WO2018201522A1 - 一种破碎筛分装备智能控制系统及控制方法 - Google Patents

一种破碎筛分装备智能控制系统及控制方法 Download PDF

Info

Publication number
WO2018201522A1
WO2018201522A1 PCT/CN2017/084870 CN2017084870W WO2018201522A1 WO 2018201522 A1 WO2018201522 A1 WO 2018201522A1 CN 2017084870 W CN2017084870 W CN 2017084870W WO 2018201522 A1 WO2018201522 A1 WO 2018201522A1
Authority
WO
WIPO (PCT)
Prior art keywords
crusher
active power
max
current
belt
Prior art date
Application number
PCT/CN2017/084870
Other languages
English (en)
French (fr)
Inventor
于剑锋
吴波
毛嘉
徐梓涵
Original Assignee
上海云统信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海云统信息科技有限公司 filed Critical 上海云统信息科技有限公司
Publication of WO2018201522A1 publication Critical patent/WO2018201522A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating

Definitions

  • the invention belongs to the technical field of medium crushing and fine crushing equipment control of crushing and screening production line, and particularly relates to an intelligent control system and control method for crushing and screening equipment.
  • the process of crushing the production line generally consists of coarse crushing, medium crushing and fine crushing and corresponding feeding, conveying and screening processes.
  • the coarsely crushed equipment is generally a jaw crusher, a gyratory crusher or a heavy hammer crusher.
  • the crushed equipment is generally a cone crusher, a counter crusher or a hammer crusher.
  • the finely crushed equipment is generally cone crushed. Machine or vertical impact crusher.
  • the crushing production line usually adds a buffer silo before the medium crushing and fine crushing.
  • the crushed material of the coarse crushing equipment is temporarily placed in the buffer silo of the medium crushing equipment, and the broken material of the crushing equipment is temporarily placed in the buffer silo of the fine crushing equipment. in.
  • the buffer silo supplies the material to the corresponding crushing equipment through the feeder. After the crushing, the materials will be transported to the vibrating screen through the belt conveyor for screening. The materials of the appropriate size will be stacked by the belt conveyor or sent to the buffer silo of the next-stage crushing equipment. Larger materials are returned to the original buffer bin by the belt conveyor and re-crushed.
  • the first way is to manually observe the current of the crusher motor to judge the load of the crusher, and adjust the medium crush according to the load condition.
  • the frequency of the feeder of the crushed equipment is such that the motor of the medium and fine crushing equipment is operated at a high efficiency.
  • the second way is to use the intelligent control system (such as single-chip system, PLC system, industrial computer system, etc.) to control the feeding frequency of the feeder while collecting the change of the size of the discharge port of the crusher or the change of the motor speed.
  • the third way is to use the intelligent control system as the main control unit to collect the running current of the crusher motor, set the target current of the motor by manual experience, use the PID algorithm of the intelligent control system or directly use the PID controller to control the feeding.
  • the motor is always running at a certain load rate.
  • the first control method is to manually judge the industrial and mining of the crusher by manually passing the industrial and mining of the crusher motor, which not only increases the labor intensity of the operator, but also makes the output much depends on the operation experience and responsibility of the operator.
  • the second way is a way of threshold judgment, which cannot achieve continuous and accurate feed control.
  • the third method is continuous control, it is necessary to judge the target value of the motor current during the efficient operation of the crusher by the experience of the operator, and at the same time, the target current cannot be modified in real time with the operating condition of the device, so that the precise Material control.
  • the present invention provides an intelligent control system and a control method for a crushing and screening equipment.
  • An intelligent control system for crushing and screening equipment comprising an acquisition module and an intelligent control module;
  • the acquisition module includes: a three-phase active power meter and a current transformer;
  • the intelligent control module includes: an intelligent control device and a PID controller;
  • the input end of the three-phase active power meter is disposed on the discharge belt of the crushing and screening equipment and the control circuit of the return belt motor, and the input end of the current transformer is disposed on the motor control loop of the crushing and screening equipment.
  • the output end of the three-phase active power meter and the output end of the current mutual inductance are connected to the input end of the intelligent control device, the output end of the intelligent control device is connected to the input end of the PID controller, and the output end of the PID controller is connected to the crushing screen
  • the three-phase active power meter is used for collecting the active power p 1 when the discharge belt of the crusher of the crushing and screening equipment is idling, the active power p 2 when the returning belt is idling, and the active power when the discharging belt is running. And the active power of the return belt load operation is transmitted to the intelligent control device;
  • the current transformer is configured to collect the current value of the crusher and transmit it to the intelligent control device;
  • the intelligent control device is configured to collect the active power of the discharge belt load operation and the current value of the crusher through the current transformer through the three-phase active power meter according to different frequency of the given feeder. And store according to the first-in-first-out method, according to the active power p 1 when the discharge belt of the crusher is idling, the active power p 2 when the return belt is idling, the active power during the real-time updated discharge belt load operation and real-time The active power of the updated return belt load is optimized, and the operating current when the crusher has the largest throughput and the operating current when the crusher has the highest production efficiency are transmitted to the PID controller;
  • the PID controller is configured to perform a PID controller according to an operating current when the crusher crushes the material with the largest throughput and the operating current of the crusher with the highest output efficiency, and obtains the frequency value of the inverter and outputs the frequency converter to the inverter. .
  • a method for intelligently controlling an intelligent control system using a crushing and screening device comprising the following steps:
  • Step 1 Material passing time T 1 of the feed belt during operation of the crusher is obtained, the material passes through the screen of the time t 2, by the time the material back to the feed belt t 3, to the smart storage control apparatus;
  • Belt feed time t 1 the time the material through the vibrating screen t 2, the material feed back through time t 3 of the belt material by a method that is obtained when the crusher is operating as follows: the material crusher is operating a plurality of measurements obtained by the stopwatch the average value of the feed belt by the time t 1, the average value of the material through the vibrating screen time t 2, the average value of the material through the feed belt back time t 3.
  • Step 2 Using the three-phase active power meter to collect the active power p 1 when the crusher discharge belt is idling, and the active power p 2 when the return belt is idling, and transmit it to the intelligent control device;
  • Step 3 The intelligent control device collects the active power of the discharge belt load operation through the three-phase active power meter according to the sampling frequency, and collects the current value of the crusher through the current transformer, and according to the sampling frequency. storing FIFO manner, 1, p active material back when the belt idle time according to the active power p of the feed belt idler crusher, updated in real time the active power feed belt load operation and updated in real time The active power of the return belt load is optimized, and the operating current when the crusher has the largest throughput and the operating current when the crusher has the highest production efficiency are obtained and transmitted to the PID controller;
  • Step 3.2 After the crusher, the corresponding vibrating screen and the belt conveyor are operated, the intelligent control device gives the initial frequency f 0 of the feeder;
  • Step 3.3 After the feeder runs n 1 ⁇ t time, the intelligent control device collects the active power of the discharge belt load operation through the three-phase active power meter according to the sampling time, collects the current value of the crusher through the current transformer, and according to the advanced The first-out method stores n 3 active powers in the discharge belt n 3 ⁇ t period and current values of n 3 crushers;
  • Step 3.4 After the feeder runs (n 1 +n 2 +n 3 ) ⁇ t time, the intelligent control device collects the active power of the return belt load during operation according to the sampling time through the three-phase active power meter, and according to the first in first out The mode stores n 3 active powers in the return belt n 3 ⁇ t period;
  • Step 3.5 intelligent control device active in the discharge belt load operation at the first store reaches n 3 data, each sampling period is calculated once stored active data corresponding to n 3 of the feed belt load operation The average value Q0 i and the average value of the current value of the crusher A0 i , and store the average of the active power of the (n 2 +n 3 ) discharge belt load operation in a first-in, first-out manner. And the average value of the current values of (n 2 + n 3 ) crushers
  • Step 3.6 Compare the average of the active power of the current (n 2 + n 3 ) discharge belt load operation by the intelligent control device Size, extract and update in real time the maximum value of the active power average value Q0 max of the discharge belt load operation, and the average value of the current values of (n 2 +n 3 ) crushers
  • Step 3.7 The active power of the intelligent control device during the load of the return belt load is stored for n 3 data for the first time, and the active power of the return belt load corresponding to the stored n 3 data is calculated once for each sampling period. Average value P0;
  • Step 3.10 Repeat steps 3.3-3.8 to obtain the maximum value Q1 max of the active power average value of the discharge belt load when the feeder frequency is f 1 and the current value A1 max of the crusher corresponding to the same time.
  • the maximum difference between the active power of the material belt and the return belt during operation is Z1 max and the current value I1 max of the crusher corresponding to the same time;
  • Step 3.12 Repeat step 3.3 - step 3.11 to obtain the maximum value of the active power average value Qm max of the discharge belt load when the feeder frequency is f m and the current value Am max of the crusher corresponding to the same time.
  • Step 3.13 It is judged by the intelligent control device whether Q(m+1) max ⁇ Qm max or f m+1 reaches the maximum value of the feeder frequency, and if so, the current feeder frequency is f m belt active current value corresponding to the maximum average Am max crusher as the material crusher is running at maximum throughput current, and Z0 max, Z1 max, ..., Zm max determined maximum value Zn max The current value In max of the crusher corresponding to the Zn max at the same time is taken as the operating current when the crusher has the highest production efficiency, and step 4 is performed. Otherwise, the process returns to step 3.12, where 0 ⁇ n ⁇ m.
  • Step 4 Transfer the operating current when the crusher crushing material is the largest and the operating current when the crusher has the highest production efficiency to the PID controller through the intelligent control device;
  • Step 5 When the crushing and screening equipment needs to be operated at the highest efficiency, the PID controller controls the crusher by using the operating current with the highest production efficiency of the crusher as the target current;
  • Step 6 When the crushing and screening equipment is required to run at the maximum throughput of the crushed material, the crusher is controlled by the PID controller as the target current when the crushing material has the largest throughput.
  • the invention provides an intelligent control system and a control method for a crushing and screening equipment, which can automatically find the optimal operating state of the medium crushing equipment and the fine crushing equipment; can provide corresponding parameters for the high efficiency control of the equipment, and control the parameters through the parameter
  • the operation of the equipment keeps the equipment in an efficient state of operation; it can provide the ultimate operating parameters and the matching parameters of the motor and the crusher for the medium crushing equipment and the fine crushing equipment manufacturer. It is possible to find a comparison between the crusher discharge port size and the output for the crusher manufacturer.
  • FIG. 1 is a schematic structural view of an intelligent control system for a crushing and screening equipment according to an embodiment of the present invention
  • FIG. 2 is a flow chart of an intelligent control method for a crushing and screening equipment according to an embodiment of the present invention.
  • a crushing and screening equipment intelligent control system as shown in Figure 1, includes an acquisition module and an intelligent control module.
  • the acquisition module includes: a three-phase active power meter and a current transformer.
  • the intelligent control module includes: an intelligent control device and a PID controller.
  • the input end of the three-phase active power meter is disposed on the discharge belt of the crushing and screening equipment and the control circuit of the return belt motor, and the input end of the current transformer is disposed on the motor control loop of the crushing and screening equipment.
  • the output end of the three-phase active power meter and the output end of the current mutual inductance are connected to the input end of the intelligent control device, the output end of the intelligent control device is connected to the input end of the PID controller, and the output end of the PID controller is connected to the crushing screen
  • the input of the inverter that is equipped.
  • the three-phase active power meter is used for collecting the active power p 1 when the discharge belt of the crusher of the crushing and screening equipment is idling, the active power p 2 when the returning belt is idling, and the active power when the discharging belt is running.
  • the active power during operation with the return belt load is transmitted to the intelligent control unit.
  • the current transformer is used to collect the current value of the crusher and transmit it to the intelligent control device.
  • the intelligent control device is configured to collect the active power of the output belt load through the three-phase active power meter according to the different frequencies of the feeder given by the PID controller, and collect the crusher through the current transformer.
  • the current value is stored in the first-in-first-out manner, according to the active power p 1 when the discharge belt of the crusher is idling, the active power p 2 when the return belt is idling, and the active power when the output belt load is updated in real time.
  • the active power of the power and real-time updated return belt load operation is optimized, and the operating current when the crusher has the largest throughput and the operating current when the crusher has the highest production efficiency are transmitted to the PID controller.
  • the intelligent control device can be implemented by using a single chip system, a PLC system, and an industrial computer system.
  • the PID controller is configured to perform a PID controller according to an operating current when the crusher crushes the material with the largest throughput and the operating current of the crusher with the highest output efficiency, and obtains the frequency value of the inverter and outputs the frequency converter to the inverter. .
  • Step 1 obtaining the material through the crusher is operating time of the feed belt of t 1, by the time the material shaker t 2, by the time the material back to the feed belt t 3, the control device to the smart storage.
  • the crusher is obtained when the time for running the material through the feed belts t 1, the material passing time t of the vibrating screen 2, the material feed back through time t of the belt 3 is the method of: obtaining a plurality of measurements crusher stopwatch runtime by an average value of the material of the belt feed time t 1, the average value of the material through the vibrating screen time t 2, the average value of the material through the feed belt back time t 3.
  • Step 2 The active power p 1 when the crusher discharge belt is idling and the active power p 2 when the return belt is idling are collected by using the three-phase active power meter, and transmitted to the intelligent control device.
  • Step 3 The intelligent control device collects the active power of the discharge belt load operation through the three-phase active power meter according to the sampling frequency, and collects the current value of the crusher through the current transformer, and according to the sampling frequency.
  • First-in-first-out storage according to the active power p 1 when the crusher's discharge belt is idling, the active power p 2 when the return belt is idling, the real-time updated output power of the discharge belt load, and the real-time update
  • the active power during the return belt load operation is optimized, and the operating current when the crusher passes the maximum and the operating current when the crusher has the highest production efficiency are obtained and transmitted to the PID controller.
  • Step 3.2 After the crusher, the corresponding vibrating screen and the belt conveyor are operated, the intelligent control device gives the initial frequency f 0 of the feeder.
  • Step 3.3 After the feeder runs n 1 ⁇ t time, the intelligent control device collects the active power of the discharge belt load operation through the three-phase active power meter according to the sampling time, collects the current value of the crusher through the current transformer, and according to the advanced The first-out mode stores n 3 active powers and n 3 crusher current values in the discharge belt n 3 ⁇ t period.
  • Step 3.4 After the feeder runs (n 1 +n 2 +n 3 ) ⁇ t time, the intelligent control device collects the active power of the return belt load during operation according to the sampling time through the three-phase active power meter, and according to the first in first out The mode stores n 3 active powers in the return belt n 3 ⁇ t period.
  • Step 3.5 intelligent control device active in the discharge belt load operation at the first store reaches n 3 data, each sampling period is calculated once stored active data corresponding to n 3 of the feed belt load operation The average value Q0 i and the average value of the current value of the crusher A0 i , and store the average of the active power of the (n 2 +n 3 ) discharge belt load operation in a first-in, first-out manner. And the average value of the current values of (n 2 + n 3 ) crushers
  • Step 3.6 Compare the average of the active power of the current (n 2 + n 3 ) discharge belt load operation by the intelligent control device Size, extract and update in real time the maximum value of the active power average value Q0 max of the discharge belt load operation, and the average value of the current values of (n 2 +n 3 ) crushers
  • Step 3.7 The active power of the intelligent control device during the load of the return belt load is stored for n 3 data for the first time, and the active power of the return belt load corresponding to the stored n 3 data is calculated once for each sampling period. The average value of P0.
  • Step 3.10 Repeat steps 3.3-3.8 to obtain the maximum value Q1 max of the active power average value of the discharge belt load when the feeder frequency is f 1 and the current value A1 max of the crusher corresponding to the same time.
  • the difference between the active power difference between the material belt and the return belt load is Z1 max and the current value I1 max of the crusher corresponding to the same time.
  • Step 3.13 It is judged by the intelligent control device whether Q(m+1) max ⁇ Qm max or f m+1 reaches the maximum value of the feeder frequency, and if so, the current feeder frequency is f m belt active current value corresponding to the maximum average Am max crusher as the material crusher is running at maximum throughput current, and Z0 max, Z1 max, ..., Zm max determined maximum value Zn max The current value In max of the crusher corresponding to the Zn max at the same time is taken as the operating current when the crusher has the highest production efficiency, and step 4 is performed. Otherwise, the process returns to step 3.12, where 0 ⁇ n ⁇ m.
  • the feeder frequency has a maximum value of 50 Hz.
  • Step 4 The operating current when the crusher crushing material is maximized by the intelligent control device and the running current when the crusher has the highest production efficiency are transmitted to the PID controller.
  • Step 5 When the crushing and screening equipment is required to operate at the highest efficiency, the PID controller controls the crusher with the operating current at which the crusher has the highest production efficiency as the target current.
  • Step 6 When the crushing and screening equipment is required to run at the maximum throughput of the crushed material, the PID controller controls the crusher by using the operating current when the crusher crushing material has the largest throughput as the target current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Feedback Control In General (AREA)

Abstract

一种破碎筛分装备智能控制系统,该系统包括采集模块和智能控制模块;采集模块包括:三相有功功率表和电流互感器;智能控制模块包括:智能控制装置和PID控制器;三相有功功率表的输入端设置于破碎筛分装备的出料皮带和回料皮带电机控制回路上,电流互感器的输入端设置于破碎筛分装备的电机控制回路上,三相有功功率表的输出端和电流互感的输出端连接智能控制装置的输入端智能控制装置的输出端连接PID控制器的输入端, PID控制器的输出端连接破碎筛分装备的变频器的输入端。还涉及该破碎筛分装备智能控制系统的控制方法,该系统和控制方法可以自动找到中碎设备和细碎设备的最佳运行状态;并通过该参数控制设备运行使设备一直处于高效率的运行状态。

Description

一种破碎筛分装备智能控制系统及控制方法 技术领域
本发明属于破碎筛分产线的中碎和细碎设备控制技术领域,具体涉及一种破碎筛分装备智能控制系统及控制方法。
背景技术
破碎产线的流程一般是由粗碎、中碎和细碎及相应的给料、输送、筛分过程组成。粗碎的设备一般是颚式破碎机、旋回破碎机或重锤式破碎机等,中碎的设备一般是圆锥破碎机、反击式破碎机或锤式破碎机等,细碎的设备一般是圆锥破碎机或者立式冲击式破碎机等。
破碎产线一般在中碎和细碎之前会加入一个缓冲料仓,粗碎设备破碎的物料暂放到中碎设备的缓冲料仓里,中碎设备破碎的物料暂放在细碎设备的缓冲料仓里。缓冲料仓通过给料机把物料提供给相应的破碎设备。经过破碎以后的物料会通过胶带机运输到振动筛进行筛分,大小合适的物料会通过胶带机按规格进行堆放或者送往下一级破碎设备的缓冲料仓。较大的物料会通过胶带机返回到原缓冲料仓重新破碎。
在破碎产线中,对中碎设备和细碎设备的控制主要有三种方式,第一种方式是是靠人工观察破碎机电机的电流大小判断破碎机的负载情况,根据负载情况来调节中碎、细碎设备的给料机频率从而达到让中碎、细碎设备的电机处于高效率运行状态。第二种方式是使用智能控制系统(如单片机系统、PLC系统、工控机系统等)控制给料机的给料频率同时采集破碎机排料口大小的变化或者电机转速的变化,如果出现排料口变大或者电机转速变小到一定程度就减小给料,反之增加给料。第三种方式是由智能控制系统作为主控单元,采集破碎机电机的运行电流,靠人工经验设定电机的目标电流,使用智能控制系统的PID算法或者直接使用PID控制器控制给料,使电机一直处于一定的负载率下运行。
第一种控制方式是靠人工通过破碎机电机的工矿实时判断破碎机整体的工矿,不仅加大了操作人员的劳动强度,而且使产量的多少严重依赖操作人员的操作经验和责任心。第二种方式是一种阈值判断的方式,无法做到连续地、精确地给料控制。第三种方式虽然是连续地控制,但需要凭借操作人员的经验判断破碎机高效运行时候的电机电流的目标值,同时无法随设备的运行工况实时修改目标电流,从而无法做到精确的给料控制。
同时在破碎设备制造过程中,需要大量的数据采集为破碎设备的优化设计提供支撑,而破碎设备的优化设计离不开对破碎设备的运行数据进行优化处理的方式。现有的数据处理方式都是靠人工对大量的采集数据进行解读,无法做到对破碎设备动态运行过程中数据的自动优化。
发明内容
针对现有技术的不足,本发明提出一种破碎筛分装备智能控制系统及控制方法。
一种破碎筛分装备智能控制系统,包括采集模块和智能控制模块;
所述采集模块包括:三相有功功率表和电流互感器;
所述智能控制模块包括:智能控制装置和PID控制器;
所述三相有功功率表的输入端设置于破碎筛分装备的出料皮带和回料皮带电机控制回路上,所述电流互感器的输入端设置于破碎筛分装备的电机控制回路上,所述三相有功功率表的输出端和电流互感的输出端连接智能控制装置的输入端,所述智能控制装置的输出端连接PID控制器的输入端,所述PID控制器的输出端连接破碎筛分装备的变频器的输入端;
所述三相有功功率表,用于采集破碎筛分装备的破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、出料皮带负荷运行时的有功功率和回料皮带负荷运行时的有功功率,传输至智能控制装置;
所述电流互感器,用于采集破碎机的电流值,传输至智能控制装置;
所述智能控制装置,用于通过给定给料机的不同的频率,按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式进行存储,根据破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、实时更新的出料皮带负荷运行时的有功功率和实时更新的回料皮带负荷运行时的有功功率进行优化,得到破碎机通过量最大时的运行电流和破碎机生产效率最高时的运行电流,传输至PID控制器;
所述PID控制器,用于根据智能控制装置输出的破碎机破碎物料通过量最大时的运行电流和破碎机生产效率最高时的运行电流进行PID控制器,得到变频器频率值,输出至变频器。
采用破碎筛分装备智能控制系统进行智能控制的方法,包括以下步骤:
步骤1:获得破碎机运行时物料通过出料皮带的时间t1、物料通过振动筛的时间t2、物料通过回料皮带的时间t3,保存至智能控制装置;
所述获得破碎机运行时物料通过出料皮带的时间t1、物料通过振动筛的时间t2、物料通过回料皮带的时间t3的方法为:通过秒表多次测量获得破碎机运行时物料通过出料皮带的时间的平均值t1、物料通过振动筛的时间的平均值t2、物料通过回料皮带的时间的平均值t3
步骤2:采用三相有功功率表采集破碎机出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2,传输至智能控制装置;
步骤3:智能控制装置通过给定给料机的不同的频率,按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式进行存储,根据破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、实时更新的出料皮带负荷运行时的有功功率和实时更新的回料皮带负荷运行时的有功功率进行优化,得到破碎机通过量最大时的运行电流和破碎机生产效率最高时的运行电流,传输至PID控制器;
步骤3.1:设定三相有功功率表和电流互感器的采样时间Δt,令t1=n1Δt、t2=n2Δt、t3=n3Δt;
步骤3.2:破碎机、相应的振动筛和皮带机运行以后,智能控制装置给定给料机初始频率f0
步骤3.3:给料机运行n1Δt时间后,智能控制装置按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式存储出料皮带n3Δt时间段内的n3个有功功率和n3个破碎机的电流值;
步骤3.4:给料机运行(n1+n2+n3)Δt时间后,智能控制装置按照采样时间通过三相有功功率表采集回料皮带负荷运行时的有功功率,并按照先进先出的方式存储回料皮带n3Δt时间段内的n3个有功功率;
步骤3.5:智能控制装置在出料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次存储的n3个数据对应的出料皮带负荷运行时的有功功率的平均值Q0i和破碎机的电流值的平均值A0i,并按照先进先出的方式存储(n2+n3)个出料皮带负荷运行时的有功功率的平均值
Figure PCTCN2017084870-appb-000001
以及(n2+n3)个破碎机的电流值的平均值
Figure PCTCN2017084870-appb-000002
步骤3.6:通过智能控制装置比较当前(n2+n3)个出料皮带负荷运行时的有功功率的平均值
Figure PCTCN2017084870-appb-000003
的大小,提取并实时更新出料皮带负荷运行时的有功功率平均值的最大值Q0max,并在(n2+n3)个破碎机的电流值的平均值
Figure PCTCN2017084870-appb-000004
中提取出与Q0max同一时刻对应的破碎机的电流值标记为A0max,并存储,其中,i=1,...,(n2+n3);
步骤3.7:智能控制装置在回料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次存储的n3个数据对应的回料皮带负荷运行时的有功功率的平均值P0;
步骤3.8:智能控制装置在回料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次出料皮带和回料皮带负荷运行时的有功功率之差Z0=(Q0i-p1)-(P0-p2),实时更新出料皮带和回料皮带负荷运行时的有功功率之差最大值Z0max,以及同一时刻对应的破碎机电流值标记为I0max,并存储;
步骤3.9:通过智能控制装置不断更新并存储出料皮带负荷运行时的有功功率平均值的最大值Q0max,当Q0max不再变化时,存储该Q0max同一时刻对应的破碎机的电流值A0max,给定给料机频率f1=f0+Δf;
步骤3.10:重复步骤3.3-步骤3.8,得到给料机频率为f1时的出料皮带负荷运行时的有功功率平均值的最大值Q1max以及同一时刻对应的破碎机的电流值A1max、出料皮带和回料皮带负荷运行时的有功功率之差最大值Z1max以及同一时刻对应的破碎机的电流值I1max
步骤3.11:通过智能控制装置不断更新并存储出料皮带负荷运行时的有功功率平均值的最大值Q1max,当Q1max不再变化时,存储该Q1max同一时刻对应的破碎机的电流值A1max,给定给料机频率f2=f0+2Δf;
步骤3.12:重复步骤3.3-步骤3.11,得到给料机频率为fm时的出料皮带负荷运行时的有功功率平均值的最大值Qmmax以及同一时刻对应的破碎机的电流值Ammax、出料皮带和回料皮带负荷运行时的有功功率之差最大值Zmmax以及同一时刻对应的破碎机的电流值Immax,并存储A1max,A2max,...,Ammax和I1max,I2max,...,Immax,其中,m=2,3,...;
步骤3.13:通过智能控制装置判断当前是否Q(m+1)max≤Qmmax或fm+1达到给料机频率最大值,若是,则将当前的给料机频率为fm时的出料皮带有功功率平均值的最大值对应的破碎机的电流值Ammax作为破碎机破碎物料通过量最大时的运行电流,并在Z0max,Z1max,...,Zmmax中确定最大值Znmax,将Znmax同一时刻对应的破碎机的电流值Inmax作为破碎机生产效率最高时的运行电流,执行步骤4,否则,返回步骤3.12,其中,0≤n≤m。
步骤4:通过智能控制装置将破碎机破碎物料通过量最大时的运行电流和破碎机生产效率最高时的运行电流传输至PID控制器;
步骤5:当需要破碎筛分装备在效率最高处运行时,令PID控制器将破碎机生产效率最高时的运行电流作为目标电流对破碎机进行控制;
步骤6:当需要破碎筛分装备在破碎物料通过量最大处运行时,为PID控制器将破碎机破碎物料通过量最大时的运行电流作为目标电流对破碎机进行控制。
本发明的有益效果:
本发明提出一种破碎筛分装备智能控制系统及控制方法,该系统可以自动找到中碎设备和细碎设备的最佳运行状态;可以为设备的高效率控制提供相应的参数,并通过该参数控制设备运行使设备一直处于高效率的运行状态;可以为中碎设备和细碎设备制造者提供极限运行参数以及电机跟破碎机的匹配参数。可以为破碎设备制造者找到破碎机排料口大小跟产量的对比关系。
附图说明
图1为本发明具体实施方式中破碎筛分装备智能控制系统的结构示意图;
图2为本发明具体实施方式中破碎筛分装备智能控制方法的流程图。
具体实施方式
下面结合附图对本发明具体实施方式加以详细的说明。
一种破碎筛分装备智能控制系统,如图1所示,包括采集模块和智能控制模块。
所述采集模块包括:三相有功功率表和电流互感器。
所述智能控制模块包括:智能控制装置和PID控制器。
所述三相有功功率表的输入端设置于破碎筛分装备的出料皮带和回料皮带电机控制回路上,所述电流互感器的输入端设置于破碎筛分装备的电机控制回路上,所述三相有功功率表的输出端和电流互感的输出端连接智能控制装置的输入端,所述智能控制装置的输出端连接PID控制器的输入端,所述PID控制器的输出端连接破碎筛分装备的变频器的输入端。
所述三相有功功率表,用于采集破碎筛分装备的破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、出料皮带负荷运行时的有功功率和回料皮带负荷运行时的有功功率,传输至智能控制装置。
所述电流互感器,用于采集破碎机的电流值,传输至智能控制装置。
所述智能控制装置,用于通过PID控制器给定给料机的不同的频率,按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值, 并按照先进先出的方式进行存储,根据破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、实时更新的出料皮带负荷运行时的有功功率和实时更新的回料皮带负荷运行时的有功功率进行优化,得到破碎机通过量最大时的运行电流和破碎机生产效率最高时的运行电流,传输至PID控制器。
本实施方式中,智能控制装置可以采用单片机系统、PLC系统、工控机系统实现。
所述PID控制器,用于根据智能控制装置输出的破碎机破碎物料通过量最大时的运行电流和破碎机生产效率最高时的运行电流进行PID控制器,得到变频器频率值,输出至变频器。
采用权利要求1所述的破碎筛分装备智能控制系统进行智能控制的方法,如图2所示,包括以下步骤:
步骤1:获得破碎机运行时物料通过出料皮带的时间t1、物料通过振动筛的时间t2、物料通过回料皮带的时间t3,保存至智能控制装置。
本实施方式中,获得破碎机运行时物料通过出料皮带的时间t1、物料通过振动筛的时间t2、物料通过回料皮带的时间t3的方法为:通过秒表多次测量获得破碎机运行时物料通过出料皮带的时间的平均值t1、物料通过振动筛的时间的平均值t2、物料通过回料皮带的时间的平均值t3
步骤2:采用三相有功功率表采集破碎机出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2,传输至智能控制装置。
步骤3:智能控制装置通过给定给料机的不同的频率,按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式进行存储,根据破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、实时更新的出料皮带负荷运行时的有功功率和实时更新的回料皮带负荷运行时的有功功率进行优化,得到破碎机通过量最大时的运行电流和破碎机生产效率最高时的运行电流,传输至PID控制器。
步骤3.1:设定三相有功功率表和电流互感器的采样时间Δt,令t1=n1Δt、t2=n2Δt、t3=n3Δt。
步骤3.2:破碎机、相应的振动筛和皮带机运行以后,智能控制装置给定给料机初始频率 f0
步骤3.3:给料机运行n1Δt时间后,智能控制装置按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式存储出料皮带n3Δt时间段内的n3个有功功率和n3个破碎机的电流值。
步骤3.4:给料机运行(n1+n2+n3)Δt时间后,智能控制装置按照采样时间通过三相有功功率表采集回料皮带负荷运行时的有功功率,并按照先进先出的方式存储回料皮带n3Δt时间段内的n3个有功功率。
步骤3.5:智能控制装置在出料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次存储的n3个数据对应的出料皮带负荷运行时的有功功率的平均值Q0i和破碎机的电流值的平均值A0i,并按照先进先出的方式存储(n2+n3)个出料皮带负荷运行时的有功功率的平均值
Figure PCTCN2017084870-appb-000005
以及(n2+n3)个破碎机的电流值的平均值
Figure PCTCN2017084870-appb-000006
步骤3.6:通过智能控制装置比较当前(n2+n3)个出料皮带负荷运行时的有功功率的平均值
Figure PCTCN2017084870-appb-000007
的大小,提取并实时更新出料皮带负荷运行时的有功功率平均值的最大值Q0max,并在(n2+n3)个破碎机的电流值的平均值
Figure PCTCN2017084870-appb-000008
中提取出与Q0max同一时刻对应的破碎机的电流值标记为A0max,并存储,其中,i=1,...,(n2+n3)。
步骤3.7:智能控制装置在回料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次存储的n3个数据对应的回料皮带负荷运行时的有功功率的平均值P0。
步骤3.8:智能控制装置在回料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次出料皮带和回料皮带负荷运行时的有功功率之差Z0=(Q0i-p1)-(P0-p2),实时更新出料皮带和回料皮带负荷运行时的有功功率之差最大值Z0max,以及同一时刻对应的破碎机电流值标记为I0max,并存储。
步骤3.9:通过智能控制装置不断更新并存储出料皮带负荷运行时的有功功率平均值的最大值Q0max,当Q0max不再变化时,存储该Q0max同一时刻对应的破碎机的电流值A0max,给定 给料机频率f1=f0+Δf。
步骤3.10:重复步骤3.3-步骤3.8,得到给料机频率为f1时的出料皮带负荷运行时的有功功率平均值的最大值Q1max以及同一时刻对应的破碎机的电流值A1max、出料皮带和回料皮带负荷运行时的有功功率之差最大值Z1max以及同一时刻对应的破碎机的电流值I1max
步骤3.11:通过智能控制装置不断更新并存储出料皮带负荷运行时的有功功率平均值的最大值Q1max,当Q1max不再变化时,存储该Q1max同一时刻对应的破碎机的电流值A1max,给定给料机频率f2=f0+2Δf。
步骤3.12:重复步骤3.3-步骤3.11,得到给料机频率为fm时的出料皮带负荷运行时的有功功率平均值的最大值Qmmax以及同一时刻对应的破碎机的电流值Ammax、出料皮带和回料皮带负荷运行时的有功功率之差最大值Zmmax以及同一时刻对应的破碎机的电流值Immax,并存储A1max,A2max,...,Ammax和I1max,I2max,...,Immax,其中,m=2,3,...。
步骤3.13:通过智能控制装置判断当前是否Q(m+1)max≤Qmmax或fm+1达到给料机频率最大值,若是,则将当前的给料机频率为fm时的出料皮带有功功率平均值的最大值对应的破碎机的电流值Ammax作为破碎机破碎物料通过量最大时的运行电流,并在Z0max,Z1max,...,Zmmax中确定最大值Znmax,将Znmax同一时刻对应的破碎机的电流值Inmax作为破碎机生产效率最高时的运行电流,执行步骤4,否则,返回步骤3.12,其中,0≤n≤m。
本实施方式中,给料机频率最大值为50Hz。
步骤4:通过智能控制装置将破碎机破碎物料通过量最大时的运行电流和破碎机生产效率最高时的运行电流传输至PID控制器。
步骤5:当需要破碎筛分装备在效率最高处运行时,令PID控制器将破碎机生产效率最高时的运行电流作为目标电流对破碎机进行控制。
步骤6:当需要破碎筛分装备在破碎物料通过量最大处运行时,令PID控制器将破碎机破碎物料通过量最大时的运行电流作为目标电流对破碎机进行控制。

Claims (4)

  1. 一种破碎筛分装备智能控制系统,其特征在于,包括采集模块和智能控制模块;
    所述采集模块包括:三相有功功率表和电流互感器;
    所述智能控制模块包括:智能控制装置和PID控制器;
    所述三相有功功率表的输入端设置于破碎筛分装备的出料皮带和回料皮带电机控制回路上,所述电流互感器的输入端设置于破碎筛分装备的电机控制回路上,所述三相有功功率表的输出端和电流互感的输出端连接智能控制装置的输入端,所述智能控制装置的输出端连接PID控制器的输入端,所述PID控制器的输出端连接破碎筛分装备的变频器的输入端;
    所述三相有功功率表,用于采集破碎筛分装备的破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、出料皮带负荷运行时的有功功率和回料皮带负荷运行时的有功功率,传输至智能控制装置;
    所述电流互感器,用于采集破碎机的电流值,传输至智能控制装置;
    所述智能控制装置,用于通过给定给料机的不同的频率,按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式进行存储,根据破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2、实时更新的出料皮带负荷运行时的有功功率和实时更新的回料皮带负荷运行时的有功功率进行优化,得到破碎机通过量最大时的运行电流和破碎机生产效率最高时的运行电流,传输至PID控制器;
    所述PID控制器,用于根据智能控制装置输出的破碎机破碎物料通过量最大时的运行电流和破碎机生产效率最高时的运行电流进行PID控制器,得到变频器频率值,输出至变频器。
  2. 采用权利要求1所述的破碎筛分装备智能控制系统进行智能控制的方法,其特征在于,包括以下步骤:
    步骤1:获得破碎机运行时物料通过出料皮带的时间t1、物料通过振动筛的时间t2、物料通过回料皮带的时间t3,保存至智能控制装置;
    步骤2:采用三相有功功率表采集破碎机出料皮带空转时的有功功率p1、回料皮带空转时的有功功率p2,传输至智能控制装置;
    步骤3:智能控制装置通过给定给料机的不同的频率,按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式进行存储,根据破碎机的出料皮带空转时的有功功率p1、回料皮带空转时的有功功 率p2、实时更新的出料皮带负荷运行时的有功功率和实时更新的回料皮带负荷运行时的有功功率进行优化,得到破碎机通过量最大时的运行电流和破碎机生产效率最高时的运行电流,传输至PID控制器;
    步骤4:通过智能控制装置将破碎机破碎物料通过量最大时的运行电流和破碎机生产效率最高时的运行电流传输至PID控制器;
    步骤5:当需要破碎筛分装备在效率最高处运行时,令PID控制器将破碎机生产效率最高时的运行电流作为目标电流对破碎机进行控制;
    步骤6:当需要破碎筛分装备在破碎物料通过量最大处运行时,令PID控制器将破碎机破碎物料通过量最大时的运行电流作为目标电流对破碎机进行控制。
  3. 根据权利要求2所述的方法,其特征在于,所述步骤3包括以下步骤:
    步骤3.1:设定三相有功功率表和电流互感器的采样时间△t,令t1=n1△t、t2=n2△t、t3=n3△t;
    步骤3.2:破碎机、相应的振动筛和皮带机运行以后,智能控制装置给定给料机初始频率f0
    步骤3.3:给料机运行n1△t时间后,智能控制装置按照采样时间通过三相有功功率表采集出料皮带负荷运行时的有功功率、通过电流互感器采集破碎机的电流值,并按照先进先出的方式存储出料皮带n3△t时间段内的n3个有功功率和n3个破碎机的电流值;
    步骤3.4:给料机运行(n1+n2+n3)△t时间后,智能控制装置按照采样时间通过三相有功功率表采集回料皮带负荷运行时的有功功率,并按照先进先出的方式存储回料皮带n3△t时间段内的n3个有功功率;
    步骤3.5:智能控制装置在出料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次存储的n3个数据对应的出料皮带负荷运行时的有功功率的平均值Q0i和破碎机的电流值的平均值A0i,并按照先进先出的方式存储(n2+n3)个出料皮带负荷运行时的有功功率的平均值
    Figure PCTCN2017084870-appb-100001
    以及(n2+n3)个破碎机的电流值的平均值
    Figure PCTCN2017084870-appb-100002
    步骤3.6:通过智能控制装置比较当前(n2+n3)个出料皮带负荷运行时的有功功率的平均 值
    Figure PCTCN2017084870-appb-100003
    的大小,提取并实时更新出料皮带负荷运行时的有功功率平均值的最大值Q0max,并在(n2+n3)个破碎机的电流值的平均值
    Figure PCTCN2017084870-appb-100004
    中提取出与Q0max同一时刻对应的破碎机的电流值标记为A0max,并存储,其中,i=1,...,(n2+n3);
    步骤3.7:智能控制装置在回料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次存储的n3个数据对应的回料皮带负荷运行时的有功功率的平均值P0;
    步骤3.8:智能控制装置在回料皮带负荷运行时的有功功率第一次存储达到n3个数据后,每个采样周期计算一次出料皮带和回料皮带负荷运行时的有功功率之差Z0=(Q0i-p1)-(P0-p2),实时更新出料皮带和回料皮带负荷运行时的有功功率之差最大值Z0max,以及同一时刻对应的破碎机电流值标记为I0max,并存储;
    步骤3.9:通过智能控制装置不断更新并存储出料皮带负荷运行时的有功功率平均值的最大值Q0max,当Q0max不再变化时,存储该Q0max同一时刻对应的破碎机的电流值A0max,给定给料机频率f1=f0+△f;
    步骤3.10:重复步骤3.3-步骤3.8,得到给料机频率为f1时的出料皮带负荷运行时的有功功率平均值的最大值Q1max以及同一时刻对应的破碎机的电流值A1max、出料皮带和回料皮带负荷运行时的有功功率之差最大值Z1max以及同一时刻对应的破碎机的电流值I1max
    步骤3.11:通过智能控制装置不断更新并存储出料皮带负荷运行时的有功功率平均值的最大值Q1max,当Q1max不再变化时,存储该Q1max同一时刻对应的破碎机的电流值A1max,给定给料机频率f2=f0+2△f;
    步骤3.12:重复步骤3.3-步骤3.11,得到给料机频率为fm时的出料皮带负荷运行时的有功功率平均值的最大值Qmmax以及同一时刻对应的破碎机的电流值Ammax、出料皮带和回料皮带负荷运行时的有功功率之差最大值Zmmax以及同一时刻对应的破碎机的电流值Immax,并存储A1max,A2max,...,Ammax和I1max,I2max,...,Immax,其中,m=2,3,...;
    步骤3.13:通过智能控制装置判断当前是否Q(m+1)max≤Qmmax或fm+1达到给料机频率最大值,若是,则将当前的给料机频率为fm时的出料皮带有功功率平均值的最大值对应的破碎 机的电流值Ammax作为破碎机破碎物料通过量最大时的运行电流,并在Z0max,Z1max,...,Zmmax中确定最大值Znmax,将Znmax同一时刻对应的破碎机的电流值Inmax作为破碎机生产效率最高时的运行电流,执行步骤4,否则,返回步骤3.12,其中,0≤n≤m。
  4. 根据权利要求2所述的方法,其特征在于,所述获得破碎机运行时物料通过出料皮带的时间t1、物料通过振动筛的时间t2、物料通过回料皮带的时间t3的方法为:通过秒表多次测量获得破碎机运行时物料通过出料皮带的时间的平均值t1、物料通过振动筛的时间的平均值t2、物料通过回料皮带的时间的平均值t3
PCT/CN2017/084870 2017-05-04 2017-05-18 一种破碎筛分装备智能控制系统及控制方法 WO2018201522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710306337.9 2017-05-04
CN201710306337.9A CN107413511B (zh) 2017-05-04 2017-05-04 一种破碎筛分装备智能控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2018201522A1 true WO2018201522A1 (zh) 2018-11-08

Family

ID=60424365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084870 WO2018201522A1 (zh) 2017-05-04 2017-05-18 一种破碎筛分装备智能控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN107413511B (zh)
WO (1) WO2018201522A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899733B (zh) * 2017-12-18 2023-04-07 江苏徐工工程机械研究院有限公司 破碎机及其控制方法、装置和系统、计算机可读存储介质
JP7338973B2 (ja) * 2019-01-10 2023-09-05 住友重機械エンバイロメント株式会社 破砕機用スクリーン装置及び破砕機用スクリーン装置の運転方法
CN110531139B (zh) * 2019-08-28 2021-07-20 徐州徐工矿业机械有限公司 一种移动式破碎筛分站的电流监控系统及控制方法
CN110614156B (zh) * 2019-09-11 2021-05-25 中再生纽维尔资源回收设备(江苏)有限公司 基于pid算法的破碎机系统控制方法
CN113231189A (zh) * 2021-06-28 2021-08-10 中国水利水电第九工程局有限公司 砂石粗碎车间给料与破碎均衡生产智能控制方法及其装置
CN113304867A (zh) * 2021-06-29 2021-08-27 中国水利水电第九工程局有限公司 一种砂石加工厂粗碎车间智能高效破碎整形调级pid逻辑控制方法
CN114768923A (zh) * 2022-05-11 2022-07-22 内蒙古大中矿业股份有限公司 一种圆锥破碎机衡功率自动控制装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146704A (ja) * 1991-11-29 1993-06-15 Kurimoto Ltd 粉砕・分級装置における粉粒体の供給量制御方法
CN101229525A (zh) * 2008-02-27 2008-07-30 东南大学 雷蒙磨粉碎自动控制方法及其装置
CN103149887A (zh) * 2011-12-30 2013-06-12 中国科学院沈阳自动化研究所 一种适用于中卸式水泥生料磨系统的智能控制方法
CN103818697A (zh) * 2014-03-12 2014-05-28 中国黄金集团内蒙古矿业有限公司 皮带输送机的保护方法及皮带输送机保护装置
CN204294346U (zh) * 2014-05-13 2015-04-29 湖南易控自动化工程技术有限公司 破碎筛分智能优化与安全联锁控制装置
CN104760817A (zh) * 2015-02-05 2015-07-08 上海云统信息科技有限公司 一种皮带运输机负载控制方法
CN104914747A (zh) * 2015-04-20 2015-09-16 海安县联源机械制造有限公司 振动筛分系统控制方法
CN105032594A (zh) * 2015-09-19 2015-11-11 韶关核力重工机械有限公司 一种用于碎石制砂机的智能控制系统
CN105597904A (zh) * 2016-01-14 2016-05-25 徐州徐工施维英机械有限公司 破碎机给料的控制方法和控制装置
JP2016160099A (ja) * 2015-03-05 2016-09-05 シンフォニアテクノロジー株式会社 振動フィーダ用制御装置及び振動フィーダ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615513B1 (ko) * 2003-08-19 2006-08-25 서재호 석산용 또는 재활용 건설폐기물 파쇄 및 선별 시스템의자동제어장치
CN202876940U (zh) * 2012-11-23 2013-04-17 广西黎塘建设机械厂 履带式移动破碎站动力控制系统
CN105344459B (zh) * 2015-11-26 2017-11-03 东南大学 一种用于雷蒙磨粉碎工艺的抗干扰控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146704A (ja) * 1991-11-29 1993-06-15 Kurimoto Ltd 粉砕・分級装置における粉粒体の供給量制御方法
CN101229525A (zh) * 2008-02-27 2008-07-30 东南大学 雷蒙磨粉碎自动控制方法及其装置
CN103149887A (zh) * 2011-12-30 2013-06-12 中国科学院沈阳自动化研究所 一种适用于中卸式水泥生料磨系统的智能控制方法
CN103818697A (zh) * 2014-03-12 2014-05-28 中国黄金集团内蒙古矿业有限公司 皮带输送机的保护方法及皮带输送机保护装置
CN103818697B (zh) * 2014-03-12 2015-10-28 中国黄金集团内蒙古矿业有限公司 皮带输送机的保护方法及皮带输送机保护装置
CN204294346U (zh) * 2014-05-13 2015-04-29 湖南易控自动化工程技术有限公司 破碎筛分智能优化与安全联锁控制装置
CN104760817A (zh) * 2015-02-05 2015-07-08 上海云统信息科技有限公司 一种皮带运输机负载控制方法
JP2016160099A (ja) * 2015-03-05 2016-09-05 シンフォニアテクノロジー株式会社 振動フィーダ用制御装置及び振動フィーダ
CN104914747A (zh) * 2015-04-20 2015-09-16 海安县联源机械制造有限公司 振动筛分系统控制方法
CN105032594A (zh) * 2015-09-19 2015-11-11 韶关核力重工机械有限公司 一种用于碎石制砂机的智能控制系统
CN105597904A (zh) * 2016-01-14 2016-05-25 徐州徐工施维英机械有限公司 破碎机给料的控制方法和控制装置

Also Published As

Publication number Publication date
CN107413511A (zh) 2017-12-01
CN107413511B (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2018201522A1 (zh) 一种破碎筛分装备智能控制系统及控制方法
CN101229525B (zh) 雷蒙磨粉碎自动控制方法及其装置
CN203355840U (zh) 球磨制砂生产线
CN113117857B (zh) 一种连续级配再生骨料智能破碎集成系统
CN103149887B (zh) 一种适用于中卸式水泥生料磨系统的智能控制方法
WO2016011891A1 (zh) 一种采制样输料速度的控制方法
CN107552149A (zh) 一种辊式破碎机辊缝间隙自动调节装置及工作方法
CN113231189A (zh) 砂石粗碎车间给料与破碎均衡生产智能控制方法及其装置
CN210884086U (zh) 一种有机肥物料输送控制装置
Hulthén et al. Real-time algorithm for cone crusher control with two variables
CN104148159A (zh) 利用球磨机精确控制一次粉松装密度的方法
CA1113064A (en) Method of controlling crushing plant
CN202683492U (zh) 一种碎晶体料分选设备
CN109046735B (zh) 一种粉碎加工过程中自动调节产品粒度的装置及其方法
CN108031539A (zh) 一种热闷、热泼钢渣加工金属回收工艺
CN103831157A (zh) 一种氧化铝结壳块的破碎装置
CN103831156A (zh) 一种用于电解质粉磨的特有生产装置及工艺方法
CN103935732A (zh) 双重称重给料机
CN103846141A (zh) 一种产大颗粒氧化铝结壳块粒度的粉磨装置及粉磨工艺
CN213611876U (zh) 一种带有预分选装置的碎石制备系统
CN203018168U (zh) 氧化铝结壳块的粉磨设备
CN202169199U (zh) 一种破碎氧化铝结壳块的斗提生产线装置
CN202097841U (zh) 微机控制的失重秤配料系统
CN201500549U (zh) 一种带破碎机的旧砂生产设备
CN211989107U (zh) 基于区块链的沙场生产系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908467

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17908467

Country of ref document: EP

Kind code of ref document: A1