WO2018202003A1 - 分布式电池、电池控制方法与电动汽车 - Google Patents

分布式电池、电池控制方法与电动汽车 Download PDF

Info

Publication number
WO2018202003A1
WO2018202003A1 PCT/CN2018/085068 CN2018085068W WO2018202003A1 WO 2018202003 A1 WO2018202003 A1 WO 2018202003A1 CN 2018085068 W CN2018085068 W CN 2018085068W WO 2018202003 A1 WO2018202003 A1 WO 2018202003A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
circuit
voltage
charging
Prior art date
Application number
PCT/CN2018/085068
Other languages
English (en)
French (fr)
Inventor
周岿
黄伯宁
童文平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18794942.5A priority Critical patent/EP3621172B1/en
Priority to JP2019560092A priority patent/JP6874952B2/ja
Publication of WO2018202003A1 publication Critical patent/WO2018202003A1/zh
Priority to US16/672,064 priority patent/US11322936B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • H02J7/0022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Definitions

  • Embodiments of the present invention relate to power electronics technologies, and in particular, to a distributed battery pack power supply system and a charge and discharge control method, and more particularly to an electric vehicle using the distributed battery pack as a power supply system.
  • FIG. 1 is a schematic view showing a partial structure of a power supply system in an automobile.
  • m batteries are connected in parallel to form a circuit
  • the circuit voltage is the same as the voltage of the single cell
  • the circuit capacity becomes m of the cell capacity.
  • multiple circuits are connected in series to form a module
  • n modules are connected in series to form a battery pack of the power supply system.
  • the battery pack supplies power to the high voltage load through a relay.
  • the total voltage of the battery pack depends on the total number of circuit series, and the total safety time depends on the number of cells connected in parallel inside the circuit.
  • a single battery pack or battery pack has a short-board effect when charging and discharging, that is, one of the batteries reaches a discharge cut-off voltage or a charge cut-off voltage, and the entire battery pack or battery pack can no longer be discharged or charged.
  • a battery failure which can be an internal short circuit, internal resistance becomes too high or too high temperature
  • the entire battery pack or battery pack can no longer be used. At this time, it is necessary to use a multi-battery pack or a battery pack in parallel.
  • the first type of batteries is required to be the same (chemical system, cycle life, capacity, internal resistance, etc.), and secondly, the consistency of the batteries is required (even for the same type of batteries, production). The process also causes a certain deviation in capacity, internal resistance, etc. The smaller the deviation, the better the consistency. Finally, the voltage of the battery pack or the battery pack is required to be the same. These requirements increase the number of battery packs or battery packs. The difficulty of using in parallel. Different types of battery packs or battery packs with different consistency and different voltage levels cannot be directly used in parallel. The prior art adds charging and discharging circuits to the outside of the battery pack or the battery pack, so that different types of battery packs with different consistency and different voltage levels are obtained. Or the battery pack can be used in parallel in parallel.
  • Embodiments of the present invention provide a distributed battery pack power supply system and a charge and discharge control method, which can flexibly realize flexible selection and switching of parallel and series connection of a battery during charging and discharging.
  • a first aspect of the embodiments of the present invention provides a distributed battery, including a plurality of battery packs, the distributed battery further includes: a controller, a bidirectional transformer circuit, a bypass circuit, a charging circuit, and a charging input terminal, wherein each of the The battery pack corresponds to one of the bypass circuit and the bidirectional transformer circuit.
  • the bidirectional transformer circuit is also referred to as a bidirectional step-up/step-down module or a bidirectional step-up/step-down circuit.
  • the bypass circuit includes four ports, wherein the first switching device is connected between the first port and the third port to form an openable circuit, and the second switching device is connected between the second port and the fourth port to form a switchable circuit.
  • An on/off circuit a bidirectional transformer circuit comprising four ports, wherein the first port, the second port, the third port, and the fourth port, wherein the first port and the second port are side ports connected to the battery pack, The third port and the fourth port are side ports connected to the charging circuit, and the bidirectional transformer circuit is configured to perform bidirectional voltage transformation between the battery pack and the charging circuit; a first port of the bypass circuit, a first port of the bidirectional transformer circuit, a negative electrode of the first battery pack and a second port of the bypass circuit, and a second circuit of the bidirectional transformer circuit a two-port connection, a third port of the bypass circuit, and a third port of the bidirectional transformer circuit are respectively connected to a first output end of the charging circuit, a fourth port of the bypass circuit, the two-way Fourth of the transformer circuit
  • the port is respectively connected to the second output end of the charging circuit; the input end of the charging circuit is connected to the charging input end; the controller and the battery pack, the bidirectional transformer circuit, the bypass circuit, the charging circuit
  • the battery pack parameter may include one or more of a chemical system, a battery pack capacity, an internal resistance, and a cycle life.
  • the bidirectional transformer circuit includes six switching devices and an inductor, wherein the first switch is connected to the first port of the bidirectional transformer circuit, and the second switch One end of the second switch is connected to the second port of the bidirectional transformer circuit, one end of the fifth switch is connected to the third port of the bidirectional transformer circuit, and one end of the sixth switch is connected to the fourth port of the bidirectional transformer circuit
  • the other end of the first switch is connected to one end of the third switch and one end of the first inductor
  • the other end of the fifth switch is connected to one end of the fourth switch and the other end of the first inductor, and the other end of the second switch
  • the other end of the three switches, the other end of the fourth switch, and the other end of the sixth switch are connected.
  • the controller is further configured to determine a type of the plurality of battery packs, and determine, for the two battery packs of the plurality of battery packs, the two battery pack chemistry Whether the system is consistent, if the chemical system is consistent and then determine whether the battery pack capacity is consistent, if the battery pack capacity is consistent, determine whether the internal resistance of the battery pack is consistent, if the internal resistance is consistent, determine whether the battery pack cycle life is consistent, if the life span is consistent, then Two battery packs of the same type of battery pack, if any one of the chemical system, battery pack capacity, internal resistance, and cycle life is inconsistent, the battery pack is a battery pack of two different types of battery packs; The battery pack with a large rate is a power battery pack, and the battery pack with a small charge and discharge rate is an energy battery pack.
  • the plurality of battery packs include at least a first battery pack and a second battery pack, and the first battery pack and the second battery pack are of the same type; And determining a voltage difference between the first battery pack and the second battery pack, and if the voltage difference is less than or equal to a first threshold, when the charging circuit is in an active state, controlling a connection with the first battery pack.
  • the first switching device and the second switching device in the bypass circuit are closed to turn on the circuit, and the first switching device and the second switching device in the bypass circuit connected to the second battery pack are closed to be turned on a circuit that controls the charging circuit output current to be less than or equal to a sum of charging currents of the first battery pack and the second battery pack.
  • the plurality of battery packs include at least two battery packs, a first battery pack and a second battery pack.
  • the plurality of battery packs in the distributed battery may be of the same kind.
  • the battery pack for example, the first battery pack and the second battery pack are of the same type.
  • the controller is further configured to: when charging, determine a voltage difference between the first battery pack and the second battery pack, if the voltage difference is greater than a first threshold, the charging circuit is at In the working state, the first switching device and the second switching device in the bypass circuit connected to the first battery pack are controlled to be turned on to turn on the circuit, and the charging circuit output current is controlled to be less than or equal to the first battery pack Charging current charges the first battery pack, wherein the first battery pack voltage is lower than a voltage of the second battery pack; if a voltage difference between the first battery pack and the second battery pack is less than a second a second threshold, controlling the first switching device and the second switching device in the bypass circuit connected to the second battery pack to be closed to turn on the circuit, and controlling the charging circuit output current to be less than or equal to the charging of the two battery packs The sum of the currents.
  • the distributed battery pack may consist of a plurality of types of battery packs.
  • a battery pack includes at least an energy type battery pack and a power type battery pack.
  • the controller is further configured to: when charging, determine whether the energy type battery pack voltage is less than or equal to the power type battery pack voltage, if the energy type battery pack voltage is less than or equal to the power a battery pack voltage, controlling a bidirectional transformer circuit corresponding to the energy type battery pack to operate in a buck mode, and if the energy type battery pack voltage is greater than the power type battery pack voltage, controlling the bidirectional transformer circuit to operate a boost mode, and controlling the bidirectional transformer circuit output current to be less than or equal to the energy type battery pack charging current; controlling the first switching device and the second switching device in the bypass circuit corresponding to the power type battery pack to be closed to be turned on The circuit determines the working mode of the external bidirectional transformer circuit of the energy type battery pack, and then controls the charging module to work, and sets
  • the plurality of battery packs include at least two battery packs, a first battery pack and a second battery pack, and the third port and the fourth port of the transformer circuit are a load connection of the distributed battery; the controller is further configured to determine a voltage difference between the first battery pack and the second battery pack, if the distributed battery is in a discharged state, if the voltage difference is less than or equal to a third a threshold for controlling a first switching device and a second switching device in the bypass circuit connected to the first battery pack to be turned on to turn on a circuit, in the bypass circuit connected to the second battery pack The first switching device and the second switching device are closed to turn on the circuit.
  • the plurality of battery packs include at least two battery packs, a first battery pack and a second battery pack, and in practice, the plurality of battery packs in the distributed battery may be the same a battery pack of the type, the third port and the fourth port of the transformer circuit are connected to a load of the distributed battery; the controller is configured to determine a voltage difference between the first battery pack and the second battery pack, When the distributed battery is in a discharging state, if the voltage difference is greater than a third threshold, controlling the first switching device and the second switching device in the bypass circuit connected to the first battery pack to be closed to turn on the circuit Discharging the first battery pack, wherein a voltage of the first battery pack is higher than a voltage of the second battery pack, and if the voltage difference is less than or equal to a fourth threshold, then controlling the second The first switching device and the second switching device in the bypass circuit to which the battery pack is connected are closed to turn on the circuit.
  • the plurality of battery packs include at least two battery packs.
  • the plurality of battery packs in the distributed battery may be different types of battery packs, for example, the plurality of battery packs.
  • the package includes at least an energy type battery pack and a power type battery pack; the controller is configured to determine whether the energy type battery pack voltage is greater than the power type battery pack voltage, if the energy type battery pack voltage is less than or equal to the power
  • the bidirectional transformer circuit corresponding to the control energy type battery pack operates in the boost mode, and if the energy type battery pack voltage is greater than the power type battery pack voltage, the bidirectional transformer circuit corresponding to the control energy type battery pack is controlled.
  • Working in a buck mode and controlling the bidirectional transformer circuit input current to be less than or equal to the energy type battery pack discharge current; controlling the first switching device and the second switching device in the bypass circuit connected to the power type battery package Close to turn on the circuit.
  • an embodiment of the present invention further provides a distributed battery charging control method, where the distributed battery using the method includes at least a first battery pack and a second battery pack, and the method includes:
  • first battery pack and the second battery pack are the same type of battery pack
  • the bypass circuit of the battery causes the first battery pack and the second battery pack to be charged in parallel, and if the voltage difference between the first battery pack and the second battery pack is greater than the first threshold, controlling the side of the distributed battery pack
  • the circuit circuit first charges the first battery pack, the voltage of the first battery pack is less than the voltage of the second battery pack, when the voltage difference between the first battery pack and the second battery pack is less than or equal to After the second threshold, the bypass circuit of the distributed battery is controlled such that the first battery pack and the second battery pack are charged in parallel.
  • the method further includes: if the first battery pack and the second battery pack are different types of battery packs, wherein the first battery pack is an energy battery pack,
  • the second battery pack is a power type battery pack; determining whether the energy type battery pack voltage is less than or equal to the power type battery pack voltage, and if the energy type battery pack voltage is less than or equal to the power type battery pack voltage, controlling the energy type battery
  • the bidirectional transformer circuit corresponding to the package operates in a buck mode, and if the energy type battery pack voltage is greater than the power type battery pack voltage, the bidirectional transformer circuit is controlled to operate in a boost mode, and the bidirectional transformer circuit output is controlled.
  • the current is less than or equal to the energy type battery pack charging current; charging the energy battery pack; and controlling the bypass circuit of the distributed battery such that the power type battery pack and the energy battery pack are charged in parallel.
  • the method further includes: determining a type of the first battery pack and the second battery pack, determining whether the chemical systems of the two battery packs are consistent, if the chemical system is consistent Determine whether the battery pack capacity is consistent. If the battery pack capacity is the same, determine whether the internal resistance of the battery pack is consistent. If the internal resistance is consistent, determine whether the battery pack cycle life is consistent. If the life span is the same, the two battery packs have the same battery pack type.
  • the battery pack is a battery pack of two different types of battery packs; wherein the battery pack having a large discharge rate is a power battery
  • the battery pack with a small charge and discharge rate is an energy type battery pack.
  • an embodiment of the present invention further provides a distributed battery pack discharge control method, where the distributed battery includes at least a first battery pack and a second battery pack, and the method includes: if the first battery pack is The second battery pack is a battery pack of the same type, and determines a voltage difference between the first battery pack and the second battery pack; if the voltage difference is less than or equal to a third threshold, controlling the first battery pack and the first The two battery packs are discharged in parallel; if the voltage difference is greater than a third threshold, controlling the bypass circuit connected to the first battery pack causes the first battery pack to be discharged, wherein the voltage of the first battery pack Detecting a voltage difference between the first battery pack and the second battery pack above a voltage of the second battery pack, and controlling the first battery when the voltage difference is less than or equal to a fourth threshold The package is discharged in parallel with the second battery pack.
  • the second battery pack is a power battery pack. Determining whether the energy type battery pack voltage is greater than the power type battery pack voltage, and if the energy type battery pack voltage is less than or equal to the power type battery pack voltage, controlling the energy type battery pack to be discharged after being boosted Working mode, if the energy type battery pack voltage is greater than the power type battery pack voltage, controlling the energy type battery pack to be in a working mode after being stepped down, and controlling the input current of the bidirectional transformer circuit to be less than or equal to the energy type battery The packet discharge current is controlled, and the bypass circuit of the distributed battery is controlled such that the power type battery pack and the energy battery pack are charged in parallel.
  • the method further includes: determining a type of the first battery pack and the second battery pack, determining whether the chemical systems of the two battery packs are consistent, if the chemical system is consistent Determine whether the battery pack capacity is consistent. If the battery pack capacity is the same, determine whether the internal resistance of the battery pack is consistent. If the internal resistance is consistent, determine whether the battery pack cycle life is consistent. If the life span is the same, the two battery packs have the same battery pack type.
  • the battery pack is a battery pack of two different types of battery packs; wherein the battery pack having a large discharge rate is a power battery
  • the battery pack with a small charge and discharge rate is an energy type battery pack.
  • An embodiment of the present invention also provides an electric vehicle including the above distributed battery system. Meanwhile, the electric vehicle of the present invention can also adopt the above control method.
  • the power part of the electric vehicle includes the distributed battery provided by the embodiment of the invention as a battery system, a vehicle charger, a charging port, a motor and a motor controller.
  • the battery system discharges power to the motor and charges the battery system through the on-board charger and charging port.
  • the structure of the specific battery system is as described in the embodiments of the present invention.
  • the specific charging and discharging strategy may adopt the method and strategy provided by the embodiments of the present invention.
  • FIG. 1 is a partial schematic structural view of a power supply system in an electric vehicle.
  • FIG. 2 is a schematic structural view of an embodiment of a distributed battery pack power supply system according to the present invention.
  • FIG. 3 is a schematic structural diagram of a control module according to an embodiment of the present invention.
  • FIG. 4 is a general flow chart of a control strategy according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of determining a type of a battery pack according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of selecting a battery pack charging strategy according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of another battery pack charging strategy selection according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of determining a battery pack discharge strategy according to an embodiment of the present invention.
  • FIG. 9 is a flow chart of determining another battery pack discharge strategy according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a power part of an electric vehicle according to an embodiment of the present invention.
  • the embodiment of the invention enables a plurality of battery packs or battery packs to be switched between direct parallel and indirect parallel according to actual use requirements through a special charging and discharging circuit and a corresponding control strategy.
  • the distributed battery pack power supply system of the present embodiment may include: a multi-battery pack charging and discharging system, including: two Battery pack (a, b) Two bidirectional boost/buck modules (a, b), two bypass modules (a, b), a charging module, and a control module.
  • a multi-battery pack charging and discharging system including: two Battery pack (a, b) Two bidirectional boost/buck modules (a, b), two bypass modules (a, b), a charging module, and a control module.
  • Each battery pack corresponds to a bidirectional boost/buck module and a bypass module.
  • two battery packs are introduced as an embodiment, and more battery packs can be added in a similar manner. In the case of more battery packs, the connection relationship of the two battery packs is similar to that in this example. The way of the example increases according to system requirements.
  • the bypass module a is taken as an example with the battery pack a and the corresponding bidirectional step-up/step-down module a.
  • Each bidirectional boost/buck module has four ports, and each bypass module also has four ports.
  • the battery pack a and the corresponding bidirectional step-up/step-down module a, the bypass module a is taken as an example, the bypass module a is also referred to as a first bypass module, and the battery pack a becomes the first battery pack again.
  • the bidirectional boost/buck module a is also referred to as a first bidirectional boost/buck module, and the battery pack b is also referred to as a second battery pack.
  • the first port of the first bypass module is connected to the first port of the first bidirectional boost/buck module and is connected together to the anode of the first battery pack a.
  • the second port of the first bypass module is connected to the second port of the first bidirectional boost/buck module and is connected together to the negative pole of the first battery pack b.
  • the third port of the first bypass module is connected to the third port of the first bidirectional boost/buck module, and is connected to the positive pole of the load and the positive pole of the charging module.
  • the fourth port of the first bypass module is connected to the fourth port of the first bidirectional boost/buck module, and is connected to the negative pole of the load and the negative output of the charging module.
  • the control module is connected to two battery packs (a, b), two bidirectional boost/buck modules (a, b), two bypass modules (a, b), and one charging module.
  • Each bidirectional boost/buck module includes: six switches, one inductor.
  • the bidirectional bidirectional boost/buck module a corresponding to the battery pack a is taken as an example.
  • One end of the first switch Sa1 is connected to the positive pole of the first battery pack, one end of the second switch Sa2 is connected to the negative pole of the first battery pack, and one end of the fifth switch Sa5 is connected to the positive pole of the load positive pole and the output of the charging module, and one end of the sixth switch Sa6 Connected to the negative pole of the load and the negative pole of the charging module, the other end of the first switch Sa1 is connected to one end of the third switch Sa3 and one end of the first inductor La, and the other end of the fifth switch Sa5 and one end of the fourth switch Sa4 and the first The other end of the inductor La is connected, and the other end of the second switch Sa2, the other end of the third switch Sa3, the other end of the fourth switch Sa4, and the other end of the sixth switch Sa6 are connected.
  • Each bypass module includes: two switches. Taking the first battery pack, the battery pack a, and the corresponding bypass module a as an example, one end of the seventh switch Sa7 is connected to the positive pole of the first battery pack, and one end of the eighth switch Sa8 is connected to the negative pole of the first battery pack, and the seventh switch The other end of the Sa7 is connected to the positive pole of the load and the positive output of the charging module, and one end of the eighth switch Sa8 is connected to the negative pole of the load and the negative pole of the output of the charging module.
  • the switches in the bidirectional step-up/step-down module and the bypass module may be one or more of a mosfet, an IGBT, a relay, and a contactor.
  • the bidirectional boost/buck module When the bidirectional boost/buck module is in operation, if it is in the boost mode, the inductor La stores energy, S1, S2, and S4 are turned on, and S3, S5, and S6 are turned off; the inductor La releases energy, and S1, S2, and S5 S6 is turned on, and S3 and S4 are turned off.
  • the inductor stores energy, S1, S2, S5, and S6 are turned on, and S3 and S4 are turned off; the inductor La releases energy, and S3, S5, and S6 are turned on, and S1, S2, and S4 are turned off.
  • S1 refers to Sa1 and Sb1, and the others are similar.
  • the control module is as shown in FIG. 3, the control module includes a voltage sampling unit, and each battery pack corresponds to one voltage sampling unit, such as a first battery pack a and a second battery pack.
  • the voltage of b can be detected by the respective corresponding voltage sampling unit.
  • the control module further includes a voltage comparison unit. After each battery pack voltage is sampled, the voltage comparison unit is entered, and the compared result is output to the processor CPU.
  • the CPU is a device having signal processing and calculation capability, and the CPU outputs a control signal to each battery pack based on a signal obtained from the voltage comparison unit.
  • a bypass module control signal that can control the bypass module of each battery pack is used to control the closing and opening of each switching device in the bypass module.
  • the CPU outputs a bidirectional transformer module control signal of each battery pack, and controls closing and end opening of each switching device in the bidirectional boost/buck module corresponding to each battery pack.
  • the CPU can also output a control signal of the team charging module to control the operation of the charging module.
  • the control module controls the battery pack.
  • the overall flow of the control strategy is divided into five phases: battery pack type judgment, battery pack charging strategy selection and start charging, end charging, battery pack discharge strategy selection, and starting discharge, ending discharge.
  • battery pack type judgment As shown in the overall flow chart of the control strategy in Figure 4.
  • determine the type of each battery pack in the distributed battery pack for example, the first battery pack and the second battery pack, and according to the result of the judgment, whether it is the same type of battery pack, select a battery pack charging measurement or a battery pack discharging strategy, The battery pack is charged and discharged according to the selected strategy, and the end condition or time of charging and discharging is controlled.
  • a flow of determining the type of battery pack in one possible implementation is described. First determine whether the battery pack chemical system is consistent. If it is consistent, then determine whether the battery pack capacity (Ah) is consistent. If it is consistent, then determine whether the battery pack internal resistance is consistent. If it is consistent, then determine whether the battery pack cycle life is consistent. If it is consistent, it is judged as two. The battery packs are of the same type. As long as there is an inconsistency in the chemical system, capacity, internal resistance, and cycle life, it is judged that the two battery pack types are different.
  • the charge/discharge ratios of the two battery packs are compared, and the charge/discharge rate is judged to be a power type battery pack, and the charge/discharge rate is small as an energy type battery pack.
  • the comparison parameters are not necessarily completely identical in the sense of complete mathematical values, and the difference may be considered to be consistent within a certain range.
  • the specific allowable difference can be different in different battery application scenarios. For example, in the case of some large-capacity battery packs, it can be considered that the difference is within 1Ah, and some relatively small capacity battery packs are considered.
  • phase difference range of 0.1Ah is considered to be consistent.
  • agreement here is to allow the error of the numerical value in the engineering sense or the error allowed according to the requirements of the overall system quality parameter.
  • a battery pack charging strategy selection process is described in a possible implementation in the same battery pack type.
  • the voltage difference between the two battery packs is first calculated. If the absolute value of the voltage difference is less than or equal to the first threshold Uth1 (for example, 5V), the corresponding bypass modules of the two battery packs work simultaneously, that is, two The two switches inside the bypass module are turned on at the same time, and then the charging module works, setting the charging module output current to be less than or equal to the sum of the charging currents of the two battery packs, and the last two battery packs are directly connected in parallel for charging.
  • Uth1 for example, 5V
  • the bypass module corresponding to the low voltage battery pack works, that is, the two switches inside the bypass module are simultaneously turned on, and then the charging module works, and the output current of the charging module is set to be lower than or equal to the low voltage.
  • the battery pack charging current, the low voltage battery pack starts charging, and continuously monitors the voltage difference between the two battery packs during charging.
  • the corresponding bypass of the two battery packs The modules work at the same time, that is, the two switches inside the two bypass modules are turned on at the same time, and the output current of the charging module is set to be less than or equal to the sum of the charging currents of the two battery packs, and the last two battery packs are directly connected in parallel for charging.
  • the second threshold Uth2 for example, 3V
  • the battery is described in a possible implementation, the battery pack type is different, and the battery pack charging strategy selection process.
  • the energy type battery pack corresponds to the bidirectional boost/buck module operation. If the energy type battery pack voltage is less than or equal to the power type battery pack voltage, the bidirectional boost/buck module is set to operate in the buck mode if the energy type battery pack voltage Larger than the power type battery pack voltage, the bidirectional boost/buck module is set to operate in the boost mode. Regardless of the boost mode or the buck mode, the bidirectional boost/buck module output current is set to be less than or equal to the energy type battery pack charging. Current.
  • the bypass module corresponding to the power battery pack works, and the two switches inside the bypass module are simultaneously turned on.
  • the charging module After determining the working mode of the external bidirectional boost/buck module of the battery pack, the charging module is controlled to work, and the output current of the charging module is set to be less than or equal to the sum of the input current of the bidirectional boost/buck module and the charging current of the power type battery pack.
  • the last two battery packs are indirectly connected in parallel.
  • the bypass module of the power type battery pack works, the switching device of the bypass module is in the simultaneous conduction state, and the bidirectional boost/buck module corresponding to the energy battery pack works, if the voltage of the energy type battery pack If the voltage of the power battery pack is less than or equal to the voltage of the power pack, the bidirectional boost/buck module operates in the buck mode.
  • the bidirectional boost/buck module operates at the boost. Mode, when the set bidirectional boost/buck module output current is less than or equal to the charging current of the energy battery, the charging module starts to work, and the charging module output current is less than or equal to the bidirectional boost/buck module input current and the power type battery. The sum of the charging currents of the packs, the last two battery packs are indirectly connected in parallel.
  • the battery pack when the battery pack is directly charged in parallel, it is determined and determined whether or not to end the charging process.
  • the voltage of the battery pack is continuously monitored. If the voltage is greater than the saturation threshold (for example, 400V), the control charging module stops working, and the two bypass modules stop working, that is, two internal two bypass modules. The switches are disconnected at the same time, and finally the battery pack stops charging.
  • the saturation threshold for example, 400V
  • the energy-type battery pack ends the charging process while charging. Continuously monitor the voltage of the battery pack. If the voltage is greater than the Uth3 saturation threshold (for example, 400V), the control bi-directional boost/buck module stops working, and finally the energy-type battery pack stops charging.
  • the Uth3 saturation threshold for example, 400V
  • the power-type battery pack ends the charging process while charging. Continuously monitor the voltage of the battery pack. If the voltage is greater than the saturation threshold (for example, 400V), the control bypass module stops working, that is, the two switches inside the bypass module are simultaneously disconnected, and finally the power battery pack stops charging.
  • the saturation threshold for example, 400V
  • the battery pack discharge strategy determines the flow.
  • the voltage difference between the two battery packs is first calculated. If the absolute value of the voltage difference is less than or equal to the third threshold Uth3 (for example, 5V), the corresponding bypass modules of the two battery packs work simultaneously, that is, two The two switches inside the bypass module are turned on at the same time, and the last two battery packs are directly discharged in parallel. If the absolute value of the voltage difference is greater than the third threshold Uth3, the bypass module corresponding to the high voltage battery pack works, that is, the two switches inside the bypass module are simultaneously turned on, then the high voltage battery pack starts to discharge, and the two batteries are continuously monitored during the discharge.
  • the third threshold Uth3 for example, 5V
  • the voltage difference of the package in this case, the low voltage battery pack does not work, and does not supply power to the load. If the absolute value of the voltage difference is less than or equal to the fourth threshold Uth4 (for example, 3V), the corresponding bypass modules of the two battery packs work simultaneously, that is, the two switches inside the two bypass modules are simultaneously turned on, and the last two batteries The packages are directly discharged in parallel.
  • Uth4 for example, 3V
  • the types of the two battery packs are the same, for example, the battery pack a and the battery pack b, it is determined whether the voltage difference between the two battery packs is less than or equal to a third threshold.
  • the corresponding bypass modules of the battery pack a and the battery pack b are simultaneously operated, that is, the two switches inside the bypass module are simultaneously turned on, and the two batteries are simultaneously The packages are directly discharged in parallel. If the voltage difference between the two battery packs is greater than the third threshold, the bypass module corresponding to the high voltage battery pack works, that is, the bypass module corresponding to the high voltage battery pack in the battery pack a and the battery pack b operates, and the high voltage battery pack discharges, Continuously detecting whether the voltage difference between the two battery packs is less than or equal to a fourth threshold. If less than or equal to, the bypass modules corresponding to the two battery packs of the battery pack a and the battery pack b are simultaneously operated, if the voltage difference between the two battery packs Above the fourth threshold, the high voltage battery pack discharge is maintained.
  • the battery pack discharge strategy determines the flow.
  • the bidirectional boost/buck module corresponding to the energy type battery pack works. If the energy type battery pack voltage is less than or equal to the power type battery pack voltage, the bidirectional boost/buck module is set to operate in the boost mode. If the energy type battery pack voltage is greater than the power type battery pack voltage, the bidirectional boost/buck module is set to operate in the buck mode, and the bidirectional boost/buck module input current is set to be smaller than the boost mode or the buck mode. Equal to the energy type battery pack discharge current.
  • the bypass module corresponding to the power battery pack works, and the two switches inside the bypass module are simultaneously turned on. After determining the operating mode of the external charging and discharging circuit of the battery pack, the two battery packs are indirectly discharged in parallel.
  • the voltage of the battery pack is continuously monitored. If the voltage is lower than the low voltage threshold (for example, 300V), the two bypass modules are controlled to stop working, that is, the two switches inside the two bypass modules are simultaneously disconnected. Finally, the battery pack stops discharging. Further, when the energy type battery pack is discharged, the voltage of the battery pack is continuously monitored. If the voltage is greater than a certain threshold (for example, 300 V), the control bidirectional boost/buck module stops working, and finally the energy type battery pack stops discharging. When the power battery pack is discharged, continuously monitor the voltage of the battery pack. If the voltage is greater than the low voltage threshold (for example, 300V), the control bypass module stops working, that is, the two switches inside the bypass module are simultaneously disconnected, and finally the power type battery pack Stop charging.
  • the low voltage threshold for example, 300V
  • the present invention also provides an embodiment of an electric vehicle having a distributed battery pack.
  • the electric vehicle includes a distributed battery.
  • Car charger, motor and motor controller The distributed battery is charged by the in-vehicle charger, and the in-vehicle charger obtains external power through the charging port (AC charging port).
  • the distributed battery provides power to the motor of the electric vehicle, and the motor can be controlled by the motor controller when the distributed battery power is obtained, and the motor provides power for the electric vehicle.
  • One way may be that the first battery pack a is a power type battery pack, and the second battery pack b is an energy type battery pack.
  • a possible situation is that, as an example, when charging the electric vehicle, according to the charging control strategy, the bypass module a of the first battery pack a power type battery pack operates, and the second battery pack energy type battery pack The bypass module b does not work.
  • the bi-directional boost/buck module b of the second battery pack energy type battery pack operates, and the bidirectional boost/buck module a of the first battery pack power type battery pack does not operate.
  • the car charger obtains power from the outside through the AC charging port.
  • the car charger output is directly charged by the bypass module of the power battery pack for the power battery pack, and the output of the car charger passes the bidirectional boost/buck module b as energy.
  • the battery pack is charged.
  • the policy selection and circuit operation mode when charging two battery packs refer to the description of the above embodiment.
  • the distributed battery pack When the electric vehicle is running, the distributed battery pack is in a discharged state, if the first battery pack a is a power type battery pack, and the second battery pack b is an energy type battery pack.
  • the bypass module a of the first battery pack a power type battery pack operates, and the second battery pack b is the bypass module b of the energy type battery pack does not operate.
  • the second battery pack b operates as a bidirectional boost/buck module b of the energy type battery pack, and the bidirectional boost/buck module a of the first battery pack a power type battery pack does not operate.
  • the power type battery pack directly passes through the bypass module to supply power to the motor through the motor controller.
  • the energy type battery pack supplies power to the motor through the bidirectional to the step-up/step-down module.
  • the policy selection and circuit operation mode when the two battery packs are powered refer to the description of the above embodiment.
  • the distributed battery of the embodiment of the present invention may also be called a multi-battery pack battery, and the charging and discharging circuit formed by the bypass module and the bidirectional step-up/step-down module, and adopting the control strategies provided by the embodiments, so that the plurality of batteries
  • the package or battery pack can be switched between direct parallel and indirect parallel according to actual use requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种分布式电池包供电系统及充放电控制方法,其分布式电池包括多个电池包,还包括:控制器、双向变压电路、旁路电路、充电电路、充电输入端,其中每一个电池包对应一个旁路电路和双向变压电路,根据分布式电池包供电系统的充放电电路和相应的控制策略,使得多个电池包或电池组可以根据实际使用需求,在直接并联和间接并联之间按需切换。

Description

分布式电池、电池控制方法与电动汽车 技术领域
本发明实施例涉及电力电子技术,尤其涉及一种分布式电池包供电系统及充放电控制方法,特别还涉及采用所述分布式电池包作为供电系统的电动汽车。
背景技术
随着汽车技术的不断发展,电动汽车、混合动力汽车等新能源汽车得到了广泛应用。图1为一种汽车中的供电系统局部结构示意图,如图1所示,m个电芯并联组成一个电路,电路电压与单体电芯电压相同,电路容量变为单体电芯容量的m倍,多个电路串联组成一个模组,n个模组串联组成供电系统的电池包。该电池包通过继电器向高压负载供电。其中,电池包的总电压取决于电路串联总数,总安时数取决于电路内部并联的电芯数量。
然而,上述图1的典型的串联电池包供电系统在充放电时难以灵活的选择并联或者串联的模式。而然无论是并联还是串联,都存在技术上的问题。单一电池包或电池组在充放电时存在短板效应,即其中一个电芯达到放电截止电压或充电截止电压,整个电池包或电池组就不能再放电或充电,更严重的情况下,如果其中一个电芯失效(可以是内短路、内阻变大或温度过高),整个电池包或电池组就不能再使用,这个时候需要采用多电池包或电池组并联使用的方式。多电池包或电池组直接并联使用时,首先要求电芯的种类相同(化学体系、循环寿命、容量、内阻等),其次要求电芯的一致性好(即使是同一种类的电芯,生产过程也会导致容量、内阻等有一定的偏差,这个偏差越小,就代表一致性越好),最后要求电池包或电池组的电压大小相同,这些要求都增加了多电池包或电池组并联使用的难度。不同种类、一致性差、电压大小不同的电池包或电池组无法直接并联使用,现有技术都是在电池包或电池组外部增加充放电电路,使得不同种类、一致性差、电压大小不同的电池包或电池组可以间接并联使用。
发明内容
本发明实施例提供一种分布式电池包供电系统及充放电控制方法,可以灵活的实现电池在充放电时并联与串联的灵活选择与切换。
多个电池包或电池组并联使用的常用方式有两种,当电池包或电池组种类相同、一致性好、电压大小相同时,直接并联使用;当电池包或电池组种类不同、一致性差、电压大小不同时,在每个电池包或电池组外部增加充放电电路,然后间接并联使用。
本发明实施例第一方面提供一种分布式电池,包括多个电池包,分布式电池还包括:控制器、双向变压电路、旁路电路、充电电路、充电输入端,其中每一个所述电池包对应一个所述旁路电路和所述双向变压电路。在本发明实施例中,双向变压电路又称为双向升压/降压模块或者双向升压/降压电路。所述旁路电路包括四个端口,其中第一端口和第三端口之间连接第一开关器件形成一条可通断电路,第二端口和第四端口之间连接第二开关 器件形成一条可通断电路;双向变压电路,包括四个端口,其中第一端口、第二端口、第三端口和第四端口,其中第一端口和第二端口为与电池包相连的一侧端口,第三端口和第四端口为与充电电路相连的一侧端口,所述双向变压电路用于在所述电池包和所述充电电路之间进行双向变压;所述电池包的正极分别和所述旁路电路的第一端口、所述双向变压电路的第一端口连接,所述第一电池包的负极分别与所述旁路电路的第二端口、所述双向变压电路的第二端口连接,所述旁路电路的第三端口、所述双向变压电路的第三端口分别和所述充电电路的第一输出端连接,所述旁路电路的第四口、所述双向变压电路的第四端口分别和所述充电电路的第二输出端连接;所述充电电路的输入端与所述充电输入端连接;所述控制器与所述电池包、双向变压电路、旁路电路、充电电路均相连接,所述控制器用于根据所述电池包的电压和电池包参数控制所述第一开关器件、第二开关器件的开关状态和双向变压电路的工作状态。
作为一种具体的实施方式,在本发明各实施例中,电池包参数可以包括化学体系、电池包容量、内阻、循环寿命中等中的一个或者多个。
作为第一方面中双向变压电路的一种实现方式,所述双向变压电路包括六个开关器件和一个电感,其中第一开关与所述双向变压电路的第一端口相连,第二开关的一端与所述双向变压电路的第二端口相连,第五开关的一端与所述双向变压电路的第三端口相连,第六开关的一端与所述双向变压电路的第四端口相连,第一开关的另一端与第三开关的一端、第一电感的一端相连,第五开关的另一端与第四开关的一端、第一电感的另一端相连,第二开关的另一端、第三开关的另一端、第四开关的另一端、第六开关的另一端相连。
在第一方面的一种实现方式中,所述控制器还用于判断所述多个电池包的种类,对于所述多个电池包中的两个电池包,判断所述两个电池包化学体系是否一致,如果化学体系一致再判断电池包容量是否一致,如果电池包容量一致,判断电池包内阻是否一致,如果内阻一致,判断电池包循环寿命是否一致,如果寿命一致,则所述两个电池包种类相同的电池包,如果所述化学体系、电池包容量、内阻、循环寿命中存在任一个不一致,则所述电池包为两个电池包种类不相同的电池包;其中放电倍率大的电池包为功率型电池包,充放电倍率小的电池包为能量型电池包。
在第一方面的一种实现方式中,所述多个电池包至少包括第一电池包和第二电池包,所述第一电池包和所述第二电池包种类相同;所述控制器还用于判断所述第一电池包和第二电池包的电压差,如果所述电压差小于等于第一阈值,在所述充电电路处于工作状态时,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路;控制充电电路输出电流小于等于所述第一电池包和第二电池包的充电电流之和。
在第一方面的一种实现方式中,所述多个电池包至少包括两个电池包,第一电池包和第二电池包,实践中分布式电池中的多个电池包可以是相同种类的电池包,例如所述第一电池包和所述第二电池包种类相同。在此种方式中,所述控制器还用于,在充电时,判断所述第一电池包和第二电池包的电压差,如果所述电压差大于第一阈值,在所述充电电路 处于工作状态时,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,并控制充电电路输出电流小于等于所述第一电池包充电电流给所述第一电池包充电,其中所述第一电池包电压低于所述第二电池包的电压;如果所述所述第一电池包和第二电池包的电压差小于第二第二阈值,控制与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,并控制充电电路输出电流小于等于两个电池包的充电电流之和。
在第一方面的一种可能的实现方式,分布式电池包可能由由多种类型的电池包组成。多例如个电池包至少包括能量型电池包和功率型电池包。在此种分布式电池包的情况,所述控制器还用于,在充电时,判断能量型电池包电压是否小于等于功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制所述能量型电池包对应的双向变压电路工作在降压模式,如果所述能量型电池包电压大于所述功率型电池包电压,控制所述双向变压电路工作在升压模式,并控制双向变压电路输出电流小于等于能量型电池包充电电流;控制所述功率型电池包对应的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路;确定完所述能量型电池包外部双向变压电路的工作模式后,再控制充电模块工作,设定充电模块输出电流小于等于双向变压电路输入电流与功率型电池包充电电流之和。
在第一方面的一种可能的实现方式中,所述多个电池包至少包括两个电池包,第一电池包和第二电池包,所述变压电路的第三端口和第四端口与分布式电池的负载连接;所述控制器还用于判断所述第一电池包和第二电池包的电压差,在所述分布式电池处于放电状态时,如果所述电压差小于等于第三阈值,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路。
在第一方面的以后总可能的实现方式中,所述多个电池包至少包括两个电池包,第一电池包和第二电池包,实践中分布式电池中的多个电池包可以是相同种类的电池包,所述变压电路的第三端口和第四端口与分布式电池的负载连接;所述控制器用于,判断所述第一电池包和第二电池包的电压差,在所述分布式电池处于放电状态时,如果所述电压差大于第三阈值,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,所述第一电池包放电,其中所述第一电池包的电压高于所述第二电池包的电压,如果所述如果所述电压差小于等于第四阈值,再控制与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路。
在第一方面的一种可能的实现方式,所述多个电池包至少包括两个电池包,实践中分布式电池中的多个电池包可以是不同种类的电池包,例如所述多个电池包至少包括能量型电池包和功率型电池包;所述控制器用于,判断所述能量型电池包电压是否大于所述功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制能量型电池包对应的双向变压电路工作在升压模式,如果所述能量型电池包电压大于所述功率型电池包电压,控制能量型电池包对应的双向变压电路工作在降压模式,并控制双向变压电路输入电流小于等于能量型电池包放电电流;控制与所述功率型电池包包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路。
第二方面,本发明实施例还提供一种分布式电池充电控制方法,应用该方法的分布式电池至少包括第一电池包和第二电池包,该方法包括:
如果所述第一电池包与所述第二电池包为同类型电池包;
判断所述第一电池包和第二电池包的电压差是否大于第一阈值,如果所述第一电池包和第二电池包的电压差小于等于所述第一阈值,则控制所述分布式电池的旁路电路使得所述第一电池包和第二电池包并联充电,如果所述第一电池包和第二电池包的电压差大于所述第一阈值,则控制分布式电池包的旁路电路先对所述第一电池包进行充电,所述第一电池包的电压小于所述第二电池包的电压,当所述所述第一电池包和第二电池包的电压差小于等于所述第二阈值后,则控制所述分布式电池的旁路电路使得所述第一电池包和第二电池包并联充电。
在第二方面的一种可能的实施方式中,还可以进一步包括,如果所述第一电池包与所述第二电池包为不同类型电池包,其中第一电池包为能量性电池包,所述第二电池包为功率型电池包;判断能量型电池包电压是否小于等于功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制所述能量型电池包对应的双向变压电路工作在降压模式,如果所述能量型电池包电压大于所述功率型电池包电压,控制所述双向变压电路工作在升压模式,并控制双向变压电路输出电流小于等于能量型电池包充电电流;对所述能量性电池包进行充电;控制所述分布式电池的旁路电路使得所述功率型电池包和所述能量性电池包并联充电。
在第二方面的一种可能的实施方式中,还可以进一步包括,判断所述第一电池包和第二电池包的种类,判断所述两个电池包化学体系是否一致,如果化学体系一致再判断电池包容量是否一致,如果电池包容量一致,判断电池包内阻是否一致,如果内阻一致,判断电池包循环寿命是否一致,如果寿命一致,则所述两个电池包种类相同的电池包,如果所述化学体系、电池包容量、内阻、循环寿命中存在任一个不一致,则所述电池包为两个电池包种类不相同的电池包;其中放电倍率大的电池包为功率型电池包,充放电倍率小的电池包为能量型电池包。
第三方面,本发明实施例还提供一种分布式电池包放电控制方法,所述分布式电池至少包括第一电池包和第二电池包,所述方法包括:如果所述第一电池包与所述第二电池包为同类型电池包,判断所述第一电池包和第二电池包的电压差;如果所述电压差小于等于第三阈值,控制所述第一电池包与所述第二电池包并联放电;如果所述电压差大于于第三阈值,控制与所述第一电池包连接的所述旁路电路使得所述第一电池包放电,其中所述第一电池包的电压高于所述第二电池包的电压,对所述第一电池包和第二电池包的电压差进行检测,当所述如果所述电压差小于等于第四阈值,再控制所述第一电池包与所述第二电池包并联放电。
作为第三方面实施例的一种可能的实现方式,如果所述第一电池包与所述第二电池包为不同类型电池包,其中第一电池包为能量性电池包,所述第二电池包为功率型电池包。判断所述能量型电池包电压是否大于所述功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制所述能量型电池包处于经过升压后放电的工作模 式,如果所述能量型电池包电压大于所述功率型电池包电压,控制所述能量型电池包处于经过降压后放电的工作模式,并控制双向变压电路输入电流小于等于能量型电池包放电电流,控制所述分布式电池的旁路电路使得所述功率型电池包和所述能量性电池包并联充电。
在第三方面的一种可能的实施方式中,还可以进一步包括:判断所述第一电池包和第二电池包的种类,判断所述两个电池包化学体系是否一致,如果化学体系一致再判断电池包容量是否一致,如果电池包容量一致,判断电池包内阻是否一致,如果内阻一致,判断电池包循环寿命是否一致,如果寿命一致,则所述两个电池包种类相同的电池包,如果所述化学体系、电池包容量、内阻、循环寿命中存在任一个不一致,则所述电池包为两个电池包种类不相同的电池包;其中放电倍率大的电池包为功率型电池包,充放电倍率小的电池包为能量型电池包。
本发明实施例还提供了包括上述分布式电池系统的电动汽车。同时,本发明的电动汽车还可以采用上述控制方法。电动汽车的动力部分,包括本发明实施例提供的述分布式电池作为电池系统,车载充电机,充电口,电机及电机控制器。电池系统放电为电机提供电力,通过车载充电机与充电口对电池系统充电。具体的电池系统的结构如本发明各实施例所述,具体的充放电策略可以采用本发明实施例提供的方法和策略。
本发明实施例,通过电路中旁路电路和双向变压电路的设计,结合控制电路的控制,使得多个电池包或电池组可以根据实际使用需求,在直接并联和间接并联之间按需切换。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种电动汽车中的供电系统局部结构示意图。
图2为本发明分布式电池包供电系统一实施例的结构示意图。
图3为本发明实施例控制模块结构示意图。
图4为本发明实施例控制策略总体流程图。
图5为本发明实施例电池包种类判断的流程图。
图6为本发明实施例中一电池包充电策略选择流程图
图7为本发明实施例中另一电池包充电策略选择流程图。
图8为本发明实施例中一电池包放电策略确定流程图。
图9为本发明实施例中另一电池包放电策略确定流程图。
图10为本发明实施例提供的电动汽车动力部分结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
多个电池包或电池组并联使用的常用方式有两种,第一种为,当电池包或电池组种类相同、一致性好、电压大小相同时,直接并联使用。第二种为,当电池包或电池组种类不同、一致性差、电压大小不同时,在每个电池包或电池组外部增加充放电电路,然后间接并联使用。直接并联和间接并联之间不能随意切换,兼容性和可扩展性差。本发明实施例通过特殊的充放电电路和相应的控制策略,使得多个电池包或电池组可以根据实际使用需求,在直接并联和间接并联之间按需切换。
图2为本发明分布式电池包供电系统一实施例的结构示意图,如图2所示,本实施例的分布式电池包供电系统可以包括:一种多电池包充放电系统,包括:两个电池包(a、b)两个双向升压/降压模块(a、b)、两个旁路模块(a、b)、一个充电模块、一个控制模块。每个电池包对应一个双向升压/降压模块和一个旁路模块。此处为两个电池包作为实施例进行介绍,可以用类似的方式增加更多的电池包,更多的电池包的情况下,两个电池包的连接关系与本例中类似,可以用本例的方式根据系统需求增加。
以电池包a和与之对应的双向升压/降压模块a,旁路模块a为例进行介绍。每个双向升压/降压模块有四个端口,每个旁路模块也有四个端口。以电池包a和与之对应的双向升压/降压模块a,旁路模块a为例进行介绍,旁路模块a又称为第一旁路模块,电池包a又成为第一电池包,双向升压/降压模块a又称为第一双向升压/降压模块,电池包b又称为第二电池包。第一旁路模块的第一端口与第一双向升压/降压模块的第一端口相连,一起连接到第一电池包a的正极。第一旁路模块的第二端口与第一双向升压/降压模块的第二端口相连,一起连接到第一电池包b负极。第一旁路模块的第三端口与第一双向升压/降压模块的第三端口相连,一起连接到负载正极和充电模块输出正极。第一旁路模块的第四端口与第一双向升压/降压模块的第四端口相连,一起连接到负载负极和充电模块输出负极。
控制模块与两个电池包(a、b)、两个双向升压/降压模块(a、b)、两个旁路模块(a、b)、一个充电模块均相连。每个双向升压/降压模块包括:六个开关、一个电感。以电池包a对应的双向双向升压/降压模块a为例进行介绍。第一开关Sa1的一端与第一电池包正极相连,第二开关Sa2的一端与第一电池包负极相连,第五开关Sa5的一端与负载正极和充电模块输出正极相连,第六开关Sa6的一端与负载负极和充电模块输出负极相连,第一开关Sa1的另一端与第三开关Sa3的一端和第一电感La的一端相连,第五开关Sa5的另一端与第四开关Sa4的一端和第一电感La的另一端相连,第二开关Sa2的另一端、第三开关Sa3的另一端、第四开关Sa4的另一端、第六开关Sa6的另一端相连。每个旁路模块包括:两个开关。以第一电池包,电池包a,对应的旁路模块a为例,第七开关Sa7的一端与第一电池包正极相连,第八开关Sa8的一端与第一电池包负极相连,第七开 关Sa7的另一端与负载正极和充电模块输出正极相连,第八开关Sa8的一端与负载负极和充电模块输出负极相连。
作为一种实现方式,双向升压/降压模块和旁路模块中的开关可以为:mosfet、IGBT、继电器、接触器中的一种或多种。在双向升压/降压模块处于工作状态时,如果处于升压模式,电感La储能,S1、S2、S4导通,S3、S5、S6断开;电感La释放能量,S1、S2、S5、S6导通,S3、S4断开。如果处于降压模式,电感储能,S1、S2、S5、S6导通,S3、S4断开;电感La释放能量,S3、S5、S6导通,S1、S2、S4断开。这里S1指代了Sa1和Sb1,其他类似。
由于本发明实施例中,双向降压模块中6个开关器件的设置,当电池包与双向升压/降压模块的输出端口正负反接时,不会存在被充放电电路内部开关管的体二极管直接短路的风险,有防反接功能。
作为一种具体的实现方式,在各个实施例中,控制模块如图3所示,控制模块包括电压采样单元,每个电池包对应一个电压采样单元,例如第一电池包a和第二电池包b的电压可以被各自对应的电压采样单元检测获得。控制模块还包括电压比较单元,各个电池包电压采样后,进入电压比较单元,将比较后的结果输出到处理器CPU中。CPU是具有信号处理和计算能力的器件,CPU根据从电压比较单元获得的信号,输出给各个电池包的控制信号。可以对各个电池包的旁路模块进行控制的旁路模块控制信号,用于控制旁路模块中各开关器件的闭合与端开。CPU输出各个电池包的双向变压模块控制信号,控制各个电池包对应的双向升压/降压模块中各开关器件的闭合与端开。CPU还可以输出队充电模块的控制信号,控制充电模块的工作。
在上述的分布式电池包的应用中,控制模块对电池包进行控制。在一种具体的实施例中,控制策略总体流程分为5个阶段:电池包种类判断、电池包充电策略选择和启动充电、结束充电、电池包放电策略选择和启动放电、结束放电。如图4控制策略总体流程图所示。先对分布式电池包中的各电池包,例如第一电池包和第二电池包进行种类判断,根据判断的结果,是否是相同种类的电池包,选择电池包充电测量或者电池包放电策略,根据选定的策略对电池包进行充放电操作,并控制充放电的结束条件或者时间。
如图5所示,介绍在一种可能的实现中,电池包种类判断的流程。先判断电池包化学体系是否一致,如果一致再判断电池包容量(Ah)是否一致,如果一致再判断电池包内阻是否一致,如果一致再判断电池包循环寿命是否一致,如果一致就判断为两个电池包种类相同。化学体系、容量、内阻、循环寿命中只要有一个不一致,就判断为两个电池包种类不相同。如果电池包种类不相同,就比较两个电池包的充放电倍率,充放电倍率大的判断为功率型电池包,充放电倍率小的判断为能量型电池包。需要注意的是,在本发明各实施例中,在比较参数是否一致的时候,不一定是完全数学数值意义上的完全相同,可以差值是在一定范围内也认为一致。具体可以允许的差值在不同的电池应用场景中可以不相同,例如在某些大容量电池包的情况下,可以认为在1Ah的相差范围内就认为是一致,想一些相对较小容量电池包的情况下,可能认为0.1Ah的相差范围才认为一致。这里是举例说明,需要指出的是这里的一致是允许工程意义上的数字数值的误差,或者根据整体系统质量参 数的要求允许的误差。
如图6所示,介绍在一种可能的实现中,电池包种类相同,电池包充电策略选择流程。电池包种类相同时,先计算两个电池包的电压差,如果电压差的绝对值小于等于第一阈值Uth1(例如5V),则两个电池包各自对应的旁路模块同时工作,即两个旁路模块内部的两个开关同时导通,然后充电模块工作,设定充电模块输出电流小于等于两个电池包的充电电流之和,最后两个电池包直接并联充电。如果电压差的绝对值大于第一阈值Uth1,则低压电池包对应的旁路模块工作,即旁路模块内部的两个开关同时导通,然后充电模块工作,设定充电模块输出电流小于等于低压电池包充电电流,低压电池包启动充电,充电时持续监控两个电池包的电压差,如果电压差的绝对值小于等于第二阈值Uth2(例如3V),则两个电池包各自对应的旁路模块同时工作,即两个旁路模块内部的两个开关同时导通,设定充电模块输出电流小于等于两个电池包的充电电流之和,最后两个电池包直接并联充电。
电池如图7所示,介绍在一种可能的实现中,电池包种类不同,电池包充电策略选择流程。能量型电池包对应的双向升压/降压模块工作,如果能量型电池包电压小于等于功率型电池包电压,设定双向升压/降压模块工作在降压模式,如果能量型电池包电压大于功率型电池包电压,设定双向升压/降压模块工作在升压模式,不论升压模式还是降压模式,都设定双向升压/降压模块输出电流小于等于能量型电池包充电电流。功率型电池包对应的旁路模块工作,旁路模块内部的两个开关同时导通。确定完电池包外部双向升压/降压模块的工作模式后,再控制充电模块工作,设定充电模块输出电流小于等于双向升压/降压模块输入电流与功率型电池包充电电流之和,最后两个电池包间接并联充电。一个具体的例子,功率型电池包对应的旁路模块工作,旁路模块的开关器件处于同时导通状态,能量性电池包对应的双向升压/降压模块工作,如果能量型电池包的电压小于等于功率型电池包的电压,则双向升压/降压模块工作在降压模式,如果能量型电池包的电压大于功率型电池包的电压,则双向升压/降压模块工作在升压模式,当设定的双向升压/降压模块输出电流小于等于能量型电池的充电电流时,充电模块开始工作设定充电模块输出电流小于等于双向升压/降压模块输入电流与功率型电池包充电电流之和,最后两个电池包间接并联充电。
在一种实际的实施中,电池包直接并联充电时,判断并确定是否结束充电的流程。两个电池包直接并联充电时,持续监控电池包的电压大小,如果电压大于饱和阈值(例如400V),控制充电模块停止工作,两个旁路模块停止工作,即两个旁路模块内部的两个开关同时断开,最后电池包停止充电。
在一种实际的可能的实施方式中,能量型电池包充电时的结束充电流程。持续监控电池包的电压大小,如果电压大于Uth3饱和阈值(例如400V),控制双向升压/降压模块停止工作,最后能量型电池包停止充电。
在一种实际的可能的实施方式中,功率型电池包充电时的结束充电流程。持续监控电池包的电压大小,如果电压大于饱和阈值(例如400V),控制旁路模块停止工作,即旁路模块内部的两个开关同时断开,最后功率型电池包停止充电。
在一种实际的可能的实施方式中,如图8所示,电池包放电策略确定流程。电池包种类相同时,先计算两个电池包的电压差,如果电压差的绝对值小于等于第三阈值Uth3(例如5V),则两个电池包各自对应的旁路模块同时工作,即两个旁路模块内部的两个开关同时导通,最后两个电池包直接并联放电。如果电压差的绝对值大于第三阈值Uth3,则高压电池包对应的旁路模块工作,即旁路模块内部的两个开关同时导通,然后高压电池包启动放电,放电时持续监控两个电池包的电压差,此种情况下低电压的电池包不工作,不给负载供电。如果电压差的绝对值小于等于第四阈值Uth4(例如3V),则两个电池包各自对应的旁路模块同时工作,即两个旁路模块内部的两个开关同时导通,最后两个电池包直接并联放电。一个具体的实施例,如果两个电池包的种类相同,例如电池包a和电池包b,判断两个电池包的电压差是否小于等于第三阈值。如果两个电池包的电压差小于等于第三阈值,则电池包a和电池包b两个电池包各自对应的旁路模块同时工作,即旁路模块内部两个开关同时导通,两个电池包直接并联放电。如果两个电池包的电压差大于第三阈值,则高电压电池包对应的旁路模块工作,即电池包a和电池包b中高电压电池包对应的旁路模块工作,高电压电池包放电,持续检测两个电池包的电压差是否小于等于第四阈值,如果小于等于,则进入电池包a和电池包b两个电池包各自对应的旁路模块同时工作,如果两个电池包的电压差大于第四阈值,则进行保持高电压电池包放电。
在一种实际的可能的实施方式中,如图9所示,电池包放电策略确定流程。电池包种类相同时,能量型电池包对应的双向升压/降压模块工作,如果能量型电池包电压小于等于功率型电池包电压,设定双向升压/降压模块工作在升压模式,如果能量型电池包电压大于功率型电池包电压,设定双向升压/降压模块工作在降压模式,不论升压模式还是降压模式,都设定双向升压/降压模块输入电流小于等于能量型电池包放电电流。功率型电池包对应的旁路模块工作,旁路模块内部的两个开关同时导通。确定完电池包外部充放电电路的工作模式后,两个电池包间接并联放电。
在可能的一种实现方式中,如何结束放电的流程。两个电池包直接并联放电时,持续监控电池包的电压大小,如果电压小于低压阈值(例如300V),控制两个旁路模块停止工作,即两个旁路模块内部的两个开关同时断开,最后电池包停止放电。进一步,对于能量型电池包放电时,持续监控电池包的电压大小,如果电压大于一定阈值(例如300V),控制双向升压/降压模块停止工作,最后能量型电池包停止放电。功率型电池包放电时,持续监控电池包的电压大小,如果电压大于低压阈值(例如300V),控制旁路模块停止工作,即旁路模块内部的两个开关同时断开,最后功率型电池包停止充电。
本发明还给出具有分布式电池包的电动汽车的实施例,参阅图10,电动车包括分布式电池。车载充电机,电机和电机控制器。分布式电池通过车载充电机充电,车载充电机通过充电口(交流充电口)获得外部电力。分布式电池为电动车的电机提供电力,电机在获得分布式电池电力的时候可以由电机控制器控制,电机为电动汽车提供动力。一种方式可以是第一电池包a为功率型电池包,第二电池包b为能量型电池包。一种可能出现的情况是,举一例说明,在给该电动汽车充电时,根据充电控制策略,第一电池包a功率型电池包的旁路模块a工作,第二电池包能量型电池包的旁路模块b不工作。第二电池包能量型电池包的双向升压/降压模块b工作,第一电池包功率型电池包的双向升压/降压模块a 不工作。车载充电机通过交流充电口从外部获得电源,车载充电机输出经过功率型电池包的旁路模块为功率型电池包直接充电,车载充电机的的输出通过双向升压/降压模块b为能量型电池包充电。其他情况下在给两个电池包充电时的策略选择和电路工作模式,参阅上述实施例的描述。该电动车在行驶过程中,分布式电池包处于放电状态,如果第一电池包a为功率型电池包,第二电池包b为能量型电池包。根据放电控制策略,第一电池包a功率型电池包的旁路模块a工作,第二电池包b为能量型电池包的旁路模块b不工作。第二电池包b为能量型电池包的双向升压/降压模块b工作,第一电池包a功率型电池包的双向升压/降压模块a不工作。功率型电池包直接通过旁路模块,经电机控制器为电机提供电力,能量型电池包通过双向向升压/降压模块,经电机控制器为电机提供电力。其他可能的情况,两个电池包方电时的策略选择和电路工作模式,参阅上述实施例的描述。
本发明实施例的分布式电池,也可以叫多电池包电池,通过上述旁路模块和双向升压/降压模块组成的充放电电路,并采取各实施例提供的控制策略,使得多个电池包或电池组可以根据实际使用需求,在直接并联和间接并联之间按需切换。

Claims (16)

  1. 一种分布式电池,包括多个电池包,其特征在于,所述分布式电池还包括:控制器、双向变压电路、旁路电路、充电电路、充电输入端,其中每一个所述电池包对应一个所述旁路电路和所述双向变压电路;
    所述旁路电路包括四个端口,其中第一端口和第三端口之间连接第一开关器件形成一条可通断电路,第二端口和第四端口之间连接第二开关器件形成一条可通断电路;
    双向变压电路,包括四个端口,其中第一端口、第二端口、第三端口和第四端口,其中第一端口和第二端口为与电池包相连的一侧端口,第三端口和第四端口为与充电电路相连的一侧端口,所述双向变压电路用于在所述电池包和所述充电电路之间进行双向变压;
    所述电池包的正极分别和所述旁路电路的第一端口、所述双向变压电路的第一端口连接,所述第一电池包的负极分别与所述旁路电路的第二端口、所述双向变压电路的第二端口连接,所述旁路电路的第三端口、所述双向变压电路的第三端口分别和所述充电电路的第一输出端连接,所述旁路电路的第四口、所述双向变压电路的第四端口分别和所述充电电路的第二输出端连接;
    所述充电电路的输入端与所述充电输入端连接;
    所述控制器与所述电池包、双向变压电路、旁路电路、充电电路均相连接,所述控制器用于根据所述电池包的电压和电池包参数控制所述第一开关器件、第二开关器件的开关状态和双向变压电路的工作状态。
  2. 根据权利要求1所述的分布式电池,其特征在于,
    所述双向变压电路包括六个开关器件和一个电感,其中第一开关与所述双向变压电路的第一端口相连,第二开关的一端与所述双向变压电路的第二端口相连,第五开关的一端与所述双向变压电路的第三端口相连,第六开关的一端与所述双向变压电路的第四端口相连,第一开关的另一端与第三开关的一端、第一电感的一端相连,第五开关的另一端与第四开关的一端、第一电感的另一端相连,第二开关的另一端、第三开关的另一端、第四开关的另一端、第六开关的另一端相连。
  3. 根据权利要求2所述的分布式电池,其特征在于,
    所述控制器还用于判断所述多个电池包的种类,对于所述多个电池包中的两个电池包,判断所述两个电池包化学体系是否一致,如果化学体系一致再判断电池包容量是否一致,如果电池包容量一致,判断电池包内阻是否一致,如果内阻一致,判断电池包循环寿命是否一致,如果寿命一致,则所述两个电池包种类相同的电池包,如果所述化学体系、电池包容量、内阻、循环寿命中存在任一个不一致,则所述电池包为两个电池包种类不相同的电池包;其中放电倍率大的电池包为功率型电池包,充放电倍率小的电池包为能量型电池包。
  4. 根据权利要求1、2或3所述的分布式电池,其特征在于,所述多个电池包至少包 括第一电池包和第二电池包,所述第一电池包和所述第二电池包种类相同;
    所述控制器还用于判断所述第一电池包和第二电池包的电压差,如果所述电压差小于等于第一阈值,在所述充电电路处于工作状态时,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路;控制充电电路输出电流小于等于所述第一电池包和第二电池包的充电电流之和。
  5. 根据权利要求1、2或3所述的分布式电池,其特征在于,所述多个电池包至少包括第一电池包和第二电池包,所述第一电池包和所述第二电池包种类相同;
    所述控制器还用于,在充电时,判断所述第一电池包和第二电池包的电压差,如果所述电压差大于第一阈值,在所述充电电路处于工作状态时,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,并控制充电电路输出电流小于等于所述第一电池包充电电流给所述第一电池包充电,其中所述第一电池包电压低于所述第二电池包的电压;如果所述所述第一电池包和第二电池包的电压差小于第二阈值,控制与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,并控制充电电路输出电流小于等于两个电池包的充电电流之和。
  6. 根据权利要求1、2或3所述的分布式电池,其特征在于,所述多个电池包至少包括能量型电池包和功率型电池包;
    所述控制器还用于,在充电时,判断能量型电池包电压是否小于等于功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制所述能量型电池包对应的双向变压电路工作在降压模式,如果所述能量型电池包电压大于所述功率型电池包电压,控制所述双向变压电路工作在升压模式,并控制双向变压电路输出电流小于等于能量型电池包充电电流;控制所述功率型电池包对应的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路;确定完所述能量型电池包外部双向变压电路的工作模式后,再控制充电模块工作,设定充电模块输出电流小于等于双向变压电路输入电流与功率型电池包充电电流之和。
  7. 根据权利要求1、2或3所述的分布式电池,其特征在于,所述多个电池包至少包括第一电池包和第二电池包,所述双向变压电路的第三端口和第四端口与分布式电池的负载连接;
    所述控制器还用于判断所述第一电池包和第二电池包的电压差,在所述分布式电池处于放电状态时,如果所述电压差小于等于第三阈值,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路。
  8. 根据权利要求1、2或3所述的分布式电池,其特征在于,所述多个电池包至少包括第一电池包和第二电池包,所述第一电池包和第二电池包种类相同,所述双向变压电路的第三端口和第四端口与分布式电池的负载连接;
    所述控制器用于,判断所述第一电池包和第二电池包的电压差,在所述分布式电池处 于放电状态时,如果所述电压差大于第三阈值,控制与所述第一电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路,所述第一电池包放电,其中所述第一电池包的电压高于所述第二电池包的电压,如果所述如果所述电压差小于等于第四阈值,再控制与所述第二电池包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路。
  9. 根据权利要求1、2或3所述的分布式电池,其特征在于,所述多个电池包至少包括能量型电池包和功率型电池包;
    所述控制器用于,判断所述能量型电池包电压是否大于所述功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制能量型电池包对应的双向变压电路工作在升压模式,如果所述能量型电池包电压大于所述功率型电池包电压,控制能量型电池包对应的双向变压电路工作在降压模式,并控制双向变压电路输入电流小于等于能量型电池包放电电流;控制与所述功率型电池包包连接的所述旁路电路中的第一开关器件和第二开关器件闭合以导通电路。
  10. 一种分布式电池充电控制方法,所述分布式电池至少包括第一电池包和第二电池包,其特征在于,所述方法包括:
    如果所述第一电池包与所述第二电池包为同类型电池包;
    判断所述第一电池包和第二电池包的电压差是否大于第一阈值,如果所述第一电池包和第二电池包的电压差小于等于所述第一阈值,则控制所述分布式电池的旁路电路使得所述第一电池包和第二电池包并联充电,如果所述第一电池包和第二电池包的电压差大于所述第一阈值,则控制分布式电池包的旁路电路先对所述第一电池包进行充电,所述第一电池包的电压小于所述第二电池包的电压,当所述所述第一电池包和第二电池包的电压差小于等于所述第二阈值后,则控制所述分布式电池的旁路电路使得所述第一电池包和第二电池包并联充电。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括,
    如果所述第一电池包与所述第二电池包为不同类型电池包,其中第一电池包为能量性电池包,所述第二电池包为功率型电池包;
    判断能量型电池包电压是否小于等于功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制所述能量型电池包对应的双向变压电路工作在降压模式,如果所述能量型电池包电压大于所述功率型电池包电压,控制所述双向变压电路工作在升压模式,并控制双向变压电路输出电流小于等于能量型电池包充电电流;对所述能量性电池包进行充电;
    控制所述分布式电池的旁路电路使得所述功率型电池包和所述能量性电池包并联充电。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    判断所述第一电池包和第二电池包的种类,判断所述两个电池包化学体系是否一致, 如果化学体系一致再判断电池包容量是否一致,如果电池包容量一致,判断电池包内阻是否一致,如果内阻一致,判断电池包循环寿命是否一致,如果寿命一致,则所述两个电池包种类相同的电池包,如果所述化学体系、电池包容量、内阻、循环寿命中存在任一个不一致,则所述电池包为两个电池包种类不相同的电池包;其中放电倍率大的电池包为功率型电池包,充放电倍率小的电池包为能量型电池包。
  13. 一种分布式电池包放电控制方法,所述分布式电池至少包括第一电池包和第二电池包,其特征在于,所述方法包括:
    如果所述第一电池包与所述第二电池包为同类型电池包,
    判断所述第一电池包和第二电池包的电压差;
    如果所述电压差小于等于第三阈值,控制所述第一电池包与所述第二电池包并联放电;
    如果所述电压差大于于第三阈值,控制与所述第一电池包连接的所述旁路电路使得所述第一电池包放电,其中所述第一电池包的电压高于所述第二电池包的电压,对所述第一电池包和第二电池包的电压差进行检测,当所述如果所述电压差小于等于第四阈值,再控制所述第一电池包与所述第二电池包并联放电。
  14. 根据权利要求13所述的方法,其特征在于,
    如果所述第一电池包与所述第二电池包为不同类型电池包,其中第一电池包为能量性电池包,所述第二电池包为功率型电池包;
    判断所述能量型电池包电压是否大于所述功率型电池包电压,如果所述能量型电池包电压小于等于所述功率型电池包电压,控制所述能量型电池包处于经过升压后放电的工作模式,如果所述能量型电池包电压大于所述功率型电池包电压,控制所述能量型电池包处于经过降压后放电的工作模式,并控制双向变压电路输入电流小于等于能量型电池包放电电流;
    控制所述分布式电池的旁路电路使得所述功率型电池包和所述能量性电池包并联充电。
  15. 根据权利要求13或14的方法,其特征在于,所述方法还包括:
    判断所述第一电池包和第二电池包的种类,判断所述两个电池包化学体系是否一致,如果化学体系一致再判断电池包容量是否一致,如果电池包容量一致,判断电池包内阻是否一致,如果内阻一致,判断电池包循环寿命是否一致,如果寿命一致,则所述两个电池包种类相同的电池包,如果所述化学体系、电池包容量、内阻、循环寿命中存在任一个不一致,则所述电池包为两个电池包种类不相同的电池包;其中放电倍率大的电池包为功率型电池包,充放电倍率小的电池包为能量型电池包。
  16. 一种电动汽车,包括电机,其特征在于,所述电动汽车还包括分布式电池系统,所述分布式电池系统为所述电机提供电力,所述分布式电池系统包括权利要求1-9中任一权利要求中所述的分布式电池。
PCT/CN2018/085068 2017-05-03 2018-04-28 分布式电池、电池控制方法与电动汽车 WO2018202003A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18794942.5A EP3621172B1 (en) 2017-05-03 2018-04-28 Distributed battery, battery control method, and electric automobile
JP2019560092A JP6874952B2 (ja) 2017-05-03 2018-04-28 分散型バッテリ、バッテリ制御方法、及び電気自動車
US16/672,064 US11322936B2 (en) 2017-05-03 2019-11-01 Distributed battery, battery control method, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710304859.5A CN108808754B (zh) 2017-05-03 2017-05-03 分布式电池、电池控制方法与电动汽车
CN201710304859.5 2017-05-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/672,064 Continuation US11322936B2 (en) 2017-05-03 2019-11-01 Distributed battery, battery control method, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2018202003A1 true WO2018202003A1 (zh) 2018-11-08

Family

ID=64015846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085068 WO2018202003A1 (zh) 2017-05-03 2018-04-28 分布式电池、电池控制方法与电动汽车

Country Status (5)

Country Link
US (1) US11322936B2 (zh)
EP (1) EP3621172B1 (zh)
JP (1) JP6874952B2 (zh)
CN (1) CN108808754B (zh)
WO (1) WO2018202003A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092371B (zh) * 2016-11-15 2020-04-03 华为技术有限公司 充放电装置
CN109245595B (zh) * 2018-11-16 2024-06-21 广州市金特电子科技有限公司 同步整流降压双向变换电路及智能电池
ES2767473B2 (es) * 2018-12-17 2020-11-03 Power Electronics Espana S L Convertidor dc/dc en "l"
US20200395774A1 (en) * 2019-06-17 2020-12-17 Renesas Electronics America Inc. Single inductor multiple output charger for multiple battery applications
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
KR20210045841A (ko) * 2019-10-17 2021-04-27 삼성에스디아이 주식회사 배터리 시스템
CN111055845B (zh) * 2019-12-30 2021-11-30 清华大学 一种车辆控制方法、装置、车辆及存储介质
CN111082459A (zh) * 2020-01-02 2020-04-28 中车株洲电力机车有限公司 用于控制分布式储能电源并网的方法、装置及系统
WO2021168769A1 (zh) * 2020-02-28 2021-09-02 东莞新能源科技有限公司 电池包管理系统、电池包、车辆及管理方法
CN111682615A (zh) * 2020-06-18 2020-09-18 格力博(江苏)股份有限公司 充电控制电路、充电装置及充电系统
CN112937303B (zh) * 2021-02-08 2022-10-04 重庆长安新能源汽车科技有限公司 一种电池过热后实时在线预警方法及系统
CN112874384B (zh) * 2021-02-26 2022-09-02 苏州清研精准汽车科技有限公司 一种并行充电电路
CN113479113B (zh) * 2021-06-08 2023-05-16 北京海博思创科技股份有限公司 电池系统控制方法、装置、设备、介质及程序产品
DE102021210541A1 (de) 2021-09-22 2023-03-23 Robert Bosch Gesellschaft mit beschränkter Haftung Batteriesystem für ein Fahrzeug, Verfahren zum Betreiben eines Batteriesystems und Fahrzeug
CN114252770B (zh) * 2021-11-19 2023-12-22 东软睿驰汽车技术(沈阳)有限公司 一种电池包的功率的检测方法、装置、系统及电子设备
US11923704B2 (en) * 2022-03-04 2024-03-05 Microsoft Technology Licensing, Llc Battery pack remaining charge balancing system
CN117183812A (zh) * 2022-05-31 2023-12-08 比亚迪股份有限公司 电池电路以及车辆
CN115102266B (zh) * 2022-08-25 2023-01-17 如果新能源科技(江苏)股份有限公司 一种电池系统的控制方法、电池系统、离网供电系统
CN116788112B (zh) * 2023-08-17 2023-12-05 广州巨湾技研有限公司 一种动力电池系统、电动汽车及动力电池系统控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075032A (ja) * 2008-09-22 2010-04-02 Act Green:Kk ハイブリッドキャパシタの充電方法及び充電回路
CN103199580A (zh) * 2013-03-25 2013-07-10 中国科学院苏州纳米技术与纳米仿生研究所 智能充电系统
CN103326439A (zh) * 2013-06-28 2013-09-25 安科智慧城市技术(中国)有限公司 电池组的均衡电路及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304059B1 (en) * 2000-06-22 2001-10-16 Subhas C. Chalasani Battery management system, method of operation therefor and battery plant employing the same
JP5118913B2 (ja) * 2007-07-24 2013-01-16 トヨタ自動車株式会社 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
CN101767541B (zh) 2008-12-29 2011-11-09 北汽福田汽车股份有限公司 基于分布式动力电池组的电动汽车动力系统及电动汽车
WO2011014593A2 (en) 2009-07-31 2011-02-03 Thermo King Corporation Bi-directional battery voltage converter
JPWO2012049963A1 (ja) 2010-10-15 2014-02-24 三洋電機株式会社 蓄電池を含む電源システム
CN103296740B (zh) 2012-03-01 2016-02-03 微宏动力系统(湖州)有限公司 电池组自动切换方法
CN104425852A (zh) * 2013-09-06 2015-03-18 苏州宝时得电动工具有限公司 控制方法、控制组件、电池系统及电动工具
WO2015105923A1 (en) * 2014-01-07 2015-07-16 Utah State University Battery control
JP2015154606A (ja) * 2014-02-14 2015-08-24 株式会社リコー 蓄電状態調整回路、蓄電状態調整システム、及び電池パック
CN104253469B (zh) * 2014-09-24 2017-03-15 于志章 二次电池组充放电管理系统
CN106143171A (zh) * 2015-03-31 2016-11-23 通用电气公司 多源能量存储系统及能量管理控制方法
CN204832470U (zh) * 2015-08-11 2015-12-02 深圳市亿通科技有限公司 电池电压检测装置及电子设备
CN105515101A (zh) 2015-12-11 2016-04-20 上海中兴派能能源科技有限公司 锂电池组用双向电源
CN107968446B (zh) 2016-10-19 2022-06-14 华为技术有限公司 分布式电池包供电系统及充放电控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075032A (ja) * 2008-09-22 2010-04-02 Act Green:Kk ハイブリッドキャパシタの充電方法及び充電回路
CN103199580A (zh) * 2013-03-25 2013-07-10 中国科学院苏州纳米技术与纳米仿生研究所 智能充电系统
CN103326439A (zh) * 2013-06-28 2013-09-25 安科智慧城市技术(中国)有限公司 电池组的均衡电路及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3621172A4 *

Also Published As

Publication number Publication date
EP3621172A4 (en) 2020-03-11
EP3621172B1 (en) 2022-08-24
US11322936B2 (en) 2022-05-03
US20200062140A1 (en) 2020-02-27
JP6874952B2 (ja) 2021-05-19
CN108808754B (zh) 2020-10-16
JP2020519223A (ja) 2020-06-25
EP3621172A1 (en) 2020-03-11
CN108808754A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018202003A1 (zh) 分布式电池、电池控制方法与电动汽车
CN110875616B (zh) 对双电池组可再充电能量存储系统的自平衡开关控制
CN103192729B (zh) 电动车辆
US9520613B2 (en) Battery control with block selection
US6781343B1 (en) Hybrid power supply device
CN104094494B (zh) 并联蓄电系统及其控制方法
CN107968446B (zh) 分布式电池包供电系统及充放电控制方法
CA2935019A1 (en) Temperature control apparatus for electricity storage device
JP5344047B2 (ja) 二次電池の出力制御装置
JP2013031249A (ja) バッテリ装置の充電システム
JP6639686B2 (ja) セルバランシングシステム及び制御方法
JP2013031247A (ja) バッテリ装置の放電システム
CN105873793A (zh) 电化学能量存储器和用于平衡的方法
US20230086550A1 (en) Power supply system
JP2014023231A (ja) 車載充電制御装置
WO2015017896A1 (en) Battery balancing system and method
WO2021181383A1 (en) Switch systems for rechargeable battery arrays
CN111052534B (zh) 工程机械
JP2017112734A (ja) バッテリ制御システム
US11190075B2 (en) Drive system
JP6591683B2 (ja) 充電電圧の供給装置及び供給方法
EP4379995A1 (en) Battery device and balancing method
CN204559143U (zh) 鲁棒电池管理系统
JP6430100B2 (ja) ショベル
JP6919302B2 (ja) 車両用蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018794942

Country of ref document: EP

Effective date: 20191203