WO2018199333A1 - 電源力率制御システム、調相装置ならびにアクティブフィルタ装置 - Google Patents

電源力率制御システム、調相装置ならびにアクティブフィルタ装置 Download PDF

Info

Publication number
WO2018199333A1
WO2018199333A1 PCT/JP2018/017324 JP2018017324W WO2018199333A1 WO 2018199333 A1 WO2018199333 A1 WO 2018199333A1 JP 2018017324 W JP2018017324 W JP 2018017324W WO 2018199333 A1 WO2018199333 A1 WO 2018199333A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power factor
loader
current
power source
Prior art date
Application number
PCT/JP2018/017324
Other languages
English (en)
French (fr)
Inventor
河野 雅樹
川嶋 玲二
崇之 藤田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to AU2018257445A priority Critical patent/AU2018257445B2/en
Priority to EP18791305.8A priority patent/EP3611816B1/en
Priority to US16/608,690 priority patent/US11201470B2/en
Priority to CN201880027742.XA priority patent/CN110574251B/zh
Publication of WO2018199333A1 publication Critical patent/WO2018199333A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1892Arrangements for adjusting, eliminating or compensating reactive power in networks the arrangements being an integral part of the load, e.g. a motor, or of its control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present disclosure relates to a power source power factor control system, a phase adjusting device, and an active filter device.
  • various devices such as an air conditioner and a lighting device are installed as devices that operate when supplied with electric power.
  • the basic charge for electricity charges is determined based on the maximum amount of electric power measured per unit time (for example, 30 minutes), and further, a predetermined time zone (for example, 8:00 to 22:00) in a day. ) Is reduced based on the average power factor. Therefore, in order to reduce the electricity bill, the maximum value of power is an important factor, but the power factor is also an important factor.
  • the said patent document 1 and the patent document 2 perform control based on electric energy, they do not cope with the fall of a power source power factor, Therefore An electric bill cannot fully be lowered
  • the present invention has been made in view of such a point, and an object thereof is to improve the power factor of the power source.
  • a first aspect of the present disclosure includes a loader (1,2,101,102,201,202,301,302,401,402,501,502,601,602,701,702,801,802,901,902,1001,1002) connected to an AC power supply (3,103,203,303,403,503,603,703,803,903,1003) and supplied with power from the AC power supply
  • An operation state control unit (1c, 2c, 101c) that controls the operation state of the loader based on the target value regarding the power quality including any one of the power supply harmonics of the AC power supply and the current power quality.
  • a power source power factor control system is included in the loader
  • the operating state of the loader changes according to the power quality including one of the power source power factor and the power source harmonics of the AC power source and the target value related to the power source power factor.
  • the power source power factor can be improved.
  • the power source power factor measurement unit (9) that measures the power source power factor and the load based on the measurement result of the power source power factor measurement unit (9).
  • a control signal generation unit (40) for generating a control signal Fs for changing the operation state of the vessel, and the operation state control unit (1c, 2c) generates the power supply based on the control signal Fs.
  • the operating condition of the loader (1, 2) is adjusted so that the power factor approaches the target value of the power source power factor, and the operating condition of the loader (1, 2) is controlled. This is a power source power factor control system.
  • the operating parameters of the loader are adjusted so that the actual power source power factor approaches the target value, the operating capacity of the loader changes from the state before the operating parameters are changed. Since the actual power source power factor approaches the target value due to the change in the operating capacity of the loader, the actual power source power factor is optimized. In this way, for example, the power supply power factor can be reduced and the power supply power factor can be reduced, and the basic charge included in the electricity charge can be reduced or a penalty can be avoided. Can do.
  • the control signal Fs is generated when the measurement result of the power source power factor measurement unit (9) is lower than the target value.
  • the power factor control system is a signal for changing the operation state.
  • Such control signal allows the actual power factor that was below the target value to increase and approach the target value.
  • control signal generation unit (40) is configured such that the power source power while the measurement result of the power source power factor measurement unit (9) is lower than the target value.
  • a power source power factor control system that integrates the difference between the measurement result of the rate measurement unit (9) and the target value and generates the control signal Fs when the integration result reaches a predetermined value. .
  • the operating state of the loader changes so that the actual power source power factor approaches the target value. That is, the operating state of the loader changes when the power source power factor is not instantaneously lower than the target value but when the power source power factor deviates from the target value without fail. Therefore, control is performed to change the operating state of the loader only when there is a certain need to increase the power factor.
  • a power source power factor measurement unit (104) that measures the power source power factor, a measurement result of the power source power factor measurement unit (104), and the target value. Then, a control signal generator (152) that generates a control signal Fs for changing the operating state of the loader, and a target for adjusting the target value based on the measurement results of the power source power factor measurement unit (104)
  • a power supply power factor control system further comprising a value adjustment unit (151).
  • the loader's operating state changes based on the target value of the power source power factor and the actual power source power factor, but the target value is adjusted based on the actual power source power factor, not a fixed value. It is a value to be.
  • the target value is a variable value, it is possible to optimize the power source power factor at the place where the power source power factor control system is constructed, while minimizing the change of the operating capacity of the loader. That is, here, not the control that optimizes the power factor of the power supply as a result of positively changing the operating capacity of the loader, but the control that optimizes the power factor of the power source by changing the target value of the power factor. .
  • the power supply power factor can be suppressed from being lowered and the power supply power factor can be improved, and the basic charge included in the electricity charge can be reduced or a penalty can be avoided. be able to.
  • the target value adjusting unit (151) adjusts the target value by using the power source power factor in a unit time for adjusting the target value. It is a power source power factor control system.
  • the target value adjusting unit (151) adjusts the target value by using an average value of the power source power factor in the unit time. This is a power factor control system.
  • the target value adjustment unit (151) is configured such that the average value of the power factor in the first time exceeds the reference value in the unit time.
  • the target value in the second time after the first time in the unit time is set lower than the target value in the first time, and the average value in the first time is lower than the reference value.
  • the power source power factor control system is characterized in that the target value in the second time is higher than the target value in the first time.
  • the fluctuation of the average value of the target value per unit time can be suppressed as much as possible, and as a result, the power source power factor per unit time can be reliably optimized.
  • the total time of the first time and the second time is equal to or shorter than the unit time. Power factor control system.
  • the fluctuation of the average value of the target value in the unit time can be suppressed as much as possible.
  • the fluctuation of the average value of the target value in the unit time can be finely suppressed.
  • a total time of the first time and the second time is equal to the unit time, and the first time and the second time are equal to the unit time. It is a power source power factor control system characterized by being half the time.
  • the eleventh aspect of the present disclosure is the power source power factor control system according to any one of the sixth to tenth aspects, wherein the unit time is one month.
  • the period during which the power factor value affects the electricity bill may be “1 month”.
  • the fluctuation of the average value of the target value of the power source power factor during “one month” which is a unit time is suppressed. Therefore, it is possible to reliably receive a discount on the electricity bill based on the average value of the power source power factor, or to reliably suppress the penalty of the basic fee based on the degree of decrease in the power source power factor.
  • a twelfth aspect of the present disclosure is the power source power factor control system according to any one of the second to eleventh aspects, wherein the power source power factor measurement unit (9, 104) is a power meter. .
  • Wattmeters are connected to buildings such as buildings and factories. This wattmeter often measures the power factor in addition to the power. Therefore, here, since the power meter is used as the power source power factor measurement unit, it is not necessary to attach a sensor or a detection circuit for measuring the power source power factor. Accordingly, it is not necessary to separately install a sensor and a detection circuit, and the cost can be reduced because the sensor and the detection circuit can be omitted.
  • the power source power factor measurement unit (9,104) transmits the measurement result to the control signal generation unit (40,152) in a wireless manner. It is a power supply power factor control system characterized by transmitting.
  • control signal generation unit (40, 105) transmits the generated control signal Fs to the operation state control unit (1c, 2c, 101c, 102c) is a power source power factor control system characterized by transmitting in a wireless manner.
  • a fifteenth aspect of the present disclosure is the power source power factor control system according to any one of the second to fourteenth aspects, wherein the loader (1, 2, 101, 102) is an air conditioner. .
  • the loader (1, 2, 101, 102) serves as a source of harmonic current, and the loader (1, 2, 101, 102) is connected to the AC power source (3, 103).
  • An active filter (1b, 101b) connected in parallel and reducing harmonic current generated in the loader (1, 2, 101, 102) is further provided, and the active filter (1b, 101b) includes the air conditioner It is a power source power factor control system characterized by being incorporated in.
  • the AC power source (3, 103) is connected in parallel to the loader (1, 2, 101, 102), and the loader (1 , 2, 101, 102) further comprising a phase adjuster (31, 131) for controlling reactive power among the power supplied to the power source power factor control system.
  • the loader (1, 2, 101, 102) is a source of harmonic current, and is connected to the AC power source (3, 103).
  • the power supply further comprising an active filter (30,130) connected in parallel to the loader (1,2,101,102) and reducing harmonic current generated in the loader (1,2,101,102). It is a rate control system.
  • a nineteenth aspect of the present disclosure is a phase adjusting device that is provided in the power source power factor control system according to the first aspect and connected to the AC power source (203,303,403,503) and the loader (201,202,301,302,401,402,501,502), A power factor improvement unit (230,330,430,531) for improving the fundamental wave power factor by generating a current for reducing the harmonic current of the loader or changing the phase of the current, and the operation state control unit ( 240, 340, 440, 540), and the target value relating to the power source power factor of the AC power source is a target value of the fundamental wave power factor, and the operating state control unit is configured such that the fundamental wave power factor approaches the target value.
  • it is a phase adjusting device characterized by controlling the operation parameter which changes the operation state of the loader.
  • the operating state of the loader is changed.
  • the actual power source power factor approaches the target value.
  • the capacity of the phase adjuster is small, the operating capacity of the loader is adjusted, for example, in a decreasing direction by controlling the operating state of the loader. The ability to improve is restored.
  • the capacity of the phase adjusting device can be actively reduced, and the cost can be reduced accordingly.
  • a current detection unit (205a, 205b, 305a to 305c, 406a, 406b, 407a, 407b, 505a, 505b) that detects an output current output from the AC power supply.
  • the operation state control unit (240, 340, 440, 540) adjusts the operation parameter based on the detection result of the current detection unit so that the fundamental wave power factor approaches a target value. It is a phase adjusting device.
  • the actual power source power factor can be determined by using the actually detected output current of the AC power source. Therefore, it becomes easy to adjust the operating parameter so that the fundamental wave power factor is more reliably brought close to the target value.
  • the AC power supply (303) is a multi-phase power supply, and the current detection units (305a to 305c) correspond to the phases of the AC power supply. It is a phase adjusting device characterized by being provided.
  • the current detection unit (205a, 205b, 305a to 305c, 406a, 406b, 407a, 407b, 505a, 505b) Is transmitted to the operation state control unit (240, 340, 440, 540) in a wireless manner.
  • the current detection unit (205a, 205b, 305a to 305c, 406a, 406b, 407a, 407b, 505a, 505b)
  • the phase adjusting device is characterized by operating in a non-power supply system.
  • the power factor improvement unit (531) is in parallel with the loader (501, 502) with respect to the AC power supply (503). It is a phase adjuster which is a phase adjuster which controls reactive power among the said electric power connected and supplied to this loader.
  • a twenty-fifth aspect of the present disclosure is the phase adjusting apparatus according to the twenty-fourth aspect, wherein the phase adjuster (531) includes a phase advance capacitor (Ca, Cb, Cc).
  • the phase adjuster (531) includes a reactor (La, Lb, Lc) directly connected to the phase advance capacitor (Ca, Cb, Cc).
  • the phase adjusting device further includes a phase adjusting device.
  • the magnitude of the current flowing through the phase adjuster can be reduced by the reactor. Therefore, for example, when a short-circuit failure occurs, a large current flows transiently in the phase adjuster, and the current affects other than the phase adjuster, thereby preventing the possibility of a serious malfunction.
  • the loader (201, 202, 301, 302, 401, 402) is a source of harmonic current
  • the power factor improving unit (230, 330, 430) is
  • the phase adjusting device is an active filter that is connected to the AC power source (203, 303, 403) in parallel with the loader and reduces harmonic current generated in the loader.
  • a twenty-eighth aspect of the present disclosure is the phase adjusting device according to any one of the nineteenth to the twenty-seventh aspects, wherein the loader (201, 202, 301, 302, 401, 402, 501, 502) is an air conditioner.
  • a twenty-ninth aspect of the present disclosure is an active filter device provided in the power source power factor control system according to the first aspect and connected to the AC power source (603,703,803,903) and the loader (601,602,701,702,801,802,901,902), A current source (630, 730, 830, 930) that generates current for improving the fundamental wave power factor of the loader, and a current detection unit (605a, 605b, 705a, 705b, 805a ...) that detects the output current output from the AC power source 805c, 906a, 906b, 907a, 907b) and the operation state control unit (640, 740, 840, 940), and the target value relating to the power source power factor of the AC power source is a target value of the fundamental wave power factor,
  • the operation state control unit controls an operation parameter for changing an operation state of the loader based on a detection result of the current detection unit so that the fundamental wave power factor approaches the target value. Active filter Device.
  • the operation state of the loader is controlled based on the actual output current of the AC power supply.
  • the actual power source power factor approaches the target value.
  • a thirtieth aspect of the present disclosure is the active filter device according to the twenty-ninth aspect, wherein the current source further reduces a harmonic current of the loader.
  • the harmonic current is reduced and the fundamental wave power factor is improved.
  • the loader (601, 602, 701, 702, 801, 802) is a plurality
  • the operation state control unit (640, 740, 840) is a plurality of the loaders.
  • the active filter device is characterized in that the fundamental wave power factor is brought close to the target value by adjusting the operation parameters of the plurality of loaders so as to reduce the frequency.
  • the operating state of the plurality of loaders changes in the direction of decreasing the driving ability.
  • the operating capacity of the loader is lower than when only one operating condition of the loader is changed, the ability to improve the fundamental wave power factor is quickly recovered. Therefore, it is possible to quickly reduce the power source power factor to a target value while minimizing the decrease in the power source power factor.
  • the loader (901, 902) is plural, and the operating state control unit (940) includes the current detection unit (906a, 906b). , 907a, 907b) based on the detection result, the loader whose operating capacity should be reduced is determined from among the plurality of loaders, and the determined load so as to reduce the determined operating capacity of the loader
  • the active filter device is characterized in that the fundamental wave power factor is brought close to the target value by adjusting the operating parameter of the vessel.
  • a loader that reduces the power i.e., changes the operating state in a direction that reduces the driving ability is selected.
  • the loader which reduces a driving capability can be made into the required minimum, for example, and a driving
  • a plurality of the current detection units (906a, 906b, 907a, 907b) are provided so as to correspond to the loaders (901, 902),
  • the current detection unit is an active filter device that detects the output current from the AC power supply (903) to the loaders (901, 902).
  • the load device whose operating state should be changed in the direction of decreasing the driving ability is determined from the current value actually flowing through each load device. Therefore, it is possible to accurately determine the loader that is a target for which the driving ability is to be reduced in accordance with the actual situation.
  • a distribution board (606, 706, 806, 906) for branching power from the AC power supply to each of the loaders.
  • the detection units (605a, 605b, 705a, 705b, 805a to 805c, 906a, 906b) are active filter devices that are installed in the distribution board.
  • the current detector is installed inside and outside the distribution board.
  • the current detection unit (805a to 805c) includes each phase (R, S, T) of the AC power supply (803).
  • the active filter device is provided in a plurality so as to correspond to the above.
  • the current detection unit (605a, 605b, 705a, 705b, 805a to 805c, 906a, 906b, 907a, 907b)
  • An active filter device that transmits the detection result to the operating state control unit in a wireless manner.
  • the current detection unit (605a, 605b, 705a, 705b, 805a to 805c, 906a, 906b, 907a, 907b)
  • An active filter device characterized by operating in a non-power supply system.
  • a thirty-eighth aspect of the present disclosure is the active filter according to any one of the twenty-ninth to the thirty-seventh aspects, wherein the active filter device (604, 704, 804, 904) is incorporated in an air conditioner (620, 720, 820, 920). Device.
  • the power source power factor can be improved.
  • FIG. 1 is a diagram schematically illustrating a configuration of a power source power factor control system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a power source power factor demand controller according to the first embodiment.
  • FIG. 3 is a diagram illustrating changes over time in the output power, power source power factor, output signal of the integral calculation unit, loader command signal, and reset signal of each loader according to the first embodiment.
  • FIG. 4 is a diagram schematically illustrating a configuration of a power source power factor control system according to a modification of the first embodiment.
  • FIG. 5 is a diagram schematically illustrating a configuration of a power source power factor control system according to the second embodiment.
  • FIG. 1 is a diagram schematically illustrating a configuration of a power source power factor control system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a power source power factor demand controller according to the first embodiment.
  • FIG. 3 is a diagram illustrating changes over time in the output power, power
  • FIG. 6 is a block diagram illustrating an example of a power source power factor demand controller according to the second embodiment.
  • FIG. 7 is a block diagram illustrating an example of a first average power factor calculation unit according to the second embodiment.
  • FIG. 8 is a block diagram illustrating an example of a second average power factor calculation unit according to the second embodiment.
  • FIG. 9 is a block diagram illustrating an example of a power factor target value setting unit according to the second embodiment.
  • FIG. 10 is a diagram illustrating an operation example of the first average power factor calculation unit according to the second embodiment.
  • FIG. 11 is a diagram illustrating an operation example of the second average power factor calculation unit and the power factor target value setting unit according to the second embodiment.
  • FIG. 12 is a diagram schematically illustrating a configuration of a power source power factor control system according to a modification of the second embodiment.
  • FIG. 13 is a diagram schematically illustrating a configuration of an air conditioning system including an active filter device according to the third embodiment.
  • FIG. 14 is a block diagram illustrating an example of a controller according to the third embodiment.
  • FIG. 15 shows changes over time in the output power of each loader according to the third embodiment, the compensation amount of the active filter device, the power source power factor, the output signal of the integral calculation unit, the loader command signal, and the reset signal.
  • FIG. FIG. 16 is a diagram schematically illustrating a configuration of an air conditioning system including an active filter device according to the fourth embodiment.
  • FIG. 17 is a diagram schematically illustrating a configuration of an air conditioning system including an active filter device according to the fifth embodiment.
  • FIG. 18 is a block diagram illustrating an example of a controller according to the fifth embodiment.
  • FIG. 19 shows the output power of each loader according to the fifth embodiment, the compensation amount of the active filter device, the power source power factor, the output signal of the integral calculation unit, the current value of each loader, the loader command signal, and the reset signal. It is the figure which showed the time-dependent change.
  • FIG. 20 is a diagram schematically illustrating a configuration of an air conditioning system including the phase adjusting equipment according to the sixth embodiment.
  • FIG. 21 is a block diagram illustrating an example of a controller according to the sixth embodiment.
  • FIG. 22 is a diagram schematically illustrating a configuration of an air conditioning system including an active filter device according to the seventh embodiment.
  • FIG. 23 is a block diagram illustrating an example of a controller according to the seventh embodiment.
  • FIG. 24 shows changes over time of the output power of each loader according to the seventh embodiment, the compensation amount of the active filter device, the power source power factor, the output signal of the integral calculation unit, the loader command signal, and the reset signal.
  • FIG. FIG. 25 is a diagram schematically illustrating a configuration of an air conditioning system including an active filter device according to the eighth embodiment.
  • FIG. 23 is a block diagram illustrating an example of a controller according to the seventh embodiment.
  • FIG. 24 shows changes over time of the output power of each loader according to the seventh embodiment, the compensation amount of the active filter device, the power source power factor, the output signal of the integral calculation unit, the loader command signal, and the reset signal.
  • FIG. FIG. 25 is a diagram schematically illustrating a configuration of an air conditioning system including an active
  • FIG. 26 shows changes over time in the output power of each loader according to the eighth embodiment, the compensation amount of the active filter device, the power source power factor, the output signal of the integral calculation unit, the loader command signal, and the reset signal.
  • FIG. FIG. 27 is a diagram schematically illustrating a configuration of an air conditioning system including an active filter device according to the ninth embodiment.
  • FIG. 28 is a diagram schematically illustrating a configuration of an air conditioning system including an active filter device according to the tenth embodiment.
  • FIG. 29 is a block diagram illustrating an example of a controller according to the tenth embodiment.
  • FIG. 30 shows the output power of each loader according to the tenth embodiment, the compensation amount of the active filter device, the power source power factor, the output signal of the integral calculation unit, the current effective value of each loader, the loader command signal, and the reset signal. It is the figure which showed the time-dependent change.
  • FIG. 31 is a diagram schematically illustrating a configuration of a power source power factor control system according to the eleventh embodiment.
  • FIG. 32 is a block diagram illustrating an example of a power source power factor demand controller according to the eleventh embodiment.
  • FIG. 1 is a block diagram showing a configuration of a power source power factor control system (100) according to the first embodiment.
  • the power factor control system (100) includes a plurality of loaders (1, 2), phase adjusting equipment (8), and power factor measuring instrument (9) (corresponding to the power factor measuring unit) And a power source power factor demand controller (40) (corresponding to the control signal generating unit) and an adjusting unit (1c, 2c) (corresponding to the operating state control unit) included in the loader (1, 2).
  • a loader (1) is an air conditioner is taken as an example among a plurality of loaders (1, 2).
  • Power source power factor control system (100) is installed in condominiums, factories, buildings, detached houses (hereinafter referred to as buildings). Indoor air conditioning is performed by a loader (1) that is an air conditioning apparatus.
  • the building is supplied with power from the power system including the AC power supply (3).
  • the AC power source (3) is a three-phase AC power source (for example, a three-phase commercial power source), and supplies power to a plurality of loaders (1, 2) in a branched manner.
  • the loader (2) is a device (named as a harmonic generation loader) having a circuit that can be a generation source of harmonic current such as an inverter circuit is taken as an example.
  • the loader (2) includes an elevator, fan, pump, escalator, lighting that is driven by a three-phase power source, and an air conditioner that does not implement harmonic countermeasures such as an active filter.
  • An air conditioner other than a certain loader (1) can be exemplified.
  • Each loader (1, 2) includes an adjustment unit (1c, 2c) connected to a power source power factor demand controller (40).
  • Each of the adjustment units (1c, 2c) is configured using a microcomputer and a memory device that stores a program for operating the microcomputer.
  • the adjustment unit (1c, 2c) changes the operating state of each loader (1, 2) based on the loader command signal Fs (corresponding to the control signal) output from the power source power factor demand controller (40). It adjusts the operating parameters to control the operating state of the loader (1,2).
  • the operating parameters are specifically the power of the loader (1, 2), the current of the loader (1, 2), the rotational speed of the motor included in the loader (1, 2), and the like.
  • the power source power factor measuring device (9) and the power source power factor demand controller (40) provided in the power source power factor control system (100) collectively manage and control a plurality of load devices (1, 2). It has a function as a central management unit (7) of the system (100) to be controlled.
  • the central management unit (7) is arranged in a central management room inside the building.
  • the loader (1) which is an air conditioner, includes a refrigerant circuit (not shown) and a power converter (1a) in addition to the adjustment unit (1c).
  • the refrigerant circuit is configured by connecting a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger through a refrigerant pipe.
  • the refrigerant circuit is filled with a refrigerant, and the refrigerant circulates in the refrigerant circuit, thereby cooling or warming the room.
  • the power converter (1a) is connected to the AC power source (3), although not shown in detail, and has a converter circuit and an inverter circuit.
  • the power conversion device (1a) converts the AC power into a desired frequency and a desired voltage, and converts the converted power into a compressor (more specifically, an electric motor included in the compressor). To supply.
  • the compressor operates and the refrigerant circuit functions, and as a result, indoor air conditioning is performed.
  • harmonic current may be generated when the power converter (1a) or the compressor motor operates. This harmonic current may flow out to the AC power supply (3) via a current path that supplies power to the loader (1). As described above, not only the loader (1) but also the loader (2), which is a harmonic generation loader, the harmonic current passes through the current path for supplying power to the loader (2). May flow into the AC power supply (3).
  • the active filter (1b) is incorporated in the loader (1) that is an air conditioner.
  • the active filter (1b) is connected to the AC power source (3) in parallel with the loader (2) and the power converter (1a), and generates harmonics generated by the loader (1) and the power converter (1a). Reduce the wave current.
  • the active filter (1b) also has a fundamental wave power factor improvement function.
  • the compressor motor included in the loader (1,2) or loader (1) operates at maximum power
  • the current path of the AC power supply (3) that supplies power to the loader (1,2) ( Figure 1) Harmonic current flows out through the power receiving path (12)), and the power source power factor of the AC power source (3) may decrease.
  • the electricity rate is such that the higher the power factor is, the higher the discount rate can be received, and / or when the power factor falls below a predetermined value (90%, 85%, etc.)
  • a predetermined value 90%, 85%, etc.
  • an active filter (1b) for power factor improvement is incorporated in the loader (1), which is an air conditioner, thereby increasing the power factor of the air conditioner.
  • the power factor is improved.
  • control for improving and optimizing the power source power factor of the loader (1, 2) is also performed, which will be described later.
  • phase modulation equipment (8) is installed to improve the power factor of the entire building.
  • the fundamental power factor A phase adjuster (31) for improvement is provided.
  • the phase adjuster (31) is connected in parallel with the load device (1, 2) to the AC power source (3), and controls reactive power among the AC power supplied to each load device (1, 2). To do.
  • the phase adjuster (31) includes a plurality of phase advance capacitors (Ca, Cb, Cc) and a plurality of reactors (La, Lb, Lc).
  • Each phase advance capacitor (Ca, Cb, Cc) is connected in series on each branch wiring (12c) to the phase adjusting equipment (8) in the power receiving path (12).
  • Three phase advance capacitors (Ca, Cb, Cc) are provided corresponding to each phase of the three-phase AC power source (3).
  • the reason why the phase adjuster (31) includes not only the phase advance capacitor (Ca, Cb, Cc) but also the reactor (La, Lb, Lc) is that the phase advance capacitor (Ca, Cb, Cc) This is because the magnitude of the current flowing through the phase adjuster (31) when a short circuit failure occurs can be reduced by the reactor (La, Lb, Lc).
  • the power source power factor measuring device (9) measures the power source power factor of the AC power source (3), and is composed of a power meter or a smart meter. Buildings such as buildings and factories are preliminarily provided with a wattmeter that measures not only the power at that time but also the power source power factor ⁇ . In the first embodiment, this power meter is used as a power source power factor measuring device (9). The power source power factor ⁇ measured by the power meter is input to the power source power factor demand controller (40).
  • the power source power factor measuring device (9) is a smart meter. Since the smart meter has a communication function, the power source power factor measuring device (9) uses the communication function to calculate the power source power factor ⁇ as a measurement result in a wireless manner. ) Can be sent to. Thereby, the wiring which connects a power supply power factor measuring device (9) and a power supply power factor demand controller (40) becomes unnecessary, and it does not need to perform the operation
  • the power source power factor demand controller (40) is configured using a microcomputer and a memory device storing a program for operating the microcomputer. As shown in Fig. 1, the power factor control (40) is a power factor measuring device (9) and each loader (1,2) (specifically, each loader (1,2) adjustment) (1c, 2c)), and each loader based on the detected value of the power factor (9) as the power quality and the target value of the power factor of the AC power source (3) Control the operation of (1,2).
  • the power source power factor demand controller (40) performs adjustment control of the operation state of each loader (1, 2) according to the actual power source power factor ⁇ .
  • the power source power factor demand controller (40) has a power factor target value setting unit (41) and a load adjustment determination unit (42) as shown in FIG.
  • the load adjustment determination unit (42) includes a subtraction unit (43), an integration calculation unit (44), and a determination unit (45).
  • the power supply power factor demand controller (40) uses a loader command signal Fs (corresponding to a control signal) generated based on the measurement result of the power supply power factor measurement device (9) for each load.
  • the power source power factor demand controller (40) and each load device (1, 2) are connected by wiring.
  • the loader command signal Fs is transmitted by a wireless method.
  • the power factor target value setting unit (41) presets the target value ⁇ _ref of the power source power factor.
  • the power factor target value setting unit (41) according to the first embodiment sets the power source power factor target value ⁇ _ref to a value between 0.995 and 1.004.
  • the third decimal place is rounded off. Therefore, when the target value ⁇ _ref of the power source power factor is set to a value between 0.995 and 1.004, the actual power source power factor controlled based on the target value ⁇ _ref of the power source power factor is “1”. It is because it is evaluated.
  • the actual power source power factor ⁇ measured by the power source power factor measuring device (9), which is the power source quality, and the power factor target value setting unit (41) are set.
  • the target value ⁇ _ref of the power source power factor is input.
  • the subtracting unit (43) subtracts the actual power source power factor ⁇ from the target value ⁇ _ref of the power source power factor.
  • the subtraction unit (43) outputs the subtracted value to the integration calculation unit (44).
  • the integration calculation unit (44) integrates the subtraction result (that is, the result of subtracting the actual power supply power factor ⁇ from the target value ⁇ _ref of the power supply power factor) by the subtraction unit (43).
  • the determination unit (45) receives the integration result of the integration calculation unit (44). Based on the integration result, the determination unit (45) generates a loader command signal Fs for changing the operating state of the loader (1, 2) so that the fundamental wave power factor approaches the target value ⁇ _ref of the power source power factor. Generate. Specifically, the determination unit (45) adjusts the operating parameter to lower the operating capacity of the loader (1, 2) so that the fundamental wave power factor (power source power factor) approaches the power source power factor target value ⁇ _ref. The loader command signal Fs to the effect is output to the adjustment unit (1c, 2c) of the loader (1, 2).
  • FIG. 3 shows an example of changes over time in the operation of the loader (1, 2), the power source power factor, and the operation of the load adjustment determination unit (42).
  • FIG. 3A shows the output power correlated with the operation of the loader (2).
  • a constant load such as a pump is assumed as the loader (2).
  • FIG. 3B shows the output power of the loader (1).
  • an air conditioner is assumed as the loader (1).
  • the loader (2) performs a stable operation such that the output power is constant.
  • the loader (1) continues to increase the output power as the air conditioning load increases.
  • the period from time t0 to time t2 is a loader that is an air conditioner because the outside air temperature becomes abnormally high during the hottest day of summer (14:00 to 15:00), and the air conditioning load suddenly increases. This assumes that the output power in (1) is rising.
  • the power source power factor shown in FIG. 3C is generally maintained at the target value of power source power factor ⁇ _ref from time t0 to time t1. It is in a state. However, between time t1 and time t2, the power supply power factor shown in FIG. 3C decreases from the power supply power factor target value ⁇ _ref due to a further increase in the output power of the loader (1).
  • the difference between the target value ⁇ _ref of the power source power factor and the actual power source power factor ⁇ hardly occurs between the time t0 and the time t1, and the integration calculator (44)
  • the output result (output signal) remains substantially “0”.
  • the difference between the target value ⁇ _ref of the power source power factor and the actual power source power factor ⁇ gradually increases as the output power of the loader (1) further increases. Therefore, as shown in FIG. 3D, the output result (output signal) of the integral calculation unit (44) increases after time t1.
  • Time t2 represents a point in time when the output result (output signal) of the integral calculation unit (44) reaches a determination value (corresponding to a predetermined value).
  • the determination unit (45) receives the output result (output signal) of the integration calculation unit (44) and changes the operating state of the loader (1, 2) as shown in FIG.
  • a loader command signal Fs for making it different from that before time t2 (that is, a loader command signal Fs indicating “ON”) is output to the adjustment unit (1c, 2c) of the loader (1, 2).
  • each of the adjusting units (1c, 2c) of the loader (1, 2) has a load between time t2 and time t3 as shown in FIGS.
  • loader (1,2) power, loader (1,2) current, loader (1,2) to change the operating state in the direction that the output voltage of loader (1,2) decreases
  • An operation parameter which is at least one such as a rotation speed of the motor to be adjusted is adjusted.
  • the adjustment of the operation parameter is performed so that the actual power source power factor ⁇ approaches the target value ⁇ _ref of the power source power factor.
  • the actual power supply power factor ⁇ is the target value of the power supply power factor. It recovers to the extent that it coincides with ⁇ _ref, and is maintained in a state that substantially coincides with the target value ⁇ _ref.
  • the power source power factor demand controller (40) and the adjustment unit (1c, 2c) according to the first embodiment have the actual power source power factor ⁇ , which is the measurement result of the power source power factor measuring device (9), as the power source.
  • ⁇ _ref the operating state of the loader (1, 2) is changed so as to reduce the operating parameter of the loader (1, 2).
  • the power source power factor control system (100) forcibly restricts the operating capacity of the loader (1, 2) when the actual power source power factor ⁇ is lower than the target value ⁇ _ref of the power source power factor, “Power source power factor demand control” is performed to create a state where the actual power source power factor ⁇ and the target value ⁇ _ref of the power source power factor match.
  • “Power source power factor demand control” can be said to be control for adjusting the operating parameters based on the measurement result of the actual power source power factor measuring device (9) so that the fundamental wave power factor approaches the target value ⁇ _ref of the power factor. .
  • the determination unit (45) resets (clears to zero) the integration result of the integration calculation unit (44) as shown at time t3 in FIG. ) Is output to the integral calculation unit (44).
  • the integration result (output signal) of the integration calculation unit (44) becomes zero, and the integration calculation unit (44) then causes the actual power supply power factor ⁇ to fall below the target value ⁇ _ref of the power supply power factor. It becomes possible to cope with.
  • the power source power factor control system (100) of the first embodiment is based on the power source power factor target value ⁇ _ref, which is the power source quality, and the current power source power factor (that is, the current power source quality). , 2) Control the operation state.
  • the loader (1 , 2) since the operating parameters of the loader (1, 2) are adjusted based on the loader command signal Fs so that the actual power factor ⁇ approaches the target value ⁇ _ref, the loader (1 , 2) The driving capability changes from the state before the operating parameters are changed.
  • the actual power supply power factor ⁇ is optimized because the actual power supply power factor ⁇ approaches the target value ⁇ _ref of the power supply power factor due to the change in the operating capacity of the loader (1, 2). In this way, for example, the power supply power factor can be reduced and the power supply power factor can be reduced, and the basic charge included in the electricity charge can be reduced or a penalty can be avoided. Can do.
  • the loader command signal Fs is a signal for changing the operation state of the loader (1, 2) when the measurement result of the power source power factor measuring device (9) is lower than the target value ⁇ _ref of the power source power factor. is there.
  • the actual power supply power factor ⁇ which has been lower than the target value ⁇ _ref of the power supply power factor, can rise and approach the target value ⁇ _ref of the power supply power factor.
  • the loader command signal Fs includes the measurement result of the power source power factor measuring device (9) and the power source power while the measurement result of the power source power factor measuring device (9) is lower than the target value ⁇ _ref of the power source power factor. It is generated when the difference between the rate and the target value ⁇ _ref is integrated and the integration result reaches the determination value. That is, the power source power factor ⁇ is not instantaneously lower than the power source power factor target value ⁇ _ref, but the power source power factor ⁇ is surely different from the power source power factor target value ⁇ _ref.
  • the loader command signal Fs is generated, and the operating state of the loader (1, 2) changes. Therefore, control is performed to change the operating state of the loader (1, 2) only when there is a certain need to increase the power source power factor ⁇ .
  • Wattmeters are connected to buildings such as buildings. This wattmeter often measures the power factor in addition to the power. Therefore, in the first embodiment, since the power meter is used as the power source power factor measuring device (9), it is not necessary to attach a sensor or a detection circuit for measuring the power source power factor specially. Accordingly, it is not necessary to separately install a sensor and a detection circuit, and the cost can be reduced because the sensor and the detection circuit can be omitted.
  • the power source power factor measuring device (9) transmits the measurement result to the power source power factor demand controller (40) in a wireless manner.
  • the wiring itself for connecting the power source power factor measuring device (9) and the power source power factor demand controller (40) becomes unnecessary, and it is not necessary to perform the work of routing the wiring.
  • the power source power factor demand controller (40) transmits the generated loader command signal Fs to the adjustment units (1c, 2c) in a wireless manner.
  • the wiring itself which connects the power factor power controller (40) and the adjustment unit (1c, 2c) becomes unnecessary, and it is not necessary to perform the work of routing the wiring.
  • the loader (1) is an air conditioner.
  • the loader (1) is an air conditioner.
  • the power supply power factor demand controller (40) etc. When designing a building such as a building, it is necessary to carry out refrigerant piping work for connecting the outdoor unit and the indoor unit of the air conditioner, so the specifications of the air conditioner to be installed in the building are naturally determined. Therefore, it is possible to connect the communication line between the power supply power factor demand controller (40) etc. and the air conditioner during construction of the building, and the environment where the operating capacity of the air conditioner can be changed by the power supply power factor is simple. It becomes easy to make.
  • the active filter (1b) is incorporated in the air conditioner.
  • the power source power factor control system (100) further includes a phase adjuster (31). As a result, the power factor of the air conditioner can be kept high, so that the actual power source power factor ⁇ can be converged to the target value ⁇ _ref of the power source power factor as soon as possible.
  • the power source power factor control system (100) may include an active filter (30) instead of the phase adjuster (31).
  • the active filter (30) is connected in parallel with the load device (1, 2) with respect to the AC power source (3), and reduces the harmonic current generated in the load device (1, 2).
  • the active filter (30) is controlled by the power source power factor demand controller (40).
  • the power factor of the loader (1, 2) can be kept high, the power source power factor can be converged to the target value as soon as possible.
  • a separate active filter may not be incorporated in the loader (1).
  • the loader (1) may be other than an air conditioner.
  • the loader (1) may be, for example, an elevator provided in a building or the like, a fan, a pump, an escalator, lighting driven by a three-phase power source, or the like.
  • the power factor (9) need not be a power meter (smart meter, etc.) in the building.
  • the power source power factor measuring device (9) may not be a wireless type.
  • the power source power factor demand controller (40) may not be a wireless type.
  • the load filter (1) may not include the active filter (1b).
  • phase adjusters (31) or active filters (30) may be provided for one loader (1).
  • phase adjuster (31) and the active filter (30) are not essential.
  • the phase adjuster (31) may be composed of only a phase advance capacitor (Ca, Cb, Cc).
  • the loader command signal Fs is not when the measurement result of the power source power factor measuring device (9) is below the target value ⁇ of the power source power factor, but when the power source power factor ⁇ does not match the desired target value ⁇ _ref (for example, When the power source power factor ⁇ exceeds the target value ⁇ _ref of the power source power factor, it may be generated as a signal for changing the operating state of the loader (1, 2).
  • the power source power factor demand controller (40) may generate the loader command signal Fs by a method other than the method based on the integral value of the difference between the actual power source power factor ⁇ and the target value ⁇ _ref of the power source power factor. .
  • the air conditioner is not limited to an apparatus that performs only cooling and heating.
  • Air conditioning devices include those that can be frozen, ventilated, and conditioned.
  • FIG. 5 is a block diagram showing a configuration of the power source power factor control system (200) according to the second embodiment.
  • the power source power factor control system (200) includes a plurality of loaders (101, 102), a phase adjusting device (106), a power source power factor measuring device (104) (corresponding to a power source power factor measuring unit), And a power source power factor demand controller (105).
  • the loader (101) is an air conditioner among the plurality of loaders (101, 102) is taken as an example.
  • Power source power factor control system (200) is installed in condominiums, factories, buildings, detached houses (hereinafter referred to as buildings). Indoor air conditioning is performed by a loader (101) which is an air conditioning apparatus.
  • the building is supplied with power from the power system including the AC power source (103).
  • the AC power source (103) is a three-phase AC power source (for example, a three-phase commercial power source), and supplies power to a plurality of loaders (101, 102) in a branched manner.
  • the loader (102) is an example of a device (named as a harmonic generation loader) having a circuit that can be a harmonic current generation source such as an inverter circuit.
  • the loader (102) includes an elevator, fan, pump, escalator, lighting that is driven by a three-phase power supply, and an air conditioner that does not implement harmonic countermeasures such as an active filter.
  • An air conditioner other than a certain loader (101) can be exemplified.
  • Each loader (101, 102) includes an adjustment unit (101c, 102c) (corresponding to an operation state control unit) connected to a power source power factor demand controller (105).
  • Each of the adjustment units (101c, 102c) is configured using a microcomputer and a memory device that stores a program for operating the microcomputer.
  • the adjustment unit (101c, 102c) adjusts the operation parameter for changing the operation state of each loader (101, 102) based on the loader command signal Fs output from the power source power factor demand controller (105) to adjust the loader (101, 102) is controlled.
  • the operating parameters are specifically the electric power of the loader (101, 102), the current of the loader (101, 102), the rotational speed of the electric motor included in the loader (101, 102), and the like.
  • the power source power factor measuring device (104) and the power source power factor demand controller (105) included in the power source power factor control system (200) collectively manage and control a plurality of load devices (101, 102). In other words, it has a function as a central management unit (107) of the system (200).
  • the central management unit (107) is disposed in a central management room inside the building such as a building.
  • the loader (101) which is an air conditioner, includes a refrigerant circuit (not shown) and a power converter (101a) in addition to the adjustment unit (101c).
  • the refrigerant circuit is configured by connecting a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger through a refrigerant pipe.
  • the refrigerant circuit is filled with a refrigerant, and the refrigerant circulates in the refrigerant circuit, thereby cooling or warming the room.
  • the power conversion device (101a) is connected to an AC power source (103) and has a converter circuit and an inverter circuit, although details are not shown.
  • the power converter (101a) converts the AC power into a desired frequency and a desired voltage, and converts the converted power into a compressor (more specifically, an electric motor included in the compressor). To supply.
  • the compressor operates and the refrigerant circuit functions, and as a result, indoor air conditioning is performed.
  • harmonic current may be generated when the power converter (101a) or the compressor motor operates. This harmonic current may flow out to the AC power source (103) via a current path that supplies power to the loader (101). As described above, not only the loader (101) but also the loader (102) which is a harmonic generation loader, the harmonic current passes through the current path for supplying power to the loader (102). May flow into the AC power supply (103).
  • an active filter (101b) is incorporated in a loader (101) that is an air conditioner.
  • the active filter (101b) is connected to the AC power source (103) in parallel with the loader (102) and the power converter (101a), and generates harmonics generated in the loader (102) and the power converter (101a). Reduce the wave current.
  • the active filter (101b) also has a fundamental wave power factor improvement function.
  • the compressor motor included in the loader (101, 102) or the loader (101) operates at maximum power
  • the harmonic current flows out, and the power source power factor of the AC power source (103) may decrease.
  • the electricity rate is such that the higher the power factor is, the higher the discount rate can be received, and / or when the power factor falls below a predetermined value (90%, 85%, etc.)
  • a predetermined value 90%, 85%, etc.
  • an active filter (101b) for improving the power factor is incorporated in the loader (101), which is an air conditioner, thereby increasing the power factor of the air conditioner.
  • the power factor is improved.
  • control for improving and optimizing the power factor of the loader (101, 102) is also performed, which will be described later.
  • phase adjusting equipment (106) is installed to improve the power factor of the entire building.
  • the fundamental power factor can be improved by changing the phase of the harmonic current of the loader (101,102).
  • a phase adjuster (131) is provided.
  • the phase adjuster (131) is connected in parallel with the load device (101, 102) with respect to the AC power source (103), and controls reactive power among the AC power supplied to each load device (101, 102).
  • the phase adjuster (131) includes a plurality of phase advance capacitors (Ca, Cb, Cc) and a plurality of reactors (La, Lb, Lc).
  • Each phase advance capacitor (Ca, Cb, Cc) is connected in series on each branch wiring (112c) to the phase adjusting equipment (106) in the power receiving path (112).
  • Three phase advance capacitors (Ca, Cb, Cc) are provided corresponding to each phase of the three-phase AC power source (103).
  • the reason why the phase shifter (131) includes not only the phase advance capacitor (Ca, Cb, Cc) but also the reactor (La, Lb, Lc) is that the phase advance capacitor (Ca, Cb, Cc) This is because the magnitude of the current flowing through the phase adjuster (131) when a short circuit failure occurs can be reduced by the reactor (La, Lb, Lc).
  • the power source power factor measuring device (104) measures the power source power factor of the AC power source (103), and is composed of a power meter or a smart meter. Buildings such as buildings and factories are preliminarily provided with a wattmeter that measures not only the power at that time but also the power source power factor ⁇ . In the second embodiment, this power meter is used as a power source power factor measuring device (104). The power source power factor ⁇ measured by the power meter is input to the power source power factor demand controller (105).
  • the power source power factor measuring device (104) by using an existing wattmeter or smart meter in the building as the power source power factor measuring device (104), it is necessary to provide a sensor and a detection circuit for measuring the power source power factor separately from the power meter and smart meter. There is no.
  • the power source power factor measuring device (104) is a smart meter. Since the smart meter has a communication function, the power source power factor measuring device (104) uses the communication function to calculate the power source power factor ⁇ as a measurement result in a wireless manner. ) Can be sent to. This eliminates the need for wiring that connects the power source power factor measuring device (104) and the power source power factor demand controller (105), and eliminates the need for wiring. Therefore, construction costs for wiring and wiring costs can be reduced.
  • the power source power factor measuring device (104) includes a current detection unit (141a, 141b), a voltage detection unit (142), and a power source power factor calculation unit (143).
  • the current detection unit (141a, 141b) detects the current value in the power reception path (112) of the AC power supply (103). Specifically, the current detection unit (141a, 141b) detects the value of the output current of the AC power supply (103) before branching and flowing to each loader (101, 102) that is a harmonic generation source. In this example, two current detection units (141a, 141b) are provided. Specifically, the current detector (141a) detects an R-phase current value (Irs) in the AC power supply (103). The current detector (141b) detects a T-phase current value (Its) in the AC power supply (103).
  • the voltage detector (142) is connected to the output terminal of each phase of the AC power supply (103) and detects the line voltage (Vrs, Vst, Vtr) of the AC power supply (103).
  • the power source power factor calculation unit (143) is configured using a microcomputer and a memory device that stores a program for operating the microcomputer.
  • the power factor calculation unit (143) calculates the input detection result (Irs, Its) of the current detection unit (141a, 141b) and the detection result (Vrs, Vst, Vtr) of the voltage detection unit (142) as follows: Applying to (1) and the following expression (2), the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axes) are calculated.
  • the power source power factor calculation unit (143) calculates the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axes) obtained by the above formulas (1) and (2) using the following formula (3): And the active power P ⁇ is calculated. Further, the power source power factor calculation unit (143) obtains the voltages V ⁇ , V ⁇ and the currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axes) obtained by the above equations (1) and (2) from the following equations (4). And reactive power P ⁇ is calculated.
  • the power source power factor calculation unit (143) calculates the power source power factor ⁇ of the AC power source (103) by applying the active power P ⁇ and the reactive power P ⁇ to the following equation (5). That is, the power source power factor ⁇ obtained by the power source power factor calculation unit (143) means the actual power source power factor ⁇ .
  • the actual power factor ⁇ thus obtained is input to the power factor power demand controller (105).
  • the power source power factor demand controller (105) is configured using a microcomputer and a memory device storing a program for operating the microcomputer.
  • the power source power factor demand controller (105) includes a microcomputer and a memory device different from the power source power factor calculation unit (143).
  • the power source power factor demand controller (105) is connected to the power source power factor measuring device (104) and each load device (101, 102), and the power source power factor measuring device (104 ) And the target value of the power source power factor of the AC power source (103), the operation of each loader (101, 102) is controlled.
  • the power source power factor demand controller (105) adjusts the operation state of each loader (101, 102) according to the actual power source power factor ⁇ , and adjusts the target value ⁇ _ref of the power source power factor. I do.
  • the power supply power factor demand controller (105) includes a load adjustment determination unit (152) (corresponding to a control signal generation unit), a first average power factor calculation unit ( 153), a second average power factor calculation unit (154), and a power factor target value setting unit (151) (corresponding to a target value adjustment unit).
  • the load adjustment determination unit (152) is a load that is a control signal for changing the operating state of the loader (101, 102) based on the measurement result of the power source power factor measuring device (104) and the target value ⁇ _ref of the power source power factor.
  • the generator command signal Fs is generated, and includes a subtraction unit (161), an integration calculation unit (162), and a determination unit (163).
  • the adjustment control of the operating state of each loader (101, 102) is performed by the load adjustment determination unit (152), and the adjustment control of the target value ⁇ _ref of the power source power factor is performed by the first average power factor calculation unit (153).
  • the second average power factor calculation unit (154) and the power factor target value setting unit (151) are used.
  • the power source power factor demand controller (105) transmits the generated loader command signal Fs to the adjustment units (101c, 102c) of the loaders (101, 102).
  • the rate demand controller (105) and each loader (101, 102) are not connected by wiring, and the loader command signal Fs is transmitted in a wireless manner.
  • the subtraction unit (161) of the load adjustment determination unit (152) includes an actual power source power factor ⁇ (corresponding to power source quality) measured by the power source power factor measuring device (104) and a power factor target value setting unit (151). Is inputted with the target value ⁇ _ref of the power source power factor set.
  • the subtracting unit (161) subtracts the actual power source power factor ⁇ from the target value ⁇ _ref of the power source power factor.
  • the subtraction unit (161) outputs the subtracted value to the integration calculation unit (162).
  • the subtracted value is, for example, that the air conditioning load suddenly increased during the hottest day of summer (14:00 to 15:00) and the output power of the loader (101), which is an air conditioner, increased.
  • the output power of the loader (101) increases, and the actual power factor ⁇ becomes the target value ⁇ _ref. It becomes especially large when it falls from.
  • the integration calculation unit (162) integrates the subtraction result (that is, the result of subtracting the actual power supply power factor ⁇ from the target value ⁇ _ref of the power supply power factor) by the subtraction unit (161).
  • the integration result of the integration calculation unit (162) is input to the determination unit (163).
  • the determination unit (163) controls the operating parameter that changes the operating state of the loader (101, 102) so that the fundamental wave power factor approaches the target value ⁇ _ref of the power source power factor.
  • the determination unit (163) adjusts the operating parameters to reduce the driving capability of the loader (101, 102) so that the fundamental wave power factor (power source power factor) approaches the target value ⁇ _ref.
  • Fs is output to the loader (101, 102).
  • the operation parameter means at least one of the power of the loader (101,102), the current of the loader (101,102), the rotational speed of the electric motor included in the loader (101,102), and the like.
  • the load adjustment determination unit (152) forcibly narrows the operating capacity of the loader (101, 102) by adjusting the operating parameters so that the actual power source power factor ⁇ approaches the target value ⁇ _ref, and the actual power source power factor “Power source power factor demand control” is executed to create a state where ⁇ and the power factor target value ⁇ _ref match.
  • the determination unit (163) turns off the loader command signal Fs.
  • the loader 101, 102
  • the determination unit (163) resets the integration result of the integration calculation unit (162) to the integration calculation unit (162) (clears it to zero). Is output.
  • the integration result (output signal) of the integration calculation unit (162) becomes zero, and the integration calculation unit (162) responds to the case where the actual power supply power factor ⁇ next falls below the power factor target value ⁇ _ref. become able to.
  • the first average power factor calculation unit (153) of the power source power factor demand controller (105) includes 24 storage elements (171a to 171x) and 24 addition units (173a to 173x). ) And one daily average power factor calculation unit (175).
  • Twenty-four storage elements (171a to 171x) are provided corresponding to each time slot when one day (24 hours) is divided every hour, and each storage element (171a to 171x)
  • the power source power factor ⁇ of the band (every hour) is stored.
  • Each adder (173a to 173x) sequentially adds the power factor ⁇ of each storage element (171a to 171x). For example, the adding unit (173a) adds the power source power factor ⁇ in the time zone one hour ago to the current power source power factor ⁇ . The adding unit (173b) adds the power source power factor ⁇ of the time zone two hours before stored in the storage element (171b) to the addition result of the adding unit (173a). The adding unit (173x) adds the power source power factor ⁇ in the time zone 24 hours before stored in the storage element (171x) to the addition result of the adding unit (173w). The addition result of the adding unit (173x) is equal to the total value of the power source power factor ⁇ for one day (that is, 24 hours).
  • the daily average power factor calculation unit (175) divides the total value of the daily power factor ⁇ by 25 to calculate an average power factor ⁇ av24h that is an average of 24 hours. As shown in FIG. 6, the average power source power factor ⁇ av24h is input to the second average power factor calculation unit (154).
  • the second average power factor calculation unit (154) calculates 14 storage elements (183a to 183n), one adder (182), and one 15-day average power factor. Part (181).
  • Storage elements (183a to 183n) are provided for a total of 14 days corresponding to each day.
  • Each storage element (183a to 183n) stores a daily average power factor ⁇ av24h. That is, in this example, the average power source power factor ⁇ av24h for each day can be stored every day from one day before to 14 days ago.
  • the addition unit (182) adds the average power source power factor ⁇ av24h for each day from one day before to 14 days before stored in all the storage elements (183a to 183n) and the average power source power factor ⁇ av24h for today. Therefore, the addition result of the adding unit (182) is the total value of the average power factor ⁇ av24h for 15 days from today to 14 days ago.
  • the 15-day average power factor calculation unit (181) calculates the average power factor ⁇ av15day for 15 days by dividing the total value of the average power factor ⁇ av24h for 15 days by 15. As shown in FIG. 6, the average power source power factor ⁇ av15day for 15 days is input to the power factor target value setting unit (151).
  • the power factor target value setting unit (151) includes one subtraction unit (191) and one addition unit (192). Based on the measurement result, the target value ⁇ _ref of the power source power factor is adjusted and set by calculation.
  • the subtraction unit (191) subtracts the 15-day average power source power factor ⁇ av15day, which is a value calculated using the measurement result of the power source power factor measuring device (104), from the reference value ⁇ _reffr of the power factor target value.
  • the reference value ⁇ _refr for the power factor target value is set to a value between 0.995 and 1.004.
  • the power factor target value setting unit 151) adjusts and sets the target value ⁇ _ref of the power factor.
  • the value is naturally between 0.995 and 1.004. This is because the actual power source power factor controlled based on the target value ⁇ _ref of the power source power factor is evaluated as “1”.
  • the addition unit (192) adds the subtraction result of the subtraction unit (191) and the reference value ⁇ _refr of the power factor target value.
  • the addition result is the target value ⁇ _ref of the power source power factor and is input to the load adjustment determination unit (152) as shown in FIG.
  • the average power source power factor ⁇ av15day for the previous 15 days (corresponding to the first time) is higher than the power factor target value reference value ⁇ _reffr.
  • the target value ⁇ _ref of the power source power factor for the subsequent 15 days (corresponding to the second time) is set to a value lower than the reference value ⁇ _refr of the power factor target value, and the average power for 30 days (one month) as a unit time
  • the rate can be set to 0.995 to 1.004 set by the reference value ⁇ _refr of the power factor target value.
  • the target value ⁇ _ref of the power source power factor is lowered from the previous 15 days for the next 15 days.
  • the loaders 101, 102
  • the target value ⁇ _ref of the power factor for the next 15 days is set to be lower than that for the previous 15 days.
  • the average value of the actual power supply power factor for 30 days which is a unit time, can surely approach the reference value ⁇ _refr of the power factor target value.
  • ⁇ _refr the reference value of the power factor target value.
  • FIG. 10A shows the change over time of the power source power factor
  • FIG. 10B shows the average power source power factor ⁇ av24h, which is the average for 24 hours calculated by the daily average power factor calculating unit (175). Changes over time are shown.
  • the interval between the broken lines extending vertically in FIG. 10 indicates one hour
  • the thick solid line in FIG. 10A indicates the state of change of the power source power factor every hour.
  • the average power source power factor ⁇ av24h indicated by the thick solid line in FIG. 10B is an average value of the power source power factor for the latest 24 hours, and is updated every 24 hours. That is, at time t1 shown in FIG. 10B, the average power source power factor ⁇ av24h, which is an average of 24 hours from time t0 to time t1, is calculated and updated.
  • FIG. 11A shows an average power source power factor ⁇ av24h, which is an average of 24 hours
  • FIG. 11B shows an average power source power factor ⁇ av15day for 15 days
  • FIG. 11C shows a power factor target value setting.
  • FIG. 11 (d) shows the change over time of the target value ⁇ _ref of the power source power factor, which is the output signal of the power factor target value setting unit (151).
  • the interval between the broken lines extending vertically indicates one day (24 hours), from the date and time d1 to the date and time d2, from the date and time d2 to the date and time d3, and from the date and time d3 to the date and time d4, respectively.
  • the sum of the first time and the second time is equal to the unit time, the first time and the second time are equal, and the first time and the second time are half of the unit time. The case of time is illustrated.
  • the average value of the actual power factor for 15 days obtained by using the average power source power factor ⁇ av24h for each day from the date and time d1 to the date and time d2 is the average power source for 15 days. Updated as power factor ⁇ av15day.
  • the result of subtracting the 15-day average power factor ⁇ av15day from the reference value ⁇ _refr of the power factor target value is shown in FIG. 11C, and the output signal of the subtracting unit (191) shown in FIG.
  • the value added to the reference value ⁇ _refr is the target value ⁇ _ref of the power source power factor in FIG.
  • the target power factor for 15 days which is the second time after the first time.
  • the value ⁇ _ref is lowered than during the first time.
  • the power source power factor is not controlled without actively controlling the operating capacity of the loader (101, 102) when the actual power source power factor is higher than the target value ⁇ _ref.
  • the fluctuation of the average value can be suppressed as much as possible. Therefore, for example, to reduce the operating capacity of the air conditioner, which is the loader (101), or to stop the operation even during the hottest day of summer (14:00 to 15:00) Can be avoided or minimized. Therefore, while maintaining the comfort of the environment in a building, it is possible to achieve both receiving a desired power factor discount with a power source power factor as high as possible.
  • the operating state of the loader (101, 102) changes based on the target value ⁇ _ref of the power source power factor that is the power source quality and the actual power source power factor ⁇ (that is, the actual power source quality).
  • the target value ⁇ _ref is not a fixed value but a value adjusted based on the actual power supply power factor ⁇ . As described above, by making the target value ⁇ _ref variable, it is possible to minimize the change in the driving capacity of the loader (101, 102), and at the place where the power source power factor control system (200) is constructed, Is optimized.
  • the power supply power factor can be suppressed from being lowered and the power supply power factor can be improved, and the basic charge included in the electricity charge can be reduced or a penalty can be avoided. be able to.
  • the power source power factor target value ⁇ _ref is adjusted using the power source power factor ⁇ in unit time for adjusting the power source power factor target value ⁇ _ref, in particular, the average value of the power source power factor ⁇ .
  • the second time when the average power source power factor ⁇ av15day in the first time exceeds the reference value ⁇ _refr of the power factor target value in the unit time, the second time after the first time in the unit time.
  • the target value ⁇ _ref of the power source power factor at 2 hours is set lower than the target value ⁇ _ref of the power source power factor at the first time.
  • the power source power factor target value ⁇ _ref in the second time is set higher than the power source power factor target value ⁇ _ref in the first time. .
  • the total time of the first time and the second time is equal to the unit time.
  • the first time and the second time are half the unit time. This makes it easy to adjust the target value ⁇ _ref in the second time, so that it is relatively easy to prevent the average value of the target value ⁇ _ref during the unit time from fluctuating.
  • the period during which the power factor value affects the electricity bill may be “1 month”.
  • the fluctuation of the average value of the target value ⁇ _ref of the power source power factor during “one month” which is a unit time is suppressed. Therefore, it is possible to reliably receive a discount on the electricity charge based on the average value ⁇ av15day of the power source power factor, or to reliably suppress the penalty of the basic fee based on the degree of decrease in the power source power factor. .
  • Wattmeters are connected to buildings such as buildings. This wattmeter often measures the power factor in addition to the power. Therefore, in the second embodiment, since the power meter is used as the power source power factor measuring device (104), it is not necessary to attach a sensor or a detection circuit for measuring the power source power factor specially. Accordingly, it is not necessary to separately install a sensor and a detection circuit, and the cost can be reduced because the sensor and the detection circuit can be omitted.
  • the power source power factor measurement device (104) transmits the measurement result to the power source power factor demand controller (105) including the load adjustment determination unit (152) in a wireless manner.
  • the wiring itself for connecting the power source power factor measuring device (104) and the power source power factor demand controller (105) becomes unnecessary, and it is not necessary to perform the work of routing the wiring.
  • the power source power factor demand controller (105) including the load adjustment determination unit (152) wirelessly sends the generated loader command signal Fs to the adjustment unit (101c, 102c) of the loader (101,102). Send with.
  • the wiring itself for connecting the power source power factor demand controller (105) and the loader (101, 102) becomes unnecessary, and it is not necessary to perform the work of routing the wiring.
  • the loader (101) is an air conditioner.
  • the loader (101) is an air conditioner.
  • the power supply power factor demand controller (105) etc. it is necessary to carry out refrigerant piping work for connecting the outdoor unit and the indoor unit of the air conditioner, so the specifications of the air conditioner to be installed in the building are naturally determined. Therefore, it is possible to connect the communication line between the power supply power factor demand controller (105) etc. and the air conditioner at the time of building construction, and the environment where the operating capacity of the air conditioner can be changed by the power supply power factor is simple. It becomes easy to make.
  • the active filter (101b) is incorporated in the air conditioner.
  • the power source power factor control system (200) further includes a phase adjuster (131).
  • the power factor of the air conditioner can be kept high, so that the actual power source power factor ⁇ can be converged to the target value ⁇ _ref of the power source power factor as soon as possible.
  • the power source power factor control system (200) may include an active filter (130) instead of the phase adjuster (131).
  • the active filter (130) is connected in parallel with the loader (101, 102) with respect to the AC power supply (103), and reduces the harmonic current generated in the loader (101, 102).
  • the active filter (130) is controlled by the power source power factor demand controller (105).
  • the power factor of the loader (101, 102) can be kept high, the power source power factor can be converged to the target value as soon as possible.
  • a separate active filter may not be incorporated in the loader (101).
  • the loader (101) may be other than an air conditioner.
  • the loader (101) may be, for example, an elevator provided in a building or the like, a fan, a pump, an escalator, lighting driven by a three-phase power source, or the like.
  • the power source power factor measuring device (104) need not be a power meter (smart meter, etc.) in the building.
  • the power source power factor measuring device (104) may not be a wireless type.
  • the power source power factor demand controller (105) may not be a wireless type.
  • the active filter (101b) may not be incorporated in the loader (101).
  • the “average value” of the power source power factor per unit time is not used, but the actual power source power factor ⁇ at that time itself may be used.
  • the target value ⁇ _ref of the power source power factor is lowered in the second time of the second half.
  • the timing for reducing the target value ⁇ _ref of the power source power factor is not limited to this.
  • the target value ⁇ _ref of the power source power factor may be immediately lowered. The same applies to the case where the average value of the power source power factor is lower than the reference value ⁇ _refr of the power factor target value.
  • the unit time is not limited to one month. Even if the unit time is one month, the number of days in one month is not limited to 30 days.
  • the first time and the second time may not be half of the unit time.
  • the total time of the first time and the second time may be shorter than the unit time.
  • both the first time and the second time can be 5 days or 10 days.
  • the target value ⁇ _ref of the power source power factor is changed a plurality of times during the unit time depending on the relationship between the total time and the unit time. It is also possible to do. Thereby, the fluctuation
  • first time and the second time do not have to be equal, as the first time is 5 days and the second time is 10 days.
  • phase adjusters (131) or active filters (130) may be provided for one loader (101).
  • the phase adjuster (131) may be configured with only a phase advance capacitor (Ca, Cb, Cc).
  • the air conditioner is not limited to an apparatus that performs only cooling and heating.
  • Air conditioning devices include those that can be frozen, ventilated, and conditioned.
  • Embodiments 3 to 10 In factories and buildings, a large number of large inverter devices are installed as power sources for supplying electric power to electric motors.
  • the inverter device may be a harmonic generation source that generates harmonics that adversely affect other devices.
  • an active filter device is provided in a power system to which power from a commercial power supply (AC power supply) is sent.
  • the active filter device detects a harmonic current of the power system to which the inverter device is connected, generates a current having a phase opposite to the detected harmonic current, and supplies the current to the power system. Harmonics are reduced. As a result, voltage distortion and current distortion of the power system are reduced, and adverse effects due to harmonics on other devices are suppressed. By suppressing the adverse effects due to harmonics, the power factor is improved.
  • an active filter having a relatively large capacity is often installed so that the fundamental wave power factor of the loader can be improved in response to harmonics of any magnitude.
  • an active filter device having a capacity of about one third of the capacity of the transformer is installed.
  • the capacity of the active filter device is very large with respect to the actual load, and an active filter device having an overspec capacity is installed. The larger the capacity of the active filter device, the higher the cost.
  • an air conditioner, an elevator device, a lighting device, a pump device, and the like are installed in a building as a loader including an inverter device that becomes a harmonic generation source.
  • the time period when these devices are operating at the maximum load power is extremely small.
  • the time zone in which the air conditioner, which is a loader, operates at the maximum load power is the midsummer time and the time when the temperature rises the most (for example, in Japan, from early August to mid-14: 00) Most cases are only.
  • some loaders for example, air conditioners
  • the possibility that other loaders for example, elevator devices and lighting devices
  • are operating at the maximum load power is limited. There are few.
  • the active filter device does not exert its own ability (specifically, the ability to improve the fundamental wave power factor) to the maximum, and the expensive active filter It cannot be said that the device can be used effectively.
  • phase adjuster that adjusts the phase of the reactive power instead of the active filter device as a phase adjuster in the building. The same can be said for the phase adjuster as in the above-described active filter device.
  • the following third to tenth embodiments can improve the fundamental wave power factor of the loader without problems even when using a phase adjusting device or an active filter device having a relatively small capacity.
  • a technique for improving and optimizing the power factor will be described.
  • Embodiments 3 to 6 are described as embodiments relating to the phase adjusting device.
  • the fourth to sixth embodiments correspond to modifications of the third embodiment based on the third embodiment.
  • Embodiments 7 to 10 are described as embodiments relating to an active filter device.
  • the eighth to tenth embodiments are modifications of the seventh embodiment based on the seventh embodiment.
  • FIG. 13 is a block diagram illustrating a configuration of an air conditioning system (300) according to the third embodiment.
  • the air conditioning system (300) includes a plurality of loaders (201, 202) and an active filter device (204) corresponding to a phase adjusting device.
  • a loader (201) is an air conditioner is taken as an example among a plurality of loaders (201, 202).
  • the air conditioning system (300) is installed in a condominium, factory, building, detached house, etc. (hereinafter referred to as a building, etc.), and indoor air conditioning is performed by a loader (201) which is an air conditioner.
  • the AC power source (203) is a three-phase AC power source (for example, a three-phase commercial power source), and supplies power to a plurality of loaders (201, 202) in a branched manner.
  • the loader (202) is an apparatus (named a harmonic generation loader) provided with a circuit that can be a harmonic current generation source such as an inverter circuit is taken as an example.
  • the loader (202) includes an elevator, fan, pump, escalator, lighting that is driven by a three-phase power source, and an air conditioner that does not implement harmonic countermeasures such as an active filter.
  • An air conditioner other than a certain loader (201) can be exemplified.
  • Each loader (201, 202) includes an adjustment unit (201c, 202c) connected to a controller (240) (corresponding to an operation state control unit).
  • Each of the adjustment units (201c, 202c) is configured using a microcomputer and a memory device that stores a program for operating the microcomputer.
  • the adjustment unit (201c, 202c) adjusts an operation parameter for changing the operation state of each loader (201, 202) based on a loader command signal Fs (described later) output from the controller (240).
  • the operation parameters are the power of the loader (201, 202), the current of the loader (201, 202), the rotational speed of the electric motor included in the loader (201, 202), and the like.
  • the loader (201) which is an air conditioner, includes a refrigerant circuit (not shown) and a power converter (201a) in addition to the adjustment unit (201c).
  • the refrigerant circuit is configured by connecting a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger through a refrigerant pipe.
  • the refrigerant circuit is filled with a refrigerant, and the refrigerant circulates in the refrigerant circuit, thereby cooling or warming the room.
  • the power conversion device (201a) is connected to an AC power source (203), although not shown in detail, and has a converter circuit and an inverter circuit.
  • the power converter (201a) converts the AC power into a desired frequency and a desired voltage, and converts the converted power into a compressor (more specifically, an electric motor included in the compressor). To supply.
  • the compressor operates and the refrigerant circuit functions, and as a result, indoor air conditioning is performed.
  • harmonic current may be generated when the power converter (201a) or the compressor motor operates. This harmonic current may flow out to the AC power source (203) via a current path that supplies power to the loader (201). As described above, not only the loader (201) but also the loader (202), which is a harmonic generation loader, the harmonic current passes through the current path for supplying power to the loader (202). May flow into the AC power supply (203).
  • Such a harmonic current is generally regulated in terms of the outflow level to the AC power source (203) side. Therefore, the air conditioning system (300) according to Embodiment 3 attempts to reduce the harmonic current by the active filter device (204).
  • the active filter device (204) of the third embodiment also has a function of improving the fundamental wave power factor. I have.
  • the active filter device (204) is connected to the AC power source (203) and has a function of canceling out the harmonic current flowing out from the loader (201, 202) which is a harmonic generation loader. That is, the active filter device (204) flows the compensation current so that the current in the current path (hereinafter referred to as the power receiving path (212)) of the AC power supply (203) approaches a sine wave. More specifically, the active filter device (204) generates a compensation current having a phase opposite to the harmonic current appearing in the power reception path (212) and supplies the compensation current to the power reception path (212).
  • the active filter device (204) improves the fundamental wave power factor by passing the compensation current described above.
  • the active filter device (204) is configured to flow a compensation current that also compensates for an ineffective component of the fundamental wave, thereby improving the fundamental wave power factor.
  • the harmonic current generated in the loader (201) that is an air conditioner is the largest when the load of the air conditioner is the largest (for example, at the maximum cooling output). The same applies to the harmonic current generated in the loader (202) when it is assumed that the loader (202) is an air conditioner.
  • the active filter device (204) assumes the harmonic current when all the load devices (201, 202) simultaneously become the maximum load, and the capacity (the amount of power that can be generated), That is, the capacity is set.
  • the loader (201, 202) is more often used at a load smaller than the maximum load rather than being used at the maximum load. Then, if the active filter device (204) with the capability set as described above is used only for the power factor improvement by the harmonic current countermeasure of the loader (201, 202), the period when the capability is surplus is obtained. It is thought that there are many.
  • the capacity (that is, the capacity) of the active filter device (204) is set smaller than the general setting method as described above.
  • the capacity (that is, capacity) of the active filter device (204) is about 80 when the capacity corresponding to the harmonic current when all the load devices (201, 202) simultaneously become the maximum load is 100%. % Is set. The larger the capacity (that is, capacity), the more expensive the active filter device (204). However, in the third embodiment, since the capacity is set relatively small, the cost of the active filter device (204) can be reduced.
  • the active filter device (204) performs control for improving the power factor of the power supply by demonstrating the power factor improvement function by the above-described harmonic current countermeasures without any problem, although the capability is relatively small. This will be described later.
  • the active filter device (204) includes a current source (230) (corresponding to a power factor improvement unit), a first current detector (205a, 205b) (corresponding to a current detector), a second current detector (225a, 225b), a voltage detector (260), and a controller (240) corresponding to an operating state controller.
  • a current source 230
  • a first current detector 205a, 205b
  • a second current detector 225a, 225b
  • a voltage detector 260
  • controller 240
  • the current source (230) is an active filter that improves the fundamental wave power factor by generating a current (ie, a compensation current) for reducing the harmonic current and improving the fundamental wave power factor.
  • the output terminal of the current source (230) is connected to the power receiving path (212) of the loader (201, 202), and the generated compensation current is output to the power receiving path (212).
  • the current source (230) is connected to the AC power source (203) in parallel with the loader (201, 202).
  • the current source (230) of the third embodiment is configured using a so-called inverter circuit.
  • a switching command value (G) described later is input to the current source (230) from the controller (240).
  • the current source (230) generates a compensation current by switching according to the switching command value (G).
  • the first current detector (205a, 205b) detects a current value in the power receiving path (212) of the AC power supply (203). Specifically, the first current detector (205a, 205b) is an AC power source before the output current output from the AC power source (203) branches and flows to the current source (230) and each load device (201, 202). 203) The output current value is detected.
  • first current detectors (205a, 205b) are provided. Specifically, the first current detector (205a) detects an R-phase current value (Irs) in the AC power supply (203). The first current detector (205b) detects a T-phase current value (Its) in the AC power supply (203). The detection results of the respective first current detectors (205a, 205b) are transmitted to the controller (240).
  • each of the first current detectors (205a, 205b) is not particularly limited. For example, it may be possible to employ a current transformer.
  • each first current detector (205a, 205b) is configured to transmit the detection result to the controller (240) in a wireless manner.
  • the distance between the AC power source (203) and the active filter device (204) may be 20 to 30 meters away. Therefore, when the first current detector (205a, 205b) to the active filter device (204) are connected by wiring, the wiring is drawn long, and the first current detector (205a, 205b) and the active filter device are connected. The connection work with (204) itself takes a lot of work.
  • the detection result of the first current detector (205a, 205b) is transmitted to the controller (240) in a wireless manner, the wiring itself becomes unnecessary, and the work of routing the wiring is performed. No need to do it.
  • a phenomenon in which the magnetic flux passing through the first current detector (205a, 205b) changes with time due to the current flowing through the first current detector (205a, 205b) is called electromagnetic induction.
  • the induced electromotive force may be used as a power source (for example, a power source for communication) for driving the first current detectors (205a, 205b).
  • the first current detector (205a, 205b) can be operated without a power source (that is, operated without connecting a power source from the outside of the first current detector (205a, 205b)), and the first current detector
  • the work of connecting the devices (205a, 205b) to an external power supply is not necessary.
  • the second current detector (225a, 225b) detects a current value (hereinafter referred to as a current value (Ir2a, It2a)) input to the active filter device (204).
  • two second current detectors (225a, 225b) are provided.
  • the second current detector (225a) detects the R-phase current value (Ir2a) input from the AC power source (203) to the current source (230), and the second current detector (225b) 203), the T-phase current value (It2a) input to the current source (230) is detected.
  • the current values (Ir2a, It2a) detected by the respective second current detectors (225a, 225b) are transmitted to the controller (240).
  • each of the second current detectors (225a, 225b) is not particularly limited.
  • the manner in which the respective second current detectors (225a, 225b) transmit current values (Ir2a, It2a) may be either a wired method or a wireless method.
  • the second current detector (225a, 225b) may be configured to be able to operate in a non-power supply system, similar to the first current detector (205a, 205b).
  • the second current detector (225a, 225b) has a current for two phases (Ir2a) out of three phases (Ir2a, Is2a, It2a) input to the active filter device (204). , It2a), two examples are provided. However, three second current detectors may be provided corresponding to the currents (Ir2a, Is2a, It2a) for three phases.
  • the voltage detector (260) is connected to the output terminal of each phase of the AC power supply (203).
  • the voltage detector (260) is a sensor that detects line voltages (Vrs, Vtr, Vst) of the AC power supply (203).
  • the controller (240) is configured using a microcomputer and a memory device storing a program for operating the microcomputer. As shown in FIG. 13, the controller (240) includes a current source (230), a first current detector (205a, 205b), a second current detector (225a, 225b), a voltage detector (260), and each Connected to the loader (201, 202) and controls the operation of the current source (230) and each loader (201, 202) based on the detection result of each detector (205a, 205b, 225a, 22b, 260) To do.
  • the controller (240) is configured to control the output current of the current source (230) and the operating state of each loader (201, 202) based on the power source power factor of the actual AC power source (203). Perform adjustment control.
  • the controller (240) includes a phase detector (246), a first current calculator (245), and a second current calculator (244) as illustrated in the block diagram of FIG. , Load current calculation unit (243), current command calculation unit (242), gate pulse generator (241), power calculation unit (247), power factor calculation unit (248), power factor target value setting unit (249), And a load adjustment determination unit (250).
  • the load adjustment determination unit (250) includes a subtraction unit (251), an integration calculation unit (252), and a determination unit (253).
  • the adjustment control of the output current of the current source (230) is mainly performed by the phase detector (246), the first current calculator (245), the second current calculator (244), and the load current calculator (243). ), The current command calculation unit (242) and the gate pulse generator (241).
  • the adjustment control of the operating state of each loader (201, 202) based on the power source power factor of the actual AC power source (203) is performed by a power calculator (247), a power factor calculator (248), and a power factor target value setting unit (249 ) And the load adjustment determination unit (250).
  • the phase detection unit (246) detects the phase of the power supply voltage in the power reception path (212) using the input line voltage (Vrs), and the detected phase is detected by the first current calculation unit (245) and the second current. The result is output to the calculation unit (244).
  • the first current calculator (245) includes the phase of the power supply voltage detected by the phase detector (246) and the output current of the AC power supply (203) detected by the first current detector (205a, 205b). (Irs, Its) is input. Based on the phase of the input power supply voltage and the output current (Irs, Its) of the AC power supply (203), the first current calculation unit (245) performs harmonic current compensation (reduction of harmonic current) and basic Obtain the current (first current value (i1)) required to perform both compensation of the reactive component of the wave (improve the power factor of the fundamental wave) and use the first current value (i1) as the load current calculation unit Output to (243).
  • the first current calculation unit (245) calculates the harmonic current component and the fundamental wave ineffective component from the detection result (current value (Irs, Its)) of the first current detector (205a, 205b). Is extracted and output as the first current value (i1).
  • the phase of the power supply voltage detected by the phase detector (246) and the current source (230) detected by the second current detector (225a, 225b) are input to the second current calculator (244).
  • Current values (Ir2a, It2a) are input.
  • the second current calculation unit (244) compensates for the current harmonic current (reduction of harmonic current) and the ineffective component of the fundamental wave Current (referred to as the second current value (i2)) that flows into the active filter device (204) performing both compensation (improvement of the power factor of the fundamental wave) and calculate the second current value (i2) as the load current Output to the calculation unit (243). More specifically, the harmonic current component and the ineffective component of the fundamental wave are extracted from the detection result (current value (Ir2a, It2a)) of the second current detector (225a, 225b), and the second current value ( Output as i2).
  • the load current calculation unit (243) calculates the current flowing through each loader (201, 202) which is a harmonic generation loader. Subtraction of the current value (Ir2a, Is2a, It2a) of each phase input to the current source (230) of the active filter device (204) from the output current value (Irs, Itr, Its) of each phase of the AC power supply (203) Thus, the total value of the current flowing through each loader (201, 202) is obtained.
  • harmonics generated in each loader (201, 202) are suppressed, the fundamental wave power factor at the distribution / reception end near the AC power source (203) is improved, and harmonics are generated. Reduced current.
  • the load current calculation unit (243) calculates the total value of the current flowing through each loader (201, 202) from the first current value (i1) of the first current calculation unit (245). Obtained by subtracting the second current value (i2) of the second current computation unit (244), and outputs the obtained computation result to the current command computation unit (242).
  • the current command calculation unit (242) calculates a current value in the reverse phase of the calculation result of the load current calculation unit (243), and outputs the value as a current command value (Iref) to the gate pulse generator (241). .
  • the gate pulse generator (241) generates a switching command value (G) for instructing switching in the inverter circuit constituting the current source (230). Specifically, the gate pulse generator (241) repeats the operation of generating the switching command value (G) based on the deviation between the current value output from the current source (230) and the current command value (Iref). Perform feedback control. Thus, a current (compensation current) corresponding to the current command value (Iref) is supplied from the current source (230) to the power receiving path (212). More specifically, in the gate pulse generator (241), the switching command value (G) is set such that the second current value (i2) obtained by the second current calculation unit (244) matches the current command value (Iref). Generated and output to the current source (230).
  • the harmonic component contained in the current flowing through the loader (201, 202) cancels out the current output from the active filter device (204), and the output current (Irs, Itr, Its) of the AC power source (203) ) Becomes a sine wave from which the harmonic current is removed, and the power factor is improved.
  • the power calculation unit (247) includes three-phase line voltages (Vrs, Vtr, Vst) of the AC power supply (203) detected by the voltage detector (260) and the first current detectors (205a, 205b).
  • the output current (Irs, Its) of the AC power source (203) detected by () is input.
  • the power calculator (247) applies these input values to the following equations (6) and (7) to calculate the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axis). .
  • the power calculation unit (247) applies the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axis) obtained by the above equations (6) and (7) to the following equation (8).
  • the effective power P ⁇ is calculated.
  • the power calculation unit (247) applies the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axis) obtained by the above equations (6) and (7) to the following equation (9).
  • the reactive power P ⁇ is calculated.
  • the power factor calculation unit (248) calculates the power source power factor ⁇ of the AC power source (203) by applying the active power P ⁇ and the reactive power P ⁇ obtained by the power calculation unit (247) to the following equation (10). . That is, the power source power factor ⁇ obtained by the power factor calculation unit (248) means the actual power source power factor ⁇ .
  • the power factor target value setting unit (249) presets the power factor target value ⁇ _ref.
  • the power factor target value setting unit (249) according to the third embodiment sets the power factor target value ⁇ _ref to a value between 0.995 and 1.004.
  • the third decimal place is rounded off. Therefore, when the power factor target value ⁇ _ref is set to a value between 0.995 and 1.004, the actual power source power factor controlled based on the power factor target value ⁇ _ref is “1”. It is because it is evaluated.
  • the subtraction unit (251) of the load adjustment determination unit (250) includes the actual power source power factor ⁇ obtained by the power factor calculation unit (248) and the power factor target set by the power factor target value setting unit (249).
  • the value ⁇ _ref is input.
  • the subtraction unit (251) subtracts the actual power source power factor ⁇ from the power factor target value ⁇ _ref.
  • the subtraction unit (251) outputs the subtracted value to the integration calculation unit (252).
  • the integration calculation unit (252) integrates the subtraction result (that is, the result of subtracting the actual power source power factor ⁇ from the power factor target value ⁇ _ref) by the subtraction unit (251).
  • the determination unit (253) receives the integration result of the integration calculation unit (252). Based on the integration result, the determination unit (253) controls the operation parameter that changes the operation state of the loader (201, 202) so that the fundamental wave power factor approaches the target value ⁇ _ref of the power factor. Specifically, the determination unit (253) adjusts the operating parameters to reduce the driving capacity of the loader (201, 202) so that the fundamental wave power factor (power source power factor) approaches the power factor target value ⁇ _ref.
  • a loader command signal Fs which is a signal, is output to each loader (201, 202).
  • the operation parameter means at least one of the electric power of each loader (201, 202), the current of each loader (201, 202), the rotational speed of the motor, and the like.
  • FIG. 15 shows an example of changes over time in the operation of the loader (201, 202), the compensation amount of the active filter device (204), the power source power factor, and the operation of the load adjustment determination unit (250).
  • FIG. 15A shows the output power correlated with the operation of the loader (202).
  • a constant load such as a pump is assumed as the loader (202).
  • FIG. 15B shows output power correlated with the operation of the loader (201).
  • an air conditioner is assumed as the loader (201).
  • the loader (202) performs a stable operation such that the output power is constant regardless of the time.
  • the loader (201) continues to increase the output power as the air conditioning load increases.
  • the period from time t0 to time t2 assumes that the outside air temperature is abnormally high during the hottest day of midsummer (14:00 to 15:00) and the air conditioning load suddenly increases. is doing.
  • FIG. 15C shows the compensation amount of the active filter device (204) in terms of electric power. From time t0 to time t1, the compensation amount of the active filter device (204) increases as the output power of the loader (201) increases. That is, the active filter device (204) compensates for the increase in output power of the loader (201) from time t0 to time t1. Therefore, the power source power factor shown in FIG. 15 (d) is generally maintained at the target value from time t0 to time t1.
  • the output power of the loader (201) continues to rise, but the compensation amount of the active filter device (204) reaches the limit value at time t1, and thereafter remains constant at the limit value.
  • Time t2 represents a point in time when the output result (output signal) of the integral calculation unit (252) reaches the determination value.
  • the determination unit (253) receives the output result (output signal) of the integration calculation unit (252), and changes the operation state of each loader (201, 202) to the time as shown in FIG.
  • a loader command signal Fs that is different from that before t2 that is, a loader command signal Fs indicating “ON” is output to each loader (201, 202). Due to the loader command signal Fs, as shown in FIGS. 15 (a) and 15 (b), the operating state of both loaders (201, 202) changes in the direction in which the output power decreases, from time t2 to time t3.
  • the compensation amount of the active filter device (204) decreases from the limit value. This means that there is a margin in the compensation amount of the active filter device (204). Accordingly, as shown in FIG. 15D, the actual power source power factor (that is, the actual power source quality) is recovered to a level that substantially matches the power factor target value ⁇ _ref (that is, the power source quality target value). Can do.
  • the controller (240) determines the power and current of the loader (201, 202), the rotational speed of the motor, and the like. It adjusts so that the operating parameter which is at least 1 may be reduced. As a result, the controller (240) forcibly restricts the operating capacity of each loader (201, 202) and creates a state in which the actual power source power factor ⁇ and the power factor target value ⁇ _ref coincide with each other. Execute “demand control”.
  • Power source power factor demand control means that the controller (240) according to the first embodiment of the first current detector (205a, 205b) is configured so that the fundamental wave power factor approaches the power factor target value ⁇ _ref. It can be said that the operation parameter is adjusted based on the detection result.
  • the determination unit (253) outputs a Reset signal for resetting (clearing to zero) the integration result of the integration calculation unit (252).
  • the integration result (output signal) of the integration calculation unit (252) becomes zero, and the integration calculation unit (252) next detects that the actual power supply power factor ⁇ is lower than the power factor target value ⁇ _ref. It becomes possible to respond.
  • the power source power factor which is the power source quality
  • the power source power factor can be obtained by adding the power factor of the harmonic component to the fundamental wave power factor.
  • the operating state of the loader (201, 202) is changed so that the fundamental wave power factor approaches the target value ⁇ _ref of the power source power factor.
  • the actual power source power factor ⁇ that is the actual power source quality approaches the target value ⁇ _ref of the power source power factor that is the target value of the power source quality.
  • the operation capacity of the loader (201, 202) is adjusted, for example, in a decreasing direction by controlling the operation state of the loader (201, 202).
  • the ability to improve the fundamental power factor of the active filter device (204) is restored. Thereby, even if the capacity of the active filter device (204) is relatively small, the fundamental wave power factor can be improved without any problem. Therefore, the capacity of the active filter device (204) can be actively reduced, and the cost can be reduced accordingly.
  • the controller (240) adjusts the operating parameters based on the detection results of the first current detectors (205a, 205b) so that the fundamental wave power factor approaches the target value.
  • the actual power source power factor ⁇ can be grasped by using the actually detected output current of the AC power source (203) when adjusting the operation parameters. Therefore, it becomes easy to adjust the operation parameter so that the fundamental wave power factor is more reliably brought close to the target value ⁇ _ref.
  • the first current detector (205a, 205b) is configured to transmit the detection result to the control unit (240) in a wireless manner.
  • the wiring itself which connects the first current detector (205a, 205b) and the control unit (240) becomes unnecessary, and the work of routing the wiring is not required.
  • the first current detector (205a, 205b) is configured to operate in a no-power supply system. Thereby, the operation
  • phase adjusting device is an active filter device (204)
  • the power factor of the loader (201, 202) can be kept high, the fundamental wave power factor can be improved as soon as possible.
  • the loader (201) is an air conditioner.
  • the refrigerant piping work that connects the outdoor unit and the indoor unit of the air conditioner is necessary, so the specifications of the air conditioner to be installed in the building are naturally determined. Therefore, it is easy to create an environment where the communication line between the controller (240) and the air conditioner can be connected at the time of building construction, and the operating capacity of the air conditioner can be changed by the power factor. .
  • FIG. 16 is a block diagram illustrating a configuration of an air conditioning system (400) including an active filter device (304) according to a fourth embodiment as a modification of the third embodiment.
  • the fourth embodiment differs from the third embodiment in that another loader (302) that is a harmonic generation loader is a device that is driven by a single-phase voltage, and the other loader (302) is an LED or the like. Lighting equipment and single-phase fans and pumps.
  • the connection phase of another loader (302) that is, a device driven by a single-phase voltage
  • the three first current detectors (305a, 305b, 305c) ) Is provided.
  • Each of the three first current detectors (305a, 305b, 305c) is provided corresponding to each phase (R, S, T) of the AC power source (303), and each corresponding phase (R, S, T) The current value of T) is detected. That is, in the fourth embodiment, even if the loader (302) is a device that operates with a single-phase alternating current, the current values can be reliably detected because the current values of all three phases are detected.
  • the voltage detector (360) is connected to the R phase and the S phase of the AC power source (303) and is not connected to the T phase. Therefore, the voltage detector (360) detects only the line voltage (Vrs) of the AC power supply (303) and inputs it to the controller (340). This is because, as described in the third embodiment, the controller (340) detects the phase of the power supply voltage in the power receiving path (312) by calculation using only the line voltage (Vrs).
  • Each of the other line voltages (Vst, Vtr) has a phase change of 120 degrees from the line voltage (Vrs) (specifically, the phase is advanced or delayed by 120).
  • the controller (340) also calculates the amplitude of the power supply voltage from the line voltage (Vrs), and calculates another line voltage (Vst, Vtr) from the calculated amplitude and phase of the power supply voltage.
  • the phase and amplitude of the power supply voltage can be obtained.
  • the result obtained in this way can be substituted into the above equation (6). Therefore, detection of the actual line voltage (Vst, Vtr) can be omitted.
  • detection of the actual line voltage (Vst, Vtr) is omitted when another load device (302) driven by a single-phase voltage is connected. Thereby, it is possible to reduce the harmonic current and improve the fundamental wave power factor without unnecessarily increasing the cost of the active filter device (304).
  • the fourth embodiment also has the effects described in the third embodiment.
  • a first current detector may be provided in the phase.
  • FIG. 17 is a block diagram showing an air conditioning system (500) including an active filter device (404) according to the fifth embodiment as a modification of the third embodiment.
  • the fifth embodiment differs from the third embodiment in that the output current (Irs, Itr, Its) of the AC power supply (403) in the power receiving path (412) branches to each load device (401, 402).
  • the first current detectors (406a, 406b, 407a, 407b) are connected to the wirings (412a, 412b) connecting the load points (401, 402) to the load devices (401, 402). Accordingly, it is possible to determine the operation state of each loader (401, 402) such as whether each loader (401, 402) is in a maximum load state or a light load state.
  • FIG. 17 the components corresponding to those in FIG. 13 are given numbers such as “430”, and the details thereof are the same as those in the third embodiment according to FIG. Therefore, hereinafter, only differences from the third embodiment will be described.
  • the first current detectors (406a, 406b) are provided corresponding to the T phase and the R phase of the AC power supply (403) on the input side of the loader (402).
  • the first current detector (406a) detects the output current (Its2) of the AC power supply (403) input to the loader (402), and the current detector (406b) is input to the loader (402).
  • the output current (Irs2) of the AC power supply (403) is detected.
  • the first current detectors (407a, 407b) are provided on the input side of the loader (401) corresponding to the R phase and the T phase of the AC power supply (403), respectively.
  • the first current detector (407a) detects the output current (Irs1) of the AC power supply (403) input to the loader (401), and the current detector (407b) is input to the loader (401). The output current (Its1) of the AC power supply (403) is detected.
  • the first current detector (406a, 406b) is provided corresponding to the loader (402), and the first current detector (407a, 407b) is provided corresponding to the loader (401). Yes.
  • the fifth embodiment is different from the third embodiment in that, similarly to the fourth embodiment, the voltage detector (460) detects only the line voltage (Vrs) of the AC power source (403) and controls the controller (440 ). The controller (440) obtains the phase and amplitude of the power supply voltage of other line voltages (Vst, Vtr) from the line voltage (Vrs).
  • the fifth embodiment differs from the third embodiment in that the controller (440) outputs loader command signals (Fs1, Fs2) for the loaders (401, 402).
  • An example of such a controller (440) is shown in a block diagram in FIG.
  • the controller (440) according to FIG. 18 further includes an adding unit (457a, 457b) in FIG. 14 according to the third embodiment.
  • a loader current effective value calculation unit (454) is further added to the load adjustment determination unit (450).
  • control unit (440) includes a phase detection unit (446), a first current calculation unit (445), a second current calculation unit (444), a load current calculation unit (443), a current command calculation unit (442), In addition to the gate pulse generator (441), power calculation unit (447), power factor calculation unit (448), power factor target value setting unit (449), load adjustment determination unit (450), addition unit (457a, 457b) It has further.
  • the load adjustment determination unit (450) further includes a loader current effective value calculation unit (454) in addition to the subtraction unit (451) and the integration calculation unit (452) determination unit (453).
  • the addition unit (457a) adds the detection results (Irs2, Irs1) of the first current detectors (406b, 407a), and uses the addition result as the output current (Irs) of the AC power supply (403). ) And the first current calculation unit (445).
  • the adding unit (457b) adds the detection results (Its2, Its1) of the first current detectors (406a, 407b), and uses the addition result as the output current (Its) of the AC power supply (403). ) And the first current calculation unit (445).
  • the first current calculation unit (445) extracts the harmonic current component and the ineffective component of the fundamental wave from the output current (Irs, Its) of the AC power supply (403) that is the addition result of each addition unit (457a, 457b). And output as the first current value (i1).
  • the power calculation unit (447) obtains the line voltages (Vst, Vtr) of the remaining phases from the line voltage (Vrs) for one phase of the AC power supply (403) detected by the voltage detector (460).
  • the line voltage (Vrs, Vst, Vtr) of the phase and the output current (Irs, Its) of the AC power supply (403), which is the addition result of each adder (457a, 457b), are expressed by the above equation (6) and the above equation. Used in (7).
  • the loader current effective value calculation unit (454) uses the input detection results (Its2, Its1) of the first current detectors (406a, 407b) to calculate the effective value of the current flowing through the loader (401) ( I1) and the effective value (I2) of the current flowing through the loader (402) are calculated and output to the determination unit (453).
  • FIG. 19 shows an example of changes over time in the operation of the loader (401, 402), the compensation amount of the active filter device (404), the power source power factor, and the operation of the load adjustment determination unit (450).
  • FIGS. 19B to 19E are the same as FIGS. 15B to 15E of the third embodiment.
  • the current effective value (I1, I2) of each loader (401, 402) is shown in FIG. ).
  • the current effective value (I2) of the loader (402) is constant, but the current effective value (I1) of the loader (401) increases from time t0 to immediately before time t2.
  • the current effective value (I1) of the loader (401) is larger than the current effective value (I2) of the loader (402). Therefore, it can be seen from the AC power source (403) that the loader (401) uses more power than the loader (402), and the loader (401) is more powerful than the loader (402).
  • the determination unit (453) after time t2 when the output signal of the integral calculation unit (452) reaches the determination value, the loader command signal shown in FIGS. 19 (g) and 19 (h). Outputs (Fs1, Fs2). Specifically, as shown in FIG. 19 (g), the determination unit (453) maintains the output stop state for the loader command signal (Fs2) commanded to the loader (402) (still off). As shown in FIG. 19 (h), the loader command signal (Fs1) commanded to the loader (401) is output from time t2 to time t3 (on), and the operating state of only the loader (401) is set. Reduce the operating parameters for changing.
  • the output power and the current effective value (I2) of the loader (402) do not change.
  • the operating state between the time t2 and the time t3 of the loader (401) having a large degree of contribution to the reduction in the power factor of power changes so that the operating capacity of the loader (401) is reduced.
  • the output power and current effective value (I1) of the loader (401) become lower than the state immediately before the loader command signal (Fs1) is output.
  • the compensation amount of the active filter device (404) is also in the state immediately before the loader command signal (Fs1) is output between time t2 and time t3 (ie, the limit value). It will be lower than that, and there will be a margin for compensation.
  • the controller (440) has the driving capability of each loader (401, 402) based on the detection result of the first current detector (406a, 406b, 407a, 407b). Decide what to reduce.
  • the target is determined to be the loader (401). Then, the operating parameter of the determined target is adjusted so as to decrease the determined driving ability of the target, and the fundamental wave power factor approaches the target value ⁇ _ref of the power factor. As a result, the number of loaders for which the driving ability is to be reduced can be minimized, and the operating state of the loader that does not reduce the driving ability can be maintained.
  • the driving capability of the loader (401, 402) can be individually reduced. Therefore, it can suppress as much as possible that the driving capacity of the unnecessary loader (401, 402) is lowered.
  • the fifth embodiment has the same effect as the third embodiment, and can reduce the harmonic current and improve the fundamental wave power factor without unnecessarily increasing the cost of the active filter device (404). it can.
  • FIG. 20 is a block diagram of an air conditioning system (600) showing the phase adjusting equipment (508) according to the sixth embodiment as a modification of the third embodiment.
  • the difference between the sixth embodiment and the third embodiment is that a phase adjusting facility (508) is provided as a phase adjusting device instead of the active filter device (204).
  • the phase adjusting equipment (508) changes the phase of the harmonic current of the load device (501, 502) in addition to the first current detector (505a, 505b) and the voltage detector (560) as in the third embodiment.
  • a phase adjuster (531) (corresponding to the power factor improvement unit) that improves the fundamental wave power factor is provided.
  • the phase adjuster (531) is installed to improve the power factor of the entire building, and is connected to the AC power source (503) in parallel with the loader (501, 502). The reactive power is controlled among the AC power supplied to (501, 502).
  • the phase adjuster (531) includes a plurality of phase advance capacitors (Ca, Cb, Cc) and a plurality of reactors (La, Lb, Lc). Each phase advance capacitor (Ca, Cb, Cc) is connected in series on each branch wiring (512c) to the phase adjusting equipment (508) in the power receiving path (512). Three phase advance capacitors (Ca, Cb, Cc) are provided corresponding to each phase of the three-phase AC power source (3).
  • the reason why the phase adjuster (531) includes not only the phase advance capacitor (Ca, Cb, Cc) but also the reactor (La, Lb, Lc) is that the phase advance capacitor (Ca, Cb, Cc) This is because the magnitude of the current flowing through the phase adjuster (531) when a short circuit failure occurs can be reduced by the reactor (La, Lb, Lc).
  • the controller (540) is a functional unit that performs adjustment control of the output current of the current source (230) (the gate pulse generator (241) in FIG. 14) from FIG. 14 according to the third embodiment.
  • the current command calculation unit (242), the load current calculation unit (243), the second current calculation unit (244), the first current calculation unit (245), and the phase detection unit (246)) are omitted, and each loader (501, 502) is omitted.
  • power calculation unit (547), power factor calculation unit (548), power factor target value setting unit (549), load adjustment determination unit (550) Only in the function units (power calculation unit (547), power factor calculation unit (548), power factor target value setting unit (549), load adjustment determination unit (550)) in FIG. Composed.
  • the load adjustment determination unit (550) includes a subtraction unit (551), an integration calculation unit (552), and a determination unit (553). Since the operation of the controller (540) for adjusting the operation state of each loader (501, 502) is the same as that of the third embodiment, detailed description thereof is omitted here.
  • the controller (540) may be provided separately from the phase adjusting equipment (508). In this case, considering that the controller (540) has the function of adjusting the operating capacity of the loader (501,502) and the function of calculating the power factor of power, the management room or the centralized management room that manages the entire building power A controller (540) is preferably installed.
  • the air conditioning system (600) of the sixth embodiment includes a phase adjusting facility (508) including a phase adjuster (531) that improves the fundamental wave power factor by changing the phase of the loader (501, 502). ing.
  • a phase adjusting facility (508) including a phase adjuster (531) that improves the fundamental wave power factor by changing the phase of the loader (501, 502).
  • the controller (540) includes the same loader (501, 502) as in the third embodiment. Performs operation state adjustment control. Thereby, since the power factor of the loader (501, 502) can be kept high, the fundamental wave power factor can be improved as soon as possible.
  • harmonic countermeasures can be taken without any problem while reducing the cost by reducing the size of the phase adjusting equipment (508).
  • the phase adjuster (531) includes a phase advance capacitor (Ca, Cb, Cc) and a reactor (La, Lb, Lc).
  • the sixth embodiment also has the effects described in the third embodiment.
  • phase adjusting device (508) of the sixth embodiment similarly to the first embodiment, a configuration in which a wattmeter (9) is provided instead of the first current detector (505a, 505b) may be employed.
  • the controller (540) uses the function units (the power calculation unit (547) and the power factor calculation unit (548)) used to calculate the power source power factor ⁇ from FIG. The configuration is omitted.
  • phase adjusting devices active filter device or phase adjusting equipment
  • the phase adjusting device may share the compensation current in accordance with the current capacity of each phase adjusting device.
  • the smart meter When a so-called smart meter that transmits information such as the amount of electric power used to a power company is installed in a building such as a building or factory in advance, the smart meter is used as the first current detector in the third to sixth embodiments. May be used.
  • the phase adjuster (531) may be configured by only a phase advance capacitor (Ca, Cb, Cc).
  • the loader is not limited to the air conditioner, and may be an elevator, a fan, a pump, an escalator, a lighting driven by a three-phase power source, etc. provided in a building or the like.
  • the first current detector and the second current detector may not be a type that transmits the detection result in a wireless manner. Further, the first current detector and the second current detector do not have to be of a type that operates in a no-power supply system.
  • the active filter device may be incorporated in a loader.
  • the air conditioner is not limited to an apparatus that performs only cooling and heating.
  • Air conditioning devices include those that can be frozen, ventilated, and conditioned.
  • FIG. 22 is a block diagram illustrating a configuration of an air conditioning system (700) according to the seventh embodiment.
  • the air conditioning system (700) is installed in condominiums, factories, buildings, detached houses, etc. (hereinafter referred to as buildings).
  • the air conditioning system (700) includes a plurality of loaders (601, 602) and an active filter device (604).
  • the components of the active filter device (604) specifically the components other than the first current detectors (605a, 605b), are combined with the power converter (601) as a loader and the air conditioner (620).
  • the air conditioner (620) performs indoor air conditioning (cooling and heating).
  • the AC power supply (603) is a three-phase AC power supply (for example, a three-phase commercial power supply), and supplies power to a plurality of loaders (601, 602) in a branched manner.
  • the building or the like is provided with a distribution board (606) that is connected to the AC power source (603) and receives AC power from the AC power source (603).
  • the distribution board (606) includes a plurality of breakers, and the AC power from the AC power supply (603) is branched to a plurality of devices via each breaker.
  • an air conditioner (620) is connected to one of those breakers.
  • the air conditioner (620) is operated by AC power supplied via the distribution board (606).
  • a loader (602) is connected to one of the plurality of breakers of the distribution board (606).
  • the loader (602) is a device (named as a harmonic generation loader) including a circuit that can be a generation source of harmonic current such as an inverter circuit is taken as an example.
  • the loader (602) includes an elevator, fan, pump, escalator, lighting that is driven by a three-phase power supply, and an air conditioner (620) that does not implement harmonic countermeasures such as an active filter.
  • An air conditioner other than can be exemplified.
  • Each loader (601, 602) includes an adjustment unit (601c, 602c) connected to a controller (640) (corresponding to the operation state control unit).
  • Each of the adjustment units (601c, 602c) is configured using a microcomputer and a memory device that stores a program for operating the microcomputer.
  • the adjustment unit (601c, 602c) controls each loader (601, 602) based on a loader command signal Fs (described later) output from the controller (640).
  • the air conditioner (620) includes a refrigerant circuit (not shown) having a compressor and a power conversion device (601), and includes main components (specifically, a first component of the active filter device (604)). Other components except the current detector (605a, 605b) are incorporated.
  • the refrigerant circuit is configured by connecting a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger through a refrigerant pipe.
  • the refrigerant circuit is filled with a refrigerant, and the refrigerant circulates in the refrigerant circuit, thereby cooling or warming the room.
  • the power conversion device (601) is a loader connected to the AC power supply (603) and corresponds to a harmonic generation loader.
  • the power converter (601) is connected to the AC power source (603) via the distribution board (606).
  • the power conversion device (601) includes a converter circuit and an inverter circuit (not shown).
  • the power converter (601) converts the AC power into a desired frequency and a desired voltage, and converts the converted power into a compressor (more specifically, an electric motor included in the compressor). To supply. Thereby, the compressor operates and the refrigerant circuit functions, and as a result, indoor air conditioning is performed.
  • harmonic current may be generated.
  • This harmonic current may flow out to the AC power source (603) through a current path that supplies power from the distribution board (606) to the air conditioner (620).
  • the loader (602) that is a harmonic generation loader has a current path through which harmonic current supplies power to the loader (602). Through the AC power source (603).
  • Such a harmonic current generally has a regulated flow level to the AC power source (603). Therefore, the air conditioning system (700) according to Embodiment 1 attempts to reduce the harmonic current by the active filter device (604). In addition, there is a demand for improvement of the fundamental wave power factor at the distribution / reception end from the viewpoint of equipment capacity and energy saving.
  • the active filter device (604) of the seventh embodiment also has a function of improving the fundamental wave power factor. I have.
  • the active filter device (604) is connected to the AC power supply (603) and has a function of canceling out the harmonic current flowing out from the loader (601, 602) which is a harmonic generation loader. That is, the active filter device (604) flows the compensation current so that the current in the current path (hereinafter, power receiving path (612)) of the AC power supply (603) approaches a sine wave. More specifically, the active filter device (604) generates a compensation current having a phase opposite to that of the harmonic current appearing in the power reception path (612) and supplies it to the power reception path (612).
  • the active filter device (604) improves the fundamental wave power factor by passing the compensation current described above.
  • the active filter device (604) is configured to flow a compensation current that also compensates for the ineffective component of the fundamental wave, thereby improving the fundamental wave power factor.
  • the harmonic current generated in the power converter (601) that is the loader is the largest when the load of the air conditioner (620) is the largest (for example, at the maximum cooling output).
  • the harmonic current generated in the loader (602) when it is assumed that the loader (602) is an air conditioner.
  • the active filter device (604) has a capability (a magnitude of power that can be generated), that is, assuming a harmonic current when all of the load devices (601, 602) simultaneously become the maximum load.
  • the capacity is set.
  • the loader (601, 602) is more often used at a load smaller than the maximum load rather than being used at the maximum load.
  • the active filter device (604) in which the capability is set as described above has a period in which the capability is surplus if the capability is used only for power factor improvement by the harmonic current countermeasure of the loader (601, 602). It is thought that there are many.
  • the capacity (that is, the capacity) of the active filter device (604) is set smaller than the general setting method as described above.
  • the capacity (that is, capacity) of the active filter device (604) is about 80 when the capacity corresponding to the harmonic current when all of the load devices (601, 602) are simultaneously at the maximum load is 100%. % Is set. The larger the capacity (that is, capacity), the more expensive the active filter device (604).
  • the capacity since the capacity is set relatively small, the cost of the active filter device (604) can be reduced.
  • the active filter device (604) according to the seventh embodiment has a relatively small capacity, it performs control for exhibiting the above-described function of improving the power factor by measures against harmonic current without any problem. This will be described later. To do.
  • the active filter device (604) includes a current source (630), first current detectors (605a, 605b) (corresponding to a current detection unit) as shown in FIG. ), A second current detector (625a, 625b), a voltage detector (660), and a controller (640).
  • the current source (630) is a so-called active filter that improves the fundamental wave power factor by generating a current (that is, a compensation current) for reducing the harmonic current and improving the fundamental wave power factor.
  • the output terminal of the current source (630) is connected to the power receiving path (612) of the loader (601, 602), and the generated compensation current is output to the power receiving path (612).
  • the current source (630) is connected to the AC power source (603) in parallel with the loader (601, 602).
  • the current source (630) of the seventh embodiment is configured using a so-called inverter circuit.
  • a switching command value (G) described later is input to the current source (630) from the controller (640).
  • the current source (630) generates a compensation current by switching according to the switching command value (G).
  • the first current detector (605a, 605b) detects a current value in the power receiving path (612) of the AC power supply (603). Specifically, the first current detector (605a, 605b) is an AC power source before the output current output from the AC power source (603) branches and flows to the current source (630) and each load device (601, 602). 603) is detected.
  • first current detectors (605a, 605b) are provided. Specifically, the first current detector (605a) detects the R-phase current value (Irs) in the AC power supply (603). The first current detector (605b) detects a T-phase current value (Its) in the AC power supply (603). The detection results of the respective first current detectors (605a, 605b) are transmitted to the controller (640).
  • each of the first current detectors (605a, 605b) is not particularly limited.
  • Each first current detector (605a, 605b) is configured to transmit the detection result to the controller (640) in a wireless manner.
  • the distance between the AC power source (603) and the active filter device (604) may be 20 to 30 meters away. Therefore, when the first current detector (605a, 605b) to the active filter device (604) are connected by wiring, the wiring is drawn long, and the first current detector (605a, 605b) and the active filter device are connected.
  • the connection work with (604) itself takes a lot of work.
  • the detection result of the first current detector (605a, 605b) is transmitted to the controller (640) in a wireless manner, the wiring itself becomes unnecessary, and the work of routing the wiring is performed. No need to do it.
  • a phenomenon in which the magnetic flux passing through the first current detector (605a, 605b) changes with time due to the current flowing through the first current detector (605a, 605b) is called electromagnetic induction.
  • the induced electromotive force may be used as a power source (for example, a power source for communication) that drives the first current detectors (605a, 605b).
  • the first current detector (605a, 605b) can be operated without a power supply (that is, operated without connecting a power supply from the outside of the first current detector (605a, 605b)).
  • the work of connecting the devices (605a, 605b) to an external power supply is not necessary.
  • the first current detectors (605a, 605b) are installed inside the distribution board (606). Accordingly, the first current detector (605a, 605b) can be prevented from being exposed to rain and wind, and deterioration of the first current detector (605a, 605b) can be suppressed. Therefore, it is possible to construct an environment that does not shorten the lifetime of the first current detectors (605a, 605b).
  • the second current detector (625a, 625b) detects a current value (hereinafter referred to as a current value (Ir2a, It2a)) input to the active filter device (604).
  • two second current detectors (625a, 625b) are provided.
  • the second current detector (625a) detects the R-phase current value (Ir2a) input from the AC power source (603) to the current source (630), and the second current detector (625b) 603) detects the T-phase current value (It2a) input to the current source (630).
  • the current values (Ir2a, It2a) detected by the respective second current detectors (625a, 625b) are transmitted to the controller (640).
  • each of the second current detectors (625a, 625b) is not particularly limited.
  • each second current detector (625a, 625b) transmits the current value (Ir2a, It2a) may be either a wired method or a wireless method.
  • the second current detector (625a, 625b) may be configured to be able to operate in a non-power-supply manner, similar to the first current detector (605a, 605b).
  • the second current detector (625a, 625b) has two phases of current (Ir2a, Is2a, It2a) input to the active filter device (604) (Ir2a, Is2a, It2a). , It2a), two examples are provided. However, three second current detectors may be provided corresponding to the currents (Ir2a, Is2a, It2a) for three phases.
  • the voltage detector (660) is connected to the output terminal of the AC power supply (603).
  • the voltage detector (660) is a sensor that detects line voltages (Vrs, Vtr, Vst) of the AC power supply (603).
  • the controller (640) includes a microcomputer and a memory device that stores a program for operating the microcomputer. As shown in FIG. 22, the controller (640) includes a current source (630), a first current detector (605a, 605b), a second current detector (625a, 625b), a voltage detector (660), and a load. Each of the current source (630) and the power converter (601) based on the detection results of the detectors (605a, 605b, 625a, 625b, 660). Control the behavior.
  • the controller (640) is configured to control the output current of the current source (630) and the operating state of the power converter (601) based on the power source power factor of the actual AC power source (603). Adjustment control (specifically, operation parameter adjustment control for changing the operation state) is performed.
  • the controller (640) includes a phase detector (646), a first current calculator (645), and a second current calculator (644) as illustrated in the block diagram of FIG. , Load current calculation unit (643), current command calculation unit (642), gate pulse generator (641), power calculation unit (647), power factor calculation unit (648), power factor target value setting unit (649), And a load adjustment determination unit (650).
  • the load adjustment determination unit (650) includes a subtraction unit (651), an integration calculation unit (652), and a determination unit (653).
  • the adjustment control of the output current of the current source (630) is mainly performed by the phase detector (646), the first current calculator (645), the second current calculator (644), and the load current calculator (643). ), Current command calculation unit (642) and gate pulse generator (641).
  • the adjustment control of the operating state of the power converter (601) based on the actual power source power factor of the AC power source (603) is performed by a power calculation unit (647), a power factor calculation unit (648), and a power factor target value setting unit (649 ) And the load adjustment determination unit (650).
  • the phase detection unit (646) detects the phase of the power supply voltage in the power receiving path (612) using the input line voltage (Vrs), and the detected phase is detected as the first current calculation unit (645) and the second current. Output to the computation unit (644).
  • the first current calculation unit (645) includes the phase of the power supply voltage detected by the phase detection unit (646) and the output current of the AC power supply (603) detected by the first current detector (605a, 605b). (Irs, Its) is input. Based on the phase of the input power supply voltage and the output current (Irs, Its) of the AC power supply (603), the first current calculation unit (645) performs harmonic current compensation (reduction of harmonic current), Obtain the current (first current value (i1)) required to perform both compensation of the reactive component of the wave (improve the power factor of the fundamental wave) and use the first current value (i1) as the load current calculation unit Output to (643).
  • the first current calculation unit (645) calculates the harmonic current component and the fundamental wave ineffective component from the detection result (current value (Irs, Its)) of the first current detector (605a, 605b). Is extracted and output as the first current value (i1).
  • the phase of the power supply voltage detected by the phase detector (646) and the current source (630) detected by the second current detector (625a, 625b) are input to the second current calculator (644).
  • Current values (Ir2a, It2a) are input.
  • the second current calculation unit (644) compensates for the current harmonic current (reduction of harmonic current) and the reactive component of the fundamental wave.
  • Current (referred to as the second current value (i2)) that flows into the active filter device (604) that performs both compensation (improvement of the power factor of the fundamental wave) and obtains the second current value (i2) as the load current.
  • the second current calculation unit (644) calculates the harmonic current component and the fundamental wave ineffective component from the detection result (current value (Ir2a, It2a)) of the second current detector (625a, 625b). Is extracted and output as the second current value (i2).
  • the load current calculation unit (643) calculates the current flowing through the power converter (601) and the loader (602), which are harmonic generation loaders. Subtraction of the current value (Ir2a, Is2a, It2a) of each phase input to the current source (630) of the active filter device (604) from the output current value (Irs, Itr, Its) of each phase of the AC power supply (603) Thus, the total value of the current flowing through each loader (601, 602) is obtained. Using this, in the seventh embodiment, harmonics generated in each loader (601, 602) are suppressed, the fundamental wave power factor at the distribution / reception end near the AC power supply (603) is improved, and the harmonics are generated. Reduced current.
  • the load current calculation unit (643) calculates the total value of the current flowing through each loader (601, 602) from the first current value (i1) of the first current calculation unit (645). Obtained by subtracting the second current value (i2) of the second current computation unit (644), and outputs the obtained computation result to the current command computation unit (642).
  • the current command calculation unit (642) calculates the current value of the reverse phase of the calculation result of the load current calculation unit (643), and outputs the value to the gate pulse generator (641) as the current command value (Iref) .
  • the gate pulse generator (641) generates a switching command value (G) for instructing switching in the inverter circuit constituting the current source (630). Specifically, the gate pulse generator (641) repeats the operation of generating the switching command value (G) based on the deviation between the current value output from the current source (630) and the current command value (Iref). Perform feedback control. As a result, a current (compensation current) corresponding to the current command value (Iref) is supplied from the current source (630) to the power receiving path (612). More specifically, in the gate pulse generator (641), the switching command value (G) is set such that the second current value (i2) obtained by the second current calculation unit (644) matches the current command value (Iref). And output to the current source (630).
  • the harmonic component contained in the current flowing through the loader (601, 602) cancels out the current output from the active filter device (604), and the output current (Irs, Itr, Its) of the AC power supply (603) is canceled. ) Becomes a sine wave from which the harmonic current is removed, and the power factor is improved.
  • the power calculation unit (647) includes line voltages (Vrs, Vtr, Vst) for three phases of the AC power supply (603) detected by the voltage detector (660), and the first current detectors (605a, 605b).
  • the power calculation unit (647) applies these input values to the following equations (11) and (12) to calculate the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axes). .
  • the power calculation unit (647) applies the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axes) obtained by the above equations (11) and (12) to the following equation (13).
  • the effective power P ⁇ is calculated.
  • the power calculation unit (647) applies the voltages V ⁇ , V ⁇ and currents i ⁇ , i ⁇ of the two rotation axes ( ⁇ axis) obtained by the above equations (11) and (12) to the following equation (14).
  • the reactive power P ⁇ is calculated.
  • the power factor calculation unit (648) calculates the power source power factor ⁇ of the AC power source (603) by applying each of the active power P ⁇ and the reactive power P ⁇ obtained by the power calculation unit (647) to the following equation (15). . That is, the power source power factor ⁇ obtained by the power factor calculation unit (648) means the actual power source power factor ⁇ .
  • the power factor target value setting unit (649) presets the power factor target value ⁇ _ref.
  • the power factor target value setting unit (649) according to the seventh embodiment sets the power factor target value ⁇ _ref to a value between 0.995 and 1.004.
  • the third decimal place is rounded off. Therefore, when the power factor target value ⁇ _ref is set to a value between 0.995 and 1.004, the actual power source power factor controlled based on the power factor target value ⁇ _ref is “1”. It is because it is evaluated.
  • the subtraction unit (651) of the load adjustment determination unit (650) includes the actual power source power factor ⁇ obtained by the power factor calculation unit (648) and the power factor target set by the power factor target value setting unit (649).
  • the value ⁇ _ref is input.
  • the subtracting unit (651) subtracts the actual power source power factor ⁇ from the target value ⁇ _ref of the power factor.
  • the subtraction unit (651) outputs the subtracted value to the integration calculation unit (652).
  • the integration calculation unit (652) integrates the subtraction result (that is, the result of subtracting the actual power source power factor ⁇ from the power factor target value ⁇ _ref) by the subtraction unit (651).
  • the determination result (653) is input with the integration result of the integration calculation unit (652). Based on the integration result, the determination unit (653) controls the operation parameter that changes the operation state of the loader (601, 602) so that the fundamental wave power factor approaches the target value ⁇ _ref of the power factor. Specifically, the determination unit (653) adjusts the operating parameters to reduce the driving capacity of the loader (601, 602) so that the fundamental wave power factor (power source power factor) approaches the target value ⁇ _ref of the power factor.
  • the machine command signal Fs is output to the power converter (601) which is a loader.
  • the target value ⁇ _ref is approximately equal to the target value ⁇ _ref.
  • the operation parameter refers to at least one of the power of the power converter (601) that is a loader, the current of the power converter (601), the rotational speed of the motor, and the like.
  • FIG. 24 shows an example of changes over time in the operations of the loader (602) and the power converter (601), the compensation amount of the active filter device (604), the power source power factor, and the operation of the load adjustment determination unit (650).
  • FIG. 24A shows output power correlated with the operation of the loader (602).
  • a constant load such as a pump is assumed as the loader (602).
  • FIG.24 (b) shows the output electric power correlated with operation
  • the power conversion device (601) continues to increase the output power as the air conditioning load increases. The period from time t0 to time t2 assumes that the outside air temperature is abnormally high during the hottest day of midsummer (14:00 to 15:00) and the air conditioning load suddenly increases. is doing.
  • FIG. 24 (c) shows the compensation amount of the active filter device (604) in terms of electric power. From time t0 to time t1, the compensation amount of the active filter device (604) increases as the output power of the power converter (601) increases. That is, the active filter device (604) compensates for the increase in the output power of the power converter (601) from time t0 to time t1. Therefore, the power source power factor shown in FIG. 24 (d) is generally maintained at the target value from time t0 to time t1.
  • the output power of the power conversion device (601) continues to rise, but the compensation amount of the active filter device (604) reaches the limit value at time t1, and thereafter reaches the limit value. It remains constant. Therefore, after time t1, the power source power factor decreases from the target value in contrast to the increase in output power of the power converter (601). This is due to the fact that although the output power of the power conversion device (601) has increased, the compensation capability of the active filter device (604) has already reached the limit value and is insufficient.
  • Time t2 represents a point in time when the output result (output signal) of the integral calculation unit (652) reaches the determination value.
  • the determination unit (653) receives the output result (output signal) of the integration calculation unit (652), and changes the operation state of the power conversion device (601) to the time as shown in FIG.
  • a loader command signal Fs that is different from that before t2 that is, a loader command signal Fs indicating “ON” is output to the power converter (601).
  • the loader command signal Fs as shown in FIG. 24B, the operation state of the power conversion device (601) changes in the direction in which the output power decreases from time t2 to time t3.
  • the compensation amount of the active filter device (604) falls from the limit value. This means that there is a margin in the compensation amount of the active filter device (604). Therefore, as shown in FIG. 24D, the actual power source power factor can be recovered to the extent that it substantially matches the power factor target value ⁇ _ref.
  • the controller (640) uses the power of the power converter (601) and the power converter (601). It adjusts so that the operating parameter which is at least one, such as an electric current and the rotational speed of an electric motor, may be reduced. As a result, the controller (640) forcibly reduces the operating capacity of the power converter (601) and creates a state where the actual power factor ⁇ and the target power factor ⁇ _ref coincide with each other. Execute “demand control”.
  • Power source power factor demand control means that the controller (640) according to the seventh embodiment of the first current detector (605a, 605b) is configured so that the fundamental wave power factor approaches the power factor target value ⁇ _ref. It can be said that the operation parameter is adjusted based on the detection result.
  • the determination unit (653) As shown in FIG. 24 (f), the loader command signal Fs to be output is set to “off” as in the period from time t0 to time t2. As a result, the power conversion device (601) is released from the forced decrease in the driving capability and performs normal operation by control based on a normal command.
  • the determination unit (653) outputs a Reset signal for resetting (clearing to zero) the integration result of the integration calculation unit (652).
  • the integration result (output signal) of the integration calculation unit (652) becomes zero, and the integration calculation unit (652) next detects that the actual power source power factor ⁇ is lower than the target value ⁇ _ref of the power factor. It becomes possible to respond.
  • the operation of the active filter device (604) is not controlled so that the fundamental wave power factor that is the current power supply quality approaches the target value ⁇ _ref of the power factor that is the target value of the power supply quality.
  • the operating state of the power converter (601) which is a loader, is controlled.
  • the actual power source power factor ⁇ approaches the target value ⁇ _ref.
  • the capacity of the active filter device (604) is small, for example, the operation capacity of the power conversion device (601) is reduced by controlling the operation state of the power conversion device (601) that is a loader, for example.
  • the ability to improve the fundamental wave power factor of the active filter device (604) is restored. Thereby, even if the capacity of the active filter device (604) is relatively small, the fundamental wave power factor can be improved without any problem. Therefore, the capacity of the active filter device (604) can be actively reduced, and the cost can be reduced accordingly.
  • the current source (630) further reduces the harmonic currents of the power converter (601) and the loader (602). That is, the current source (630) reduces the harmonic current and improves the fundamental wave power factor.
  • the first current detector (605a, 605b) is installed in the distribution board (606).
  • the first current detector (605a, 605b) of the seventh embodiment is configured to transmit the detection result to the controller (640) in a wireless manner.
  • the wiring itself for connecting the first current detectors (605a, 605b) and the controller (640) becomes unnecessary, and the work of routing the wirings is not required.
  • the first current detector (605a, 605b) is configured to operate in a non-power supply system. Thereby, the operation
  • the air conditioning system (700) of the seventh embodiment includes an active filter device (604) and an air conditioner (620).
  • the active filter device (604) is incorporated in the air conditioner (620).
  • the specifications of the air conditioner (620) to be installed in the building are not limited. decide. Therefore, the communication line between the active filter device (604) and the air conditioner (620) can be connected at the time of building construction, and the air conditioner (620) is based on the output current output from the AC power source (603). ) Can easily create an environment in which the driving ability of the power converter (601) included can be changed.
  • FIG. 25 is a block diagram showing a configuration of an air conditioning system (800) including an active filter device (704) according to Embodiment 8 as a modification of Embodiment 7.
  • the difference between the eighth embodiment and the seventh embodiment is that when the actual power source power factor ⁇ decreases from the power factor target value ⁇ _ref, the operation parameters (specifically, in addition to the power converter (701)) Specifically, at least one of the power of the loader (702), the current, the rotational speed of the motor, and the like is reduced. That is, in the eighth embodiment, the target whose capacity is reduced is a plurality of (all) loaders (701, 702) in the air conditioning system (800). As a result, the fundamental wave power factor can be brought close to the target value ⁇ _ref of the power factor to quickly reduce the capacity of the entire building (the entire power system). The target power factor can be secured.
  • the loader command signal Fs output from the controller (740) is input to the loader (702) as well as the power converter (701). .
  • FIG. 26 shows each operation of the loader (702) and the power conversion device (701) according to the eighth embodiment, the compensation amount of the active filter device (704), the power source power factor, and the operation of the controller (740) over time. An example of the change is shown.
  • FIG. 26 differs from FIG. 24 in that the output power of the loader (702) shown in FIG. 26 (a) is not constant.
  • the output power of the loader (702) is constant from time t0 to time t2.
  • the compensation amount of the active filter device (704) reaches a limit value after time t1.
  • the power source power factor deviates from the target value after time t1. Therefore, the integration result of the integration operation unit (752) reaches the determination value at time t2, and the loader command signal Fs is in the ON state from time t2 to time t3.
  • the loader command signal Fs is output not only to the power conversion device (701) but also to the loader (702) between the time t2 and the time t3,
  • the power converter (701) and the loader (702) are provided.
  • the power source power factor can be increased to achieve the target power source power factor.
  • the operating state of the plurality of loaders (701, 702) in the air conditioning system (800) changes in the direction of decreasing the driving ability.
  • the operating capacity of the loader (701, 702) in the entire air conditioning system (800) is lower than that when only the operating state of one loader is changed, so the ability to improve the fundamental wave power factor quickly recovers. . Therefore, it is possible to quickly reduce the power source power factor to a target value while minimizing the decrease in the power source power factor.
  • the eighth embodiment also has the effects described in the seventh embodiment.
  • FIG. 27 is a block diagram showing a configuration of an air conditioning system (900) including an active filter device (804) according to Embodiment 9 as a modification of Embodiment 7.
  • the ninth embodiment differs from the seventh embodiment in that another loader (802) that is a harmonic generation loader is a device that is driven by a single-phase voltage, and the other loader (802) is an LED or the like. Lighting equipment and single-phase fans and pumps.
  • the connection phase of another loader (802) that is, a device driven by a single-phase voltage
  • the three first current detectors (805a, 805b, 805c) Is provided.
  • Each of the three first current detectors (805a, 805b, 805c) is provided corresponding to each phase (R, S, T) of the AC power source (803), and each corresponding phase (R, S, T) The current value of T) is detected. That is, in the ninth embodiment, even if the loader (802) is a device that operates with a single-phase alternating current, the current values of all three phases are detected, so that the current values can be reliably detected.
  • the voltage detector (860) is connected to the R phase and S phase of the AC power source (803), and is not connected to the T phase. Therefore, the voltage detector (860) detects only the line voltage (Vrs) of the AC power supply (803) and inputs it to the controller (840). This is because the controller (840) detects the phase of the power supply voltage in the power receiving path (812) by calculation using only the line voltage (Vrs) as described in the seventh embodiment.
  • Each of the other line voltages (Vst, Vtr) has a phase change of 120 degrees from the line voltage (Vrs) (specifically, the phase is advanced or delayed by 120).
  • the controller (840) according to the ninth embodiment also calculates the amplitude of the power supply voltage from the line voltage (Vrs), and calculates another line voltage (Vst, Vtr) from the calculated amplitude and phase of the power supply voltage. ) Phase and amplitude.
  • Vrs line voltage
  • Vst, Vtr line voltage
  • Phase and amplitude The result obtained in this way can be substituted into the above equation (11). Therefore, detection of the actual line voltage (Vst, Vtr) can be omitted.
  • ⁇ Effect> when another load device (802) driven by a single-phase voltage is connected, the first current corresponding to each phase (R, S, T) of the AC power supply (803) is connected.
  • a plurality of detectors (805a, 805b, 805c) are provided. Therefore, even if the connection phase of the other loader (802) is unknown, it is possible to reliably grasp the current values of all three phases.
  • the ninth embodiment also has the effects described in the seventh embodiment.
  • a first current detector may be provided in the phase.
  • FIG. 28 is a block diagram showing a configuration of an air conditioning system (1000) including an active filter device (904) according to Embodiment 10 as a modification of Embodiment 7.
  • the tenth embodiment differs from the seventh embodiment in that the output current (Irs, Itr, Its) of the AC power supply (903) in the power receiving path (912) is the power converter (901) and the load.
  • the first current detector (906a, 906b, 907a, 907b) is connected to the wiring (912a, 912b) connecting the point branching to the loader (902) to each loader (901, 902).
  • the operation state of the power converter (901) and the loader (902) such as whether the power converter (901) and the loader (902) are in the maximum load state or the light load state, is determined. Can do.
  • FIG. 28 the components corresponding to those in FIG. 22 are numbered “930” or the like, but the details are the same as in the seventh embodiment according to FIG. Therefore, only differences from the seventh embodiment will be described below.
  • the first current detectors (906a, 906b) are provided corresponding to the T phase and the R phase of the AC power supply (903) on the input side of the loader (902).
  • the first current detector (906a) detects the output current (Its2) of the AC power supply (903) input to the loader (902), and the current detector (906b) is input to the loader (902).
  • the output current (Irs2) of the AC power supply (903) is detected.
  • the first current detectors (907a, 907b) are provided corresponding to the R phase and the T phase of the AC power supply (903) on the input side of the power converter (901).
  • the first current detector (907a) detects the output current (Irs1) of the AC power supply (903) input to the power converter (901), and the current detector (907b) is connected to the power converter (901). The output current (Its1) of the input AC power supply (903) is detected.
  • the first current detector (906a, 906b) is provided corresponding to the loader (902), and the first current detector (907a, 907b) is provided corresponding to the power converter (901). ing.
  • the first current detector (906a, 906b) is provided in the distribution board (906), and the first current detector (907a, 907b) is provided in the distribution board (906). Although the case of not having been illustrated is illustrated, all the first current detectors (906a, 906b, 907a, 907b) may be provided inside the distribution board (906).
  • the tenth embodiment differs from the seventh embodiment in that the voltage detector (960) detects only the line voltage (Vrs) of the AC power supply (903) and controls the controller (940) as in the eighth embodiment. ).
  • the tenth embodiment is different from the seventh embodiment in that the controller (940) has a loader command signal (Fs1) for the power converter (901) and a loader command signal (Fs2) for the loader (902). ) Is output.
  • Fs1 loader command signal
  • Fs2 loader command signal
  • FIG. 29 An example of such a controller (940) is shown in a block diagram in FIG.
  • the controller (940) according to FIG. 29 further includes an adding unit (957a, 957b) in FIG. 23 according to the seventh embodiment.
  • a loader current effective value calculation unit (954) is further added to the load adjustment determination unit (950).
  • the adder (957a) adds the detection results (Irs2, Irs1, Ir2a) of each current detector (906b, 907a, 925a), and uses the addition result as the output current (Irs) of the AC power supply (903). (947) and the first current calculation unit (945).
  • the adder (957b) adds the detection results (Its2, Its1, It2a) of each current detector (906a, 907b, 925b), and uses the addition result as the output current (Its) of the AC power supply (903). (947) and the first current calculation unit (945).
  • the first current calculation unit (945) extracts the harmonic current component and the fundamental wave ineffective component from the output current (Irs, Its) of the AC power supply (903), which is the addition result of each addition unit (957a, 957b). And output as the first current value (i1).
  • the power calculation unit (947) obtains the line voltages (Vst, Vtr) of the remaining phases from the line voltage (Vrs) for one phase of the AC power supply (903) detected by the voltage detector (960).
  • the loader current effective value calculation unit (954) uses the detection results (Its2, Its1) of the input first current detectors (906a, 907b) to determine the effective value of the current flowing through the power converter (901). (I1) and the effective value (I2) of the current flowing through the loader (902) are calculated and output to the determination unit (953).
  • FIG. 30 shows an example of changes over time in the operations of the power conversion device (901) and the loader (902), the compensation amount of the active filter device (904), the power source power factor, and the operation of the load adjustment determination unit (950). ing. 30 (a) to 30 (e) are the same as FIGS. 24 (a) to 24 (e) of the seventh embodiment.
  • the currents of the power converter (901) and loader (902) respectively.
  • the effective values (I1, I2) change as shown in FIG. Specifically, the current effective value (I2) of the loader (902) is constant, but the current effective value (I1) of the power converter (901) increases from time t0 to immediately before time t2. . Between time t0 and time t2, the current effective value (I1) of the power converter (901) is larger than the current effective value (I2) of the loader (902).
  • the power converter (901) uses more power than the loader (902), and the power converter (901) than the loader (902). It can be presumed that the degree of contribution to the reduction of the power source power factor in FIG.
  • the determination unit (953) starts the loader command signal shown in FIGS. 30 (g) and 30 (h) after time t2 when the output signal of the integration calculation unit (952) reaches the determination value. Outputs (Fs1, Fs2). Specifically, as shown in FIG. 30 (g), the determination unit (953) maintains the output stopped state for the loader command signal (Fs2) commanded to the loader (902) (still off). As shown in FIG. 30 (h), the loader command signal (Fs1) commanded to the power converter (901) is output from time t2 to time t3 (on), and only the power converter (901) is operated. Reduce the operating parameters for changing the state.
  • the output power and the current effective value (I2) of the loader (902) are not changed.
  • the operation state between time t2 and time t3 of the power conversion device (901) having a large degree of contribution to the reduction in the power factor of power changes so that the operation capability of the power conversion device (901) decreases.
  • the output power and current effective value (I1) of the power converter (901) are lower than the state immediately before the loader command signal (Fs1) is output.
  • the compensation amount of the active filter device (904) also decreases from the state immediately before the loader command signal (Fs1) is output (ie, the limit value) from time t2 to time t3, and there is a margin for compensation. It will be in a certain state.
  • the controller (940) is configured such that the power connected to the controller (940) is based on the detection result of the first current detector (906a, 906b, 907a, 907b).
  • running capability is determined among a converter (901) and a loader (902).
  • the target is determined to be the power conversion device (901).
  • the operating parameter of the determined target is adjusted so as to decrease the determined driving ability of the target, and the fundamental wave power factor approaches the target value ⁇ _ref of the power factor.
  • the number of loaders used as the object which reduces driving capability can be made into the minimum required, and an operating state can be maintained about the loader which does not reduce driving capability.
  • the actual AC power supply (the actual AC power supply (so that the fundamental power factor that is the current power quality) approaches the target value ⁇ _ref of the power factor that is the target value of the power quality.
  • the operating state of the power converter (901) is changed based on the output current of 903).
  • the actual power factor ⁇ approaches the power factor target value ⁇ _ref.
  • the current source (930) further reduces the harmonic currents of the power converter (901) and the loader (902). That is, the current source (930) reduces the harmonic current and improves the fundamental wave power factor.
  • the loader (901) that reduces the power (that is, changes the operating state in a direction that decreases the driving ability) is selected.
  • the loader (901) that reduces the driving ability can be minimized, for example, and the operating state can be maintained for the loader (902) that does not reduce the driving ability.
  • the loader (901) whose operation state should be changed in the direction of decreasing the driving ability is determined from the current value actually flowing through each loader (901,902). Thereby, it is possible to accurately determine the loader (901) that is a target for which the driving ability is to be lowered in accordance with the actual situation.
  • the first current detector (906a, 906b) is installed on the distribution board (906).
  • the first current detector (906a, 906b, 907a, 907b) of the tenth embodiment is configured to transmit the detection result to the controller (940) in a wireless manner.
  • the wiring itself for connecting the first current detectors (906a, 906b, 907a, 907b) and the controller (940) becomes unnecessary, and the work of routing the wirings is not required.
  • the first current detector (906a, 906b, 907a, 907b) is configured to operate in a non-power supply system. This eliminates the need to connect the first current detector (906a, 906b, 907a, 907b) to an external power source.
  • a smart meter is installed in the building in advance, a single smart meter can be used instead of the first current detector.
  • the loader (601, 701, 801, 901) is not limited to a power converter such as a compressor in an air conditioner.
  • a power converter such as a compressor in an air conditioner.
  • the first current detector may not be installed on the distribution board.
  • the active filter device may not be incorporated in the air conditioner.
  • the active filter device may be used for applications other than the air conditioner.
  • the active filter device has a function of generating a current for improving the fundamental wave power factor of the loader as essential, but does not necessarily have a function of reducing the harmonic current of the loader.
  • the air conditioner is not limited to an apparatus that performs only cooling and heating.
  • Air conditioning devices include those that can be frozen, ventilated, and conditioned.
  • Embodiment 11 >>
  • the power source power factor demand controller (40, 105) and controller (240, 340, 440, 540, 640, 740, 840, 940) corresponding to the control signal generator obtain the current power source power factor by detection or calculation, and use this as the power quality
  • the generator command signal Fs control signal
  • a loader command signal (control signal) Fs is generated using power supply harmonics of the AC power supply (1003) as power supply quality.
  • the power source power factor corresponds to the sum of the fundamental wave power factor and the power factor due to the power source harmonic component.
  • the loader command signal (control signal) Fs is generated using the power supply harmonics as the power supply quality.
  • the building is supplied with power from the power system including the AC power supply (1003).
  • the AC power source (1003) is a three-phase AC power source (for example, a three-phase commercial power source), and supplies power to a plurality of loaders (1001, 1002) in a branched manner.
  • the loader (1002) is a device (named as a harmonic generation loader) including a circuit that can be a generation source of harmonic current such as an inverter circuit is taken as an example.
  • the loader (1002) is an air conditioner that does not implement harmonic countermeasures such as elevators, fans, pumps, escalators, three-phase power supplies installed in buildings, etc., and active filters.
  • An air conditioner other than a certain loader (1001) can be exemplified.
  • the loader (1001, 1002) which is an air conditioner, includes a refrigerant circuit (not shown) having a compressor and a power converter (1001a) in addition to the adjustment unit (1001c).
  • the power converter (1001a) is connected to the AC power source (1003) and is an example of a harmonic generation loader.
  • the power conversion device (1001a) includes a converter circuit and an inverter circuit (both are not shown).
  • the AC power supplied to the loader (1001) is converted into AC power having a desired frequency and a desired voltage by the power converter (1001a), and then supplied to the compressor (more specifically, the electric motor included in the compressor). The Thereby, the compressor operates and the refrigerant circuit functions, and as a result, indoor air conditioning is performed.
  • the current path (1012) of the AC power supply (1003) that supplies power to the loader (1001, 1002) The harmonic current may flow out through the AC power source, and the power source power factor of the AC power source (1003) may decrease.
  • the electricity rate is such that the higher the power factor is, the higher the discount rate can be received, and / or when the power factor falls below a predetermined value (90%, 85%, etc.) There is a mechanism that gives a penalty. For this reason, in the eleventh embodiment, the reduction of the power source power factor by the loader (1001, 1002) is improved.
  • the current measuring device (1005a) is provided corresponding to one phase of the AC power source (1003).
  • the current measuring device (1005a) detects the current value of the phase.
  • the power source power factor demand controller (1040) includes a microcomputer and a memory device that stores a program for operating the microcomputer, and includes a current measuring device (1005a) and each load device (1001, 1002). ) Adjustment unit (1001c, 1002c).
  • the power supply power factor demand controller (1040) uses the power supply harmonics of the current AC power supply (1003) as the power supply quality, and based on the power supply quality and the target value for the power supply power factor of the AC power supply (1003), When a loader command signal Fs (control signal) for changing the operating state of (1001, 1002) is generated, it is output to the adjustment unit (1001c, 1002c).
  • the power source power factor demand controller (1040) has a fifth harmonic target value setting unit (1051), a load adjustment determination unit (1052), and a fifth harmonic extraction unit (1053). .
  • the load adjustment determination unit (1052) includes a subtraction unit (1061), an integration calculation unit (1062), and a determination unit (1063).
  • the subtraction unit (1061) subtracts the fifth harmonic component (THD5) from the target value (THD5_ref).
  • the integration calculation unit (1062) integrates the subtraction result of the subtraction unit (1061).
  • the determination unit (1063) generates a loader command signal Fs that reduces the capacity (power, current, speed, etc.) of each loader (1001, 1002) in each loader (1001, 1002) based on the integration result. .
  • the loader command signal Fs is output to each adjustment unit (1001c, 1002c) of the loader (1001, 1002).
  • the loader command signal Fs reduces the capacity of the loader (1001, 1002) and provides power.
  • a high power factor can be secured by matching the fifth harmonic component with the fifth harmonic target value.
  • Each loader (1001, 1002) includes an adjustment unit (1001c, 1002c) connected to a power source power factor demand controller (1040).
  • Each of the adjustment units (1001c, 1002c) is configured using a microcomputer and a memory device that stores a program for operating the microcomputer.
  • the adjusting unit (1001c, 1002c) adjusts the operating parameters that change the operating state of each loader (1001, 1002) based on the loader command signal Fs output from the power source power factor demand controller (1040). Controls the operating status of the loader (1001, 1002).
  • the operation parameters include the power of the loader (1001, 1002), the current of the loader (1001, 1002), the rotational speed of the electric motor included in the loader (1001, 1002), and the like.
  • the power factor can be improved in the power system to which the plurality of loaders (1001, 1002) are connected even if the power harmonic is used as the power quality instead of the power factor.
  • the control target of the operating state may be any one of the loaders (1001, 1002).
  • the power factor PF at this time is defined by the ratio of active power and apparent power, and is expressed by the following equation (23) based on the above equations (19) and (20).
  • the power factor defined by the equation (23) that takes into account the influence of the harmonic component is referred to as the total power factor, as distinguished from the fundamental wave power factor described below.
  • the active power is obtained according to the above equation (18), but the product term of the different frequency components becomes 0, and only the product term of the fundamental component of the voltage and the fundamental component of the current remains.
  • the active power P can be expressed as in the following equation (26).
  • the total power factor PF can be expressed as follows by the above equation (23) and the above equation (27).
  • the above equation (31) indicates that the total power factor when the harmonic component is included in the current is a predetermined multiple B of the fundamental wave power factor (see the following equation (32)).
  • the power quality used to generate the loader command signal Fs may be a combination of the current power factor and power harmonic, not the current power factor or power harmonic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

負荷器(1,2)は、交流電源(3)に接続され、該交流電源(3)から電力を供給される。運転状態制御部(1c,2c)は、交流電源(3)の電源力率及び交流電源(3)の電源高調波のいずれか一方を含む電源品質に関する目標値と、現在の電源品質と、に基づいて、負荷器(1,2)の運転状態を制御する。

Description

電源力率制御システム、調相装置ならびにアクティブフィルタ装置
 本開示は、電源力率制御システム、調相装置ならびにアクティブフィルタ装置に関するものである。
 工場及びビル等の建物には、電力が供給されて動作する装置として、空気調和装置や照明装置等の様々な装置が設置されている。
 従来より、上記装置をデマンド制御するシステムがある。このシステムは、上記装置の運転時の電力を求め、デマンド装置からのデマンド制御信号に基づいて、上記装置の電力が設定された電力になるように上記装置の運転周波数を制御するものである。デマンド制御とは、例えば特許文献1及び特許文献2に開示されているように、ユーザーの要求に合わせて電力量自体または電力量のピーク値を一定値以下に抑える制御である。
特許第5515765号公報 特開2010-175098号公報
 一般的に、電気料金における基本料金は、単位時間(例えば30分)毎に計測される電力量の最大値に基づいて定まり、更には、一日における所定の時間帯(例えば8時~22時)の電源力率の平均値に基づき減額される。そのため、電気料金を安くするためには、電力の最大値は重要な要素であるが、力率も重要な要素である。しかしながら、上記特許文献1及び特許文献2は、電力量に基づく制御は行うものの、電源力率の低下に対処するものではないため、十分に電気料金を下げることができない。
 また、電源力率の低下度合いに応じて、電気料金における基本料金にペナルティが課される場合もある。従って、電源力率を改善して最適にすることは重要である。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、電源力率の改善を図ることを目的としている。
 本開示の第1の態様は、交流電源(3,103,203,303,403,503,603,703,803,903,1003)に接続され、該交流電源から電力を供給される負荷器(1,2,101,102,201,202,301,302,401,402,501,502,601,602,701,702,801,802,901,902,1001,1002)と、上記交流電源の電源力率及び上記交流電源の電源高調波のいずれか一方を含む電源品質に関する目標値と、現在の上記電源品質と、に基づいて、上記負荷器の運転状態を制御する運転状態制御部(1c,2c,101c,102c,240,340,440,540,640,740,840,940,1001c,1002c)と、を備えることを特徴とする電源力率制御システムである。
 ここでは、電源力率及び交流電源の電源高調波のいずれか一方を含む電源品質と、電源力率に関する目標値とに応じて、負荷器の運転状態が変化する。これにより、電源力率の改善を図ることができる。
 本開示の第2の態様は、第1の態様において、上記電源力率を測定する電源力率測定部(9)と、上記電源力率測定部(9)の測定結果に基づいて、上記負荷器の運転状態を変化させるための制御信号Fsを生成する制御信号生成部(40)と、を更に備え、上記運転状態制御部(1c,2c)は、上記制御信号Fsに基づいて、上記電源力率が該電源力率の上記目標値に近づくように上記負荷器(1,2)の運転状態を変化させる運転パラメータを調整して、上記負荷器(1,2)の運転状態を制御することを特徴とする電源力率制御システムである。
 ここでは、実際の電源力率が目標値に近づくように負荷器の運転パラメータが調整されるため、負荷器の運転能力は、運転パラメータが変更される前の状態から変化する。この負荷器の運転能力の変化により、実際の電源力率は目標値に近づくため、実際の電源力率は最適化される。これにより、例えば電源力率の低下の抑制及び電源力率の改善を図ることができ、電気料金に含まれる基本料金を安くしたり、電気料金にペナルティが課されることを回避したりすることができる。
 本開示の第3の態様は、第2の態様において、上記制御信号Fsは、上記電源力率測定部(9)の測定結果が上記目標値を下回っている際に上記負荷器(1,2)の運転状態を変化させるための信号であることを特徴とする電源力率制御システムである。
 このような制御信号により、目標値を下回っていた実際の電源力率は、上昇して目標値に近づくことができる。
 本開示の第4の態様は、第3の態様において、上記制御信号生成部(40)は、上記電源力率測定部(9)の測定結果が上記目標値を下回っている間の上記電源力率測定部(9)の測定結果と上記目標値との差を積分し、その積分結果が所定値に達した場合に上記制御信号Fsを生成することを特徴とする電源力率制御システムである。
 ここでは、実際の電源力率と目標値との差の積分値が所定値に達した場合、実際の電源力率が目標値に近づくように負荷器の運転状態が変化する。つまり、電源力率が瞬間的に目標値よりも低くなったような場合ではなく、電源力率の目標値との乖離が確実に生じている場合に、負荷器の運転状態は変化する。従って、電源力率を上昇させる必要性が確実に存在する場合にのみ、負荷器の運転状態を変化させる制御がなされる。
 本開示の第5の態様は、第1の態様において、上記電源力率を測定する電源力率測定部(104)と、上記電源力率測定部(104)の測定結果及び上記目標値に基づいて、上記負荷器の運転状態を変化させるための制御信号Fsを生成する制御信号生成部(152)と、上記電源力率測定部(104)の測定結果に基づいて上記目標値を調整する目標値調整部(151)と、を更に備えることを特徴とする電源力率制御システムである。
 ここでは、電源力率の目標値と実際の電源力率とに基づいて負荷器の運転状態は変化するが、当該目標値は、固定された値ではなく、実際の電源力率に基づいて調整される値となっている。このように、目標値を可変値とすることにより、負荷器の運転能力を変更することを最小限にしつつ、電源力率制御システムが構築された場所における電源力率の最適化が図られる。即ち、ここでは、負荷器の運転能力を積極的に変更させた結果電源力率が最適となる制御ではなく、電源力率の目標値自体を変更して電源力率を最適にする制御を行う。これにより、例えば、電源力率の低下の抑制及び電源力率の改善を図ることができ、電気料金に含まれる基本料金を安くしたり、電気料金にペナルティが課されることを回避したりすることができる。
 本開示の第6の態様は、第5の態様において、上記目標値調整部(151)は、上記目標値を調整する単位時間における上記電源力率を用いて上記目標値を調整することを特徴とする電源力率制御システムである。
 本開示の第7の態様は、第6の態様において、上記目標値調整部(151)は、上記単位時間における上記電源力率の平均値を用いて、上記目標値を調整することを特徴とする電源力率制御システムである。
 本開示の第8の態様は、第7の態様において、上記目標値調整部(151)は、上記単位時間のうち、第1時間における上記電源力率の平均値が基準値を超えている場合、上記単位時間のうち上記第1時間の後の第2時間における上記目標値を、上記第1時間における上記目標値よりも低くし、上記第1時間における上記平均値が上記基準値を下回る場合、上記第2時間における上記目標値を、上記第1時間における上記目標値よりも高くすることを特徴とする電源力率制御システムである。
 これにより、単位時間における目標値の平均値の変動はできる限り抑えられるため、結果的に、単位時間における電源力率の最適化を確実に図ることができる。
 本開示の第9の態様は、第8の態様において、上記第1時間及び上記第2時間の合計時間は、上記単位時間と等しいか、または、上記単位時間よりも短いことを特徴とする電源力率制御システムである。
 第1時間及び第2時間の合計時間が単位時間と等しいことにより、単位時間における目標値の平均値の変動をできる限り抑えることができる。また、第1時間及び第2時間の合計時間が単位時間よりも短いことにより、単位時間における目標値の平均値の変動をきめ細かく抑えることができる。
 本開示の第10の態様は、第9の態様において、上記第1時間及び上記第2時間の合計時間は、上記単位時間と等しく、上記第1時間及び上記第2時間は、上記単位時間の半分の時間であることを特徴とする電源力率制御システムである。
 これにより、第2時間における目標値の調整がし易くなるため、単位時間の間の目標値の平均値が変動しないようにすることが比較的容易に実現できる。
 本開示の第11の態様は、第6の態様から第10の態様のいずれかにおいて、上記単位時間は、1ヶ月であることを特徴とする電源力率制御システムである。
 電源力率の値が電気料金に影響を与える期間は「1ヶ月」である場合がある。これに対し、ここでは、単位時間である「1ヶ月」間における電源力率の目標値の平均値の変動が抑えられる。従って、電源力率の平均値に基づく電気代の割引の適用を確実に受けたり、電源力率の低下度合いに基づく基本料金のペナルティが課されることを確実に抑制したりすることができる。
 本開示の第12の態様は、第2の態様から第11の態様のいずれかにおいて、上記電源力率測定部(9,104)は、電力計であることを特徴とする電源力率制御システムである。
 ビルや工場等の建物には、電力計が接続されている。この電力計は、電力以外にも電源力率も計測していることが多い。そこで、ここでは、当該電力計を電源力率測定部として利用しているため、特別に電源力率を計測するためのセンサや検出回路を取り付ける必要がない。従って、別途センサ及び検出回路を取り付けるための工事が不要であり、センサ及び検出回路を設けずに済む分コストを削減できる。
 本開示の第13の態様は、第2の態様から第12の態様のいずれかにおいて、上記電源力率測定部(9,104)は、上記測定結果を上記制御信号生成部(40,152)に無線方式で送信することを特徴とする電源力率制御システムである。
 これにより、電源力率測定部と制御信号生成部とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本開示の第14の態様は、第2の態様から第13の態様のいずれかにおいて、上記制御信号生成部(40,105)は、生成した上記制御信号Fsを上記運転状態制御部(1c,2c,101c,102c)に無線方式で送信することを特徴とする電源力率制御システムである。
 これにより、制御信号生成部と運転状態制御部とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本開示の第15の態様は、第2の態様から第14の態様のいずれかにおいて、上記負荷器(1,2,101,102)は、空気調和装置であることを特徴とする電源力率制御システムである。
 ビルや工場等の建物を設計する場合、空気調和装置の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置の仕様は自ずと決定する。そのことから、建物の建設時に制御信号生成部等と空気調和装置間の通信線を接続することができ、電源力率によって空気調和装置の運転能力を変更できる環境を、簡単に作りやすくなる。
 本開示の第16の態様は、第15の態様において、上記負荷器(1,2,101,102)は、高調波電流の発生源となり、上記交流電源(3,103)に対し上記負荷器(1,2,101,102)と並列に接続され、該負荷器(1,2,101,102)にて発生する高調波電流の低減を行うアクティブフィルタ(1b,101b)、を更に備え、上記アクティブフィルタ(1b,101b)は、上記空気調和装置に組み込まれていることを特徴とする電源力率制御システムである。
 これにより、負荷器である空気調和装置の力率を高く保つことができるため、電源力率を目標値にできる限り早く収束させることができる。
 本開示の第17の態様は、第2の態様から第16の態様のいずれかにおいて、上記交流電源(3,103)に対し上記負荷器(1,2,101,102)と並列に接続され、該負荷器(1,2,101,102)に供給される上記電力のうち無効電力を制御する調相器(31,131)、を更に備えることを特徴とする電源力率制御システムである。
 これにより、負荷器の力率を高く保つことができるため、電源力率を目標値にできる限り早く収束させることができる。
 本開示の第18の態様は、第2の態様から第14の態様のいずれかにおいて、上記負荷器(1,2,101,102)は、高調波電流の発生源であって、上記交流電源(3,103)に対し上記負荷器(1,2,101,102)と並列に接続され、該負荷器(1,2,101,102)にて発生する高調波電流の低減を行うアクティブフィルタ(30,130)、を更に備えることを特徴とする電源力率制御システムである。
 これにより、負荷器の力率を高く保つことができるため、電源力率を目標値にできる限り早く収束させることができる。
 本開示の第19の態様は、第1の態様に記載の電源力率制御システムに備えられ、上記交流電源(203,303,403,503)及び上記負荷器(201,202,301,302,401,402,501,502)に接続された調相装置であって、上記負荷器の高調波電流の低減を行うための電流を生成、または、該電流の位相を変更することによって、基本波力率を改善する力率改善部(230,330,430,531)と、上記運転状態制御部(240,340,440,540)と、を備え、上記交流電源の電源力率に関する上記目標値は、上記基本波力率の目標値であって、上記運転状態制御部は、上記基本波力率が上記目標値に近づくように、上記負荷器の運転状態を変化させる運転パラメータを制御することを特徴とする調相装置である。
 ここでは、基本波力率が目標値に近づくように、調相装置の動作を制御するのではなく、負荷器の運転状態が変更される。これにより、実際の電源力率は目標値に近づく。このように、ここでは、仮に調相装置の容量が小さくても、負荷器の運転状態の制御によって負荷器の運転能力が例えば減らす方向に調整されるため、調相装置の基本波力率を改善させる能力は回復する。これにより、調相装置の容量が比較的小さくとも、基本波力率の改善は問題なくなされる。従って、調相装置の容量を積極的に下げることができ、その分のコストダウンを図ることができる。
 本開示の第20の態様は、第19の態様において、上記交流電源から出力される出力電流を検出する電流検出部(205a,205b,305a~305c,406a,406b,407a,407b,505a,505b)、を更に備え、上記運転状態制御部(240,340,440,540)は、上記基本波力率が目標値に近づくように、上記電流検出部の検出結果に基づいて上記運転パラメータを調整することを特徴とする調相装置である。
 運転パラメータの調整時に、実際に検出された交流電源の出力電流を用いることにより、実際の電源力率を把握することができる。従って、基本波力率をより確実に目標値に近づけるように運転パラメータを調整し易くなる。
 本開示の第21の態様は、第20の態様において、上記交流電源(303)は、複数相の電源であって、上記電流検出部(305a~305c)は、上記交流電源の各相に対応して設けられていることを特徴とする調相装置である。
 ここでは、単相電圧で駆動する負荷器が接続された場合に好適である。交流電源の各相に対応して電流検出部が複数設けられているため、負荷器の接続相が不明であっても、3相すべての電流値を確実に把握することが可能となる。
 本開示の第22の態様は、第20の態様または第21の態様において、上記電流検出部(205a,205b,305a~305c,406a,406b,407a,407b,505a,505b)は、上記検出結果を上記運転状態制御部(240,340,440,540)に無線方式で送信することを特徴とする調相装置である。
 これにより、電流検出部と運転状態制御部とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本開示の第23の態様は、第20の態様から第22の態様のいずれかにおいて、上記電流検出部(205a,205b,305a~305c,406a,406b,407a,407b,505a,505b)は、無電源方式で動作することを特徴とする調相装置である。
 これにより、電流検出部を外部の電源と接続する作業が不要となる。
 本開示の第24の態様は、第19の態様から第23の態様のいずれかにおいて、上記力率改善部(531)は、上記交流電源(503)に対し上記負荷器(501,502)と並列に接続され、該負荷器に供給される上記電力のうち無効電力を制御する調相器であることを特徴とする調相装置である。
 これにより、負荷器の力率を高く保つことができるため、基本波力率をできる限り早く改善することができる。
 本開示の第25の態様は、第24の態様において、上記調相器(531)は、進相コンデンサ(Ca,Cb,Cc)を含むことを特徴とする調相装置である。
 本開示の第26の態様は、第25の態様において、上記調相器(531)は、上記進相コンデンサ(Ca,Cb,Cc)に直接に接続されたリアクトル(La,Lb,Lc)を更に含むことを特徴とする調相装置である。
 これにより、仮に進相コンデンサにおいて短絡故障が発生したとしても、調相器に流れる電流の大きさをリアクトルによって絞ることができる。従って、例えば短絡故障の発生時、調相器に大きな電流が過渡的に流れ、その電流が調相器以外にも影響を及ぼし、重度の不具合が引き起こされるおそれを防ぐことができる。
 本開示の第27の態様は、第19の態様から第23の態様のいずれかにおいて、上記負荷器(201,202,301,302,401,402)は、高調波電流の発生源であって、上記力率改善部(230,330,430)は、上記交流電源(203,303,403)に対し上記負荷器と並列に接続され、該負荷器にて発生する高調波電流の低減を行うアクティブフィルタであることを特徴とする調相装置である。
 これにより、負荷器の力率を高く保つことができるため、基本波力率をできる限り早く改善することができる。
 本開示の第28の態様は、第19の態様から第27の態様のいずれかにおいて、上記負荷器(201,202,301,302,401,402,501,502)は、空気調和装置であることを特徴とする調相装置である。
 ビルや工場等の建物を設計する場合、空気調和装置の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置の仕様は自ずと決定する。そのことから、建物の建設時に運転状態制御部等と空気調和装置間の通信線を接続することができ、電源力率によって空気調和装置の運転能力を変更できる環境を、簡単に作りやすくなる。
 本開示の第29の態様は、第1の態様に記載の電源力率制御システムに備えられ、上記交流電源(603,703,803,903)及び上記負荷器(601,602,701,702,801,802,901,902)に接続されたアクティブフィルタ装置であって、上記負荷器の基本波力率の改善を行うための電流を生成する電流源(630,730,830,930)と、上記交流電源から出力される出力電流を検出する電流検出部(605a,605b,705a,705b,805a~805c,906a,906b,907a,907b)と、上記運転状態制御部(640,740,840,940)と、を備え、上記交流電源の電源力率に関する上記目標値は、上記基本波力率の目標値であって、上記運転状態制御部は、上記基本波力率が上記目標値に近づくように、上記電流検出部の検出結果に基づいて上記負荷器の運転状態を変化させる運転パラメータを制御することを特徴とするアクティブフィルタ装置である。
 ここでは、基本波力率が目標値に近づくように、アクティブフィルタ装置の動作を制御するのではなく、実際の交流電源の出力電流に基づいて負荷器の運転状態を制御する。これにより、実際の電源力率は目標値に近づく。このように、ここでは、仮にアクティブフィルタ装置の容量が小さくても、負荷器の運転状態の制御によって負荷器の運転能力が例えば減らす方向に調整されるため、アクティブフィルタ装置の基本波力率を改善させる能力は回復する。これにより、アクティブフィルタ装置の容量が比較的小さくとも、基本波力率の改善は問題なくなされる。従って、アクティブフィルタ装置の容量を積極的に下げることができ、その分のコストダウンを図ることができる。
 本開示の第30の態様は、第29の態様において、上記電流源は、上記負荷器の高調波電流の低減を更に行うことを特徴とするアクティブフィルタ装置である。
 ここでは、高調波電流の低減と、基本波力率の改善とが行われる。
 本開示の第31の態様は、第29の態様または第30の態様において、上記負荷器(601,602,701,702,801,802)は複数であって、上記運転状態制御部(640,740,840)は、複数の上記負荷器の運転能力を低下させるように複数の上記負荷器の上記運転パラメータを調節して、上記基本波力率を上記目標値に近づけさせることを特徴とするアクティブフィルタ装置である。
 ここでは、複数の負荷器の運転状態が運転能力を低下する方向に変化する。これより、負荷器の運転能力は、1つの負荷器の運転状態のみを変化させる場合よりも低下するため、基本波力率の改善能力が素早く回復する。従って、電源力率の低下を最小限に抑制して、電源力率を素早く目標値にすることができる。
 本開示の第32の態様は、第29の態様または第30の態様において、上記負荷器(901,902)は複数であって、上記運転状態制御部(940)は、上記電流検出部(906a,906b,907a,907b)の検出結果に基づいて、複数の上記負荷器のうち運転能力を低下させるべき上記負荷器を決定し、決定した上記負荷器の運転能力を低下させるように、決定した上記負荷器の上記運転パラメータを調節して、上記基本波力率を上記目標値に近づけさせることを特徴とするアクティブフィルタ装置である。
 ここでは、複数の負荷器のうち、電力を絞る、即ち運転能力を低下する方向に運転状態を変更する負荷器が選択される。これにより、運転能力を低下させる負荷器を例えば必要最低限にすることができ、運転能力を低下させない負荷器については、運転状態を維持させることができる。
 本開示の第33の態様は、第32の態様において、上記電流検出部(906a,906b,907a,907b)は、上記負荷器(901,902)それぞれに対応するようにして複数設けられており、各上記電流検出部は、上記交流電源(903)から各上記負荷器(901,902)への上記出力電流を検出することを特徴とするアクティブフィルタ装置である。
 ここでは、実際に各負荷器に流れる電流値から、運転能力を低下する方向に運転状態を変更するべき負荷器が決定する。これにより、運転能力を低下させるべき対象となる負荷器を、実際の状況に即して正確に決定することができる。
 本開示の第34の態様は、第31の態様から第33の態様のいずれかにおいて、上記交流電源からの電力を上記負荷器それぞれに分岐する分電盤(606,706,806,906)、を更に備え、上記電流検出部(605a,605b,705a,705b,805a~805c,906a,906b)は、上記分電盤に設置されていることを特徴とするアクティブフィルタ装置である。
 ここでは、電流検出部は、分電盤の内外に設置される。
 本開示の第35の態様は、第29の態様から第32の態様のいずれかにおいて、上記電流検出部(805a~805c)は、上記交流電源(803)の各相(R,S,T)に対応するようにして複数設けられていることを特徴とするアクティブフィルタ装置である。
 ここでは、単相電圧で駆動する負荷器が接続された場合に好適である。交流電源の各相に対応して電流検出器が複数設けられているため、負荷器の接続相が不明であっても、3相すべての電流値を確実に把握することが可能となる。
 本開示の第36の態様は、第29の態様から第35の態様のいずれかにおいて、上記電流検出部(605a,605b,705a,705b,805a~805c,906a,906b,907a,907b)は、上記検出結果を上記運転状態制御部に無線方式で送信することを特徴とするアクティブフィルタ装置である。
 これにより、電流検出部と運転状態制御部とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本開示の第37の発明は、第29の態様から第36の態様のいずれかにおいて、上記電流検出部(605a,605b,705a,705b,805a~805c,906a,906b,907a,907b)は、無電源方式で動作することを特徴とするアクティブフィルタ装置である。
 これにより、電流検出部を外部の電源と接続する作業が不要となる。
 本開示の第38の発明は、第29の態様から第37の態様のいずれかにおいて、上記アクティブフィルタ装置(604,704,804,904)は、空気調和装置(620,720,820,920)に組み込まれていることを特徴とするアクティブフィルタ装置である。
 ビルや工場等の建物を設計する場合、空気調和装置の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置の仕様は自ずと決定する。そのことから、建物の建設時にアクティブフィルタ装置と空気調和装置間の通信線を接続することができ、交流電源から出力される出力電流に基づき負荷器の運転能力を変更できる環境を、簡単に作りやすくなる。
 本開示の態様によれば、電源力率の改善を図ることができる。
図1は、実施形態1に係る電源力率制御システムの構成を概略的に示す図である。 図2は、実施形態1の電源力率デマンド制御器の一例を示すブロック図である。 図3は、実施形態1に係る各負荷器の出力電力、電源力率、積分演算部の出力信号、負荷器指令信号及びリセット信号それぞれの、経時的変化を示した図である。 図4は、実施形態1の変形例に係る電源力率制御システムの構成を概略的に示す図である。 図5は、実施形態2に係る電源力率制御システムの構成を概略的に示す図である。 図6は、実施形態2に係る電源力率デマンド制御器の一例を示すブロック図である。 図7は、実施形態2に係る第1平均力率算出部の一例を示すブロック図である。 図8は、実施形態2に係る第2平均力率算出部の一例を示すブロック図である。 図9は、実施形態2に係る力率目標値設定部の一例を示すブロック図である。 図10は、実施形態2に係る第1平均力率算出部の動作例を示す図である。 図11は、実施形態2に係る第2平均力率算出部及び力率目標値設定部の動作例を示す図である。 図12は、実施形態2の変形例に係る電源力率制御システムの構成を概略的に示す図である。 図13は、実施形態3に係るアクティブフィルタ装置を含む空調システムの構成を概略的に示す図である。 図14は、実施形態3の制御器の一例を示すブロック図である。 図15は、実施形態3に係る各負荷器の出力電力、アクティブフィルタ装置の補償量、電源力率、積分演算部の出力信号、負荷器指令信号及びリセット信号それぞれの、経時的変化を示した図である。 図16は、実施形態4に係るアクティブフィルタ装置を含む空調システムの構成を概略的に示す図である。 図17は、実施形態5に係るアクティブフィルタ装置を含む空調システムの構成を概略的に示す図である。 図18は、実施形態5の制御器の一例を示すブロック図である。 図19は、実施形態5に係る各負荷器の出力電力、アクティブフィルタ装置の補償量、電源力率、積分演算部の出力信号、各負荷器の電流値、負荷器指令信号及びリセット信号それぞれの、経時的変化を示した図である。 図20は、実施形態6に係る調相設備を含む空調システムの構成を概略的に示す図である。 図21は、実施形態6の制御器の一例を示すブロック図である。 図22は、実施形態7に係るアクティブフィルタ装置を含む空調システムの構成を概略的に示す図である。 図23は、実施形態7の制御器の一例を示すブロック図である。 図24は、実施形態7に係る各負荷器の出力電力、アクティブフィルタ装置の補償量、電源力率、積分演算部の出力信号、負荷器指令信号及びリセット信号それぞれの、経時的変化を示した図である。 図25は、実施形態8に係るアクティブフィルタ装置を含む空調システムの構成を概略的に示す図である。 図26は、実施形態8に係る各負荷器の出力電力、アクティブフィルタ装置の補償量、電源力率、積分演算部の出力信号、負荷器指令信号及びリセット信号それぞれの、経時的変化を示した図である。 図27は、実施形態9に係るアクティブフィルタ装置を含む空調システムの構成を概略的に示す図である。 図28は、実施形態10に係るアクティブフィルタ装置を含む空調システムの構成を概略的に示す図である。 図29は、実施形態10の制御器の一例を示すブロック図である。 図30は、実施形態10に係る各負荷器の出力電力、アクティブフィルタ装置の補償量、電源力率、積分演算部の出力信号、各負荷器の電流実効値、負荷器指令信号及びリセット信号それぞれの、経時的変化を示した図である。 図31は、実施形態11に係る電源力率制御システムの構成を概略的に示す図である。 図32は、実施形態11の電源力率デマンド制御器の一例を示すブロック図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 ≪実施形態1≫
 <電源力率制御システム(100)の構成>
 図1は、本実施形態1に係る電源力率制御システム(100)の構成を示すブロック図である。この例では、電源力率制御システム(100)は、複数の負荷器(1,2)と、調相設備(8)と、電源力率測定器(9)(電源力率測定部に相当)と、電源力率デマンド制御器(40)(制御信号生成部に相当)と、負荷器(1,2)に含まれる調整部(1c,2c)(運転状態制御部に相当)とを備える。本実施形態1では、複数の負荷器(1,2)のうち、負荷器(1)が空気調和装置である場合を例に採る。
 電源力率制御システム(100)は、マンション、工場、ビル、戸建て住宅等(以下、ビル等)に設置されている。空気調和装置である負荷器(1)によって、室内の空気調和が行われる。
 上記ビル等には、交流電源(3)を含む電力系統から電力が供給されている。この例では、交流電源(3)は、三相の交流電源(例えば三相の商用電源)であり、複数の負荷器(1,2)に電力を分岐して供給する。
 また、本実施形態1では、負荷器(2)が、インバータ回路等の高調波電流の発生源となり得る回路を備えている機器(高調波発生負荷器と命名する)である場合を例に採る。負荷器(2)としては、ビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明、更には、アクティブフィルタ等の高調波対策を実施していない、空気調和装置である負荷器(1)とは別の空気調和装置等を例示できる。
 各負荷器(1,2)は、電源力率デマンド制御器(40)と接続された調整部(1c,2c)を含む。調整部(1c,2c)それぞれは、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。調整部(1c,2c)は、電源力率デマンド制御器(40)から出力される負荷器指令信号Fs(制御信号に相当)に基づき、各負荷器(1,2)の運転状態を変化させる運転パラメータを調整して負荷器(1,2)の運転状態を制御するものである。運転パラメータとは、具体的には負荷器(1,2)の電力、負荷器(1,2)の電流、負荷器(1,2)に含まれる電動機の回転速度等である。
 また、この例では、電源力率制御システム(100)が備える電源力率測定器(9)及び電源力率デマンド制御器(40)は、複数の負荷器(1,2)を一括管理及び統括制御する、いわば当該システム(100)の集中管理部(7)としての機能を有する。集中管理部(7)は、ビル等の建物の内部における集中管理室に配置されている。
  <負荷器(1)>
 空気調和装置である負荷器(1)は、上記調整部(1c)の他に、冷媒回路(図示せず)及び電力変換装置(1a)を有する。
 冷媒回路は、圧縮機、室外側熱交換器、膨張機構、室内側熱交換器が冷媒配管によって接続されることで構成される。冷媒回路内には冷媒が充填されており、冷媒が冷媒回路内を循環することによって、室内は冷却または暖められる。
 電力変換装置(1a)は、詳細は図示していないが、交流電源(3)に接続されており、コンバータ回路及びインバータ回路を有する。電力変換装置(1a)は、交流電源(3)から交流電力を供給されると、これを所望周波数及び所望電圧に変換し、変換後の電力を圧縮機(より詳しくは圧縮機が備える電動機)に供給する。それにより、圧縮機は稼働して冷媒回路が機能し、その結果、室内の空気調和が行われる。
 空気調和装置である負荷器(1)において、電力変換装置(1a)や圧縮機の電動機が稼働すると、高調波電流が発生する場合がある。この高調波電流は、負荷器(1)に電力を供給する電流経路を介して、交流電源(3)に流出する可能性がある。なお、上述したように、負荷器(1)のみならず、高調波発生負荷器である負荷器(2)からも、高調波電流が、負荷器(2)に電力を供給する電流経路を介して交流電源(3)に流出する可能性がある。
 そのため、本実施形態1では、空気調和装置である負荷器(1)内に、アクティブフィルタ(1b)が組み込まれている。アクティブフィルタ(1b)は、交流電源(3)に対し負荷器(2)及び電力変換装置(1a)と並列に接続され、該負荷器(1)及び電力変換装置(1a)にて発生する高調波電流の低減を行う。
 更に、設備容量や省エネルギーの観点などから、配電・受電端の基本波力率の改善が求められているところ、アクティブフィルタ(1b)は、基本波力率の改善機能も備えている。負荷器(1,2)や負荷器(1)に含まれる圧縮機の電動機が最大電力で稼働すると、負荷器(1,2)へ電力を供給する交流電源(3)の電流経路(図1の受電経路(12))を介して高調波電流が流出し、交流電源(3)の電源力率が低下する場合がある。一般的に、電気料金には、電源力率が良い程高い割引率を受けられる仕組み、及び/または、電源力率が所定値(90%や85%など)を下回るとその分電気料金が引き上げられるペナルティが与えられる仕組みが存在する。このような電気料金の観点からしても、電源力率の低下をなるべく回避し電源力率の最適化を図ることの重要度は高い。
 そこで、本実施形態1では、空気調和装置である負荷器(1)内に、力率改善のためのアクティブフィルタ(1b)を組み込んでおり、これによって空気調和装置の力率が高くなることにより電源力率の改善を図っている。
 また、本実施形態1では、負荷器(1,2)の電源力率を改善して最適化させるための制御も行っているが、これについては後述する。
  <調相設備(8)>
 調相設備(8)は、建物全体の力率を改善するために取り付けらえているものであって、負荷器(1,2)の高調波電流の位相を変更することによって基本波力率の改善を行う調相器(31)を備える。
 調相器(31)は、交流電源(3)に対し負荷器(1,2)と並列に接続されており、各負荷器(1,2)に供給される交流電力のうち無効電力を制御する。調相器(31)は、複数の進相コンデンサ(Ca,Cb,Cc)と複数のリアクトル(La,Lb,Lc)とを含む。各進相コンデンサ(Ca,Cb,Cc)は、受電経路(12)のうち、調相設備(8)への各分岐配線(12c)上に、直列に接続されている。進相コンデンサ(Ca,Cb,Cc)は、3相の交流電源(3)の各相に対応して3つ設けられている。リアクトル(La,Lb,Lc)は、各進相コンデンサ(Ca,Cb,Cc)に対応して3つ設けられており、各リアクトル(La,Lb,Lc)は、各進相コンデンサ(Ca,Cb,Cc)に直列に接続されている。
 本実施形態1において、調相器(31)が進相コンデンサ(Ca,Cb,Cc)のみならずリアクトル(La,Lb,Lc)を含む理由は、仮に進相コンデンサ(Ca,Cb,Cc)が短絡故障した際に調相器(31)に流れる電流の大きさをリアクトル(La,Lb,Lc)によって絞ることができるためである。
  <電源力率測定器(9)>
 電源力率測定器(9)は、交流電源(3)の電源力率を測定するものであって、電力計またはスマートメータで構成されている。ビルや工場等の建物には、その時々の電力のみならず電源力率θαβをも測定する電力計が予め設けられている。本実施形態1では、この電力計を電源力率測定器(9)として利用するものである。電力計によって測定された電源力率θαβは、電源力率デマンド制御器(40)に入力される。
 このように、建物に既設の電力計またはスマートメータを電源力率測定器(9)として利用することにより、電源力率を計測するセンサや検出回路を、電力計及びスマートメータとは別途設ける必要がない。
 特に、電源力率測定器(9)は、スマートメータであることが望ましい。スマートメータは、通信機能を有しているため、電源力率測定器(9)は、測定結果である電源力率θαβを、当該通信機能を用いて無線方式で電源力率デマンド制御器(40)に送信することができる。これにより、電源力率測定器(9)と電源力率デマンド制御器(40)とを繋ぐ配線は不要となり、配線を引き回す作業を行わずに済む。従って、配線を繋ぐ工事や配線のためのコストを削減できる。
  <電源力率デマンド制御器(40)>
 電源力率デマンド制御器(40)は、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。図1に示すように、電源力率デマンド制御器(40)は、電源力率測定器(9)及び各負荷器(1,2)(具体的には各負荷器(1,2)の調整部(1c,2c))と接続されており、電源品質としての電源力率測定器(9)の検出値と、交流電源(3)の電源力率の目標値とに基づいて、各負荷器(1,2)の運転動作を制御する。
 本実施形態1に係る電源力率デマンド制御器(40)は、実際の電源力率θαβに伴う各負荷器(1,2)の運転状態の調整制御を行う。このような制御を行うため、電源力率デマンド制御器(40)は、図2に示すように、力率目標値設定部(41)及び負荷調整判断部(42)を有する。負荷調整判断部(42)は、減算部(43)、積分演算部(44)及び判定部(45)を有する。
 なお、以下に述べるように、電源力率デマンド制御器(40)は、電源力率測定器(9)の測定結果に基づいて生成した負荷器指令信号Fs(制御信号に相当)を、各負荷器(1,2)の調整部(1c,2c,)に送信するが、本実施形態1では、電源力率デマンド制御器(40)と各負荷器(1,2)とは配線によって接続されておらず、負荷器指令信号Fsの送信は無線方式で行われる。
 <各負荷器(1,2)の運転状態の調整制御>
 図2及び図3を用いて、上記電源力率デマンド制御器(40)が行う各負荷器(1,2)の運転状態の調整制御について詳述する。
 力率目標値設定部(41)は、電源力率の目標値θαβ_refを予め設定する。なお、本実施形態1に係る力率目標値設定部(41)は、電源力率の目標値θαβ_refを、0.995~1.004の間の値に設定する。電源力率を評価する場合、小数第3位を四捨五入することになっている。そのため、電源力率の目標値θαβ_refが0.995~1.004の間の値に設定されることにより、当該電源力率の目標値θαβ_refに基づいて制御される実際の電源力率は“1”と評価されるためである。
 負荷調整判断部(42)の減算部(43)には、電源品質である電源力率測定器(9)が測定した実際の電源力率θαβと、力率目標値設定部(41)が設定した電源力率の目標値θαβ_refとが入力される。減算部(43)は、電源力率の目標値θαβ_refから実際の電源力率θαβを減算する。減算部(43)は、減算した値を、積分演算部(44)に出力する。
 積分演算部(44)は、減算部(43)による減算結果(即ち、電源力率の目標値θαβ_refから実際の電源力率θαβを減算した結果)を、積分する。
 判定部(45)には、積分演算部(44)の積分結果が入力される。判定部(45)は、積分結果に基づき、基本波力率が電源力率の目標値θαβ_refに近づくように、負荷器(1,2)の運転状態を変化させるための負荷器指令信号Fsを生成する。具体的に、判定部(45)は、基本波力率(電源力率)を電源力率の目標値θαβ_refに近づけるべく、運転パラメータを調整して負荷器(1,2)の運転能力を下げる旨の負荷器指令信号Fsを、負荷器(1,2)の調整部(1c,2c)に出力する。この負荷器指令信号Fsによって負荷器(1,2)の運転能力が減少すると、負荷器(1,2)の出力電力が減少するため電力的に余裕が生じ、基本波力率(電源力率)は上昇して力率目標値と概ね一致するようになる。
 負荷器(1,2)の動作、電源力率、負荷調整判断部(42)の動作の経時的変化の一例を図3に示す。図3(a)は、負荷器(2)の動作に相関する出力電力を示しており、この例では負荷器(2)としてポンプなどの一定負荷を想定している。図3(b)は、負荷器(1)の出力電力を示しており、この例では負荷器(1)として空気調和装置を想定している。
 時刻t0から時刻t2までの間、負荷器(2)は、出力電力が一定となるような安定した動作を行っている。これに対し、時刻t0から時刻t2までの間、負荷器(1)は、空調負荷の上昇に伴い出力電力を上昇させて続けている。この時刻t0から時刻t2までの間とは、真夏の最も暑い日の日中(14時~15時)で外気温度が異常に高くなり、急激に空調負荷が上昇し空気調和装置である負荷器(1)の出力電力が上昇している場合を想定している。
 このような各負荷器(1,2)の出力電力により、図3(c)に示す電源力率は、時刻t0からt1までの間は、概ね電源力率の目標値θαβ_refの値を維持した状態となっている。しかし、時刻t1から時刻t2の間では、負荷器(1)の出力電力の更なる上昇により、図3(c)に示す電源力率は、電源力率の目標値θαβ_refから低下していく。
 そのため、図3(d)に示すように、時刻t0から時刻t1の間は、電源力率の目標値θαβ_refと実際の電源力率θαβとの差はほぼ生じず、積分演算部(44)の出力結果(出力信号)は概ね“0”のままである。しかし、時刻t1以降は、電源力率の目標値θαβ_refと実際の電源力率θαβとの差が、負荷器(1)の出力電力の更なる上昇に伴って徐々に大きくなっていく。従って、図3(d)に示すように、時刻t1以降は、積分演算部(44)の出力結果(出力信号)は増加する。
 時刻t2は、積分演算部(44)の出力結果(出力信号)が判定値(所定値に相当)に達した時点を表す。この時刻t2では、判定部(45)は、積分演算部(44)の出力結果(出力信号)を受けて、図3(e)に示すように、負荷器(1,2)の運転状態を時刻t2以前とは異ならせるための負荷器指令信号Fsを(即ち、“オン”を示す負荷器指令信号Fs)、負荷器(1,2)の調整部(1c,2c)に出力する。その負荷器指令信号Fsに基づいて、負荷器(1,2)の調整部(1c,2c)それぞれは、図3(a)(b)に示すように時刻t2から時刻t3の間、各負荷器(1,2)の出力電圧が低下する方向に運転状態を変化させるべく、負荷器(1,2)の電力、負荷器(1,2)の電流、負荷器(1,2)に含まれる電動機の回転速度等の少なくとも1つである運転パラメータを調整する。この運転パラメータの調整は、実際の電源力率θαβが電源力率の目標値θαβ_refに近づくように行われる。すると、図3(c)に示すように、時刻t2以降、双方の負荷器(1,2)の出力電力が低下しているために、実際の電源力率θαβは、電源力率の目標値θαβ_refに一致する程度に回復し、当該目標値θαβ_refと概ね一致した状態で維持される。
 このように、本実施形態1に係る電源力率デマンド制御器(40)及び調整部(1c,2c)は、電源力率測定器(9)の測定結果である実際の電源力率θαβが電源力率の目標値θαβ_refを下回ると、負荷器(1,2)の運転パラメータを低下させるように負荷器(1,2)の運転状態を変化させる。このことにより、電源力率制御システム(100)は、実際の電源力率θαβが電源力率の目標値θαβ_refを下回っている際、負荷器(1,2)の運転能力を強制的に絞り、実際の電源力率θαβと電源力率の目標値θαβ_refとが一致する状態を作り出す“電源力率デマンドコントロール”を実施する。“電源力率デマンドコントロール”とは、基本波力率が力率の目標値θαβ_refに近づくように、実際の電源力率測定器(9)の測定結果に基づいて運転パラメータを調整する制御と言える。
 図3において、実際の電源力率θαβと電源力率の目標値θαβ_refとが一致している状態が、時刻t2からある程度の期間(図3では時刻t2から時刻t3までの期間)経過すると、判定部(45)は、図3(e)に示すように、出力する負荷器指令信号Fsを、時刻t0からt2までの間と同様“オフ”にする。そのことにより、負荷器(1,2)は、強制的な運転能力の低下から解放され、通常の指令に基づく制御により通常運転を行う。
 また、判定部(45)は、負荷器指令信号Fsをオフにした際、図3(f)の時刻t3にて示すように、積分演算部(44)の積分結果をリセット(ゼロにクリアする)ためのReset信号を積分演算部(44)に出力する。このことにより、積分演算部(44)の積分結果(出力信号)はゼロになり、積分演算部(44)は、次に実際の電源力率θαβが電源力率の目標値θαβ_refより低下した場合に対応できるようになる。
 <効果>
 本実施形態1の電源力率制御システム(100)は、電源品質である電源力率の目標値θαβ_refと、現在の電源力率(即ち、現在の電源品質)とに基づいて、負荷器(1,2)の運転状態を制御する。特に、本実施形態1では、負荷器指令信号Fsに基づき、実際の電源力率θαβが目標値θαβ_refに近づくように負荷器(1,2)の運転パラメータが調整されるため、負荷器(1,2)の運転能力は、運転パラメータが変更される前の状態から変化する。この負荷器(1,2)の運転能力の変化により、実際の電源力率θαβは電源力率の目標値θαβ_refに近づくため、実際の電源力率θαβは最適化される。これにより、例えば電源力率の低下の抑制及び電源力率の改善を図ることができ、電気料金に含まれる基本料金を安くしたり、電気料金にペナルティが課されることを回避したりすることができる。
 上記負荷器指令信号Fsは、電源力率測定器(9)の測定結果が電源力率の目標値θαβ_refを下回っている際に負荷器(1,2)の運転状態を変化させるための信号である。このような負荷器指令信号Fsにより、電源力率の目標値θαβ_refを下回っていた実際の電源力率θαβは、上昇して電源力率の目標値θαβ_refに近づくことができる。
 特に、上記負荷器指令信号Fsは、電源力率測定器(9)の測定結果が電源力率の目標値θαβ_refを下回っている間の、電源力率測定器(9)の測定結果と電源力率の目標値θαβ_refとの差を積分し、その積分結果が判定値に達した場合に生成される。つまり、電源力率θαβが瞬間的に電源力率の目標値θαβ_refよりも低くなったような場合ではなく、電源力率θαβの電源力率の目標値θαβ_refとの乖離が確実に生じている場合に、上記負荷器指令信号Fsが生成され、負荷器(1,2)の運転状態は変化する。従って、電源力率θαβを上昇させる必要性が確実に存在する場合にのみ、負荷器(1,2)の運転状態を変化させる制御がなされる。
 ビル等の建物には、電力計が接続されている。この電力計は、電力以外にも電源力率も計測していることが多い。そこで、本実施形態1では、当該電力計を電源力率測定器(9)として利用しているため、特別に電源力率を計測するためのセンサや検出回路を取り付ける必要がない。従って、別途センサ及び検出回路を取り付けるための工事が不要であり、センサ及び検出回路を設けずに済む分コストを削減できる。
 上記電源力率測定器(9)は、測定結果を電源力率デマンド制御器(40)に無線方式で送信する。これにより、電源力率測定器(9)と電源力率デマンド制御器(40)とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 また、上記電源力率デマンド制御器(40)は、生成した負荷器指令信号Fsを調整部(1c,2c)に無線方式で送信する。これにより、電源力率デマンド制御器(40)と調整部(1c,2c)とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本実施形態1では、負荷器(1)が空気調和装置である。ビル等の建物を設計する場合、空気調和装置の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置の仕様は自ずと決定する。そのことから、建物の建設時に電源力率デマンド制御器(40)等と空気調和装置間の通信線を接続することができ、電源力率によって空気調和装置の運転能力を変更できる環境を、簡単に作りやすくなる。
 本実施形態1では、アクティブフィルタ(1b)が空気調和装置に組み込まれている。また、電源力率制御システム(100)は、調相器(31)を更に備える。これらにより、空気調和装置の力率を高く保つことができるため、実際の電源力率θαβを電源力率の目標値θαβ_refにできる限り早く収束させることができる。
 <実施形態1の変形例>
 図4に示すように、電源力率制御システム(100)は、調相器(31)に代えて、アクティブフィルタ(30)を備えていても良い。アクティブフィルタ(30)は、交流電源(3)に対し負荷器(1,2)と並列に接続され、該負荷器(1,2)にて発生する高調波電流の低減を行うものである。アクティブフィルタ(30)は、電源力率デマンド制御器(40)により制御される。これにより、負荷器(1,2)の力率を高く保つことができるため、電源力率を目標値にできる限り早く収束させることができる。なお、この場合、負荷器(1)に別途アクティブフィルタが組み込まれていなくても良い。
 負荷器(1)は、空気調和装置以外であってもよい。負荷器(1)は、例えばビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明等であってもよい。
 電源力率測定器(9)は、建物内の電力計(スマートメータ等)である必要はない。
 電源力率測定器(9)は、無線方式のタイプでなくてもよい。
 電源力率デマンド制御器(40)は、無線方式のタイプでなくてもよい。
 上記実施形態1において、負荷器(1)に、アクティブフィルタ(1b)が組み込まれていなくても良い。
 1台の負荷器(1)に対し複数台の調相器(31)またはアクティブフィルタ(30)が設けられていてもよい。
 また、電源力率制御システム(100)において、調相器(31)及びアクティブフィルタ(30)は必須ではない。
 調相器(31)は、進相コンデンサ(Ca,Cb,Cc)のみの構成であってもよい。
 負荷器指令信号Fsは、電源力率測定器(9)の測定結果が電源力率の目標値θαβを下回っている際ではなく、電源力率θαβが所望の目標値θαβ_refと一致しない際(例えば、電源力率θαβが電源力率の目標値θαβ_refを上回る際)に、負荷器(1,2)の運転状態を変化させるための信号として生成されてもよい。
 電源力率デマンド制御器(40)は、実際の電源力率θαβと電源力率の目標値θαβ_refとの差の積分値に基づく方法以外の方法で、負荷器指令信号Fsを生成してもよい。
 負荷器(1,2)が空気調和装置である場合、空気調和装置は、冷房及び暖房のみを行う装置に限定されない。空気調和装置には、冷凍、換気、調湿が可能なものも含まれる。
 ≪実施形態2≫
 <電源力率制御システム(200)の構成>
 図5は、本実施形態2に係る電源力率制御システム(200)の構成を示すブロック図である。この例では、電源力率制御システム(200)は、複数の負荷器(101,102)と、調相設備(106)と、電源力率測定器(104)(電源力率測定部に相当)と、電源力率デマンド制御器(105)とを備える。
 ここでは、複数の負荷器(101,102)のうち、負荷器(101)が空気調和装置である場合を例に採る。
 電源力率制御システム(200)は、マンション、工場、ビル、戸建て住宅等(以下、ビル等)に設置されている。空気調和装置である負荷器(101)によって、室内の空気調和が行われる。
 上記ビル等には、交流電源(103)を含む電力系統から電力が供給されている。この例では、交流電源(103)は、三相の交流電源(例えば三相の商用電源)であり、複数の負荷器(101,102)に電力を分岐して供給する。
 また、本実施形態2では、負荷器(102)が、インバータ回路等の高調波電流の発生源となり得る回路を備えている機器(高調波発生負荷器と命名する)である場合を例に採る。負荷器(102)としては、ビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明、更には、アクティブフィルタ等の高調波対策を実施していない、空気調和装置である負荷器(101)とは別の空気調和装置等を例示できる。
 各負荷器(101,102)は、電源力率デマンド制御器(105)と接続された調整部(101c,102c)(運転状態制御部に相当)を含む。調整部(101c,102c)それぞれは、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。調整部(101c,102c)は、電源力率デマンド制御器(105)から出力される負荷器指令信号Fsに基づき、各負荷器(101,102)の運転状態を変化させる運転パラメータを調整して負荷器(101,102)の運転状態を制御するものである。運転パラメータとは、具体的には負荷器(101,102)の電力、負荷器(101,102)の電流、負荷器(101,102)に含まれる電動機の回転速度等である。
 また、この例では、電源力率制御システム(200)が備える電源力率測定器(104)及び電源力率デマンド制御器(105)は、複数の負荷器(101,102)を一括管理及び統括制御する、いわば当該システム(200)の集中管理部(107)としての機能を有する。集中管理部(107)は、ビル等の建物の内部における集中管理室に配置されている。
  <負荷器(101)>
 空気調和装置である負荷器(101)は、上記調整部(101c)の他に、冷媒回路(図示せず)及び電力変換装置(101a)を有する。
 冷媒回路は、圧縮機、室外側熱交換器、膨張機構、室内側熱交換器が冷媒配管によって接続されることで構成される。冷媒回路内には冷媒が充填されており、冷媒が冷媒回路内を循環することによって、室内は冷却または暖められる。
 電力変換装置(101a)は、詳細は図示していないが、交流電源(103)に接続されており、コンバータ回路及びインバータ回路を有する。電力変換装置(101a)は、交流電源(103)から交流電力を供給されると、これを所望周波数及び所望電圧に変換し、変換後の電力を圧縮機(より詳しくは圧縮機が備える電動機)に供給する。それにより、圧縮機は稼働して冷媒回路が機能し、その結果、室内の空気調和が行われる。
 空気調和装置である負荷器(101)において、電力変換装置(101a)や圧縮機の電動機が稼働すると、高調波電流が発生する場合がある。この高調波電流は、負荷器(101)に電力を供給する電流経路を介して、交流電源(103)に流出する可能性がある。なお、上述したように、負荷器(101)のみならず、高調波発生負荷器である負荷器(102)からも、高調波電流が、負荷器(102)に電力を供給する電流経路を介して交流電源(103)に流出する可能性がある。
 そのため、本実施形態2では、空気調和装置である負荷器(101)内に、アクティブフィルタ(101b)が組み込まれている。アクティブフィルタ(101b)は、交流電源(103)に対し負荷器(102)及び電力変換装置(101a)と並列に接続され、該負荷器(102)及び電力変換装置(101a)にて発生する高調波電流の低減を行う。
 更に、設備容量や省エネルギーの観点などから、配電・受電端の基本波力率の改善が求められているところ、アクティブフィルタ(101b)は、基本波力率の改善機能も備えている。負荷器(101,102)や負荷器(101)に含まれる圧縮機の電動機が最大電力で稼働すると、負荷器(101,102)へ電力を供給する交流電源(103)の電流経路(図1の受電経路(112))を介して高調波電流が流出し、交流電源(103)の電源力率が低下する場合がある。一般的に、電気料金には、電源力率が良い程高い割引率を受けられる仕組み、及び/または、電源力率が所定値(90%や85%など)を下回るとその分電気料金が引き上げられるペナルティが与えられる仕組みが存在する。このような電気料金の観点からしても、電源力率の低下をなるべく回避し電源力率の最適化を図ることの重要度は高い。
 そこで、本実施形態2では、空気調和装置である負荷器(101)内に、力率改善のためのアクティブフィルタ(101b)を組み込んでおり、これによって空気調和装置の力率が高くなることにより電源力率の改善を図っている。
 また、本実施形態2では、負荷器(101,102)の電源力率を改善して最適化させるための制御も行っているが、これについては後述する。
  <調相設備(106)>
 調相設備(106)は、建物全体の力率を改善するために取り付けらえているものであって、負荷器(101,102)の高調波電流の位相を変更することによって基本波力率の改善を行う調相器(131)を備える。
 調相器(131)は、交流電源(103)に対し負荷器(101,102)と並列に接続されており、各負荷器(101,102)に供給される交流電力のうち無効電力を制御する。調相器(131)は、複数の進相コンデンサ(Ca,Cb,Cc)と複数のリアクトル(La,Lb,Lc)とを含む。各進相コンデンサ(Ca,Cb,Cc)は、受電経路(112)のうち、調相設備(106)への各分岐配線(112c)上に、直列に接続されている。進相コンデンサ(Ca,Cb,Cc)は、3相の交流電源(103)の各相に対応して3つ設けられている。リアクトル(La,Lb,Lc)は、各進相コンデンサ(Ca,Cb,Cc)に対応して3つ設けられており、各リアクトル(La,Lb,Lc)は、各進相コンデンサ(Ca,Cb,Cc)に直列に接続されている。
 本実施形態2において、調相器(131)が進相コンデンサ(Ca,Cb,Cc)のみならずリアクトル(La,Lb,Lc)を含む理由は、仮に進相コンデンサ(Ca,Cb,Cc)が短絡故障した際に調相器(131)に流れる電流の大きさをリアクトル(La,Lb,Lc)によって絞ることができるためである。
  <電源力率測定器(104)>
 電源力率測定器(104)は、交流電源(103)の電源力率を測定するものであって、電力計またはスマートメータで構成されている。ビルや工場等の建物には、その時々の電力のみならず電源力率θαβをも測定する電力計が予め設けられている。本実施形態2では、この電力計を電源力率測定器(104)として利用するものである。電力計によって測定された電源力率θαβは、電源力率デマンド制御器(105)に入力される。
 このように、建物に既設の電力計またはスマートメータを電源力率測定器(104)として利用することにより、電源力率を計測するセンサや検出回路を、電力計及びスマートメータとは別途設ける必要がない。
 特に、電源力率測定器(104)は、スマートメータであることが望ましい。スマートメータは、通信機能を有しているため、電源力率測定器(104)は、測定結果である電源力率θαβを、当該通信機能を用いて無線方式で電源力率デマンド制御器(105)に送信することができる。これにより、電源力率測定器(104)と電源力率デマンド制御器(105)とを繋ぐ配線は不要となり、配線を引き回す作業を行わずに済む。従って、配線を繋ぐ工事や配線のためのコストを削減できる。
 具体的に、本実施形態2に係る電源力率測定器(104)は、電流検出部(141a,141b)、電圧検出部(142)及び電源力率演算部(143)を有する。
 電流検出部(141a,141b)は、交流電源(103)の受電経路(112)における電流値を検出する。詳しくは、電流検出部(141a,141b)は、高調波発生源である各負荷器(101,102)に分岐して流れる前の交流電源(103)の出力電流の値を検出する。この例では、電流検出部(141a,141b)は2つ設けられている。具体的に、電流検出部(141a)は、交流電源(103)におけるR相の電流値(Irs)を検出する。電流検出部(141b)は、交流電源(103)におけるT相の電流値(Its)を検出する。
 電圧検出部(142)は、交流電源(103)の各相の出力端子に接続され、交流電源(103)の線間電圧(Vrs,Vst,Vtr)を検出する。
 電源力率演算部(143)は、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。電源力率演算部(143)は、入力された電流検出部(141a,141b)の検出結果(Irs,Its)及び電圧検出部(142)の検出結果(Vrs,Vst,Vtr)を、下式(1)及び下式(2)に当てはめて、回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを演算する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 次いで、電源力率演算部(143)は、上式(1)及び上式(2)で求めた回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを、下式(3)に当てはめて、有効電力Pαを演算する。また、電源力率演算部(143)は、上式(1)及び上式(2)で求めた回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを、下式(4)に当てはめて、無効電力Pβを演算する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 電源力率演算部(143)は、上記有効電力Pα及び上記無効電力Pβそれぞれを下式(5)に当てはめて、交流電源(103)の電源力率θαβを演算する。即ち、電源力率演算部(143)によって求められる電源力率θαβは、実際の電源力率θαβを意味する。
Figure JPOXMLDOC01-appb-M000005
 このようにして得られた実際の電源力率θαβは、電源力率デマンド制御器(105)に入力される。
  <電源力率デマンド制御器(105)>
 電源力率デマンド制御器(105)は、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。この例では、電源力率デマンド制御器(105)は、電源力率演算部(143)とは別のマイクロコンピュータ及びメモリディバイスで構成されている。
 図5に示すように、電源力率デマンド制御器(105)は、電源力率測定器(104)及び各負荷器(101,102)と接続されており、電源品質としての電源力率測定器(104)の測定結果と、交流電源(103)の電源力率の目標値とに基づいて、各負荷器(101,102)の動作を制御する。
 本実施形態2に係る電源力率デマンド制御器(105)は、実際の電源力率θαβに伴う各負荷器(101,102)の運転状態の調整制御、ならびに、電源力率の目標値θαβ_refの調整制御を行う。このような制御を行うため、電源力率デマンド制御器(105)は、図6に示すように、負荷調整判断部(152)(制御信号生成部に相当)、第1平均力率算出部(153)、第2平均力率算出部(154)、及び力率目標値設定部(151)(目標値調整部に相当)を有する。負荷調整判断部(152)は、電源力率測定器(104)の測定結果及び電源力率の目標値θαβ_refに基づいて、負荷器(101,102)の運転状態を変化させるための制御信号である負荷器指令信号Fsを生成するものであって、減算部(161)、積分演算部(162)及び判定部(163)を有する。
 なお、各負荷器(101,102)の運転状態の調整制御は、負荷調整判断部(152)にて行われ、電源力率の目標値θαβ_refの調整制御は、第1平均力率算出部(153)、第2平均力率算出部(154)及び力率目標値設定部(151)にて行われる。
 なお、電源力率デマンド制御器(105)は、生成した負荷器指令信号Fsを、各負荷器(101,102)の調整部(101c,102c,)に送信するが、本実施形態2では、電源力率デマンド制御器(105)と各負荷器(101,102)とは配線によって接続されておらず、負荷器指令信号Fsの送信は無線方式で行われる。
 <各負荷器(101,102)の運転状態の調整制御>
 負荷調整判断部(152)の減算部(161)には、電源力率測定器(104)が測定した実際の電源力率θαβ(電源品質に相当)と、力率目標値設定部(151)が設定した電源力率の目標値θαβ_refとが入力される。減算部(161)は、電源力率の目標値θαβ_refから実際の電源力率θαβを減算する。減算部(161)は、減算した値を、積分演算部(162)に出力する。
 なお、上記減算した値は、例えば、真夏の最も暑い日の日中(14時~15時)において急激に空調負荷が上昇し空気調和装置である負荷器(101)の出力電力が上昇したことにより、負荷器(101)の出力電力が上昇し、実際の電源力率θαβが目標値θαβ_ref
から低下した場合等に、特に大きくなる。
 積分演算部(162)は、減算部(161)による減算結果(即ち、電源力率の目標値θαβ_refから実際の電源力率θαβを減算した結果)を、積分する。
 判定部(163)には、積分演算部(162)の積分結果が入力される。判定部(163)は、積分結果に基づき、基本波力率が電源力率の目標値θαβ_refに近づくように、負荷器(101,102)の運転状態を変化させる運転パラメータを制御する。具体的に、判定部(163)は、基本波力率(電源力率)を目標値θαβ_refに近づけるべく、運転パラメータを調整して負荷器(101,102)の運転能力を下げるための負荷器指令信号Fsを負荷器(101,102)に出力する。この負荷器指令信号Fsによって負荷器(101,102)の運転能力が減少すると、負荷器(101,102)の出力電力は低下して出力電力には余裕が生じ、基本波力率(電源力率)は上昇して目標値θαβ_refと概ね一致するようになる。
 ここで、上記運転パラメータとは、既に述べたように、負荷器(101,102)の電力、負荷器(101,102)の電流、負荷器(101,102)に含まれる電動機の回転速度等の少なくとも1つを云う。負荷調整判断部(152)は、実際の電源力率θαβが目標値θαβ_refに近づくように運転パラメータを調整することで、負荷器(101,102)の運転能力を強制的に絞り、実際の電源力率θαβと力率の目標値θαβ_refとが一致する状態を作り出す“電源力率デマンドコントロール”を実施する。
 また、基本波力率(電源力率)が目標値θαβ_refと一致している状態がある期間継続すると、判定部(163)は、負荷器指令信号Fsをオフにする。そのことにより、負荷器(101,102)は、強制的な運転能力の低下から解放され、通常の指令に基づく制御により通常運転を行う。また、判定部(163)は、負荷器指令信号Fsをオフにした際、積分演算部(162)に対し、積分演算部(162)の積分結果をリセット(ゼロにクリアする)ためのReset信号を出力する。これにより、積分演算部(162)の積算結果(出力信号)はゼロになり、積分演算部(162)は、次に実際の電源力率θαβが力率の目標値θαβ_refより低下した場合に対応できるようになる。
 <電源力率の目標値θαβ_refの調整制御>
 電源力率デマンド制御器(105)の第1平均力率算出部(153)は、図7に示すように、24個の記憶素子(171a~171x)と、24個の加算部(173a~173x)と、1個の1日平均力率算出部(175)とで構成される。
 記憶素子(171a~171x)は、1日(24時間)を1時間毎に区切った際の各時間帯に対応して24個設けられており、各記憶素子(171a~171x)は、各時間帯(1時間毎)の電源力率θαβを記憶する。
 各加算部(173a~173x)は、各記憶素子(171a~171x)の電源力率θαβを順次足し合わせる。例えば、加算部(173a)は、現在の電源力率θαβに1時間前の時間帯の電源力率θαβを足し合わせる。加算部(173b)は、加算部(173a)の加算結果に記憶素子(171b)が記憶する2時間前の時間帯の電源力率θαβを足し合わせる。加算部(173x)は、加算部(173w)の加算結果に記憶素子(171x)が記憶する24時間前の時間帯の電源力率θαβを足し合わせる。この加算部(173x)の加算結果は、1日(即ち24時間)の電源力率θαβの合計値に等しい。
 1日平均力率算出部(175)は、1日の電源力率θαβの合計値を25で除算して、24時間の平均である平均電源力率θαβav24hを算出する。図6に示すように、平均電源力率θαβav24hは、第2平均力率算出部(154)に入力される。
 第2平均力率算出部(154)は、図8に示すように、14個の記憶素子(183a~183n)と、1個の加算部(182)と、1個の15日平均力率算出部(181)とで構成される。
 記憶素子(183a~183n)は、1日毎に対応して合計14日分設けられている。各記憶素子(183a~183n)は、1日毎の平均電源力率θαβav24hを記憶する。つまり、この例では、1日毎の平均電源力率θαβav24hを、1日前から14日前まで、日毎に記憶できるようになっている。
 加算部(182)は、全ての記憶素子(183a~183n)が記憶する1日前から14日前までの日毎の平均電源力率θαβav24hと、本日の平均電源力率θαβav24hとを加算する。従って、加算部(182)の加算結果は、本日から14日前まで、即ち15日分の平均電源力率θαβav24hの合計値である。
 15日平均力率算出部(181)は、15日分の平均電源力率θαβav24hの合計値を15で除算して、15日間の平均電源力率θαβav15dayを算出する。図6に示すように、15日間の平均電源力率θαβav15dayは、力率目標値設定部(151)に入力される。
 力率目標値設定部(151)は、図9に示すように、1個の減算部(191)と、1個の加算部(192)とで構成され、電源力率測定器(104)の測定結果に基づいて電源力率の目標値θαβ_refを算出により調整及び設定する。
 減算部(191)は、力率目標値の基準値θαβ_reffrから、電源力率測定器(104)の測定結果を用いて演算された値である15日間の平均電源力率θαβav15dayを減算する。
 ここで、上記力率目標値の基準値θαβ_reffrは、0.995~1.004の間の値に設定されていることを特徴とする。電源力率を評価する場合、小数第3位を四捨五入することになっている。そのため、力率目標値の基準値θαβ_reffrを0.995~1.004の間の値とすることにより、力率目標値設定部(151)が調整及び設定する電源力率の目標値θαβ_refも、自ずと0.995~1.004の間の値となる。すると、当該電源力率の目標値θαβ_refに基づいて制御される実際の電源力率は“1”と評価されるためである。
 加算部(192)は、減算部(191)の減算結果と力率目標値の基準値θαβ_reffrとを加算する。この加算結果が電源力率の目標値θαβ_refであり、図6に示すように負荷調整判断部(152)に入力される。
 そのことにより、単位時間を30日間(1ヶ月)とした場合、先の15日間(第1時間に相当)の平均電源力率θαβav15dayが力率目標値の基準値θαβ_reffrより高い値になっていると、その後の15日間(第2時間に相当)の電源力率の目標値θαβ_refを力率目標値の基準値θαβ_reffrより低い値にして、単位時間である30日間(1ヶ月間)の平均力率を力率目標値の基準値θαβ_reffrで設定された0.995~1.004にすることができる。つまり、先の15日間の平均電源力率θαβav15dayが力率目標値の基準値θαβ_reffrより高い結果であったならば、次の15日間は電源力率の目標値θαβ_refを先の15日間よりも下げることにより、各負荷器(101,102)には、電力、電流、速度などの運転能力を積極的に下げるための負荷器指令信号Fsを極力出力させないようにすることができる。逆に、先の15日間の平均電源力率θαβav15dayが力率目標値の基準値θαβ_reffrより低い結果であったならば、次の15日間は電源力率の目標値θαβ_refを先の15日間よりも上げることにより、単位時間である30日間の実際の電源力率の平均値は、力率目標値の基準値θαβ_reffrに確実に近づくことができる。これらにより、電気料金について所望の力率割引の適用を受けたり、電気料金における基本料金にペナルティが課されることを回避したりすることができる。
 図10(a)は、電源力率の経時的変化を示し、図10(b)は、1日平均力率算出部(175)で算出された24時間の平均である平均電源力率θαβav24hの経時的変化を示す。図10にて縦に延びる破線同士の間隔は1時間を示し、図10(a)の太い実線は、電源力率の1時間毎の変化の様子を示す。また、図10(b)の太い実線で示された平均電源力率θαβav24hは、直近の24時間の電源力率の平均値であるため、24時間毎に更新される。つまり、図10(b)に示す時刻t1では、時刻t0~時刻t1までの24時間の平均である平均電源力率θαβav24hが算出され更新されたことが表されている。
 次に、図11(a)は、24時間の平均である平均電源力率θαβav24h、図11(b)は、15日間の平均電源力率θαβav15day、図11(c)は、力率目標値設定部(151)の減算部(191)の出力信号、図11(d)は、力率目標値設定部(151)の出力信号である電源力率の目標値θαβ_refの、経時的変化を示す。図11にて縦に延びる破線同士の間隔は1日(24時間)を示し、日時d1から日時d2までの間、日時d2から日時d3までの間、日時d3から日時d4までの間は、それぞれ15日間を示す。単位時間を1ヶ月であり1ヶ月が30日であるとした際、30日のうち、日時d2から日時d3までの15日間は「第1時間」に相当し、第1時間の後の日時d3から日時d4までの15日間は「第2時間」に相当する。
 即ち、本実施形態2では、第1時間と第2時間との合計が単位時間と等しく、第1時間と第2時間とが等しく、且つ、第1時間及び第2時間が単位時間の半分の時間である場合を例示している。
 図11(b)では、日時d2において、日時d1から日時d2までの各日毎の平均電源力率θαβav24hを用いて得られた15日間の実際の電源力率の平均値が、15日間の平均電源力率θαβav15dayとして更新される。その15日間の平均電源力率θαβav15dayを力率目標値の基準値θαβ_reffrから減算した結果が図11(c)となり、図11(c)に示す減算部(191)の出力信号を力率目標値の基準値θαβ_reffrに加算した値が図11(d)の電源力率の目標値θαβ_refとなる。
 図11より、第1時間における15日間の平均電源力率θαβav15dayが力率目標値の基準値θαβ_reffrより大きい場合は、第1時間の次の第2時間である15日間では、電源力率の目標値θαβ_refを第1時間の間よりも下げる。これにより、実際の電源力率が目標値θαβ_refよりも高い状態での負荷器(101,102)の運転能力を積極的に絞ることで電源力率を改善させるような制御を行わずに、電源力率の平均値の変動をできる限り抑えることができる。従って、例えば真夏の最も暑い日の日中(14時~15時)であるにも関わらず、負荷器(101)である空気調和装置の運転能力を下げたり運転を停止したりするようなことを、回避もしくは最小限に留めることができる。そのため、建物内の環境の快適性を保つとともに、できるだけ高い電源力率による所望の力率割引の提供を受けることを両立することができる。
 <効果>
 本実施形態2では、電源品質である電源力率の目標値θαβ_refと実際の電源力率θαβ(即ち、実際の電源品質)とに基づいて負荷器(101,102)の運転状態は変化するが、当該目標値θαβ_refは、固定された値ではなく、実際の電源力率θαβに基づいて調整される値となっている。このように、目標値θαβ_refを可変値とすることにより、負荷器(101,102)の運転能力を変更することを最小限にしつつ、電源力率制御システム(200)が構築された場所における電源力率の最適化が図られる。即ち、負荷器(101,102)の運転能力を積極的に変更させた結果電源力率が最適となる制御ではなく、電源力率の目標値θαβ_ref自体を変更して電源力率を最適にする制御を行う。これにより、例えば、電源力率の低下の抑制及び電源力率の改善を図ることができ、電気料金に含まれる基本料金を安くしたり、電気料金にペナルティが課されることを回避したりすることができる。
 本実施形態2では、電源力率の目標値θαβ_refを調整する単位時間における電源力率θαβ、特に電源力率θαβの平均値を用いて、電源力率の目標値θαβ_refが調整される。
 具体的に、本実施形態2では、単位時間のうち、第1時間における平均電源力率θαβav15dayが力率目標値の基準値θαβ_reffrを超えている場合、単位時間のうち第1時間の後の第2時間における電源力率の目標値θαβ_refを、第1時間における電源力率の目標値θαβ_refよりも低くする。第1時間における平均電源力率θαβav15dayが力率目標値の基準値θαβ_reffrを下回る場合、第2時間における電源力率の目標値θαβ_refを、第1時間における電源力率の目標値θαβ_refよりも高くする。これにより、単位時間における電源力率の目標値θαβ_refの平均値の変動はできる限り抑えられるため、結果的に、単位時間における電源力率θαβの最適化がより確実に図られる。
 ここで、本実施形態2では、第1時間及び第2時間の合計時間は、単位時間と等しい。特に、第1時間及び第2時間は、単位時間の半分の時間となっている。これにより、第2時間における目標値θαβ_refの調整がし易くなるため、単位時間の間の目標値θαβ_refの平均値が変動しないようにすることが比較的容易に実現できる。
 電源力率の値が電気料金に影響を与える期間は「1ヶ月」である場合がある。これに対し、本実施形態2では、単位時間である「1ヶ月」間における電源力率の目標値θαβ_refの平均値の変動が抑えられる。従って、電源力率の平均値θαβav15dayに基づく電気料金の割引の適用を確実に受けたり、電源力率の低下度合いに基づく基本料金のペナルティが課されることを確実に抑制したりすることができる。
 ビル等の建物には、電力計が接続されている。この電力計は、電力以外にも電源力率も計測していることが多い。そこで、本実施形態2では、当該電力計を電源力率測定器(104)として利用しているため、特別に電源力率を計測するためのセンサや検出回路を取り付ける必要がない。従って、別途センサ及び検出回路を取り付けるための工事が不要であり、センサ及び検出回路を設けずに済む分コストを削減できる。
 本実施形態2では、電源力率測定器(104)は、測定結果を、負荷調整判断部(152)を含む電源力率デマンド制御器(105)に無線方式で送信する。これにより、電源力率測定器(104)と電源力率デマンド制御器(105)とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本実施形態2では、負荷調整判断部(152)を含む電源力率デマンド制御器(105)は、生成した負荷器指令信号Fsを負荷器(101,102)の調整部(101c,102c)に無線方式で送信する。これにより、電源力率デマンド制御器(105)と負荷器(101,102)とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本実施形態2では、負荷器(101)が空気調和装置である。ビル等の建物を設計する場合、空気調和装置の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置の仕様は自ずと決定する。そのことから、建物の建設時に電源力率デマンド制御器(105)等と空気調和装置間の通信線を接続することができ、電源力率によって空気調和装置の運転能力を変更できる環境を、簡単に作りやすくなる。
 本実施形態2では、アクティブフィルタ(101b)が空気調和装置に組み込まれている。また、電源力率制御システム(200)は、調相器(131)を更に備える。これらにより、空気調和装置の力率を高く保つことができるため、実際の電源力率θαβを電源力率の目標値θαβ_refにできる限り早く収束させることができる。
 <実施形態2の変形例>
 図12に示すように、電源力率制御システム(200)は、調相器(131)に代えて、アクティブフィルタ(130)を備えていても良い。アクティブフィルタ(130)は、交流電源(103)に対し負荷器(101,102)と並列に接続され、該負荷器(101,102)にて発生する高調波電流の低減を行うものである。アクティブフィルタ(130)は、電源力率デマンド制御器(105)により制御される。これにより、負荷器(101,102)の力率を高く保つことができるため、電源力率を目標値にできる限り早く収束させることができる。なお、この場合、負荷器(101)に別途アクティブフィルタが組み込まれていなくても良い。
 負荷器(101)は、空気調和装置以外であってもよい。負荷器(101)は、例えばビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明等であってもよい。
 電源力率測定器(104)は、建物内の電力計(スマートメータ等)である必要はない。
 電源力率測定器(104)は、無線方式のタイプでなくてもよい。
 電源力率デマンド制御器(105)は、無線方式のタイプでなくてもよい。
 負荷器(101)に、アクティブフィルタ(101b)が組み込まれていなくても良い。
 電源力率の目標値θαβ_refの調整において、単位時間の電源力率の"平均値”が使用されるのではなく、その時々の実際の電源力率θαβそのものが使用されてもよい。
 単位時間のうち、前半の第1時間における電源力率の平均値θαβav15dayが力率目標値の基準値θαβ_reffrを超える場合、後半の第2時間では電源力率の目標値θαβ_refを低くすると説明した。しかし、電源力率の目標値θαβ_refを低下させるタイミングはこれに限定されることない。例えば、電源力率の平均値が力率目標値の基準値θαβ_reffrを超過していると判断した場合、直ちに電源力率の目標値θαβ_refを低くしても良い。電源力率の平均値が力率目標値の基準値θαβ_reffrを下回っている場合も同様である。
 上記単位時間は、1ヶ月に限定されない。また、単位時間が1ヶ月の場合であっても、1ヶ月の日数は、30日に限定されない。
 第1時間及び第2時間は、単位時間の半分でなくてもよい。
 第1時間及び第2時間の合計時間は、単位時間よりも短くても良い。例えば、短時間を28日とした場合、第1時間及び第2時間の双方は、5日間や10日間であることができる。このように、第1時間及び第2時間の合計時間が単位時間よりも短いことにより、合計時間と単位時間との関係によっては、単位時間の間に電源力率の目標値θαβ_refを複数回変更することも可能である。これにより、単位時間における電源力率の目標値θαβ_refの平均値の変動を、きめ細かく抑えることができる。
 また、第1時間が5日間であって第2時間が10日間のように、第1時間と第2時間とは、等しくなくても良い。
 1台の負荷器(101)に対し複数台の調相器(131)またはアクティブフィルタ(130)が設けられていてもよい。
 調相器(131)は、進相コンデンサ(Ca,Cb,Cc)のみの構成であってもよい。
 負荷器(101,102)が空気調和装置である場合、空気調和装置は、冷房及び暖房のみを行う装置に限定されない。空気調和装置には、冷凍、換気、調湿が可能なものも含まれる。
 ≪実施形態3~実施形態10に関して≫
 工場及びビル等においては、電動機等に電力を供給する動力源として、大型のインバータ装置が多数設置されている。インバータ装置は、他装置に悪影響を及ぼす高調波を発生する高調波発生源となる場合がある。
 そのため、商用電源(交流電源)からの電力が送られる電力系統にアクティブフィルタ装置が設けられる。アクティブフィルタ装置は、インバータ装置が接続された上記電力系統の高調波電流を検出し、検出した高調波電流とは逆位相の電流を生成して当該電力系統に供給することにより、当該電力系統における高調波を低減させている。これにより、当該電力系統の電圧歪み及び電流歪みなどが軽減され、他装置への高調波による悪影響が抑制される。高調波による悪影響を抑制することにより、力率が改善される。
 アクティブフィルタ装置の設計時、インバータ装置等の、高調波発生源となる負荷器の仕様が不明確であると、アクティブフィルタ装置の容量を適切な値に決定することは困難となる。そのため、この場合には、どのような大きさの高調波にも対応して負荷器の基本波力率を改善できるように、比較的大きな容量のアクティブフィルタが設置されることが多い。例えば、変圧器が設置される建物では、容量がこの変圧器の容量の約3分の1程度であるアクティブフィルタ装置が設置される。しかしこれでは、アクティブフィルタ装置の容量は実際の負荷に対して非常に大きく、オーバースペックな容量を有するアクティブフィルタ装置が設置されることとなる。アクティブフィルタ装置は、容量が大きい程高額となる。
 また、建物には、高調波発生源となるインバータ装置等を備える負荷器として、空気調和装置、エレベータ装置、照明装置、ポンプ装置等が設置される。しかし、これらの装置が最大負荷電力で動作している時間帯は限りなく少ない。例えば、負荷器である空気調和装置が最大負荷電力で動作する時間帯は、真夏の時期であって且つ最も気温が上昇する時間帯(例えば、日本においては8月初旬から中旬の14時頃)のみの場合が殆どである。また、一部の負荷器(例えば空気調和装置)が最大負荷電力で動作している時に、他の負荷器(例えばエレベータ装置及び照明装置等)が最大負荷電力で動作している可能性は限りなく少ない。
 すると、比較的大きな容量のアクティブフィルタ装置が設置されても、アクティブフィルタ装置が自身の能力(具体的には基本波力率を改善させる能力)を最大限発揮することはなく、高額なアクティブフィルタ装置を有効に利用できているとは言えない状況となる。
 また、建物には、調相装置として、アクティブフィルタ装置に代えて無効電力の位相を調整する調相器が設置されている場合がある。調相器に対しても、上述したアクティブフィルタ装置同様のことが言える。
 上記点に鑑み、以下の実施形態3~実施形態10は、容量の比較的小さい調相装置やアクティブフィルタ装置を用いても、負荷器の基本波力率の改善を問題なく実行することにより、電源力率を改善して最適にするための技術について説明する。
 なお、以下では、実施形態3~実施形態6を、調相装置に関する実施形態として記載している。このうち、実施形態4~実施形態6は、実施形態3を基本とした、いわば実施形態3の変形例に相当する。また、実施形態7~実施形態10を、アクティブフィルタ装置に関する実施形態として記載している。このうち、実施形態8~実施形態10は、実施形態7を基本とした、いわば実施形態7の変形例である。
 ≪実施形態3≫
 <空調システムの概要>
 図13は、本実施形態3に係る空調システム(300)の構成を示すブロック図である。この例では、空調システム(300)は、複数の負荷器(201,202)と、調相装置に相当するアクティブフィルタ装置(204)とを備える。本実施形態3では、複数の負荷器(201,202)のうち、負荷器(201)が空気調和装置である場合を例に採る。
 空調システム(300)は、マンション、工場、ビル、戸建て住宅等(以下、ビル等)に設置され、空気調和装置である負荷器(201)によって室内の空気調和が行われる。
 上記ビル等には、交流電源(203)を含む電力系統から電力が供給されている。この例では、交流電源(203)は、三相の交流電源(例えば三相の商用電源)であり、複数の負荷器(201,202)に電力を分岐して供給する。
 また、本実施形態3では、負荷器(202)が、インバータ回路等の高調波電流の発生源となり得る回路を備えている機器(高調波発生負荷器と命名する)である場合を例に採る。負荷器(202)としては、ビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明、更には、アクティブフィルタ等の高調波対策を実施していない、空気調和装置である負荷器(201)とは別の空気調和装置等を例示できる。
 各負荷器(201,202)は、制御器(240)(運転状態制御部に相当)と接続された調整部(201c,202c)を含む。調整部(201c,202c)それぞれは、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。調整部(201c,202c)は、制御器(240)から出力される負荷器指令信号Fs(後述)に基づき、各負荷器(201,202)の運転状態を変化させる運転パラメータを調整するものである。運転パラメータとは、具体的には負荷器(201,202)の電力、負荷器(201,202)の電流、負荷器(201,202)に含まれる電動機の回転速度等である。
 <負荷器(201)の構成>
 空気調和装置である負荷器(201)は、上記調整部(201c)の他に、冷媒回路(図示せず)及び電力変換装置(201a)を有する。
 冷媒回路は、圧縮機、室外側熱交換器、膨張機構、室内側熱交換器が冷媒配管によって接続されることで構成される。冷媒回路内には冷媒が充填されており、冷媒が冷媒回路内を循環することによって、室内は冷却または暖められる。
 電力変換装置(201a)は、詳細は図示していないが、交流電源(203)に接続されており、コンバータ回路及びインバータ回路を有する。電力変換装置(201a)は、交流電源(203)から交流電力を供給されると、これを所望周波数及び所望電圧に変換し、変換後の電力を圧縮機(より詳しくは圧縮機が備える電動機)に供給する。それにより、圧縮機は稼働して冷媒回路が機能し、その結果、室内の空気調和が行われる。
 空気調和装置である負荷器(201)において、電力変換装置(201a)や圧縮機の電動機が稼働すると、高調波電流が発生する場合がある。この高調波電流は、負荷器(201)に電力を供給する電流経路を介して、交流電源(203)に流出する可能性がある。なお、上述したように、負荷器(201)のみならず、高調波発生負荷器である負荷器(202)からも、高調波電流が、負荷器(202)に電力を供給する電流経路を介して交流電源(203)に流出する可能性がある。
 このような高調波電流は、一般的には、交流電源(203)側への流出レベルが規制されている。そのため、本実施形態3に係る空調システム(300)は、アクティブフィルタ装置(204)によって、上記高調波電流の低減を図っている。また、設備容量や省エネルギーの観点などから、配電・受電端の基本波力率の改善が求められているところ、本実施形態3のアクティブフィルタ装置(204)は、基本波力率の改善機能も備えている。
 以下では、上記アクティブフィルタ装置(204)の構成について説明する。
 <アクティブフィルタ装置(204)>
 アクティブフィルタ装置(204)は、交流電源(203)に接続されており、高調波発生負荷器である上記負荷器(201,202)から流出する高調波電流を打ち消す機能を有する。即ち、アクティブフィルタ装置(204)は、交流電源(203)の電流経路(以下、受電経路(212))における電流が正弦波に近づくように補償電流を流す。より具体的には、アクティブフィルタ装置(204)は、受電経路(212)に現れている高調波電流とは逆位相の補償電流を生成し、受電経路(212)に供給する。
 そして、アクティブフィルタ装置(204)は、上述した補償電流を流すことにより、基本波力率を改善する。この例では、基本波の無効成分も補償する補償電流を流すようにアクティブフィルタ装置(204)を構成して、基本波力率の改善を行う。
 空気調和装置である負荷器(201)において発生する高調波電流が最も大きくなるのは、空気調和装置の負荷が最も大きな場合(例えば冷房の最大出力時)と考えられる。負荷器(202)が空気調和装置であると仮定した場合も、該負荷器(202)において発生する高調波電流についても同様である。
 そのため、一般的には、アクティブフィルタ装置(204)は、負荷器(201,202)全てが一斉に最大負荷となった時の高調波電流を想定して、能力(生成可能な電力の大きさ)、即ち容量が設定される。ところが、負荷器(201,202)は、最大負荷の状態で使用されるよりも、最大負荷よりも小さい負荷で使用される場合の方が多い。すると、上記のように能力が設定されたアクティブフィルタ装置(204)は、負荷器(201,202)の高調波電流対策による力率改善のみに能力を使用したとすれば、能力が余剰となる期間が多いと考えられる。
 それ故、本実施形態3では、アクティブフィルタ装置(204)の能力(即ち容量)を、上述したような一般的な設定方法よりも小さく設定する。一例として、アクティブフィルタ装置(204)の能力(即ち容量)は、負荷器(201,202)全てが一斉に最大負荷となった時の高調波電流に対応する能力を100%とした場合の、約80%程度に設定される。能力(即ち容量)が大きい程アクティブフィルタ装置(204)は高額となるが、本実施形態3では、能力を比較的小さく設定するため、アクティブフィルタ装置(204)のコストダウンを図ることができる。
 本実施形態3に係るアクティブフィルタ装置(204)は、能力が比較的小さいながらも、上述した高調波電流対策による力率改善の機能を問題なく発揮して電源力率を改善させるための制御を行うが、これについては後述する。
 上記機能を実現するため、本実施形態3に係るアクティブフィルタ装置(204)は、図13に示すように、電流源(230)(力率改善部に相当)、第1電流検出器(205a,205b)(電流検出部に相当)、第2電流検出器(225a,225b)、電圧検出器(260)、及び運転状態制御部に相当する制御器(240)を備える。
  ―電流源―
 電流源(230)は、高調波電流の低減及び基本波力率改善を行うための電流(すなわち補償電流)を生成することにより基本波力率を改善する、いわばアクティブフィルタである。
 電流源(230)の出力端子は、負荷器(201,202)の受電経路(212)に接続されており、生成された補償電流は受電経路(212)に出力される。具体的に、電流源(230)は、交流電源(203)に対し負荷器(201,202)と並列に接続されている。
 図示していないが、本実施形態3の電流源(230)は、いわゆるインバータ回路を用いて構成されている。電流源(230)には、制御器(240)より、後述するスイッチング指令値(G)が入力される。電流源(230)は、スイッチング指令値(G)に応じてスイッチングすることによって、補償電流を生成する。
  -第1電流検出器-
 第1電流検出器(205a,205b)は、交流電源(203)の受電経路(212)における電流値を検出する。詳しくは、第1電流検出器(205a,205b)は、交流電源(203)から出力される出力電流が、電流源(230)及び各負荷器(201,202)に分岐して流れる前の交流電源(203)の出力電流の値を検出する。
 この例では、第1電流検出器(205a,205b)は、2つ設けられている。具体的に、第1電流検出器(205a)は、交流電源(203)におけるR相の電流値(Irs)を検出する。第1電流検出器(205b)は、交流電源(203)におけるT相の電流値(Its)を検出する。それぞれの第1電流検出器(205a,205b)の検出結果は、制御器(240)に送信される。
 それぞれの第1電流検出器(205a,205b)の構成には、特に限定はないが、例えばカレントトランスを採用することなどが考えられる。
 また、それぞれの第1電流検出器(205a, 205b)は、検出結果を制御器(240)に無線方式で送信する構成となっている。交流電源(203)とアクティブフィルタ装置(204)との距離は、20~30メートル離れることがある。そのため、第1電流検出器(205a,205b)からアクティブフィルタ装置(204)までを配線で接続すると、この配線を長く引き回すこととなり、また、第1電流検出器(205a,205b)とアクティブフィルタ装置(204)との接続作業自体にかなりの手間がかかってしまう。これに対し、本実施形態3では、第1電流検出器(205a,205b)の検出結果が制御器(240)に無線方式で送信されるため、上記配線自体が不要となり、配線を引き回す作業を行わずに済む。
 また、第1電流検出器(205a,205b)に流れる電流により第1電流検出器(205a,205b)を貫く磁束が時間に対して変化する現象を電磁誘導というが、その電磁誘導によって生じる起電力である誘導起電力を、第1電流検出器(205a,205b)を駆動させる電源(例えば通信のための電源)として利用してもよい。そのことにより、第1電流検出器(205a,205b)は、無電源方式で動作(すなわち第1電流検出器(205a,205b)の外部から電源を接続せずに動作)でき、第1電流検出器(205a,205b)を外部の電源と接続する作業が不要となる。
  -第2電流検出器-
 第2電流検出器(225a,225b)は、アクティブフィルタ装置(204)に入力される電流値(以下、電流値(Ir2a,It2a)と命名する)を検出する。
 この例では、第2電流検出器(225a,225b)は、2つ設けられている。第2電流検出器(225a)は、交流電源(203)から電流源(230)に入力されるR相の電流値(Ir2a)を検出し、第2電流検出器(225b)は、交流電源(203)から電流源(230)に入力されるT相の電流値(It2a)を検出する。それぞれの第2電流検出器(225a,225b)によって検出された電流値(Ir2a,It2a)は、制御器(240)に送信される。
 それぞれの第2電流検出器(225a,225b)の構成は、特に限定はないが、例えばカレントトランスを採用することなどが考えられる。
 また、それぞれの第2電流検出器(225a,225b)が電流値(Ir2a,It2a)を送信する態様は、有線方式及び無線方式のいずれであってもよい。
 また、第2電流検出器(225a,225b)は、上記第1電流検出器(205a,205b)と同様、無電源方式で動作できる構成であってもよい。
 なお、図1では、第2電流検出器(225a,225b)が、アクティブフィルタ装置(204)に入力される3相分の電流(Ir2a,Is2a,It2a)のうち、2相分の電流(Ir2a,It2a)に対応して2つ設けられた例を示している。しかし、第2電流検出器は、3相分の電流(Ir2a,Is2a,It2a)に対応して3つ設けられても良い。
  -電圧検出器-
 電圧検出器(260)は、交流電源(203)の各相の出力端子に接続されている。電圧検出器(260)は、交流電源(203)の線間電圧(Vrs,Vtr,Vst)を検出するセンサである。
  -制御器-
 制御器(240)は、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。図13に示すように、制御器(240)は、電流源(230)、第1電流検出器(205a,205b)、第2電流検出器(225a,225b)、電圧検出器(260)及び各負荷器(201,202)に接続されており、各検出器(205a,205b,225a,22b,260)の検出結果に基づいて、電流源(230)及び各負荷器(201, 202)の動作を制御する。
 本実施形態3に係る制御器(240)は、電流源(230)の出力電流の調整制御、及び、実際の交流電源(203)の電源力率に基づく各負荷器(201,202)の運転状態の調整制御を行う。このような制御を行うため、制御器(240)は、図14のブロック図として例示するように、位相検出部(246)、第1電流演算部(245)、第2電流演算部(244)、負荷電流演算部(243)、電流指令演算部(242)、ゲートパルス発生器(241)、電力演算部(247)、力率演算部(248)、力率目標値設定部(249)、及び負荷調整判断部(250)を有する。負荷調整判断部(250)は、減算部(251)、積分演算部(252)及び判定部(253)を有する。
 このうち、電流源(230)の出力電流の調整制御は、主に、位相検出部(246)、第1電流演算部(245)、第2電流演算部(244)、負荷電流演算部(243)、電流指令演算部(242)及びゲートパルス発生器(241)にて行われる。実際の交流電源(203)の電源力率に基づく各負荷器(201,202)の運転状態の調整制御は、電力演算部(247)、力率演算部(248)、力率目標値設定部(249)及び負荷調整判断部(250)にて行われる。
  <電流源(230)の出力電流の調整制御>
 位相検出部(246)には、電圧検出器(260)が検出した交流電源(203)の線間電圧(Vrs,Vst,Vtr)のうち、1相分の線間電圧(Vrs)が入力される。位相検出部(246)は、入力された線間電圧(Vrs)を用いて受電経路(212)における電源電圧の位相を検出し、検出した位相を第1電流演算部(245)及び第2電流演算部(244)に出力する。
 第1電流演算部(245)には、位相検出部(246)によって検出された電源電圧の位相、及び、第1電流検出器(205a,205b)によって検出された交流電源(203)の出力電流(Irs,Its)が入力される。第1電流演算部(245)は、入力された電源電圧の位相及び交流電源(203)の出力電流(Irs,Its)に基づいて、高調波電流の補償(高調波電流の低減)と、基本波の無効成分の補償(基本波の力率改善)の双方を行うために必要な電流(第1電流値(i1)とする)を求め、当該第1電流値(i1)を負荷電流演算部(243)に出力する。より具体的には、第1電流演算部(245)は、第1電流検出器(205a,205b)の検出結果(電流値(Irs,Its))から、高調波電流成分及び基本波の無効成分を抽出して、第1電流値(i1)として出力する。
 第2電流演算部(244)には、位相検出部(246)によって検出された電源電圧の位相、及び、第2電流検出器(225a,225b)によって検出された電流源(230)に入力される電流値(Ir2a,It2a)が入力される。第2電流演算部(244)は、入力された電源電圧の位相及び電流値(Ir2a,It2a)に基づいて、現時点での高調波電流の補償(高調波電流の低減)及び基本波の無効成分の補償(基本波の力率改善)の双方を行っているアクティブフィルタ装置(204)に流れ込む電流(第2電流値(i2)とする)を求め、当該第2電流値(i2)を負荷電流演算部(243)に出力する。より具体的には、第2電流検出器(225a,225b)の検出結果(電流値(Ir2a,It2a))から、高調波電流成分及び基本波の無効成分を抽出して、第2電流値(i2)として出力する。
 負荷電流演算部(243)は、高調波発生負荷器である各負荷器(201,202)に流れる電流を算出する。交流電源(203)の各相の出力電流値(Irs,Itr,Its)からアクティブフィルタ装置(204)の電流源(230)に入力される各相の電流値(Ir2a,Is2a,It2a)の減算により、各負荷器(201,202)に流れる電流の合計値が求められる。これを利用して、本実施形態3では、各負荷器(201,202)にて発生する高調波を抑制し、交流電源(203)付近の配電・受電端の基本波力率の改善、及び高調波電流の低減を実現している。具体的に、本実施形態3では、負荷電流演算部(243)は、各負荷器(201,202)に流れる電流の合計値を、第1電流演算部(245)の第1電流値(i1)から第2電流演算部(244)の第2電流値(i2)を減算することによって求め、求めた演算結果を電流指令演算部(242)に出力する。
 電流指令演算部(242)は、負荷電流演算部(243)の演算結果の逆位相の電流値を演算して、その値を電流指令値(Iref)としてゲートパルス発生器(241)に出力する。
 ゲートパルス発生器(241)は、電流源(230)を構成するインバータ回路におけるスイッチングを指示するためのスイッチング指令値(G)、を生成する。詳しくは、ゲートパルス発生器(241)は、電流源(230)が出力する電流値と上記電流指令値(Iref)との偏差に基づいてスイッチング指令値(G)を生成する動作を繰り返す、いわゆるフィードバック制御を行う。これにより、電流源(230)からは、電流指令値(Iref)に相当する電流(補償電流)が受電経路(212)に供給される。より詳しくは、ゲートパルス発生器(241)では、第2電流演算部(244)で求めた第2電流値(i2)が電流指令値(Iref)に一致するようなスイッチング指令値(G)を生成して電流源(230)に出力する。そのことにより、負荷器(201,202)に流れる電流に含まれている高調波成分とアクティブフィルタ装置(204)が出力する電流とは相殺され、交流電源(203)の出力電流(Irs,Itr,Its)は、高調波電流が除去された正弦波となり、力率が改善される。
  <各負荷器(201,202)の運転状態の調整制御>
 電力演算部(247)には、電圧検出器(260)が検出した交流電源(203)の3相分の線間電圧(Vrs,Vtr,Vst)、及び、第1電流検出器(205a,205b)が検出した交流電源(203)の出力電流(Irs,Its)が入力される。電力演算部(247)は、入力されたこれらの値を下式(6)及び下式(7)に当てはめて、回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを演算する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 次いで、電力演算部(247)は、上式(6)及び上式(7)で求めた回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを、下式(8)に当てはめて、有効電力Pαを演算する。また、電力演算部(247)は、上式(6)及び上式(7)で求めた回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを、下式(9)に当てはめて、無効電力Pβを演算する。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 力率演算部(248)は、電力演算部(247)で求められた有効電力Pα及び無効電力Pβそれぞれを下式(10)に当てはめて、交流電源(203)の電源力率θαβを演算する。即ち、力率演算部(248)によって求められる電源力率θαβは、実際の電源力率θαβを意味する。
Figure JPOXMLDOC01-appb-M000010
 力率目標値設定部(249)は、力率の目標値θαβ_refを予め設定する。なお、本実施形態3に係る力率目標値設定部(249)は、力率の目標値θαβ_refを、0.995~1.004の間の値に設定する。電源力率を評価する場合、小数第3位を四捨五入することになっている。そのため、力率の目標値θαβ_refが0.995~1.004の間の値に設定されることにより、当該力率の目標値θαβ_refに基づいて制御される実際の電源力率は、“1”と評価されるためである。
 負荷調整判断部(250)の減算部(251)には、力率演算部(248)が求めた実際の電源力率θαβと、力率目標値設定部(249)が設定した力率の目標値θαβ_refとが入力される。減算部(251)は、力率の目標値θαβ_refから実際の電源力率θαβを減算する。減算部(251)は、減算した値を、積分演算部(252)に出力する。
 積分演算部(252)は、減算部(251)による減算結果(即ち、力率の目標値θαβ_refから実際の電源力率θαβを減算した結果)を、積分する。
 判定部(253)には、積分演算部(252)の積分結果が入力される。判定部(253)は、積分結果に基づき、基本波力率が力率の目標値θαβ_refに近づくように、負荷器(201,202)の運転状態を変化させる運転パラメータを制御する。具体的に、判定部(253)は、基本波力率(電源力率)を力率の目標値θαβ_refに近づけるべく、運転パラメータを調整して負荷器(201,202)の運転能力を下げるための制御信号である負荷器指令信号Fsを、各負荷器(201,202)に出力する。この負荷器指令信号Fsによって負荷器(201,202)の運転能力が減少すると、アクティブフィルタ装置(204)の補償能力には余裕が生じるようになり、やがて基本波力率は上昇して力率の目標値θαβ_refと概ね一致するようになる。
 ここで、上記運転パラメータとは、各負荷器(201,202)の電力、各負荷器(201,202)の電流、電動機の回転速度等の少なくとも1つを云う。
 負荷器(201,202)の動作、アクティブフィルタ装置(204)の補償量、電源力率、負荷調整判断部(250)の動作の経時的変化の一例を図15に示す。図15(a)は、負荷器(202)の動作に相関する出力電力を示しており、この例では負荷器(202)としてポンプなどの一定負荷を想定している。図15(b)は、負荷器(201)の動作に相関する出力電力を示しており、この例では負荷器(201)として空気調和装置を想定している。時刻t0から時刻t2までの間、負荷器(202)は、時刻に関係なく、出力電力が一定となるような安定した動作を行っている。これに対し、時刻t0から時刻t2までの間、負荷器(201)は、空調負荷の上昇に伴い出力電力を上昇させて続けている。なお、この時刻t0から時刻t2までの間とは、真夏の最も暑い日の日中(14時~15時)で外気温度が異常に高くなり、急激に空調負荷が上昇していることを想定している。
 図15(c)は、アクティブフィルタ装置(204)の補償量を電力にて示している。時刻t0から時刻t1の間、アクティブフィルタ装置(204)の補償量は、上記負荷器(201)の出力電力の上昇に伴って上昇している。つまり、時刻t0から時刻t1までの間、負荷器(201)の出力電力の上昇分をアクティブフィルタ装置(204)が補償している。そのため、時刻t0から時刻t1までの間、図15(d)に示す電源力率は、概ね目標値の状態が維持されている。
 しかし、時刻t1以降、負荷器(201)の出力電力はなおも上昇し続けているが、アクティブフィルタ装置(204)の補償量は時刻t1の時点で限度値に達し、その後は限度値で一定である状態が続いている。そのため、時刻t1以降、電源力率は、負荷器(201)の出力電力の上昇とは対照的に、目標値から低下していく。これは、負荷器(201)の出力電力が上がっているものの、アクティブフィルタ装置(204)の補償能力は既に限度値に達しているため不足していることに起因する。
 そのため、時刻t0から時刻t1の間は、力率の目標値θαβ_refと実際の電源力率θαβとの間は差が生じておらず、図15(e)に示すように、負荷調整判断部(250)の積分演算部(252)の出力結果(出力信号)は概ね“0”のままである。しかし、時刻t1以降は、力率の目標値θαβ_refと実際の電源力率θαβとの間に差が生じ、積分演算部(252)の出力結果(出力信号)は増加する。
 時刻t2は、積分演算部(252)の出力結果(出力信号)が判定値に達した時点を表す。この時刻t2では、判定部(253)は、積分演算部(252)の出力結果(出力信号)を受けて、図15(f)に示すように、各負荷器(201,202)の運転状態を時刻t2以前とは異ならせるための負荷器指令信号Fsを(即ち、“オン”を示す負荷器指令信号Fs)、各負荷器(201,202)に出力する。その負荷器指令信号Fsにより、図15(a)(b)に示すように時刻t2から時刻t3の間、両負荷器(201,202)の運転状態は、出力電力が低下する方向に変化する。すると、図15(c)に示すように、時刻t2以降、両負荷器(201,202)の出力電力が低下しているためにアクティブフィルタ装置(204)の補償量は限度値から低下する。このことは、アクティブフィルタ装置(204)の補償量に余裕が生じていることを意味する。従って、図15(d)に示すように、実際の電源力率(即ち、実際の電源品質)は力率の目標値θαβ_ref(即ち、電源品質の目標値)と概ね一致する程度に回復することができる。
 このように、本実施形態3に係る制御器(240)は、実際の電源力率θαβが力率の目標値θαβ_refから低下すると、負荷器(201,202)の電力及び電流、電動機の回転速度等の少なくとも1つである運転パラメータを低下させるよう調整する。そのことにより、制御器(240)は、各負荷器(201,202)の運転能力を強制的に絞り、実際の電源力率θαβと力率の目標値θαβ_refとが一致する状態を作り出す“電源力率デマンドコントロール”を実施する。“電源力率デマンドコントロール”とは、基本波力率が力率の目標値θαβ_refに近づくように、本実施形態1に係る制御器(240)が、第1電流検出器(205a,205b)の検出結果に基づいて上記運転パラメータを調整する制御と言える。
 実際の電源力率θαβと力率の目標値θαβ_refとが一致している状態が、時刻t2からある期間(図15では時刻t2から時刻t3までの期間)経過すると、判定部(253)は、図15(f)に示すように、出力する負荷器指令信号Fsを時刻t0からt2までの間と同様、“オフ”にする。そのことにより、両負荷器(201,202)は、強制的な運転能力の低下から解放され、通常の指令に基づく制御により通常運転を行う。
 また、時刻t3では、判定部(253)は、図15(g)に示すように、積分演算部(252)の積分結果をリセット(ゼロにクリアする)ためのReset信号を出力する。このことにより、積分演算部(252)の積分結果(出力信号)はゼロになり、積分演算部(252)は、次に実際の電源力率θαβが力率の目標値θαβ_refより低下した場合に対応できるようになる。
 <効果>
 電源品質である電源力率は、基本波力率に高調波成分による力率を加えることによって得られる。本実施形態3では、上記基本波力率が電源力率の目標値θαβ_refに近づくように、負荷器(201,202)の運転状態が変更される。これにより、実際の電源品質である実際の電源力率θαβは、電源品質の目標値である電源力率の目標値θαβ_refに近づく。このように、ここでは、仮にアクティブフィルタ装置(204)の容量が小さくても、負荷器(201,202)の運転状態の制御によって負荷器(201,202)の運転能力が例えば減らす方向に調整されるため、アクティブフィルタ装置(204)の基本波力率を改善させる能力は回復する。これにより、アクティブフィルタ装置(204)の容量が比較的小さくとも、基本波力率の改善は問題なくなされる。従って、アクティブフィルタ装置(204)の容量を積極的に下げることができ、その分のコストダウンを図ることができる。
 具体的に、制御器(240)は、基本波力率が目標値に近づくように、第1電流検出器(205a,205b)の検出結果に基づいて運転パラメータを調整する。このように、運転パラメータの調整時に、実際に検出された交流電源(203)の出力電流を用いることにより、実際の電源力率θαβを把握することができる。従って、基本波力率をより確実に目標値θαβ_refに近づけるように運転パラメータを調整し易くなる。
 また、本実施形態3では、第1電流検出器(205a,205b)は、検出結果を制御部(240)に無線方式で送信する構成となっている。これにより、第1電流検出器(205a,205b)と制御部(240)とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 また、本実施形態3では、第1電流検出器(205a,205b)は、無電源方式で動作する構成となっている。これにより、第1電流検出器(205a,205b)を外部の電源と接続する作業が不要となる。
 また、本実施形態3では、調相装置がアクティブフィルタ装置(204)である場合を例示している。これにより、負荷器(201,202)の力率を高く保つことができるため、基本波力率をできる限り早く改善することができる。
 また、本実施形態3では、負荷器(201)が空気調和装置である。ビルや工場等の建物を設計する場合、空気調和装置の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置の仕様は自ずと決定する。そのことから、建物の建設時に制御器(240)等と空気調和装置間の通信線を接続することができ、電源力率によって空気調和装置の運転能力を変更できる環境を、簡単に作りやすくなる。
 ≪実施形態4≫
 図16は、実施形態3の変形例としての、実施形態4に係るアクティブフィルタ装置(304)を含む空調システム(400)の構成を示すブロック図である。実施形態4が実施形態3と異なる点は、高調波発生負荷器である他の負荷器(302)が単相電圧で駆動する機器であることと、他の負荷器(302)は、LEDなどの照明機器及び単相のファン・ポンプなどを想定していることである。特に、本実施形態4では、他の負荷器(302)(すなわち単相電圧で駆動する機器)の接続相が判明しない場合を想定して、3つの第1電流検出器(305a,305b,305c)が設けられている。
 なお、図16では、図13と対応する構成要素に、“330”等の番号を付しているが、その詳細は図13に係る実施形態3と同様である。従って、以下では、実施形態3と異なる点についてのみ説明する。
 3つの第1電流検出器(305a,305b,305c)それぞれは、交流電源(303)の各相(R,S,T)に対応して設けられており、対応する各相(R,S,T)の電流値を検出する。すなわち、本実施形態4では、負荷器(302)が単相交流で動作する機器であっても、3相すべての電流値を検出するため、電流値を確実に検出することができる。
 また、電圧検出器(360)は、交流電源(303)のR相及びS相に接続され、T相には接続されていない。従って、電圧検出器(360)は、交流電源(303)の線間電圧(Vrs)のみを検出して制御器(340)に入力する。これは、実施形態3にて述べたように、制御器(340)は、線間電圧(Vrs)のみを用いて受電経路(312)における電源電圧の位相を演算により検出するためである。他の線間電圧(Vst,Vtr)それぞれは、線間電圧(Vrs)から120度位相が変化している(具体的には、位相が120進むか遅れている)。このことから、本実施形態4に係る制御器(340)は、線間電圧(Vrs)から電源電圧の振幅も演算し、演算した電源電圧の振幅及び位相から他の線間電圧(Vst,Vtr)の電源電圧の位相及び振幅を求めることができる。このようにして求めた結果は、上式(6)に代入することができる。それ故、実際の線間電圧(Vst,Vtr)の検出を省略することが可能である。
 なお,線間電圧(Vst,Vtr)の検出の省略及び線間電圧(Vrs)に基づく他の線間電圧(Vst,Vtr)の演算は、上記実施形態3にて採用されてもよい。
 <効果>
 本実施形態4によれば、単相電圧で駆動する他の負荷器(302)が接続された場合において、交流電源(303)の各相(R,S,T)に対応して第1電流検出器(305a,305b,305c)が複数設けられている。そのため、他の負荷器(302)の接続相が不明であっても、3相すべての電流値を確実に把握することが可能となる。
 また、本実施形態4によれば、単相電圧で駆動する他の負荷器(302)が接続された場合において、実際の線間電圧(Vst,Vtr)の検出を省略している。これにより、アクティブフィルタ装置(304)のコストを不必要に上げることなく、高調波電流の低減及び基本波力率の改善を図ることが可能となる。
 また、本実施形態4は、上記実施形態3にて述べた効果も奏する。
 なお、本実施形態4において、単相電圧で駆動する負荷器(302)が、交流電源(303)のどの相に接続されるかが予め判明している場合、負荷器(302)が接続される相に第1電流検出器が設けられていてもよい。
 ≪実施形態5≫
 図17は、実施形態3の変形例としての、実施形態5に係るアクティブフィルタ装置(404)を含む空調システム(500)を示すブロック図である。実施形態5が実施形態3と異なる点は、図17に示すように、受電経路(412)のうち交流電源(403)の出力電流(Irs,Itr,Its)が各負荷器(401,402)に分岐するポイントから各負荷器(401,402)までを結ぶ配線(412a,412b)に、第1電流検出器(406a,406b,407a,407b)が接続されていることである。このことにより、各負荷器(401,402)が、最大負荷状態または軽負荷状態であるか等といった、各負荷器(401,402)の動作状態を判断することができる。
 なお、図17では、図13と対応する構成要素に、“430”等の番号を付しているが、その詳細は図13に係る実施形態3と同様である。従って、以下では、実施形態3と異なる点についてのみ説明する。
 具体的に、第1電流検出器(406a,406b)は、負荷器(402)の入力側において、交流電源(403)のT相及びR相それぞれに対応して設けられている。第1電流検出器(406a)は、負荷器(402)に入力される交流電源(403)の出力電流(Its2)を検出し、電流検出器(406b)は、負荷器(402)に入力される交流電源(403)の出力電流(Irs2)を検出する。第1電流検出器(407a,407b)は、負荷器(401)の入力側において、交流電源(403)のR相及びT相それぞれに対応して設けられている。第1電流検出器(407a)は、負荷器(401)に入力される交流電源(403)の出力電流(Irs1)を検出し、電流検出器(407b)は、負荷器(401)に入力される交流電源(403)の出力電流(Its1)を検出する。
 即ち、第1電流検出器(406a,406b)は、負荷器(402)に対応して設けられ、第1電流検出器(407a,407b)は、負荷器(401)に対応して設けられている。
 また、実施形態5が実施形態3と異なる点は、上記実施形態4と同様、電圧検出器(460)は、交流電源(403)の線間電圧(Vrs)のみを検出して制御器(440)に入力することである。制御器(440)は、線間電圧(Vrs)から他の線間電圧(Vst,Vtr)の電源電圧の位相及び振幅を求める。
 更に、実施形態5が実施形態3と異なる点は、制御器(440)が、各負荷器(401,402)用の負荷器指令信号(Fs1,Fs2)を出力することである。このような制御器(440)の一例を、図18にてブロック図で示す。図18に係る制御器(440)は、実施形態3に係る図14において、加算部(457a,457b)を更に有する。負荷調整判断部(450)には、負荷器電流実効値演算部(454)が更に追加されている。
 即ち、制御部(440)は、位相検出部(446)、第1電流演算部(445)、第2電流演算部(444)、負荷電流演算部(443)、電流指令演算部(442)、ゲートパルス発生器(441)、電力演算部(447)、力率演算部(448)、力率目標値設定部(449)、負荷調整判断部(450)に加え、加算部(457a,457b)を更に有する。負荷調整判断部(450)は、減算部(451)、積分演算部(452)判定部(453)に加え、負荷器電流実効値演算部(454)を更に有する。
 以下では、本実施形態5に係る制御器(440)の構成のうち、実施形態3に係る制御器(240)と異なる点のみを説明する。
 加算部(457a)は、各第1電流検出器(406b,407a)の検出結果(Irs2,Irs1)を加算し、加算結果を交流電源(403)の出力電流(Irs)として電力演算部(447)及び第1電流演算部(445)に出力する。加算部(457b)は、各第1電流検出器(406a,407b)の検出結果(Its2,Its1)を加算し、加算結果を交流電源(403)の出力電流(Its)として電力演算部(447)及び第1電流演算部(445)に出力する。
 第1電流演算部(445)は、各加算部(457a,457b)の加算結果である交流電源(403)の出力電流(Irs,Its)から、高調波電流成分及び基本波の無効成分を抽出して、第1電流値(i1)として出力する。
 電力演算部(447)は、電圧検出器(460)が検出した交流電源(403)の1相分の線間電圧(Vrs)から残りの相の線間電圧(Vst,Vtr)を求め、3相の線間電圧(Vrs,Vst,Vtr)と各加算部(457a,457b)の加算結果である交流電源(403)の出力電流(Irs,Its)とを、上式(6)及び上式(7)にて用いる。
 負荷器電流実効値演算部(454)は、入力された各第1電流検出器(406a,407b)の検出結果(Its2,Its1)を用いて、負荷器(401)に流れる電流の実効値(I1)と負荷器(402)に流れる電流の実効値(I2)とを演算し、これを判定部(453)に出力する。
 判定部(453)の動作について、図19を用いて説明する。図19では、負荷器(401,402)の動作、アクティブフィルタ装置(404)の補償量、電源力率、負荷調整判断部(450)の動作の経時的変化の一例を示している。図19(b)~図19(e)は、実施形態3の図15(b)~図15(e)と同様である。
 図19(a)及び図19(b)で示すように各負荷器(401,402)の出力電力が変化する際、各負荷器(401,402)の電流実効値(I1,I2)は、図19(f)に示すように変化する。具体的に、負荷器(402)の電流実効値(I2)は、一定であるが、負荷器(401)の電流実効値(I1)は、時刻t0から時刻t2の直前まで増加している。時刻t0から時刻t2の間、負荷器(401)の電流実効値(I1)は負荷器(402)の電流実効値(I2)よりも多い。そのため、交流電源(403)からみると負荷器(401)は負荷器(402)よりも多くの電力を使用していることが判り、また負荷器(402)よりも負荷器(401)の方が、図19(d)の電源力率の低下に寄与する度合が大きいと推測できる。
 そのことを利用して、判定部(453)は、積分演算部(452)の出力信号が判定値に至った時刻t2以降、図19(g)及び図19(h)に示す負荷器指令信号(Fs1,Fs2)の出力を行う。具体的に、判定部(453)は、図19(g)に示すように、負荷器(402)に指令する負荷器指令信号(Fs2)については出力停止の状態を保つが(オフのまま)、図19(h)に示すように、負荷器(401)に指令する負荷器指令信号(Fs1)を時刻t2から時刻t3間出力して(オン)、負荷器(401)のみの運転状態を変化させるための運転パラメータを小さくするようにする。
 これにより、時刻t2から時刻t3の間、負荷器(402)の運転状態は時刻t2以前の状態から変化しないため、負荷器(402)の出力電力及び電流実効値(I2)も変化していない。一方で、電源力率の低下に寄与する度合が大きい負荷器(401)の、時刻t2から時刻t3の間の運転状態は、負荷器(401)の運転能力が低下するように変化する。これに伴い、負荷器(401)の出力電力及び電流実効値(I1)は、負荷器指令信号(Fs1)が出力される直前の状態よりも低くなる。これにより、アクティブフィルタ装置(404)の補償量も、時刻t2から時刻t3の間、負荷器指令信号(Fs1)が出力される直前の状態(即ち限度値)
よりも低下し、補償に余裕がある状態となる。
 このように、本実施形態5に係る制御器(440)は、第1電流検出器(406a,406b,407a,407b)の検出結果等に基づいて、各負荷器(401,402)のうち運転能力を低下させるべき対象を決定する。図19では、当該対象が負荷器(401)と決定されている。そして、決定した対象の運転能力を低下させるように、決定した対象の運転パラメータが調整され、基本波力率が力率の目標値θαβ_refに近づいている。これにより、運転能力を低下させる対象となる負荷器の数を必要最低限にすることができ、運転能力を低下させない負荷器については、運転状態を維持させることができる。
 なお、上記で説明した以外の動作については、実施形態3と同様である。
 <効果>
 本実施形態5によれば、複数の負荷器(401,402)が接続された電力系統において、負荷器(401,402)の運転能力を個別に小さくすることができる。そのため、不必要な負荷器(401,402)の運転能力を低下させてしまうことを、できるだけ抑制することができる。
 また、本実施形態5は、実施形態3と同様の効果を奏し、アクティブフィルタ装置(404)のコストを不必要に上げることなく、高調波電流の低減及び基本波力率の改善を図ることができる。
 ≪実施形態6≫
 図20は、実施形態3の変形例としての、実施形態6に係る調相設備(508)を示す空調システム(600)のブロック図である。実施形態6が実施形態3と異なる点は、調相装置として、アクティブフィルタ装置(204)に代えて調相設備(508)が設けられていることである。
 調相設備(508)は、実施形態3と同様の第1電流検出器(505a,505b)及び電圧検出器(560)の他に、負荷器(501,502)の高調波電流の位相を変更することによって基本波力率の改善を行う調相器(531)(力率改善部に相当)を備える。
 調相器(531)は、建物全体の力率を改善するために取り付けらえているものであって、交流電源(503)に対し負荷器(501,502)と並列に接続されており、各負荷器(501,502)に供給される交流電力のうち無効電力を制御する。調相器(531)は、複数の進相コンデンサ(Ca,Cb,Cc)と複数のリアクトル(La,Lb,Lc)とを含む。各進相コンデンサ(Ca,Cb,Cc)は、受電経路(512)のうち、調相設備(508)への各分岐配線(512c)上に、直列に接続されている。進相コンデンサ(Ca,Cb,Cc)は、3相の交流電源(3)の各相に対応して3つ設けられている。リアクトル(La,Lb,Lc)は、各進相コンデンサ(Ca,Cb,Cc)に対応して3つ設けられており、各リアクトル(La,Lb,Lc)は、各進相コンデンサ(Ca,Cb,Cc)に直列に接続されている。
 本実施形態6において、調相器(531)が進相コンデンサ(Ca,Cb,Cc)のみならずリアクトル(La,Lb,Lc)を含む理由は、仮に進相コンデンサ(Ca,Cb,Cc)が短絡故障した際に調相器(531)には流れる電流の大きさをリアクトル(La,Lb,Lc)によって絞ることができるためである。
 そして、本実施形態6の調相設備(508)は、図21に示す構成の制御器(540)を更に備える。図21に示すように、制御器(540)は、実施形態3に係る図14から、電流源(230)の出力電流の調整制御を行う機能部(図14のゲートパルス発生器(241)、電流指令演算部(242)、負荷電流演算部(243)、第2電流演算部(244)、第1電流演算部(245)、位相検出部(246))を省略し、各負荷器(501,502)の運転状態の調整制御を行う機能部(図21の電力演算部(547)、力率演算部(548)、力率目標値設定部(549)、負荷調整判断部(550))のみで構成される。負荷調整判断部(550)は、図14と同様、減算部(551)、積分演算部(552)及び判定部(553)を有する。制御器(540)の、各負荷器(501,502)の運転状態の調整制御の動作は実施形態3と同様であるので、ここでは詳細な説明を省略する。
 なお、制御器(540)は、調相設備(508)とは別に設けられていても良い。この場合、負荷器(501,502)の運転能力の調整機能及び電源力率の演算機能を制御器(540)が有することに鑑みると、ビル全体電力などの管理している管理室や集中管理室に制御器(540)が設置されていることが好ましい。
 <効果>
 本実施形態6の空調システム(600)には、負荷器(501,502)の位相を変更することによって基本波力率を改善する調相器(531)を含んだ調相設備(508)が備えられている。このような調相設備(508)において、進相コンデンサ(Ca,Cb,Cc)の電流容量を低減しながらも、制御器(540)は、実施形態3と同様の各負荷器(501,502)の運転状態の調整制御を行う。これにより、負荷器(501,502)の力率を高く保つことができるため、基本波力率をできる限り早く改善することができる。また、調相設備(508)を小型にしてコストを抑えつつも、高調波対策は問題なく行われる。
 本実施形態6では、調相器(531)は、進相コンデンサ(Ca,Cb,Cc)及びリアクトル(La,Lb,Lc)を含む構成となっている。これにより、仮に進相コンデンサ(Ca,Cb,Cc)において短絡故障が発生したとしても、調相器(531)に流れる電流の大きさをリアクトル(La,Lb,Lc)によって絞ることができる。従って、例えば短絡故障の発生時、調相器(531)に大きな電流が過渡的に流れ、その電流が調相器(531)以外にも影響を及ぼし、重度の不具合が引き起こされるおそれを防ぐことができる。
 また、本実施形態6は、上記実施形態3にて述べた効果も奏する。
 ≪実施形態3~実施形態6の変形例≫
 上記実施形態6の調相装置(508)において、上記実施形態1と同様に、第1電流検出器(505a,505b)に代えて電力計(9)が設けられる構成が採用されてもよい。この場合、制御器(540)は、実施形態1の図2と同様、図21から、電源力率θαβの演算に用いる機能部(電力演算部(547)及び力率演算部(548))を省略した構成となる。
 上記実施形態3~6において、1台の負荷器に対し複数台の調相装置(アクティブフィルタ装置または調相設備)が設けられていてもよい。この場合、調相装置は、各調相装置の電流容量に合わせて、補償電流を分担するとよい。
 電力の使用量等の情報を電力会社などに送信する、いわゆるスマートメータがビルや工場等の建物に予め設置されている場合は、上記実施形態3~6の第1電流検出器として、スマートメータを利用してもよい。
 上記実施形態6において、調相器(531)は、進相コンデンサ(Ca,Cb,Cc)のみの構成であってもよい。
 上記実施形態3~6において、負荷器は、空気調和装置に限定されず、例えばビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明等であってもよい。
 上記実施形態3~6において、第1電流検出器及び第2電流検出器は、検出結果を無線方式で送信するタイプでなくてもよい。また、第1電流検出器及び第2電流検出器は、無電源方式で動作するタイプでなくてもよい。
 上記実施形態3~5において、アクティブフィルタ装置は、負荷器に組み込まれていてもよい。
 負荷器が空気調和装置である場合、空気調和装置は、冷房及び暖房のみを行う装置に限定されない。空気調和装置には、冷凍、換気、調湿が可能なものも含まれる。
 ≪実施形態7≫
 <空調システム(700)の構成>
 図22は、本実施形態7に係る空調システム(700)の構成を示すブロック図である。空調システム(700)は、マンション、工場、ビル、戸建て住宅等(以下、ビル等)に設置されている。この例では、空調システム(700)は、複数の負荷器(601,602)と、アクティブフィルタ装置(604)とを備える。特に、アクティブフィルタ装置(604)の構成要素の大部分、具体的に第1電流検出器(605a,605b)を除く構成要素は、負荷器である電力変換装置(601)と共に空気調和装置(620)内に設けられている。空気調和装置(620)は、室内の空気調和(冷房や暖房)を行う。
 上記ビル等には、交流電源(603)を含む電力系統から電力が供給されている。この例では、交流電源(603)は、三相の交流電源(例えば三相の商用電源)であり、複数の負荷器(601,602)に電力を分岐して供給する。そして、このビル等には、交流電源(603)に接続され、交流電源(603)からの交流電力を受電する分電盤(606)が設けられている。分電盤(606)は、複数のブレーカを備えており、各ブレーカを介して、交流電源(603)からの交流電力を複数の機器に分岐させている。この例では、それらのブレーカの1つに、空気調和装置(620)が接続されている。空気調和装置(620)は、分電盤(606)を介して供給された交流電力によって稼働する。
 また、分電盤(606)の複数のブレーカのうち1つには、負荷器(602)が接続されている。この例では、負荷器(602)が、インバータ回路などの高調波電流の発生源となり得る回路を備えている機器(高調波発生負荷器と命名する)である場合を例に採る。負荷器(602)としては、ビルに設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明、更には、アクティブフィルタなどの高調波対策を実施していない、空気調和装置(620)とは別の空気調和装置などを例示できる。
 各負荷器(601,602)は、制御器(640)(運転状態制御部に相当)と接続された調整部(601c,602c)を含む。調整部(601c,602c)それぞれは、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。調整部(601c,602c)は、制御器(640)から出力される負荷器指令信号Fs(後述)に基づき、各負荷器(601,602)の制御を行うものである。
 <空気調和装置(620)>
 空気調和装置(620)は、圧縮機を有した冷媒回路(図示せず)、及び電力変換装置(601)を備え、アクティブフィルタ装置(604)の主な構成要素(具体的には、第1電流検出器(605a,605b)を除く他の構成要素)が組み込まれている。
 上記冷媒回路は、圧縮機、室外側熱交換器、膨張機構、室内側熱交換器が冷媒配管によって接続されることで構成される。冷媒回路内には冷媒が充填されており、冷媒が冷媒回路内を循環することによって、室内は冷却または暖められる。
 電力変換装置(601)は、交流電源(603)に接続された負荷器であって、高調波発生負荷器に該当する。電力変換装置(601)は、分電盤(606)を介して交流電源(603)に接続されている。この電力変換装置(601)は、図示していないが、コンバータ回路及びインバータ回路を有する。電力変換装置(601)は、交流電源(603)から交流電力を供給されると、これを所望周波数及び所望電圧に変換し、変換後の電力を圧縮機(より詳しくは圧縮機が備える電動機)に供給する。それにより、圧縮機は稼働して冷媒回路が機能し、その結果、室内の空気調和が行われる。
 空気調和装置(620)において、電力変換装置(601)や圧縮機の電動機が稼働すると、高調波電流が発生する場合がある。この高調波電流は、分電盤(606)から空気調和装置(620)へ電力を供給する電流経路を介して、交流電源(603)に流出する可能性がある。なお、上述したように、電力変換装置(601)のみならず、高調波発生負荷器である負荷器(602)からも、高調波電流が、負荷器(602)に電力を供給する電流経路を介して交流電源(603)に流出する可能性がある。
 このような高調波電流は、一般的には、交流電源(603)側への流出レベルが規制されている。そのため、本実施形態1に係る空調システム(700)は、アクティブフィルタ装置(604)によって、上記高調波電流の低減を図っている。また、設備容量や省エネルギーの観点などから、配電・受電端の基本波力率の改善が求められているところ、本実施形態7のアクティブフィルタ装置(604)は、基本波力率の改善機能も備えている。
 以下では、上記アクティブフィルタ装置(604)の構成について説明する。
 <アクティブフィルタ装置(604)>
 アクティブフィルタ装置(604)は、交流電源(603)に接続されており、高調波発生負荷器である上記負荷器(601,602)から流出する高調波電流を打ち消す機能を有する。即ち、アクティブフィルタ装置(604)は、交流電源(603)の電流経路(以下、受電経路(612))における電流が正弦波に近づくように補償電流を流す。より具体的には、アクティブフィルタ装置(604)は、受電経路(612)に現れている高調波電流とは逆位相の補償電流を生成し、受電経路(612)に供給する。
 そして、アクティブフィルタ装置(604)は、上述した補償電流を流すことにより、基本波力率を改善する。この例では、基本波の無効成分も補償する補償電流を流すようにアクティブフィルタ装置(604)を構成して、基本波力率の改善を行う。
 負荷器である電力変換装置(601)において発生する高調波電流が最も大きくなるのは、空気調和装置(620)の負荷が最も大きな場合(例えば冷房の最大出力時)と考えられる。負荷器(602)が空気調和装置であると仮定した場合も、該負荷器(602)において発生する高調波電流についても同様である。
 そのため、一般的には、アクティブフィルタ装置(604)は、負荷器(601,602)全てが一斉に最大負荷となった時の高調波電流を想定して、能力(生成可能な電力の大きさ)即ち容量が設定される。ところが、負荷器(601,602)は、最大負荷の状態で使用されるよりも、最大負荷よりも小さい負荷で使用される場合の方が多い。すると、上記のように能力が設定されたアクティブフィルタ装置(604)は、負荷器(601,602)の高調波電流対策による力率改善のみに能力を使用したとすれば、能力が余剰となる期間が多いと考えられる。
 それ故、本実施形態7では、アクティブフィルタ装置(604)の能力(即ち容量)を、上述したような一般的な設定方法よりも小さく設定する。一例として、アクティブフィルタ装置(604)の能力(即ち容量)は、負荷器(601,602)全てが一斉に最大負荷となった時の高調波電流に対応する能力を100%とした場合の、約80%程度に設定される。能力(即ち容量)が大きい程アクティブフィルタ装置(604)は高額となるが、本実施形態7では、能力を比較的小さく設定するため、アクティブフィルタ装置(604)のコストダウンを図ることができる。
 本実施形態7に係るアクティブフィルタ装置(604)は、能力が比較的小さいながらも、上述した高調波電流対策による力率改善の機能を問題なく発揮するための制御を行うが、これについては後述する。
 上述機能を実現するため、本実施形態7に係るアクティブフィルタ装置(604)は、図22に示すように、電流源(630)、第1電流検出器(605a,605b)(電流検出部に相当)、第2電流検出器(625a,625b)、電圧検出器(660)、及び制御器(640)を備える。
  -電流源-
 電流源(630)は、高調波電流の低減及び基本波力率改善を行うための電流(すなわち補償電流)を生成することにより基本波力率を改善する、いわばアクティブフィルタである。
 電流源(630)の出力端子は、負荷器(601,602)の受電経路(612)に接続されており、生成された補償電流は受電経路(612)に出力される。具体的に、電流源(630)は、交流電源(603)に対し負荷器(601,602)と並列に接続されている。
 図示していないが、本実施形態7の電流源(630)は、いわゆるインバータ回路を用いて構成されている。電流源(630)には、制御器(640)より、後述するスイッチング指令値(G)が入力される。電流源(630)は、スイッチング指令値(G)に応じてスイッチングすることによって、補償電流を生成する。
  -第1電流検出器-
 第1電流検出器(605a,605b)は、交流電源(603)の受電経路(612)における電流値を検出する。詳しくは、第1電流検出器(605a,605b)は、交流電源(603)から出力される出力電流が、電流源(630)及び各負荷器(601,602)に分岐して流れる前の交流電源(603)の出力電流の値を検出する。
 この例では、第1電流検出器(605a,605b)は、2つ設けられている。具体的に、第1電流検出器(605a)は、交流電源(603)におけるR相の電流値(Irs)を検出する。第1電流検出器(605b)は、交流電源(603)におけるT相の電流値(Its)を検出する。それぞれの第1電流検出器(605a,605b)の検出結果は、制御器(640)に送信される。
 それぞれの第1電流検出器(605a,605b)の構成には、特に限定はないが、例えばカレントトランスを採用することなどが考えられる。
 また、それぞれの第1電流検出器(605a,605b)は、検出結果を制御器(640)に無線方式で送信する構成となっている。交流電源(603)とアクティブフィルタ装置(604)との距離は、20~30メートル離れることがある。そのため、第1電流検出器(605a,605b)からアクティブフィルタ装置(604)までを配線で接続すると、この配線を長く引き回すこととなり、また、第1電流検出器(605a,605b)とアクティブフィルタ装置(604)との接続作業自体にかなりの手間がかかってしまう。これに対し、本実施形態7では、第1電流検出器(605a,605b)の検出結果が制御器(640)に無線方式で送信されるため、上記配線自体が不要となり、配線を引き回す作業を行わずに済む。
 また、第1電流検出器(605a,605b)に流れる電流により第1電流検出器(605a,605b)を貫く磁束が時間に対して変化する現象を電磁誘導というが、その電磁誘導によって生じる起電力である誘導起電力を、第1電流検出器(605a,605b)を駆動させる電源(例えば通信のための電源)として利用してもよい。そのことにより、第1電流検出器(605a,605b)は、無電源方式で動作(すなわち第1電流検出器(605a,605b)の外部から電源を接続せずに動作)でき、第1電流検出器(605a,605b)を外部の電源と接続する作業が不要となる。
 特に、図22に示すように、第1電流検出器(605a,605b)は、分電盤(606)の内部に設置されている。そのことにより、第1電流検出器(605a,605b)が雨風にさらされるのを防止でき、第1電流検出器(605a,605b)の劣化を抑制できる。従って、第1電流検出器(605a,605b)の寿命を短くしない環境を構築できる。
  -第2電流検出器-
 第2電流検出器(625a,625b)は、アクティブフィルタ装置(604)に入力される電流値(以下、電流値(Ir2a,It2a)と命名する)を検出する。
 この例では、第2電流検出器(625a,625b)は、2つ設けられている。第2電流検出器(625a)は、交流電源(603)から電流源(630)に入力されるR相の電流値(Ir2a)を検出し、第2電流検出器(625b)は、交流電源(603)から電流源(630)に入力されるT相の電流値(It2a)を検出する。それぞれの第2電流検出器(625a,625b)によって検出された電流値(Ir2a,It2a)は、制御器(640)に送信される。
 それぞれの第2電流検出器(625a,625b)の構成は、特に限定はないが、例えばカレントトランスを採用することなどが考えられる。
 また、それぞれの第2電流検出器(625a,625b)が電流値(Ir2a,It2a)を送信する態様は、有線方式及び無線方式のいずれであってもよい。
 また、第2電流検出器(625a,625b)は、上記第1電流検出器(605a,605b)と同様、無電源方式で動作できる構成であってもよい。
 なお、図22では、第2電流検出器(625a,625b)が、アクティブフィルタ装置(604)に入力される3相分の電流(Ir2a,Is2a,It2a)のうち、2相分の電流(Ir2a,It2a)に対応して2つ設けられた例を示している。しかし、第2電流検出器は、3相分の電流(Ir2a,Is2a,It2a)に対応して3つ設けられても良い。
  -電圧検出器-
 電圧検出器(660)は、交流電源(603)の出力端子に接続されている。電圧検出器(660)は、交流電源(603)の線間電圧(Vrs,Vtr,Vst)を検出するセンサである。
  -制御器-
 制御器(640)は、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。図22に示すように、制御器(640)は、電流源(630)、第1電流検出器(605a,605b)、第2電流検出器(625a,625b)、電圧検出器(660)及び負荷器である電力変換装置(601)に接続されており、各検出器(605a,605b,625a,625b,660)の検出結果に基づいて、電流源(630)及び電力変換装置(601)の各動作を制御する。
 本実施形態7に係る制御器(640)は、電流源(630)の出力電流の調整制御、及び、実際の交流電源(603)の電源力率に基づく電力変換装置(601)の運転状態の調整制御(具体的には、運転状態を変化させる運転パラメータの調整制御)を行う。このような制御を行うため、制御器(640)は、図23のブロック図として例示するように、位相検出部(646)、第1電流演算部(645)、第2電流演算部(644)、負荷電流演算部(643)、電流指令演算部(642)、ゲートパルス発生器(641)、電力演算部(647)、力率演算部(648)、力率目標値設定部(649)、及び負荷調整判断部(650)を有する。負荷調整判断部(650)は、減算部(651)、積分演算部(652)及び判定部(653)を有する。
 このうち、電流源(630)の出力電流の調整制御は、主に、位相検出部(646)、第1電流演算部(645)、第2電流演算部(644)、負荷電流演算部(643)、電流指令演算部(642)及びゲートパルス発生器(641)にて行われる。実際の交流電源(603)の電源力率に基づく電力変換装置(601)の運転状態の調整制御は、電力演算部(647)、力率演算部(648)、力率目標値設定部(649)及び負荷調整判断部(650)にて行われる。
  <電流源(630)の出力電流の調整制御>
 位相検出部(646)には、電圧検出器(660)が検出した交流電源(603)の線間電圧(Vrs,Vst,Vtr)のうち、1相分の線間電圧(Vrs)が入力される。位相検出部(646)は、入力された線間電圧(Vrs)を用いて受電経路(612)における電源電圧の位相を検出し、検出した位相を第1電流演算部(645)及び第2電流演算部(644)に出力する。
 第1電流演算部(645)には、位相検出部(646)によって検出された電源電圧の位相、及び、第1電流検出器(605a,605b)によって検出された交流電源(603)の出力電流(Irs,Its)が入力される。第1電流演算部(645)は、入力された電源電圧の位相及び交流電源(603)の出力電流(Irs,Its)に基づいて、高調波電流の補償(高調波電流の低減)と、基本波の無効成分の補償(基本波の力率改善)の双方を行うために必要な電流(第1電流値(i1)とする)を求め、当該第1電流値(i1)を負荷電流演算部(643)に出力する。より具体的には、第1電流演算部(645)は、第1電流検出器(605a,605b)の検出結果(電流値(Irs,Its))から、高調波電流成分及び基本波の無効成分を抽出して、第1電流値(i1)として出力する。
 第2電流演算部(644)には、位相検出部(646)によって検出された電源電圧の位相、及び、第2電流検出器(625a,625b)によって検出された電流源(630)に入力される電流値(Ir2a,It2a)が入力される。第2電流演算部(644)は、入力された電源電圧の位相及び電流値(Ir2a,It2a)に基づいて、現時点での高調波電流の補償(高調波電流の低減)及び基本波の無効成分の補償(基本波の力率改善)の双方を行っているアクティブフィルタ装置(604)に流れ込む電流(第2電流値(i2)とする)を求め、当該第2電流値(i2)を負荷電流演算部(643)に出力する。より具体的には、第2電流演算部(644)は、第2電流検出器(625a,625b)の検出結果(電流値(Ir2a,It2a))から、高調波電流成分及び基本波の無効成分を抽出して、第2電流値(i2)として出力する。
 負荷電流演算部(643)は、高調波発生負荷器である電力変換装置(601)及び負荷器(602)に流れる電流を算出する。交流電源(603)の各相の出力電流値(Irs,Itr,Its)からアクティブフィルタ装置(604)の電流源(630)に入力される各相の電流値(Ir2a,Is2a,It2a)の減算により、各負荷器(601,602)に流れる電流の合計値が求められる。これを利用して、本実施形態7では、各負荷器(601,602)にて発生する高調波を抑制し、交流電源(603)付近の配電・受電端の基本波力率の改善、及び高調波電流の低減を実現している。具体的に、本実施形態7では、負荷電流演算部(643)は、各負荷器(601,602)に流れる電流の合計値を、第1電流演算部(645)の第1電流値(i1)から第2電流演算部(644)の第2電流値(i2)を減算することによって求め、求めた演算結果を電流指令演算部(642)に出力する。
 電流指令演算部(642)は、負荷電流演算部(643)の演算結果の逆位相の電流値を演算して、その値を電流指令値(Iref)としてゲートパルス発生器(641)に出力する。
 ゲートパルス発生器(641)は、電流源(630)を構成するインバータ回路におけるスイッチングを指示するためのスイッチング指令値(G)、を生成する。詳しくは、ゲートパルス発生器(641)は、電流源(630)が出力する電流値と上記電流指令値(Iref)との偏差に基づいてスイッチング指令値(G)を生成する動作を繰り返す、いわゆるフィードバック制御を行う。これにより、電流源(630)からは、電流指令値(Iref)に相当する電流(補償電流)が受電経路(612)に供給される。より詳しくは、ゲートパルス発生器(641)では、第2電流演算部(644)で求めた第2電流値(i2)が電流指令値(Iref)に一致するようなスイッチング指令値(G)を生成して電流源(630)に出力する。そのことにより、負荷器(601,602)に流れる電流に含まれている高調波成分とアクティブフィルタ装置(604)が出力する電流とは相殺され、交流電源(603)の出力電流(Irs,Itr,Its)は、高調波電流が除去された正弦波となり、力率が改善される。
  <電力変換装置(601)の運転状態の調整制御>
 電力演算部(647)には、電圧検出器(660)が検出した交流電源(603)の3相分の線間電圧(Vrs,Vtr,Vst)、及び、第1電流検出器(605a,605b)が検出した交流電源(603)の出力電流(Irs,Its)が入力される。電力演算部(647)は、入力されたこれらの値を下式(11)及び下式(12)に当てはめて、回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを演算する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 次いで、電力演算部(647)は、上式(11)及び上式(12)で求めた回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを、下式(13)に当てはめて、有効電力Pαを演算する。また、電力演算部(647)は、上式(11)及び上式(12)で求めた回転2軸(αβ軸)の電圧Vα,Vβ及び電流iα,iβを、下式(14)に当てはめて、無効電力Pβを演算する。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 力率演算部(648)は、電力演算部(647)で求められた有効電力Pα及び無効電力Pβそれぞれを下式(15)に当てはめて、交流電源(603)の電源力率θαβを演算する。即ち、力率演算部(648)によって求められる電源力率θαβは、実際の電源力率θαβを意味する。
Figure JPOXMLDOC01-appb-M000015
 力率目標値設定部(649)は、力率の目標値θαβ_refを予め設定する。なお、本実施形態7に係る力率目標値設定部(649)は、力率の目標値θαβ_refを、0.995~1.004の間の値に設定する。電源力率を評価する場合、小数第3位を四捨五入することになっている。そのため、力率の目標値θαβ_refが0.995~1.004の間の値に設定されることにより、当該力率の目標値θαβ_refに基づいて制御される実際の電源力率は、“1”と評価されるためである。
 負荷調整判断部(650)の減算部(651)には、力率演算部(648)が求めた実際の電源力率θαβと、力率目標値設定部(649)が設定した力率の目標値θαβ_refとが入力される。減算部(651)は、力率の目標値θαβ_refから実際の電源力率θαβを減算する。減算部(651)は、減算した値を、積分演算部(652)に出力する。
 積分演算部(652)は、減算部(651)による減算結果(即ち、力率の目標値θαβ_refから実際の電源力率θαβを減算した結果)を、積分する。
 判定部(653)には、積分演算部(652)の積分結果が入力される。判定部(653)は、積分結果に基づき、基本波力率が力率の目標値θαβ_refに近づくように、負荷器(601,602)の運転状態を変化させる運転パラメータを制御する。具体的に、判定部(653)は、基本波力率(電源力率)を力率の目標値θαβ_refに近づけるべく、運転パラメータを調整して負荷器(601,602)の運転能力を下げるための負荷器指令信号Fsを、負荷器である電力変換装置(601)に出力する。この負荷器指令信号Fsによって電力変換装置(601)の運転能力が減少すると、アクティブフィルタ装置(604)の補償能力には余裕が生じるようになり、やがて基本波力率は上昇して力率の目標値θαβ_refと概ねと一致するようになる。
 ここで、上記運転パラメータとは、負荷器である電力変換装置(601)の電力、電力変換装置(601)の電流、電動機の回転速度等の少なくとも1つを云う。
 負荷器(602)及び電力変換装置(601)の各動作、アクティブフィルタ装置(604)の補償量、電源力率、負荷調整判断部(650)の動作の経時的変化の一例を図24に示す。図24(a)は、負荷器(602)の動作に相関する出力電力を示しており、この例では負荷器(602)としてポンプなどの一定負荷を想定している。図24(b)は、電力変換装置(601)の動作に相関する出力電力を示す。制御対象外である負荷器(602)は、時刻に関係なく、出力電力が一定となるような安定した動作を行っているとする。これに対し、時刻t0から時刻t2までの間、電力変換装置(601)は、空調負荷の上昇に伴い出力電力を上昇させて続けている。なお、この時刻t0から時刻t2までの間とは、真夏の最も暑い日の日中(14時~15時)で外気温度が異常に高くなり、急激に空調負荷が上昇していることを想定している。
 図24(c)は、アクティブフィルタ装置(604)の補償量を電力にて示している。時刻t0から時刻t1の間、アクティブフィルタ装置(604)の補償量は、上記電力変換装置(601)の出力電力の上昇に伴って上昇している。つまり、時刻t0から時刻t1までの間、電力変換装置(601)の出力電力の上昇分をアクティブフィルタ装置(604)が補償している。そのため、時刻t0から時刻t1までの間、図24(d)に示す電源力率は、概ね目標値の状態が維持されている。
 しかし、時刻t1以降、電力変換装置(601)の出力電力はなおも上昇し続けているが、アクティブフィルタ装置(604)の補償量は時刻t1の時点で限度値に達し、その後は限度値で一定である状態が続いている。そのため、時刻t1以降、電源力率は、電力変換装置(601)の出力電力の上昇とは対照的に、目標値から低下していく。これは、電力変換装置(601)の出力電力が上がっているものの、アクティブフィルタ装置(604)の補償能力は既に限度値に達しているため不足していることに起因する。
 そのため、時刻t0から時刻t1の間は、力率の目標値θαβ_refと実際の電源力率θαβとの間は差が生じておらず、図24(e)に示すように、負荷調整判断部(650)の積分演算部(652)の出力結果(出力信号)は概ね“0”のままである。しかし、時刻t1以降は、力率の目標値θαβ_refと実際の電源力率θαβとの間に差が生じ、積分演算部(652)の出力結果(出力信号)は増加する。
 時刻t2は、積分演算部(652)の出力結果(出力信号)が判定値に達した時点を表す。この時刻t2では、判定部(653)は、積分演算部(652)の出力結果(出力信号)を受けて、図24(f)に示すように、電力変換装置(601)の運転状態を時刻t2以前とは異ならせるための負荷器指令信号Fsを(即ち、“オン”を示す負荷器指令信号Fs)、電力変換装置(601)に出力する。その負荷器指令信号Fsにより、図24(b)に示すように時刻t2から時刻t3の間、電力変換装置(601)の運転状態は、出力電力が低下する方向に変化する。すると、図24(c)に示すように、時刻t2以降、電力変換装置(601)の出力電力が低下しているためにアクティブフィルタ装置(604)の補償量は限度値から低下する。このことは、アクティブフィルタ装置(604)の補償量に余裕が生じていることを意味する。従って、図24(d)に示すように、実際の電源力率は力率の目標値θαβ_refと概ね一致する程度に回復することができる。
 このように、本実施形態7に係る制御器(640)は、実際の電源力率θαβが力率の目標値θαβ_refから低下すると、電力変換装置(601)の電力、電力変換装置(601)の電流及び電動機の回転速度等の少なくとも1つである運転パラメータを低下させるよう調整する。そのことにより、制御器(640)は、電力変換装置(601)の運転能力を強制的に絞り、実際の電源力率θαβと力率の目標値θαβ_refとが一致する状態を作り出す“電源力率デマンドコントロール”を実施する。“電源力率デマンドコントロール”とは、基本波力率が力率の目標値θαβ_refに近づくように、本実施形態7に係る制御器(640)が、第1電流検出器(605a,605b)の検出結果に基づいて上記運転パラメータを調整する制御と言える。
 実際の電源力率θαβと力率の目標値θαβ_refとが一致している状態が、時刻t2からある期間(図24では時刻t2から時刻t3までの期間)経過すると、判定部(653)は、図24(f)に示すように、出力する負荷器指令信号Fsを時刻t0から時刻t2までの間と同様、“オフ”にする。そのことにより、電力変換装置(601)は、強制的な運転能力の低下から解放され、通常の指令に基づく制御により通常運転を行う。
 また、時刻t3では、判定部(653)は、図24(g)に示すように、積分演算部(652)の積分結果をリセット(ゼロにクリアする)ためのReset信号を出力する。このことにより、積分演算部(652)の積分結果(出力信号)はゼロになり、積分演算部(652)は、次に実際の電源力率θαβが力率の目標値θαβ_refより低下した場合に対応できるようになる。
 <効果>
 本実施形態7では、現在の電源品質である基本波力率が、電源品質の目標値である力率の目標値θαβ_refに近づくように、アクティブフィルタ装置(604)の動作を制御するのではなく、実際の交流電源(603)の出力電流に基づいて負荷器である電力変換装置(601)の運転状態が制御される。これにより、実際の電源力率θαβは目標値θαβ_refに近づく。このように、ここでは、仮にアクティブフィルタ装置(604)の容量が小さくても、負荷器である電力変換装置(601)の運転状態の制御によって電力変換装置(601)の運転能力が例えば減らす方向に調整されるため、アクティブフィルタ装置(604)の基本波力率を改善させる能力は回復する。これにより、アクティブフィルタ装置(604)の容量が比較的小さくとも、基本波力率の改善は問題なくなされる。従って、アクティブフィルタ装置(604)の容量を積極的に下げることができ、その分のコストダウンを図ることができる。
 本実施形態7では、電流源(630)は、電力変換装置(601)及び負荷器(602)それぞれの高調波電流の低減を更に行う。即ち、電流源(630)は、高調波電流の低減と基本波力率の改善とを行う。
 本実施形態7では、第1電流検出器(605a,605b)は、分電盤(606)に設置されている。
 本実施形態7の第1電流検出器(605a,605b)は、検出結果を制御器(640)に無線方式で送信する構成となっている。これにより、第1電流検出器(605a,605b)と制御器(640)とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本実施形態7では、第1電流検出器(605a,605b)は、無電源方式で動作する構成となっている。これにより、第1電流検出器(605a,605b)を外部の電源と接続する作業が不要となる。
 本実施形態7の空調システム(700)は、アクティブフィルタ装置(604)と空気調和装置(620)とを備える。特に、アクティブフィルタ装置(604)は、空気調和装置(620)に組み込まれている。ビル等の建物を設計する場合、空気調和装置(620)の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置(620)の仕様は自ずと決定する。そのことから、建物の建設時にアクティブフィルタ装置(604)と空気調和装置(620)間の通信線を接続することができ、交流電源(603)から出力される出力電流に基づき空気調和装置(620)に含まれる電力変換装置(601)の運転能力を変更できる環境を、簡単に作りやすくなる。
 ≪実施形態8≫
 図25は、実施形態7の変形例としての、実施形態8に係るアクティブフィルタ装置(704)を含む空調システム(800)の構成を示すブロック図である。実施形態8が実施形態7と異なる点は、実際の電源力率θαβが力率の目標値θαβ_refから低下した際に、電力変換装置(701)に加えて負荷器(702)の運転パラメータ(具体的には、負荷器(702)の電力、電流及び電動機の回転速度等の少なくとも1つ)を低下させるようにしていることである。即ち、本実施形態8では、能力を低下させる対象が、空調システム(800)における複数の(全ての)負荷器(701,702)となっている。そのことにより、基本波力率を力率の目標値θαβ_refに近づけさせて素早くビル全体(電力系統全体)の能力を低下させることができるため、電源力率の低下を最小限に抑制して、目標とする電源力率を確保することができる。
 従って、図25では、図22とは異なり、制御器(740)が出力する負荷器指令信号Fsが、電力変換装置(701)のみならず負荷器(702)に入力される構成となっている。
 なお、図25で示した空調システム(800)において、当該構成以外は、実施形態7と同様である。図25では、図22と対応する構成要素に、“730”等の番号を付しているが、その詳細は図22に係る実施形態7と同様である。
 図26は、本実施形態8に係る負荷器(702)及び電力変換装置(701)の各動作、アクティブフィルタ装置(704)の補償量、電源力率、制御器(740)の動作の経時的変化の一例を示す。図26は、図24に対し、図26(a)で示す負荷器(702)の出力電力が一定ではないことが異なっている。
 具体的に、負荷器(702)の出力電力は、時刻t0から時刻t2までは一定である。一方で、時刻t0から時刻t2までの間に電力変換装置(701)の出力電力が連続的に上昇したことにより、アクティブフィルタ装置(704)の補償量が時刻t1以降に限度値に達し、その結果、時刻t1以降には電源力率が目標値から乖離している。それ故、積分演算部(752)の積分結果は時刻t2に判定値に達し、時刻t2から時刻t3の間、負荷器指令信号Fsはオン状態となっている。この時刻t2から時刻t3の間、当該負荷器指令信号Fsは、電力変換装置(701)のみならず負荷器(702)にも出力されるため、能力低下により出力電力が低下している対象は、電力変換装置(701)及び負荷器(702)となっている。そのことにより、電源力率を上昇させて目標の電源力率を達成することができる。
 <効果>
 本実施形態8では、空調システム(800)における複数の負荷器(701,702)の運転状態が運転能力を低下する方向に変化する。これより、空調システム(800)全体での負荷器(701,702)の運転能力は、1つの負荷器の運転状態のみを変化させる場合よりも低下するため、基本波力率の改善能力が素早く回復する。従って、電源力率の低下を最小限に抑制して、電源力率を素早く目標値にすることができる。
 また、本実施形態8は、上記実施形態7にて述べた効果も奏する。
 ≪実施形態9≫
 図27は、実施形態7の変形例としての、実施形態9に係るアクティブフィルタ装置(804)を含む空調システム(900)の構成を示すブロック図である。実施形態9が実施形態7と異なる点は、高調波発生負荷器である他の負荷器(802)が単相電圧で駆動する機器であることと、他の負荷器(802)は、LEDなどの照明機器及び単相のファン・ポンプなどを想定していることである。特に、本実施形態9では、他の負荷器(802)(すなわち単相電圧で駆動する機器)の接続相が判明しない場合を想定して、3つの第1電流検出器(805a,805b,805c)が設けられている。
 なお、図27では、図22と対応する構成要素に、“830”等の番号を付しているが、その詳細は図22に係る実施形態7と同様である。従って、以下では、実施形態7と異なる点についてのみ説明する。
 3つの第1電流検出器(805a,805b,805c)それぞれは、交流電源(803)の各相(R,S,T)に対応して設けられており、対応する各相(R,S,T)の電流値を検出する。すなわち、本実施形態9では、負荷器(802)が単相交流で動作する機器であっても、3相すべての電流値を検出するため、電流値を確実に検出することができる。
 また、電圧検出器(860)は、交流電源(803)のR相及びS相に接続され、T相には接続されていない。従って、電圧検出器(860)は、交流電源(803)の線間電圧(Vrs)のみを検出して制御器(840)に入力する。これは、実施形態7にて述べたように、制御器(840)は、線間電圧(Vrs)のみを用いて受電経路(812)における電源電圧の位相を演算により検出するためである。他の線間電圧(Vst,Vtr)それぞれは、線間電圧(Vrs)から120度位相が変化している(具体的には、位相が120進むか遅れている)。このことから、本実施形態9に係る制御器(840)は、線間電圧(Vrs)から電源電圧の振幅も演算し、演算した電源電圧の振幅及び位相から他の線間電圧(Vst,Vtr)の位相及び振幅を求めることができる。このようにして求めた結果は、上式(11)に代入することができる。それ故、実際の線間電圧(Vst,Vtr)の検出を省略することが可能である。
 なお,線間電圧(Vst,Vtr)の検出の省略及び線間電圧(Vrs)に基づく他の線間電圧(Vst,Vtr)の演算は、上記実施形態7,8にて採用されてもよい。
 <効果>
 本実施形態9によれば、単相電圧で駆動する他の負荷器(802)が接続された場合において、交流電源(803)の各相(R,S,T)に対応して第1電流検出器(805a,805b,805c)が複数設けられている。そのため、他の負荷器(802)の接続相が不明であっても、3相すべての電流値を確実に把握することが可能となる。
 また、本実施形態9によれば、単相電圧で駆動する他の負荷器(802)が接続された場合において、実際の線間電圧(Vst,Vtr)の検出を省略している。これにより、アクティブフィルタ装置(804)のコストを不必要に上げることなく、高調波電流の低減及び基本波力率の改善を図ることが可能となる。
 また、本実施形態9は、上記実施形態7にて述べた効果も奏する。
 なお、本実施形態9において、単相電圧で駆動する負荷器(802)が、交流電源(803)のどの相に接続されるかが予め判明している場合、負荷器(802)が接続される相に第1電流検出器が設けられていても良い。
 ≪実施形態10≫
 図28は、実施形態7の変形例としての、実施形態10に係るアクティブフィルタ装置(904)を含む空調システム(1000)の構成を示すブロック図である。実施形態10が実施形態7と異なる点は、図28に示すように、受電経路(912)のうち交流電源(903)の出力電流(Irs,Itr,Its)が電力変換装置(901)及び負荷器(902)に分岐するポイントから各負荷器(901,902)までを結ぶ配線(912a,912b)に、第1電流検出器(906a,906b,907a,907b)が接続されていることである。このことにより、電力変換装置(901)及び負荷器(902)が、最大負荷状態または軽負荷状態であるか等といった、電力変換装置(901)及び負荷器(902)の動作状態を判断することができる。
 なお、図28では、図22と対応する構成要素に、“930”等の番号を付しているが、その詳細は図22に係る実施形態7と同様である。従って、以下では、実施形態7と異なる点についてのみ説明する。
 具体的に、第1電流検出器(906a,906b)は、負荷器(902)の入力側において、交流電源(903)のT相及びR相それぞれに対応して設けられている。第1電流検出器(906a)は、負荷器(902)に入力される交流電源(903)の出力電流(Its2)を検出し、電流検出器(906b)は、負荷器(902)に入力される交流電源(903)の出力電流(Irs2)を検出する。第1電流検出器(907a,907b)は、電力変換装置(901)の入力側において、交流電源(903)のR相及びT相それぞれに対応して設けられている。第1電流検出器(907a)は、電力変換装置(901)に入力される交流電源(903)の出力電流(Irs1)を検出し、電流検出器(907b)は、電力変換装置(901)に入力される交流電源(903)の出力電流(Its1)を検出する。
 即ち、第1電流検出器(906a,906b)は、負荷器(902)に対応して設けられ、第1電流検出器(907a,907b)は、電力変換装置(901)に対応して設けられている。
 なお、図28では、第1電流検出器(906a,906b)は分電盤(906)内部に設けられ、第1電流検出器(907a,907b)は分電盤(906)内部に設けられていない場合を例示しているが、全ての第1電流検出器(906a,906b,907a,907b)が分電盤(906)内部に設けられていてもよい。
 また、実施形態10が実施形態7と異なる点は、上記実施形態8と同様、電圧検出器(960)は、交流電源(903)の線間電圧(Vrs)のみを検出して制御器(940)に入力することである。
 更に、実施形態10が実施形態7と異なる点は、制御器(940)が、電力変換装置(901)用の負荷器指令信号(Fs1)及び負荷器(902)用の負荷器指令信号(Fs2)を出力することである。
 このような制御器(940)の一例を、図29にてブロック図で示す。図29に係る制御器(940)は、実施形態7に係る図23において、加算部(957a,957b)を更に有する。負荷調整判断部(950)には、負荷器電流実効値演算部(954)が更に追加されている。
 なお、図29では、図23と対応する構成要素に、“946”等の番号を付しているが、下記の説明を除き、その詳細は図23に係る実施形態7と同様である。以下では、本実施形態10に係る制御器(940)の構成のうち、実施形態7に係る制御器(640)と異なる点のみを説明する。
 加算部(957a)は、各電流検出器(906b,907a,925a)の検出結果(Irs2,Irs1,Ir2a)を加算し、加算結果を交流電源(903)の出力電流(Irs)として電力演算部(947)及び第1電流演算部(945)に出力する。加算部(957b)は、各電流検出器(906a,907b,925b)の検出結果(Its2,Its1,It2a)を加算し、加算結果を交流電源(903)の出力電流(Its)として電力演算部(947)及び第1電流演算部(945)に出力する。
 第1電流演算部(945)は、各加算部(957a,957b)の加算結果である交流電源(903)の出力電流(Irs,Its)から、高調波電流成分及び基本波の無効成分を抽出して、第1電流値(i1)として出力する。
 電力演算部(947)は、電圧検出器(960)が検出した交流電源(903)の1相分の線間電圧(Vrs)から残りの相の線間電圧(Vst,Vtr)を求め、3相の線間電圧(Vrs,Vst,Vtr)と各加算部(957a,957b)の加算結果である交流電源(903)の出力電流(Irs,Its)とを、上式(11)及び上式(12)にて用いる。
 負荷器電流実効値演算部(954)は、入力された各第1電流検出器(906a,907b)の検出結果(Its2,Its1)を用いて、電力変換装置(901)に流れる電流の実効値(I1)と負荷器(902)に流れる電流の実効値(I2)とを演算し、これを判定部(953)に出力する。
 判定部(953)の動作について、図30を用いて説明する。図30では、電力変換装置(901)及び負荷器(902)の動作、アクティブフィルタ装置(904)の補償量、電源力率、負荷調整判断部(950)の動作の経時的変化の一例を示している。図30(a)~図30(e)は、実施形態7の図24(a)~図24(e)と同様である。
 図30(a)及び図30(b)で示すように電力変換装置(901)及び負荷器(902)の出力電力が変化する際、電力変換装置(901)及び負荷器(902)それぞれの電流実効値(I1,I2)は、図30(f)に示すように変化する。具体的に、負荷器(902)の電流実効値(I2)は、一定であるが、電力変換装置(901)の電流実効値(I1)は、時刻t0から時刻t2の直前まで増加している。時刻t0から時刻t2の間、電力変換装置(901)の電流実効値(I1)は負荷器(902)の電流実効値(I2)よりも多い。そのため、交流電源(903)からみると電力変換装置(901)は負荷器(902)よりも多くの電力を使用していることが判り、また負荷器(902)よりも電力変換装置(901)の方が、図30(d)の電源力率の低下に寄与する度合が大きいと推測できる。
 そのことを利用して、判定部(953)は、積分演算部(952)の出力信号が判定値に至った時刻t2以降、図30(g)及び図30(h)に示す負荷器指令信号(Fs1,Fs2)の出力を行う。具体的に、判定部(953)は、図30(g)に示すように、負荷器(902)に指令する負荷器指令信号(Fs2)については出力停止の状態を保つが(オフのまま)、図30(h)に示すように、電力変換装置(901)に指令する負荷器指令信号(Fs1)を時刻t2から時刻t3間出力して(オン)、電力変換装置(901)のみの運転状態を変化させるための運転パラメータを小さくするようにする。
 これにより、時刻t2から時刻t3の間、負荷器(902)の運転状態は時刻t2以前の状態から変化しないため、負荷器(902)の出力電力及び電流実効値(I2)も変化していない。一方で、電源力率の低下に寄与する度合が大きい電力変換装置(901)の、時刻t2から時刻t3の間の運転状態は、電力変換装置(901)の運転能力が低下するように変化する。これに伴い、電力変換装置(901)の出力電力及び電流実効値(I1)は、負荷器指令信号(Fs1)が出力される直前の状態よりも低くなる。これにより、アクティブフィルタ装置(904)の補償量も、時刻t2から時刻t3の間、負荷器指令信号(Fs1)が出力される直前の状態(即ち限度値)よりも低下し、補償に余裕がある状態となる。
 このように、本実施形態10に係る制御器(940)は、第1電流検出器(906a,906b,907a,907b)の検出結果等に基づいて、該制御器(940)に接続された電力変換装置(901)及び負荷器(902)のうち運転能力を低下させるべき対象を決定する。図30では、当該対象が電力変換装置(901)と決定されている。そして、決定した対象の運転能力を低下させるように、決定した対象の運転パラメータが調整され、基本波力率が力率の目標値θαβ_refに近づいている。これにより、本実施形態10では、運転能力を低下させる対象となる負荷器の数を必要最低限にすることができ、運転能力を低下させない負荷器については、運転状態を維持させることができる。
 なお、上記で説明した以外の動作については、実施形態7と同様である。
 <効果>
 本実施形態10によれば、上記実施形態7と同様、現在の電源品質である基本波力率が、電源品質の目標値である力率の目標値θαβ_refに近づくように、実際の交流電源(903)の出力電流に基づいて電力変換装置(901)の運転状態が変更される。これにより、実際の力率θαβは力率の目標値θαβ_refに近づく。このように、ここでは、仮にアクティブフィルタ装置(904)の容量が小さくても、負荷器である電力変換装置(901)の運転能力が減らされるため、アクティブフィルタ装置(904)の補償能力は回復する。これにより、アクティブフィルタ装置(904)の容量が比較的小さくとも、本波力率の改善は問題なくなされる。従って、アクティブフィルタ装置(904)の容量を積極的に下げることができ、その分のコストダウンを図ることができる。
 本実施形態10では、電流源(930)は、電力変換装置(901)及び負荷器(902)それぞれの高調波電流の低減を更に行う。即ち、電流源(930)は、高調波電流の低減と基本波力率の改善とを行う。
 本実施形態10では、複数の負荷器(901,902)のうち、電力を絞る(即ち運転能力を低下する方向に運転状態を変更する)負荷器(901)が選択される。これにより、運転能力を低下させる負荷器(901)を例えば必要最低限にすることができ、運転能力を低下させない負荷器(902)については、運転状態を維持させることができる。
 本実施形態10では、実際に各負荷器(901,902)に流れる電流値から、運転能力を低下する方向に運転状態を変更するべき負荷器(901)が決定する。これにより、運転能力を低下させるべき対象となる負荷器(901)を、実際の状況に即して正確に決定することができる。
 本実施形態10では、第1電流検出器(906a,906b)は、分電盤(906)に設置されている。
 本実施形態10の第1電流検出器(906a,906b,907a,907b)は、検出結果を制御器(940)に無線方式で送信する構成となっている。これにより、第1電流検出器(906a,906b,907a,907b)と制御器(940)とを接続する配線自体が不要となり、当該配線を引き回す作業を行わずに済む。
 本実施形態10では、第1電流検出器(906a,906b,907a,907b)は、無電源方式で動作する構成となっている。これにより、第1電流検出器(906a,906b,907a,907b)を外部の電源と接続する作業が不要となる。
 本実施形態10の空調システム(1000)は、アクティブフィルタ装置(904)と空気調和装置(920)とを備える。特に、アクティブフィルタ装置(904)は、空気調和装置(920)に組み込まれている。ビル等の建物を設計する場合、空気調和装置(920)の室外機と室内機とを繋ぐ冷媒配管工事などが必要であることから、建物に設置するべき空気調和装置(920)の仕様は自ずと決定する。そのことから、建物の建設時にアクティブフィルタ装置(904)と空気調和装置(920)間の通信線を接続することができ、交流電源(903)から出力される出力電流に基づき空気調和装置に含まれる電力変換装置(901)の運転能力を変更できる環境を、簡単に作りやすくなる。
 ≪実施形態7~実施形態10の変形例≫
 1台の電力変換装置(601,701,801,901)に対し複数台のアクティブフィルタ装置が設けられていてもよい。この場合、調相装置は、各調相装置の電流容量に合わせて、補償電流を分担するとよい。
 建物内にスマートメータが予め設置されている場合、第1電流検出器の代わりに1つのスマートメータで代用することができる。
 負荷器(601,701,801,901)は、空気調和装置における圧縮機等の電力変換装置に限定されず、例えばビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明等であってもよい。
 第1電流検出器及び第2電流検出器は、無線方式のタイプでなくてもよい。
 第1電流検出器及び第2電流検出器は、無電源方式のタイプでなくてもよい。
 第1電流検出器は、分電盤に設置されていなくてもよい。
 アクティブフィルタ装置は、空気調和装置に組み込まれていなくても良い。また、アクティブフィルタ装置は、空気調和装置以外の用途に利用されてもよい。
 アクティブフィルタ装置は、負荷器の基本波力率の改善を行うための電流を生成する機能は必須として有するが、負荷器の高調波電流の低減を行う機能は、必ずしも有さずともよい。
 負荷器が空気調和装置である場合、空気調和装置は、冷房及び暖房のみを行う装置に限定されない。空気調和装置には、冷凍、換気、調湿が可能なものも含まれる。
 ≪実施形態11≫
 上記実施形態1~10では、制御信号生成部に相当する電源力率デマンド制御器(40,105)及び制御器(240,340,440,540,640,740,840,940)が、現在の電源力率を検出または演算により求め、これを電源品質として負荷器指令信号Fs(制御信号)を生成する場合について説明した。本実施形態11では、交流電源(1003)の電源高調波を電源品質として負荷器指令信号(制御信号)Fsが生成される場合について説明する。
 電源力率とは、基本波力率と、電源高調波成分による力率とを加算したものに相当する。本実施形態11では、このことに着目して、電源高調波を電源品質として、負荷器指令信号(制御信号)Fsの生成を行っている。
 図31は、本実施形態11に係る負荷器(1001,1002)の電源力率制御システム(1100)を示すブロック図である。この例では、電源力率制御システム(1100)は、複数の負荷器(1001,1002)と、電流測定器(1005a)と、電源力率デマンド制御器(1040)と、負荷器(1001,1002)に含まれる調整部(1001c,1002c)(運転状態制御部に相当)と、を備える。
 負荷器(1001,1002)は空気調和装置であり、ビル等に設置されている。空気調和装置である負荷器(1001,1002)によって、室内の空気調和(冷房や暖房)が行われる。
 上記ビル等には、交流電源(1003)を含む電力系統から電力が供給されている。この例では、交流電源(1003)は、三相の交流電源(例えば三相の商用電源)であり、複数の負荷器(1001,1002)に電力を分岐して供給する。
 また、本実施形態11では、負荷器(1002)が、インバータ回路等の高調波電流の発生源となり得る回路を備えている機器(高調波発生負荷器と命名する)である場合を例に採る。負荷器(1002)としては、ビル等に設けられたエレベータ、ファン、ポンプ、エスカレータ、三相電源で駆動する照明、更には、アクティブフィルタなどの高調波対策を実施していない、空気調和装置である負荷器(1001)とは別の空気調和装置等を例示できる。
  <負荷器(1001,1002)>
 空気調和装置である負荷器(1001,1002)は、上記調整部(1001c)の他に、圧縮機を有した冷媒回路(図示を省略)、及び電力変換装置(1001a)を含む。電力変換装置(1001a)は、交流電源(1003)に接続されており、高調波発生負荷器の一例である。電力変換装置(1001a)は、コンバータ回路とインバータ回路とを有する(何れも図示を省略)。負荷器(1001)に供給された交流電力は、電力変換装置(1001a)によって、所望周波数及び所望電圧を有した交流電力に変換され、圧縮機(より詳しくは圧縮機が備える電動機)に供給される。それにより、圧縮機は稼働して冷媒回路が機能し、その結果、室内の空気調和が行われる。
 なお、空気調和装置である負荷器(1001)には、力率改善用のアクティブフィルタが内蔵されている。これにより、負荷器(1001)の力率は高くなり、その結果、電源力率を改善することが容易となる。
 負荷器(1001,1002)や負荷器(1001)に含まれる圧縮機の電動機が最大電力で稼働すると、負荷器(1001,1002)へ電力を供給する交流電源(1003)の電流経路(1012)を介して高調波電流が流出し、交流電源(1003)の電源力率が低下する場合がある。一般的に、電気料金には、電源力率が良い程高い割引率を受けられる仕組み、及び/または、電源力率が所定値(90%や85%など)を下回るとその分電気料金が引き上げられるペナルティが与えられる仕組みが存在する。そのため、本実施形態11では、負荷器(1001,1002)による電源力率の低下の改善を図っている。
  <電流測定器(1005a)>
 電流測定器(1005a)は、交流電源(1003)の1相に対応して設けられている。電流測定器(1005a)は、当該相のの電流値を検出する。
  <電源力率デマンド制御器(1040)>
 電源力率デマンド制御器(1040)は、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリデバイスとを用いて構成され、電流測定器(1005a)及び各負荷器(1001,1002)の調整部(1001c,1002c)と接続されている。電源力率デマンド制御器(1040)は、現在の交流電源(1003)の電源高調波を電源品質とし、当該電源品質と交流電源(1003)の電源力率に関する目標値とに基づいて、負荷器(1001,1002)の運転状態を変化させるための負荷器指令信号Fs(制御信号)を生成すると、これを調整部(1001c,1002c)に出力する。
 図32に示すように、電源力率デマンド制御器器(1040)は、5次高調波目標値設定部(1051)、負荷調整判断部(1052)及び5次高調波抽出部(1053)を有する。
 5次高調波目標値設定部(1051)は、交流電源(1003)の電源電流等に基づいて、力率の目標値(THD5_ref)を予め設定する。5次高調波抽出部(1053)は、電流検出器(1005a)によって検出された電流(Irs)から、当該電流(Irs)に含まれる5次高調波成分(THD5)(交流電源の周波数が50Hzの場合、250Hzの周波数成分)を抽出する。
 負荷調整判断部(1052)は、減算部(1061)、積分演算部(1062)及び判定部(1063)を有する。
 減算部(1061)は、目標値(THD5_ref)と5次高調波成分(THD5)とが入力されると、目標値(THD5_ref)から5次高調波成分(THD5)を減算する。積分演算部(1062)は、減算部(1061)の減算結果を積分する。判定部(1063)は、積分結果に基づいて負荷器(1001,1002)それぞれに各負荷器(1001,1002)の能力(電力,電流,速度等)を低下させる負荷器指令信号Fsを生成する。この負荷器指令信号Fsは、負荷器(1001,1002)の各調整部(1001c,1002c)に出力される。
 上記負荷器指令信号Fsにより、負荷器(1001,1002)の能力が低下して電力的に余裕ができる。5次高調波成分を5次高調波目標値と一致させることにより高い力率を確保することができる。
  <調整部(1001c,1002c)>
 各負荷器(1001,1002)は、電源力率デマンド制御器(1040)に接続された調整部(1001c,1002c)を含む。調整部(1001c,1002c)それぞれは、マイクロコンピュータと、当該マイクロコンピュータを動作させるためのプログラムを格納したメモリディバイスとを用いて構成される。調整部(1001c,1002c)は、電源力率デマンド制御器(1040)から出力される負荷器指令信号Fsに基づき、各負荷器(1001,1002)の運転状態を変化させる運転パラメータを調整して負荷器(1001,1002)の運転状態を制御する。運転パラメータとは、具体的には負荷器(1001,1002)の電力、負荷器(1001,1002)の電流、負荷器(1001,1002)に含まれる電動機の回転速度等である。
  <効果>
 本実施形態11によれば、電源力率に代えて電源高調波を電源品質としても、複数の負荷器(1001、1002)が接続された電力系統において、電源力率を改善することができる。
 <実施形態11の変形例>
 運転状態の制御対象は、負荷器(1001,1002)のうちのいずれか一方であってもよい。
 ≪実施形態1~10に係る電源力率の定義、ならびに、実施形態11の高調波成分と力率との関係について≫
 ここでは、上記実施形態1~10で電源品質とした「電源力率」の定義、ならびに、上記実施形態11で抽出した電源高調波に基づく力率制御によっても電源力率の改善が図れること、について説明する。
 上記実施形態1~11に云う「電源力率」とは、総合力率と基本波力率のどちらも意味するものとする。
 交流電源の電圧v(t)および電流i(t)は、周波数をfとして、以下のように示される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 有効電力Pは、周期をT(=1/f)とすると、以下に示すように、瞬時電力“v(t)×i(t)”の1周期における平均値で与えられる。
Figure JPOXMLDOC01-appb-M000018
 上式(18)において、異なる周波数成分の積の項を1周期にわたって積分すると有効電力Pは0となり、周波数の同じ成分の二乗の項のみが残る。そのため、上式(18)の計算結果は、下式(19)となる。
Figure JPOXMLDOC01-appb-M000019
 上式(19)の演算結果は、歪み波交流の有効電力が、その歪み波に含まれる直流成分、基本波成分および各高調波成分がそれぞれ単独で回路に存在する場合の各有効電力の総和に等しいことを示している。
 一方、電圧の実効値V及び電流の実効値Iは、それぞれ以下のように示される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 このとき皮相電力Sは、下式(22)で与えられる。
Figure JPOXMLDOC01-appb-M000022
 このときの力率PFは、有効電力と皮相電力の比で定義され、上式(19)(20)に基づき下式(23)で表される。
Figure JPOXMLDOC01-appb-M000023
 上式(23)で与えられる電源力率PFは、電圧波形及び電流波形がともに歪み波の場合についてのものである。
 なお、高調波成分の影響を加味した式(23)で定義される力率は、次に説明する基本波力率と区別して総合力率と呼称する。
 基本波力率は、電圧及び電流が直流成分を含まず電圧波形の歪みが無視できる場合(つまり、正弦波電圧の電源に接続された回路に相当する)の力率である。電圧及び電流が直流成分を含まず電圧波形の歪みが無視できる場合の電圧v(t)及び電流i(t)は、下式(24)(25)にて表すことができる。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 このとき有効電力は、上式(18)に従って求められるが、異なる周波数成分の積の項は0となり、電圧の基本波成分と電流の基本波成分の積の項のみが残る。その結果、有効電力Pは,下式(26)のように表すことができる。
Figure JPOXMLDOC01-appb-M000026
 式(26)における“cosφ1”は、基本波電圧と基本波電流の位相差の余弦、すなわち基本波成分についての力率であり、これを基本波力率という。一方、上式(24)により電圧の実効値をV1とすると、皮相電力Sは、下式(27)のように表すことができる。
Figure JPOXMLDOC01-appb-M000027
 従って、総合力率PFは、上式(23)及び上式(27)により、以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000028
 波形の歪み度合いを表す指標として、全高調波歪み率(Total Harmonic Distortion 略してTHD)は、基本波実効値A1に対する基本波を除く全高調波実効値Anの比として、下式(29)にて定義することができる。
Figure JPOXMLDOC01-appb-M000029
 上式(29)を用いて、電流の全高調波歪み率THDiの下式(30)に、上式(28)を代入すると、総合力率PFは、下式(31)のように表すことができる。
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
 上式(31)は、電流に高調波成分が含まれる場合の総合力率が、基本波力率の所定倍B(下式(32)参照)となることを示している。
Figure JPOXMLDOC01-appb-M000032
 また、このことは、基本波力率と高調波成分THDiとを制御することにより、総合力率を変化させることができることを示している。特に、高調波成分THDiを小さくすると、総合力率PFは向上する。そのため、上式(31)は、電流の高調波成分THDiを検出値として総合力率PFを制御できることを示している。
 ≪その他の実施形態≫
 負荷器指令信号Fs(制御信号)の生成に用いられる電源品質は、現在の電源力率または電源高調波ではなく、現在の電源力率及び電源高調波の組合せであってもよい。
 以上説明したように、本開示は、電源力率制御システム、調相装置ならびにアクティブフィルタ装置として有用である。
1,2,101,102,201,202,301,302,401,402,501,502,601,602,701,702,801,802,901,902 負荷器
1b,102b アクティブフィルタ
1c,2c,101c,102c,201c,202c 調整部(運転状態制御部)
3,103,203,303,403,503,603,703,803,903,1003 交流電源
9,104 電源力率測定器(電源力率測定部)
30 電流源(アクティブフィルタ)
31,131 調相器
40,1040 電源力率デマンド制御器(制御信号生成部)
100,130,1100 電源力率制御システム
130 調相器
151 力率目標値設定部(目標値調整部)
152 負荷調整判断部(制御信号生成部)
204,304,404 アクティブフィルタ装置(調相装置)
205a,205b,305a,305b,305c,406a,406b,407a,407b,505a,505b,605a,605b,705a,705b,805a,805b,805c,906a,906b,907a,907b 第1電流検出器(電流検出部)
508 調相設備(調相装置)
230,330,430 電流源(力率改善部)
531 調相器(力率改善部)
240,340,440,540,640,740,840,940 制御器(運転状態制御部)
601,701,801,901 電力変換装置(負荷器)
604,704,804,904 アクティブフィルタ装置
606,706,806,906 分電盤
620,720,820,920 空気調和装置
630,730,830,930 電流源
Ca,Cb,Cc 進相コンデンサ
La,Lb,Lc リアクトル
 

Claims (38)

  1.  交流電源(3,103,203,303,403,503,603,703,803,903,1003)に接続され、該交流電源から電力を供給される負荷器(1,2,101,102,201,202,301,302,401,402,501,502,601,602,701,702,801,802,901,902,1001,1002)と、
     上記交流電源の電源力率及び上記交流電源の電源高調波のいずれか一方を含む電源品質に関する目標値と、現在の上記電源品質と、に基づいて、上記負荷器の運転状態を制御する運転状態制御部(1c,2c,101c,102c,240,340,440,540,640,740,840,940,1001c,1002c)と、
    を備えることを特徴とする電源力率制御システム。
  2.  請求項1において、
     上記電源力率を測定する電源力率測定部(9)と、
     上記電源力率測定部(9)の測定結果に基づいて、上記負荷器の運転状態を変化させるための制御信号Fsを生成する制御信号生成部(40)と、
    を更に備え、
     上記運転状態制御部(1c,2c)は、上記制御信号Fsに基づいて、上記電源力率が該電源力率の上記目標値に近づくように上記負荷器(1,2)の運転状態を変化させる運転パラメータを調整して、上記負荷器(1,2)の運転状態を制御する
    ことを特徴とする電源力率制御システム。
  3.  請求項2において、
     上記制御信号Fsは、上記電源力率測定部(9)の測定結果が上記目標値を下回っている際に上記負荷器(1,2)の運転状態を変化させるための信号である
    ことを特徴とする電源力率制御システム。
  4.  請求項3において、
     上記制御信号生成部(40)は、上記電源力率測定部(9)の測定結果が上記目標値を下回っている間の上記電源力率測定部(9)の測定結果と上記目標値との差を積分し、その積分結果が所定値に達した場合に上記制御信号Fsを生成する
    ことを特徴とする電源力率制御システム。
  5.  請求項1において、
     上記電源力率を測定する電源力率測定部(104)と、
     上記電源力率測定部(104)の測定結果及び上記目標値に基づいて、上記負荷器の運転状態を変化させるための制御信号Fsを生成する制御信号生成部(152)と、
     上記電源力率測定部(104)の測定結果に基づいて上記目標値を調整する目標値調整部(151)と、
    を更に備えることを特徴とする電源力率制御システム。
  6.  請求項5において、
     上記目標値調整部(151)は、上記目標値を調整する単位時間における上記電源力率を用いて上記目標値を調整する
    ことを特徴とする電源力率制御システム。
  7.  請求項6において、
     上記目標値調整部(151)は、上記単位時間における上記電源力率の平均値を用いて、上記目標値を調整する
    ことを特徴とする電源力率制御システム。
  8.  請求項7において、
     上記目標値調整部(151)は、
     上記単位時間のうち、第1時間における上記電源力率の平均値が基準値を超えている場合、上記単位時間のうち上記第1時間の後の第2時間における上記目標値を、上記第1時間における上記目標値よりも低くし、
     上記第1時間における上記平均値が上記基準値を下回る場合、上記第2時間における上記目標値を、上記第1時間における上記目標値よりも高くする
    ことを特徴とする電源力率制御システム。
  9.  請求項8において、
     上記第1時間及び上記第2時間の合計時間は、上記単位時間と等しいか、または、上記単位時間よりも短い
    ことを特徴とする電源力率制御システム。
  10.  請求項9において、
     上記第1時間及び上記第2時間の合計時間は、上記単位時間と等しく、
     上記第1時間及び上記第2時間は、上記単位時間の半分の時間である
    ことを特徴とする電源力率制御システム。
  11.  請求項6から請求項10のいずれか1項において、
     上記単位時間は、1ヶ月である
    ことを特徴とする電源力率制御システム。
  12.  請求項2から請求項11のいずれか1項において、
     上記電源力率測定部(9,104)は、電力計である
    ことを特徴とする電源力率制御システム。
  13.  請求項2から請求項12のいずれか1項において、
     上記電源力率測定部(9,104)は、上記測定結果を上記制御信号生成部(40,152)に無線方式で送信する
    ことを特徴とする電源力率制御システム。
  14.  請求項2から請求項13のいずれか1項において、
     上記制御信号生成部(40,152)は、生成した上記制御信号Fsを上記運転状態制御部(1c,2c,101c,102c)に無線方式で送信する
    ことを特徴とする電源力率制御システム。
  15.  請求項2から請求項14のいずれか1項において、
     上記負荷器(1,2,101,102)は、空気調和装置である
    ことを特徴とする電源力率制御システム。
  16.  請求項15において、
     上記負荷器(1,2,101,102)は、高調波電流の発生源となり、
     上記交流電源(3,103)に対し上記負荷器(1,2,101,102)と並列に接続され、該負荷器(1,2,101,102)にて発生する高調波電流の低減を行うアクティブフィルタ(1b,101b)、
    を更に備え、
     上記アクティブフィルタ(1b,101b)は、上記空気調和装置に組み込まれている
    ことを特徴とする電源力率制御システム。
  17.  請求項2から請求項16のいずれか1項において、
     上記交流電源(3,103)に対し上記負荷器(1,2,101,102)と並列に接続され、該負荷器(1,2,101,102)に供給される上記電力のうち無効電力を制御する調相器(31,131)、
    を更に備える
    ことを特徴とする電源力率制御システム。
  18.  請求項2から請求項14のいずれか1項において、
     上記負荷器(1,2,101,102)は、高調波電流の発生源であって、
     上記交流電源(3,103)に対し上記負荷器(1,2,101,102)と並列に接続され、該負荷器(1,2,101,102)にて発生する高調波電流の低減を行うアクティブフィルタ(30,130)、
    を更に備える
    ことを特徴とする電源力率制御システム。
  19.  請求項1に記載の電源力率制御システムに備えられ、上記交流電源(203,303,403,503)及び上記負荷器(201,202,301,302,401,402,501,502)に接続された調相装置であって、
     上記負荷器の高調波電流の低減を行うための電流を生成、または、該電流の位相を変更することによって、基本波力率を改善する力率改善部(230,330,430,531)と、
     上記運転状態制御部(240,340,440,540)と、
    を備え、
     上記交流電源の電源力率に関する上記目標値は、上記基本波力率の目標値であって、
     上記運転状態制御部は、上記基本波力率が上記目標値に近づくように、上記負荷器の運転状態を変化させる運転パラメータを制御する
    ことを特徴とする調相装置。
  20.  請求項19において、
     上記交流電源から出力される出力電流を検出する電流検出部(205a,205b,305a~305c,406a,406b,407a,407b,505a,505b)、を更に備え、
     上記運転状態制御部(240,340,440,540)は、上記基本波力率が目標値に近づくように、上記電流検出部の検出結果に基づいて上記運転パラメータを調整する
    ことを特徴とする調相装置。
  21.  請求項20において、
     上記交流電源(303)は、複数相の電源であって、
     上記電流検出部(305a~305c)は、上記交流電源の各相に対応して設けられている
    ことを特徴とする調相装置。
  22.  請求項20または請求項21において、
     上記電流検出部(205a,205b,305a~305c,406a,406b,407a,407b,505a,505b)は、上記検出結果を上記運転状態制御部(240,340,440,540)に無線方式で送信する
    ことを特徴とする調相装置。
  23.  請求項20から請求項22のいずれか1項において、
     上記電流検出部(205a,205b,305a~305c,406a,406b,407a,407b,505a,505b)は、無電源方式で動作する
    ことを特徴とする調相装置。
  24.  請求項19から請求項23のいずれか1項において、
     上記力率改善部(531)は、上記交流電源(503)に対し上記負荷器(501,502)と並列に接続され、該負荷器に供給される上記電力のうち無効電力を制御する調相器である
    ことを特徴とする調相装置。
  25.  請求項24において、
     上記調相器(531)は、進相コンデンサ(Ca,Cb,Cc)を含む
    ことを特徴とする調相装置。
  26.  請求項25において、
     上記調相器(531)は、上記進相コンデンサ(Ca,Cb,Cc)に直接に接続されたリアクトル(La,Lb,Lc)を更に含む
    ことを特徴とする調相装置。
  27.  請求項19から請求項23のいずれか1項において、
     上記負荷器(201,202,301,302,401,402)は、高調波電流の発生源であって、
     上記力率改善部(230,330,430)は、上記交流電源(203,303,403)に対し上記負荷器と並列に接続され、該負荷器にて発生する高調波電流の低減を行うアクティブフィルタである
    ことを特徴とする調相装置。
  28.  請求項19から請求項27のいずれか1項において、
     上記負荷器(201,202,301,302,401,402,501,502)は、空気調和装置である
    ことを特徴とする調相装置。
  29.  請求項1に記載の電源力率制御システムに備えられ、上記交流電源(603,703,803,903)及び上記負荷器(601,602,701,702,801,802,901,902)に接続されたアクティブフィルタ装置であって、
     上記負荷器の基本波力率の改善を行うための電流を生成する電流源(630,730,830,930)と、
     上記交流電源から出力される出力電流を検出する電流検出部(605a,605b,705a,705b,805a~805c,906a,906b,907a,907b)と、
     上記運転状態制御部(640,740,840,940)と、
    を備え、
     上記交流電源の電源力率に関する上記目標値は、上記基本波力率の目標値であって、
     上記運転状態制御部は、上記基本波力率が上記目標値に近づくように、上記電流検出部の検出結果に基づいて上記負荷器の運転状態を変化させる運転パラメータを制御する
    ことを特徴とするアクティブフィルタ装置。
  30.  請求項29において、
     上記電流源は、上記負荷器の高調波電流の低減を更に行う
    ことを特徴とするアクティブフィルタ装置。
  31.  請求項29または請求項30において、
     上記負荷器(601,602,701,702,801,802)は複数であって、
     上記運転状態制御部(640,740,840)は、複数の上記負荷器の運転能力を低下させるように複数の上記負荷器の上記運転パラメータを調節して、上記基本波力率を上記目標値に近づけさせる
    ことを特徴とするアクティブフィルタ装置。
  32.  請求項29または請求項30において、
     上記負荷器(901,902)は複数であって、
     上記運転状態制御部(940)は、
    上記電流検出部(906a,906b,907a,907b)の検出結果に基づいて、複数の上記負荷器のうち運転能力を低下させるべき上記負荷器を決定し、
    決定した上記負荷器の運転能力を低下させるように、決定した上記負荷器の上記運転パラメータを調節して、上記基本波力率を上記目標値に近づけさせる
    ことを特徴とするアクティブフィルタ装置。
  33.  請求項32において、
     上記電流検出部(906a,906b,907a,907b)は、上記負荷器(901,902)それぞれに対応するようにして複数設けられており、
     各上記電流検出部は、上記交流電源(903)から各上記負荷器(901,902)への上記出力電流を検出する
    ことを特徴とするアクティブフィルタ装置。
  34.  請求項31から請求項33のいずれか1項において、
     上記交流電源からの電力を上記負荷器それぞれに分岐する分電盤(606,706,806,906)、
    を更に備え、
     上記電流検出部(605a,605b,705a,705b,805a~805c,906a,906b)は、上記分電盤に設置されている
    ことを特徴とするアクティブフィルタ装置。
  35.  請求項29から請求項32のいずれか1項において、
     上記電流検出部(805a~805c)は、上記交流電源(803)の各相(R,S,T)に対応するようにして複数設けられている
    ことを特徴とするアクティブフィルタ装置。
  36.  請求項29から請求項35のいずれか1項において、
     上記電流検出部(605a,605b,705a,705b,805a~805c,906a,906b,907a,907b)は、上記検出結果を上記運転状態制御部に無線方式で送信する
    ことを特徴とするアクティブフィルタ装置。
  37.  請求項29から請求項36のいずれか1項において、
     上記電流検出部(605a,605b,705a,705b,805a~805c,906a,906b,907a,907b)は、無電源方式で動作する
    ことを特徴とするアクティブフィルタ装置。
  38.  請求項29から請求項37のいずれか1項において、
     上記アクティブフィルタ装置(604,704,804,904)は、空気調和装置(620,720,820,920)に組み込まれている
    ことを特徴とするアクティブフィルタ装置。
PCT/JP2018/017324 2017-04-28 2018-04-27 電源力率制御システム、調相装置ならびにアクティブフィルタ装置 WO2018199333A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2018257445A AU2018257445B2 (en) 2017-04-28 2018-04-27 Power-source power factor control system, phase modifying apparatus, and active filter apparatus
EP18791305.8A EP3611816B1 (en) 2017-04-28 2018-04-27 Power factor control system, phase modifying device, and active filter device
US16/608,690 US11201470B2 (en) 2017-04-28 2018-04-27 Power-source power factor control system, phase modifying apparatus, and active filter apparatus
CN201880027742.XA CN110574251B (zh) 2017-04-28 2018-04-27 电源功率因数控制系统、调相装置以及有源滤波器装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-089215 2017-04-28
JP2017089212 2017-04-28
JP2017-089213 2017-04-28
JP2017089215 2017-04-28
JP2017089214 2017-04-28
JP2017089213 2017-04-28
JP2017-089212 2017-04-28
JP2017-089214 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199333A1 true WO2018199333A1 (ja) 2018-11-01

Family

ID=63918482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017324 WO2018199333A1 (ja) 2017-04-28 2018-04-27 電源力率制御システム、調相装置ならびにアクティブフィルタ装置

Country Status (6)

Country Link
US (1) US11201470B2 (ja)
EP (1) EP3611816B1 (ja)
JP (1) JP6676694B2 (ja)
CN (1) CN110574251B (ja)
AU (1) AU2018257445B2 (ja)
WO (1) WO2018199333A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043839B2 (en) * 2017-11-09 2021-06-22 Wisys Technology Foundation, Inc. Micro-grid energy management system
CN110298509B (zh) * 2019-06-28 2023-05-23 佰聆数据股份有限公司 一种结合短期负荷预测的大工业行业用电优化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515765B1 (ja) 1970-02-03 1980-04-25
JPH07336890A (ja) * 1994-06-02 1995-12-22 Hitachi Ltd 高圧配電線の電圧制御方法および装置
JP2003092829A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 電気機器システム
JP2010175098A (ja) 2009-01-28 2010-08-12 Mitsubishi Electric Corp 空気調和機のデマンド制御システム
JP2012039727A (ja) * 2010-08-05 2012-02-23 Chugoku Electric Power Co Inc:The 調相制御システム、調相制御装置、スマートメータ及び調相制御方法
JP2012067982A (ja) * 2010-09-25 2012-04-05 Hitachi Appliances Inc アクティブフィルタを備えた空気調和装置
JP2013042656A (ja) * 2011-08-18 2013-02-28 General Electric Co <Ge> 力率に基づくデマンド制御の方法およびシステム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715998A (ja) * 1993-06-21 1995-01-17 Alex Denshi Kogyo Kk 誘導電動機用制御装置
FR2734100B1 (fr) * 1995-05-11 1997-06-27 Schneider Electric Sa Dispositif de filtrage
JP3444030B2 (ja) 1995-07-20 2003-09-08 株式会社明電舎 アクティブフィルタ
US5757099A (en) * 1996-03-01 1998-05-26 Wisconsin Alumni Research Foundation Hybrid parallel active/passive filter system with dynamically variable inductance
US5731965A (en) * 1996-06-21 1998-03-24 Wisconsin Alumni Research Foundation Power line harmonic reduction by hybrid parallel active/passive filter system with square wave inverter and DC bus control
US6861897B1 (en) * 2003-08-13 2005-03-01 Honeywell International Inc. Active filter for multi-phase AC power system
US20080077286A1 (en) * 2004-11-30 2008-03-27 Toyota Jidosha Kabushiki Kaisha Electric-Power Supply System, And Vehicle
JP4992225B2 (ja) * 2005-11-04 2012-08-08 株式会社富士通ゼネラル 電源装置
TWI356565B (en) * 2007-07-18 2012-01-11 Ablerex Electronics Co Ltd Modularized active power
JP2011035986A (ja) 2009-07-30 2011-02-17 Sanyo Electric Co Ltd アクティブフィルター
US8363433B2 (en) * 2009-09-09 2013-01-29 Ge Energy Power Conversion Technology Limited Hybrid conditioner for a power system
WO2011032265A1 (en) * 2009-09-15 2011-03-24 The University Of Western Ontario Utilization of distributed generator inverters as statcom
CN101741133A (zh) * 2009-12-29 2010-06-16 哈尔滨工业大学 具有网侧功率因数校正功能的光网混合供电不间断电源
JP5515765B2 (ja) 2010-01-19 2014-06-11 ダイキン工業株式会社 空調機コントローラ、および空調機コントローラを用いたデマンド制御システム
US8330293B2 (en) * 2010-04-09 2012-12-11 GM Global Technology Operations LLC Power factor correction system
WO2013099033A1 (ja) * 2011-12-28 2013-07-04 三菱電機株式会社 エネルギー使用量推定装置及びエネルギー使用量推定方法
MY176806A (en) * 2013-09-30 2020-08-21 Daikin Ind Ltd Power conversion device
JP5825319B2 (ja) * 2013-10-16 2015-12-02 ダイキン工業株式会社 電力変換装置ならびに空気調和装置
CN105278439B (zh) * 2014-07-25 2018-10-26 国家电网公司 一种大容量交流可调模拟试验负载控制系统及其控制方法
JP6613631B2 (ja) 2015-06-03 2019-12-04 東京電力ホールディングス株式会社 系統電圧上昇原因判別支援装置及び方法
CN105939121A (zh) * 2015-11-23 2016-09-14 中国矿业大学 一种基于风力发电机调流调相控制的并联DCM Boost PFC变换器
US20170187190A1 (en) * 2015-12-28 2017-06-29 Tabuchi Electric Co., Ltd. Distributed power supply system, power converter device, and method of controlling power factor
WO2018038000A1 (ja) * 2016-08-22 2018-03-01 日本電気株式会社 状態変化検知装置、方法及びプログラム
JP6237852B1 (ja) * 2016-09-30 2017-11-29 ダイキン工業株式会社 アクティブフィルタの制御装置
EP3512084A4 (en) * 2016-12-09 2020-05-06 Daikin Industries, Ltd. DEVICE WITH BUILT-IN ACTIVE FILTER
AU2018302846B2 (en) * 2017-07-18 2020-10-08 Daikin Industries, Ltd. Active filter system and air conditioning device
US10742030B2 (en) * 2018-01-12 2020-08-11 Katerra Inc. Dynamic load balancing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515765B1 (ja) 1970-02-03 1980-04-25
JPH07336890A (ja) * 1994-06-02 1995-12-22 Hitachi Ltd 高圧配電線の電圧制御方法および装置
JP2003092829A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 電気機器システム
JP2010175098A (ja) 2009-01-28 2010-08-12 Mitsubishi Electric Corp 空気調和機のデマンド制御システム
JP2012039727A (ja) * 2010-08-05 2012-02-23 Chugoku Electric Power Co Inc:The 調相制御システム、調相制御装置、スマートメータ及び調相制御方法
JP2012067982A (ja) * 2010-09-25 2012-04-05 Hitachi Appliances Inc アクティブフィルタを備えた空気調和装置
JP2013042656A (ja) * 2011-08-18 2013-02-28 General Electric Co <Ge> 力率に基づくデマンド制御の方法およびシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611816A4

Also Published As

Publication number Publication date
JP2018191505A (ja) 2018-11-29
EP3611816A4 (en) 2021-01-06
AU2018257445A1 (en) 2019-12-05
CN110574251A (zh) 2019-12-13
US11201470B2 (en) 2021-12-14
AU2018257445B2 (en) 2020-12-03
EP3611816A1 (en) 2020-02-19
CN110574251B (zh) 2023-07-28
EP3611816B1 (en) 2022-04-13
US20200142437A1 (en) 2020-05-07
JP6676694B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6508308B2 (ja) アクティブフィルタ内蔵機器
US10965124B2 (en) Apparatuses including power electronics circuitry, and related methods of operation
JP5957501B2 (ja) 電力管理システム
ES2820452T3 (es) Control de tensión para generadores de turbina eólica
US11749992B2 (en) Method and system for locally controlling power delivery along a distribution feeder of an electricity grid
US20110153098A1 (en) Renewable electricity generation system, electric power measurement device and method
EP2782205A1 (en) Power conditioner, method for controlling power conditioner, and power conditioner system
WO2018199333A1 (ja) 電源力率制御システム、調相装置ならびにアクティブフィルタ装置
WO2021172223A1 (ja) 通信回線を利用した電力系統安定化システム
AU2018276600B2 (en) Power Source Quality Management System and Air Conditioner
JP2018207565A (ja) 電源力率制御システム
WO2016139129A1 (en) Adjustable speed drive system
JP7368814B1 (ja) 電気機器および電気機器を備える電力システム
WO2023058533A1 (ja) 空気調和装置および制御システム
JP2019126233A (ja) 流体システム
JP2012217240A (ja) 発電システムを備えたローカル電力系統の制御方法及びローカル電力系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018791305

Country of ref document: EP

Effective date: 20191113

ENP Entry into the national phase

Ref document number: 2018257445

Country of ref document: AU

Date of ref document: 20180427

Kind code of ref document: A