DE102015220372B3 - Multiband-GNSS Antenne - Google Patents

Multiband-GNSS Antenne Download PDF

Info

Publication number
DE102015220372B3
DE102015220372B3 DE102015220372.7A DE102015220372A DE102015220372B3 DE 102015220372 B3 DE102015220372 B3 DE 102015220372B3 DE 102015220372 A DE102015220372 A DE 102015220372A DE 102015220372 B3 DE102015220372 B3 DE 102015220372B3
Authority
DE
Germany
Prior art keywords
dielectric resonator
antenna
resonator antenna
base plate
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015220372.7A
Other languages
English (en)
Inventor
Stefano Caizzone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority to DE102015220372.7A priority Critical patent/DE102015220372B3/de
Application granted granted Critical
Publication of DE102015220372B3 publication Critical patent/DE102015220372B3/de
Priority to EP16194780.9A priority patent/EP3159967B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas
    • H01Q9/0492Dielectric resonator antennas circularly polarised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Multiband-GNSS Antenne (10), mit einer elektrischen leitenden Grundplatte (12), einer ersten dielektrischen Resonatorantenne (14), die auf der Grundplatte (12) angeordnet ist, gekennzeichnet durch eine auf der der Grundplatte (12) abgewandten Seite unmittelbar über der ersten dielektrischen Resonatorantenne (14) angeordnete zweite dielektrische Resonatorantenne (16), wobei die erste dielektrische Resonatorantenne (14) und die zweite dielektrische Resonatorantenne (16) unterschiedliche Durchmesser und damit unterschiedliche Resonanzfrequenzen aufweisen. Die erfindungsgemäße Multibandantenne kann somit besonders klein ausgebildet werden und erzielt trotzdem eine gute Empfangsleistung und Bandbreite in zwei oder mehr GNSS Bändern.

Description

  • Die Erfindung eine Multiband-GNSS Antenne.
  • Bei Einsatz von GNSS Antennen beispielsweise in Kraftfahrzeugen oder Flugzeugen, wurden große Bemühungen unternommen, um die aus dem Stand der Technik bekannten Antennen kleiner zu gestalten. Dies ist insbesondere deswegen von Bedeutung, da GNSS Antennen häufig außerhalb eines Fahrzeugs oder zumindest an der Außenfläche eines Fahrzeugs oder eines Flugzeugs angebracht werden müssen. Um GNSS Antennen daher besser in Fahrzeuge, Flugzeuge etc. integrieren zu können, wird ständig versucht, diese Antennen kleiner zu gestalten.
  • Diese Bemühungen gehen in den meisten Fällen mit Verlusten in der Leistungsfähigkeit der Antennen einher (was den maximal erzielbaren Gain und die verfügbare Bandbreite angeht). Somit muss ein optimaler Kompromiss zwischen noch akzeptabler Leistungsfähigkeit und reduzierten Dimensionen einer Antenne gefunden werden.
  • Im Hinblick auf eine verringerte Störungsanfälligkeit ist es ferner von Nutzen, Multiband-GNSS Antennen zu verwenden, so dass so viele Signalbänder wie möglich abgedeckt werden können. Die Verwendung von Multiband-GNSS Antennen ist jedoch bei Antennen mit sehr geringen Ausmaßen nicht oder nur sehr schwer möglich.
  • Weiterhin ist es bekannt, Antennen-Arrays zu verwenden. Diese sind vorteilhaft, um Interferenzen zu unterdrücken, indem beispielsweise vom Satelliten stammende Signale maximiert und Störsignale aus anderen Richtungen minimiert werden.
  • Kommerziell verfügbare GNSS Antennen können mittlerweile Abmessungen von ca. 1 cm aufweisen und können beispielsweise in Mobiltelefonen verwendet werden. Allerdings wird hierfür eine starke Einschränkung der Leistungsfähigkeit in Kauf genommen: So liegt beispielsweise der erzielbare Gain weit unter 0 dBi. Weiterhin stehen nur einige MHz an Bandbreite (im L1/E1 Band) zur Verfügung. Weiterhin verhalten sich die Antennen hinsichtlich ihrer Polarisation weitestgehend linear, während eine RHCP Polarisation (Right Hand Circular Polarisation) wünschenswert wäre. Dies entspricht der Polarisation der Satellitensignale. Derartige Antennen können somit nicht für eine präzise und störungsunanfällige Navigation verwendet werden.
  • Sollen dagegen Multiband Antennen eingesetzt werden, die mehrere Frequenzbänder abdecken, zum Beispiel das L1/E1 Band als auch eines oder mehrere der E5/L2/E6 Bänder, so müssen größere Antennenelemente verwendet werden. Weiterhin müssen für die Anpassung an die unterschiedlichen Frequenzbänder spezielle Maßnahmen getroffen werden. Im Stand der Technik existieren entweder Antennen, die zwar multibandfähig sind, deren Bandbreite aber mit der Größe der Antenne abnimmt oder aber es sind Breitbandantennen bekannt, die das gesamte L Band und nicht lediglich die Navigationssignalbänder abdecken. Letztere können allerdings nur sehr beschränkt miniaturisiert werden.
  • Bisherige aus dem Stand der Technik bekannte GNSS Antennen, die sowohl die oberen Bänder (L1/E1) als auch eins oder mehrere der unteren Bänder (E5/L2/E6) abdecken, weisen bisher Abmessungen von mindestens 3,5 cm × 3,5 cm auf.
  • WO 01/31746 A1 beschreibt verschiedene dielektrische Resonatorantennen, die beispielsweise aus mehreren übereinander angeordneten Zylindern bestehen können. Ähnliche dielektrische Resonatorantennen, die übereinander angeordnet sind, sind in US 6,292,141 B1 beschrieben.
  • Aufgabe der Erfindung ist es, eine Multiband-GNSS Antenne mit reduzierten Abmessungen bereit zu stellen.
  • Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
  • Die erfindungsgemäße Multiband-GNSS Antenne umfasst eine elektrisch leitende Grundplatte sowie eine erste dielektrische Resonatorantenne, die auf der Grundplatte angeordnet ist. Soweit entspricht die erfindungsgemäße GNSS Antenne aus dem Stand der Technik bekannten dielektrischen Resonatorantennen.
  • Erfindungsgemäß ist auf der der Grundplatte abgewandten Seite unmittelbar über der ersten dielektrischen Resonatorantenne eine zweite dielektrische Resonatorantenne angeordnet. Unter unmittelbar wird verstanden, dass zwischen der ersten und der zweiten dielektrischen Resonatorantenne keine weiteren Komponenten angeordnet sind, so dass die erste dielektrische Resonatorantenne die zweite dielektrische Resonatorantenne berührt. Sind beispielsweise die erste und zweite dielektrische Resonatorantenne kreiszylinderförmig ausgebildet, so kann die untere Grundfläche der zweiten dielektrischen Resonatorantenne vollflächig an der oberen Grundfläche der ersten dielektrische Resonatorantenne anliegen. Zwischen den beiden dielektrischen Resonatorantennen kann eine Klebeschicht angeordnet sein, um die beiden Antennen miteinander zu verbinden. Ferner kann die erste dielektrische Resonatorantenne mittels eines Klebers auf der Grundplatte fixiert sein. Erfindungsgemäß weisen die erste dielektrische Resonatorantenne und die zweite dielektrische Resonatorantenne unterschiedliche Durchmesser und damit unterschiedliche Resonanzfrequenzen auf.
  • Die erfindungsgemäße Multiband-GNSS Antenne kann entlang eines breiteren Frequenzbandes verwendet werden, obwohl sie kleinere Dimensionen aufweist. Beispielsweise kann bei der Wahl eines geeigneten Materials für die elektrischen Resonatorantennen sowohl im oberen als auch im unteren Navigationsband ein Gain von mehr als 0 dBi erreicht werden, während die Antennengröße 3,5 cm × 3,5 cm × 4 cm nicht überschreitet. Hierfür kann beispielsweise ein glaskeramisches Material verwendet werden, das eine dielektrische Konstante zwischen 30 und 35 aufweist. Die erfindungsgemäße Antenne kann somit besonders klein aufgebaut werden und dennoch eine gute Leistungsfähigkeit und Bandbreite in zwei oder mehr GNSS Bändern erzielen. Sie kann somit besonders vorteilhaft in mobilen Applikationen wie beispielsweise Autos, Flugzeuge, UAV's, Drohnen etc. eingesetzt werden.
  • Es ist bevorzugt, dass eine der elektrischen Resonatorantennen, insbesondere die erste dielektrische Resonatorantenne eine Resonanzfrequenz im Band zwischen 1164 bis 1214 MHz oder 1215 bis 1239,6 MHz oder 1260 bis 1300 MHz aufweist, während die andere Antenne, insbesondere die zweite dielektrische Resonatorantenne eine Resonanzfrequenz im Band zwischen 1563 bis 1587 MHz aufweist.
  • Weiterhin ist es bevorzugt, dass die erste und zweite dielektrische Resonatorantenne ein keramisches oder glaskeramisches Material aufweisen.
  • Ferner ist es bevorzugt, dass jede dielektrische Resonatorantenne auf ihrer Oberseite, das heißt der der Grundplatte abgewandten Seite einen Metalldeckel aufweist, wobei der Metalldeckel der ersten dielektrische Resonatorantenne als Grundplatte für die zweite dielektrische Resonatorantenne dient. Der Metalldeckel kann die jeweilige dielektrische Resonatorantenne vollständig oder nur teilweise abdecken. Weiterhin ist es möglich, dass die erste dielektrische Resonatorantenne einen Metalldeckel aufweist und die zweite nicht. Der Metalldeckel der ersten dielektrischen Resonatorantenne wird als Teil der ersten dielektrischen Resonatorantenne angesehen und ist erfindungsgemäß neben einer eventuellen Klebeschicht das einzige Element, das sich zwischen dem dielektrischen Material der ersten dielektrischen Resonatorantenne und dem dielektrischen Material der zweiten dielektrischen Resonatorantenne befindet.
  • Erfindungsgemäß ist es vorgesehen, dass beide dielektrische Resonatorantennen mit zwei gemeinsamen Anschlussleitungen verbunden sind, über die die elektrischen Signale abgeführt werden, die von den Antennen empfangen werden.
  • Die zwei gemeinsamen Anschlussleitungen erstrecken sich von der Grundplatte entlang der Außenwand der ersten dielektrischen Resonatorantenne zur zweiten dielektrischen Resonatorantenne und vorzugsweise entlang zumindest einen Teils der Außenwand der zweiten dielektrischen Resonatorantenne. Es ist bevorzugt, dass die beiden Anschlussleitungen in einem rechten Winkel zur Grundplatte und bevorzugt anliegend an der Mantelfläche der ersten dielektrischen Resonatorantenne bzw. der ersten und zweiten dielektrischen Resonatorantenne verlaufen.
  • Weiterhin ist es bevorzugt, dass die beiden Anschlussleitungen in einem Winkel von 90° zueinander relativ zur Mittelachse der beiden dielektrischen Resonatorantennen angeordnet sind. Jede Anschlussleitung ist somit einem elektrischen Signal auf der x- und y-Achse zugeordnet, die relativ zueinander um 90° phasenversetzt sind. Somit kann eine RHCP-Polarisation der Antenne erreicht werden (Right Hand Circular Polarisation). Bevorzugt sind die Anschlussleitungen als Metallstreifen ausgebildet, die an der Mantelfläche des oder der beiden dielektrischen Resonatorantennen anliegen.
  • Es ist weiterhin erfindungsgemäß vorgesehen, dass die beiden Anschlussleitungen eine frequenzabhängige Anpassvorrichtung aufweisen, durch die abhängig von der Frequenz des über die beiden Anschlussleitungen abgeführten Signals ein Anpassen der wirksamen Länge der Anschlussleitungen erfolgt. Somit kann die wirksame Länge der beiden Anschlussleitungen für die erste dielektrische Resonatorantenne an die Resonanzfrequenz der ersten dielektrischen Resonatorantenne angepasst werden, während die wirksame Länge der Anschlussleitungen für die zweite dielektrische Resonatorantenne an die Resonanzfrequenz der zweiten dielektrischen Resonatorantenne angepasst wird. Dies ist von großer Wichtigkeit, da die Abmessungen und insbesondere die Länge der Anschlussleitung auf die Resonanzfrequenz einer Antenne angepasst werden müssen, so dass eine optimale Anpassung an das zu bedienende Frequenzband erreicht werden kann. Da die erfindungsgemäße GNSS Antenne multibandfähig, insbesondere dualbandfähig ist, ist es wichtig, eine Möglichkeit bereit zu stellen, die wirksame Länge der Anschlussleitungen, die mit den beiden dielektrischen Resonatorantennen in Kontakt sind, für jede Antenne separat zu bestimmen. Dies kann durch die erfindungsgemäße frequenzabhängige Längenanpassvorrichtung erfolgen, ohne dass es notwendig ist, für jede dielektrische Resonatorantenne zwei separate Anschlussleitungen vorzusehen.
  • Die Längenanpassvorrichtung kann beispielsweise ausgebildet sein zum Blockieren eines Signals mit der der ersten dielektrische Resonatorantenne zugeordneten Frequenz und zum Weiterleiten eines Signals mit der der zweiten dielektrischen Resonatorantenne zugeordneten Frequenz. Beispielsweise kann die Längenanpassvorrichtung hierzu als Resonanzschaltung ausgebildet sein. Hierzu können elektrische Komponenten wie beispielsweise Kondensatoren, Widerstände etc. verwendet werden. Alternativ ist es möglich, die genannte Funktion durch einen besonderen geometrischen Aufbau der Anschlussleitungen zu erreichen, ohne dass hierfür explizit elektrische Komponenten, wie beispielsweise Widerstände, Kondensatoren etc., verwendet werden müssen. Derartige Vorrichtungen zum Blockieren bestimmter Frequenzen und Weiterleiten andere Frequenzen sind aus dem Stand der Technik bekannt und werden üblicherweise als ”RF Trap” bezeichnet.
  • Eine derartige Vorrichtung hat somit den Effekt, dass sie für die Frequenz der zweiten dielektrischen Resonatorantenne durchlässig ist, so dass die wirksame Länge der beiden Anschlussleitungen für die zweite dielektrische Resonatorantenne länger ist als die wirksame Länge der beiden Anschlussleitungen für die erste dielektrische Resonatorantenne, für deren Frequenz die Längenanpassvorrichtung nicht durchlässig ist.
  • Weiterhin ist es möglich, dass der Teil der Anschlussleitungen, der zweiten dielektrische Resonatorantenne elektromagnetisch mit dem Teil der Anschlussleitungen der ersten dielektrischen Resonatorantenne gekoppelt ist. Anders ausgedrückt ist der Teil der Anschlussleitung der zweiten dielektrischen Resonatorantenne somit galvanisch vom Teil der Anschlussleitungen der ersten dielektrischen Resonatorantenne getrennt und nur für Signale einer bestimmten Frequenz oder eines bestimmten Frequenzbereichs durchlässig.
  • Ein ähnlicher Effekt kann erzielt werden durch Verwendung eines Metamaterials für die Längenanpassvorrichtung. Für den gleichen Zweck kann ferner ein Splitringresonator (SRR) verwendet werden.
  • In einer weiteren bevorzugten Ausführungsform erfolgt durch die Anschlussleitungen ausschließlich ein Versorgen der ersten dielektrischen Resonatorantenne, wobei der Metalldeckel, der als Grundplatte für die zweite dielektrische Resonatorantenne dient, als elektromagnetische Koppelvorrichtung zum Koppeln des durch die erste dielektrische Resonatorantenne erzeugten elektrischen Felds mit der zweiten dielektrischen Resonatorantenne ausgebildet ist. Zu diesem Zweck kann beispielsweise der genannte Metalldeckel Schlitze aufweisen, die in der Figurenbeschreibung näher dargestellt werden.
  • Weiterhin ist es bevorzugt, dass die erste und zweite dielektrische Resonatorantenne eine kreiszylindrische Form aufweisen und insbesondere konzentrisch zueinander angeordnet sind.
  • Die erfindungsgemäße Antenne kann als einzelne Antenne oder aber alternativ in einem Antennen-Array verwendet werden. Ein Antennen-Array kann sämtliche Merkmale der bisher beschriebenen Antennen aufweisen und kann dazu verwendet werden, von einem Satelliten stammende Signale zu verstärken und von Störquellen stammende Signale, die aus einer anderen Richtung kommen, abzuschwächen. Somit kann eine geringere Störanfälligkeit erreicht werden.
  • In einer bevorzugten Ausführungsform sind auf einer Grundplatte mehrere, insbesondere vier, erste dielektrische Resonatorantennen und mehrere, insbesondere vier, zweite dielektrische Resonatorantennen nebeneinander angeordnet. Hierbei kann die Grundplatte insbesondere kreisförmig ausgebildet sein und beispielsweise eine Durchmesser von weniger als 9 cm aufweisen. Bei der genannten Ausführungsform können auch mehr oder weniger als vier dielektrische Resonatorantennen auf einer einzigen Grundplatte angeordnet sein.
  • Im Folgenden werden bevorzugte Ausführungsformen der Erfindung anhand von Figuren erläutert.
  • Es zeigen:
  • 1a eine Schrägansicht einer ersten Ausführungsform der erfindungsgemäßen Vorrichtung
  • 1b eine Draufsicht derselben Ausführungsform wie in 1a,
  • 2 eine Schrägansicht einer zweiten Ausführungsform der erfindungsgemäßen Vorrichtung,
  • 3 eine Schrägansicht einer dritten Ausführungsform der erfindungsgemäßen Vorrichtung,
  • 4a eine Schrägansicht einer vierten Ausführungsform der erfindungsgemäßen Vorrichtung,
  • 4b eine Draufsicht derselben Ausführungsform wie in 4a.
  • Gemäß 1a ist die erfindungsgemäße Multiband-GNSS Antenne 10 auf einer Grundplatte 12 angeordnet. Sie weist eine erste dielektrische Resonatorantenne 14 sowie eine unmittelbar über dieser angeordnete zweite dielektrische Resonatorantenne 16 auf. Beide dielektrischen Resonatorantennen 14, 16 sind im Querschnitt kreiszylindrisch ausgebildet, wobei die zweite dielektrische Resonatorantenne 16 entlang ihrer unteren Grundfläche an der oberen Grundfläche der ersten dielektrische Resonatorantenne 14 anliegt. Auf der oberen Seite jeder dielektrischen Resonatorantenne 14, 16, das heißt an der von der Grundplatte 12 abgewandten Seite, ist jeweils eine Metallplatte 18, 20 angeordnet. Die Metallplatte auf der ersten dielektrischen Resonatorantenne 14 kann in ihrem Durchmesser kleiner als der Durchmesser der zweiten dielektrischen Resonatorantenne 16 sein, so dass durch die Metallplatte die Anschlussleitungen 22, 23 nicht kurzgeschlossen werden. Hierdurch ist es möglich, eine weitere Verringerung der Abmessungen der erfindungsgemäßen Antenne 10 zu erreichen. Hierbei dient die Metallplatte 18 der ersten dielektrischen Resonatorantenne 14 als Grundplatte für die zweite dielektrische Resonatorantenne 16.
  • Entlang der Mantelfläche der ersten dielektrischen Resonatorantenne 14 verlaufen anliegend an dieser die beiden Anschlussleitungen 22, 23, durch die beide dielektrischen Resonatorantennen 14, 16 versorgt werden. Die Anschlussleitungen 22, 23 verlaufen somit in der dargestellten Ausführungsform in einem rechten Winkel zur Grundplatte 12 in axialer Richtung entlang der gesamten axialen Länge der Mantelfläche der ersten dielektrischen Resonatorantenne 14 und entlang eines Teils der axialen Länge der zweiten dielektrischen Resonatorantenne 16 anliegend an deren Mantelfläche. Der erste Teil der Anschlussleitung 22, 23, der an der ersten dielektrischen Resonatorantenne anliegt, ist als 22a bzw. 23a gekennzeichnet, während der zweite Teil, der an der zweiten dielektrischen Resonatorantenne 16 anliegt, als 22b bzw. 23b gekennzeichnet ist. Ein mittlerer Teil der Anschlussleitungen 22, 23, der zwischen deren ersten Teil 22a, 23a und deren zweiten Teil 22b, 23b angeordnet ist, verläuft nicht entlang der Mantelfläche der ersten dielektrischen Resonatorantenne 14, sondern entlang eines Teils der oberen Grundfläche der ersten dielektrischen Resonatorantenne 14 und zwar ausgehend von deren Umfang in radialer Richtung nach innen bis zum geringeren Umfang der zweiten dielektrischen Resonatorantenne 16.
  • Im Bereich des ersten Teils 22a, 23a der Anschlussleitungen 22, 23 ist an der Mantelfläche der ersten dielektrischen Resonatorantenne 14 eine erste und zweite Längenanpassvorrichtung 24, 26 angeordnet, durch die eine Anpassung der wirksamen Länge der Anschlussleitungen 22, 23 erfolgt, die auf die erste dielektrische Resonatorantenne 14 wirkt. Die axiale Position, an der die Längenanpassvorrichtungen 24, 26 entlang der axialen Erstreckung der ersten dielektrischen Resonatorantenne 14 angeordnet sind, wird hierbei in Abhängigkeit von der Resonanzfrequenz der ersten dielektrischen Resonatorantenne 14 und damit in Abhängigkeit von deren Durchmesser gewählt.
  • In 1b ist eine Draufsicht auf dieselbe erste Ausführungsform wie in 1a dargestellt. Hier sind die obere Grundfläche der zweiten dielektrischen Resonatorantenne 16 sowie ein Teil der oberen Grundfläche der ersten dielektrischen Resonatorantenne 14 von oben sichtbar. Wie erkennbar ist, sind die beiden dielektrischen Resonatorantennen 14, 16 konzentrisch zueinander und insbesondere konzentrisch zur kreisförmigen Grundplatte 12 angeordnet. Die Grundplatte kann in alternativen Ausführungsformen auch andere geometrische Formen aufweisen.
  • Eine weitere alternative Ausführungsform einer erfindungsgemäßen Multibband-GNSS Antenne ist in 2 dargestellt. Hierbei weist die untere Metallplatte 18, mit der die obere Grundfläche der ersten dielektrischen Resonatorantenne abgedeckt ist, ausgehend von ihrem Umfang in radialer Richtung zu ihrem Mittelpunkt hin vier Schlitze 28a bis 28d auf, durch die eine Kopplung der zweiten dielektrischen Resonatorantenne 16 an die erste dielektrische Resonatorantenne erfolgt, indem das elektrische Feld der ersten dielektrischen Resonatorantenne 14 mit der zweiten dielektrischen Resonatorantenne gekoppelt wird. An Stelle der vier Schlitze 28a28d können auch mehr oder weniger Schlitze vorgesehen sein. Entsprechend müssen die beiden Anschlussleitungen 22, 23 sich nicht in axialer Richtung bis zur zweiten dielektrischen Resonatorantenne erstrecken, sondern verlaufen nur bis zur ersten dielektrischen Resonatorantenne 14. Diese wird somit hauptsächlich durch die Anschlussleitungen 22, 23 versorgt, während die obere dielektrische Resonatorantenne 16 durch die beschriebene Kopplung angesteuert wird. Die weiteren Merkmale dieser Ausführungsform entsprechen dem bisher beschriebenen Merkmal der erfindungsgemäßen Antenne 10.
  • Eine dritte Ausführungsform der erfindungsgemäßen Multiband-GNSS Antenne ist in 3 dargestellt. Im Unterschied zur Ausführungsform gemäß 2 erstrecken sich hier die Anschlussleitungen 22a, 22b, 23a, 23b bis zur zweiten dielektrischen Resonatorantenne 16. Hierbei liegt der jeweils erste Teil 22a, 23a der Anschlussleitungen an der ersten Resonatorantenne 14 an, während der zweite Teil 22b, 23b an der zweiten Resonatorantenne 16 anliegt. Der erste Teil 22a, 23a weist als Längenanpassvorrichtung 24, 26 eine sogenannte RF-Trap auf. Diese kann nur von solchen Frequenzen passiert werden, die der zweiten dielektrischen Resonatorantenne 16 zugeordnet sind, während die Frequenzen der ersten dielektrischen Resonatorantenne 14 geblockt werden.
  • Eine alternative Ausführungsform einer erfindungsgemäßen GNSS Antenne 10 ist in den 4a und 4b dargestellt. Hier sind auf einer einzigen Grundplatte 12 vier Einzelantennen angeordnet, die jeweils ein erste dielektrische Resonatorantenne 14a bis 14d und eine zweite dielektrische Resonatorantenne 16a bis 16d. Jede dieser dielektrischen Resonatorantennen ist hierbei gemäß den bisher beschriebenen Merkmalen ausgebildet. Die vier Einzelantennen sind bevorzugt gleichmäßig auf der kreisförmigen Grundplatte 12 beispielsweise in Form eines Quadrats angeordnet. Hierdurch ist es möglich, die Grundplatte mit einem Durchmesser von weniger als 9 cm auszugestalten, so dass eine besonders kompakte Multiband-GNSS Antenne bereitgestellt werden kann. Die übrigen Merkmale dieser Ausführungsform entsprechen den bisher beschriebenen Merkmalen der erfindungsgemäßen Vorrichtung 10.

Claims (12)

  1. Multiband-GNSS Antenne (10), mit einer elektrischen leitenden Grundplatte (12), einer ersten dielektrischen Resonatorantenne (14), die auf der Grundplatte (12) angeordnet ist, mit einer auf der der Grundplatte (12) abgewandten Seite unmittelbar über der ersten dielektrischen Resonatorantenne (14) angeordneten zweiten dielektrische Resonatorantenne (16), wobei die erste dielektrische Resonatorantenne (14) und die zweite dielektrische Resonatorantenne (16) unterschiedliche Durchmesser und damit unterschiedliche Resonanzfrequenzen aufweisen, dadurch gekennzeichnet, dass beide dielektrische Resonatorantennen (14, 16) über zwei gemeinsame Anschlussleitungen (22, 23) versorgt werden, die sich von der Grundplatte (12) entlang der Außenwand der ersten dielektrischen Resonatorantenne (14) zur zweiten dielektrischen Resonatorantenne (16) erstrecken, wobei die beiden Anschlussleitungen (22, 23) frequenzabhängige Längenanpassvorrichtungen (24, 26) aufweisen, durch die abhängig von der Frequenz des über die beiden Anschlussleitungen (22, 23) abgeführten Signals ein Anpassen der wirksamen Länge der Anschlussleitungen (22, 23) erfolgt, so dass die wirksame Länge der beiden Anschlussleitungen (22, 23) für die erste dielektrische Resonatorantenne (14) an die Resonanzfrequenz der ersten dielektrischen Resonatorantenne (14) angepasst ist und die wirksame Länge der beiden Anschlussleitungen (22, 23) für die zweite dielektrische Resonatorantenne (16) an die Resonanzfrequenz der zweiten dielektrischen Resonatorantenne (16) angepasst ist.
  2. Multiband-GNSS Antenne (10) nach Anspruch 1, dadurch gekennzeichnet, dass eine der dielektrischen Resonatorantennen, insbesondere die erste dielektrische Resonatorantenne (14), eine Resonanzfrequenz zwischen 1164 bis 1214 MHz oder 1215 bis 1239,6 MHz oder 1260 bis 1300 MHz aufweist und die andere dielektrische Resonatorantenne, insbesondere die zweite dielektrische Resonatorantenne (16), eine Resonanzfrequenz zwischen 1563 bis 1587 MHz aufweist.
  3. Multiband-GNSS Antenne (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste und zweite dielektrische Resonatorantenne (14, 16) ein keramisches oder glaskeramisches Material aufweisen.
  4. Multiband-GNSS Antenne (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jede dielektrische Resonatorantenne (14, 16) auf ihrer Oberseite, das heißt der der Grundplatte (12) abgewandten Seite, einen Metalldeckel (18, 20) aufweist, wobei der Metalldeckel (18) der ersten dielektrischen Resonatorantenne (14) als Grundplatte für die zweite dielektrische Resonatorantenne (16) dient.
  5. Multiband-GNSS Antenne (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sich die beiden Anschlussleitungen (22, 23) entlang zumindest eines Teils der zweiten dielektrischen Resonatorantenne (16) erstrecken, wobei die beiden Anschlussleitungen (22, 23) in einem Winkel von 90° relativ zur Mittelachse der beiden dielektrischen Resonatorantennen (14, 16) angeordnet sind.
  6. Multiband-GNSS Antenne (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Längenanpassvorrichtung (24, 26) ausgebildet ist zum Blockieren des Signals der der ersten dielektrischen Resonatorantenne (14) zugeordneten Frequenz und zum Weiterleiten des Signals der der zweiten dielektrischen Resonatorantenne zugeordneten Frequenz, wobei die Längenanpassvorrichtung (24, 26) insbesondere als Resonanzschaltung ausgebildet ist.
  7. Multiband-GNSS Antenne (10) nach Anspruch 6, dadurch gekennzeichnet, dass der Teil (22b, 23b) der Anschlussleitungen (22, 23) der zweiten dielektrischen Resonatorantenne (16) elektromagnetisch mit dem Teil (22a, 23a) der Anschlussleitungen (22, 23) der ersten dielektrischen Resonatorantenne (14) gekoppelt ist.
  8. Multiband-GNSS Antenne (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Längenanpassvorrichtungen (24, 26) ein Metamaterial und/oder einen Split-Ring-Resonator (SRR) aufweist.
  9. Multiband-GNSS Antenne (10) nach Anspruch 4, dadurch gekennzeichnet, dass durch die Anschlussleitungen (22, 23) ausschließlich ein Versorgen der ersten dielektrischen Resonatorantenne (14) erfolgt, wobei der Metalldeckel (18), der als Grundplatte für die zweite dielektrische Resonatorantenne (16) dient, als Koppelvorrichtung zum Koppeln des durch die erste dielektrische Resonanzantenne (14) erzeugten elektrischen Feldes mit der zweiten dielektrischen Resonanzantenne dient.
  10. Multiband-GNSS Antenne (10) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die erste und zweite dielektrische Resonatorantenne (14, 16) eine kreiszylindrische Form aufweisen und insbesondere konzentrisch zueinander angeordnet sind.
  11. Multiband-GNSS Antenne (10) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass auf einer Grundplatte (12) mehrere, insbesondere vier, erste dielektrische Resonatorantennen (14a bis 14d) und zweite dielektrische Resonantorantennen (16a bis 16d) nebeneinander angeordnet sind, die gemäß den Ansprüchen 1–10 ausgebildet sind, wobei die Grundplatte (12) insbesondere kreisförmig ausgebildet ist und einen Durchmesser von weniger als 9 cm aufweist.
  12. Multiband-GNSS Antenne (10) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Grundfläche der Antenne Abmessungen von weniger als 3,5 × 3,5 cm aufweist.
DE102015220372.7A 2015-10-20 2015-10-20 Multiband-GNSS Antenne Active DE102015220372B3 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102015220372.7A DE102015220372B3 (de) 2015-10-20 2015-10-20 Multiband-GNSS Antenne
EP16194780.9A EP3159967B1 (de) 2015-10-20 2016-10-20 Multiband-gnss antenne

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015220372.7A DE102015220372B3 (de) 2015-10-20 2015-10-20 Multiband-GNSS Antenne

Publications (1)

Publication Number Publication Date
DE102015220372B3 true DE102015220372B3 (de) 2016-10-06

Family

ID=56937678

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015220372.7A Active DE102015220372B3 (de) 2015-10-20 2015-10-20 Multiband-GNSS Antenne

Country Status (2)

Country Link
EP (1) EP3159967B1 (de)
DE (1) DE102015220372B3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017217117B3 (de) 2017-08-31 2019-01-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. GNSS-Antenne
DE102018203191A1 (de) * 2018-03-02 2019-09-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Controlled Radiation Pattern Antenne
CN110311691A (zh) * 2019-06-24 2019-10-08 浙江嘉科电子有限公司 一种基于无人机无人值守平台的多频段射频侦测转发设备
DE112018002310B4 (de) 2017-05-01 2023-07-06 Harada Industry Co., Ltd. Antennenvorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416713B (zh) * 2019-08-27 2021-05-04 北京邮电大学 一种宽带二维波束扫描介质谐振天线和无线通信系统
CN112688069B (zh) * 2020-12-21 2022-01-04 西安电子科技大学 一种方向图可调的三极化单元及其阵列天线
CN113285213B (zh) * 2021-04-30 2023-12-19 深圳市信维通信股份有限公司 一体化5g毫米波双频介质谐振器天线模组及电子设备
CN115101930B (zh) * 2022-07-15 2022-11-15 广东工业大学 边缘加载谐振枝节的双频卫星导航天线

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031746A1 (en) * 1999-10-29 2001-05-03 Antenova Limited Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections
US6292141B1 (en) * 1999-04-02 2001-09-18 Qualcomm Inc. Dielectric-patch resonator antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683952A1 (fr) * 1991-11-14 1993-05-21 Dassault Electronique Dispositif d'antenne microruban perfectionne, notamment pour transmissions telephoniques par satellite.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292141B1 (en) * 1999-04-02 2001-09-18 Qualcomm Inc. Dielectric-patch resonator antenna
WO2001031746A1 (en) * 1999-10-29 2001-05-03 Antenova Limited Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018002310B4 (de) 2017-05-01 2023-07-06 Harada Industry Co., Ltd. Antennenvorrichtung
DE102017217117B3 (de) 2017-08-31 2019-01-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. GNSS-Antenne
DE102018203191A1 (de) * 2018-03-02 2019-09-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Controlled Radiation Pattern Antenne
CN110311691A (zh) * 2019-06-24 2019-10-08 浙江嘉科电子有限公司 一种基于无人机无人值守平台的多频段射频侦测转发设备
CN110311691B (zh) * 2019-06-24 2024-02-06 浙江嘉科电子有限公司 一种基于无人机无人值守平台的多频段射频侦测转发设备

Also Published As

Publication number Publication date
EP3159967A1 (de) 2017-04-26
EP3159967B1 (de) 2018-11-21

Similar Documents

Publication Publication Date Title
DE102015220372B3 (de) Multiband-GNSS Antenne
DE102009051605B4 (de) Hochintegrierte Multiband-Finnenantenne für ein Fahrzeug
DE69936657T2 (de) Zirkularpolarisierte dielektrische resonatorantenne
EP1829158B1 (de) Disc-monopol-antennenstruktur
EP2784874B1 (de) Breitband-Monopolantenne für zwei durch eine Frequenzlücke getrennte Frequenzbänder im Dezimeterwellenbereich für Fahrzeuge
DE102008007258A1 (de) Mehrband-Antenne sowie mobiles Kommunikationsendgerät, welches diese aufweist
EP2592691B1 (de) Empfangsantenne für zirkular polarisierte Satellitenfunksignale
DE102007004612A1 (de) Antennenvorrichtung zum Senden und Empfangen von elektromagnetischen Signalen
DE10038831B4 (de) Dualband- und Multiband-Antenne
EP3382795A1 (de) Antenne für den empfang zirkular polarisierter satellitenfunksignale für die satelliten-navigation auf einem fahrzeug
DE10034911A1 (de) Antenne für Mehrfrequenzbetrieb
DE3709163A1 (de) Niedrigprofil-breitband-monopolantenne
EP3108535B1 (de) Mehrbereichsantenne für eine empfangs- und/oder sendeeinrichtung für den mobilen einsatz
DE10031255A1 (de) Schlitzantenne
EP1812988B1 (de) Planare breitbandantenne
WO2007048258A1 (de) Antennenanordnung mit einer breitband-monopol-antenne
DE202013007872U1 (de) Mehrfachband-Finnenantenne für den mobilen Einsatz, insbesondere für Fahrzeuge
EP3707775B1 (de) Ein- und auskopplungsvorrichtung zwischen einem schaltungsträger und einem wellenleiter
DE102022109407A1 (de) Antennenelement für drahtlose Kommunikation
WO2004102742A1 (de) Mehrbandfähige antenne
EP1401051B1 (de) Antennensystem für mehrere Frequenzbereiche
EP2756550B1 (de) Mehrbereichsantenne für ein kraftfahrzeug
EP2546925B1 (de) Antennenmodul
WO2019166360A1 (de) Controlled radiation pattern antenne
DE112010004247T5 (de) Antenne mit verteilter Reaktanz

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final