WO2018203485A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2018203485A1
WO2018203485A1 PCT/JP2018/016297 JP2018016297W WO2018203485A1 WO 2018203485 A1 WO2018203485 A1 WO 2018203485A1 JP 2018016297 W JP2018016297 W JP 2018016297W WO 2018203485 A1 WO2018203485 A1 WO 2018203485A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
capacitance
antenna device
substrate
capacitors
Prior art date
Application number
PCT/JP2018/016297
Other languages
English (en)
French (fr)
Inventor
将仁 難波
Original Assignee
原田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 原田工業株式会社 filed Critical 原田工業株式会社
Priority to CN201880028324.2A priority Critical patent/CN110612640B/zh
Priority to DE112018002310.9T priority patent/DE112018002310B4/de
Priority to US16/606,594 priority patent/US11228109B2/en
Publication of WO2018203485A1 publication Critical patent/WO2018203485A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • One aspect of the present invention relates to an antenna device.
  • Patent Document 1 A vehicle such as a passenger car is provided with an antenna device that transmits and receives radio waves used for radio broadcasting, GPS, ETC, and the like.
  • Patent Document 1 listed below includes a so-called air gap including a dielectric substrate provided on a ground conductor and a radiation conductor plate made of a metal plate disposed on the dielectric substrate with a predetermined interval. An antenna device of the type is described.
  • an additional capacitor is formed between a ground conductor and a solder land soldered to a leg piece extending from the radiation conductor plate. According to the following Patent Document 1, the transmission / reception efficiency of the antenna is improved by forming the additional capacitor.
  • an additional capacitor connected to a radiation conductor plate as an antenna element is formed by sandwiching a dielectric substrate between a ground conductor and a solder land.
  • the additional capacitance varies depending on the thickness of the dielectric substrate and the size of the solder land. For this reason, the additional capacity tends to vary from antenna device to antenna device, and there is a possibility that sufficient transmission / reception performance cannot be exhibited depending on the antenna device. That is, there is a possibility that an antenna device in which the transmission / reception efficiency of the antenna is not improved is manufactured. Therefore, a technique that can accurately set the additional capacity as described above is desired.
  • An object of one aspect of the present invention is to provide an antenna device that can accurately set an additional capacity connected to an antenna element.
  • An antenna device is an in-vehicle antenna device, and is provided on a substrate having a pair of principal surfaces opposed to each other and spaced apart from one principal surface. And an antenna element having a metal leg portion extending from the metal plate portion toward the substrate and fixed to the substrate, and a capacitor portion electrically connected to the antenna element.
  • the capacitor part is electrically connected to the metal plate part via the metal leg part, and has two or more capacitors connected in series.
  • the capacitance of the capacitor connected to the antenna element is determined by the capacitor in the capacitor. For this reason, the dispersion
  • the capacitor part electrically connected to the antenna element has two or more capacitors connected in series. In this case, the combined capacitance of two or more capacitors connected in series can be used as the capacitance of the capacitor section. As a result, it is possible to reduce variations in the capacitance of the capacitor due to the capacitor. Therefore, according to the antenna device, the additional capacitance connected to the antenna element can be set with high accuracy.
  • the antenna device may further include a ground pattern provided in the first region on the substrate, and the capacitor may be provided on a second region different from the first region on the substrate.
  • a ground pattern provided in the first region on the substrate
  • the capacitor may be provided on a second region different from the first region on the substrate.
  • each of the capacitors has the same capacitance, and each capacitance of the capacitor may correspond to the product of the capacitance of the capacitance portion and the number of capacitors in the capacitance portion. In this case, variation in the capacitance of the capacitor portion can be reduced satisfactorily.
  • the capacitor is provided on one main surface, and at least one capacitor may be arranged so as not to overlap the metal plate portion. In this case, the capacitance of the capacitor portion is less affected by the metal plate portion. For this reason, the additional capacitance connected to the antenna element can be set more accurately.
  • the antenna device may receive circularly polarized radio waves by two-point feeding. In this case, the wavelength that can be received by the antenna device can be widened.
  • An opening may be provided in a part of the metal plate portion. In this case, it is possible to broaden the wavelength that can be received by the antenna device while suppressing an increase in manufacturing cost.
  • the antenna device may further include a shield case provided on the opposite side of the antenna element with the substrate interposed therebetween, and the at least one capacitor may be disposed so as not to overlap the shield case. In this case, since the number of capacitors that are capacitively coupled to the shield case can be reduced, performance degradation of the antenna device can be suppressed.
  • the antenna device may further include an antenna that is provided on the opposite side of the substrate across the antenna element and receives radio waves in a frequency band different from that of the antenna element.
  • the antenna device can simultaneously transmit and receive radio waves in a plurality of frequency bands.
  • an antenna device that can accurately set the additional capacitance connected to the antenna.
  • FIG. 1 is a schematic perspective view of an antenna device according to an embodiment.
  • FIG. 2 is an enlarged view of a region indicated by a one-dot chain line in FIG.
  • FIG. 3A is a schematic bottom view of the antenna device according to the embodiment.
  • FIG. 3B is an enlarged plan view of a region indicated by a one-dot chain line in FIG.
  • FIG. 4 is a graph showing an example of a gain with respect to a resonance frequency in an antenna device that transmits and receives radio waves used for GPS.
  • FIG. 5 is a schematic perspective view of an antenna device according to a first modification of the embodiment.
  • FIG. 6 is a schematic perspective view of an antenna device according to a second modification of the embodiment.
  • the antenna device is a vehicle-mounted patch antenna and has a function of transmitting and receiving radio waves used for GPS, ETC, satellite radio, GNSS, and the like.
  • This antenna device is connected to an external device mounted on a vehicle via a cable.
  • description of the external housing of the antenna device and the internal wiring of the antenna device will be omitted.
  • FIG. 1 is a schematic perspective view of an antenna device according to the present embodiment.
  • FIG. 2 is an enlarged view of a region indicated by a one-dot chain line in FIG.
  • FIG. 3A is a schematic bottom view of the antenna device according to the present embodiment.
  • FIG. 3B is an enlarged plan view of a region indicated by a one-dot chain line in FIG.
  • the antenna device 1 shown in FIGS. 1 to 3 includes a substrate 2 having a pair of main surfaces 11 and 12 facing each other, an antenna element 3 provided on the main surface 11, and a shield case provided on the main surface 12. 4 and a cable 5 for electrically connecting the antenna element 3 and an external device.
  • the antenna device 1 is configured by a shield case 4, a substrate 2, and an antenna element 3 overlapping in order.
  • the shield case 4 is provided on the opposite side of the antenna element 3 with the substrate 2 interposed therebetween.
  • a direction in which the substrate 2, the antenna element 3, and the shield case 4 overlap each other is referred to as a “stacking direction”.
  • stacking direction a direction in which the substrate 2, the antenna element 3, and the shield case 4 overlap each other.
  • “viewed from the stacking direction” corresponds to “plan view”.
  • the substrate 2 is a plate-like circuit substrate provided with a ground pattern, a capacitor, an amplifier circuit, and the like, and an antenna element 3 and a shield case 4 are attached thereto.
  • Each of the main surfaces 11 and 12 of the substrate 2 has a substantially square shape, for example.
  • the ground pattern, the routing wiring, and the capacitance for the antenna element 3 are mainly provided, and on the main surface 12, an amplifier circuit and the like are mainly provided.
  • Most of the ground pattern and the routing wiring provided on the main surface 11 are covered with an insulator such as a resin.
  • the amplifier circuit and the like on the main surface 12 are covered with the shield case 4. Illustration of a ground pattern provided on the main surface 11 and an amplifier circuit provided on the main surface 12 is omitted.
  • the first region 11 a is a region that occupies most of the main surface 11, while the second region 11 b is a region corresponding to each corner 2 a of the substrate 2.
  • a total of four second regions 11 b are provided on the main surface 11. While a ground pattern is provided on the first region 11a, no ground pattern is provided on the second region 11b. In addition, no ground pattern is provided on the main surface 12 overlapping the second region 11b. Instead, a plurality of capacitors 13 that form a capacitive portion C for the antenna element 3 are provided on each second region 11b. Details of the capacitor 13 and the capacitor C will be described later.
  • Each corner 2a of the substrate 2 is provided with a through hole 14 extending along the stacking direction (see FIGS. 2 and 3B).
  • a part of the antenna element 3 (specifically, a metal leg to be described later) is inserted through the through hole 14.
  • the surface of the through hole 14 may be covered with a conductive layer that is a part of the routing wiring different from the ground pattern. In this case, the antenna element 3 and the routing wiring are electrically conducted in the through hole 14.
  • the antenna element 3 is a member that transmits and receives radio waves, and is formed by bending a metal plate or an alloy plate.
  • the antenna element 3 includes a metal plate portion 21 that is spaced apart from the main surface 11 of the substrate 2, power feeding portions 22 and 23 that extend from the metal plate portion 21 toward the main surface 11, and a metal plate portion.
  • a plurality of metal legs 24 extending from the respective corners 21 a toward the main surface 11 and fixed to the substrate 2.
  • the metal plate portion 21 is a portion that transmits and receives radio waves in the antenna element 3 and has a substantially square plate shape. As described above, the metal plate portion 21 is disposed away from the substrate 2, and a space is provided between the metal plate portion 21 and the substrate 2 in the stacking direction. For this reason, the antenna device 1 of this embodiment is an air gap type device, and air corresponds to the dielectric of the antenna device 1. As viewed from the stacking direction, the metal plate portion 21 is slightly smaller than the main surface 11 of the substrate 2. As viewed from the stacking direction, the entire metal plate portion 21 overlaps the main surface 11. The metal plate portion 21 is provided with two notches 21b and 21c that are spaced apart from each other.
  • Each of the notches 21b and 21c is provided so as to extend from an edge defining the metal plate portion 21 toward the center of the metal plate portion 21 in plan view. In plan view, a part of the main surface 11 is exposed from the portion cut out by the cutout portions 21b and 21c.
  • the power feeding portions 22 and 23 are portions that electrically connect the metal plate portion 21 and the wiring on the substrate 2, and have a bar shape extending along the stacking direction.
  • the power feeding part 22 is provided so as to protrude from the bottom of the notch part 21 b of the metal plate part 21 to the substrate 2.
  • the power feeding part 23 is provided so as to protrude from the bottom of the notch part 21 c of the metal plate part 21 to the substrate 2.
  • the bottom of the notch is a portion located closest to the center of the metal plate portion in the notch. Since the two power feeding units 22 and 23 are thus provided, the antenna device 1 can receive circularly polarized radio waves by two-point power feeding.
  • the metal leg 24 is a portion fixed to the substrate 2 in the antenna element 3 and has a rod shape extending along the stacking direction.
  • the metal legs 24 are inserted through the corresponding through holes 14.
  • the tips of the metal legs 24 are exposed from the main surface 12 side. As shown in FIG. 3A, the tip of the metal leg 24 is fixed to the substrate 2 with solder S, for example.
  • the metal leg 24 is electrically connected to the capacitor C formed on the second region 11b of the main surface 11.
  • the metal plate portion 21, the power feeding portions 22, 23, and the metal leg portion 24 are formed of the same metal plate or alloy plate.
  • Each of the power feeding portions 22 and 23 is formed by, for example, bending a portion protruding from the bottom of the corresponding cutout portion 21b or 21c.
  • the metal leg portion 24 is formed by bending a portion protruding from the corner 21 a of the metal plate portion 21.
  • the shield case 4 is a member that reduces electromagnetic noise and has conductivity.
  • the shield case 4 is formed, for example, by bending a single metal plate or alloy plate.
  • the shield case 4 includes a main portion 4a that has a substantially octagonal shape when viewed from the stacking direction, and a wall portion 4b that stands from the edge of the main portion 4a.
  • a space is provided between the main portion 4 a located inside the wall portion 4 b and the main surface 12 of the substrate 2.
  • the edge of the main portion 4 a is located inside the edge of the substrate 2.
  • substrate 2 is located in the outer side of the edge of the main part 4a in planar view.
  • the metal legs 24 of the antenna element 3 are provided so as not to overlap the shield case 4 in the stacking direction.
  • the main portion 4a overlaps a part of the second region 11b.
  • At least one of the main portion 4a and the wall portion 4b may be provided with a slit, a protrusion, and the like.
  • the potential of the shield case 4 is set to a reference potential (ground), for example, but is not limited thereto.
  • the capacity portion C is an additional capacity that compensates for the shortage of the electrostatic capacity formed by the antenna element 3 and the substrate 2, and is provided on each second region 11b.
  • four capacitor portions C are provided on the main surface 11, and each capacitor portion C is electrically connected to the corresponding metal leg portion 24.
  • Each capacitance unit C includes the plurality of capacitors 13, the wiring 31 for connecting the antenna element 3 and the capacitor 13, and the wiring 32 for connecting the capacitors 13 to each other.
  • each capacitance unit C includes two capacitors 13, one wiring 31, and one wiring 32.
  • a total of eight capacitors 13 are provided on the main surface 11.
  • the capacitor 13 is a two-terminal type multilayer chip ceramic capacitor, for example, and has a predetermined capacitance.
  • the capacitances of the plurality of capacitors 13 included in each capacitance unit C may be the same or different from each other.
  • the plurality of capacitors 13 are connected in series to each other on the second region 11b.
  • the capacitor 13 disposed closest to the metal leg 24 in the plurality of capacitors 13 is electrically connected to the metal leg 24 via the wiring 31.
  • Adjacent capacitors 13 are connected in series with each other via a wiring 32.
  • Each capacitor 13 in the capacitance part C is electrically connected to the metal plate part 21 via the metal leg part 24.
  • each capacitor 13 is arranged in a straight line, but is not particularly limited.
  • the wiring 32 may be arranged so as to exhibit a folded shape.
  • the shape of the wirings 31 and 32 and the arrangement state of the capacitor 13 in each second region 11b may be different from each other.
  • one terminal of the capacitor 13 farthest from the metal leg 24 is electrically connected to the ground pattern.
  • a part of the capacitor 13 in the capacitor C may be located on the first region 11a (see FIGS. 1 and 2).
  • the combined capacity of the capacitor 13 included in the capacitor C corresponds to the capacitance of the capacitor C.
  • the capacitance of the capacitor C is smaller than the capacitance of each capacitor 13.
  • the capacitance of the capacitor C is ⁇ and the capacitances of the capacitors 13 are ⁇ 1 and ⁇ 2
  • the following formula 1 is established.
  • the two capacitors 13 are included in the capacitance unit C as in the present embodiment, the following formula 2 is established.
  • the capacitors 13 included in the capacitor C have the same capacitance, if the capacitance of each capacitor 13 is ⁇ 1, the capacitance ⁇ of the capacitor C is ⁇ 1 / 2.
  • the antenna device of the first comparative example has the same configuration as that of the antenna device 1 of the present embodiment, except that the capacitance unit is composed of one capacitor.
  • the capacitance of one capacitor corresponds to the capacitance of the capacitor portion.
  • the antenna device of the second comparative example has the same configuration as that of the antenna device 1 of the present embodiment, except that the capacitance portion is constituted by a parasitic capacitance of wiring.
  • the sum of the parasitic capacitance between the wires and the parasitic capacitance of the pair of wires provided with the substrate interposed therebetween corresponds to the capacitance of the capacitor portion.
  • the capacitance of the capacitor is set to 0.5 pF and the variation of all capacitors is ⁇ 0.1 pF (that is, the capacitance of the capacitor is 0.4 pF to 0.6 pF) (hereinafter, Simply “first assumption”).
  • first assumption the capacitance of the capacitor portion of the first comparative example is 0.4 pF to 0.6 pF.
  • the capacitance of the capacitance unit is set to 0.75 pF and the variation of all capacitors is ⁇ 0.1 pF (hereinafter simply referred to as “second assumption”).
  • the capacitance of the capacitor portion of the first comparative example is 0.65 pF to 0.85 pF.
  • the capacitance of the capacitor has a variation of ⁇ 0.1 pF.
  • the variation in the capacitance of the capacitor portion corresponds to the variation in the peak of the resonance frequency of the antenna device.
  • a variation of ⁇ 0.1 pF corresponds to a variation in resonance frequency of ⁇ 80 MHz from a predetermined frequency.
  • the gain of the antenna device when receiving a predetermined frequency may be greatly deteriorated from the ideal value. Therefore, in the first comparative example, there is a possibility that the transmission / reception characteristics of the antenna device are not sufficiently exhibited.
  • the actual measurement value of the capacitance of the capacitor portion tends to vary at least as compared with the first comparative example. Therefore, there is a high possibility that the transmission / reception characteristics of the antenna device in the second comparative example are not sufficiently exhibited compared to the first comparative example.
  • the variation in the capacitance of the capacitor C in this embodiment will be examined.
  • the capacitance of each capacitor 13 is 1.0 pF based on the above formulas 1 and 2.
  • the variation of the capacitor 13 is assumed to be ⁇ 0.1 pF
  • the minimum value of the capacitance of the capacitor C corresponding to the combined capacitance of the capacitor 13 is 0.45 pF
  • the maximum value is 0. .55 pF.
  • the variation in the capacitance of the capacitor C is ⁇ 0.05 pF.
  • one of the two capacitors 13 included in the capacitor C is set to 1.5 pF, and the other is set to 0. 75 pF.
  • the variation in the capacitance of the capacitor C is ⁇ 0.06 pF.
  • one of the two capacitors 13 included in the capacitor C is set to 1 pF, and the other is set to 3 pF.
  • the variation of the capacitance of the capacitor C is ⁇ 0.062 pF.
  • the capacitance of the capacitor C in the present embodiment is the first and second regardless of the relationship of the capacitance of the capacitor 13 included in the capacitor C in any of the first and second assumptions. It is less likely to vary than the comparative example. For this reason, in this embodiment, the gain of the antenna device when receiving a predetermined frequency is less likely to deteriorate than in the first and second comparative examples.
  • the capacitance of the capacitor C corresponds to the combined capacitance of the plurality of capacitors 13, the variation distribution of the capacitance of the capacitor C tends to be small. In other words, there is a tendency that the probability that the capacitance of the capacitor portion C is at or near the set value increases.
  • FIG. 4 is a graph showing an example of a gain with respect to a resonance frequency in an antenna device that transmits and receives radio waves used for GPS.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the gain (gain).
  • the gain of the antenna device is set to be the largest at the frequency of the radio wave used for GPS (about 1575 MHz). .
  • the maximum value of the gain is located at a location different from the frequency (about 1575 MHz).
  • the maximum gain value is located on the lower frequency side.
  • the capacitor part of the first comparative example is applied as the capacitor part of such an antenna device.
  • the resonance frequency varies from the predetermined frequency (about 1575 MHz) to about ⁇ 80 MHz at the maximum.
  • the gain of the antenna device at a predetermined frequency is reduced by 9 dB or more at the maximum.
  • the capacitor portion of the second comparative example is applied, the gain of the antenna device at a predetermined frequency may be further reduced.
  • the variation of the capacitance C is suppressed to ⁇ 0.05 pF at the maximum. In this case, the variation in the resonance frequency of the antenna device can be suppressed up to about ⁇ 40 MHz.
  • the decrease in the gain of the antenna device at a predetermined frequency is about 5 dB at the maximum.
  • the variation of each capacitor 13 is ⁇ 0.05 pF
  • the variation of the capacitor C can be suppressed to ⁇ 0.025 pF at the maximum.
  • the variation in the resonance frequency of the antenna device can be suppressed up to about ⁇ 18 MHz.
  • a decrease in the gain of the antenna device at a predetermined frequency can be suppressed to about 1 dB at the maximum. From these results, it can be seen that the variation in the gain of the antenna device at a predetermined frequency is reduced by reducing the variation in the capacitance section.
  • the antenna device 1 for example, compared with the second comparative example in which the capacitor portion is formed using a substrate, wiring provided on the substrate, and the like. Variations in the capacitance of the part C can be suppressed.
  • the capacitance part C electrically connected to the antenna element 3 has two capacitors 13 connected in series. At this time, the combined capacitance of the two capacitors 13 connected in series can be set to the capacitance of the capacitor C. In this case, it is possible to reduce variation in the capacitance of the capacitor C caused by the capacitor 13 as compared with the first comparative example in which the capacitor included in the capacitor is one. Therefore, according to the antenna device 1, the additional capacitance connected to the antenna element 3 can be set with high accuracy.
  • the antenna device 1 includes a ground pattern provided in the first region 11 a of the substrate 2, and the capacitor C is provided on a second region 11 b different from the first region 11 a of the substrate 2. For this reason, it can prevent suitably that the electrostatic capacitance of the capacitor
  • Each of the capacitors 13 has the same capacitance, and each capacitance of the capacitors 13 corresponds to the product of the capacitance of the capacitance portion C and the number of capacitors 13 in the capacitance portion C. May be. In this case, the variation in the capacitance of the capacitor C can be reduced satisfactorily.
  • the antenna device 1 receives circularly polarized radio waves by two-point power feeding via the power feeding units 22 and 23. For this reason, the wavelength which can be received by the antenna device 1 can be widened.
  • FIG. 5 is a schematic perspective view of an antenna device according to a first modification of the present embodiment.
  • the antenna element 3A of the antenna device 1A is not provided with the power feeding portions 22 and 23, but is provided with the power feeding portion 25 extending from the center of the metal plate portion 21A toward the substrate 2.
  • openings 26a and 26b are provided in the metal plate portion 21A.
  • the openings 26a and 26b may have the same shape as each other or different shapes from each other.
  • the openings 26a and 26b may be point-symmetric with respect to the center of the metal plate portion 21A.
  • the number of the openings provided in the metal plate may be one, or three or more.
  • the metal plate portion 21A may be provided with a notch instead of the opening.
  • FIG. 6 is a schematic perspective view of an antenna device according to a second modification of the present embodiment.
  • the antenna device 1 ⁇ / b> B is provided with an antenna 41 on the side opposite to the substrate 2 with the metal plate portion 21 interposed therebetween.
  • the antenna 41 is an antenna that receives radio waves in a frequency band different from that of the antenna element 3, and is a ceramic patch antenna placed on the metal plate portion 21.
  • the antenna device 1B can simultaneously transmit and receive radio waves in a plurality of frequency bands.
  • the antenna 41 may be any antenna that receives radio waves in a frequency band different from that of the antenna element 3, and is not limited to a ceramic patch antenna.
  • the antenna device is not limited to the above-described embodiments and modifications, and various other modifications are possible. You may combine the said embodiment and modification suitably.
  • the antenna 41 may be provided on the antenna device 1A by combining the first modification and the second modification.
  • the metal plate portion 21 does not necessarily have the openings 26a and 26b. In the first modification, the number of openings provided in the metal plate portion 21 is not limited.
  • the main surface 11 is mainly provided with a ground pattern, routing wiring, and a capacitor for the antenna element 3, and the main surface 12 is mainly provided with an amplifier circuit. It is not limited to this.
  • the ground pattern and the amplifier circuit may be provided on both the main surfaces 11 and 12.
  • At least one capacitor 13 may be disposed so as not to overlap the metal plate portion 21 in the stacking direction.
  • the capacitance of the capacitor portion C is not easily affected by the metal plate portion 21. For this reason, the additional capacitance connected to the antenna element 3 can be set more accurately.
  • At least one capacitor 13 among the capacitors 13 provided on the main surface 11 may be disposed so as not to overlap the shield case 4 in the stacking direction.
  • the capacitance of the capacitor portion C is hardly affected by the shield case 4. Therefore, the additional capacity connected to the antenna element 3 can be set with higher accuracy, so that the performance degradation of the antenna device 1 can be suppressed.
  • All the capacitors 13 may be arranged so as not to overlap the shield case 4 in the stacking direction.
  • the capacitance of each capacitor C may be different.
  • an optimum capacitance corresponding to the corresponding metal leg portion 24 may be set in the capacitor portion C. That is, the number of capacitors 13 included in each capacitor C may be different.
  • the number of capacitors 13 included in at least some of the capacitors C may be one, or two or more. For example, when the number of capacitors 13 included in the capacitor C is three, the capacitance of the capacitor C is ⁇ , and the capacitance of each capacitor 13 is ⁇ 1, ⁇ 2, ⁇ 3, the following equation 3 Is established.
  • each capacitor 13 included in the capacitor C has the same capacitance, if the capacitance of each capacitor 13 is ⁇ 1, the capacitance ⁇ of the capacitor C is ⁇ 1 / 3. For this reason, even if the number of capacitors 13 included in the capacitance part C is three or more, if each capacitor 13 included in the capacitance part C has the same capacitance, it is included in the capacitance part C.
  • the capacitance of each capacitor 13 corresponds to the product of the capacitance of the capacitor C and the number of capacitors 13 included in the capacitor C.
  • 1 / ⁇ 1 / ⁇ 1 + 1 / ⁇ 2 + 1 / ⁇ 3
  • the number of capacitors 13 included in the capacitor C when the number of capacitors 13 included in the capacitor C is three or more, all the capacitors 13 may have the same capacitance. Thereby, the dispersion
  • the capacitor C may not be provided in a part of the second region 11b.
  • At least a part of the capacitor 13 constituting the capacitance unit C may be provided on the main surface 12.
  • the area of the second region 11b can be reduced while securing the capacitance of the capacitor C.
  • At least one capacitor 13 in the capacitance part C may be arranged so as not to overlap the metal plate part 21. In this case, the capacitance of the capacitor portion C is not easily affected by the metal plate portion 21. For this reason, the additional capacitance connected to the antenna element 3 can be set more accurately.
  • the second region 11b in which the capacitor part C is provided does not necessarily have to be provided in the corner 2a of the substrate 2. Therefore, a part of the capacitor 13 may be provided in addition to the corner 2a of the substrate 2.
  • the main part 4a of the shield case 4 is provided so as to overlap at least a part of the capacitors 13, but the invention is not limited thereto.
  • the main portion 4 a may be provided so as to overlap all the capacitors 13 or may be provided so as not to overlap all the capacitors 13.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

車載用のアンテナ装置1は、互いに対向する一対の主面11,12を有する基板2と、主面11上に設けられると共に主面11に対して離間して配置された金属板部21、及び金属板部21から基板2に向かって延在すると共に基板2に固定される金属脚部24を有するアンテナエレメント3と、アンテナエレメント3に電気的に接続される容量部Cと、を備える。容量部Cは、金属脚部24を介して金属板部21に電気的に接続されると共に、直列接続された二つ以上のコンデンサ13を有している。

Description

アンテナ装置
 本発明の一側面は、アンテナ装置に関する。
 乗用車などの車両には、ラジオ放送、GPS又はETC等に用いられる電波を送受信するアンテナ装置が取り付けられている。下記特許文献1には、接地導体上に設けられた誘電体基板と、当該誘電体基板上に所定の間隔を存して配置された金属板からなる放射導体板とを備えた、いわゆるエアギャップ式のアンテナ装置が記載されている。下記特許文献1では、接地導体と、放射導体板から延びる脚片に半田付けされた半田ランドとの間に付加容量を形成している。下記特許文献1によれば、当該付加容量を形成することによって、アンテナの送受信効率の向上を図っている。
特許第3814271号公報
 上記特許文献1では、接地導体及び半田ランドによって誘電体基板を挟むことで、アンテナエレメントである放射導体板に接続される付加容量を形成している。当該付加容量は、誘電体基板の厚さ及び半田ランドの大きさによって変化する。このため、上記付加容量は、アンテナ装置毎にばらつきやすくなり、アンテナ装置によっては十分に送受信性能を発揮できないおそれがある。すなわち、アンテナの送受信効率が向上されないアンテナ装置が製造されるおそれがある。したがって、上述したような付加容量を精度よく設定できる手法が望まれている。
 本発明の一側面は、アンテナエレメントに接続される付加容量を精度よく設定できるアンテナ装置を提供することを目的とする。
 本発明の一側面に係るアンテナ装置は、車載用のアンテナ装置であって、互いに対向する一対の主面を有する基板と、一方の主面上に設けられると共に一方の主面に対して離間して配置された金属板部、及び金属板部から基板に向かって延在すると共に基板に固定される金属脚部を有するアンテナエレメントと、アンテナエレメントに電気的に接続される容量部と、を備え、容量部は、金属脚部を介して金属板部に電気的に接続されると共に、直列接続された二つ以上のコンデンサを有している。
 このアンテナ装置では、アンテナエレメントに接続される容量部の静電容量が、当該容量部内のコンデンサによって定められる。このため、例えば基板、当該基板上に設けられる配線等を利用して容量部を形成する場合と比較して、容量部の静電容量のばらつきを抑えることができる。ここで、アンテナエレメントに電気的に接続される容量部は、直列接続された二つ以上のコンデンサを有している。この場合、直列接続された二つ以上のコンデンサの合成容量を、容量部の静電容量とすることができる。これにより、コンデンサに起因した容量部の静電容量のばらつき低減が可能になる。したがって、上記アンテナ装置によれば、アンテナエレメントに接続される付加容量を精度よく設定できる。
 上記アンテナ装置は、基板における第1領域に設けられるグラウンドパターンをさらに備え、容量部は、基板における第1領域とは異なる第2領域上に設けられてもよい。この場合、例えば容量部内のコンデンサの静電容量がグラウンドパターンの影響を受けることを好適に防止できる。また、容量部にて、グラウンドパターンと、基板と、コンデンサ同士を接続するための配線とによる寄生容量の発生も防止できる。したがって、容量部の静電容量のばらつきをさらに低減できる。
 コンデンサのそれぞれは、同一の静電容量を有しており、コンデンサのそれぞれの静電容量は、容量部の静電容量と、容量部内のコンデンサの数との積に相当してもよい。この場合、容量部の静電容量のばらつきが、良好に低減可能となる。
 コンデンサは、一方の主面上に設けられており、少なくとも一つのコンデンサは、金属板部と重ならないように配置されてもよい。この場合、容量部の静電容量が金属板部の影響を受けにくくなる。このため、アンテナエレメントに接続される付加容量をより精度よく設定できる。
 上記アンテナ装置は、2点給電によって円偏波の電波を受信してもよい。この場合、アンテナ装置が受信可能な波長を広帯域化できる。
 金属板部の一部には開口部が設けられてもよい。この場合、製造コスト上昇の抑制を図りつつ、アンテナ装置が受信可能な波長を広帯域化できる。
 上記アンテナ装置は、基板を挟んでアンテナエレメントの反対側に設けられるシールドケースをさらに備え、少なくとも一つのコンデンサは、シールドケースと重ならないように配置されてもよい。この場合、シールドケースと容量結合するコンデンサの数を低減できるので、アンテナ装置の性能劣化を抑制できる。
 上記アンテナ装置は、アンテナエレメントを挟んで基板と反対側に設けられ、アンテナエレメントとは異なる周波数帯の電波を受信するアンテナをさらに備えてもよい。この場合、アンテナ装置は、複数の周波数帯の電波を同時に送受信できる。
 本発明の一側面によれば、アンテナに接続される付加容量を精度よく設定できるアンテナ装置を提供できる。
図1は、実施形態に係るアンテナ装置の概略斜視図である。 図2は、図1における一点鎖線で示される領域の拡大図である。 図3の(a)は、実施形態に係るアンテナ装置の概略底面図である。図3の(b)は、図3の(a)において一点鎖線で示される領域の拡大平面図である。 図4は、GPSに用いられる電波を送受信するアンテナ装置において、共振周波数に対する利得の一例を示したグラフである。 図5は、実施形態の第1変形例に係るアンテナ装置の概略斜視図である。 図6は、実施形態の第2変形例に係るアンテナ装置の概略斜視図である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
 本実施形態に係るアンテナ装置は、車載用のパッチアンテナであり、例えばGPS、ETC、衛星ラジオ、GNSS等に用いられる電波を送受信する機能を有している。このアンテナ装置は、車載された外部装置にケーブルを介して接続される。以下では、アンテナ装置の外部筐体と、アンテナ装置の内部配線との説明については省略する。
 図1は、本実施形態に係るアンテナ装置の概略斜視図である。図2は、図1における一点鎖線で示される領域の拡大図である。図3の(a)は、本実施形態に係るアンテナ装置の概略底面図である。図3の(b)は、図3の(a)において一点鎖線で示される領域の拡大平面図である。図1~図3に示されるアンテナ装置1は、互いに対向する一対の主面11,12を有する基板2と、主面11上に設けられるアンテナエレメント3と、主面12上に設けられるシールドケース4と、アンテナエレメント3と外部装置とを電気的に接続するケーブル5とを備えている。アンテナ装置1は、シールドケース4と、基板2と、アンテナエレメント3とが順に重なることによって構成されている。シールドケース4は、基板2を挟んでアンテナエレメント3と反対側に設けられる。以下では、基板2、アンテナエレメント3、及びシールドケース4が互いに重なる方向を「積層方向」とする。本実施形態では、「積層方向から見る」は、「平面視」に相当する。
 基板2は、グラウンドパターン、容量、及び増幅回路等が設けられた板状の回路基板であり、アンテナエレメント3及びシールドケース4が取り付けられている。基板2の主面11,12のそれぞれは、例えば略正方形状を呈している。主面11上には、グラウンドパターン、引き回し配線、及びアンテナエレメント3に対する容量が主に設けられ、主面12上には増幅回路等が主に設けられる。主面11上に設けられるグラウンドパターン及び引き回し配線の大部分(アンテナエレメント3等と接続する箇所以外の部分)は、樹脂等の絶縁物によって被覆されている。加えて主面12上の増幅回路等は、シールドケース4に覆われている。主面11上に設けられるグラウンドパターンと、主面12上に設けられる増幅回路等との図示は省略する。
 主面11上には、互いに異なる第1領域11a及び第2領域11bが設定されている。第1領域11aは主面11の大部分を占める領域である一方で、第2領域11bは基板2の各角部2aに対応する領域である。本実施形態では、第2領域11bは、主面11上に合計4つ設けられている。第1領域11a上にはグラウンドパターンが設けられる一方で、第2領域11b上にはグラウンドパターンが設けられない。加えて、第2領域11bに重なる主面12上にもグラウンドパターンが設けられない。代わりに各第2領域11b上には、アンテナエレメント3に対する容量部Cを構成する複数のコンデンサ13が設けられている。コンデンサ13及び容量部Cの詳細については後述する。
 基板2の各角部2aには、積層方向に沿って延びる貫通孔14が設けられている(図2及び図3の(b)を参照)。貫通孔14には、アンテナエレメント3の一部(具体的には、後述する金属脚部)が挿通されている。貫通孔14の表面は、グラウンドパターンと異なる引き回し配線の一部である導電層によって覆われてもよい。この場合、アンテナエレメント3と引き回し配線とが、貫通孔14内にて良好に導通する。
 アンテナエレメント3は、電波を送受信する部材であり、金属板又は合金板を折り曲げることによって形成される。アンテナエレメント3は、基板2の主面11に対して離間して配置された金属板部21と、金属板部21から主面11に向かって延在する給電部22,23と、金属板部21の各角21aから主面11に向かって延在すると共に基板2に固定される複数の金属脚部24とを有する。
 金属板部21は、アンテナエレメント3において電波を送受信する部分であり、略四角板形状を呈している。上述したように金属板部21は基板2に対して離間して配置されており、且つ、積層方向において金属板部21と基板2との間には空間が設けられている。このため、本実施形態のアンテナ装置1はエアギャップ式の装置であり、空気がアンテナ装置1の誘電体に相当する。積層方向から見て、金属板部21は、基板2の主面11よりも一回り小さくなっている。積層方向から見て、金属板部21の全体は、主面11に重なっている。金属板部21には、互いに離間した二つの切欠部21b,21cが設けられている。切欠部21b,21cのそれぞれは、平面視にて金属板部21を画成する縁から金属板部21の中心に向かって延びるように設けられる。平面視においては、切欠部21b,21cによって切り欠かれた部分から、主面11の一部が露出する。
 給電部22,23は、金属板部21と基板2上の配線とを電気的に接続する部分であり、積層方向に沿って延在する棒形状を呈している。給電部22は、金属板部21の切欠部21bの底から基板2に突出するように設けられている。同様に、給電部23は、金属板部21の切欠部21cの底から基板2に突出するように設けられている。切欠部の底とは、切欠部において最も金属板部の中心側に位置する部分である。このように二つの給電部22,23が設けられるので、アンテナ装置1は、2点給電によって円偏波の電波を受信できる。
 金属脚部24は、アンテナエレメント3において基板2に固定される部分であり、積層方向に沿って延在する棒形状を呈している。金属脚部24は、対応する貫通孔14に挿通されている。金属脚部24の先端は、主面12側から露出している。図3の(a)に示されるように、金属脚部24の先端は、例えばはんだSによって基板2に固定されている。金属脚部24は、主面11の第2領域11b上に構成される容量部Cに電気的に接続されている。
 金属板部21と給電部22,23と金属脚部24とは、互いに同一の金属板又は合金板から形成されている。給電部22,23のそれぞれは、例えば対応する切欠部21b,21cの底から突出した部分を折り曲げることによって形成される。金属脚部24は、金属板部21の角21aから突出した部分を折り曲げることによって形成される。
 シールドケース4は、電磁ノイズを低減する部材であり、導電性を有している。シールドケース4は、例えば一枚の金属板又は合金板を折り曲げることによって形成される。シールドケース4は、積層方向から見て略八角形状を呈する主部4aと、主部4aの縁から立設する壁部4bとを有する。シールドケース4において壁部4bよりも内側に位置する主部4aと、基板2の主面12との間には、空間が設けられている。主部4aの縁は、基板2の縁よりも内側に位置している。平面視にて主部4aの縁の外側には、基板2に設けられた貫通孔14が位置している。アンテナエレメント3の金属脚部24は、積層方向においてシールドケース4に重ならないように設けられている。図3の(b)に示されるように、主部4aは、第2領域11bの一部に重なっている。主部4a及び壁部4bの少なくともいずれかには、スリット及び突起等が設けられてもよい。シールドケース4の電位は、例えば基準電位(グラウンド)に設定されるが、これに限定されない。
 次に、上述した容量部Cの詳細について説明する。容量部Cは、アンテナエレメント3と基板2とによって形成される静電容量の不足分を補う付加容量であり、各第2領域11b上に設けられている。本実施形態では、容量部Cは主面11上に4つ設けられており、各容量部Cは、対応する金属脚部24に電気的に接続されている。各容量部Cは、上述した複数のコンデンサ13、アンテナエレメント3とコンデンサ13とを接続するための配線31、及びコンデンサ13同士を接続するための配線32を有している。本実施形態では、各容量部Cは、二つのコンデンサ13、一つの配線31、及び一つの配線32を含んでいる。本実施形態では、主面11上には合計8つのコンデンサ13が設けられている。
 コンデンサ13は、例えば2端子型の積層チップセラミックコンデンサであり、所定の静電容量を有している。各容量部Cに含まれる複数のコンデンサ13の静電容量は、互いに同一でもよいし、互いに異なってもよい。各容量部Cにおいて、複数のコンデンサ13は、第2領域11b上にて互いに直列接続されている。図2及び図3の(b)に示されるように、複数のコンデンサ13において金属脚部24の最も近くに配置されたコンデンサ13は、配線31を介して金属脚部24に電気的に接続されている。隣り合うコンデンサ13同士は、配線32を介して互いに直列接続されている。容量部C内の各コンデンサ13は、金属脚部24を介して金属板部21に電気的に接続されている。本実施形態では、各コンデンサ13は直線状に配置されているが、特に限定されない。換言すると、各コンデンサ13は、互いに直列接続されている限り、例えば配線32が折り返し形状を呈するように配置されてもよい。各第2領域11bにおける配線31,32の形状及びコンデンサ13の配置状態は、互いに異なってもよい。等価回路上、金属脚部24から最も遠いコンデンサ13の一端子は、グラウンドパターンに電気的に接続される。容量部C内のコンデンサ13の一部は、第1領域11a上に位置してもよい(図1及び図2を参照)。
 容量部Cに含まれるコンデンサ13の合成容量は、当該容量部Cの静電容量に相当する。容量部Cの静電容量は、各コンデンサ13の静電容量よりも小さい。ここで、容量部Cの静電容量をαとし、各コンデンサ13の静電容量をβ1,β2とした場合、下記式1が成立する。本実施形態のように二つのコンデンサ13が容量部Cに含まれる場合、下記式2が成立する。容量部Cに含まれる各コンデンサ13が同一の静電容量を有している場合、各コンデンサ13の静電容量をβ1とすると、容量部Cの静電容量αはβ1/2となる。すなわち、容量部Cに含まれる各コンデンサ13が同一の静電容量を有している場合、容量部Cに含まれる各コンデンサ13の静電容量は、当該容量部Cの静電容量と、当該容量部Cに含まれるコンデンサ13の数との積に相当する。
  式1:1/α=1/β1+1/β2
  式2:α=β1×β2/(β1+β2)
 次に、本実施形態に係るアンテナ装置1の作用効果を、第1及び第2比較例を参照しつつ説明する。第1比較例のアンテナ装置は、容量部が一つのコンデンサから構成されること以外は本実施形態のアンテナ装置1と同様の構成を有する。第1比較例においては、一つのコンデンサの静電容量が、容量部の静電容量に相当する。第2比較例のアンテナ装置は、容量部が配線の寄生容量から構成されること以外は本実施形態のアンテナ装置1と同様の構成を有する。第2比較例においては、配線間の寄生容量と、基板を挟んで設けられる一対の配線の寄生容量との合計が、容量部の静電容量に相当する。
 容量部の静電容量が0.5pFに設定され、全てのコンデンサのばらつきが±0.1pFである(すなわち、コンデンサの静電容量が0.4pF~0.6pFとなる)と仮定する(以下、単に「第1仮定」とする)。第1仮定の場合、第1比較例の容量部の静電容量は、0.4pF~0.6pFになる。もしくは、容量部の静電容量が0.75pFに設定され、全てのコンデンサのばらつきが±0.1pFであると仮定する(以下、単に「第2仮定」とする)。第2仮定の場合、第1比較例の容量部の静電容量は、0.65pF~0.85pFになる。このように第1比較例においては、容量部の静電容量は、±0.1pFのばらつきを有する。ここで、容量部の静電容量のばらつきは、アンテナ装置の共振周波数のピークのばらつきに相当する。例えばアンテナ装置がGPSに用いられる電波を送受信する場合、±0.1pFのばらつきは、共振周波数が所定の周波数から±80MHzばらつくことに相当する。このため、静電容量のばらつきによっては、所定の周波数を受信した際のアンテナ装置の利得は、理想値から大きく悪化することがある。したがって第1比較例においては、アンテナ装置の送受信特性が十分に発揮されないおそれがある。
 第2比較例においては、第1仮定及び第2仮定のいずれにおいても、容量部の静電容量の実測値は、少なくとも第1比較例よりもばらつく傾向にある。したがって、第2比較例におけるアンテナ装置の送受信特性は、第1比較例よりも十分に発揮されない可能性が高い。
 次に、本実施形態における容量部Cの静電容量のばらつきを検討する。まず、容量部Cに含まれる各コンデンサ13が同一の静電容量を有する場合の第1仮定を検討する。このとき、各コンデンサ13の静電容量は、上記式1,2に基づくと1.0pFとなる。上述したように、コンデンサ13のばらつきは±0.1pFと仮定されているので、コンデンサ13の合成容量に相当する容量部Cの静電容量の最低値は0.45pFとなり、その最大値は0.55pFとなる。この場合、容量部Cの静電容量のばらつきは、±0.05pFである。容量部Cに含まれる各コンデンサ13が異なる静電容量を有する場合の第1仮定を検討する。このとき、容量部Cの静電容量を0.5pFとするため、容量部Cに含まれる二つのコンデンサ13のうち、一方の静電容量を1.5pFとし、他方の静電容量を0.75pFとする。この場合、容量部Cの静電容量の最低値は0.56pFとなり、その最大値は0.44pFとなるので、容量部Cの静電容量のばらつきは、±0.06pFである。
 容量部Cに含まれる各コンデンサ13が同一の静電容量を有する場合の第2仮定を検討する。このとき、各コンデンサ13の静電容量は、上記式1,2に基づくと1.5pFとなる。コンデンサ13のばらつきは±0.1pFと仮定されているので、コンデンサ13の合成容量に相当する容量部Cの静電容量の最低値は0.8pFとなり、その最大値は0.7pFとなる。この場合、容量部Cの静電容量のばらつきは、±0.05pFである。加えて、容量部Cに含まれる各コンデンサ13が異なる静電容量を有する場合の第2仮定を検討する。このとき、容量部Cの静電容量を0.75pFとするため、容量部Cに含まれる二つのコンデンサ13のうち、一方の静電容量を1pFとし、他方の静電容量を3pFとする。この場合、容量部Cの静電容量の最低値は0.688pFとなり、その最大値は0.812pFとなるので、容量部Cの静電容量のばらつきは、±0.062pFである。
 したがって、本実施形態における容量部Cの静電容量は、上記第1及び第2仮定のいずれにおいても、容量部Cに含まれるコンデンサ13の静電容量の関係にかかわらず、第1及び第2比較例よりもばらつきにくくなっている。このため、本実施形態においては、所定の周波数を受信した際のアンテナ装置の利得は、第1及び第2比較例よりも悪化しにくくなっている。加えて、容量部Cの静電容量が複数のコンデンサ13の合成容量に相当することによって、容量部Cの静電容量のばらつき分布が小さくなる傾向にある。換言すると、容量部Cの静電容量が設定値もしくはその近傍になる確率が高くなる傾向にある。
 ここで、図4を参照しながら、容量部の静電容量の変化に伴うアンテナ装置の利得の影響について具体例を挙げて説明する。図4は、GPSに用いられる電波を送受信するアンテナ装置において、共振周波数に対する利得の一例を示したグラフである。図4において、横軸は周波数を示し、縦軸はゲイン(利得)を示す。図4に示されるように、容量部の静電容量が理想値である場合ではGPSに用いられる電波の周波数(約1575MHz)にて、このアンテナ装置の利得が最も大きくなるように設定されている。一方、容量部の静電容量が理想値から外れる場合、利得の最大値が上記周波数(約1575MHz)と異なる箇所に位置する。例えば、上記静電容量が大きくなるほど、利得の最大値は低周波数側に位置する。上記静電容量が小さくなるほど、利得の最大値は高周波数側に位置する。このため、当該アンテナ装置が上記周波数から離れた周波数で共振するほど、GPSに用いられる電波の周波数における利得が低減する。
 このようなアンテナ装置の容量部として上記第1比較例の容量部を適用する。この場合上述したように、共振周波数は、所定の周波数(約1575MHz)から最大で約±80MHzばらつく。この場合、所定の周波数におけるアンテナ装置の利得は、最大で9dB以上低減してしまう。上記第2比較例の容量部を適用した場合、所定の周波数におけるアンテナ装置の利得は、より低減してしまうことがある。これに対して、上記実施形態においては、容量部Cのばらつきは、最大で±0.05pFまで抑えられる。この場合、アンテナ装置の共振周波数のばらつきは、最大で約±40MHzまで抑えられる。このとき、所定の周波数におけるアンテナ装置の利得の減少は、最大でも約5dBになる。加えて本実施形態において、各コンデンサ13のばらつきを±0.05pFと仮定すると、容量部Cのばらつきは、最大で±0.025pFまで抑えられる。この場合、アンテナ装置の共振周波数のばらつきは、最大で約±18MHzまで抑えられる。このとき、所定の周波数におけるアンテナ装置の利得の減少は、最大でも約1dBまで抑えることができる。これらの結果から、容量部のばらつきを低減することによって、所定の周波数におけるアンテナ装置の利得のばらつきが低減することがわかる。
 以上の対比結果に鑑みると、本実施形態に係るアンテナ装置1によれば、例えば基板、当該基板上に設けられる配線等を利用して容量部を形成する第2比較例と比較して、容量部Cの静電容量のばらつきを抑えることができる。ここで、アンテナエレメント3に電気的に接続される容量部Cは、直列接続された二つのコンデンサ13を有している。このとき、直列接続された二つのコンデンサ13の合成容量を、容量部Cの静電容量に設定することができる。この場合、容量部に含まれるコンデンサが一つである第1比較例よりも、コンデンサ13に起因した容量部Cの静電容量のばらつき低減が可能になる。したがって、アンテナ装置1によれば、アンテナエレメント3に接続される付加容量を精度よく設定できる。
 アンテナ装置1は、基板2における第1領域11aに設けられるグラウンドパターンを備え、容量部Cは、基板2における第1領域11aとは異なる第2領域11b上に設けられている。このため、例えば容量部C内のコンデンサ13の静電容量がグラウンドパターンの影響を受けることを好適に防止できる。また、容量部Cにて、グラウンドパターンと、基板と、コンデンサ13同士を接続するための配線32とによるキャパシタの形成も防止できる。したがって、容量部Cの静電容量のばらつきをさらに低減できる。
 コンデンサ13のそれぞれは、同一の静電容量を有しており、コンデンサ13のそれぞれの静電容量は、容量部Cの静電容量と、容量部C内のコンデンサ13の数との積に相当してもよい。この場合、容量部Cの静電容量のばらつきが、良好に低減可能となる。
 アンテナ装置1は、給電部22,23を介した2点給電によって円偏波の電波を受信している。このため、アンテナ装置1が受信可能な波長を広帯域化できる。
 図5は、本実施形態の第1変形例に係るアンテナ装置の概略斜視図である。図5に示されるように、アンテナ装置1Aのアンテナエレメント3Aには給電部22,23が設けられておらず、金属板部21Aの中央から基板2に向かって延在する給電部25が設けられている。加えて、金属板部21Aには、開口部26a,26bが設けられている。開口部26a,26bは、互いに同一形状を呈してもよく、互いに異なる形状を呈してもよい。開口部26a,26bは、金属板部21Aの中心に対して点対称の関係であってもよい。このような第1変形例においては、製造コスト上昇の抑制を図りつつ、アンテナ装置1Aが受信可能な波長を広帯域化できる。金属板部に設けられる上記開口部は、一つでもよく、三つ以上でもよい。金属板部21Aには、開口部の代わりに切欠部が設けられてもよい。
 図6は、本実施形態の第2変形例に係るアンテナ装置の概略斜視図である。図6に示されるように、アンテナ装置1Bには、金属板部21を挟んで基板2と反対側にアンテナ41が設けられている。アンテナ41は、アンテナエレメント3とは異なる周波数帯の電波を受信するアンテナであり、金属板部21上に載置されるセラミックパッチアンテナである。このような第2変形例によれば、アンテナ装置1Bは、複数の周波数帯の電波を同時に送受信できる。アンテナ41は、アンテナエレメント3とは異なる周波数帯の電波を受信するアンテナであればよく、セラミックパッチアンテナに限定されない。
 本発明の一側面によるアンテナ装置は、上述した実施形態及び変形例に限られるものではなく、他に様々な変形が可能である。上記実施形態及び変形例は適宜組み合わせてもよい。例えば、第1変形例及び第2変形例を組み合わせ、アンテナ装置1A上にアンテナ41が設けられてもよい。第1変形例のように給電部が一つである場合、金属板部21には必ずしも開口部26a,26bが設けられなくてもよい。第1変形例においては、金属板部21に設けられる開口部の数は、限定されない。
 上記実施形態及び上記変形例において、主面11上には、グラウンドパターン、引き回し配線、及びアンテナエレメント3に対する容量が主に設けられ、主面12上には増幅回路等が主に設けられるが、これに限られない。例えば、グラウンドパターン及び増幅回路等は、主面11,12の両方に設けられてもよい。
 上記実施形態及び上記変形例において、主面11上に設けられるコンデンサ13のうち、少なくとも一つのコンデンサ13は、積層方向において金属板部21と重ならないように配置されてもよい。この場合、容量部Cの静電容量が金属板部21の影響を受けにくくなる。このため、アンテナエレメント3に接続される付加容量をより精度よく設定できる。
 上記実施形態及び上記変形例において、主面11上に設けられるコンデンサ13のうち、少なくとも一つのコンデンサ13は、積層方向においてシールドケース4と重ならないように配置されてもよい。この場合、シールドケース4と容量結合するコンデンサ13の数を低減できるので、容量部Cの静電容量がシールドケース4の影響を受けにくくなる。したがって、アンテナエレメント3に接続される付加容量をより精度よく設定できるので、アンテナ装置1の性能劣化を抑制できる。全てのコンデンサ13が、積層方向においてシールドケース4と重ならないように配置されてもよい。
 上記実施形態及び上記変形例において、各容量部Cの静電容量は、異なってもよい。例えば、容量部Cには、対応する金属脚部24に応じた最適な静電容量が設定されてもよい。すなわち、各容量部Cに含まれるコンデンサ13の数は異なってもよい。少なくとも一部の容量部Cに含まれるコンデンサ13の数は、一つでもよいし、二つ以上でもよい。例えば、容量部Cに含まれるコンデンサ13の数が三つであって、容量部Cの静電容量をαとし、各コンデンサ13の静電容量をβ1,β2,β3とした場合、下記式3が成立する。容量部Cに含まれる各コンデンサ13が同一の静電容量を有している場合、各コンデンサ13の静電容量をβ1とすると、容量部Cの静電容量αはβ1/3となる。このため、容量部Cに含まれるコンデンサ13の数が三つ以上であっても、容量部Cに含まれる各コンデンサ13が同一の静電容量を有している場合、容量部Cに含まれる各コンデンサ13の静電容量は、当該容量部Cの静電容量と、当該容量部Cに含まれるコンデンサ13の数との積に相当する。
  式3:1/α=1/β1+1/β2+1/β3
 上記実施形態及び上記変形例において、容量部Cに含まれるコンデンサ13の数が三つ以上である場合、全てのコンデンサ13は、同一の静電容量を有してもよい。これにより、容量部Cの静電容量のばらつきをより良好に低減可能になる。加えて、容量部Cの静電容量のばらつき分布がより小さくなる傾向にある。第2領域11bの一部には、容量部Cが設けられなくてもよい。
 上記実施形態及び上記変形例において、容量部Cを構成するコンデンサ13の少なくとも一部は、主面12上に設けられてもよい。この場合、容量部Cの静電容量を確保しつつ、第2領域11bの面積を縮小することができる。容量部C内の少なくとも一つのコンデンサ13は、金属板部21と重ならないように配置されてもよい。この場合、容量部Cの静電容量が金属板部21の影響を受けにくくなる。このため、アンテナエレメント3に接続される付加容量をより精度よく設定できる。容量部Cが設けられる第2領域11bは、必ずしも基板2の角部2aに設けられなくてもよい。したがって、コンデンサ13の一部は、基板2の角部2a以外に設けられてもよい。
 上記実施形態及び上記変形例において、シールドケース4の主部4aは、少なくとも一部のコンデンサ13に重なるように設けられるが、これに限られない。例えば、主部4aは、全てのコンデンサ13に重なるように設けられてもよいし、全てのコンデンサ13に重ならないように設けられてもよい。
 1,1A,1B…アンテナ装置、2…基板、2a…角部、3…アンテナエレメント、4…シールドケース、4a…主部、4b…壁部、5…ケーブル、11,12…主面、11a…第1領域、11b…第2領域、13…コンデンサ、14…貫通孔、21,21A…金属板部、21a…角、21b,21c…切欠部、22,23,25…給電部、24…金属脚部、26a,26b…開口部、31…配線、32…配線、41…アンテナ、C…容量部。

Claims (8)

  1.  車載用のアンテナ装置であって、
     互いに対向する一対の主面を有する基板と、
     一方の前記主面上に設けられると共に一方の前記主面に対して離間して配置された金属板部、及び前記金属板部から前記基板に向かって延在すると共に前記基板に固定される金属脚部を有するアンテナエレメントと、
     前記アンテナエレメントに電気的に接続される容量部と、を備え、
     前記容量部は、前記金属脚部を介して前記金属板部に電気的に接続されると共に、直列接続された二つ以上のコンデンサを有している、
    アンテナ装置。
  2.  前記基板における第1領域に設けられるグラウンドパターンをさらに備え、
     前記容量部は、前記基板における前記第1領域とは異なる第2領域上に設けられる、請求項1に記載のアンテナ装置。
  3.  前記コンデンサのそれぞれは、同一の静電容量を有しており、
     前記コンデンサのそれぞれの静電容量は、前記容量部の静電容量と、前記容量部内の前記コンデンサの数との積に相当する、請求項1または2に記載のアンテナ装置。
  4.  前記コンデンサは、一方の前記主面上に設けられており、
     少なくとも一つの前記コンデンサは、前記金属板部と重ならないように配置される、請求項1~3のいずれか一項に記載のアンテナ装置。
  5.  2点給電によって円偏波の電波を受信する、請求項1~4のいずれか一項に記載のアンテナ装置。
  6.  前記金属板部の一部には開口部が設けられている、請求項1~4のいずれか一項に記載のアンテナ装置。
  7.  前記基板を挟んで前記アンテナエレメントの反対側に設けられるシールドケースをさらに備え、
     少なくとも一つの前記コンデンサは、前記シールドケースと重ならないように配置される、請求項1~6のいずれか一項に記載のアンテナ装置。
  8.  前記アンテナエレメントを挟んで前記基板と反対側に設けられ、前記アンテナエレメントとは異なる周波数帯の電波を受信するアンテナをさらに備える、請求項1~7のいずれか一項に記載のアンテナ装置。
PCT/JP2018/016297 2017-05-01 2018-04-20 アンテナ装置 WO2018203485A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880028324.2A CN110612640B (zh) 2017-05-01 2018-04-20 天线装置
DE112018002310.9T DE112018002310B4 (de) 2017-05-01 2018-04-20 Antennenvorrichtung
US16/606,594 US11228109B2 (en) 2017-05-01 2018-04-20 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-091334 2017-05-01
JP2017091334A JP6518285B2 (ja) 2017-05-01 2017-05-01 アンテナ装置

Publications (1)

Publication Number Publication Date
WO2018203485A1 true WO2018203485A1 (ja) 2018-11-08

Family

ID=64016094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016297 WO2018203485A1 (ja) 2017-05-01 2018-04-20 アンテナ装置

Country Status (5)

Country Link
US (1) US11228109B2 (ja)
JP (1) JP6518285B2 (ja)
CN (1) CN110612640B (ja)
DE (1) DE112018002310B4 (ja)
WO (1) WO2018203485A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600873A (zh) * 2019-08-26 2019-12-20 刘扬 一种利用地电位金属板辐射技术的圆极化天线及其设计方法
WO2021000140A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 天线振子及天线振子的制作方法
WO2023127765A1 (ja) * 2021-12-28 2023-07-06 Agc株式会社 アンテナ装置及び車両用アンテナ装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368134B2 (ja) * 2019-07-26 2023-10-24 株式会社ヨコオ アンテナ装置
JP6921917B2 (ja) * 2019-10-01 2021-08-18 原田工業株式会社 アンテナモジュール
KR102238515B1 (ko) * 2019-11-22 2021-04-09 주식회사 에이스테크놀로지 차량용 광대역 안테나
JP7203883B2 (ja) * 2021-03-31 2023-01-13 原田工業株式会社 複合アンテナ装置
CN113871854A (zh) * 2021-09-17 2021-12-31 深圳市玛雅通讯设备有限公司 一种超带宽抗干扰高增益圆极化gps弹片天线
KR20240127723A (ko) * 2023-02-16 2024-08-23 엘지이노텍 주식회사 다중 안테나
CN115986379B (zh) * 2023-02-23 2023-06-06 苏州浪潮智能科技有限公司 一种平面天线及无线通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070879A1 (ja) * 2003-02-03 2004-08-19 Matsushita Electric Industrial Co., Ltd. アンテナ装置とそれを用いた無線通信装置
JP2004312221A (ja) * 2003-04-04 2004-11-04 Sony Corp アンテナ装置
JP2005143027A (ja) * 2003-11-10 2005-06-02 Alps Electric Co Ltd アンテナ装置
JP2005167960A (ja) * 2003-11-12 2005-06-23 Alps Electric Co Ltd 円偏波アンテナ
US20070279304A1 (en) * 2006-05-30 2007-12-06 Guy-Aymar Chakam Antenna module for a motor vehicle
JP2008193204A (ja) * 2007-02-01 2008-08-21 Mitsumi Electric Co Ltd アンテナ装置
JP2008271326A (ja) * 2007-04-23 2008-11-06 Toyota Motor Corp 車両用アンテナ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021606A1 (en) * 2002-07-11 2004-02-05 Alps Electric Co., Ltd. Small plane antenna and composite antenna using the same
DE102007047279A1 (de) 2007-10-02 2009-04-09 Wilhelm Karmann Gmbh Fertigungsanlage, insbesondere für Karosserieeinheiten
CN106463832B (zh) 2014-04-30 2019-04-26 株式会社村田制作所 天线装置和电子设备
DE102015220372B3 (de) 2015-10-20 2016-10-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Multiband-GNSS Antenne

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070879A1 (ja) * 2003-02-03 2004-08-19 Matsushita Electric Industrial Co., Ltd. アンテナ装置とそれを用いた無線通信装置
JP2004312221A (ja) * 2003-04-04 2004-11-04 Sony Corp アンテナ装置
JP2005143027A (ja) * 2003-11-10 2005-06-02 Alps Electric Co Ltd アンテナ装置
JP2005167960A (ja) * 2003-11-12 2005-06-23 Alps Electric Co Ltd 円偏波アンテナ
US20070279304A1 (en) * 2006-05-30 2007-12-06 Guy-Aymar Chakam Antenna module for a motor vehicle
JP2008193204A (ja) * 2007-02-01 2008-08-21 Mitsumi Electric Co Ltd アンテナ装置
JP2008271326A (ja) * 2007-04-23 2008-11-06 Toyota Motor Corp 車両用アンテナ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000140A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 天线振子及天线振子的制作方法
CN110600873A (zh) * 2019-08-26 2019-12-20 刘扬 一种利用地电位金属板辐射技术的圆极化天线及其设计方法
WO2023127765A1 (ja) * 2021-12-28 2023-07-06 Agc株式会社 アンテナ装置及び車両用アンテナ装置

Also Published As

Publication number Publication date
DE112018002310B4 (de) 2023-07-06
US20210119337A1 (en) 2021-04-22
US11228109B2 (en) 2022-01-18
CN110612640B (zh) 2020-12-04
DE112018002310T5 (de) 2020-01-30
JP6518285B2 (ja) 2019-05-22
JP2018191111A (ja) 2018-11-29
CN110612640A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2018203485A1 (ja) アンテナ装置
US7855689B2 (en) Antenna apparatus for radio communication
JP6964601B2 (ja) アンテナ装置
JP2022095953A (ja) アンテナ装置
US8947315B2 (en) Multiband antenna and mounting structure for multiband antenna
US10418710B2 (en) Antenna for the reception of circularly polarized satellite radio signals for satellite navigation on a vehicle
US11784396B2 (en) Antenna and wireless earbud comprising the same
JPWO2014073355A1 (ja) アレーアンテナ
JP4103936B2 (ja) アンテナ構造およびそれを備えた無線通信機
US10262252B2 (en) Wireless communication device and article equipped with the same
US11240909B2 (en) Antenna device
US11469504B2 (en) Electronic device and antenna structure thereof
JP2008177888A (ja) 多周波アンテナ
US11152693B2 (en) Antenna device
JP2023058579A (ja) アンテナ装置
JP4568355B2 (ja) アンテナ装置
US11271310B2 (en) Antenna device
JP2009194783A (ja) パターンアンテナ及びパターンアンテナを親基板に実装したアンテナ装置
WO2012039465A1 (ja) アンテナ装置
JP2002252515A (ja) アンテナ装置
US11336027B2 (en) Filtering proximity antenna array
US20110148728A1 (en) Chip antenna
WO2020153420A1 (ja) 車載アンテナ装置
JP2013197682A (ja) アンテナ装置
JP6909766B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794984

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18794984

Country of ref document: EP

Kind code of ref document: A1