块(103)与所述处理腔室(121)的出料口(125)连通,并具有喷嘴(131),所述打印模块(103)被配置为接收从所述处理腔室(121)的出料口(125)被挤出的所述熔融体,并引导所述熔融体经由所述喷嘴(131)挤出。所述平台模块(104)被配置为接收经由所述喷嘴(131)挤出的所述熔融体。

Description

3D打印设备和方法 技术领域
本申请涉及一种与增材制造技术相关的设备和方法,尤其涉及一种3D打印设备和3D打印方法。
背景技术
3D打印是一种快速成型技术,其以数字模型为基础,利用金属或塑料等可粘合材料通过逐层打印的方式来制造产品。随着相关技术的迅速发展,3D打印被广泛应用于珠宝、工程、汽车、牙科、航空航天和医疗产业中。
其中,熔融层积成型技术(FDM)是目前常用的一种3D打印技术。采用该技术的3D打印设备通常将ABS、PLA等材料构成的丝状物料加热至略高于熔点温度,在计算机或控制器的控制下,逐层挤出熔融体叠加堆积成所需的产品。现有的此类3D打印设备通常对于熔融前的初始物料的材料有限制,比如采用熔融层积成型技术的3D打印设备通常适用的进料必须是线型或丝状,这显然限制了此类3D打印设备的应用范围。例如,在用熔融层积成型技术打印3D药品的应用中,如果采用线材的形式向打印设备输送药物辅料或活性成分,由于线材形状的限制,无法满足3D药品打印所需的原材料载药量的要求。
当然,在实践中也有采用粉末原料进行3D药品打印的应用。然而在工业应用实践中,由于其使用的3D打印设备采用的是粉末分层加粘合剂粘合的三维粉液打印技术,可能存在粉末分层喷射所造成的粉末收集回收问题。并且采用该技术所能进行3D打印的药物的剂型比较少,并且所能打印出的药物产品难以实现缓释和零级释放等要求。
当制造产品,特别是生产药物产品时,希望精确控制由喷嘴打印材料的量。现有的用于增材制造的装置的一个重大问题是材料通过喷嘴的意外泄漏,这会导致打印超过所需量的材料。当使用两个或多个喷嘴时,问题会更加复杂,这些喷嘴可能会打印不同的材料,需要交替打开或关闭开关。例如,如果当第二喷嘴打印第二材料时,第一喷嘴泄漏第一材料,则会出现制造缺陷或材料浪费。由于本发明所述的装置和系统可以处理一系列具有高准确度和高精度材料沉积的药物材料,所以这些装置和系统非 常适合于制造具有复杂几何形状和组成的药物剂型。本发明描述的装置,系统和方法还有助于个性化药物,包括个性化剂量和/或个性化释放曲线。个性化药物是指基于生物标志物对患者人群进行分层以帮助治疗决策和个性化剂型设计。个性化药物剂型允许根据患者的质量和代谢来调整药物剂量以及释放曲线。使用本发明描述的装置制造的药物剂型可以确保儿童生长的准确剂量并允许高效药物的个性化剂量给药。个性化剂型还可以将所有患者的药物组合成单一日剂量,从而改善患者对药物的依从性和治疗依从性。修改数字设计比修改物理设备更容易。而且,自动化的小型三维打印可能具有可忽略的操作成本。因此,使用本发明描述的增材制造装置可以使多个小的、个性化批次在经济上可行,并且能够实现旨在提高依从性的个性化剂型。
相比于传统的药品“批量生产”,药品的“连续化生产”采用了过程分析技术(PAT)来实时且连续地提供质量信息(例如近红外技术等),使得最终产品可以直接投入市场。这种生成工艺流程极大的提高了制造设备的使用效率,同时更提高了药品质量。此外,在生产过程中不间断地进行质量检测,能够有效地避免出现批量废品,而省去中间环节,也节约了中间产品的存储和运输成本。可以预知在不久的将来,“连续化生产”方式和3D药品打印一样,可能成为一种药物生产的主流。不过,“连续化生产”需要全密闭真空投料,避免交叉污染,而且要求一切检测工作均在生产过程中完成。
发明内容
本发明的一个目的是提供一种能够解决上述缺陷和不足的3D打印设备。
根据本发明的一个方面,提供了一种包括第一熔融挤出模块、第一打印模块和平台模块的3D打印设备。所述第一熔融挤出模块包括具有进料口和出料口的处理腔室和设置于处理腔室处的挤出装置及加热装置。所述第一熔融挤出模块被设置为通过所述处理腔室的进料口接收第一初始物料,并对所述第一初始物料进行加热和挤出,使得所述第一初始物料转变为第一熔融体,所述第一熔融体从所述处理腔室的出料口被挤出。所述第一打印模块与所述处理腔室的出料口连通,并具有第一喷嘴。所述第一打印模块被配置为接收从所述处理腔室的出料口被挤出的所述第一熔融体,并引导所述第一熔融体经由所述第一喷嘴挤出。所述平台模块被配置为接收经由所述第一喷嘴挤出的所述第一熔融体。
在本发明的某些实施方式中,所述第一打印模块用于熔融并施加压力,所述第一打印模块包括连接到打印头的供料通道,所述打印头包括喷嘴,该喷嘴包括锥形内表面和用于打印材料的挤出口;压力传感器,所述压力传感器用于检测所述喷嘴内或所述喷嘴附近供料通道内材料的压力;以及控制开关,其包括可在打开位置和关闭位置切换的密封针,所述密封针延伸穿过所述供料通道的一部分并且包括锥形端部;其中所述密封针的锥形端与所述喷嘴的锥形内表面接合,以阻止材料在所述密封针处于所述关闭位置时流过所述喷嘴。
根据本发明的一个方面,用于通过精确控制喷嘴或喷嘴附近的加料通道中的压力以增材制造来沉积材料或制造产品(例如药物剂型),并且利用当密封针处于关闭位置时,带有密封针的控制开关阻止材料流过喷嘴。喷嘴包括锥形内表面,并且密封针包括渐缩端,该渐缩端与喷嘴的锥形内表面接合以限制材料泄漏。密封针优选尖锐、质薄并且没有突起,突起可能在关闭位置时将材料推出喷嘴。材料的压力优选在设备中保持近似恒定,可以通过监测压力并使用反馈系统对材料施加压力来控制材料的压力。这样,一旦密封针定位在打开位置而不需要升高压力,就可以以恒定速率立即挤出材料。这进一步可实现精确打印材料,这可实现准确和精确地制造药物剂量单位,例如药片。
在本发明的某些实施方式中,接触材料的密封针的任何部分没有突起。
在本发明的某些实施方式中,密封针的锥形端部包括尖头。在一些实施例中,密封针的锥形端是截头圆锥形的。在一些实施例中,喷嘴的锥形内表面具有第一锥角并且密封针的锥形端具有第二锥角;并且所述第二锥角与所述第一锥角相同或小于所述第一锥角。在一些实施例中,第二锥角约为60°或更小。在一些实施例中,第二锥角约为45°或更小。在一些实施例中,第一锥角与第二锥角的比率为约1:1至4:1。
在本发明的某些实施方式中,所述挤出口具有约0.1mm至1mm的直径。在一些实施例中,所述锥形端最大直径约0.2mm至约3.0mm。在一些实施例中,所述挤出口具有直径,所述锥形端具有最大直径,所述锥形端的最大直径与所述挤出口的直径之比约为1:0.8至约1:0.1。
在本发明的某些实施方式中,所述控制开关包括致动器,所述致动器可以将密封针定位在打开位置或关闭位置。在一些实施例中,所述致动器是气动致动器。在一些 实施例中,所述致动器是机械致动器。
在本发明的某些实施方式中,密封针穿过固定在相对于喷嘴位置的垫圈,其中所述垫圈封闭供料通道。
在本发明的某些实施方式中,所述密封针的锥形端部或喷嘴的锥形内表面包括柔性衬垫或衬套。
在本发明的某些实施方式中,所述材料是非线材的。在一些实施例中,所述材料在从所述装置中挤出时具有约100Pa·s或更高的粘度。在一些实施例中,所述材料在从所述装置中挤出时具有约400Pa·s或更高的粘度。在一些实施例中,所述材料在约50℃到400℃的温度下熔融。在一些实施例中,材料在约50℃至约400℃的温度下从喷嘴中挤出。在一些实施例中,材料在约90℃至300℃的温度下从喷嘴中挤出。
在本发明的某些实施方式中,进一步包括第一加料模块。所述第一加料模块包括料斗,所述料斗具有进料口和出料口,并被配置为通过所述料斗的进料口接收第一初始物料,并通过所述料斗的出料口向所述第一熔融挤出模块的处理腔室的进料口排出所述第一初始物料。
在本发明的某些实施方式中,该3D打印设备进一步包括控制模块。所述控制模块包括计算机化控制器,用于基于所述3D打印设备的状态参数控制所述3D打印设备。
在本发明的某些实施方式中,该3D打印设备进一步包括与所述控制模块通信连接的第一温度检测装置。所述第一温度检测装置被设置为检测所述处理腔室处的所述第一熔融体的温度,并向所述控制模块传递第一温度检测信号。
在本发明的某些实施方式中,所述处理腔室加热装置与所述控制模块通信连接,所述控制模块根据所述第一温度检测信号控制所述处理腔室加热装置的加热功率。
在本发明的某些实施方式中,所述挤出装置与所述控制模块通信连接,所述控制模块根据所述第一温度检测信号控制所述挤出装置的挤出功率。
在本发明的某些实施方式中,所述挤出装置包括螺杆装置。所述螺杆装置设置于所述处理腔室中,挤出所述第一初始物料或第一熔融体,并将所述第一熔融体输送到所述处理腔室的出料口。
在本发明的某些实施方式中,所述螺杆装置为单螺杆装置、双螺杆装置或其组合。
在本发明的某些实施方式中,所述第一熔融挤出模块包括熔融挤出出料控制装置,所述熔融挤出出料控制装置被设置为控制所述处理腔室的出料口的所述第一熔融体的 出料速度。
在本发明的某些实施方式中,该3D打印设备进一步包括:第一压力检测装置,所述第一压力检测装置与所述控制模块通信连接,其被设置为检测所述第一打印模块处的第一熔融体的压力,并向所述控制模块传递第一压力检测信号;压力调节装置,所述压力调节装置被布置于所述第一打印模块,其被设置为调节所述第一打印模块处的第一熔融体的压力;其中所述控制模块与所述压力调节装置通信连接,并根据所述第一压力检测信号通过所述压力调节装置调节所述第一打印模块处的所述第一熔融体的压力。
在本发明的某些实施方式中,压力传感器连接到控制第一打印模块的计算机系统以响应所述压力传感器报告的压力,并将所述材料加压到所需压力。在一些实施例中,材料的压力在所需压力的0.05MPa内。在一些实施例中,所述第一打印模块包括活塞和连接到所述进料流道的筒体,其中,所述活塞被驱动以控制所述筒内材料的压力。在一些实施例中,使用步进电机来驱动活塞。
在本发明的某些实施方式中,该3D打印设备进一步包括:第二温度检测装置,所述第二温度检测装置与所述控制模块通信连接,其被设置为检测所述第一打印模块处的第一熔融体的温度,并向所述控制模块传递第二温度检测信号;温度调节装置,所述温度调节装置被布置于所述第一打印模块,其被设置为调节所述第一打印模块处的第一熔融体的温度;其中所述控制模块与所述温度调节装置通信连接,并根据所述第二温度检测信号通过所述温度调节装置调节所述第一打印模块处的所述第一熔融体的温度。在一些实施例中,所述第二温度检测装置被连接到一个计算机系统,所述计算机系统根据所述第二温度检测装置监测的温度控制相应的温度调节装置。
本发明提供了一种更精确的系统,用于通过精确控制喷嘴或喷嘴附近的供料通道中的压力以增材制造来沉积材料或制造产品(例如药物剂型),并且利用当密封针处于关闭位置时,带有密封针的控制开关阻止材料流过喷嘴。喷嘴包括锥形内表面,并且密封针包括渐缩端,该渐缩端与喷嘴的锥形内表面接合以限制材料泄漏。密封针优选尖锐、质薄并且没有突起,突起可能在关闭位置时将材料推出喷嘴。材料的压力优选在设备中保持近似恒定,可以通过监测压力并使用反馈系统对材料施加压力来控制材料的压力。这样,一旦密封针定位在打开位置而不需要升高压力,就可以以恒定速率立即挤出材料。这进一步可实现精确打印材料,这可实现准确和精确地制造药物剂 量单位,例如药片。
在本发明的某些实施方式中,所述第一加料模块进一步包括料斗出料控制装置,所述料斗出料控制装置被设置为控制所述料斗的出料口的所述第一初始物料的出料速度。
在本发明的某些实施方式中,所述料斗出料控制装置为螺杆装置,所述螺杆装置设置于所述料斗中,并通过所述螺杆的转速变化控制所述料斗的出料口的所述第一初始物料的出料速度。
在本发明的某些实施方式中,进一步包括第二加料模块,其被配置为通过其料斗的进料口接收第二初始物料,并通过其料斗的出料口排出所述第二初始物料。
在本发明的某些实施方式中,该3D打印设备进一步包括:第一组分检测装置,所述第一组分检测装置与所述控制模块通信连接,其被设置为检测所述3D打印设备的任意位置的所述第一熔融体的组分,并向所述控制模块传递第一组分检测信号;所述第一加料模块和第二加料模块的料斗出料控制装置与所述控制模块通信连接,所述控制模块根据所述第一组分检测信号通过所述第一加料模块和第二加料模块的料斗出料控制装置分别控制所述第一加料模块和第二加料模块的料斗的出料口的第一初始物料和第二初始物料的出料速度。
在本发明的某些实施方式中,该3D打印设备进一步包括:第一缓存模块,所述第一缓存模块包括具有进料口和出料口的存料室,所述存料室的进料口与所述处理腔室的出料口连通,所述存料室的出料口与所述第一打印模块连通,所述第一缓存模块被配置为接收从所述处理腔室的出料口被挤出的所述第一熔融体,并引导所述第一熔融体通过所述存料室的出料口进入所述第一打印模块。
在本发明的某些实施方式中,所述第一缓存模块进一步包括存料室出料控制装置,用于控制所述存料室的出料口的所述第一熔融体的出料速度。
在本发明的某些实施方式中,所述第一缓存模块进一步包括存料室加热装置,所述存料室加热装置被设置为对所述存料室内的第一熔融体进行加热。
在本发明的某些实施方式中,该3D打印设备进一步包括:第三温度检测装置,所述第三温度检测装置与所述控制模块通信连接,其被设置为检测所述存料室处的所述第一熔融体的温度,并向所述控制模块传递第三温度检测信号;所述控制模块根据 所述第三温度检测信号控制所述存料室加热装置的加热功率。
在本发明的某些实施方式中,该3D打印设备进一步包括:容积检测装置,所述容积检测装置与所述控制模块通信连接,其被设置为检测所述存料室的剩余容积,并向所述控制模块传递容积检测信号。
在本发明的某些实施方式中,所述第一熔融挤出模块进一步包括:熔融挤出出料控制装置,其被设置为控制所述处理腔室的出料口的所述第一熔融体的出料速度;其中所述熔融挤出出料控制装置与所述控制模块通信连接,所述控制模块根据所述容积检测信号通过所述熔融挤出出料控制装置控制所述处理腔室的出料口的所述第一熔融体的出料速度。
在本发明的某些实施方式中,该3D打印设备进一步包括回流回路,所述回流回路被设置为引导至少部分从所述处理腔室的出料口被挤出的所述第一熔融体回流至所述处理腔室内。
在本发明的某些实施方式中,该3D打印设备进一步包括:第二加料模块,所述第二加料模块包括具有进料口和出料口的料斗,并被配置为通过所述料斗的进料口接收并排出第二初始物料;第二熔融挤出模块,所述第二熔融挤出模块包括具有进料口和出料口的处理腔室和设置于处理腔室处的挤出装置和处理腔室加热装置,其被设置为通过所述第二熔融挤出模块的处理腔室的进料口接收所述第二初始物料,并对所述第二初始物料进行加热和挤出,使得所述第二初始物料转变为第二熔融体,所述第二熔融体从所述第二熔融挤出模块的处理腔室的出料口被挤出;以及第一混合模块,所述第一混合模块包括具有进料口和出料口的混合腔室,所述混合腔室的进料口与所述第一熔融挤出模块和第二熔融挤出模块的处理腔室的出料口均连通,所述混合腔室的出料口与所述第一打印模块连通,所述第一混合模块被配置为接收被挤出的所述第一熔融体和所述第二熔融体,并混合成第一混合熔融体后引导所述第一混合熔融体进入所述第一打印模块。
在本发明的某些实施方式中,所述第一熔融挤出模块和第二熔融挤出模块分别包括熔融挤出出料控制装置,其被设置为控制所述第一熔融挤出模块和第二熔融挤出模块的处理腔室的出料口的所述第一熔融体和第二熔融体的出料速度。
在本发明的某些实施方式中,该3D打印设备进一步包括:第二组分检测装置,所述第二组分检测装置与所述控制模块通信连接,其被设置为检测所述混合腔室的出 料口所挤出的第一混合熔融体的组分,并向所述控制模块传递第二组分检测信号;所述第一熔融挤出模块和第二熔融挤出模块的熔融挤出出料控制装置分别与所述控制模块通信连接,所述控制模块根据所述第二组分检测信号通过所述第一熔融挤出模块和第二熔融挤出模块的熔融挤出出料控制装置分别控制所述第一熔融挤出模块和第二熔融挤出模块的处理腔室的出料口的所述第一熔融体和第二熔融体的出料速度。
在本发明的某些实施方式中,所述第一混合模块进一步包括混合腔室加热装置,所述混合腔室加热装置被设置为对所述混合腔室处的第一混合熔融体进行加热。
在本发明的某些实施方式中,该3D打印设备进一步包括:第四温度检测装置,所述第四温度检测装置与所述控制模块通信连接,并被设置为检测所述混合腔室处的所述第一混合熔融体的温度,并向所述控制模块传递第四温度检测信号;所述控制模块根据所述第四温度检测信号控制所述混合腔室加热装置的加热功率。
在本发明的某些实施方式中,所述第一混合模块进一步包括混合腔室出料控制装置,用于控制所述混合腔室的出料口的所述第一混合熔融体的出料速度。
在本发明的某些实施方式中,所述第一喷嘴的内径为0.05至2毫米。
在本发明的某些实施方式中,所述第一打印模块进一步包括第二喷嘴。
在本发明的某些实施方式中,所述第一喷嘴和第二喷嘴到所述处理腔室的出料口的连通路径距离相等。
在本发明的某些实施方式中,所述喷嘴装置包括多个喷嘴,所述喷嘴呈阵列排布。
在本发明的某些实施方式中,该3D打印设备进一步包括打印模块驱动机构,所述打印模块驱动机构被设置为驱动所述第一打印模块的第一喷嘴相对于所述平台模块运动。
在本发明的某些实施方式中,所述打印模块驱动机构被设置为驱动所述打印模块的第一喷嘴相对于所述平台模块沿笛卡尔坐标系Z轴运动。
在本发明的某些实施方式中,所述平台模块包括:第一沉积平台,所述第一沉积平台被配置为接收经由所述第一喷嘴挤出的所述第一熔融体;以及平台驱动机构,所述平台驱动机构驱动所述第一沉积平台相对于所述第一打印模块的第一喷嘴运动。
在本发明的某些实施方式中,所述平台驱动机构用于驱动所述第一沉积平台相对于所述第一喷嘴沿笛卡尔坐标系X轴和/或Y轴运动。
在本发明的某些实施方式中,该3D打印设备进一步包括:第二熔融挤出模块, 所述第二熔融挤出模块包括具有进料口和出料口的处理腔室和设置于处理腔室处的挤出装置和处理腔室加热装置,所述第二熔融挤出模块被设置为通过所述处理腔室的进料口接收第二初始物料,并对所述第二初始物料进行加热和挤出,使得所述第二初始物料转变为第二熔融体,所述第二熔融体从所述处理腔室的出料口被挤出;所述第一打印模块进一步包括第二喷嘴,所述第二喷嘴与所述第二熔融挤出模块的处理腔室的出料口连通,所述第一打印模块被配置为接收从所述第二熔融挤出模块的处理腔室的出料口被挤出的所述第二熔融体,并引导所述第二熔融体经由所述第二喷嘴挤出;所述平台驱动机构驱动所述沉积平台在所述第一喷嘴的下方和第二喷嘴的下方之间移动。
在本发明的某些实施方式中,所述平台模块进一步包括:第二沉积平台,所述第二沉积平台被配置为接收经由所述第一喷嘴挤出的所述第一熔融体;所述平台驱动机构驱动所述第一沉积平台和第二沉积平台依次通过所述第一喷嘴的下方。
在本发明的某些实施方式中,该3D打印设备进一步包括产品收集模块,所述产品收集模块被设置为对所述平台模块上形成的最终产品进行收集。
在本发明的某些实施方式中,该3D打印设备进一步包括检验模块,所述检验模块被设置为对所述平台模块上形成的最终产品的产品参数进行检测。
在本发明的某些实施方式中,该3D打印设备进一步包括自动筛选模块,所示自动筛选模块被设置为对平台模块上形成的最终产品进行拣选。
在本发明的某些实施方式中,该3D打印设备进一步包括自动送料模块,所示自动送料模块被设置为向所述第一加料模块输送所述第一初始物料。
在本发明的某些实施方式中,所有相互连通的上述各部件之间通过软管连通。
在本发明的某些实施方式中,所述软管的内径为1至100毫米。
在本发明的某些实施方式中,所述第一初始物料包括热塑性材料。
在本发明的某些实施方式中,所述的3D打印设备进一步包括第二打印模块,所述第二打印模块位于所述第一打印模块沿笛卡尔坐标系Z轴的上方。
在本发明的某些实施方式中,所述的3D打印设备进一步包括多个上述装置,其中每个打印模块配置有控制开关。在一些实施例中,所述系统包括装载有第一材料的第一装置和装载有第二材料的第二装置,其中所述第一材料和第二材料不同。在一些实施例中,所述系统包括计算机系统,所述计算机系统包括一个或多个处理器和计算 机可读存储器,其中所述计算机系统被用于控制该系统。在本发明的某些实施方式中,计算机可读存储器存储了用于使用该系统打印产品的指令。在本发明的某些实施方式中,计算机可读存储器存储了用于响应由相应打印模块中的压力传感器检测到的压力来控制每个打印模块中的材料的压力的指令。在本发明的某些实施方式中,计算机可读存储器存储了用于响应由相应打印模块中的温度传感器检测到的温度来控制每个打印模块中的材料的温度的指令。
根据本发明的另一个方面,提供了一种3D打印方法,所述3D打印方法包括:向第一熔融挤出模块的处理腔室中加入第一初始物料;对所述处理腔室中的第一初始物料进行加热和挤出,以使其转变为第一熔融体,并使得所述第一熔融体从所述处理腔室的出料口挤出;引导所述处理腔室的出料口的第一熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上。
在本发明的某些实施方式中,该3D打印方法进一步包括通过第一加料模块的料斗向所述第一熔融挤出模块加入第一初始物料。
在本发明的某些实施方式中,该3D打印方法进一步包括:检测所述第一打印模块处的所述第一熔融体的压力;并根据所检测到压力控制所述第一打印模块处的所述第一熔融体的压力。在本发明的某些实施方式中,该方法基于所监测的压力使用反馈系统来控制第一熔融体的压力。
在本发明的某些实施方式中,喷嘴内第一熔融体的压力保持近似恒定。
在本发明的某些实施方式中,该3D打印方法进一步包括:检测所述第一打印模块处的第一熔融体的温度;并根据所检测到的温度调节所述第一打印模块处的第一熔融体的温度。在本发明的某些实施方式中,该方法基于所监测的温度使用反馈系统来控制第一熔融体的温度。
在本发明的某些实施方式中,喷嘴内的第一熔融体的温度保持近似恒定。
在本发明的某些实施方式中,所述引导所述处理腔室的出料口的第一熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上的步骤进一步包括:使第一熔融体流过喷嘴的挤出口,所述喷嘴包括锥形内表面;使密封针的锥形端与喷嘴的锥形内表面接合,从而封闭挤出口以阻止第一熔融体的流动;回抽密封针的锥形端部,从而恢复第一熔融体通过挤出口的流动。
在本发明的某些实施方式中,第一熔融体包含药用可接受的材料。在一些实施例中,第一熔融体包含药物。在一些实施例中,该方法包括接收用于制造药物剂型的指令。
在本发明的某些实施方式中,物料是非线材的。在一些实施例中,物料具有约100Pa·s或更高的粘度。
在本发明的某些实施方式中,接触物料的密封针的任何部分都没有突起。
在本发明的某些实施方式中,密封针的锥形端部包括尖锐尖端。在一些实施例中,密封针的锥形端是截头圆锥形的。在一些实施例中,喷嘴的锥形内表面具有第一锥角并且密封针的锥形端具有第二锥角;其中所述第二锥角等于或小于所述第一锥角。在一些实施例中,第二锥角约为60°或更小。在一些实施例中,第二锥角约为45°或更小。在一些实施例中,第一锥角与第二锥角的比率为约1:1至4:1。在一些实施例中,挤出口具有约0.1mm至1mm的直径。在一些实施例中,锥形端部具有约0.2至约3.0mm的最大直径。在一些实施例中,挤出口具有直径并且锥形端部具有最大直径,并且锥形端部的最大直径与挤出口的直径的比率约为1:0.8至约1:0.1。
在本发明的某些实施方式中,该方法基于所监测的压力使用反馈系统来控制第一熔融体的压力。在本发明的某些实施方式中,喷嘴内第一熔融体的压力保持近似恒定。
在本发明的某些实施方式中,该方法基于所监测的温度使用反馈系统来控制第一熔融体的温度。在本发明的某些实施方式中,喷嘴内的第一熔融体的温度保持近似恒定。在本发明的某些实施方式中,该3D打印方法进一步包括:检测所述处理腔室处的所述第一熔融体的温度;并根据所检测到的温度控制对所述处理腔室内的第一熔融体或第一初始物料的加热功率和/或对第一熔融体或第一初始物料的挤出功率。
在本发明的某些实施方式中,所述引导所述处理腔室的出料口的第一熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上的步骤包括:引导所述处理腔室的出料口的第一熔融体进入第一缓存模块的存料室;引导所述存料室的出料口的第一熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上。在本发明的某些实施方式中,该3D打印方法进一步包括:检测所述存料室处的所述第一熔融体的温度;并根据所检测到的温度控制对所述存料室内的第一熔融体的加热功率。
在本发明的某些实施方式中,该3D打印方法:检测所述存料室的剩余容积;并根据所述存料室的剩余容积控制所述处理腔室的出料口的所述第一熔融体的出料速 度。
在本发明的某些实施方式中,该3D打印方法进一步包括引导至少部分从所述处理腔室的出料口被挤出的所述第一熔融体回流至所述处理腔室内。
在本发明的某些实施方式中,该3D打印方法进一步包括:通过第二加料模块的料斗向第二熔融挤出模块的处理腔室加入第二初始物料;对所述第二熔融挤出模块的处理腔室中的第二初始物料进行加热和挤出以使其转变为第二熔融体并使其从所述第二熔融挤出模块的处理腔室的出料口挤出;在混合腔室中混合所述第一熔融体和第二熔融体以形成第一混合熔融体;引导所述混合腔室出料口的第一混合熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上。
在本发明的某些实施方式中,该3D打印方法进一步包括:检测所述混合腔室的出料口所挤出的第一混合熔融体的组分;根据所检测到第一混合熔融体的组分分别控制所述第一熔融挤出模块和第二熔融挤出模块的处理腔室的出料口处的第一熔融体和第二熔融体的出料速度。
在本发明的某些实施方式中,该3D打印方法进一步包括:检测所述混合腔室处的第一混合熔融体的温度;并根据所检测到的温度控制对所述混合腔室处的第一混合熔融体的加热功率。
在本发明的某些实施方式中,该3D打印方法进一步包括:通过第二加料模块的料斗向第一熔融挤出模块的处理腔室加入第二初始物料;对所述处理腔室中的第一初始物料和第二初始物料进行加热和挤出,以使其转变为第一熔融体。
在本发明的某些实施方式中,该3D打印方法进一步包括检测该3D打印设备的任意位置的第一熔融体的组分,并根据所检测到的第一熔融体的组分分别控制所述第一加料模块和第二加料模块的出料口的所述第一初始物料和第二初始物料的出料速度。
在本发明的某些实施方式中,该3D打印方法进一步包括:通过第二加料模块的料斗向第二熔融挤出模块的处理腔室中加入第二初始物料;对所述第二熔融挤出模块的处理腔室中的第二初始物料进行加热和挤出,以使其转变为第二熔融体并从所述第二熔融挤出模块的处理腔室的出料口挤出;引导所述第二熔融挤出模块的处理腔室的出料口的第二熔融体通过所述第一打印模块的第二喷嘴挤出并沉积到平台模块上;以及驱动所述平台模块在所述第一喷嘴的下方和第二喷嘴的下方之间移动。
在本发明的某些实施方式中,该方法进一步包括监测第一喷嘴内或第一喷嘴附近 的第一熔融体的压力;或监测第二喷嘴内或第二喷嘴附近的第二熔融体的压力。在一些实施例中,第一喷嘴内的第一熔融体的压力或第二喷嘴内的第二熔融体的压力保持近似恒定。在一些实施例中,该方法包括基于监测的压力使用反馈系统来控制第一熔融体或第二熔融体的压力。
在上述方法的一些实施例中,第一熔融体或第二熔融体具有约100Pa·s或更高的粘度。
在本发明的某些实施方式中,第一初始物料或第二初始物料是非线材的。
在本发明的某些实施方式中,接触第一熔融体的第一密封针的任何部分或接触第二熔融体的第二密封针的任何部分没有突起。
在本发明的某些实施方式中,第一喷嘴内的第一熔融体的温度或第二喷嘴内的第二熔融体的温度保持近似恒定。在一些实施例中,该方法包括监测第一熔融体的温度或第二熔融体的温度。在一些实施例中,该方法包括基于监测到的第一熔融体的温度使用反馈系统来控制第一熔融体的温度,或者基于监测到的第二熔融体的温度使用反馈系统来控制第二熔融体的温度。
在本发明的某些实施方式中,第一密封针的锥形端或第二密封针的锥形端包括尖头。在上述方法的一些实施例中,第一密封针的锥形端部或第二密封针的锥形端部为截头圆锥形。
在本发明的某些实施方式中,第一喷嘴的锥形内表面具有第一锥角并且第一密封针的锥形端具有第二锥角;其中所述第二锥角等于或小于所述第一锥角;或所述第二喷嘴的锥形内表面具有第三锥角并且所述第二密封针的锥形端具有第四锥角;其中所述第四锥角与所述第四锥角等于或小于所述第三锥角。在本发明的某些实施方式中,第四锥角约为60°或更小。在本发明的某些实施方式中,第二锥角或第四锥角约为45°或更小。在本发明的某些实施方式中,第一锥角与第二锥角的比率或第三锥角与第四锥角的比率约为1:1至约4:1。在本发明的某些实施方式中,第一挤出口或第二挤出口具有约0.1mm至约1mm的直径。在本发明的某些实施方式中,第一密封针的锥形端或第二密封针的锥形端具有约0.2至约3.0mm的最大直径。在本发明的某些实施方式中,该3D打印方法进一步包括驱动所述第一打印模块的第一喷嘴相对于所述平台模块运动。
在本发明的某些实施方式中,该3D打印方法进一步包括驱动所述第一打印模块 的第一喷嘴相对于所述平台模块沿笛卡尔坐标系Z轴运动。
在本发明的某些实施方式中,该3D打印方法进一步包括:驱动所述平台模块的第一沉积平台,相对于所述第一打印模块的第一喷嘴运动;其中所述第一沉积平台被配置为接收经由所述第一喷嘴挤出的所述第一熔融体。
在本发明的某些实施方式中,该3D打印方法进一步包括驱动所述第一沉积平台相对于所述第一喷嘴沿笛卡尔坐标系X轴和/或Y轴运动。
在本发明的某些实施方式中,该3D打印方法进一步包括对所述平台模块上形成的最终产品进行收集。
在本发明的某些实施方式中,该3D打印方法进一步包括对所述平台模块上形成的最终产品的产品参数进行检测。
在本发明的某些实施方式中,该3D打印方法进一步包括为对所述平台模块上形成的最终产品进行拣选。
在本发明的某些实施方式中,该3D打印方法进一步包括通过自动送料模块向所述加料模块输送所述第一初始物料。
在本发明的某些实施方式中,所述第一初始物料包括热塑性材料。
本发明的另一个方面提供了一种用于3D打印设备的打印模块,其包括形成阵列排布的n×m个喷嘴(n和m分别为≥2的整数),其中第(x,y)号喷嘴的位置为第x列、第y行(1≤x≤n,1≤y≤m)。
在本发明的某些实施方式中,所述的打印模块被构造为可以挤出m种熔融体,其中所述第(x,y)号喷嘴被构造为可以挤出第y种熔融体。
在本发明的某些实施方式中,所述n×m个喷嘴分别连接n×m个处理腔室。
在本发明的某些实施方式中,所述n×m个喷嘴的出料速度分别由n×m个熔融挤出出料控制装置控制。
在本发明的某些实施方式中,所述n×m个喷嘴的第y行喷嘴被设置为具有基本相同的出料速度。根据本发明的另一个方面,提供了一种3D打印方法,所述3D打印方法包括:熔融物料和给物料加压;流动的物料通过挤出口喷嘴,所述喷嘴包括一个锥形内表面;在喷嘴或接近喷嘴的位置监测物料的压力;使密封针的锥形端与喷嘴的锥形内表面接合,从而封闭挤出口以阻止熔融物料的流动;回抽密封针的锥形端部,从而恢复物料通过挤出口的流动。在一些实施例中,该方法包括接收用于制造该产品的 指令。
在本发明的某些实施方式中,该3D打印方法进一步包括:熔融并加压第一物料;使所述第一物料流过包括锥形内表面的第一喷嘴的第一挤出口;将第一密封针的锥形端与第一喷嘴的锥形内表面接合,从而封闭第一挤出口并阻止熔融的第一物料的流动;熔融并加压第二物料;从第二喷嘴的锥形内表面回抽第二密封针的锥形端部,从而开始使第二物料流过第二挤出口。在本发明的某些实施方式中,该方法包括接收用于制造产品的指令。
另一方面,提供了一种通过3D打印来生产药物剂型的方法,包括将第一药用物料熔融并加压;使第一药用物料流过包括锥形内表面的第一喷嘴的第一挤出口;将第一密封针的锥形端与第一喷嘴的锥形内表面接合,从而密封第一挤出口以阻止熔融的第一物料的流动;将第二药用物料熔融并加压;从第二喷嘴的锥形内表面回抽第二密封针的锥形端部,从而使第二药用物料流过第二挤出口。在本发明的某些实施方式中,第一药用物料或第二药用物料是可溶蚀物料。在本发明的某些实施方式中,第一药用物料或第二药用物料包含药物。在一些实施例中,药物剂型具有指定的药物释放曲线。在本发明的某些实施方式中,该方法还包括接收用于制造药物剂型的控制指令。
在本发明的某些实施方式中,产品或药物剂型以分批模式制造。在上述方法的一些实施例中,产品或药物剂型以连续模式制造。
本发明还提供根据上述任何一种方法制备的产品或药物剂型。
附图说明
通过下面详细描述和所附的权利要求书并与附图结合,将会更加充分地清楚理解本申请的上述和其他特征。应当理解,本申请的附图仅展示了根据本申请的某些实施例,因此不应被认为是对本申请范围的限定。除非特别说明,附图不必是成比例的,并且其中类似的标号通常表示类似的部件。
图1示例性地展示了根据本发明的某一实施例的3D打印设备的示意图。
图2示例性地展示了根据本发明的另一实施例的3D打印设备的示意图。
图3示例性地展示了根据本发明的又一实施例的3D打印设备的示意图。
图4示例性地展示了根据本发明的某一实施例的3D打印设备的透视图。
图5示例性地展示了根据本发明的某一实施例的3D打印设备的喷嘴在打印模块 上的排布示意图。
图6示例性地展示了根据本发明的又一实施例的3D打印设备的示意图。
图7A和7B分别示例性地展示了根据本发明的某一实施例的3D打印设备能够打印的药物产品的模型。
图8示例性地展示了根据本发明的某一实施例的3D打印方法的流程图。
图9A示例性地展示了根据本发明的又一实施例的3D打印设备的示意图。
图9B示例性地展示了根据本发明的又一实施例的3D打印设备的透视图。
图9C示例性地展示了根据本发明的又一实施例的打印头的放大视图。
图9D示例性地展示了根据本发明的又一实施例的密封针以控制密封针的气动致动器的零部件的分解图。
图10示例性地展示了根据本发明的又一实施例的密封针和挤出口的放大视图。
图11示例性地展示了根据本发明的又一实施例的3D打印设备的示意图。
图12示例性地展示了根据本发明的又一实施例的3D打印设备的示意图。
图13示例性地展示了根据本发明的又一实施例的3D打印设备的示意图。
具体实施方式
在下面的详细描述中,参考了构成说明书一部分的附图。在附图中,类似的符号通常表示类似的组成部分,除非上下文另有说明。详细描述、附图和权利要求书中描述的说明性实施方式并非旨在限定。在不偏离本申请的主题的精神或范围的情况下,可以采用其他实施方式,并且可以做出其他变化。可以理解,可以对本申请中一般性描述的、在附图中图解说明的本申请内容的各个方面进行多种不同构成的配置、替换、组合,设计,而所有这些都明确地构成本发明内容的一部分。
下面将结合附图说明根据本发明的具体实施方式。图1示例性地展示了根据本发明的某一实施例的3D打印设备的示意图。
如图1所示,3D打印设备100包括熔融挤出模块102、打印模块103和平台模块104。在设备打印过程中,熔融挤出模块102对所接收的初始物料进行挤出加热使其熔融为熔融体,并将该熔融体传输至打印模块103,打印模块103按照事先设定的数据模型或程序将熔融体向平台模块104的指定位置挤出,通过熔融体在平台模块104上的层叠堆积,最终形成所需打印的3D产品。
如图1所示,在一些实施例中,3D打印设备还可以包括加料模块101,其具有用于容纳并传递初始物料的料斗111,料斗111具有进料口112和出料口113。在3D打 印设备100的打印过程中,加料模块101通过料斗111的进料口112接收初始物料并通过出料口113向熔融挤出模块102排出初始物料。用于3D打印设备100的初始物料可以为粉末状、颗粒状物料,对应的如图所示,料斗111为具有喇叭开口的漏斗状壳体,在一些实施例中,初始物料还可以为丝状、块状或其他形状,相对应的,料斗也可以对应设置与初始物料相适应的形状。料斗111内还设置有料斗出料控制装置114,料斗出料控制装置114控制所述料斗111的出料口113的初始物料的出料速度。图中示出的料斗出料控制装置114为单螺杆装置,其被设置在靠近出料口的位置,并联接有驱动其运动的马达和传动装置(图中未示出),通过驱动机构调节螺杆装置114的转速、可以控制初始物料在出料口113的出料速度。此外,通过对螺杆装置114本身螺杆部分的螺距和螺纹的设置,可以控制物料的混合传输方式。虽然如图所示的料斗出料控制装置114为单螺杆装置,在一些实施例中,料斗出料控制装置也可以是双螺杆装置,或者双螺杆装置与单螺杆装置的组合。在一些实施例中,料斗出料控制装置114还可以包括常用的可以控制出料口113的初始物料出料速度的机构。在一些实施例中,料斗出料控制装置还包括设置于出料口113的挡板或挡片,通过其控制出料口113是否出料。在一些实施例中,料斗出料控制装置114还可以是包括设置于出料口113的流量控制阀,例如,气动流量控制阀、电磁流量控制阀、液压流量控制阀等等。通过对流量控制阀大小来控制初始物料在出料口113的出料速度。
3D打印设备100还可以包括第二加料模块201。如图所示,第二加料模块201与第一加料模块101结构相同或相类似,也包括具有进料口212和出料口213的第二料斗211,并且也包括设置于料斗211中的料斗出料控制装置214,用于控制出料口212的初始物料的出料速度。在设备具体打印过程中,加料模块201可以通过料斗211的进料口212接收与加料模块101所接收的初始物料不同的第二初始物料,并通过出料口213向熔融挤出模块102排出第二初始物料。可以理解的是,通过控制加料模块101的料斗出料控制装置114和第二加料模块201的料斗出料控制装置214,可以控制熔融挤出模块102所接收的初始物料和第二初始物料的比例,从而最终控制所打印产品中上述初始物料和第二初始物料的比例。
如图1所示,熔融挤出模块102包括处理腔室121、挤出装置122和处理腔室加热装置123,处理腔室121为具有进料口124和出料口125的中空壳体,其从上述出料口113排出的初始物料通过进料口124进入处理腔室121中。处理腔室加热装置123设置于处理腔室121的周壁上,用于对处理腔室121内的物料进行加热。挤出装置122 对处理腔室121内的物料进行挤出和/或剪切做功,在处理腔室加热装置123和挤出装置122的共同作用下,初始物料熔融为熔融体并通过出料口125排出。
具体如图1所示,挤出装置122可以为设置于处理腔室121内的双螺杆装置122。双螺杆装置122通过变速装置128与驱动电机129连接,在驱动电机129的驱动下,双螺杆装置122的双螺杆旋转并挤出处理腔室121内的物料,并驱动物料向出料口125运动,同时双螺杆装置122的双螺杆旋转挤出做功所产生的内热对处理腔室121内的物料进行加热。虽然如图所示的挤出装置122为双螺杆装置,在一些实施例中,料斗出料控制装置也可以是单螺杆装置。在一些实施例中,挤出装置122还可以是常用的无螺杆挤出机,如活塞装置等。
如图1所示,处理腔室加热装置123可以被设置为分段围绕处理腔室121的外壁,进行分段加热,从而实现更为精确的加热温度控制。在一些实施例中,处理腔室加热装置123为常见的电加热装置,比如缠绕于处理腔室121外侧的热电偶。可以理解的是,虽然如图所示的处理腔室加热装置123设置于处理腔室121的外壁,在一些实施例中,处理腔室加热装置123也可以设置于处理腔室121内,比如设置于处理腔室121内部的加热棒等。
在一些实施例中,熔融挤出模块102还具有熔融挤出出料控制装置126(图中未示出),其被设置为控制所述处理腔室121的出料口125的熔融体的出料速度。与上述料斗出料控制装置114的结构类似,熔融挤出出料控制装置126可以为设置于出料口125的流量控制阀,例如,气动流量控制阀、液压流量控制阀、电磁流量控制阀等等,通过该流量控制阀来控制熔融体在出料口125的出料速度。在一些实施例中,熔融挤出出料控制装置126还可以具有设置于出料口125的挡板或挡片,来控制熔融体在出料口125是否出料。需要指出的是,熔融挤出模块102的挤出装置122也能够通过控制挤出处理腔室121内的初始物料和熔融体的挤出功率来控制熔融体在出料口125的出料速度。具体在如图所示的双螺杆装置122中,可以通过控制螺杆装置122的转速来控制熔融体在出料口125的出料速度。在一些实施例中,熔融挤出模块102的出料口125的出料速度还可以通过对其进料口124的进料速度的控制来进行调节,具体比如可以通过提高其进料口124的进料速度进而提高其出料口125的出料速度。上述熔融挤出模块102的进料口124的进料速度可以通过调节如上所述的加料模块101的出料口113的出料速度来实现。
在一些实施例中,3D打印设备100进一步包括回流回路127(图中未示出),回 流回路127的一端与处理腔室121的出料口125出口后的熔融体通路相连通,另一端与处理腔室121连通,从而使得部分熔融体回流至处理腔室121中。在一些实施例中,回流回路127还进一步设置有流量控制阀,通过该流量控制阀来调节经过回流回路127流回处理腔室121的熔融体的量和速度。
继续参照图1,打印模块103可以包括具有出料口和进料口的料筒133,该料筒133由中空壳体构成,其下部设置有喷嘴131。该打印模块103的料筒133的进料口与处理腔室121的出料口125连通,初始物料经过加热熔融为熔融体后输送入料筒133,最终通过喷嘴131挤出。虽然图中显示的打印模块103仅具有单个喷嘴131,但在一些实施例中,打印模块103可以包括多个喷嘴,从而可以实现批量化生产,解决目前通用的熔融沉积成型的3D打印设备无法适用于量产的缺陷。所述多个喷嘴可以呈现阵列排布或其他适用于量产的规则排布,具体喷嘴的排布方式将在下文中结合附图详述。打印模块103还包括打印模块驱动机构132(图中未示出),该驱动机构132可以为液压缸、步进电机或其他常用的驱动机构,打印模块103设置于驱动机构132上,从而驱动打印模块103的喷嘴131相对于平台模块104运动。如图所示,打印模块103的料筒133也可以设置有温度调节装置134,其结构与布置与上述处理腔室加热装置123相同或类似,可以为围绕料筒133分段设置的电加热装置。在一些实施例中,温度调节装置134也可以是设置于料筒133的加热棒,需要指出的是,温度调节装置还可以具有制冷功能,从而当打印模块103处熔融体温度过高时降低其温度,例如半导体制热制冷片等等。上述温度调节装置134优选设置于靠近喷嘴131的位置,从而可以快速精确控制喷嘴131挤出的熔融体的温度。料筒133还包括压力调节装置135(图中未示出),用于调节打印模块103处的熔融体的压力。在一些实施例中,所述压力调节装置可以为如上所述螺杆挤出装置,具体为单螺杆装置、双螺杆装置或其组合,该螺杆挤出装置设置于料筒133内,通过螺杆的转速控制对熔融体的挤出功率,进而控制打印模块103处,尤其是喷嘴131处的熔融体的压力。在另一些实施例中,该压力调节装置还可以是活塞挤出机构,该活塞挤出机构设置于料筒133内,通过气动或液压驱动活塞运动,进而控制打印模块103处,尤其是喷嘴131处的熔融体的压力。
如图1所示,平台模块104包括沉积平台141和驱动沉积平台141运动的平台驱动机构142。沉积平台141可以为板状结构,其被配置为接收经由喷嘴131挤出的熔融体,使其堆叠于该沉积平台上。虽然图中仅示出了一个沉积平台141,在一些实施例中,平台模块104还可以包括多个沉积平台,从而适用于同时大批量打印的量产需 求。关于多个沉积平台之间的构造将在下文中结合其他附图详述。
沉积平台141设置于沉积平台驱动机构142上,所述平台驱动机构142可以驱动沉积平台141相对于喷嘴131运动。在一些实施例中,平台驱动机构142可以是基于笛卡尔坐标系设置的步进电机,使其可以驱动沉积平台141沿着X轴,Y轴和Z轴中的某一个方向或多个方向运动。在另一些实施例中,3D打印设备100进一步包括打印模块驱动机构,用于驱动打印模块103的喷嘴131相对于平台模块104运动。在又一些实施例中,平台驱动机构142可以为传送履带。伴随着沉积平台141与喷嘴131的相对运动,熔融体在沉积平台141上沉积成所需要的各种复杂结构和构造的最终产品。
继续参照图1,3D打印设备100还包括缓存模块107。缓存模块107具有用于存储熔融体的存料室171,存料室171具有进料口172和出料口173,其中进料口172与处理腔室121的出料口连通,出料口173与打印模块103由加料通道135连通。从处理腔室121的出料口被挤出的熔融体通过进料口172流入存料室171中进行暂时存储,并通过出料口173流入打印模块103中进行打印。如图所示,缓存模块107还具有加热装置174,用于对存料室171中的熔融体进行加热,加热装置174设置于存料室171的外壁。在一些实施例中,加热装置174为围绕存料室171的热电偶。在一些实施例中,加热装置174也可以设置于存料室171内,比如设置于存料室171内部的加热棒等。在一些实施例中,存料室171外壁还设置有保温套,用于对存料室内的熔融体进行保温。
在一些实施例中,缓存模块107还包括存料室出料控制装置175(图中未示出),其用于控制存料室171的出料口173的熔融体的出料速度。类似于料斗出料控制装置114,存料室出料控制装置175可以为设置在靠近出料口173的位置的单螺杆装置或双螺杆装置,或其组合,或者是设置于出料口173的流量控制阀,例如,气动流量控制阀、电磁流量控制阀、液压流量控制阀等等。在一些实施例中,存料室171的出料口173还设置有挡板或挡片,用以控制出料口173是否出料。
图2示例性地展示了根据本发明的另一实施例的3D打印设备的示意图。
如图2所示,3D打印设备200还包括平行设置的第一加料模块301和第二加料模块401,以及平行设置的第一熔融挤出模块302和第二熔融挤出模块402。上述模块的结构与如上所述第一加料模块101和第一熔融挤出模块102相同。第一加料模块301与第二加料模块401接收初始物料,各自通过第一熔融挤出模块302和第二熔融挤出模块402加热和挤出成熔融体后,排出进入混合模块308。
继续参照图2,3D打印设备200还进一步包括混合模块308。混合模块308包括具有进料口382和出料口383的混合腔室381,其中混合腔室381的进料口382与第一熔融挤出模块302和第二熔融挤出模块402连通。混合腔室308中设置有混合机构386(图中未示出),用于混合来自于第一熔融挤出模块302和第二熔融挤出模块402的不同的熔融体。在一些实施例中,该混合机构386为机械搅拌装置,但在另一些实施例中,混合机构386也可以气动搅拌机构。
在一些实施例中,混合模块308还具有加热装置384,用于对混合腔室381中的熔融体进行加热保温。加热装置384可以设置于混合腔室381的外壁。在一些实施例中,加热装置384为围绕混合腔室381的热电偶。在一些实施例中,加热装置384也可以设置于混合腔室381内,比如是设置于混合腔室381内部的加热棒等。
在一些实施例中,混合模块308还包括混合腔室出料控制装置385(图中未示出),其用于控制混合腔室381的出料口383的熔融体的出料速度。类似于料斗出料控制装置114,混合腔室出料控制装置385可以为设置于靠近出料口383的位置的单螺杆装置或双螺杆装置,或其组合,或者是设置于出料口383的流量控制阀,例如,气动流量控制阀、电磁流量控制阀、液压流量控制阀等等。在一些实施例中,混合腔室还具有设置于出料口383处的挡板或挡片,用于控制出料口383是否出料。混合模块308可以使得一些在固态状态下不能充分混合或不容易混合的初始物料得到充分的混合,从而形成经过均匀的混合熔融体,从出料口383排出的混合熔融体进入打印模块303并从喷嘴331挤出层层堆叠于平台模块304上,形成具有混合组分的最终产品。
图9A例性的展示根据本发明的某一实施例的打印模块及喷嘴的示意图。该装置包括料筒133,其用于熔融和加压物料。熔融和加压的物料流过加料通道,该加料通道连接到喷嘴131。压力传感器106位于喷嘴和加料通道的末端附近,并且可以检测加料通道内物料的压力。可选地,压力传感器106可设计成直接检测在喷嘴131内物料的压力。控制开关108包括线性致动器和密封针,可以控制密封针在打开位置和闭合位置间切换。线性致动器可以是机械致动器(其可以包括丝杆),液压致动器,气动致动器(其可以包括气动阀)或电磁致动器(其可以包括电磁阀)。在一些实施例中,致动器包括针筒,例如气动针筒。在一些实施例中,致动器包括弹簧辅助气缸。在一些实施例中,弹簧辅助气缸包括辅助密封针动作的弹簧(即,将密封针从打开位置拉动至关闭位置)。在一些实施例中,弹簧辅助气缸包括帮助回抽密封针(即将密封针从关闭位置拉动至打开位置)的弹簧。当密封针处于打开位置时,加压的熔融物 料可以流过加料通道并通过喷嘴131的挤出口。当向控制开关108发出信号时,控制开关108将密封针降低到关闭位置,并且密封针的末端与喷嘴131的内表面接合。
在本发明的某些实施方式中,所述物料是非线状物料,例如粉末,颗粒,凝胶或糊剂。非线状物料被熔融并加压,使其可以通过喷嘴的挤出口挤出。本文进一步地描述,精细地控制特别粘稠的物料的压力以确保物料能被精确并准确地沉积。物料可以在打印模块内使用布置在打印模块内的一个或多个加热器(例如在料筒,加料通道和/或打印头的内部或周围)进行加热熔融。在一些实施例中,物料的熔融温度为约50℃或更高,例如约60℃或更高,约70℃或更高,约80℃或更高,约100℃或更高,约120℃或更高,约150℃或更高,约200℃或更高,或约250℃或更高。在一些实施例中,物料的熔融温度为约400℃或更低,例如约350℃或更低,约300℃或更低,约260℃或更低,约200℃或更低,约150℃或更低,约100℃或更低,或约80℃或更低。从喷嘴挤出的物料可以在等于或高于物料熔融温度的温度下挤出。在一些实施例中,物料在约50℃或更高,例如约60℃或更高,约70℃或更高,约80℃或更高,约100℃或更高,约120℃或更高,约150℃或更高,约200℃或更高,或约250℃或更高的温度下挤出。在一些实施例中,物料在约400℃或更低,例如约350℃或更低,约300℃或更低,约260℃或更低,约200℃或更低,约150℃或更低,约100℃或更低,或约80℃或更低的温度下挤出。
本发明所述的装置可用于准确且精确地挤出粘性物料。在一些实施例中,当从设备中挤出时,物料粘度具有约100Pa·s或更大,例如约200Pa·s或更大,约300Pa·s或更大,约400Pa·s或更大,约500Pa·s或更大,约750Pa·s或更大,或约1000Pa·s或更大。在一些实施例中,物料粘度具有约2000Pa·s或更低,例如约1000Pa·s或更低,约750Pa·s或更低,约500Pa·s或更低,约400Pa·s或更低,约300Pa·s或更低,或约200Pa·s或更低。
在一些实施例中,该物料是药用物料。在一些实施例中,该物料是惰性的或生物惰性的。在一些实施例中,该物料是可溶蚀性物料或生物可溶蚀性物料。在一些实施例中,该物料是非溶性物料或非生物溶性物料。在一些实施例中,该物料是药用物料。在一些实施例中,物料包括一种或多种热塑性物料,一种或多种非热塑性物料,或者一种或多种热塑性物料与一种或多种非热塑性物料的组合。在一些实施例中,该物料是聚合物或共聚物。
在一些实施例中,该物料包含热塑性物料。在一些实施例中,该物料是热塑性物 料。在一些实施例中,该物料是或包含可溶蚀的热塑性物料。在一些实施例中,热塑性物料是可食用的(即适合个体消化吸收)。在一些实施例中,热塑性物料选自亲水聚合物,疏水聚合物,溶胀聚合物,不溶胀聚合物,多孔聚合物,无孔聚合物,溶蚀聚合物(例如可溶解性聚合物),pH敏感聚合物,天然聚合物,蜡状物料及其组合。在一些实施例中,热塑性物料为纤维素醚,纤维素酯,丙烯酸树脂,乙基纤维素,羟丙基甲基纤维素,羟丙基纤维素,羟甲基纤维素,C12-C30脂肪酸的甘油单酯或甘油二酯,C12-C30脂肪醇,蜡,聚(甲基)丙烯酸,聚乙烯基己内酰胺-聚乙酸乙烯酯-聚乙二醇接枝共聚物57/30/13,乙烯吡咯烷酮-乙酸乙烯酯共聚物(PVP-VA),乙烯吡咯烷酮-乙酸乙烯酯共聚物(PVP-VA)60/40,聚乙烯吡咯烷酮(PVP),聚乙酸乙烯酯(PVAc)和聚乙烯吡咯烷酮(PVP)80/20,乙烯基吡咯烷酮-乙酸乙烯酯共聚物(VA64),聚乙二醇-聚乙烯醇接枝共聚物25/75,kollicoat IR-聚乙烯醇60/40,聚乙烯醇(PVA或PV-OH),聚(乙酸乙烯酯)(PVAc),甲基丙烯酸丁酯-(2-二甲基氨基乙基)甲基丙烯酸酯-甲基丙烯酸甲酯共聚物1:2:1,甲基丙烯酸二甲氨基乙酯–甲基丙烯酸酯共聚物,丙烯酸乙酯-甲基丙烯酸甲酯-三甲基铵乙基甲基丙烯酸酯氯化物共聚物,甲基丙烯酸甲酯-甲基丙烯酸甲酯-甲基丙烯酸共聚物7:3:1,甲基丙烯酸-甲基丙烯酸甲酯共聚物1:2,甲基丙烯酸-丙烯酸乙酯共聚物1:1,聚环氧乙烷(PEO),聚乙二醇(PEG),超支化聚酯酰胺,羟丙基甲基纤维素邻苯二甲酸酯,羟丙甲纤维素邻苯二甲酸酯,羟丙基甲基纤维素或羟丙甲纤维素(HMPC),羟丙基甲基纤维素乙酸琥珀酸酯或羟丙甲纤维素琥珀酸酯(HPMCAS),丙交酯-乙交酯共聚物(PLGA),卡波姆,乙烯-乙酸乙烯酯共聚物,聚乙烯(PE)和聚己酸内酯(PCL),羟丙基纤维素(HPC),聚氧乙烯40生氢蓖麻油,甲基纤维素(MC),乙基纤维素(EC),泊洛沙姆,羟丙基甲基纤维素邻苯二甲酸酯(HPMCP),泊洛沙姆,氢化蓖麻油,氢化大豆油,棕榈酸硬脂酸甘油酯,巴西棕榈蜡,聚乳酸(PLA),聚乙醇酸(PGA),醋酸丁酸纤维素(CAB),聚醋酸乙烯邻苯二甲酸酯(PVAP),蜡,蜂蜡,水凝胶,明胶,氢化植物油,聚乙烯醇缩乙醛氨基乳酸酯(AEA),石蜡,虫胶,海藻酸钠,邻苯二甲酸醋酸纤维素(CAP),阿拉伯树胶,黄原胶,单硬脂酸甘油酯,十八烷酸,热塑性淀粉,其衍生物(例如其盐,酰胺或酯)的一种或组合。
在一些实施例中,可溶蚀物料包含非热塑性物料。在一些实施例中,可溶蚀物料是非热塑性物料。在一些实施例中,非热塑性物料是非热塑性淀粉,羟基乙酸淀粉钠(CMS-Na),蔗糖,糊精,乳糖,微晶纤维素(MCC),甘露醇,硬脂酸镁(MS), 粉末状硅胶,甘油,糖浆,卵磷脂,大豆油,茶油,乙醇,丙二醇,甘油,吐温,动物脂肪,硅油,可可脂,脂肪酸甘油酯,凡士林,壳聚糖,鲸蜡醇,硬脂醇,聚甲基丙烯酸酯,无毒的聚氯乙烯,聚乙烯,乙烯-乙酸乙烯酯共聚物,硅橡胶或其组合。
可采用本发明所述的装置或采用本发明所述的方法的示例性物料包括,但不限于,聚(甲基)丙烯酸酯共聚物(例如含有一种或多种氨基烷基甲基丙烯酸,甲基丙烯酸,甲基丙烯酸酯和/或甲基丙烯酸铵烷基酯,例如以商标名
Figure PCTCN2018086489-appb-000001
RSPO出售的共聚物)和羟丙基纤维素(HPC)。
在一些实施例中,所述物料包含药物。在一些实施例中,所述物料与药物混合。
在打印模块中,可以使用压力调节装置对物料进行加压。物料被预装入料筒中,并且压力调节装置135(图未示出)可以对预装在料筒133内的物料施加压力。压力调节装置可以是电机(例如步进马达),阀或任何其他合适的控制装置,该控制器可驱动例如活塞,压力丝杆或压缩空气(即气动控制器)等机构,以向料筒内的物料施加压力。料筒包括一个或多个加热器,其可以将物料熔融。在一些实施例中,加热器设置于料筒内。在一些实施例中,加热器设置在料筒侧面或围绕筒。在一些实施例中,加热器是电辐射加热器,例如电加热管或加热线圈。料筒的加热器优选具有高电压和高功率输出的高效加热器。在一些实施例中,料筒的加热器具有在110V到600V之间的额定电压。在一些实施例中,料筒的加热器具有从210V到240V之间的额定电压。在一些实施例中,料筒的加热器是220V加热器。在一些实施例中,料筒的加热器的功率介于约30W和约100W之间,例如在40W和80W之间,或者约60W。在一些实施例中,加热器是围绕筒体外部的电加热线圈。优选地,料筒由耐热物料制成,例如不锈钢(例如316L不锈钢)。在一些实施例中,该装置包括一个或多个温度传感器,所述一个或多个温度传感器位于所述加料通道附近或位于所述加料通道内,所述温度传感器用于测量所述加料通道内的物料的温度。加料通道与喷嘴的挤出口相比相对较宽。在一些实施例中,加料通道具有在约1mm与约15mm之间,例如在约1mm与约5mm之间,在约5mm与约10mm之间或在约10mm与约15mm之间的直径。在示例性实施例中,加料通道具有约8mm的直径。
该装置的打印头包括喷嘴131,该喷嘴包括挤出口,熔融物料通过该挤出口挤出。挤出口位于喷嘴相对于加料通道的远端。当密封针处于打开位置时,熔融的物料从加料通道通过喷嘴流出挤出口。喷嘴包括锥形内表面,挤出口靠近锥形内表面的顶点。在一些实施例中,喷嘴的内表面包括衬垫或衬套。衬垫或衬套可以由聚四氟乙烯 (PTFE)或任何其他合适的物料制成。在一些实施例中,打印头包括一个或多个加热器,其可以位于打印头的喷嘴内,周围或附近。该一个或多个加热器用于加热喷嘴内的物料,该物料可以达到与料筒或加料通道中的物料相同的温度或不同的温度。在一些实施例中,喷嘴加热器是电辐射加热器,例如电加热管或加热线圈。加热器可以使用比料筒加热器或加料通道加热器更低的电压和/或更低的功率。在一些实施例中,喷嘴加热器具有6V到60V之间的额定电压。在一些实施例中,喷嘴加热器是12V加热器。在一些实施例中,喷嘴加热器的功率介于约10W和约60W之间,例如介于20W与45W之间或约30W。
在一些实施例中,该设备包括一个或多个温度传感器。在一些实施例中,打印头包括位于喷嘴附近或内部的一个或多个温度传感器,用于测量喷嘴内的物料的温度。在一些实施例中,该装置包括位于料管内或料管附近的温度传感器,或用于检测料管内温度的温度传感器。在一些实施例中,该装置包括位于加料通道内或附近的温度传感器,或用于检测加料通道内的温度。在一些实施例中,该装置包括位于打印头内或附近的温度传感器或用于检测喷嘴内的温度的温度传感器。在一些实施例中,一个或多个温度传感器连接到根据一个或多个温度传感器报告的温度而控制一个或多个加热器的计算机系统。例如,计算机系统可以控制一个或多个加热器来调节料筒,加料通道和/或喷嘴内的物料的温度。在一些实施例中,该系统作为闭环反馈系统运行,以维持装置或装置部件(即,料筒,喷嘴或加料通道)的近似恒定的温度。装置的不同部件内的物料的温度可以相同或不同。在一些实施例中,反馈系统使用比例积分微分(PID)控制,bang-bang控制,预测控制器,模糊控制系统,专家控制或任何其他合适的算法来控制。
该装置包括一个或多个压力传感器106,其可以检测装置内物料的压力。在一些实施例中,该压力传感器用于检测打印头或靠近打印头的加料通道内的物料的压力。在一些实施例中,压力传感器被置于打印头内或邻近进给通道并且靠近打印头的位置。在一些实施例中,压力传感器可以与闭环反馈系统中的压力调节装置一起工作,以向装置中的物料提供近似恒定的压力。例如,当压力传感器检测到压力下降时,反馈系统可以向压力调节装置发出信号以增加物料的压力(例如,通过降低活塞,增加料筒中的空气压力,转动压力丝杆等)。类似地,当压力传感器检测到压力增加时,反馈系统可以向压力调节装置发出信号以减小物料的压力(例如,通过升高活塞,减小料筒体中的空气压力,转动压力丝杆等)。恒定压力确保装置中的熔融物料在密封针处 于打开位置时以恒定速率通过喷嘴的挤出口。然而,当密封针处于关闭位置时,恒定的压力增加(例如,通过升高活塞,降低料筒中的空气压力,转动压力丝杆等)可能导致熔融的物料通过喷嘴泄漏。此外,包括压力传感器和压力调节装置的反馈系统在密封针从打开位置重新切换到关闭位置或从关闭位置重新切换到打开位置时,在系统中保持近似恒定的压力。当密封针从关闭位置切换到打开位置时,这使挤出速率的“斜升”最小化,因为不需要提高系统中物料的压力。在一些实施例中,压力传感器106连接到计算机系统,该计算机系统控制料筒以响应由压力传感器106报告的压力将物料加压到特定的压力。例如,计算机系统可以控制压力调节装置来调节施加在料筒内的物料的压力值。在一些实施例中,该系统作为闭环反馈系统以维持装置内的近似恒定的压力。在一些实施例中,反馈系统使用比例积分微分(PID)控制,bang-bang控制,预测控制,模糊控制,专家控制或任何其他合适的算法来操作。在一些实施例中,压力传感器精度在0.005MPa内,0.008MPa内,0.05MPa内,0.1MPa内,0.2MPa内,0.5MPa内或1MPa内。在一些实施例中,压力传感器的采样时间为大约20ms或更快,例如大约10ms或更快,大约5ms或更快,或者大约2ms或更快。在一些实施例中,物料的压力在所需压力的约0.005MPa,约0.008MPa,约0.05MPa,约0.1MPa,约0.2MPa,约0.5MPa或约1MPa内浮动。
该装置包括控制开关108。控制开关108可以被控制以阻止或允许熔融的物料从设备的挤出口流出。控制开关108包括可在打开位置和关闭位置切换的密封针,其中在密封针处于关闭位置时阻止物料流过喷嘴131。密封针延伸通过加料通道的至少一部分并且包括锥形端部。当密封针处于关闭位置时,密封针的锥形端与喷嘴131的锥形内表面(例如在喷嘴的挤出口处)接合。
在一些实施例中,接触物料的密封针的任何部分没有突起。突起是指密封针的直径大于密封针轴的任何部分,或者密封针延轴向向外延伸的任何部分。优选地,避免在关闭封针时,密封针上的突起推动熔融物料通过挤出口。在一些实施例中,整个密封针(无论密封针是否接触物料)没有突起。在一些实施例中,密封针的不接触物料的部分包括一个或多个突起,其例如可以与致动器的部件接合或用作深度折断以防止密封针在进料室内被驱动得太远。
接触物料的密封针部分(即,当密封针处于打开位置或关闭位置时位于加料通道内的部分)与加料通道相比相对较细,其允许熔融的物料围绕密封针流动,而不是被挤压出挤出口。在一些实施例中,密封针的与物料接触的部分具有约0.2mm至约3.0mm 的最大直径,例如约0.2mm至约0.5mm,约0.5mm至约1.0mm,约1.0mm至约1.5mm,约1.5mm至约2.0mm,约2.0mm至约2.5mm或约2.5mm至约3.0mm。在一些实施例中,密封针(包括密封针的接触物料的部分和密封针的不接触物料的部分)具有约0.2mm至3.0mm的最大直径,例如约0.2mm至约0.5mm,约0.5mm至约1.0mm,约1.0mm至约1.5mm,约1.5mm至约2.0mm,约2.0mm至约2.5mm或约2.5mm至约3.0mm。
在一些实施例中,密封针在锥形端处包括尖头,如图10A所示。在一些实施例中,尖端的锥形端是截头圆锥形的,如图10B所示。喷嘴和密封针均包括锥形表面,使得密封针的锥形端部朝向喷嘴的锥形内表面。这里的“锥角”是指接合表面的顶点的角度。在截头圆锥形尖端的情况下,“锥角”是指外推接合表面的顶点。密封针的锥形端的锥角在图10A和图10B中用α表示。如图10C所示,喷嘴的锥角由β表示。在一些实施例中,密封针的锥形端部的锥角为约60°或更小,诸如约50°或更小,45°或更小,40°或更小,35°或更小,30°或更小,25°或更小,20°或或更小,或15°或更小。在一些实施例中,密封针的锥角(α)等于或小于喷嘴内表面的锥角(β)。在一些实施例中,喷嘴内表面(β)的锥角与密封针的锥角(α)之比为约1:1至约4:1,或约1:1至约3:1,或约1:1至约2:1。
通过将密封针朝挤出口降低,密封针定位在关闭位置,此时密封针与挤出口对齐。当密封针处于打开位置时,受压并熔融的物料可以流过挤出口,但是当密封针处于关闭位置时,其被阻止流动,在该位置它与喷嘴的内表面接合。当喷嘴内表面的锥角(β)大于密封针的锥角(α)时,密封针的锥形端与挤出口处喷嘴的内表面接合。在一些实施例中,挤出口具有约0.1mm或更大,例如约0.15mm或更大,约0.25mm或更大,约0.5mm或更大,0.75mm或更大的直径。在一些实施例中,挤出口具有约1mm或更小,诸如约0.75mm或更小,约0.5mm或更小,约0.25mm或更小,约0.15mm或更小的直径。优选地细的密封针锥形端基部,以限制当密封针驶向关闭位置时熔融的物料被挤压通过挤出口。在一些实施例中,密封针锥形端部的最大直径(即,锥形的底部)与挤出口的直径的比率为约1:0.8至约1:0.1,诸如约1:0.8至约1:0.7,约1:0.7至约1:0.6,约1:0.6至约1:0.5,约1:0.5至约1:0.4,约1:0.4至约1:0.3,约1:0.3至约1:0.2,或约1:0.2至约1:0.1。
密封针优选地包括坚固且柔性的物料。示例性物料包括但不限于不锈钢,聚四氟乙烯(PTFE)和碳纤维。在一些实施例中,喷嘴的内表面包括柔性衬垫或衬套,其可 以在密封针反复在打开位置或关闭位置切换时限制对针或喷嘴的损坏。在一些实施例中,衬垫或衬套由聚四氟乙烯(PTFE)制成。
控制开关的密封针采用致动器来控制,该致动器可以将密封针定位在打开位置(即,通过提升密封针使得密封针的锥形端不再接合喷嘴的内表面)或关闭位置(即,通过降低密封针使得密封针的锥形端部与喷嘴的内表面接合)。在一些实施例中,致动器是气动致动器,其可以使用致动器内的气压来控制。在一些实施例中,致动器是机械致动器,其可通过使用一个或多个齿轮和马达来升高或降低密封针。在一些实施例中,致动器包括电磁阀或电致伸缩聚合物。
图9B示出了根据本发明的通过增材制造来沉积物料的示例性装置的横截面图。物料可以被装载到料筒902中,并且活塞904通过推入料筒902中而对物料施加压力。活塞904通过导向臂906连接到压力调节装置。通过诸如步进电机的电机降低活塞904以增加料筒902中物料的压力,或者升高活塞以降低物料的压力。可以使用料筒内或料筒周围的加热器将料筒902中的物料加热到或高于物料的熔融温度。来自料筒902的熔融物料流过加料通道908,该加料通道908连接到包括喷嘴912的打印头910。压力传感器914位于加料通道908的端部,并靠近打印头910,并且被用于检测靠近打印头的物料的压力。在一些实施例中,压力传感器914被定位成检测打印头910内物料的压力。压力传感器914可将检测到的压力传输到计算机系统,该计算机系统可操作压力调节装置(或压力调节装置的电机)以重新定位活塞904并控制料筒902内的物料的压力。这可以在反馈系统中操作,其中压力的变化由压力传感器914检测,并且计算机系统进一步操作压力调节装置。
该装置包括控制开关916,其包括密封针918和线性致动器920。密封针918包括接合致动器920的上端922和锥形的下端924。密封针918穿过加料通道908延伸到打印头910中。致动器920在打开位置(升高)和关闭位置(降低)之间控制密封针918。当密封针918被置于关闭位置时,密封针918的锥形端部924接合喷嘴912的锥形内表面以防止熔融物料流过喷嘴。为了打开喷嘴912并允许熔融物料流过挤出口,致动器920控制密封针918以通过提升密封针918将密封针918定位在打开位置,从而使锥形下端924与喷嘴912的内表面分离。
图9C示出了在密封针918处于关闭位置并接合喷嘴912的情况下的打印头910的放大视图。在关闭位置时,密封针918的锥形端924通过与喷嘴的锥形内表面912接通合从而插入挤出口926。因此防止了加料通道908中的熔融物料流过挤出口926。 通过压力传感器914检测打印头910内或其附近的物料的压力,并且可以操作压力调节装置以防止当密封针918处于关闭位置时在装置中累积过多的压力。
密封针918延伸通过加料通道908并进入打印头910。当密封针918从打开位置切换到关闭位置时,精心设计防止加料通道908中的熔融物料被推出挤出口926。密封针918的锥形端924允许密封针918刺穿熔融的物料,从而允许熔融的物料向上流动并围绕封闭的密封针918,而不是被向下推。
气动致动器920包括电磁阀,该电磁阀用于控制气体流进空气腔926,该空气腔可以向上或向下驱动附接至密封针918的上端922的中心杆928。高压气体从隔板930下方流入气室926或从隔板930上方除去气体,从而使隔板930向上移动,这样将密封针918定位在打开位置。从隔板930下方移除气体或在隔板930上方施加高压气体可以使隔板930向下移动,这将密封针918定位在关闭位置。
图9D示出了连接到密封针以控制密封针的气动致动器的零部件的分解图。隔板942位于气动致动器的气室内,并且例如通过螺纹配合连接到中心杆974。中心杆974例如通过螺纹配合连接到适配器976。适配器976例如通过螺纹配合或通过压紧配合附接到密封针978。例如,适配器976的下部可以包括开口,并且密封针978的上部可以通过将密封针978塞入适配器976的开口而紧密地配合到开口中。密封针978通过垫圈980,该垫圈980由固定螺母982定位。固定螺母982与垫圈固定在转接块上,从而与设备其它部分相连接。如图9B所示,转接块932定位在加料通道908上方,与打印头910的喷嘴912对齐。转接块通道934穿过转接块932进入加料通道。垫圈936嵌入转接块932顶部的开口中,该开口比通道934宽,从而防止垫圈936朝打印头910移动。垫圈936可以由惰性柔韧物料制成,例如塑料或合成橡胶,并且密封加料通道908以防止熔融物料泄漏。在一些实施例中,垫圈采用聚四氟乙烯(PTFE)。固定螺母938固定,例如通过螺纹配合,到转接块932,并固定垫圈936的位置。因此,垫圈936相对于打印头910和喷嘴912处于固定位置。密封针918穿过固定螺母938和垫圈936中的孔以到达加料通道908。该孔的尺寸被设定成允许针通过,并且可由致动器916控制移动,但是不能太大导致熔融的物料泄漏。
打印模块包括用于熔融物料的一个或多个加热器。加热器可以放置在包含物料的料桶,供料通道和/或打印头的周围或内部。图13A示出了该装置的一部分的纵向截面图,图13B示出了平面“A-A”处的横截面图,图13C显示了该装置的非截面图。在一些实施例中,该装置包括围绕该装置的料筒1304的加热器1302,该加热器1302可以 加热和熔融容纳在料筒1304内的物料。加热器1302可以是例如围绕料筒1304的外部的线圈加热器。在一些实施例中,加热器设置在料筒内。放置在料筒内的物料最初通过加热器在料筒内熔融,并且压力通过活塞1306施加到物料。然后,熔融物料从料筒1304流到供料通道1308。在一些实施例中,为了确保物料在供料通道1308保持在特定温度下,一个或多个加热器可以置于供料通道1308附近或位于供料通道1308内。图13B和图13C示出了两个加热器1310a和1310b,每个加热器位于供料通道1308的两侧,并与供料通道1308相邻。在一些实施例中,加热器1310a和/或1310b覆盖供料通道1308的长度或覆盖供料通道1308的侧部。在一些实施例中,与供料通道1308相邻或在供料通道1308内的一个或多个加热器是加热棒。在一些实施例中,与供料通道1308相邻或在供料通道1308内的一个或多个加热器是围绕供料通道1308的线圈。加热供料通道1308内的一个或多个加热器确保物料保持熔融,并且在给定压力下具有合适粘度以实现预期的流动。在一些实施例中,装置的打印头1312包括一个或多个加热器1314,其确保物料保持熔融并且在喷嘴1316内具有合适的粘度。
在一些实施例中,该设备包括一个或多个温度传感器,其可以位于设备内的一个或多个位置处并且可以检测设备内的物料的温度,例如在料筒内,供料通道内或打印头内。图13A-图13C中的实施例中,包括与供料通道1308相邻的第一温度传感器1318和与打印头1312相邻的第二温度传感器1320。邻近供料通道1308的温度传感器1318在图中处于供料通道1308一侧,但温度传感器1318可选地位于沿供料通道1308的长度方向的任何位置。温度传感器1318和一个或多个加热器(例如,1310a和1310b)可用作熔融供料通道1308内的物料的闭环反馈系统,该闭环反馈系统可以确保供料通道内的物料保持近似恒定的温度。例如,温度传感器1318可以将测量的温度传输到计算机系统,并且计算机系统可以操作一个或多个加热器1310a和1310b以确保近似恒定的温度。装置的打印头1312中的温度传感器1320可以与打印头中的一个或多个加热器1314在闭环反馈系统中一起工作,以确保打印头内的物料的近似恒定的温度。反馈系统可以使用比例-积分-微分(PID)控制器,bang-bang控制器,预测控制器,模糊控制系统,专家系统控制器或任何其他合适的控制算法。在一些实施例中,装置中的一个或多个加热器将系统内的物料加热到等于或高于物料的熔融温度。在一些实施例中,一个或多个加热器将物料加热到约60℃或更高的温度,例如约70℃或更高,80℃或更高,100℃或更高,120℃或更高,150℃或更高,200℃或更高,或250℃或更高。在一些实施例中,一个或多个加热器将物料加热到约300℃或更低,例如约 260℃或更低,200℃或更低,150℃或更低,100℃或更低,或80℃或更低的温度。在一些实施例中,一个或多个加热器在装置的不同位置处将物料加热到不同的温度。例如,在一些实施例中,物料被加热到料筒内的第一温度,供料通道内的第二温度以及打印头内的第三温度,每个温度可以是相同的温度或不同的温度。举例来说,一种物料可以在料桶和供料通道中加热到140℃,但在打印头时可以加热到160℃。反馈控制系统可以实现高精度的温度控制。在一些实施例中,温度控制在目标温度的0.1℃内,目标温度的0.2℃内,目标温度的0.5℃内或目标温度的1℃内。
图11示出了本发明所述的设备的另一个示例。物料被装载到打印模块的料筒1102中,并且压力丝杆(或活塞)1104可以对料筒1102中的物料施加压力。为了增加对物料的压力,压力控制器1106(例如,步进电机)转动第一齿轮1108,第一齿轮1108转动连接到压力丝杆1104的第二齿轮1110。料筒1102中的物料可以通过围绕料筒的加热器1114加热。来自料筒1102内的熔融物料通过加料通道1116流动到包括喷嘴1120的打印头1118。该设备可以包括压力传感器1130,该压力传感器1130被用于检测料筒1102,通道1116和/或打印头1118中的物料的压力。压力传感器1130可以将检测到的压力传输到计算机系统,计算机系统可以操作压力控制器1108以重新定位压力丝杆1104并控制料筒1102内的物料的压力。这种控制可以在反馈系统中操作,其中压力的变化由压力传感器1130检测,并且计算机系统进一步操作压力控制器。图11所示的装置包括控制开关,其包括沿与料筒1102相同的轴线的密封针1122和致动器1124。密封针1122包括连接到致动器1124的上端和下锥形端(未示出)。致动器1124在打开位置(升高)和关闭位置(降低)之间控制密封针1122。当密封针1122被置于关闭位置时,密封针1122的锥形端部接合喷嘴1122的锥形内表面以阻止熔融物料流过喷嘴。打印头1118还可以包括一个或多个加热器1126和温度传感器1128,其可以在反馈系统中操作。
在某些实施例中,所述的增材制造系统,其包括如本发明所述的多个(例如,两个或更多个,三个或更多,四个或更多,五个或更多,或六个或更多)装置,其包括打印模块配有控制开关(包括具有可在打开位置和关闭位置切换的锥形端部的密封针和喷嘴)。每个独立装置中的物料可以相同或不同。例如,在一些实施例中,系统包括两个装置和两种不同的物料(即,第一物料和第二物料)。在一些实施例中,该系统包括三个装置和三种不同物料(即,第一物料,第二物料和第三物料)。在一些实施例中,系统包括四个装置和四种不同物料(即,第一物料,第二物料,第三物料和 第四物料)。在一些实施例中,系统包括五个装置和五种不同物料(即,第一物料,第二物料,第三物料,第四物料和第五物料)。在一些实施例中,系统包括六个装置和六种不同物料(即,第一物料,第二物料,第三物料,第四物料,第五物料和第六物料)。在一些实施例中,增材制造系统包括装载有第一物料的第一装置和装载有第二物料的第二装置,其中第一物料和第二物料不同。3D打印系统中的不同打印模块可挤出不同物料以形成多组分打印产品,例如多组分药物剂型(例如片剂)。当其中一个打印模块处于活动状态时(即,密封针处于打开位置)时,装置中的其他打印模块不起作用(即,密封针处于关闭位置)。通过协调密封针在打开位置或关闭位置的位置,该装置可以在活动打印模块之间快速切换。图12示出了包括三个打印模块的示例性系统的一部分,每个系统具有不同的打印头1202,1204和1206。打印台1208可在x,y和z轴上移动,产品在正确的打印头下,其可以挤出物料以产生产品1210(例如药片)。
图3示例性的展示根据本发明的某一实施例的3D打印设备的示意图。
如图3所示,3D打印设备300还具有控制模块505,控制模块505可以由一个或多个PLC控制器、单片机或者电子计算机组成并且具有计算机化用户界面。控制模块505与3D打印设备300的与加料模块501、熔融挤出模块502、打印模块503、平台模块504、缓存模块507和混合模块508通信连接,根据状态参数控制各模块的具体运行。上述状态参数可以但不限于产品的数字模型、初始物料的熔点、喷嘴处的压力、所需产品和实际获得产品的数量以及所需产品的组分、重量、水分和菌落数等等。这些参数可以实现存储于所述控制模块505的电子计算机的数字存储装置中,也可以由用户通过计算机化用户界面进行输入和选择。
在一些实施例中,3D打印设备300还包括多个设置于上述各模块的检测装置,用于实时获得监测上述各模块处的一些具体的状态参数。该具体的状态参数可以包括熔融体的温度、组分、压力、重量、水分和形状等。在一些实施例中,该具体的状态参数还可以是初始物料的重量、形状、水分、对其的加热温度等。在一些实施例中,该具体的状态参数还可以是所打印的产品的组分、压力、重量、水分和形状等。3D打印设备300所包括的检测装置也对应可以为温度传感器、组分传感器、压力传感器、重量传感器、水分传感器和形状传感器等。
在一些实施例中,上述组分传感器可以为近红外光谱分析仪,该近红外光谱分析仪具有可以插入待测量物体的探针,通过该探针,近红外光谱分析仪可以获取物质中 各种组分的具体含量。上述近红外光谱分析仪主要用于对流体,比如熔融体的组分的测量,而在一些实施例中,近红外光谱分析仪还可以具有测量测定粉状物质组分的探针,该探针可以插入初始物料中,用于测定粉料的含量和水分等等。所以,在一些实施例中,所设置的水分传感器也可以为近红外光谱分析仪。
在一些实施例中,如图1所示3D打印设备100的检测装置还可以包括摄像头或其他成像装置,该摄像头或成像装置可以被设置为对加料模块101进行检测,从而实时检测其向熔融挤出模块102所加入的初始物料的形状、尺寸等参数,以及该初始物料在其出料口113的出料速度。该摄像头或成像装置可以设置于加料模块101的下方或出料口113的位置。在一些实施例中,该摄像头或成像装置还可以被设置为检测打印模块103或平台模块104,具体用于实时图像检测喷嘴131的出料状况的状态参数,如出料速度、出料连续程度,以及平台模块104的沉积平台141上所沉积的产品的形状、尺寸和固化速度等状态参数。上述摄像头或成像装置可以设置于打印模块103或平台模块104上,或设置于二者之间。具体在一些实施例中,上述摄像头或成像装置的位置可以被设置为对准喷嘴131,同时上述喷嘴131处进一步设置有平面镜,该平面镜所在平面与沉积平台141所在的平面呈一定角度,从而能够将沉积平台141上反射的光线反射向上述摄像头或成像装置。这种摄像头或成像装置的设置可以同时满足喷嘴131处和沉积平台141处的上述具体的状态参数的检测需求。
一些实施例中,熔融挤出模块的处理腔室处设置有与控制模块505通信连接的第一温度传感器(图中未示出),用于测熔融挤出模块502的处理腔室处的熔融体的温度,并向控制模块505传递第一温度检测信号。控制模块505根据第一温度检测信号确定熔融挤出模块502的处理腔室处的熔融体的温度,并判定该温度是否在第一理想温度范围中。熔融挤出模块502的处理腔室处的熔融体温度应当略高于初始物料的熔点,从而确保处理腔室中的初始物料得到充分熔融。在实际操作中,上述第一理想温度范围与需要打印的产品的结构构造、原始物料的种类都有具体的对应关系。熔融挤出模块502的熔融体的温度是否处于理想范围直接决定了打印过程中的熔融体的粘流动性和粘接性能等,从而影响3D打印的连续性和精确性。控制模块505可根据所打印的产品,或者使用者通过用户界面输入的状态参数确定该第一理想温度范围。
在一些实施例中,当第一温度检测信号表示熔融挤出模块502的处理腔室处的熔融体的温度低于第一理想温度范围时,控制模块505可以提高设置于熔融挤出模块502的一个或多个处理腔室加热装置对熔融体的加热功率。需要注意的是,由于熔融挤出 模块502对初始物料的挤出和剪切的过程中会产生内热,在一些实施例中,上述控制模块505也可以根据第一温度检测信号,通过控制熔融挤出模块502的挤出功率来调节熔融挤出模块502的处理腔室处的熔融体的温度。相反地,当第一温度检测信号表示处理腔室处的熔融体的温度高于第一理想温度范围时,控制模块505执行相反的操作,停止设置于熔融挤出模块502的一个或多个处理腔室加热装置的加热,或降低其加热功率。
在一些实施例中,打印模块503处还设置有第二温度传感器(图中未示出),用于测量打印模块处的熔融体的温度,并向控制模块505传递第二温度检测信号。控制模块505根据第二温度检测信号将打印模块503处的熔融体温度的温度控制在第二理想温度范围。打印模块503处的熔融体温度对于最终打印产品的成型精确性和连续性有重要影响,一般设置为高于熔融体的熔点。同第一理想温度范围相同,所述第二理想温度范围与需要打印的产品的结构和构造、原始物料的种类等相关,控制模块505可以根据所打印的产品,或者使用者通过用户界面输入的状态参数确定。
在一些实施例中,当第二温度检测信号表示打印模块503的熔融体的温度低于第二理想范围时,控制模块505可以提高设置于打印模块503处的温度调节装置(图中未示出)对熔融体的加热功率。该温度调节装置的设置和结构可参照上述3D打印设备的打印模块的温度调节装置134。当第二温度检测信号表示打印模块503处熔融体的温度高于第二理想温度范围时,控制模块505执行相反的操作,停止设置于打印模块503的温度调节装置对熔融体的加热,或降低其加热功率。在一些实施例中,可以通过该温度调节装置降低打印模块503处的熔融体的温度,使其保持在略高于第初始物料熔点的状态以取得更好的产品打印效果。
在一些实施例中,缓存模块507的存料室处还设置有第三温度传感器(图中未示出),用于测量其存料室处的熔融体的温度,并向控制模块505传递第三温度检测信号。控制模块505根据第三温度检测信号将缓存模块507的存料室处的熔融体的温度控制在第三理想温度范围。缓存模块507的存料室内的熔融体温度应当略高于熔融体的熔点,从而保持腔室中的初始物料的熔融状态。同第一理想温度范围相同,所述第三理想温度范围与需要打印的产品的结构和构造、原始物料的种类等相关,控制模块505可以根据所打印的产品,或者使用者通过用户界面输入的状态参数确定。
在一些实施例中,当第三温度检测信号表示存料室处的熔融体的温度低于第三理想范围时,控制模块505可以提高设置于缓存模块507的存料室处的存料室加热装置 (图中未示出)对熔融体的加热功率。设置于缓存模块507的存料室处的存料室加热装置与图1和图2所示的3D打印设备的对应组件的结构相同。当第三温度检测信号表示存料室处熔融体的温度高于第三理想温度范围时,控制模块505执行相反的操作,停止设置于缓存模块507的存料室处的加热装置对熔融体的加热,或降低其加热功率。
在一些实施例中,混合模块508的混合腔室处还设置有第四温度传感器(图中未示出),用于测量其混合腔室处的熔融体的温度,并向控制模块505传递第四温度检测信号。控制模块505根据第四温度检测信号将混合模块508的混合腔室处的熔融体温度的温度控制在第四理想温度范围。混合模块508的混合腔室内的熔融体温度应当略高于熔融体的熔点,从而保持腔室中的熔融体的熔融状态。同第一理想温度范围相同,所述第四理想温度范围与需要打印的产品的结构和构造、原始物料的种类等相关,控制模块505可以根据所打印的产品,或者使用者通过用户界面输入的状态参数确定。
在一些实施例中,当第四温度检测信号表示混合腔室处的熔融体的温度低于第四理想范围时,控制模块505可以提高设置于混合模块508的混合腔室处的混合腔室加热装置(图中未示出)对熔融体的加热功率。设置于混合模块508的混合腔室处的混合腔室加热装置与图1和图2所示的3D打印设备的对应组件的结构相同。当第四温度检测信号表示混合腔室处熔融体的温度高于第四理想温度范围时,控制模块505执行相反的操作,停止设置于混合模块508的混合腔室处的加热装置对熔融体的加热,或降低其加热功率。
继续参照图3,在一些实施例中,打印模块503处设置有与控制模块505通信连接的第一压力传感器(图中未示出),用于测量打印模块503处所的熔融体的压力,并向控制模块505传递第一压力检测信号。控制模块505根据第一压力检测信号将打印模块503处的熔融体的压力控制在第一理想压力范围内。3D打印设备的打印模块处挤出的熔融体的压力大小,以及压力数值是否稳定,直接影响了3D打印的连续性和精确性。同上述理想温度范围相同,所述第一理想压力范围与需要打印的产品的结构和构造、原始物料的种类等相关,控制模块505可以根据所打印的产品,或者使用者通过用户界面输入的状态参数确定。在一些实施例中,上述打印模块503具有料筒和设置于料筒下方的喷嘴,其中第一压力传感器设置于打印模块503的料筒内部,用于测试料筒内的熔融体的压力。在另一些实施例中,上述第一压力传感器设置于打印模块503的喷嘴处,从而精确测量打印模块的喷嘴所挤出的熔融体的压力。在一些实施例中,所述第一压力传感器为压电压力传感器、扩散硅压力传感器或应变片压力传感 器等。在一些实施例中,所述第一压力传感器为设置于料筒中的浮子式液位计,通过判断料筒中的熔融体的液位以判断料筒内当前熔融体的压力。
在一些实施例中,当第一压力检测信号所代表的打印模块503的喷嘴处或料筒某处的熔融体的压力低于第一理想压力范围时,控制模块505可以通过上述设置于3D打印设备100的压力调节装置提高打印模块503的喷嘴处或料筒内的熔融体的压力。当第一压力检测信号表示喷嘴处的第一压力检测信号高于第一理想压力范围时,控制模块505执行相反的操作,其可以通过设置于100的压力调节装置135降低打印模块503的喷嘴处或料筒内的熔融体的压力。
继续参照图3,3D打印设备300还进一步包括加料模块701,用于接收初始物料并传输给熔融挤出模块502。加料模块501和加料模块701所接收的初始物料可以不同,比如加料模块501接收的是第一初始物料,而加料模块701接收的是第二初始物料。熔融挤出模块502被用于对混合的第一初始物料和第二初始物料进行挤出和加热。该3D打印设备300的任意一处设置有与控制模块505通信连接的第一组分检测器(图中未示出),例如设置于缓存模块507的存料室、混合模块508的混合腔室、打印模块503,以及这些模块之间的连通通道内。该第一组分检测器用于检测该3D打印设备300的任意位置的熔融体中第一初始物料和第二初始物料的组分比例,并向控制模块505传递第一组分检测信号。该第一组分检测信号可以是如前所述的近红外光谱分析仪。控制模块505根据第一组分检测信号确定该3D打印设备300的任意位置的熔融体的组分,并判定该组分是否在第一理想组分范围中。3D打印设备的熔融体的组分将影响最终产品的结构强度、崩解速率等物理化学性能,以3D药物打印为例,熔融体的组分可能会影响最终产品的药物活性成分的释放速率。同上述理想温度范围相同,所述第一理想组分范围与需要打印的产品的物理化学特性、强度要求、结构、构造和原始物料的种类等相关,控制模块505可以根据所打印的产品,或者使用者通过用户界面输入的状态参数确定。
在一些实施例中,当第一组分检测信号所表示的组分比例显示第一初始物料的占比偏高时,控制模块505可以通过控制设置于加料模块501和加料模块701的料斗出料控制装置,减小第一初始物料的出料速度或增大第二初始物料的出料速度。上述料斗出料控制装置的具体结构与如前所述的图1和图2所示的3D打印设备的对应组件的结构相同。当第一组分检测信号表示第一初始物料的占比偏低时,控制模块505执行相反的操作,其可以通过控制设置于加料模块501和加料模块701的料斗出料控制 装置,增大第一初始物料的出来速度或减小第二初始物料的出料速度。
在一些实施例中,3D打印设备300还包括加料模块601和熔融挤出模块602,加料模块601用于接收初始物料并传输给熔融挤出模块602。加料模块601接收的初始物料可以不同于加料模块501和加料模块701。这样的话,熔融挤出模块502和熔融挤出模块602所最终挤出的熔融体可以不同,比如分别是第一熔融体和第二熔融体。如图所示,第一熔融体和第二熔融体被导入混合模块508进行混合。3D打印设备300在混合模块508的混合腔室的出料口后任意处设置有与控制模块505通信连接的第二组分检测器(图中未示出),该组分检测器用于检测从混合腔室的出料口挤出的混合后的熔融体中第一熔融体和第二熔融体以及其中所含成分的组分比例,并向控制模块505传递第二组分检测信号。控制模块505根据第二组分检测信号确定熔融挤出模块502的处理腔室的出料口后的熔融体的组分,并判定该组分是否在第二理想组分范围中。同上述第一理想组分范围相同,所述第二理想组分范围与需要打印的产品的物理化学特性、强度要求、结构、构造和原始物料的种类等相关,控制模块505可以根据所打印的产品,或者使用者通过用户界面输入的状态参数确定。
在一些实施例中,当第二组分检测信号所表示的组分比例显示第一熔融体或者其所含的某种成分的占比偏高时,控制模块505可以控制设置于熔融挤出模块502和熔融挤出模块602的熔融挤出出料控制装置,减小第一熔融体的出料速度或增大第二熔融体的出料速度。上述熔融挤出出料控制装置的具体结构与如前所述的图1和图2所示的3D打印设备的对应组件的结构相同。当第一熔融体或者其所含的某种成分占比偏低时,控制模块505执行相反的操作,控制熔融挤出模块502和熔融挤出模块602的熔融挤出出料控制装置,增大第一熔融体的出料速度或减小第二初始物料的出料速度。
如图3所示,3D打印设备300具有缓存模块507,缓存模块507具有存料室,用于存储从熔融挤出模块502的出料口挤出的熔融体。在缓存模块507的存料室处设置有第一容积传感器(图中未示出),其被设置为检测缓存模块507的存料室内剩余容积,并向控制模块505传递第一容积检测信号。控制模块505根据第一容积检测信号,确定存料室内存的物料过多或过少,避免出现存料室所存的熔融体过量等的情况,从而影响3D打印设备300内的熔融体压力。在一些实施例中,第一容积传感器可以是分别设置于缓存模块507的存料室的进料口和出料口的流量计,通过分别计算流入和流出的流量来确定存料室内剩余的容积,该流量计可以是差压式、转子式或容积式流 量计。
当第一容积检测信号所表示的存料室的剩余容积太小时,控制模块505可以通过控制设置于3D打印设备300的一个或多个出料控制装置的来降低对应出料口的出料速度,从而避免出现存料室内熔融体过量的情况。该设置于3D打印设备300的一个或多个出料控制装置包括但不限于加料模块501的料斗出料控制装置、熔融挤出模块502的熔融挤出出料控制装置。上述出料控制装置的具体结构与如前所述的图1和图2所示的3D打印设备的对应组件的结构相同。当第一容积检测信号所表示的存料室的剩余容积太大时,控制模块505可以通过控制上述设置于3D打印设备300的一个或多个出料控制装置来提高对应出料口的出料速度,来提高设备的利用率。图4示例性地展示了根据本发明的又一实施例的3D打印设备的透视图。如图4所示,3D打印设备400的打印模块703包括多个喷嘴731,多个喷嘴731呈阵列分布,其中每个喷嘴731到所述处理腔室、混合腔室或存料室的出料口的连通路径距离相等,从而保证在打印过程中,每个喷头的压力均等,适合于批量化生产的需要。上述多个喷嘴也可以排布成其他的到所述处理腔室、混合腔室或存料室的出料口的连通路径距离相等的排布方式,例如呈圆形、扇形排布等等。上述3D打印设备400的多个喷嘴731的内径相同,为0.05至2毫米,其构成材料可以由钢、黄铜、铝合金等。在一些实施例中,上述3D打印设备400的每个喷嘴的内径优选为0.3、0.4或0.5毫米。
在一些实施例中,上述打印模块703和处理腔室、混合腔室或存料室之间通过软管(图中未示出)连通。在一些实施例中,3D打印设备的所有相互连通的模块之间均通过软管连接,上述的熔融体通过软管从熔融挤出模块的处理腔室流入缓存模块的存料室、混合模块的混合腔室或者打印模块的喷嘴。在一些实施例中,上述连通各个模块的软管的内径为1至100毫米。在一些实施例中,上述连通各个模块的软管的内径优选为4毫米。
图5示例性地展示了根据本发明的某一实施例的3D打印设备的喷嘴在打印模块上的排布示意图。如图5所示,每根软管与打印模块703连接后通入4个喷嘴714,其中4个喷嘴714位于同一圆周上等分分布。这样的设计,使得喷嘴喷在平台模块上最终形成的产品可以横平竖直地排布,便于后续的包装和切割工艺。
继续参照图4,3D打印设备400还包括平台模块704,该平台模块704包括多个沉积平台741、742、743等等,上述多个沉积平台设置于平台驱动机构745。由图可见,多个沉积平台741、742和743依序以履带连接的形式设置于履带式驱动机构746, 而履带式驱动机构746设置于水平驱动机构747,并可整体伴随水平驱动机构747沿水平运动。上述履带式驱动机构746和水平驱动机构747共同构成平台驱动机构745,其中履带式驱动机构746在电机的驱动下可以驱动沉积平台741、742、743沿着如图所示的笛卡尔坐标系的Y轴方向运动,水平驱动机构747为步进电机,可以驱动沉积平台741、742和743沿着如图所示的笛卡尔坐标系的X轴方向运动。3D打印设备400还包括打印模块驱动机构735,如图所示的打印模块驱动机构735为步进电机,其可以驱动如图所示的打印模块703的喷嘴731沿着如图所示的笛卡尔坐标系的Z轴运动。需要注意的是,上述打印模块驱动机构和平台驱动机构的结构可以是使喷嘴731相对于沉积平台沿着笛卡尔坐标系X轴、Y轴和Z轴运动的任意组合形式,比如在一些实施例中,上述打印模块驱动机构打印模块的喷嘴沿着笛卡尔坐标系X轴、Y轴和Z轴运动,而平台模块704在打印产品过程中保持静止状态。可以理解的是,虽然如图所示的打印模块驱动机构735和水平驱动机构747为步进电机,其也可以是其他传动机构,比如液压活塞油缸等。
3D打印设备400还可以包括产品收集模块(图中未示出),所述产品收集模块被设置为对沉积平台741、742和743上形成的最终产品进行收集。在一些实施例中,上述产品收集模块可以为刮板或机械手,用于将沉积平台741、742和743上形成的最终产品运送到指定平台或传送带进行包装。在一些实施例中,所述产品收集模块具有包装铺设和热封功能,平台模块上事先铺设好一层下层包装,产品直接打印在包装上,在产品最终打印完成后,所述产品收集模块将上层包装直接覆盖最终产品,加压热塑封口完成包装,所述包装可以为铝箔、塑料薄膜等。
在一些实施例中,3D打印设备400还具有自动进料机构(图中未示出),自动进料机构与加料模块的进料口直接连通,并将初始物料输送至进料口。在一些实施例中,该自动进料机构可以为带式输送机、埋刮板输送机、振动输送机、螺旋输送机等。在一些实施例中,自动进料机构还可以设置有压电传感器,用于测量所输送的初始物料的重量,并根据该测量结果控制初始物料的定量传输。3D打印设备400的控制模块可以根据设备的状态参数或者使用者通过用户界面输入的指令,控制各种初始物料的传输速度,提高生产效率。
在一些实施例中,3D打印设备400进一步包括检验模块(图中未示出),该检验模块被设置为对所述平台模块上的最终产品的产品参数进行检测。如前所述,上述最终产品的产品参数包括但不限于产品的数量以及所需产品的组分、重量、水分和菌落 数等。该检验模块与控制模块通信连接,并将所检测到的产品参数传输至控制模块,控制模块根据事先设定的产品需求或者使用者通过用户界面输入的指令确定上述各项产品参数是否符合最终的产品需求,并根据该判断结果确定产品是否合格,并执行相应措施纠正设备运行的不合格问题。
在一些实施例中,检验模块可以包括如上所述的近红外光谱分析仪,来检验最终产品的组分是否合格。上述检验模块还可以包括摄像头,对最终形成产品进行摄像或光学检测,并通过控制模块与标准要求进行比对,从而检验在沉积平台741、742和743上形成的最终产品的尺寸和形状是否符合标准。如上所述,上述近红外光谱分析仪还可以作为水分传感器。上述检验模块还可以包括压电传感器,从而对最终产品的重量进行测量。上述所测得的产品参数可以传输至控制模块,控制模块可以基于该参数调整自动3D打印设备400的运行,具体调整方式可以参照如前所述的控制模块与设置于3D打印设备400上述各模块的状态参数的检测装置所对应的调整装置,包括但不限于上述各种加热装置和出料控制装置等。
在一些实施例中,3D打印设备400进一步包括自动筛选模块,该自动筛选模块被设置为对沉积平台741、742和743上形成的最终产品进行拣选。在一些实施例中,上述自动筛选模块具有高精度称量传感器,例如压电传感器,根据自动筛选模块上最终形成产品的重量,将产品输送到不同的位置,例如把不符合重量要求的产品输入至废品处。
根据本发明的另一个方面,提供了一种3D打印方法,所述3D打印方法包括:可包括熔融和加压物料的步骤;使物料流过包括锥形内表面的喷嘴的挤出口;监测喷嘴内或靠近喷嘴的物料的压力;使密封针的锥形端与喷嘴的锥形内表面接合,从而封闭挤出口并阻止熔融物料的流动;并回抽密封针的锥形端部,从而恢复物料通过挤出口的流动。在一些实施例中,该方法使用如本发明所述的设备来执行。在一些实施例中,该装置包括多个料筒,其中每个料筒配置有控制开关。该方法可包括从第一料筒打印第一物料并从第二料筒打印第二物料,其中当第二物料从第二料筒打印时,第一料筒的密封针处于关闭位置,并且当第一物料从第一料筒打印时,第二供应系统的密封针处于关闭位置。在一些实施例中,该方法以分批次加工模式执行。在一些实施例中,该装置或系统被控制以分批次模式工作。术语“分批次模式”是指其中制造预定数量的产品(例如药物剂型)的工作模式。在一些实施例中,该方法以连续工作模式执行。在一些实施例中,装置或系统以连续模式工作。术语“连续模式”是指工作模式,其中 设备或系统工作了预定的时间段或直到已经使用了预定量的单种或多种物料。
在一些实施例中,所述3D打印方法包括:包括熔融和加压第一物料;使所述第一物料流过包括锥形内表面的第一喷嘴的第一挤出口;使第一密封针的锥形端部与第一喷嘴的锥形内表面接合,从而封闭第一挤出口并阻止熔融的第一物料的流动;熔融并加压第二种物料;以及从第二喷嘴的锥形内表面抽出第二密封针的锥形端部,从而开始使第二物料流过第二挤出口。在一些实施例中,该方法包括,例如,从计算机系统接收用于制造产品的指令。
在一些实施例中,用所述3D打印方法制造生产药物剂型(例如片剂)的方法包括以下步骤:熔融和加压药用物料;监测喷嘴内或靠近喷嘴的物料的压力;使物料流过包括锥形内表面的喷嘴的挤出口;使密封针的锥形端与喷嘴的锥形内表面接合,从而封闭挤出口并阻止熔融物料的流动;并回抽密封针的锥形端部,从而恢复物料通过挤出口的流动。在一些实施例中,药用物料包含药物。在一些实施例中,该方法使用如本发明所述的设备来执行。在一些实施例中,该装置包括多个料筒,其中每个料筒配置有控制开关。该方法可包括从第一料筒打印第一物料并从第二料筒打印第二物料,其中当第二物料从第二料筒打印时,第一料筒的密封针处于关闭位置,并且当第一物料从第一料筒打印时,第二加料模块的密封针处于关闭位置。在一些实施例中,该方法还包括监测第一喷嘴内或第一喷嘴附近的第一物料的压力;或监测第二喷嘴或第二喷嘴附近的第二物料的压力。
在一些实施例中,用所述3D打印方法制造生产药物剂型的方法包括熔融和加压第一药用物料;使第一药用物料流过包括锥形内表面的第一喷嘴的第一挤出口;使第一密封针的锥形端部与第一喷嘴的锥形内表面接合,从而密封第一挤出口并阻止熔融的第一物料的流动;将第二药用物料熔融并加压;以及从第二喷嘴的锥形内表面抽出第二密封针的锥形端部,由此使第二药用物料流过第二挤出口。在一些实施例中,第一药用物料或第二药用物料是溶蚀性物料。在一些实施例中,第一药用物料或第二药用物料包含药物。在一些实施例中,该方法还包括例如从计算机系统接收用于制造药物剂型的指令。在一些实施例中,该方法还包括监测第一喷嘴内或第一喷嘴附近的第一物料的压力;或监测第二喷嘴或第二喷嘴附近第二物料的压力。
图6示例性地展示了根据本发明的又一实施例的3D打印设备的示意图。
图7A和7B分别示例性地展示了根据本发明的某一实施例的3D打印设备能够打印的药物产品的模型。
下面将结合图6、图7A和图7B来描述本发明的3D打印设备在3D打印药品领域的应用。可以理解的是,下面的描述仅仅是示例性的,下文描述的3D打印设备当然也可以用于打印其他任何可由3D打印设备获得的物品,例如,人造骨骼、模具、食品、工业设计品等等。
如图6所示,3D打印设备600包括多个熔融挤出模块961、962、963、964、965和966和多个喷嘴951、952、953、954、955和956。上述多个熔融挤出模块和喷嘴的结构和功能设置可参照如图1和图2所示的熔融挤出模块和喷嘴。3D打印设备600还包括多个沉积平台941、942、943、944、945和946。上述多个沉积平台的结构和功能设置也可参照如图1和图2所示的沉积平台。3D打印设备600的上述多个熔融挤出模块挤出的熔融体沉积于上述多个沉积平台上,所述沉积平台941、942、943、944、945和946可以被驱动逐个经过多个喷嘴951、952、953、954、955和956接收熔融体,并且整体相对于上述多个喷嘴成循环运转。在一些实施例中,上述多个沉积平台也可以在上述多个喷嘴的一个或多个之间进行往复运动,具体细节将结合图7A和图7B详述。
需要注意的是,图6所示的3D打印设备600包括多个喷嘴951、952、953、954、955和956,其中喷嘴951、952、953、954、955和956可以是单个喷嘴,也可以呈现一定排布的多个喷嘴的组合。在一些实施例中,该3D打印设备600可以分别具有与多个喷嘴951、952、953、954、955和956对应的多个打印模块。此外,虽然图中未示出,但图6所示的3D打印设备600的熔融挤出模块961、962、963、964、965和966和多个喷嘴951、952、953、954、955和956之间还可以具有一个或多个混合模块或缓存模块,该混合模块或缓存模块的设置和结构可参照图1和图2所示。
图7A展示了根据本发明的某一实施例的3D打印设备能够打印的药物990的模型。该药物990包括药物外壳992和药物内核993。其中992可以为肠溶性、胃溶性材料所形成的药物包衣,内核部分993为药物活性成分。图7B展示了根据本发明的某一实施例的3D打印设备能够打印的药物991的模型。该药物991包括药物外壳994和995以及药物内核996和997。其中外壳994和995可以是肠溶性、胃溶性材料所形成的具有不同溶解和释放特性的药物包衣,内核部分996和997可以为不同的药物活性成分。
在打印上述药物过程中,控制模块首先读取如图7A和7B所示的药物数字模型以及该药物的组分、水分、重量等状态参数以及最终产品参数的要求。随后控制模块控 制前述的自动送料机构通过加料模块对熔融挤出模块进行加料。以图7A所示的药物模型为例,熔融挤出模块961接收肠溶性材料的初始物料,将其挤出加热为熔融体,并从喷嘴951中挤出。熔融挤出模块962用于接收上述药物活性成分的原始物料,将其挤出加热为熔融体后,从喷嘴952的喷嘴中挤出。平台驱动机构驱动沉积平台941先运动到喷嘴951的下方,通过其喷嘴与沉积平台941之间的相对运动,在沉积平台941上分层沉积最终形成药物外壳992的内凹的下半部分,随后再驱动沉积平台941运动至喷嘴952的下方,通过其喷嘴与沉积平台941之间的相对运动,在沉积平台941上分层沉积最终在上述内凹的下半部分药物外壳992中形成药物内核993。之后,驱动沉积平台941返回喷嘴951的下方,通过其喷嘴与沉积平台941之间的相对运动,在沉积平台941上分层沉积最终形成药物外壳992的上半部分,最终形成如图7A所示的药物模型。在一些实施例中,如图6所示的熔融挤出模块963可以具有和熔融挤出模块961相同的原始物料,将其挤出加热为熔融体后,从喷嘴953中挤出。所以,沉积平台941在完成药物内核993的打印后,可以运动至喷嘴953的下方,完成如图7A所示的药物模型的打印。可以理解的是,上述多个沉积平台941、942、943、944、945和946可以依次通过上述喷嘴951、952和953的下方,从而以流水线的方式完成图7A所示的药物模型的打印,该设置可以有效提高打印药物的效率,符合量产化的需求。当然,在一些实施例中,上述沉积平台941也可以在上述喷嘴951和952之间往复运动来完成如图7A所示的药物模型的打印,类似地,沉积平台942也可以在上述喷嘴952和953之间往复运动,以完成图7A所示的药物模型的打印。
需要指出的是,在一些实施例中,如图7A所示的药物模型也可以严格进行分层打印。3D打印设备600可以对图7A所示的药物模型从上至下进行分层,并通过平台驱动机构以驱动沉积平台941先运动到喷嘴951的下方,通过其喷嘴与沉积平台941之间的相对运动,在沉积平台941上分层沉积最终形成仅包括药物外壳992的单个分层部分。而当打印到既包含药物外壳992又包含药物内核993的单个分层时,该3D打印设备600通过平台驱动机构以驱动沉积平台941在喷嘴951的下方和喷嘴952的下方往复运动,通过上述喷嘴与沉积平台941之间的相对运动,在沉积平台941上分层沉积最终形成既包含药物外壳992又包含药物内核993的单层。
图7B所示的药物模型的打印方式与图7A所示的方式类似,可以先打印药物外壳994和995的内凹的下半部分,随后打印内核996和997的药物内核部分,最后再打印药物外壳994和995的上半部分。在一些实施例中,也可以将图7B所示的药物模 型进行分层,严格按照分层进行打印。在一些实施例中,包含多个不同成分部分的药物模型可以由多个不同熔融挤出模块和/或打印模块完成打印。如图7B所示的药物模型994可以为肠溶性材料构成,内核997为需要在肠部释放的药物活性成分,而药物模型995可以为胃溶性材料构成,内核996为需要在胃部释放的药物活性成分,因此,图7B所示的药物模型可以实现不同器官的不同效率的释放,借助本发明所披露的3D打印设备,可以高效、快速、批量地打印如图7B所示的各种特殊结构和要求的药物产品。
本发明所披露的3D打印设备也符合药物的连续化生产的要求(CMP),通过上述的控制模块、检验模块和状态参数检测装置,该3D打印设备可或产品参数以实时监测所打印药物的最终产品及中间产品的组分、水分、重量、形状等状态参数,并且可以通过上述出料控制装置、加热装置等组件实现状态参数或产品参数的调整,从而避免药物批次生产带来的诸多问题,提高了生产效率。
图8示例性地展示了根据本发明的某一实施例的3D打印方法的流程图。
本发明也披露了一种使用本发明所披露的3D打印设备打印产品的3D打印方法,下面将结合图1、2和3来详述该3D打印方法,有关方法中具体的步骤中具体功能的实现,可以参照如上所述的本发明的3D打印设备的实施例中的具体部件和功能设置。上述3D打印方法包括首先向3D打印设备100的熔融挤出模块102的处理腔室121中加入第一初始物料。随后,对所述处理腔室121中的第一初始物料进行加热和挤出,以使其转变为第一熔融体,并使得所述第一熔融体从所述处理腔室121的出料口125挤出。之后引导所述处理腔室121的出料口125的第一熔融体通过所述打印模块103的喷嘴131挤出并沉积到平台模块104上。
在一些实施例中,上述3D打印方法还包括通过加料模块101的料斗向所述熔融挤出模块102加入第一初始物料。
在一些实施例中,上述3D打印方法还包括检测所述打印模块103处的第一熔融体的压力,并根据所检测到压力控制所述打印模块103处的第一熔融体的压力。
在一些实施例中,上述3D打印方法还包括检测打印模块103处的第一混合熔融体的温度;并根据所检测到的温度调节打印模块103处的第一混合熔融体的温度。
在一些实施例中,上述3D打印方法还包括检测处理腔室121处的所述第一熔融体的温度;并根据所检测到的温度控制对所述处理腔室121内的第一熔融体的加热功率和/或对第一熔融体的挤出功率。
在一些实施例中,所述引导处理腔室121出料口的第一熔融体通过所述打印模块103的喷嘴131挤出并沉积到平台模块104上的步骤具体包括:引导处理腔室121的出料口125的第一熔融体进入缓存模块107的存料室171;引导存料室171的出料口的第一熔融体通过打印模块103的喷嘴131挤出并沉积到平台模块104上。
在一些实施例中,上述3D打印方法还包括检测存料室171处的所述第一熔融体的温度;并根据所检测到的温度控制对所述存料室171内的第一熔融体的加热功率。
在一些实施例中,上述3D打印方法还包括检测存料室171的剩余容积;并根据存料室171的剩余容积控制处理腔室121的出料口125的所述第一熔融体的出料速度。
在一些实施例中,上述3D打印方法还包括引导至少部分从处理腔室121的出料口125被挤出的第一熔融体回流至处理腔室121内。
结合图2所示,在一些实施例中,上述3D打印方法还包括通过第二加料模块401的料斗向第二熔融挤出模块402的处理腔室加入第二初始物料;对所述第二熔融挤出模块402的处理腔室中的第二初始物料进行加热和挤出以使其转变为第二熔融体并使其从所述第二熔融挤出模块的处理腔室的出料口挤出;在混合腔室308中混合所述第一熔融体和第二熔融体以形成第一混合熔融体;引导混合腔室308的出料口的第一混合熔融体通过所述打印模块303的喷嘴331挤出并沉积到平台模块304上。
在一些实施例中,上述3D打印方法还包括检测混合腔室308的出料口所挤出的第一混合熔融体的组分;根据所检测到第一混合熔融体的组分分别控制第一熔融挤出模块302和第二熔融挤出模块402的处理腔室的出料口处的第一熔融体和第二熔融体的出料速度。
在一些实施例中,上述3D打印方法还包括检测混合腔室308处的第一混合熔融体的温度;并根据所检测到的温度控制对混合腔室308处的第一混合熔融体的加热功率。
结合图1所示,在一些实施例中,上述3D打印方法还包括通过第二加料模块201的料斗211向第一熔融挤出模块102的处理腔室121加入第二初始物料;对处理腔室121中的第一初始物料和第二初始物料进行加热和挤出,以使其转变为第一熔融体。
在一些实施例中,上述3D打印方法还包括检测该3D打印设备100的任意位置的第一熔融体的组分,并根据所检测到的第一熔融体的组分分别控制所述第一加料模块101和第二加料模块102的出料口的所述第一初始物料和第二初始物料的出料速度。
结合图6所示在一些实施例中,上述3D打印方法还包括通过第二加料模块(图 中未示出)的料斗向第二熔融挤出模块962的处理腔室中加入第二初始物料;对所述第二熔融挤出模块962的处理腔室中的第二初始物料进行加热和挤出,以使其转变为第二熔融体并从所述第二熔融挤出模块962的处理腔室的出料口挤出;引导所述第二熔融挤出模块962的处理腔室的出料口的第二熔融体通过所述打印模块的第二喷嘴952挤出并沉积到平台模块上;以及驱动所述平台模块941在所述第一喷嘴951的下方和第二喷嘴952的下方之间移动。
结合图4所示,在一些实施例中,上述3D打印方法还包括驱动打印模块的喷嘴731相对于所述平台模块运动。
在一些实施例中,上述3D打印方法还包括驱动打印模块的喷嘴731相对于所述平台模块沿如图4所示的Z轴运动。
在一些实施例中,上述3D打印方法还包括驱动所述平台模块的第一沉积平台741,相对于打印模块的喷嘴731运动;其中所述第一沉积741平台被配置为接收经由所述喷嘴731挤出的所述第一熔融体。
在一些实施例中,上述3D打印方法还包括驱动所述沉积平台741相对于所述喷嘴731沿如图4所示的X轴和/或Y轴运动。
在一些实施例中,上述3D打印方法还包括对平台模块104上形成的最终产品进行收集。
在一些实施例中,上述3D打印方法还包括对平台模块104上形成的最终产品的产品参数进行检测。
在一些实施例中,上述3D打印方法还包括为对平台模块104上形成的最终产品进行拣选。
在一些实施例中,上述3D打印方法还包括通过自动送料模块向加料模块101输送所述第一初始物料。
在一些实施例中,上述3D打印方法可以用于热塑性材料的打印,尤其是用于药物的连续化生产、个性化生产和批量生产等场景。
应当注意,尽管在上文详细描述中提及了3D打印设备的若干模块或子模块,但是这种划分仅仅是示例性的而非强制性的。实际上,根据本申请的实施例,上文描述的两个或更多模块的特征和功能可以在一个模块中具体化。反之,上文描述的一个模块的特征和功能可以进一步划分为由多个模块来具体化。
那些本技术领域的一般技术人员可以通过研究说明书、公开的内容及附图和所附 的权利要求书,理解和实施对披露的实施方式的其他改变。在权利要求中,措词“包括”不排除其他的元素和步骤,并且措辞“一”、“一个”不排除复数。在本申请的实际应用中,一个零件可能执行权利要求中所引用的多个技术特征的功能。权利要求中的任何附图标记不应理解为对范围的限制。
以上结合附图示例性地说明了本申请的各实施方式。本领域技术人员根据本说明书公开的内容可以很容易地想到,可以根据实际需要对各实施方式公开的3D打印设备的各个组成部分进行适当调整和重新组合,而不会脱离本发明的精神。本申请的保护范围以本申请的权利要求书为准。

Claims (76)

  1. 一种3D打印设备,其特征在于,包括:
    第一熔融挤出模块,所述第一熔融挤出模块包括具有进料口和出料口的第一处理腔室和设置于第一处理腔室处的第一挤出装置和第一处理腔室加热装置,所述第一熔融挤出模块被设置为通过所述第一处理腔室的进料口接收第一初始物料,并对所述第一初始物料进行加热和挤出,使得所述第一初始物料转变为第一熔融体,所述第一熔融体从所述第一处理腔室的出料口被挤出;
    第一打印模块,所述第一打印模块与所述第一处理腔室的出料口连通,并包含第一喷嘴,所述第一打印模块被配置为接收从所述处理腔室的出料口被挤出的所述第一熔融体,并引导所述第一熔融体经由所述第一喷嘴挤出;以及
    平台模块,所述平台模块被配置为接收经由所述第一喷嘴挤出的所述第一熔融体。
  2. 根据权利要求1所述的3D打印设备,其特征在于,进一步包括:
    第一加料模块,所述第一加料模块包括第一料斗,所述第一料斗具有进料口和出料口,并被配置为通过所述第一料斗的进料口接收所述第一初始物料,并通过所述第一料斗的出料口向所述第一处理腔室的进料口排出所述第一初始物料。
  3. 根据权利要求2所述的3D打印设备,其特征在于,进一步包括:
    控制模块,所述控制模块包括计算机化控制器,用于基于所述3D打印设备的状态参数控制所述3D打印设备。
  4. 根据权利要求3所述的3D打印设备,其特征在于,进一步包括:
    与所述控制模块通信连接的第一温度检测装置,所述第一温度检测装置被设置为检测所述第一处理腔室处的所述第一熔融体的温度,并向所述控制模块传递第一温度检测信号。
  5. 根据权利要求4所述的3D打印设备,其特征在于,所述第一处理腔室加热装置与所述控制模块通信连接,所述控制模块根据所述第一温度检测信号控制所述第一处理腔室加热装置的加热功率。
  6. 根据权利要求4所述的3D打印设备,其特征在于,所述第一挤出装置与所述控制模块通信连接,所述控制模块根据所述第一温度检测信号控制所述第一挤出装置的挤出功率。
  7. 根据权利要求1所述的3D打印设备,其特征在于,所述第一挤出装置包括:
    螺杆装置,所述螺杆装置设置于所述第一处理腔室中,挤出所述第一初始物料或第一熔融体,并将所述第一熔融体输送到所述第一处理腔室的出料口。
  8. 根据权利要求7所述的3D打印设备,其特征在于,所述螺杆装置为单螺杆装置、双螺杆装置或其组合。
  9. 根据权利要求3所述的3D打印设备,其特征在于,所述第一熔融挤出模块包括熔融挤出出料控制装置,所述熔融挤出出料控制装置被设置为控制所述第一处理腔室的出料口的所述第一熔融体的出料速度。
  10. 根据权利要求3所述的3D打印设备,其特征在于,进一步包括:
    第一压力检测装置,所述第一压力检测装置与所述控制模块通信连接,其被设置为检测所述第一打印模块处的第一熔融体的压力,并向所述控制模块传递第一压力检测信号;
    压力调节装置,所述压力调节装置被布置于所述第一打印模块,其被设置为调节所述第一打印模块处的第一熔融体的压力;
    其中所述控制模块与所述压力调节装置通信连接,并根据所述第一压力检测信号通过所述压力调节装置调节所述第一打印模块处的所述第一熔融体的压力。
  11. 根据权利要求3所述的3D打印设备,其特征在于,进一步包括:
    第二温度检测装置,所述第二温度检测装置与所述控制模块通信连接,其被设置为检测所述第一打印模块处的第一熔融体的温度,并向所述控制模块传递第二温度检测信号;
    温度调节装置,所述温度调节装置被布置于所述第一打印模块,其被设置为调节所述第一打印模块处的第一熔融体的温度;
    其中所述控制模块与所述温度调节装置通信连接,并根据所述第二温度检测信号通过所述温度调节装置调节所述第一打印模块处的所述第一熔融体的温度。
  12. 根据权利要求3所述的3D打印设备,其特征在于,所述第一加料模块进一步包括第一料斗出料控制装置,所述第一料斗出料控制装置被设置为控制所述第一料斗的出料口的所述第一初始物料的出料速度。
  13. 根据权利要求12所述的3D打印设备,其特征在于,所述第一料斗出料控制装置为螺杆装置,所述螺杆装置设置于所述第一料斗中,并通过所述螺杆的转速变化控制所述料斗的出料口的所述第一初始物料的出料速度。
  14. 根据权利要求12所述的3D打印设备,其特征在于,进一步包括第二加料模块,所述第二加料模块包括第二料斗,所述第二料斗具有进料口和出料口,其被配置为通过所述第二料斗的进料口接收第二初始物料,并通过所述第二料斗的出料口排出所述第二初始物料。
  15. 根据权利要求14所述的3D打印设备,其特征在于,所述第二加料模块进一步包括第二料斗出料控制装置,所述第二料斗出料控制装置被设置为控制所述第二料斗的出料口的所述第二初始物料的出料速度。
  16. 根据权利要求15所述的3D打印设备,其特征在于,进一步包括:
    第一组分检测装置,所述第一组分检测装置与所述控制模块通信连接,其被设置为检测所述3D打印设备的任意位置的所述第一熔融体的组分,并向所述控制模块传递第一组分检测信号;
    所述第一料斗出料控制装置和第二料斗出料控制装置分别与所述控制模块通信连接,所述控制模块根据所述第一组分检测信号通过所述第一料斗出料控制装置和第二料斗出料控制装置分别控制所述第一料斗的出料口的第一初始物料和第二料斗的出料 口的第二初始物料的出料速度。
  17. 根据权利要求3所述的3D打印设备,其特征在于,进一步包括:
    第一缓存模块,所述第一缓存模块包括具有进料口和出料口的存料室,所述存料室的进料口与所述第一处理腔室的出料口连通,所述存料室的出料口与所述第一打印模块连通,所述第一缓存模块被配置为接收从所述第一处理腔室的出料口被挤出的所述第一熔融体,并引导所述第一熔融体通过所述存料室的出料口进入所述第一打印模块。
  18. 根据权利要求17所述的3D打印设备,其特征在于,所述第一缓存模块进一步包括存料室出料控制装置,用于控制所述存料室的出料口的所述第一熔融体的出料速度。
  19. 根据权利要求17所述的3D打印设备,其特征在于,所述第一缓存模块进一步包括存料室加热装置,所述存料室加热装置被设置为对所述存料室内的第一熔融体进行加热。
  20. 根据权利要求19所述的3D打印设备,其特征在于,进一步包括:
    第三温度检测装置,所述第三温度检测装置与所述控制模块通信连接,其被设置为检测所述存料室处的所述第一熔融体的温度,并向所述控制模块传递第三温度检测信号;
    所述控制模块根据所述第三温度检测信号控制所述存料室加热装置的加热功率。
  21. 根据权利要求17所述的3D打印设备,其特征在于,进一步包括:
    容积检测装置,所述容积检测装置与所述控制模块通信连接,其被设置为检测所述存料室的剩余容积,并向所述控制模块传递容积检测信号。
  22. 根据权利要求21所述的3D打印设备,其特征在于,所述第一熔融挤出模块进一步包括:
    熔融挤出出料控制装置,其被设置为控制所述处理腔室的出料口的所述第一熔融 体的出料速度;
    其中所述熔融挤出出料控制装置与所述控制模块通信连接,所述控制模块根据所述容积检测信号通过所述熔融挤出出料控制装置控制所述第一处理腔室的出料口的所述第一熔融体的出料速度。
  23. 根据权利要1所述的3D打印设备,其特征在于,进一步包括回流回路,所述回流回路被设置为引导至少部分从所述第一处理腔室的出料口被挤出的所述第一熔融体回流至所述处理腔室内。
  24. 根据权利要求3所述的3D打印设备,其特征在于,进一步包括:
    第二加料模块,所述第二加料模块包括具有进料口和出料口的第二料斗,并被配置为通过所述第二料斗的进料口接收并排出第二初始物料;
    第二熔融挤出模块,所述第二熔融挤出模块包括具有进料口和出料口的第二处理腔室和设置于第二处理腔室处的挤出装置和处理腔室加热装置,其被设置为通过所述第二处理腔室的进料口接收所述第二初始物料,并对所述第二初始物料进行加热和挤出,使得所述第二初始物料转变为第二熔融体,所述第二熔融体从所述第二处理腔室的出料口被挤出;以及
    第一混合模块,所述第一混合模块包括具有进料口和出料口的混合腔室,所述混合腔室的进料口与所述第一处理腔室和第二处理腔室的出料口均连通,所述混合腔室的出料口与所述第一打印模块连通,所述第一混合模块被配置为接收被挤出的所述第一熔融体和所述第二熔融体,并混合成第一混合熔融体后引导所述第一混合熔融体进入所述第一打印模块。
  25. 根据权利要求24所述的3D打印设备,其特征在于,所述第一熔融挤出模块和第二熔融挤出模块分别包括第一和第二熔融挤出出料控制装置,其分别被设置为控制所述第一熔融挤出模块和第二熔融挤出模块的处理腔室的出料口的所述第一熔融体和第二熔融体的出料速度。
  26. 根据权利要求25所述的3D打印设备,其特征在于,进一步包括:
    第二组分检测装置,所述第二组分检测装置与所述控制模块通信连接,其被设置为检测所述混合腔室的出料口所挤出的第一混合熔融体的组分,并向所述控制模块传递第二组分检测信号;
    所述第一熔融挤出出料控制装置和第二熔融挤出出料控制装置分别与所述控制模块通信连接,所述控制模块根据所述第二组分检测信号通过所述第一熔融挤出出料控制装置和第二熔融挤出出料控制装置分别控制所述第一处理腔室和第二处理腔室的出料口的所述第一熔融体和第二熔融体的出料速度。
  27. 根据权利要求24所述的3D打印设备,其特征在于,所述第一混合模块进一步包括混合腔室加热装置,所述混合腔室加热装置被设置为对所述混合腔室处的第一混合熔融体进行加热。
  28. 根据权利要求27所述的3D打印设备,其特征在于,进一步包括:
    第四温度检测装置,所述第四温度检测装置与所述控制模块通信连接,并被设置为检测所述混合腔室处的所述第一混合熔融体的温度,并向所述控制模块传递第四温度检测信号;
    所述控制模块根据所述第四温度检测信号控制所述混合腔室加热装置的加热功率。
  29. 根据权利要求24所述的3D打印设备,其特征在于,所述第一混合模块进一步包括混合腔室出料控制装置,用于控制所述混合腔室的出料口的所述第一混合熔融体的出料速度。
  30. 根据权利要求1所述的3D打印设备,其特征在于,所述第一喷嘴的内径为0.05至2毫米。
  31. 根据权利要求1所述的3D打印设备,其特征在于,所述第一打印模块进一步包括第二喷嘴。
  32. 根据权利要求31所述的3D打印设备,其特征在于,所述第一喷嘴和第二喷嘴到 所述处理腔室的出料口的连通路径距离相等。
  33. 根据权利要求1所述的3D打印设备,其特征在于,所述打印模块包括多个喷嘴,所述喷嘴呈阵列排布。
  34. 根据权利要求1所述的3D打印设备,其特征在于,进一步包括:
    打印模块驱动机构,所述打印模块驱动机构被设置为驱动所述第一打印模块的第一喷嘴相对于所述平台模块运动。
  35. 根据权利要求34所述的3D打印设备,其特征在于,所述打印模块驱动机构被设置为驱动所述第一打印模块的第一喷嘴相对于所述平台模块沿笛卡尔坐标系Z轴运动。
  36. 根据权利要求1所述的3D打印设备,其特征在于,所述平台模块包括:
    第一沉积平台,所述第一沉积平台被配置为接收经由所述第一喷嘴挤出的所述第一熔融体;以及
    平台驱动机构,所述平台驱动机构驱动所述第一沉积平台相对于所述第一打印模块的第一喷嘴运动。
  37. 根据权利要求36所述的3D打印设备,其特征在于,所述平台驱动机构用于驱动所述第一沉积平台相对于所述第一喷嘴沿笛卡尔坐标系X轴和/或Y轴运动。
  38. 根据权利要求36所述的3D打印设备,其特征在于,进一步包括:
    第二熔融挤出模块,所述第二熔融挤出模块包括具有进料口和出料口的第二处理腔室和设置于第二处理腔室处的挤出装置和处理腔室加热装置,所述第二熔融挤出模块被设置为通过所述第二处理腔室的进料口接收第二初始物料,并对所述第二初始物料进行加热和挤出,使得所述第二初始物料转变为第二熔融体,所述第二熔融体从所述第二处理腔室的出料口被挤出;
    所述第一打印模块进一步包括第二喷嘴,所述第二喷嘴与所述第二处理腔室的出 料口连通,所述第一打印模块被配置为接收从所述第二处理腔室的出料口被挤出的所述第二熔融体,并引导所述第二熔融体经由所述第二喷嘴挤出;
    所述平台驱动机构驱动所述第一沉积平台在所述第一喷嘴的下方和第二喷嘴的下方之间移动。
  39. 根据权利要求36所述的3D打印设备,其特征在于,所述平台模块进一步包括:
    第二沉积平台,所述第二沉积平台被配置为接收经由所述第一喷嘴挤出的所述第一熔融体;
    所述平台驱动机构驱动所述第一沉积平台和第二沉积平台依次通过所述第一喷嘴的下方。
  40. 根据权利要求1所述的3D打印设备,其特征在于,进一步包括产品收集模块,所述产品收集模块被设置为对所述平台模块上形成的最终产品进行收集。
  41. 根据权利要求1所述的3D打印设备,其特征在于,进一步包括检验模块,所述检验模块被设置为对所述平台模块上形成的最终产品的产品参数进行检测。
  42. 根据权利要求1所述的3D打印设备,其特征在于,进一步包括自动筛选模块,所示自动筛选模块被设置为对平台模块上形成的最终产品进行拣选。
  43. 根据权利要求1所述的3D打印设备,其特征在于,进一步包括自动送料模块,所示自动送料模块被设置为向所述第一加料模块输送所述第一初始物料。
  44. 根据权利要求1所述的3D打印设备,其特征在于,所有相互连通的上述各部件之间通过软管连通。
  45. 根据权利要求44所述的3D打印设备,其特征在于,所述软管的内径为1至100毫米。
  46. 根据权利要求1所述的3D打印设备,其特征在于,所述第一初始物料包括热塑性材料。
  47. 根据权利要求1所述的3D打印设备,其特征在于,进一步包括第二打印模块,所述第二打印模块位于所述第一打印模块沿笛卡尔坐标系Z轴的上方。
  48. 一种3D打印方法,其特征在于,包括:
    向第一熔融挤出模块的处理腔室中加入第一初始物料;
    对所述处理腔室中的第一初始物料进行加热和挤出,以使其转变为第一熔融体,并使得所述第一熔融体从所述处理腔室的出料口挤出;
    引导所述处理腔室的出料口的第一熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上。
  49. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括通过第一加料模块的料斗向所述第一熔融挤出模块加入第一初始物料。
  50. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括:
    检测所述第一打印模块处的所述第一熔融体的压力;
    并根据所检测到压力控制所述第一打印模块处的所述第一熔融体的压力。
  51. 根据权利要求48述的3D打印方法,其特征在于,进一步包括:
    检测所述第一打印模块处的第一熔融体的温度;
    并根据所检测到的温度调节所述第一打印模块处的第一熔融体的温度。
  52. 根据权利要求48述的3D打印方法,其特征在于,进一步包括:
    检测所述处理腔室处的所述第一熔融体的温度;
    并根据所检测到的温度控制对所述处理腔室内的第一熔融体或第一初始物料的加热功率和/或对第一熔融体或第一初始物料的挤出功率。
  53. 根据权利要求48所述的一种3D打印方法,其特征在于,所述引导所述处理腔室的出料口的第一熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上的步骤包括:
    引导所述处理腔室的出料口的第一熔融体进入第一缓存模块的存料室;
    引导所述存料室的出料口的第一熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上。
  54. 根据权利要求53所述的3D打印方法,其特征在于,进一步包括:
    检测所述存料室处的所述第一熔融体的温度;
    并根据所检测到的温度控制对所述存料室内的第一熔融体的加热功率。
  55. 根据权利要求53所述的3D打印方法,其特征在于,进一步包括:
    检测所述存料室的剩余容积;
    并根据所述存料室的剩余容积控制所述处理腔室的出料口的所述第一熔融体的出料速度。
  56. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括:
    引导至少部分从所述处理腔室的出料口被挤出的所述第一熔融体回流至所述处理腔室内。
  57. 根据权利要求49所述的3D打印方法,其特征在于,进一步包括:
    通过第二加料模块的料斗向第二熔融挤出模块的处理腔室加入第二初始物料;
    对所述第二熔融挤出模块的处理腔室中的第二初始物料进行加热和挤出以使其转变为第二熔融体并使其从所述第二熔融挤出模块的处理腔室的出料口挤出;
    在混合腔室中混合所述第一熔融体和第二熔融体以形成第一混合熔融体;和
    引导所述混合腔室出料口的第一混合熔融体通过所述第一打印模块的第一喷嘴挤出并沉积到平台模块上。
  58. 根据权利要求57所述的3D打印方法,其特征在于,进一步包括:
    检测所述混合腔室的出料口所挤出的第一混合熔融体的组分;和
    根据所检测到第一混合熔融体的组分分别控制所述第一熔融挤出模块和第二熔融挤出模块的处理腔室的出料口处的第一熔融体和第二熔融体的出料速度。
  59. 根据权利要求57述的3D打印方法,其特征在于,进一步包括:
    检测所述混合腔室处的第一混合熔融体的温度;
    并根据所检测到的温度控制对所述混合腔室处的第一混合熔融体的加热功率。
  60. 根据权利要求49所述的3D打印方法,其特征在于,进一步包括:
    通过第二加料模块的料斗向第一熔融挤出模块的处理腔室加入第二初始物料;
    对所述处理腔室中的第一初始物料和第二初始物料进行加热和挤出,以使其转变为第一熔融体。
  61. 根据权利要求60所述的3D打印方法,其特征在于,进一步包括:
    检测所述3D打印设备的任意位置的第一熔融体的组分,并根据所检测到的第一熔融体的组分分别控制所述第一加料模块和第二加料模块的出料口的所述第一初始物料和第二初始物料的出料速度。
  62. 根据权利要求49所述的3D打印方法,其特征在于,进一步包括:
    通过第二加料模块的料斗向第二熔融挤出模块的处理腔室中加入第二初始物料;
    对所述第二熔融挤出模块的处理腔室中的第二初始物料进行加热和挤出,以使其转变为第二熔融体并从所述第二熔融挤出模块的处理腔室的出料口挤出;
    引导所述第二熔融挤出模块的处理腔室的出料口的第二熔融体通过所述第一打印模块的第二喷嘴挤出并沉积到平台模块上;以及
    驱动所述平台模块在所述第一喷嘴的下方和第二喷嘴的下方之间移动。
  63. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括驱动所述第一打印模块的第一喷嘴相对于所述平台模块运动。
  64. 根据权利要求63所述的3D打印方法,其特征在于,进一步包括驱动所述第一打印模块的第一喷嘴相对于所述平台模块沿笛卡尔坐标系Z轴运动。
  65. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括:
    驱动所述平台模块的第一沉积平台,相对于所述第一打印模块的第一喷嘴运动;
    其中所述第一沉积平台被配置为接收经由所述第一喷嘴挤出的所述第一熔融体。
  66. 根据权利要求65所述的3D打印方法,其特征在于,进一步包括驱动所述第一沉积平台相对于所述第一喷嘴沿笛卡尔坐标系X轴和/或Y轴运动。
  67. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括对所述平台模块上形成的最终产品进行收集。
  68. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括对所述平台模块上形成的最终产品的产品参数进行检测。
  69. 根据权利要求48所述的3D打印方法,其特征在于,进一步包括为对所述平台模块上形成的最终产品进行拣选。
  70. 根据权利要求49所述的3D打印方法,其特征在于,进一步包括通过自动送料模块向所述加料模块输送所述第一初始物料。
  71. 根据权利要求48所述的3D打印方法,其特征在于,所述第一初始物料包括热塑性材料。
  72. 一种用于3D打印设备的打印模块,包括形成阵列排布的n×m个喷嘴(n和m分别为≥2的整数),其中第(x,y)号喷嘴的位置为第x列、第y行(1≤x≤n,1≤y≤m)。
  73. 权利要求72所述的打印模块,其被构造为可以挤出m种熔融体,其中所述第(x, y)号喷嘴被构造为可以挤出第y种熔融体。
  74. 权利要求72所述的打印模块,其中所述n×m个喷嘴分别连接n×m个处理腔室。
  75. 权利要求72所述的打印模块,其中所述n×m个喷嘴的出料速度分别由n×m个熔融挤出出料控制装置控制。
  76. 权利要求72所述的打印模块,其中所述n×m个喷嘴的第y行喷嘴被设置为具有基本相同的出料速度。
PCT/CN2018/086489 2017-05-16 2018-05-11 3d打印设备和方法 WO2018210183A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN202111400828.2A CN114311659A (zh) 2017-05-16 2018-05-11 3d打印设备和方法
AU2018267821A AU2018267821B2 (en) 2017-05-16 2018-05-11 3D printing device and method
EP18802440.0A EP3626439A4 (en) 2017-05-16 2018-05-11 3D PRINTING DEVICE AND PROCESS
US16/614,301 US11364674B2 (en) 2017-05-16 2018-05-11 3D printing device and method
CA3063797A CA3063797A1 (en) 2017-05-16 2018-05-11 3d printing device and method
KR1020197036147A KR102455404B1 (ko) 2017-05-16 2018-05-11 3d 인쇄 장치 및 방법
JP2019564009A JP7174432B2 (ja) 2017-05-16 2018-05-11 3d印刷デバイス及び方法
CN202111376607.6A CN114290669A (zh) 2017-05-16 2018-05-11 3d打印设备和方法
CN201880001232.5A CN109311232A (zh) 2017-05-16 2018-05-11 3d打印设备和方法
US17/752,729 US20220339857A1 (en) 2017-05-16 2022-05-24 3d printing device and method
JP2022160181A JP2022177311A (ja) 2017-05-16 2022-10-04 3d印刷デバイス及び方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710347098 2017-05-16
CN201710347098.1 2017-05-16
CN2018071965 2018-01-09
CNPCT/CN2018/071965 2018-01-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/614,301 A-371-Of-International US11364674B2 (en) 2017-05-16 2018-05-11 3D printing device and method
US17/752,729 Continuation US20220339857A1 (en) 2017-05-16 2022-05-24 3d printing device and method

Publications (1)

Publication Number Publication Date
WO2018210183A1 true WO2018210183A1 (zh) 2018-11-22

Family

ID=64273343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086489 WO2018210183A1 (zh) 2017-05-16 2018-05-11 3d打印设备和方法

Country Status (8)

Country Link
US (2) US11364674B2 (zh)
EP (1) EP3626439A4 (zh)
JP (2) JP7174432B2 (zh)
KR (1) KR102455404B1 (zh)
CN (3) CN109311232A (zh)
AU (1) AU2018267821B2 (zh)
CA (1) CA3063797A1 (zh)
WO (1) WO2018210183A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108312522A (zh) * 2018-03-29 2018-07-24 上海言诺建筑材料有限公司 3d打印装置及3d打印系统
WO2019137333A1 (en) * 2018-01-09 2019-07-18 Triastek, Inc. Precision pharmaceutical 3d printing device
CN110193938A (zh) * 2019-04-30 2019-09-03 深圳市裕同包装科技股份有限公司 一种3d特种印刷装置及印刷方法
KR102120205B1 (ko) * 2019-11-19 2020-06-09 주식회사 컨셉션 방열부품 성형용 진공주입식 3d 프린터
JP2020100048A (ja) * 2018-12-21 2020-07-02 セイコーエプソン株式会社 三次元造形装置、三次元造形システムおよび三次元造形物の製造方法
WO2020145898A1 (en) * 2019-01-11 2020-07-16 National University Of Singapore Three-dimensional printing of personalized pills
EP3730277A1 (en) * 2019-04-23 2020-10-28 National Kaohsiung University of Science and Technology Plastic extruder with a needle valve nozzle
CN111907059A (zh) * 2019-05-08 2020-11-10 高雄科技大学 积层成形系统
CN111920687A (zh) * 2020-08-28 2020-11-13 东北大学 一种粉末式3d药物打印机
CN112140531A (zh) * 2019-06-28 2020-12-29 精工爱普生株式会社 三维造形装置及三维造形物的制造方法
WO2021031824A1 (en) * 2019-08-20 2021-02-25 Triastek, Inc. High-throughput and high-preciscion pharmaceutical additive manufacturing system
US10973767B2 (en) 2015-06-03 2021-04-13 Triastek, Inc. Oral drug dosage form comprising drug in the form of nanoparticles
CN113635547A (zh) * 2020-04-27 2021-11-12 精工爱普生株式会社 三维造型装置及三维造型物的制造方法
CN113997562A (zh) * 2020-07-28 2022-02-01 精工爱普生株式会社 三维造型装置以及三维造型物的制造方法
US11364674B2 (en) 2017-05-16 2022-06-21 Triastek, Inc. 3D printing device and method
US11458684B2 (en) 2020-07-30 2022-10-04 Triastek, Inc. High-throughput and high-precision pharmaceutical additive manufacturing system
CN115366418A (zh) * 2022-10-21 2022-11-22 成都大学 一种便于调节出料速度的3d打印机
JP2022552833A (ja) * 2019-10-07 2022-12-20 ボストン ポーラリメトリックス,インコーポレイティド 偏光による面法線計測のためのシステム及び方法
US11534969B2 (en) 2020-03-19 2022-12-27 Shannxi University Of Technology Single screw extrusion sprayer of a 3D printer
US11571391B2 (en) 2018-01-09 2023-02-07 Triastek, Inc. Oral drug dosage forms compromising a fixed-dose of an ADHD non-stimulant and an ADHD stimulant
US11787111B2 (en) 2017-08-24 2023-10-17 Seiko Epson Corporation Shaping material supply device and three-dimensional shaping apparatus
US11833717B2 (en) 2020-06-26 2023-12-05 Seiko Epson Corporation Three-dimensional shaping device
US11850801B2 (en) 2018-11-28 2023-12-26 Seiko Epson Corporation Three-dimensional shaping apparatus and method of manufacturing three-dimensional shaping object
US11890811B2 (en) 2020-12-24 2024-02-06 Seiko Epson Corporation Three-dimensional shaping apparatus and three-dimensional shaped article production method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590501A1 (en) * 2018-07-06 2020-01-08 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Manufacturing process and system for manufacturing a 3d printed drug delivery product
JP7159808B2 (ja) * 2018-11-22 2022-10-25 セイコーエプソン株式会社 三次元造形装置および三次元造形装置の制御方法
CN110794125A (zh) * 2019-12-05 2020-02-14 南京大学深圳研究院 模拟研究熔体液滴快速固化过程的装置及方法
US11590705B2 (en) * 2020-05-13 2023-02-28 The Boeing Company System and method for additively manufacturing an object
CN112373027A (zh) * 2020-11-03 2021-02-19 西安昆仑工业(集团)有限责任公司 一种复合挤出3d打印喷头及3d打印机
JP7491197B2 (ja) * 2020-11-26 2024-05-28 セイコーエプソン株式会社 三次元造形装置および三次元造形システム
ES2915404B2 (es) * 2020-12-21 2023-01-05 Univ La Laguna Embolo medidor de presion para plataformas de impresion 3d en extrusion de masas semisolidas
GB202101534D0 (en) * 2021-02-04 2021-03-24 Univ Strathclyde Integrated Additive Manufacturing Apparatus and Method
FR3119790B1 (fr) * 2021-02-12 2023-09-15 Emerik Poursillie Procédé de fabrication additive et machine de fabrication additive mettant en œuvre ledit procédé
JP2022154934A (ja) * 2021-03-30 2022-10-13 トヨタ自動車株式会社 射出成形機、積層造形装置及び圧力制御方法
CN114770935B (zh) * 2022-03-05 2023-04-21 南通理工学院 一种用于3d成型的塑料挤出装置
CN114536741A (zh) * 2022-04-28 2022-05-27 哈尔滨理工大学 一种实现刚柔不同性质材料结合打印的装置
CN115026314B (zh) * 2022-06-28 2023-06-13 郑州轻工业大学 一种用于液态金属的双仓加热式3d打印机喷头结构和打印机
WO2024085601A1 (ko) * 2022-10-17 2024-04-25 엘지이노텍 주식회사 토출 장치 및 이의 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936861A (en) * 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
CN104260349A (zh) * 2014-09-15 2015-01-07 余金文 一种熔融堆积3d打印机及其打印方法
CN104742375A (zh) * 2015-04-02 2015-07-01 共享装备有限公司 基于fdm的3d打印设备
CN105365221A (zh) * 2015-11-27 2016-03-02 范春潮 高速往复式彩色3d打印机
CN105666640A (zh) * 2016-01-29 2016-06-15 深圳森工科技有限公司 打印机喷头、3d打印机及成型方法
CN105690762A (zh) * 2016-01-26 2016-06-22 南京三迭纪医药科技有限公司 3d打印粉末材料用打印头

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
JP2597778B2 (ja) 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US5529471A (en) 1995-02-03 1996-06-25 University Of Southern California Additive fabrication apparatus and method
WO2003017745A2 (en) 2001-08-23 2003-03-06 Sciperio, Inc. Architecture tool and methods of use
US20080093763A1 (en) * 2006-10-06 2008-04-24 Douglas Mancosh Multi-color fiber-plastic composites and systems and methods for their fabrication
EP2992850A1 (en) 2006-10-18 2016-03-09 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
US9272437B2 (en) 2012-10-31 2016-03-01 Flow International Corporation Fluid distribution components of high-pressure fluid jet systems
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US20140232035A1 (en) 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9527240B2 (en) * 2013-03-15 2016-12-27 Stratasys, Inc. Additive manufacturing system and method for printing three-dimensional parts using velocimetry
JP5740716B2 (ja) 2013-05-24 2015-06-24 株式会社シマブンコーポレーション 3次元造形物の製造方法
DK3063341T3 (da) 2013-10-30 2021-06-28 Branch Tech Inc Additivfremstilling af bygninger og andre konstruktioner
US10618217B2 (en) * 2013-10-30 2020-04-14 Branch Technology, Inc. Cellular fabrication and apparatus for additive manufacturing
US20150130101A1 (en) * 2013-11-12 2015-05-14 John D. Fiegener Method and apparatus for feeding print material
US8827684B1 (en) * 2013-12-23 2014-09-09 Radiant Fabrication 3D printer and printhead unit with multiple filaments
EP3112133B1 (en) 2014-02-25 2020-07-01 Yuyama, Seiichi 3d printer
CN103895223B (zh) * 2014-03-06 2016-08-24 珠海天威飞马打印耗材有限公司 打印头及三维打印机
US20150321419A1 (en) * 2014-05-06 2015-11-12 Todd Linthicum Extrusion system for additive manufacturing and 3-d printing
US10391705B2 (en) * 2014-05-09 2019-08-27 Nike, Inc. System and method for forming three-dimensional structures
CN105313332B (zh) 2014-06-09 2020-05-05 联合工艺公司 由两部分组成的热固性树脂增材制造系统
US20200030491A1 (en) * 2014-08-10 2020-01-30 Louisiana Tech Research Corporation Methods and Devices For Three-Dimensional Printing Or Additive Manufacturing Of Bioactive Medical Devices
CN111037913B (zh) * 2014-09-08 2022-04-01 中央兰开夏大学 固体剂型生产
US20160075091A1 (en) 2014-09-16 2016-03-17 Eastman Chemical Company Additive manufacturing object removal
WO2016097911A1 (en) * 2014-12-17 2016-06-23 Sabic Global Technologies B.V. Identifying a characteristic of a material for additive manufacturing
CN104552949A (zh) 2014-12-29 2015-04-29 陈名乔 3d打印机用高速打印头
CN204414597U (zh) 2015-01-12 2015-06-24 天津职业技术师范大学 用于熔融沉积成形的3d打印成品剥离装置
CN105856562B (zh) 2015-01-23 2019-05-17 中国科学院宁波材料技术与工程研究所 三维模型打印系统及三维模型的成型方法
US11220042B2 (en) 2015-02-04 2022-01-11 Ohio State Innovation Foundation Systems and methods for additive manufacturing
US10814551B2 (en) 2015-04-02 2020-10-27 Xerox Corporation Three-dimensional printed part removal using an elastomer sheet
AU2016202298A1 (en) 2015-04-14 2016-11-03 Flexi Matter Ltd. Extruder system for additive manufacturing
GB2538522B (en) 2015-05-19 2019-03-06 Dst Innovations Ltd Electronic circuit and component construction
CA2987114A1 (en) 2015-06-03 2016-12-08 Triastek, Inc. Method of 3d printing oral dosage forms having a drug in a compartment sealed by an erodible plug
DE102015111504A1 (de) 2015-07-15 2017-01-19 Apium Additive Technologies Gmbh 3D-Druckvorrichtung
US9944016B2 (en) 2015-07-17 2018-04-17 Lawrence Livermore National Security, Llc High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
CN105082539B (zh) 2015-07-30 2018-02-27 范春潮 一种快速彩色3d打印装置
US20190022934A1 (en) * 2015-09-04 2019-01-24 Jsr Corporation Manufacturing apparatus and method for three-dimensional object, and material supply unit to be used in the manufacturing apparatus
US10137679B2 (en) * 2015-10-29 2018-11-27 Raytheon Company Material deposition system for additive manufacturing
US20170121039A1 (en) * 2015-10-30 2017-05-04 Paul M. Ciesiun Seamless Paintball and Encapsulation Method
CN205343831U (zh) 2016-01-26 2016-06-29 南京三迭纪医药科技有限公司 3d打印粉末材料用打印头
CN107019676B (zh) 2016-01-29 2020-08-04 南京三迭纪医药科技有限公司 一种抗凝血药物的制备方法
CN105711094B (zh) * 2016-03-15 2019-05-07 东华大学 一种三维打印方法
EP3452003A4 (en) 2016-05-05 2019-06-26 Triastek, Inc. PHARMACEUTICAL FORM WITH CONTROLLED RELEASE
CN105965888B (zh) 2016-05-06 2018-01-02 广州市文搏智能科技有限公司 3d打印机用喷头
CN106079434B (zh) 2016-06-01 2019-04-12 深圳万为智能制造科技有限公司 3d打印用打印头、控制系统、3d打印机及打印方法
US20170360714A1 (en) 2016-06-20 2017-12-21 Sciperio, Inc Real-time Compounding 3D Printer
US20180011306A1 (en) 2016-07-05 2018-01-11 Alakai Defense Systems, Inc. Dual frequency autofocus system
US10377124B2 (en) * 2016-08-31 2019-08-13 Thermwood Corporation Methods and apparatus for processing and dispensing material during additive manufacturing
CN106623936A (zh) 2016-10-12 2017-05-10 机械科学研究总院先进制造技术研究中心 一种适用于多种金属材料的熔融挤出成形装置
CN206436522U (zh) 2016-11-11 2017-08-25 苏州市慧通塑胶有限公司 多喷嘴3d打印机
US10821676B2 (en) 2016-12-01 2020-11-03 Swapnil SANSARE Method for 3D printing using fusion deposition modeling with extrusion temperature control
CN106622413A (zh) 2016-12-28 2017-05-10 华东理工大学 基于3d打印的多喷嘴模块及其大批量生产颗粒的装置和技术
MY189026A (en) 2017-01-03 2022-01-20 Chee Boon Moh Three dimensional printing of biotic material originated from swiftlet edible bird nest
CN110290781A (zh) 2017-01-26 2019-09-27 南京三迭纪医药科技有限公司 胃肠特定部位控制释放的剂型
CN106926444A (zh) 2017-03-28 2017-07-07 西安科技大学 一种用于3d打印机供料量精确控制的装置及方法
US10661343B2 (en) 2017-05-02 2020-05-26 Additec Additive Technologies, LLC Smart additive manufacturing device
JP7174432B2 (ja) 2017-05-16 2022-11-17 南京三迭▲紀▼医▲藥▼科技有限公司 3d印刷デバイス及び方法
JP7365239B2 (ja) 2017-05-25 2023-10-19 ティーディービーティー アイピー インコーポレイティド デュアルアーム機構を備える無菌プリンタシステム
US11084222B2 (en) 2017-06-30 2021-08-10 Autodesk, Inc. Systems and methods for determining dynamic forces in a liquefier system in additive manufacturing
US20190047225A1 (en) 2017-08-09 2019-02-14 Tyco Connectivity Corporation Additive manufacturing apparatus and method for delivering material to a discharge pump
KR20190031959A (ko) 2017-09-19 2019-03-27 (주)케이랩스 3d 프린터의 익스트루더
CN107718560A (zh) 2017-11-24 2018-02-23 广州黑格智造信息科技有限公司 一种3d打印机侧面剥离机构
CN207874876U (zh) 2017-12-08 2018-09-18 成都乐也科技有限公司 一种多层3d打印机
CN207579101U (zh) 2017-12-13 2018-07-06 北京化工大学 一种多工位聚合物熔体微滴堆叠3d打印装置
CN108215154B (zh) 2017-12-29 2020-01-14 南京三迭纪医药科技有限公司 一种3d打印设备的平台装置
CN108215153B (zh) 2017-12-29 2019-08-23 南京三迭纪医药科技有限公司 一种测定3d打印设备多打印头间偏移值的系统
CN207669820U (zh) 2017-12-29 2018-07-31 南京三迭纪医药科技有限公司 一种测定3d打印设备多打印头间偏移值的系统
CN207901677U (zh) 2017-12-29 2018-09-25 南京三迭纪医药科技有限公司 一种3d打印设备的平台装置
EP3731972A4 (en) 2017-12-31 2021-08-25 PostProcess Technologies Inc. METHOD AND APPARATUS FOR ASSISTING THE REMOVAL OF DIRECTIONAL ATOMIZED AND SEMI-ATOMIZED LIQUID
US10201503B1 (en) 2018-01-09 2019-02-12 Triastek, Inc. Precision pharmaceutical 3D printing device
US10350822B1 (en) 2018-01-09 2019-07-16 Triastek Inc. Dosage forms with desired release profiles and methods of designing and making thereof
US11571391B2 (en) 2018-01-09 2023-02-07 Triastek, Inc. Oral drug dosage forms compromising a fixed-dose of an ADHD non-stimulant and an ADHD stimulant
CN208768826U (zh) 2018-05-10 2019-04-23 吉安市创享三维科技有限公司 一种挤料装置
DE102019000712A1 (de) 2018-05-23 2019-11-28 Entex Rust & Mitschke Gmbh 3D-Drucken zur Herstellung von räumlichen Kunststoff-Formteilen
CN208812559U (zh) 2018-07-18 2019-05-03 麦递途医疗科技(上海)有限公司 多喷嘴3d打印装置以及包括其的设备和系统
CN109228325A (zh) 2018-08-31 2019-01-18 上海大学 通过添加标志位信息制备三维多材料多尺度生物支架的系统和方法
CN109719944A (zh) 2019-02-28 2019-05-07 上海应用技术大学 一种香皂3d打印机喷头以及香皂3d打印机
CN109895390A (zh) 2019-03-25 2019-06-18 北京矩阵空间科技有限公司 协同并行多喷头的3d打印装置
WO2021031824A1 (en) 2019-08-20 2021-02-25 Triastek, Inc. High-throughput and high-preciscion pharmaceutical additive manufacturing system
EP4025195A4 (en) 2019-09-06 2023-10-04 Triastek, Inc. ORAL DOSAGE FORMS OF DRUG HAVING A DESIRED PK PROFILE AND METHODS OF DESIGN AND PRODUCTION THEREOF
CN110507637B (zh) 2019-09-18 2021-12-21 吉林大学 一种逐级控释的智能胶囊、制备方法及3d打印系统
US20230070928A1 (en) 2020-02-17 2023-03-09 Triastek Inc. Continuous unloading and packaging system of pharmaceutical additive manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936861A (en) * 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
CN104260349A (zh) * 2014-09-15 2015-01-07 余金文 一种熔融堆积3d打印机及其打印方法
CN104742375A (zh) * 2015-04-02 2015-07-01 共享装备有限公司 基于fdm的3d打印设备
CN105365221A (zh) * 2015-11-27 2016-03-02 范春潮 高速往复式彩色3d打印机
CN105690762A (zh) * 2016-01-26 2016-06-22 南京三迭纪医药科技有限公司 3d打印粉末材料用打印头
CN105666640A (zh) * 2016-01-29 2016-06-15 深圳森工科技有限公司 打印机喷头、3d打印机及成型方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3626439A4 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10973767B2 (en) 2015-06-03 2021-04-13 Triastek, Inc. Oral drug dosage form comprising drug in the form of nanoparticles
US11278499B2 (en) 2015-06-03 2022-03-22 Triastek, Inc. Oral drug dosage form comprising various release profiles
US11364674B2 (en) 2017-05-16 2022-06-21 Triastek, Inc. 3D printing device and method
US11787111B2 (en) 2017-08-24 2023-10-17 Seiko Epson Corporation Shaping material supply device and three-dimensional shaping apparatus
WO2019137333A1 (en) * 2018-01-09 2019-07-18 Triastek, Inc. Precision pharmaceutical 3d printing device
US11571391B2 (en) 2018-01-09 2023-02-07 Triastek, Inc. Oral drug dosage forms compromising a fixed-dose of an ADHD non-stimulant and an ADHD stimulant
US10624857B2 (en) 2018-01-09 2020-04-21 Triastek, Inc. Precision pharmaceutical 3D printing device
US11612569B2 (en) 2018-01-09 2023-03-28 Triastek, Inc. Precision pharmaceutical 3D printing device
CN108312522A (zh) * 2018-03-29 2018-07-24 上海言诺建筑材料有限公司 3d打印装置及3d打印系统
CN108312522B (zh) * 2018-03-29 2024-03-19 上海言诺建筑材料有限公司 3d打印装置及3d打印系统
US11850801B2 (en) 2018-11-28 2023-12-26 Seiko Epson Corporation Three-dimensional shaping apparatus and method of manufacturing three-dimensional shaping object
JP2020100048A (ja) * 2018-12-21 2020-07-02 セイコーエプソン株式会社 三次元造形装置、三次元造形システムおよび三次元造形物の製造方法
JP7172564B2 (ja) 2018-12-21 2022-11-16 セイコーエプソン株式会社 三次元造形システムおよび三次元造形物の製造方法
WO2020145898A1 (en) * 2019-01-11 2020-07-16 National University Of Singapore Three-dimensional printing of personalized pills
EP3730277A1 (en) * 2019-04-23 2020-10-28 National Kaohsiung University of Science and Technology Plastic extruder with a needle valve nozzle
CN110193938A (zh) * 2019-04-30 2019-09-03 深圳市裕同包装科技股份有限公司 一种3d特种印刷装置及印刷方法
CN111907059A (zh) * 2019-05-08 2020-11-10 高雄科技大学 积层成形系统
CN111907059B (zh) * 2019-05-08 2022-05-31 高雄科技大学 积层成形系统
CN112140531A (zh) * 2019-06-28 2020-12-29 精工爱普生株式会社 三维造形装置及三维造形物的制造方法
JP7287150B2 (ja) 2019-06-28 2023-06-06 セイコーエプソン株式会社 三次元造形装置および三次元造形物の製造方法
JP2021006375A (ja) * 2019-06-28 2021-01-21 セイコーエプソン株式会社 三次元造形装置および三次元造形物の製造方法
US11413809B2 (en) 2019-06-28 2022-08-16 Seiko Epson Corporation Three-dimensional shaping device and method for manufacturing three-dimensional shaped object
CN112140531B (zh) * 2019-06-28 2022-09-20 精工爱普生株式会社 三维造形装置及三维造形物的制造方法
WO2021031824A1 (en) * 2019-08-20 2021-02-25 Triastek, Inc. High-throughput and high-preciscion pharmaceutical additive manufacturing system
AU2020334695A1 (en) * 2019-08-20 2022-03-17 Triastek, Inc. High-throughput and high-preciscion pharmaceutical additive manufacturing system
AU2020334695B2 (en) * 2019-08-20 2022-07-07 Triastek, Inc. High-throughput and high-preciscion pharmaceutical additive manufacturing system
US20220212404A1 (en) * 2019-08-20 2022-07-07 Triastek, Inc. High-throughput and high-precision pharmaceutical additive manufacturing system
EP4017702A4 (en) * 2019-08-20 2022-09-28 Triastek, Inc. HIGH-PRECISION HIGH-THROUGHPUT ADDITIONAL MANUFACTURING PROCESS FOR THE PRODUCTION OF PHARMACEUTICALS
EP4302998A2 (en) 2019-08-20 2024-01-10 Triastek, Inc. Method and system for creating pharamceutical products by additive manufacturing
US11292193B2 (en) 2019-08-20 2022-04-05 Triastek, Inc. High-throughput and high-precision pharmaceutical additive manufacturing system
KR20220033524A (ko) * 2019-08-20 2022-03-16 트리아스텍 인코포레이티드 고처리량 및 고정밀 제약 적층 제조 시스템
JP2022179537A (ja) * 2019-08-20 2022-12-02 トリアステック インコーポレイテッド 高スループットおよび高精度の医薬付加製造システム
KR102475309B1 (ko) 2019-08-20 2022-12-07 트리아스텍 인코포레이티드 고처리량 및 고정밀 제약 적층 제조 시스템
US11383439B1 (en) * 2019-08-20 2022-07-12 Triastek, Inc. High-throughput and high-precision pharmaceutical additive manufacturing system
JP7438498B2 (ja) 2019-08-20 2024-02-27 トリアステック インコーポレイテッド 高スループットおよび高精度の医薬付加製造システム
EP4302998A3 (en) * 2019-08-20 2024-03-13 Triastek, Inc. Method and system for creating pharamceutical products by additive manufacturing
JP2022552833A (ja) * 2019-10-07 2022-12-20 ボストン ポーラリメトリックス,インコーポレイティド 偏光による面法線計測のためのシステム及び方法
KR102120205B1 (ko) * 2019-11-19 2020-06-09 주식회사 컨셉션 방열부품 성형용 진공주입식 3d 프린터
US11534969B2 (en) 2020-03-19 2022-12-27 Shannxi University Of Technology Single screw extrusion sprayer of a 3D printer
CN113635547B (zh) * 2020-04-27 2023-10-03 精工爱普生株式会社 三维造型装置及三维造型物的制造方法
CN113635547A (zh) * 2020-04-27 2021-11-12 精工爱普生株式会社 三维造型装置及三维造型物的制造方法
US11833717B2 (en) 2020-06-26 2023-12-05 Seiko Epson Corporation Three-dimensional shaping device
CN113997562A (zh) * 2020-07-28 2022-02-01 精工爱普生株式会社 三维造型装置以及三维造型物的制造方法
US11458684B2 (en) 2020-07-30 2022-10-04 Triastek, Inc. High-throughput and high-precision pharmaceutical additive manufacturing system
CN111920687A (zh) * 2020-08-28 2020-11-13 东北大学 一种粉末式3d药物打印机
CN111920687B (zh) * 2020-08-28 2024-06-11 东北大学 一种粉末式3d药物打印机
US11890811B2 (en) 2020-12-24 2024-02-06 Seiko Epson Corporation Three-dimensional shaping apparatus and three-dimensional shaped article production method
CN115366418B (zh) * 2022-10-21 2023-01-24 成都大学 一种便于调节出料速度的3d打印机
CN115366418A (zh) * 2022-10-21 2022-11-22 成都大学 一种便于调节出料速度的3d打印机

Also Published As

Publication number Publication date
CN114290669A (zh) 2022-04-08
JP2020524092A (ja) 2020-08-13
US11364674B2 (en) 2022-06-21
CN109311232A (zh) 2019-02-05
CA3063797A1 (en) 2019-12-09
CN114311659A (zh) 2022-04-12
EP3626439A4 (en) 2021-09-22
JP2022177311A (ja) 2022-11-30
AU2018267821A1 (en) 2019-11-07
AU2018267821B2 (en) 2023-01-12
EP3626439A1 (en) 2020-03-25
US20220339857A1 (en) 2022-10-27
KR102455404B1 (ko) 2022-10-14
US20210154910A1 (en) 2021-05-27
KR20200007860A (ko) 2020-01-22
JP7174432B2 (ja) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2018210183A1 (zh) 3d打印设备和方法
JP7438498B2 (ja) 高スループットおよび高精度の医薬付加製造システム
JP7175032B2 (ja) 精密医薬品3d印刷デバイス
CN113840714B (zh) 高精度增材制造装置和高产量增材制造系统
US11458684B2 (en) High-throughput and high-precision pharmaceutical additive manufacturing system
US20230048362A1 (en) High-throughput and high-precision pharmaceutical additive manufacturing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018267821

Country of ref document: AU

Date of ref document: 20180511

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019564009

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3063797

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036147

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018802440

Country of ref document: EP

Effective date: 20191216