WO2018203519A1 - 蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイス - Google Patents

蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイス Download PDF

Info

Publication number
WO2018203519A1
WO2018203519A1 PCT/JP2018/017165 JP2018017165W WO2018203519A1 WO 2018203519 A1 WO2018203519 A1 WO 2018203519A1 JP 2018017165 W JP2018017165 W JP 2018017165W WO 2018203519 A1 WO2018203519 A1 WO 2018203519A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
electricity storage
gas generation
gas
power storage
Prior art date
Application number
PCT/JP2018/017165
Other languages
English (en)
French (fr)
Inventor
良介 杉原
桂一 渡邉
Original Assignee
テイカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイカ株式会社 filed Critical テイカ株式会社
Priority to JP2019515719A priority Critical patent/JP7187123B2/ja
Publication of WO2018203519A1 publication Critical patent/WO2018203519A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gas generation inhibitor used in power storage devices such as lithium ion batteries and electric double layer capacitors.
  • an electrolyte solution or an electrode is formed by mixing or using impurities existing in the electricity storage device (for example, unreacted lithium carbonate remaining in the active material) or moisture.
  • impurities existing in the electricity storage device for example, unreacted lithium carbonate remaining in the active material
  • moisture for example, unreacted lithium carbonate remaining in the active material
  • gas such as carbon dioxide gas, hydrogen gas, and fluorine gas is generated in the electricity storage device due to oxidative decomposition of the material.
  • gas causes deterioration of the performance of the electricity storage device, and if the generation of such gas continues, liquid leakage from the electricity storage device and shape change (expansion) will be caused, and eventually the flame will rise. This will cause a serious event of explosion.
  • (HF) is further dissociated Protons (H + ) generated by And when such protons couple
  • BF 4 decomposed from the electrolyte - is carbon dioxide and the anions and the unreacted lithium carbonate, such as produced by reactions - or PF 6.
  • Patent Documents 1 to 4 describe the use of a lithium composite oxide or zeolite as a carbon dioxide gas absorber (claims 2, 3 and [0012] to [0014] of Patent Document 1). reference).
  • Patent Document 2 describes that lithium hydroxide is used as an absorbent for carbon dioxide gas (see Claim 3 and [0009] and [0010] of Patent Document 2).
  • Patent Document 3 describes that an alkali metal carbonate is used as a fluorine gas absorber (see claims 1, 3, 4 and [0014] of Patent Document 3).
  • Patent Document 4 describes that ZnO, NaAlO 2 , and silicon are used as a fluorine gas absorber (see claims 15, 16 and [0063] of Patent Document 4).
  • Patent Document 5 describes a carbon dioxide gas absorbent obtained by mixing lithium carbonate powder, lithium oxide powder, and titanium dioxide powder in a specific ratio (see claim 1 and [0028] of Patent Document 5),
  • Non-Patent Document 1 discloses that lithium composite oxide can be a carbon dioxide absorbing material (see “Features of New CO 2 Absorbing Material” on page 12 of Non-Patent Document 1).
  • the inventors of the present application have contained an alkali metal titanate and / or an alkaline earth metal titanate and a carbonaceous material (specifically, an alkali metal titanate).
  • a salt or / and alkaline earth metal titanate By coating a salt or / and alkaline earth metal titanate with a carbonaceous material), the deterioration (structural change) of the titanate can be prevented.
  • the electricity storage device It has come to the knowledge that the generation of gas itself can be suppressed, specifically, the proton (H + ) itself that is the source of gas generation can be captured.
  • lithium titanate that is generally used in power storage devices
  • deterioration (structural change) of lithium titanate can be prevented by containing (coating) a carbonaceous material.
  • the inventors have found that the gas generation itself can be suppressed even when the electricity storage device is continuously used.
  • the present invention has been made in view of the above-mentioned conventional problems, and aims to provide a gas generation inhibitor for an electricity storage device.
  • Another object of the present invention is to provide a positive electrode for an electricity storage device and an electricity storage device using the gas generation inhibitor for the electricity storage device.
  • the gas generation inhibitor for an electricity storage device comprises an alkali metal titanate and / or an alkaline earth metal titanate and a carbonaceous material. To do.
  • the gas generation inhibitor for an electricity storage device is characterized in that the alkali metal is one or more selected from Li, Na, and K.
  • the gas generation inhibitor for an electricity storage device is characterized in that the alkaline earth metal is one or more selected from Mg, Ca, Sr, and Ba.
  • the gas generation inhibitor for an electricity storage device is a coating layer in which the carbonaceous material covers part or all of the surface of an alkali metal titanate or / and an alkaline earth metal titanate. It is characterized by being.
  • the content of the carbonaceous material is 0.5 to 10 wt% with respect to an alkali metal titanate and / or an alkaline earth metal titanate. It is characterized by.
  • the positive electrode for an electricity storage device according to the present invention contains the gas generation inhibitor for an electricity storage device of the present invention.
  • the electricity storage device according to the present invention is characterized by containing the gas generation inhibitor for an electricity storage device of the present invention.
  • the gas generation inhibitor for an electricity storage device of the present invention has a basic structure containing an alkali metal titanate or / and an alkaline earth metal titanate and a carbonaceous material.
  • the gas generation inhibitor for an electricity storage device of the present invention imparts moisture absorption resistance to an alkali metal titanate and / or an alkaline earth metal titanate by containing a carbonaceous material. It can be done.
  • the structure of the alkali metal titanate or the alkaline earth metal titanate is prevented from changing, that is, various kinds of carbon dioxide gas, hydrogen gas, fluorine gas, etc. during use and change with time. The generation of gas can be suppressed.
  • the carbonaceous material content is not particularly limited, and a form in which the carbonaceous material is mixed with an alkali metal titanate or / and an alkaline earth metal titanate can also be employed. However, it is possible to more effectively prevent the structure of alkali metal titanate and alkaline earth metal titanate from changing, so that alkali metal titanate and / or alkaline earth as described later can be obtained. It is preferable to employ a form in which the surface of the metal titanate is coated with a carbonaceous material.
  • lithium titanate, sodium titanate, and potassium titanate are preferably used.
  • the alkali metal titanate may be used alone or in combination.
  • alkaline earth metal titanates Specific examples of the alkaline earth metal titanates used in the gas generation inhibitor for power storage devices of the present invention include magnesium titanate, calcium titanate, strontium titanate, barium titanate, and radium titanate. Of these, magnesium titanate, calcium titanate, strontium titanate, and barium titanate are preferably used. Also, alkaline earth metal titanates may be used alone or in combination, as are alkali metal titanates.
  • the carbonaceous material used for the gas generation inhibitor for an electricity storage device of the present invention is for imparting moisture absorption resistance to an alkali metal titanate or / and an alkaline earth metal titanate, and an alkali This is to prevent the structure of the metal titanate or alkaline earth metal titanate from changing.
  • activated carbon As such a carbonaceous material, activated carbon, acetylene black, ketjen black, carbon nanotube, graphene can be used if a form mixed with alkali metal titanate and / or alkaline earth metal titanate is adopted. And so on.
  • the alkali metal titanate and / or alkaline earth metal titanate is coated with a carbonaceous material
  • the alkali metal titanate and / or alkaline earth metal After mixing the titanate with a hydrocarbon compound such as polyvinyl alcohol, the surface of the alkali metal titanate and / or alkaline earth metal titanate is baked in an inert gas such as nitrogen. And the like, in which a coating layer of a carbonaceous material is formed.
  • a coating layer is preferably one that covers the entire surface of an alkali metal titanate or / and an alkaline earth metal titanate, but is formed on a part of the surface. Even a thing can express a certain effect.
  • the content (coating amount) of the carbonaceous material is not particularly limited, but is 0.5 to 10 wt% with respect to the alkali metal titanate and / or the alkaline earth metal titanate. It is preferable that it is 1 to 4 wt%.
  • the gas generation inhibitor for an electricity storage device of the present invention can be contained in components constituting the electricity storage device, for example, an electrode, a separator, and an electrolytic solution.
  • the structure of the titanate or / and alkaline earth metal titanate can be directly prevented, and as a result, carbon dioxide, hydrogen gas, fluorine gas, etc. during use and over time This is preferable because the generation of this gas can be suppressed.
  • the gas generation inhibitor for an electricity storage device by containing an alkali metal titanate or / and an alkaline earth metal titanate and a carbonaceous material, moisture absorption resistance is imparted. Can do. As a result, the structure of the alkali metal titanate or alkaline earth metal titanate can be prevented from changing even under high humidity conditions, which has been a problem in conventional power storage devices. Generation of various gases such as carbon dioxide gas, hydrogen gas, and fluorine gas over time and changes with time can be suppressed. In addition, by containing a carbonaceous material, conductivity can be imparted, and as a result, when used in an electricity storage device (especially a positive electrode), an increase in electrical resistance is suppressed while suppressing gas generation. It is possible to obtain an electricity storage device capable of
  • the above effect can be further improved by using a specific alkali metal or alkaline earth metal.
  • the above effect can be further improved by forming the carbonaceous material so as to cover the surface of the titanate.
  • the above effect can be further improved by setting the content of the carbonaceous material to 0.5 to 10 wt% with respect to the titanate.
  • FIG. 2 is an X-ray diffraction chart before and after a moisture resistance test of the gas generation inhibitor for an electricity storage device according to Example 1.
  • FIG. It is an X-ray diffraction chart before and after the moisture resistance test of the gas generation inhibitor for an electricity storage device according to Example 2. It is an X-ray diffraction chart before and after the moisture resistance test of the gas generation inhibitor for an electricity storage device according to Example 3. It is an X-ray diffraction chart before and after the moisture resistance test of the gas generation inhibitor for an electricity storage device according to Example 4.
  • 6 is an X-ray diffraction chart before and after a moisture resistance test of a gas generation inhibitor for an electricity storage device according to Example 5.
  • FIG. 5 is an X-ray diffraction chart before and after a moisture resistance test of a gas generation inhibitor for an electricity storage device according to Example 5.
  • FIG. 5 is an X-ray diffraction chart before and after a moisture resistance test of a gas generation inhibitor for an electricity storage device according to Comparative Example 2.
  • FIG. 6 is an X-ray diffraction chart before and after a moisture resistance test of a gas generation inhibitor for an electricity storage device according to Comparative Example 3.
  • FIG. It is an X-ray diffraction chart before and after the moisture resistance test of the gas generation inhibitor for an electricity storage device according to Comparative Example 7.
  • It is a schematic diagram which shows the structure of the produced electrical storage device.
  • Example 1 First, after wet-mixing 300 g of anatase-type titanium oxide (AMT-100 manufactured by Teika Co., Ltd.) and 266 g of lithium hydroxide (manufactured by FMC Co., Ltd.) at 750 ° C. for 2 hours in the atmosphere, 213 type lithium titanate ( Li 2 TiO 3 ) was obtained. Next, after dry-mixing 100 g of the obtained Li 2 TiO 3 and polyvinyl alcohol (manufactured by Nippon Vinegar Poval), the surface of the lithium titanate is carbonaceous material by firing at 750 ° C. for 2 hours in nitrogen. A gas generation inhibitor for an electricity storage device of Example 1 coated with 1 was prepared.
  • AMT-100 anatase-type titanium oxide
  • Li hydroxide manufactured by FMC Co., Ltd.
  • Example 2 A gas generation inhibitor for an electricity storage device of Example 2 was produced in the same manner as in Example 1 except that 399 g of lithium hydroxide was used as sodium hydroxide (manufactured by Sigma-Aldrich) and sodium titanate (Na 2 TiO 3 ) was produced. .
  • Example 3 A gas generation inhibitor for an electricity storage device of Example 3 was produced in the same manner as in Example 2 except that sodium titanate (Na 4 Ti 5 O 12 ) was produced with 133 g of sodium hydroxide.
  • Example 4 The gas generation inhibitor for an electricity storage device of Example 4 was prepared in the same manner as in Example 1 except that potassium titanate (K 2 Ti 2 O 5 ) was prepared by using 249 g of lithium hydroxide as potassium hydroxide (manufactured by Sigma-Aldrich). Produced.
  • potassium titanate K 2 Ti 2 O 5
  • Example 5 A gas generation inhibitor for an electricity storage device of Example 5 was produced in the same manner as in Example 4 except that potassium titanate (K 2 Ti 6 O 13 ) was produced with an amount of potassium hydroxide of 108 g.
  • Example 6 A gas generation inhibitor for an electricity storage device of Example 6 was produced in the same manner as in Example 4 except that potassium titanate (K 2 Ti 4 O 9 ) was produced with 144 g of potassium hydroxide.
  • Example 7 A gas generation inhibitor for an electricity storage device of Example 7 was produced in the same manner as in Example 1 except that magnesium titanate (MgTiO 3 ) was produced by using 438 g of lithium hydroxide as magnesium hydroxide (manufactured by Sigma-Aldrich).
  • Example 8 The gas generation inhibitor for an electricity storage device of Example 8 in the same manner as in Example 1 except that barium titanate (BaTiO 3 ) was prepared using 1194 g of barium hydroxide octahydrate (manufactured by Sigma-Aldrich) as lithium hydroxide. Was made.
  • Example 9 Inhibition of gas generation for an electricity storage device of Example 9 in the same manner as in Example 1 except that the amount of polyvinyl alcohol was 20 g in order to make the content (coating amount) of the carbonaceous material 1 wt% with respect to the titanate. An agent was prepared.
  • Example 10 Inhibition of gas generation for an electricity storage device of Example 10 in the same manner as in Example 1 except that the amount of polyvinyl alcohol was changed to 300 g in order to make the content (coating amount) of the carbonaceous material 10 wt% with respect to the titanate. An agent was prepared.
  • Example 11 Inhibition of gas generation for an electricity storage device of Example 11 in the same manner as in Example 4 except that the amount of polyvinyl alcohol was 20 g in order to make the content (coating amount) of the carbonaceous material 1 wt% with respect to the titanate. An agent was prepared.
  • Example 12 Inhibition of gas generation for an electricity storage device of Example 12 in the same manner as in Example 4 except that the amount of polyvinyl alcohol was changed to 300 g in order to make the content (coating amount) of the carbonaceous material 10 wt% with respect to the titanate. An agent was prepared.
  • Comparative Example 1 Gas generation for electricity storage device of Comparative Example 1 in the same manner as in Example 1 except that coating with a carbonaceous material is not performed (polyvinyl alcohol is dry-mixed, and then a step of baking at 750 ° C. for 2 hours in nitrogen is not performed). An inhibitor was made.
  • Comparative Example 2 Gas generation for power storage device of Comparative Example 2 as in Example 2 except that no coating with carbonaceous material is performed (polyvinyl alcohol is dry-mixed and then the process of baking at 750 ° C. for 2 hr in nitrogen is not performed) An inhibitor was made.
  • Comparative Example 3 Gas generation for electricity storage device of Comparative Example 3 in the same manner as in Example 3 except that coating with a carbonaceous material is not performed (polyvinyl alcohol is dry-mixed, and then a step of baking at 750 ° C. for 2 hours in nitrogen is not performed). An inhibitor was made.
  • Comparative Example 4 Gas generation for electricity storage device of Comparative Example 4 in the same manner as in Example 4 except that the coating with carbonaceous material is not performed (polyvinyl alcohol is dry-mixed and then the step of baking at 750 ° C. for 2 hours in nitrogen is not performed). An inhibitor was made.
  • Comparative Example 5 The gas generation for the electricity storage device of Comparative Example 5 was performed in the same manner as in Example 5 except that the coating with the carbonaceous material was not performed (the step of baking for 2 hours at 750 ° C. in nitrogen after the dry mixing of polyvinyl alcohol was not performed). An inhibitor was made.
  • Comparative Example 6 Gas generation for an electricity storage device of Comparative Example 6 was performed in the same manner as in Example 6 except that coating with a carbonaceous material was not performed (the step of baking at 750 ° C. for 2 hours in nitrogen after the dry mixing of polyvinyl alcohol was not performed). An inhibitor was made.
  • Comparative Example 7 Gas generation for power storage device of Comparative Example 7 as in Example 7 except that coating with carbonaceous material is not performed (the step of baking for 2 hours at 750 ° C. in nitrogen after the dry mixing of polyvinyl alcohol is not performed) An inhibitor was made.
  • Comparative Example 8 Gas generation for power storage device of Comparative Example 8 as in Example 8 except that no coating with carbonaceous material is performed (polyvinyl alcohol is dry-mixed and then the step of baking at 750 ° C. for 2 hr in nitrogen is not performed) An inhibitor was made.
  • Comparative Example 9 Commercially available lithium hydroxide (manufactured by FMC) was used as the gas generation inhibitor for power storage devices of Comparative Example 9.
  • Comparative Example 10 Commercially available lithium carbonate (manufactured by FMC) was used as the gas generation inhibitor for an electricity storage device of Comparative Example 10.
  • the coating amount (carbon amount) and the powder resistivity were measured, and the moisture resistance was evaluated.
  • the coating amount (carbon amount) of the produced gas generation inhibitor for each electricity storage device was measured using Macrocoder JM1000CN (manufactured by J Science Laboratories).
  • the gas generation inhibitor for the electricity storage device of the example was measured with a carbon content of 1 to 10 wt%, and it was confirmed that the surface of the titanate was coated with the carbonaceous material. In addition, it was confirmed that the surface of the titanate was coated with a carbonaceous material having a target coating amount (carbon amount) for the gas generation inhibitors for electricity storage devices of Examples 9 to 12. In addition, regarding the powder resistivity, the gas generation inhibitor for the electricity storage device of the example is markedly lower than the gas generation inhibitor for the electricity storage device of the comparative example, and coats the carbonaceous material. It was confirmed that the increase in electrical resistance can be suppressed.
  • the gas generation inhibitors for power storage devices of Comparative Examples 1 to 3 have greatly changed the shape of the chart after the moisture resistance test as shown in FIGS. 9 to 11, and the alkali metal titanium under high humidity conditions. It was confirmed that the structure change of the titanate of the acid salt or alkaline earth metal could not be prevented.
  • gas generation inhibitors for power storage devices of Comparative Examples 7 and 8 as shown in FIGS. 12 and 13, almost no change was found in the shape of the chart in the moisture resistance test. As a result, the capacity retention rate (rate characteristics, cycle characteristics) decreased when used.
  • an electricity storage device (lithium ion capacitor) using the positive electrode is produced to suppress gas generation.
  • the effect, moisture resistance, and battery characteristics (rate characteristics, cycle characteristics) were evaluated.
  • the positive electrode for each electric storage device (lithium ion capacitor) was prepared by applying the positive electrode paint prepared above to an aluminum foil and drying it.
  • the weight of the gas generation inhibitor for each power storage device of Examples and Comparative Examples present in the power storage device (lithium ion capacitor) at this time is 16.5 mg
  • the gas for each power storage device of Examples and Comparative Examples The weight ratio of generation inhibitor to activated carbon was 32:68.
  • the amounts of the gas generation inhibitor for activated electricity storage device and the activated carbon of Example 1 were changed to 1.4 g and 5.8 g, 3.5 g and 3.7 g, 5.0 g and 2.2 g, respectively (that is, the following description) In which the weight of the gas generation inhibitor for the electricity storage device present in the electricity storage device (lithium ion capacitor) is 3.9 mg3, 33.6 mg, and 77.9 mg) was also produced. At this time, the weight ratios of the gas generation inhibitor for an electricity storage device and activated carbon of Example 1 were 19:81, 49:51, and 69:31, respectively.
  • a negative electrode for an electricity storage device (lithium ion capacitor) was prepared by applying the negative electrode paint prepared above to an aluminum foil and drying it.
  • fine-particle spinel type lithium manganate (composition formula; LiMn 2 O 4 ) having a specific surface area of 7 m 2 / g was obtained.
  • 2.3 g of the gas generation inhibitor for each electricity storage device of Example 1 and Comparative Example 1 were mixed with 4.9 g of the above-described fine particle spinel type lithium manganate and 0.9 g of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) Dry mixed.
  • 0.9 g of polyvinylidene fluoride (Kureha KF polymer) was added and kneaded using a planetary mixer.
  • 13.5 g of N-methyl-2-pyrrolidone (Kishida Chemical Co., Ltd.) was added to adjust the viscosity, thereby preparing each positive electrode paint.
  • the positive electrode for each electricity storage device (lithium ion secondary battery) was prepared by applying each of the positive electrode paints prepared above to an aluminum foil and drying.
  • the weight of the gas generation inhibitor for each power storage device in Examples and Comparative Examples present in the power storage device (lithium ion secondary battery) at this time is 16.5 mg, and each power storage device in Examples and Comparative Examples
  • the weight ratio of the industrial gas generation inhibitor to the spinel type lithium manganate was 32:68.
  • a negative electrode for an electricity storage device (lithium ion secondary battery) was produced in the same manner as the negative electrode for an electricity storage device (lithium ion capacitor).
  • each power storage device was submerged in a water tank filled with water at 25 ° C., and the initial volume of each power storage device was calculated from the change in weight at that time.
  • each power storage device was charged and discharged for 3 cycles under the condition of a voltage range of 1.5 to 2.9 V and a charge / discharge rate of 0.5 C under the condition of 60 ° C.
  • the volume of each power storage device after charge / discharge is calculated, and the volume change of each power storage device before and after charge / discharge is obtained from the difference from the initial volume, thereby obtaining the gas from each power storage device.
  • the generation amount gas generation amount in the gas generation inhibitor for an electricity storage device before the moisture resistance test (before storage): ⁇ V 1 ) was measured.
  • the power storage devices of Examples 13 to 28 were compared with the power storage devices of all the comparative examples (specifically, the power storage devices of the comparative examples corresponding to the respective examples). As a result, a high capacity retention rate (rate characteristic) was exhibited.
  • the power storage devices of Examples 13 to 28 were compared with the power storage devices of all the comparative examples (specifically, the power storage devices of the comparative examples corresponding to the respective examples). As a result, a high capacity retention rate (cycle characteristics) was developed.
  • the gas generation inhibitor for an electricity storage device it is possible to impart moisture absorption resistance to an alkali metal titanate or / and an alkaline earth metal titanate, and as a result. It was found that the structure of alkali metal titanate or alkaline earth metal titanate can be prevented from changing even under high humidity conditions.
  • the gas storage inhibitor for an electricity storage device according to the present invention is used for an electricity storage device (particularly, a positive electrode), carbon dioxide gas, hydrogen gas at the time of use or change over time, which has been a problem in conventional electricity storage devices, It was found that generation of various gases such as fluorine gas can be suppressed. Furthermore, it has been found that an electricity storage device can be obtained that can impart conductivity, suppress an increase in electrical resistance, and exhibit a high capacity retention rate (rate characteristics, cycle characteristics).
  • the gas generation inhibitor for an electricity storage device of the present invention can be used for an electricity storage device such as a lithium ion battery, a lithium ion capacitor, or an electric double layer capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】従前の蓄電デバイスにおいて問題となっていた使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができる蓄電デバイス用ガス発生抑制剤が望まれていた。 【解決手段】本発明の蓄電デバイス用ガス発生抑制剤は、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩と、炭素質材料を含有することを特徴とする。

Description

蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイス
 本発明はリチウムイオン電池や電気二重層キャパシタなどの蓄電デバイスに用いられるガス発生抑制剤に関するものである。
 リチウムイオン電池や電気二重層キャパシタなどの蓄電デバイスは、それぞれが持つ高エネルギー密度、高出力密度という特徴を活用し、近年急速に実用化が行われている。
 しかしながら、このような蓄電デバイスにおいては、蓄電デバイスの内に存在する不純物(例えば活物質内に残存している未反応の炭酸リチウムなど)や水分の混入、あるいは使用によって電解液や電極を構成する材料が酸化分解することなどが原因となって、蓄電デバイス内に炭酸ガス、水素ガス、フッ素ガスなどのガスが発生してしまうという課題がある。係るガスは蓄電デバイスの性能を低下させる原因となるものであり、またこのようなガスの発生が継続することになると蓄電デバイスからの液漏れや形状変化(膨張)を招き、最終的には炎上、爆発という重大事象を引き起こすことになるものとなる。
 ここで、このようなガスの中には、未反応の炭酸リチウムが経時劣化(分解)したり、充放電を繰り返すことによって電解液が酸化分解したりすることによって発生するガス(炭酸ガス)といったものもあるが、このようなガスとは別に、水素ガス、フッ素ガスの原因となるプロトン(H)も発生する。具体的には、蓄電デバイス内に浸入した水分自体が電気分解することによって発生するプロトン(H)や、電解液に電解質としてヘキサフルオロリン酸リチウム(LiPF)やホウフッ化リチウム(LiBF)などを用いている場合に、係る電解質から分解したBF やPF などの陰イオンと蓄電デバイス内に浸入した水分とが反応して形成されたフッ化水素(HF)がさらに解離することによって発生するプロトン(H)などがある。そして、係るプロトン同士が結合することで水素ガスが発生したり、フッ化水素(HF)から解離したフッ素イオン同士が結合することでフッ素ガスが発生したりするのである。
 また、電解質から分解したBF やPF などの陰イオンと未反応の炭酸リチウムとが反応することによって発生する炭酸ガスもある。
 そこで、従前から発生したガスを吸収するための様々なガス吸収材が開発されている(特許文献1~4)。具体的には、特許文献1には、炭酸ガスの吸収材として、リチウム複合酸化物やゼオライトを用いることが記載されている(特許文献1の請求項2、3および[0012]~[0014]参照)。特許文献2には、水酸化リチウムを炭酸ガスの吸収材として用いることが記載されている(特許文献2の請求項3および[0009]、[0010]参照)。特許文献3には、アルカリ金属の炭酸塩をフッ素ガスの吸収材として用いることが記載されている(特許文献3の請求項1、3、4および[0014]参照)。特許文献4には、ZnO、NaAlO、ケイ素をフッ素ガスの吸収材として用いることが記載されている(特許文献4の請求項15、16および[0063]参照)。
 さらに、特許文献5には、炭酸リチウム粉末と酸化リチウム粉末と二酸化チタン粉末を特定の比率で混合した炭酸ガス吸収材が記載されており(特許文献5の請求項1および[0028]参照)、非特許文献1には、リチウム複合酸化物が炭酸ガスの吸収材料となり得ることが開示されている(非特許文献1の12頁の「新しいCO吸収材料の特長」を参照)。
特開2003-297699号公報 特開2003-197487号公報 特許第5485741号公報 特表2013-541161号公報 特許第5231016号公報
中川和明、加藤雅礼,「二酸化炭素を吸収する新セラミックス材料」,東芝レビュー、vol.56,No.8(2001)
 しかしながら、これらの文献はいずれも発生したガスを吸収することを目的とするものであり、ガスの発生自体を抑制すること、すなわちガス発生の源となるプロトン(H)自体を捕捉することを目的(技術的思想)とするものではない。
 従って、これらの文献に記載されている各種の吸収材は、液漏れ、形状変化(膨張)、炎上、爆発という事象については防止することができるかもしれないが、ガスが発生している(電解液や電極を構成する材料の酸化分解などが発生している)ことには変わりがないことから、蓄電デバイス性能の低下を防止することはできないものとなっている。
 また、従前のガス吸収材としては、蓄電デバイスにおいて使用実績の多い元素であることから、特許文献1、2に記載されているようなリチウム化合物を用いることが一般的となっている。
 今般、本願発明者らは鋭意検討を行った結果、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩と炭素質材料を含有すること(具体的には、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩を炭素質材料で被覆すること)によって、チタン酸塩の劣化(構造変化)を防止することができ、その結果蓄電デバイスを継続使用した場合においてもガスの発生自体を抑制すること、具体的にはガス発生の源となるプロトン(H)自体を捕捉することができるという知見を得るに至った。
 また、蓄電デバイスに一般的に用いられているチタン酸リチウムについても、炭素質材料を含有すること(被覆すること)によって、チタン酸リチウムの劣化(構造変化)を防止することができ、その結果蓄電デバイスを継続使用した場合においてもガスの発生自体を抑制することができるという知見を得るに至った。
 本発明は、上記した従来の問題点に鑑みてなされたものであって、蓄電デバイス用ガス発生抑制剤の提供を目的とするものである。また、この蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイスの提供を目的とするものである。
 上記目的を達成するために、本発明に係る蓄電デバイス用ガス発生抑制剤は、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩と、炭素質材料を含有することを特徴とする。
 本発明に係る蓄電デバイス用ガス発生抑制剤は、アルカリ金属が、Li、Na、Kから選ばれる1種以上のものであることを特徴とする。
 本発明に係る蓄電デバイス用ガス発生抑制剤は、アルカリ土類金属が、Mg、Ca、Sr、Baから選ばれる1種以上のものであることを特徴とする。
 本発明に係る蓄電デバイス用ガス発生抑制剤は、炭素質材料が、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩の表面の一部または全部を被覆する被覆層となっているものであることを特徴とする。
 本発明に係る蓄電デバイス用ガス発生抑制剤は、炭素質材料の含有量が、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩に対して0.5~10wt%であることを特徴とする。
 本発明に係る蓄電デバイス用正極は、本発明の蓄電デバイス用ガス発生抑制剤を含有することを特徴とする。
 本発明に係る蓄電デバイスは、本発明の蓄電デバイス用ガス発生抑制剤を含有することを特徴とする。
(基本構造)
 本発明の蓄電デバイス用ガス発生抑制剤は、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩と、炭素質材料を含有することを基本構造とする。このように、本発明の蓄電デバイス用ガス発生抑制剤は、炭素質材料を含有していることによって、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩に耐吸湿性を付与することができるのである。そして、その結果、アルカリ金属のチタン酸塩やアルカリ土類金属のチタン酸塩の構造が変化することを防止すること、すなわち使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができることになるのである。
 具体的には、以下に例示(チタン酸リチウムを使用)する反応式に示すように、本発明の蓄電デバイス用ガス発生抑制剤のアルカリ金属イオンまたはアルカリ土類金属イオンと、蓄電デバイス内において発生するプロトンとがイオン交換反応をすることによって、ガス発生の源となるプロトン(H)自体を捕捉することができるのである。
 また、本発明の蓄電デバイス用ガス発生抑制剤のチタン酸イオンと炭酸イオンとがイオン交換反応をすることによって、炭酸ガスも捕捉することができるのである。
 LiTiO + 2H → HTiO + 2Li(プロトン捕捉=イオン交換反応)
 LiTiO + CO → LiCO + TiO(CO吸収)
 なお、炭素質材料の含有形態については特に限定されるものではなく、炭素質材料をアルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩に混合する形態などを採用することもできるが、アルカリ金属のチタン酸塩やアルカリ土類金属のチタン酸塩の構造が変化することをより有効に防止することができることから、後記するようにアルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩の表面を炭素質材料で被覆する形態を採用することが好ましい。
(アルカリ金属のチタン酸塩)
 本発明の蓄電デバイス用ガス発生抑制剤に用いられるアルカリ金属のチタン酸塩は、具体的にはチタン酸リチウム、チタン酸ナトリウム、チタン酸カリウム、チタン酸ルビニウム、チタン酸セシウム、チタン酸フランシウムが挙げられるが、その中でもチタン酸リチウム、チタン酸ナトリウム、チタン酸カリウムを用いることが好ましい。また、アルカリ金属のチタン酸塩については、単独でも良いし、併用することもできる。
(アルカリ土類金属のチタン酸塩)
 本発明の蓄電デバイス用ガス発生抑制剤に用いられるアルカリ土類金属のチタン酸塩は、具体的にはチタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ラジウムが挙げられるが、その中でもチタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムを用いることが好ましい。また、アルカリ土類金属のチタン酸塩についても、アルカリ金属のチタン酸塩と同様に単独でも良いし、併用することもできる。
(炭素質材料)
 本発明の蓄電デバイス用ガス発生抑制剤に用いられる炭素質材料は、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩に耐吸湿性を付与するためのものであり、またアルカリ金属のチタン酸塩やアルカリ土類金属のチタン酸塩の構造が変化することを防止するためのものである。
 そのような炭素質材料としては、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩に混合する形態を採用するのであれば、活性炭やアセチレンブラック、ケッチェンブラック、カーボンナノチューブ、グラフェンなどを挙げることができる。
 また、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩の表面を炭素質材料で被覆する形態を採用する場合には、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩と、ポリビニルアルコールなどの炭化水素化合物とを混合した後、窒素などの不活性ガス中で焼成することによって、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩の表面に炭素質材料の被覆層を形成したものなどを挙げることができる。また、このような被覆層については、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩の表面全部を被覆したものであることが好ましいが、表面の一部に形成されているものでも一定の効果を発現させることができる。
 なお、炭素質材料の含有量(被覆量)については特に限定されるものではないが、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩に対して0.5~10wt%であることが好ましく、その中でも1~4wt%であることが好ましい。
(蓄電デバイス用正極)
 本発明の蓄電デバイス用ガス発生抑制剤は、蓄電デバイスを構成する部品、例えば電極、セパレータ、電解液に含有することができるが、その中でも正極に含有すれば、正極の材料でもあるアルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩の構造が変化することを直接的に防止することができ、その結果、使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができることになるので好適である。
 本発明に係る蓄電デバイス用ガス発生抑制剤によれば、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩と、炭素質材料を含有することによって、耐吸湿性を付与することができる。そして、その結果、高湿条件の下でもアルカリ金属のチタン酸塩やアルカリ土類金属のチタン酸塩の構造が変化することを防止することができ、従前の蓄電デバイスにおいて問題となっていた使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができる。
 また、炭素質材料を含有することによって導電性を付与することができ、その結果、蓄電デバイス(特に正極電極)に使用した場合に、ガスの発生を抑制しつつ、電気抵抗の上昇を抑えることができる蓄電デバイスを得ることができる。
 本発明に係る蓄電デバイス用ガス発生抑制剤によれば、特定のアルカリ金属やアルカリ土類金属を用いることによって、上記の効果をより向上させることができる。
 本発明に係る蓄電デバイス用ガス発生抑制剤によれば、炭素質材料をチタン酸塩の表面を覆う形態とすることによって、上記の効果をさらに向上させることができる。
 本発明に係る蓄電デバイス用ガス発生抑制剤によれば、炭素質材料の含有量をチタン酸塩に対して0.5~10wt%とすることによって、上記の効果をさらに向上させることができる。
実施例1に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 実施例2に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 実施例3に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 実施例4に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 実施例5に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 実施例6に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 実施例7に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 実施例8に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 比較例1に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 比較例2に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 比較例3に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 比較例7に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 比較例8に係る蓄電デバイス用ガス発生抑制剤の耐湿試験前後におけるX線回折チャートである。 作製した蓄電デバイスの構造を示す模式図である。
 次に、本発明に係る蓄電デバイス用ガス発生抑制剤を実施例および比較例に基づいて詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
 まず、アナタース型酸化チタン(テイカ社製AMT-100)300gと水酸化リチウム(FMC社製)266gを湿式混合したのち、大気中において750℃で2hr焼成することによって、213型のチタン酸リチウム(LiTiO)を得た。
 次に、得られたLiTiOとポリビニルアルコール(日本酢ビ・ポバール社製)100gを乾式混合した後、窒素中において750℃で2hr焼成することによって、チタン酸リチウムの表面を炭素質材料で被覆した実施例1の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例2)
 水酸化リチウムを水酸化ナトリウム(シグマアルドリッチ社製)399gとしてチタン酸ナトリウム(NaTiO)を作製した以外は実施例1と同様にして実施例2の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例3)
 水酸化ナトリウムの量を133gとしてチタン酸ナトリウム(NaTi12)を作製した以外は実施例2と同様にして実施例3の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例4)
 水酸化リチウムを水酸化カリウム(シグマアルドリッチ社製)249gとしてチタン酸カリウム(KTi)を作製した以外は実施例1と同様にして実施例4の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例5)
 水酸化カリウムの量を108gとしてチタン酸カリウム(KTi13)を作製した以外は実施例4と同様にして実施例5の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例6)
 水酸化カリウムの量を144gとしてチタン酸カリウム(KTi)を作製した以外は実施例4と同様にして実施例6の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例7)
 水酸化リチウムを水酸化マグネシウム(シグマアルドリッチ社製)438gとしてチタン酸マグネシウム(MgTiO)を作製した以外は実施例1と同様にして実施例7の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例8)
 水酸化リチウムを水酸化バリウム ・8水和物(シグマアルドリッチ社製)1194gとしてチタン酸バリウム(BaTiO)を作製した以外は実施例1と同様にして実施例8の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例9)
 炭素質材料の含有量(被覆量)をチタン酸塩に対して1wt%とするためにポリビニルアルコールの量を20gとした以外は実施例1と同様にして実施例9の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例10)
 炭素質材料の含有量(被覆量)をチタン酸塩に対して10wt%とするためにポリビニルアルコールの量を300gとした以外は実施例1と同様にして実施例10の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例11)
 炭素質材料の含有量(被覆量)をチタン酸塩に対して1wt%とするためにポリビニルアルコールの量を20gとした以外は実施例4と同様にして実施例11の蓄電デバイス用ガス発生抑制剤を作製した。
(実施例12)
 炭素質材料の含有量(被覆量)をチタン酸塩に対して10wt%とするためにポリビニルアルコールの量を300gとした以外は実施例4と同様にして実施例12の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例1)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例1と同様にして比較例1の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例2)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例2と同様にして比較例2の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例3)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例3と同様にして比較例3の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例4)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例4と同様にして比較例4の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例5)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例5と同様にして比較例5の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例6)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例6と同様にして比較例6の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例7)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例7と同様にして比較例7の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例8)
 炭素質材料による被覆を行わない(ポリビニルアルコールを乾式混合した後、窒素中において750℃で2hr焼成する工程を実施しない)こと以外は実施例8と同様にして比較例8の蓄電デバイス用ガス発生抑制剤を作製した。
(比較例9)
市販の水酸化リチウム(FMC製)を比較例9の蓄電デバイス用ガス発生抑制剤とした。
(比較例10)
市販の炭酸リチウム(FMC製)を比較例10の蓄電デバイス用ガス発生抑制剤とした。
 次に、作製した各蓄電デバイス用ガス発生抑制剤について、被覆量(炭素量)の測定および粉体抵抗率の測定を行うとともに、耐湿性の評価を行った。
(炭素質材料の被覆量の測定)
 作製した各蓄電デバイス用ガス発生抑制剤の被覆量(炭素量)についてはマクロコーダーJM1000CN(ジェイサイエンス・ラボ社製)を用いて測定した。
(粉体抵抗率の測定)
 作製した各蓄電デバイス用ガス発生抑制剤の粉体抵抗率についてはロレスターGXMCP-T700(三菱化学アナリテック社製)を用いて測定した。
 結果を表1に示す。その結果、実施例の蓄電デバイス用ガス発生抑制剤については炭素量が1~10wt%という測定結果となり、チタン酸塩の表面に炭素質材料が被覆されていることが確認できた。また、実施例9~12の蓄電デバイス用ガス発生抑制剤については目標とする被覆量(炭素量)の炭素質材料をチタン酸塩の表面に被覆できていることが確認できた。
 また、粉体抵抗率については、実施例の蓄電デバイス用ガス発生抑制剤については比較例の蓄電デバイス用ガス発生抑制剤に比べて格段に粉体抵抗率が低くなり、炭素質材料を被覆することによって電気抵抗の上昇を抑えることができることが確認できた。
Figure JPOXMLDOC01-appb-T000001
(耐湿性の評価)
 次に、実施例1~8および比較例1~3、7、8の各蓄電デバイス用ガス発生抑制剤について耐湿性の評価を行った。具体的には、まず、実施例1~8および比較例1~3、7、8の各蓄電デバイス用ガス発生抑制剤10gをシャーレに量り取り、恒温恒湿試験機において40℃、湿度80%の条件下で24時間保管した。そして、保管前後の各蓄電デバイス用ガス発生抑制剤についてX線回折装置(パナリティカル社製X‘Pert)による測定を行い、チャートとの形状比較を行うことで耐湿性の評価を行った。
 結果を図1~図13に示す。その結果、実施例1~8の蓄電デバイス用ガス発生抑制剤については図1~8に示すとおり、耐湿試験の前後において各ピークの位置や強度などチャートの形状にほとんど変化が認められず、高湿条件の下でもアルカリ金属のチタン酸塩やアルカリ土類金属のチタン酸塩の構造が変化することを防止することができていることが確認できた。
 一方、比較例1~3の蓄電デバイス用ガス発生抑制剤については、図9~11に示すとおり、耐湿試験後においてチャートの形状が大きく変化しており、高湿条件の下においてアルカリ金属のチタン酸塩やアルカリ土類金属のチタン酸塩の構造の変化を防止できていないことが確認できた。
 なお、比較例7、8の蓄電デバイス用ガス発生抑制剤については、図12、13に示すとおり、耐湿試験においてはチャートの形状にほとんど変化が認められなかったが、後記するとおり、蓄電デバイスに用いた際に容量維持率(レート特性、サイクル特性)が低下するという結果となった。
 次に、作製した各蓄電デバイス用ガス発生抑制剤を用いて蓄電デバイス(リチウムイオンキャパシタ)用正極を作製するとともに、係る正極を用いた蓄電デバイス(リチウムイオンキャパシタ)を作製し、ガス発生の抑制効果、耐湿性、電池特性(レート特性、サイクル特性)の評価を行った。
(蓄電デバイス(リチウムイオンキャパシタ)用正極の作製)
 まず、実施例1~12および比較例1~10の各蓄電デバイス用ガス発生抑制剤2.3gを活性炭(ATエレクトロード社製AP20-0001)4.9gおよびアセチレンブラック(電気化学工業社製デンカブラック)0.9gと乾式混合した。次に、ポリフッ化ビニリデン(クレハ社製KFポリマー)0.9gを加え、プラネタリーミキサーを用いて混練した。次に、N-メチル-2-ピロリドン(キシダ化学社製)36gを加えて粘度調整をすることによって各正極用塗料を作製した。
 次に、上記にて作製した各正極用塗料をアルミ箔に塗付、乾燥することによって、各蓄電デバイス(リチウムイオンキャパシタ)用正極を作製した。なお、このときの蓄電デバイス(リチウムイオンキャパシタ)内に存在する実施例および比較例の各蓄電デバイス用ガス発生抑制剤の重量は16.5mgであり、実施例および比較例の各蓄電デバイス用ガス発生抑制剤と活性炭の重量比は32:68であった。
 また、実施例1の蓄電デバイス用ガス発生抑制剤と活性炭の量をそれぞれ1.4gと5.8g、3.5gと3.7g、5.0gと2.2gに変更したもの(すなわち、後記する蓄電デバイス(リチウムイオンキャパシタ)内に存在する蓄電デバイス用ガス発生抑制剤の重量を3.9mg 、33.6mg、77.9mgとしたもの)も作製した。なお、このときの実施例1の蓄電デバイス用ガス発生抑制剤と活性炭の重量比はそれぞれ19:81、49:51、69:31であった。
(蓄電デバイス(リチウムイオンキャパシタ)用負極の作製)
 まず、オルソチタン酸(テイカ社製)520gと水酸化リチウム・1水和物(FMC社製)218gを湿式混合したのち、大気中650℃で2hr焼成することによって、比表面積70m/gの微粒子LiTi12を得た。
 次に、上記の微粒子LiTi127.2gおよびアセチレンブラック(電気化学工業社製デンカブラック)0.9gを乾式混合した。次に、ポリフッ化ビニリデン(クレハ社製KFポリマー)0.9gを加え、プラネタリーミキサーを用いて混練した。次に、N-メチル-2-ピロリドン(キシダ化学社製)36gを加えて粘度調整をすることによって負極用塗料を作製した。
 次に、上記にて作製した負極用塗料をアルミ箔に塗付、乾燥することによって、蓄電デバイス(リチウムイオンキャパシタ)用負極を作製した。
(蓄電デバイス(リチウムイオンキャパシタ)の作製)
 次に、上記にて作製した各蓄電デバイス(リチウムイオンキャパシタ)用正極、負極、セパレータ(日本高度紙工業社製)、タブリードを準備し、図14のように配置(積層)した後、さらに電解液として1MのLiBF/PC(キシダ化学社製)を注液した後、ケースに納めることによって、表2に記載の実施例13~実施例27および比較例11~20の各蓄電デバイス(リチウムイオンキャパシタ)を作製した。なお、このときの電気容量は1.6mAhであった。
(蓄電デバイス(リチウムイオン二次電池)用正極の作製)
 まず、酸化マンガン(III)(シグマアルドリッチ社製)158gと炭酸リチウム(FMC社製)34gをボールミルを用いて乾式混合したのち、大気中550℃で2hr仮焼成した。得られた仮焼成粉150gに粒成長抑制剤としてカーボンブラック(電気化学工業株式会社製デンカブラックFX-35)23gをボールミルを用いて乾式混合したのち、窒素雰囲気中750℃で2hr本焼成することによって、比表面積7m/gの微粒子スピネル型マンガン酸リチウム(組成式;LiMn)を得た。
 次に、実施例1および比較例1の各蓄電デバイス用ガス発生抑制剤2.3gを上記の微粒子スピネル型マンガン酸リチウム4.9gおよびアセチレンブラック(電気化学工業社製デンカブラック)0.9gと乾式混合した。次に、ポリフッ化ビニリデン(クレハ社製KFポリマー)0.9gを加え、プラネタリーミキサーを用いて混練した。次に、N-メチル-2-ピロリドン(キシダ化学社製)13.5gを加えて粘度調整をすることによって各正極用塗料を作製した。
 次に、上記にて作製した各正極用塗料をアルミ箔に塗付、乾燥することによって、各蓄電デバイス(リチウムイオン二次電池)用正極を作製した。なお、このときの蓄電デバイス(リチウムイオン二次電池)内に存在する実施例および比較例の各蓄電デバイス用ガス発生抑制剤の重量は16.5mgであり、実施例および比較例の各蓄電デバイス用ガス発生抑制剤とスピネル型マンガン酸リチウムの重量比は32:68であった。
(蓄電デバイス(リチウムイオン二次電池)用負極の作製)
 蓄電デバイス(リチウムイオン二次電池)用負極を蓄電デバイス(リチウムイオンキャパシタ)用負極と同様の方法で作製した。
(蓄電デバイス(リチウムイオン二次電池)の作製)
 次に、上記にて作製した蓄電デバイス(リチウムイオン二次電池)用正極、負極、セパレータ(旭化成製ハイポア)、タブリードを準備し、図14のように配置(積層)した後、さらに電解液として1MのLiPF/EC:DEC=1:1(キシダ化学社製)を注液した後、ケースに納めることによって、表2に記載の実施例28および比較例21の各蓄電デバイス(リチウムイオン二次電池)を作製した。なお、このときの電気容量は2.6mAhであった。
(ガス発生量の測定)
 まず、作製した実施例13~28および比較例11~21の各蓄電デバイスの初期体積を、アルキメデスの原理に基づいて測定した。具体的には、25℃の水を張った水槽に各蓄電デバイスを沈め、そのときの重量変化から各蓄電デバイスの初期体積を算出した。
 次に、各蓄電デバイスを60℃の条件下において、1.5~2.9Vの電圧範囲、0.5Cの充放電速度の条件の下で3サイクル充放電を行った。その後、上記測定方法と同様にして、充放電後の各蓄電デバイスの体積を算出し、初期体積との差から充放電前後の各蓄電デバイスの体積変化を求めることによって、各蓄電デバイスからのガス発生量(耐湿試験前(保管前)の蓄電デバイス用ガス発生抑制剤におけるガス発生量:ΔV)を測定した。
(耐湿性の評価)
 次に、実施例1~12および比較例1~10の各蓄電デバイス用ガス発生抑制剤10gをシャーレに量り取り、恒温恒湿試験機において40℃、湿度80%の条件下で24時間保管した。そして保管後の実施例1~12および比較例1~10の各蓄電デバイス用ガス発生抑制剤を用いて、上記作製手順と同様にして各蓄電デバイス用正極および蓄電デバイスを作製し、上記測定方法と同様にして各蓄電デバイスからのガス発生量(耐湿試験後(保管後)の蓄電デバイス用ガス発生抑制剤におけるガス発生量:ΔV)を測定した。
 また、耐湿試験前後における変化量(ΔV2-ΔV1)を算出することによっても耐湿性の評価を行った。
(容量維持率(レート特性)の測定)
 次に、作製した各蓄電デバイスを25℃の条件下において、1.5~2.8Vの電圧範囲で、1Cと300Cの充放電速度でそれぞれ充放電を行った後、以下の計算式にて容量維持率(レート特性)の算出を行った。
 300Cの放電容量÷1Cの放電容量×100=容量維持率(%)
(容量維持率(サイクル特性)の測定)
 次に、作製した各蓄電デバイスを25℃の条件下において、1.5~2.8Vの電圧範囲、10Cの充放電速度で1000サイクルの充放電を行った後、以下の計算式にて容量維持率(サイクル特性)の算出を行った。
 1000サイクル目の放電容量÷1サイクル目の放電容量×100=容量維持率(%)
 結果を表2に示す。その結果、実施例13~28の蓄電デバイスについては正極にチタン酸塩の表面に炭素質材料を被覆した材料を用いていることから、比較例11~21の蓄電デバイス(具体的にはそれぞれの実施例の蓄電デバイスに対応する比較例の蓄電デバイス)に比べて、耐湿試験後のガスの発生量(絶対量)が少なく、ガスの変化量(ΔV2-ΔV1)においても変化量が少ないという結果となった。
 また、容量維持率(レート特性)については、実施例13~28の蓄電デバイスは、全ての比較例の蓄電デバイス(具体的にはそれぞれの実施例に対応する比較例の蓄電デバイス)に比べて高い容量維持率(レート特性)を発現するという結果となった。
 また、容量維持率(サイクル特性)についても、実施例13~28の蓄電デバイスは、全ての比較例の蓄電デバイス(具体的にはそれぞれの実施例に対応する比較例の蓄電デバイス)に比べて高い容量維持率(サイクル特性)を発現するという結果となった。
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、本発明に係る蓄電デバイス用ガス発生抑制剤によれば、アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩に耐吸湿性を付与することができ、その結果、高湿条件の下でもアルカリ金属のチタン酸塩やアルカリ土類金属のチタン酸塩の構造が変化することを防止することができることがわかった。
 また、本発明に係る蓄電デバイス用ガス発生抑制剤を蓄電デバイス(特に正極電極)に使用した場合には、従前の蓄電デバイスにおいて問題となっていた使用時や経時変化における炭酸ガス、水素ガス、フッ素ガスなどの各種のガスの発生を抑制することができることがわかった。さらに、導電性を付与することができ、電気抵抗の上昇を抑え、高い容量維持率(レート特性、サイクル特性)を発現させることができる蓄電デバイスを得ることができることがわかった。
 本発明の蓄電デバイス用ガス発生抑制剤は、リチウムイオン電池やリチウムイオンキャパシタ、電気二重層キャパシタなどの蓄電デバイスに用いることができる。
1  蓄電デバイス
2  正極(蓄電デバイス用ガス発生抑制剤を含有)
3  セパレータ
4  負極
5  タブリード
6  ケース

Claims (7)

  1. アルカリ金属のチタン酸塩または/およびアルカリ土類金属のチタン酸塩と、炭素質材料を含有することを特徴とする蓄電デバイス用ガス発生抑制剤。
     
  2. 前記アルカリ金属が、
    Li、Na、Kから選ばれる1種以上のものであることを特徴とする請求項1に記載の蓄電デバイス用ガス発生抑制剤。
     
  3. 前記アルカリ土類金属が、
    Mg、Ca、Sr、Baから選ばれる1種以上のものであることを特徴とする請求項1に記載の蓄電デバイス用ガス発生抑制剤。
     
  4. 前記炭素質材料が、
    前記アルカリ金属のチタン酸塩または/および前記アルカリ土類金属のチタン酸塩の表面の一部または全部を被覆する被覆層となっているものであることを特徴とする請求項1から請求項3のいずれか一項に記載の蓄電デバイス用ガス発生抑制剤。
     
  5. 前記炭素質材料の含有量が、
    前記アルカリ金属のチタン酸塩または/および前記アルカリ土類金属のチタン酸塩に対して0.5~10wt%であることを特徴とする請求項1から請求項4のいずれか一項に記載の蓄電デバイス用ガス発生抑制剤。
     
  6. 請求項1から請求項5のいずれか一項に記載の蓄電デバイス用ガス発生抑制剤を含有したことを特徴とする蓄電デバイス用正極。
     
  7. 請求項1から請求項5のいずれか一項に記載の蓄電デバイス用ガス発生抑制剤を用いることを特徴とする蓄電デバイス。
     
PCT/JP2018/017165 2017-05-01 2018-04-27 蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイス WO2018203519A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019515719A JP7187123B2 (ja) 2017-05-01 2018-04-27 蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-091450 2017-05-01
JP2017091450 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018203519A1 true WO2018203519A1 (ja) 2018-11-08

Family

ID=64016104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017165 WO2018203519A1 (ja) 2017-05-01 2018-04-27 蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイス

Country Status (2)

Country Link
JP (1) JP7187123B2 (ja)
WO (1) WO2018203519A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500318A (ja) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 金属酸化物で被覆されたリチウム混合酸化物粒子
WO2012002365A1 (ja) * 2010-06-30 2012-01-05 株式会社 村田製作所 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2014029842A (ja) * 2012-06-26 2014-02-13 Kyocera Corp 電極材料およびそれを用いた二次電池
JP2015084320A (ja) * 2013-09-17 2015-04-30 株式会社東芝 電池用活物質材料、電極、非水電解質電池及び電池パック
WO2016159359A1 (ja) * 2015-04-03 2016-10-06 日本ケミコン株式会社 ハイブリッドキャパシタ及びハイブリッドキャパシタ用セパレータ
JP2016197649A (ja) * 2015-04-03 2016-11-24 日本ケミコン株式会社 電気二重層キャパシタ用セパレータおよび電気二重層キャパシタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500318A (ja) * 1999-05-15 2003-01-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 金属酸化物で被覆されたリチウム混合酸化物粒子
WO2012002365A1 (ja) * 2010-06-30 2012-01-05 株式会社 村田製作所 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2014029842A (ja) * 2012-06-26 2014-02-13 Kyocera Corp 電極材料およびそれを用いた二次電池
JP2015084320A (ja) * 2013-09-17 2015-04-30 株式会社東芝 電池用活物質材料、電極、非水電解質電池及び電池パック
WO2016159359A1 (ja) * 2015-04-03 2016-10-06 日本ケミコン株式会社 ハイブリッドキャパシタ及びハイブリッドキャパシタ用セパレータ
JP2016197649A (ja) * 2015-04-03 2016-11-24 日本ケミコン株式会社 電気二重層キャパシタ用セパレータおよび電気二重層キャパシタ

Also Published As

Publication number Publication date
JPWO2018203519A1 (ja) 2020-03-12
JP7187123B2 (ja) 2022-12-12

Similar Documents

Publication Publication Date Title
JP2013193888A (ja) 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2012174546A (ja) 非水電解質二次電池
JP6273584B2 (ja) 複合金属酸化物、複合金属酸化物の製造方法およびナトリウム二次電池
JP5182328B2 (ja) 負極材料およびその製造方法
JP2012156087A (ja) 非水電解質二次電池
JP2002352802A (ja) リチウムイオン二次電池用正極活物質及びその製造方法
JP7376738B2 (ja) リチウムイオンキャパシタ
WO2018203519A1 (ja) 蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス用正極および蓄電デバイス
JP2003346806A (ja) 非水二次電池用正極材料及び非水二次電池
JP7121730B2 (ja) 蓄電デバイス用ガス発生抑制剤およびこの蓄電デバイス用ガス発生抑制剤を用いた蓄電デバイス
JP7317542B2 (ja) 蓄電デバイス用プリドープ剤及びその製造方法
JP6059632B2 (ja) リチウム空気二次電池
JP6845782B2 (ja) リチウムイオンキャパシタ用プリドープ剤、該リチウムイオンキャパシタ用プリドープ剤を用いたリチウムイオンキャパシタ用正極およびリチウムイオンキャパシタ、並びにリチウムイオンキャパシタの製造方法およびリチウムイオンキャパシタのプリドープ方法
JP4168609B2 (ja) リチウムイオン二次電池用正極活物質
JP7007375B2 (ja) 蓄電デバイス用組成物およびこの蓄電デバイス用組成物を用いた蓄電デバイス用セパレータおよび蓄電デバイス
JP4055414B2 (ja) リチウムイオン二次電池用正極活物質
JP6257222B2 (ja) ラムスデライト型チタン酸リチウムおよびこのラムスデライト型チタン酸リチウムを用いたリチウムイオン二次電池並びにリチウムイオンキャパシタ
JP7224850B2 (ja) 蓄電デバイス用出力向上剤を含む蓄電デバイス用正極又はセパレータ、並びにそれらを含む蓄電デバイス
YADAV et al. Electrochemical Intercalation of Cesium into Graphite in Ionic Liquid Electrolyte
JP4168608B2 (ja) リチウムイオン二次電池用正極活物質
JP2020055701A (ja) スピネル型チタン酸リチウム及びその製造方法
JP2012204800A (ja) 電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18793855

Country of ref document: EP

Kind code of ref document: A1