WO2018038000A1 - 状態変化検知装置、方法及びプログラム - Google Patents

状態変化検知装置、方法及びプログラム Download PDF

Info

Publication number
WO2018038000A1
WO2018038000A1 PCT/JP2017/029563 JP2017029563W WO2018038000A1 WO 2018038000 A1 WO2018038000 A1 WO 2018038000A1 JP 2017029563 W JP2017029563 W JP 2017029563W WO 2018038000 A1 WO2018038000 A1 WO 2018038000A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
state change
waveform
waveform data
power supply
Prior art date
Application number
PCT/JP2017/029563
Other languages
English (en)
French (fr)
Inventor
貴裕 戸泉
鈴木 亮太
滋 河本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018535632A priority Critical patent/JP7003922B2/ja
Priority to US16/326,963 priority patent/US11237584B2/en
Publication of WO2018038000A1 publication Critical patent/WO2018038000A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2016-161985 (filed on Aug. 22, 2016), the entire description of which is incorporated herein by reference. Shall.
  • the present invention relates to an apparatus, a method, and a program for detecting a change in state of an electrical device.
  • each electric device also referred to as “electrical equipment” deployed indoors, outdoors, etc. in homes, stores, factories, etc., and the operation of each electric device is determined from the measurement data of each measuring device.
  • electrical equipment also referred to as “electrical equipment” deployed indoors, outdoors, etc. in homes, stores, factories, etc.
  • the operation of each electric device is determined from the measurement data of each measuring device.
  • it is necessary to install measuring instruments in all the target devices which requires a lot of work and a burden on the user and a problem in terms of cost.
  • NILM non-intrusive load monitoring
  • Non-Patent Document 2 discloses a current waveform (instantaneous for one cycle) flowing in a trunk line using a current sensor attached to a distribution board. Waveform), and by analyzing the waveform against the waveform database with current waveform information unique to each device, the power consumption of each device is estimated, and the device status such as device on / off is determined. It is described.
  • inverter devices for example, inverter air conditioners, personal computers, microwave ovens, inverter lighting fixtures, etc.
  • capacitor input type rectifier circuits rectifier circuits and smoothing capacitors
  • Harmonics frequency components that are integer multiples of the commercial power supply frequency
  • the power supply voltage waveform also includes a harmonic, which adversely affects electrical equipment and wiring facilities.
  • the power input current of the electric equipment has a waveform in which the current flows only near the peak value of the power supply voltage (sine wave), and the power supply current contains a lot of harmonic components.
  • 273 and 274 in FIG. 27 illustrate the current waveforms of the third harmonic and the fourth harmonic, respectively.
  • 275 and 276 in FIG. 27 illustrate the current waveforms of the fundamental wave + third harmonic and the fundamental wave + fourth harmonic, respectively.
  • the waveform that is symmetric (vertically symmetric) before and after the half cycle does not include DC components and even-order harmonics, but includes only odd-order harmonic components.
  • the current waveform 275 of the fundamental wave + the third harmonic corresponds to this. This point will be briefly described.
  • Patent Document 1 is installed in the vicinity of a power supply line inlet of an electric power consumer as an electric equipment monitoring system that can estimate the operating state of electric equipment including inverter equipment by a non-intrusive method.
  • Data extraction means for extracting data on the phase of the fundamental and harmonic currents and their voltages from the measurement data detected by the measurement sensor, and the phases of the fundamental and harmonic currents and their voltages from the data extraction means
  • An electrical equipment monitoring system comprising pattern recognition means for estimating an operating state of an electrical equipment used by the electric power consumer based on the data regarding the electrical power consumer is disclosed.
  • Patent Document 1 it is necessary to prepare a current waveform (teacher data) for each operation state of an electrical device in advance.
  • Patent Literature 2 and Patent Literature 3 disclose a method in which the apparatus automatically collects teacher data and estimates the operating status of each device without preparing teacher data in advance. .
  • Patent Document 2 in non-intrusive appliance load monitoring (NILM), a time series of power or current measurement values in a circuit is analyzed, and whether the electrical equipment is in a steady state or in a transition state is described in the time series.
  • NILM non-intrusive appliance load monitoring
  • Patent Document 3 discloses a measurement module that measures a power consumption characteristic of a power source and supplies power to a plurality of electrical devices, and a change detection and search that is coupled to the measurement module and detects and calculates a change in the power consumption characteristic. And a change detection and search module, when the change is detected, searches the appliance signature database according to the change to detect one or more similar to the change. There is disclosed a power monitoring apparatus that obtains the above candidate electrical device and the state of the candidate electrical device or a combination of the states of a plurality of candidate electrical devices.
  • the change detection and search module is coupled to the memory unit storing the electrical equipment signature database, and the characteristic parameter list of the power consumption feature and the previous characteristic parameter list of the power consumption feature, And a search unit for detecting and calculating a change characteristic parameter list of the change, wherein the change characteristic parameter list includes a change current wave, a transient current wave, a voltage root mean square value, a current root mean square value, and an active power (active). power), and reactive power.
  • a configuration is disclosed in which the operating state of each device is estimated in the absence of teacher data by providing a threshold for the “time-series change” of the change characteristic parameter.
  • Patent Document 4 a harmonic current signal is sampled, digitized, frequency-analyzed, a monitoring value and an alarm time limit are set for each order, an alarm contact is output when the order is exceeded, and the central monitoring device receives the received data.
  • a configuration for determining the direction of the harmonic power flow and identifying the harmonic generation source based on the above is disclosed.
  • Patent Document 4 discloses an example of setting the content rate for each odd-order harmonic such as the third, fifth, and seventh orders and the monitoring value for the order.
  • quasi-stationary harmonics with moderate fluctuations are mainly targeted, for example, sudden harmonics appearing in instantaneous waveforms are not targeted.
  • Patent Document 5 measurement information about power and current supplied to an electrical system to which a plurality of consumer devices can be connected is acquired, and a first harmonic component that is a harmonic component of the power and the current
  • a harmonic component calculation unit that calculates a second harmonic component that is a higher harmonic component, a database that can record harmonic content of electric power required by each of the plurality of consumer devices, 1st harmonic component, the 1st electric power calculated
  • the state estimation apparatus provided with the state estimation part which estimates the effective power of the said consumer apparatus and the resistance value in the said electric system by having expressed by these is disclosed.
  • Patent Document 6 discloses a database that stores current waveforms of a plurality of devices as reference waveforms, current waveform measurement means that measures a current waveform flowing in a power supply line every cycle of a power supply frequency, and one cycle of the current waveform.
  • a steady state determining means for determining a transient state when the amount of change for each of the two exceeds a predetermined threshold, and determining a steady state when the amount of change does not exceed the threshold;
  • a differential waveform calculating means for calculating a differential waveform that is a difference between the current waveform measured in the second steady state and the current waveform measured in the first steady state when the state transits to the second steady state;
  • the difference waveform and each reference waveform in the database are compared, the reference waveform most similar to the difference waveform is selected, and the device corresponding to the selected reference waveform operates in the transient state
  • Current waveform identification device comprising identification means for identifying that the device there is a change of state, is disclosed.
  • the measured current waveform is compared with the current waveform one cycle before.
  • the present invention was created based on the recognition of the above-mentioned problem, and one of its purposes is an apparatus, a method, and a method capable of obtaining state change information directly from an instantaneous waveform, To provide a program.
  • state change feature amount extraction means for extracting a state change feature amount relating to waveform data of the power supply current;
  • a state change detection apparatus includes a transition state extraction unit that detects a transition state based on the size of the extracted state change feature amount for the waveform data section.
  • a method for detecting a change in state of an electrical device by a computer A state change feature amount extraction step for extracting a state change feature amount related to the waveform data of the power supply current;
  • a state change detection method including a transition state extraction step of detecting a transition state based on the size of the state change feature value extracted for the section of the waveform data.
  • state change feature amount extraction processing for extracting a state change feature amount related to waveform data of the power supply current;
  • a program for causing a computer to execute a transition state extraction process for detecting a transition state based on the size of the state change feature value extracted for the waveform data section is provided.
  • a computer-readable recording medium for example, a non-transitory computer readable recording medium such as a magnetic / optical recording medium or a semiconductor storage device
  • FIG. 24A It is a figure which illustrates the connection of the ammeter of FIG. 24A, and a voltmeter. It is a figure explaining the 2nd Embodiment of this invention. It is a figure which illustrates the synthetic
  • FIG. 1 is a diagram illustrating the configuration of a first exemplary embodiment of the present invention.
  • a state change detection apparatus 100 includes state change feature amount extraction means (state change feature amount extraction unit) 101 that extracts state change feature amounts relating to waveform data of power supply current, and a section of the waveform data. Transition state extraction means (transition state extraction unit) 102 for detecting a transition state based on the size of the state change feature value extracted in this manner.
  • the units 101 and 102 of the state change detection device 100 may be integrated into one device (housing), or may be distributed at different nodes and connected to each other by communication means.
  • the state change feature quantity extraction unit 101 performs Fourier transform (for example, FFT (Fast Fourier Transform) or DFT (Discrete Fourier Transform)) on the power supply current waveform.
  • Fourier transform for example, FFT (Fast Fourier Transform) or DFT (Discrete Fourier Transform)
  • G (0) is a direct current component. Centering on the Nyquist frequency (G (N / 2)), the other half (G (N / 2 + 1)) with respect to the first half of the frequency range (G (1) to G (N / 2-1)) To G (N ⁇ 1)) is mirror-symmetric.
  • the intensity (amplitude component) I (j) of the frequency spectrum G (j) is the square root of the sum of the squares of the real part Re (G (j)) and the imaginary part Im (G (j)) as follows: Given.
  • the sum of intensity (amplitude component) I (j) of frequency components other than the odd-order harmonic components of the commercial power supply frequency is referred to as a state change feature value FV.
  • the index j (set E) taking the sum ⁇ of the intensity I (j) is an integer of 0 to N / 2 (corresponding to the frequency spectrum (G (0) to G (N / 2)) Among them, the order of frequency components other than the odd-order harmonic components of the commercial power supply frequency, including 0.
  • the sum of n powers of the magnitudes (amplitude components) I (j) of frequency components other than the odd harmonic components of the commercial power supply frequency may be used as the state change feature value FV.
  • n is, for example, an integer of 2 or 3 or more.
  • the state change feature amount extraction unit 101 calculates the state change feature amount related to the power supply current waveform data based on the power supply current waveform data of the electrical device stored and held in advance in a storage device (not shown) of the state change detection device 100. You may make it do.
  • This storage device is a storage device connected to the outside of the state change detection device 100 and is a database device or the like that the state change feature quantity extraction means 101 of the state change detection device 100 can access via communication means such as a network. May be.
  • the transition state extraction unit 102 compares the state change feature amount calculated by the state change feature amount extraction unit 101 with a preset threshold value, and the section of the current waveform data subjected to Fourier transform (the length is For example, the section within 1 cycle (1 cycle) of the commercial power supply frequency) Corresponds to transition states such as on / off of electrical equipment and internal control of electrical equipment, or It is determined whether the electrical device is in a steady state.
  • the transition state extraction means 102 is, for example, If the magnitude of the state change feature amount in the current waveform data section is less than or equal to the threshold, it is determined that the section is in a steady state, When the magnitude of the state change feature amount in the current waveform data section exceeds the threshold, the section may be determined to be in the transition state.
  • the short-time Fourier transform (the length of the window function) is performed by shifting the start end of the time section of the current waveform extracted by the process of performing the Fourier transform by applying the window function little by little (by time ⁇ t).
  • the time transition (time-series data) of the state change feature amount is obtained from the current waveform, and the transition state extraction unit 102 determines whether the state is the steady state or the transition state by time ⁇ t ( ⁇ 20 ms). (millisecond): It may be performed every one cycle length of the commercial power supply frequency. In this case, the time resolution of the transition state determination is given by ⁇ t.
  • FIG. 2 is a flowchart for explaining the overall operation of the first embodiment.
  • the state change feature quantity extraction unit 101 calculates a state change feature quantity based on the waveform data of the power supply current (step S11).
  • the transition state extraction unit 102 detects whether the section is in a steady state or a transition state based on the magnitude of the state change feature value extracted for the section of the current waveform data (step S1). S12).
  • the transition state extraction unit 102 may extract a state change point (a change point from the steady state to the transition state or a change point from the transition state to the steady state) based on the time series data of the state change feature value. Good.
  • FIG. 3 is a diagram illustrating the configuration of the second exemplary embodiment of the present invention.
  • the state change detection device 100 ⁇ / b> A includes a waveform acquisition unit (waveform acquisition unit) 103 in addition to the configuration of the state change detection device 100 of FIG. 1.
  • the waveform acquisition means 103 is, for example, ⁇ Measuring instruments installed in electrical equipment, ⁇ Smart meter or -Waveform data from at least one waveform such as controller (gateway) such as HEMS (Home Energy Management System), BEMS (Building Energy Management System), FEMS (Factor Energy Management System), etc.
  • controller gateway
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • FEMS Fractor Energy Management System
  • current waveform data and instantaneous power waveform data may be acquired.
  • the waveform acquisition unit 103 may include a measuring instrument that measures the power supply current of the electric device, or acquires waveform data acquired by the measuring device that measures the power supply current of the electric device via a communication unit or the like. It is good also as composition to do.
  • FIG. 24A is a diagram schematically illustrating an example of the configuration of the measuring device 200 to which the waveform acquisition unit 103 of FIG.
  • a single-phase two-wire AC is illustrated, but a three-phase three-wire AC can also be measured using, for example, three single-phase wattmeters. Or you may make it perform the measurement based on 2 wattmeter method about electric power.
  • a measuring instrument 200 includes a voltmeter 201 (U in FIG. 24B) that measures the voltage across the load 210 in FIG. 24B and an ammeter 204 (in FIG. 24B) that measures the current flowing through the load 210 in FIG. 24B. It is good also as a structure provided with I).
  • the voltmeter 201 may include a step-down circuit 202 that steps down the voltage across the load 210 and an analog-digital converter 203 that converts the analog output voltage of the step-down circuit 202 into a digital signal.
  • the ammeter 204 may include a current detection circuit 205 that detects a current flowing through the power supply line (load 210), and an analog-digital converter 206 that converts an analog output voltage of the current detection circuit 205 into a digital signal.
  • the current detection circuit 205 may be configured to measure, for example, a voltage across a shunt resistor (not shown) inserted in a power supply line, or a current transformer having a current transformer structure in which a coil is wound around a magnetic core or the like. You may comprise with the CT (Current Transformer) sensor etc. which pinch
  • CT Current Transformer
  • the voltage waveform data from the analog-digital converter 203 of the voltmeter 201 and the power waveform data from the analog-digital converter 206 of the ammeter 204 are multiplied by, for example, a multiplier 207 to obtain an instantaneous power waveform.
  • the instantaneous power waveform is smoothed by the active power calculation unit 208, and the active power value is calculated.
  • the voltage waveform data, power waveform data, instantaneous power waveform, and active power value are input to the communication unit 209 and transmitted to the waveform acquisition unit 103 of the state change detection device 100 in FIG.
  • the analog-to-digital converters 203 and 206, the multiplier 207, the active power calculation unit 208, and the communication unit 209 include an AC (Alternate Current) -DC (Direct Current) converter (not shown) that converts commercial AC power into DC power. And a predetermined DC power supply voltage may be supplied via a DC-DC converter that converts the output DC voltage of the AC-DC converter into another DC voltage.
  • AC Alternate Current
  • DC-DC Direct Current
  • the waveform acquisition unit 103 of the state change detection device 100 may include a communication unit 103-1, a waveform extraction unit 103-2, and a storage device 103-4, for example.
  • the communication unit 103-1 communicates with the communication unit 209 of the measuring instrument 200 via a network or the like, receives necessary waveform data among current waveform data, voltage waveform data, instantaneous power waveform, etc., and receives the received waveform data.
  • the data is stored in the storage device 103-4.
  • the communication unit 103-1 samples the current waveform data received from the measuring device 200, the identification number (identification name) (Identity: ID) of the measuring device 200 (or the ID of the electric device to be measured) and the power supply current waveform data. Information such as time may be stored in the storage device 103-4.
  • the waveform extraction unit 103-2 extracts waveform data having a necessary length (for example, one cycle) from the waveform data (for example, current waveform data) stored in the storage device 103-4.
  • the waveform acquisition means 103 is connected to a measuring instrument, or in addition to the configuration including this, the waveform is separated from the power consumption and current waveform acquired from a smart meter, a current sensor, etc.
  • a current waveform (length is within one cycle of the commercial power supply frequency, for example) may be acquired.
  • FIG. 25A is a diagram schematically illustrating an example in which the waveform acquisition unit 103 in FIG. 3 performs device separation from the power supply current waveform.
  • the communication device 21 in the building 20 of the power consumer, the communication device 21 is configured with a controller such as HEMS / BEMS / FEMS, and meter reading data (power consumption, current value, etc.) of the smart meter 25 is obtained from the B route, for example. get.
  • Meter reading data (power consumption, current value, etc.) acquired by the controller from the smart meter 25 via the B route includes information on the power consumption of the entire building.
  • a current sensor 23 detects a current flowing through the breaker (not shown) of at least one of a main breaker (not shown) and a branch breaker (not shown) to which the main power line of the distribution board 22 is connected.
  • the current waveform data may be transmitted from the current sensor 23 to the communication device 21 by wireless transmission or the like.
  • the current sensor 23 may be configured by a CT (Current Transformer) (for example, a zero-phase-sequence current transformer (ZCT)), a Hall element, or the like.
  • CT Current Transformer
  • ZCT zero-phase-sequence current transformer
  • the current sensor 23 samples a current waveform (analog signal) with an analog / digital converter (not shown), converts it into a digital signal, compresses and encodes it with an encoder (not shown), and then sends the Wi-SUN ( Wireless transmission may be performed by using Wireless Smart Network (Wireless Smart Network).
  • the waveform acquisition means 103 of the state change detection device 100 includes a communication unit 103-1, a waveform extraction unit 103-2, a waveform separation unit 103-3, and a storage device 103-4.
  • the communication unit 103-1 communicates with the communication device 21 via a network or the like, acquires the power supply current waveform acquired by the current sensor 23, the smart meter 25, or the like, and stores it in the storage device 103-4.
  • Reference numeral 371 in FIG. 25B schematically shows a current waveform (for one cycle of commercial power) acquired by the current sensor 23 or the smart meter 25 connected to the main breaker or branch breaker (not shown) of the distribution board 22 in FIG. 25A. Is illustrated.
  • the waveform separation unit 103-3 uses the current waveform data 371 in FIG. 25B, for example, by using the methods of Non-Patent Documents 1 and 2, etc., for the electric devices 24A to 24C connected to the main breaker or branch breaker of the distribution board 22.
  • the power source current waveforms of each device are separated and stored in the storage device 103-4.
  • the waveform separation unit 103-3 may store information such as the ID of the electrical device corresponding to the separated power supply current waveform data and the sampling time of the power supply current waveform data in the storage device 103-4.
  • 372, 373, and 374 represent current waveforms separated for each device for each of the electric devices 24A, 24B, and 24C of FIG. 25A.
  • the waveform separation unit 103-3 may acquire power source current waveform data of the electric devices 24A to 24C from the meter reading data (power consumption, current value, etc.) acquired from the smart meter 25 through the B route. For example, among the meter-reading data of the smart meter 25, the power supply current waveform data of each device is acquired by analyzing the time-series change data of the current value using an analysis means such as machine learning or signal processing technology. May be.
  • the waveform extraction unit 103-2 has a length (for example, 1) necessary for the current waveform data of the target electrical device among the waveform data (for example, current waveform data) of each electrical device stored in the storage device 103-4. Period) waveform data is extracted.
  • the state change feature quantity extraction unit 101 performs Fourier transform (for example, FFT or DFT) on the current waveform data acquired by the waveform acquisition unit 103 in the same manner as in the first embodiment, so that frequency components are obtained.
  • Fourier transform for example, FFT or DFT
  • the sum (or n-th power sum) of the frequency components other than the odd-order harmonic components of the commercial power supply frequency is set as the state change feature value (feature value) FV. .
  • the state change feature quantity extraction unit 101 may calculate the state change feature quantity related to the current waveform data based on the current waveform data stored and held in advance in the storage device of the state change detection apparatus 100.
  • This storage device may be, for example, the storage device 103-4 of the waveform acquisition unit 103 of FIG. 24A or FIG. 25A, or a storage device inside the state change detection device 100 (for example, the storage device 112 of FIG. ) Or a storage device connected to the outside of the state change detection device 100, and the state change feature quantity extraction means 101 of the state change detection device 100 is a database device that can be accessed via communication means such as a network. Also good.
  • the transition state extraction unit 102 compares the state change feature amount calculated by the state change feature amount extraction unit 101 with a preset threshold value as in the first embodiment, and performs Fourier comparison.
  • the section of the converted current waveform data (the length is, for example, a section within one cycle of the commercial power supply frequency) corresponds to a transition state such as on / off of the electrical device or internal control of the device, or in a steady state. Determine if there is. For example, if the magnitude of the state change feature value in the current waveform data section is equal to or less than the threshold value, the transition state extraction unit 102 determines that the current waveform data section is in a steady state, and the state change feature value is large. When the value exceeds the threshold value, the section of the current waveform data may be determined to be in the transition state.
  • the state change feature quantity extraction unit 101 uses the short-time Fourier transform performed while shifting the time range of the current waveform cut out by applying a window function little by little (by time ⁇ t).
  • the time transition (time-series data) of the change feature amount may be obtained, and the transition state extraction unit 102 may determine whether it is in the steady state or the transition state every time ⁇ t ( ⁇ 20 ms). .
  • FIG. 4 is a flowchart for explaining the overall operation of the second embodiment of the present invention.
  • the waveform acquisition unit 103 in FIG. 3 acquires a power supply current waveform for one cycle of the commercial power supply frequency (step S10).
  • the waveform acquisition unit 103 acquires the power supply current waveform and the instantaneous power waveform of the electrical device from the measuring device 200 connected to the electrical device (load 210). It may be.
  • the waveform acquisition unit 103 is configured by using a current sensor (current sensor 23 in FIG. 25A) connected to the main breaker or branch breaker of the distribution board, or smart.
  • the state change feature quantity extraction unit 101 calculates a state change feature quantity based on the waveform data acquired by the waveform acquisition unit 103 (step S11).
  • the transition state extraction unit 102 detects whether the section is in a steady state or a transition state based on the magnitude of the state change feature value extracted for the section of the power supply current waveform data (Ste S12).
  • the transition state extraction unit 102 may extract a state change point (a change point from the steady state to the transition state or a change point from the transition state to the steady state) based on the time series data of the state change feature value. Good.
  • FIG. 5A is a diagram illustrating the configuration of the state change feature quantity extraction means (state change feature quantity extraction unit) 101 shown in FIGS. 1 and 3.
  • the state change feature quantity extraction unit 101 performs a Fourier transform such as FFT or DFT on the waveform input unit 101-1 for inputting the current waveform data and the current waveform data (series of discrete time data).
  • a Fourier transform unit 101-2 that performs frequency domain conversion and a state change feature amount calculation unit 101-3 that calculates a state change feature amount from the result (frequency spectrum) of the Fourier transform.
  • FIG. 5B is a diagram for explaining the processing in step S11 in FIG. 2 by the state change feature amount extraction unit 101 in FIG. 5A.
  • the waveform input unit 101-1 of the state change feature quantity extraction unit 101 inputs, for example, current waveform data for one cycle of the commercial power supply frequency (step S110).
  • the waveform input unit 101-1 inputs current waveform data stored and held in a storage device provided in the state change feature quantity extraction unit 101, a storage device external to the state change detection device 100, or the like. Also good.
  • the waveform input unit 101-1 may input the current waveform data stored and held in the storage device 103-4 of the waveform acquisition unit 103 of FIG. 24A or FIG. 25A, for example.
  • the waveform input unit 101-1 may be configured to directly receive the current waveform data from the waveform acquisition unit 103 of FIG.
  • the data input by the waveform input unit 101-1 may be one cycle or more of the commercial power supply frequency. Or, even if it is less than one cycle of the commercial power supply frequency, odd-order harmonic components (third order, fifth order, seventh order,..., 150 Hz, 250 Hz, 350 Hz,. It is sufficient that the frequency components other than () can be extracted. For example, in order to extract a fourth-order harmonic component, waveform data having a length of 1 ⁇ 4 of one cycle of the commercial power supply frequency may be used.
  • the Fourier transform unit 101-2 of the state change feature quantity extraction unit 101 converts the input current waveform data (time domain data) into the frequency domain by using, for example, FFT (step S111).
  • the Fourier transform unit 101-2 may extract intensity and phase values for each frequency component. Or you may extract the value of intensity
  • the specific frequency other than the odd-order harmonic component may include at least one frequency component other than the odd-order harmonic component of the commercial power supply frequency.
  • the sampling frequency fs of the current waveform data acquired by the waveform acquisition unit 103 is a frequency at which the harmonic component of the order to be analyzed is equal to or lower than the Nyquist frequency (fs / 2). For example, when the Nyquist frequency is a 42nd-order harmonic component (2100 Hz), the sampling frequency in the measuring instrument (for example, analog-digital converter (ADC) 203, 206 in FIG. 24A) is 4.2 kHz.
  • the state change feature quantity calculation unit 101-3 of the state change feature quantity extraction unit 101 takes the sum of the intensities of the frequency spectrum other than the odd-order harmonic components of the extracted commercial power supply frequency (formula (4)) (step S112). ).
  • the state change feature quantity calculation unit 101-3 may obtain the nth power sum of the frequency spectrum intensity (the above expression (5)).
  • the state change feature quantity calculation unit 101-3 selects the sum of the frequency components other than the odd-order harmonics of the commercial frequency for taking the sum of magnitudes by using the standard deviation or the like with a large standard deviation value. You may take
  • short-time Fourier transform is performed in which the time series current waveform data is Fourier-transformed while shifting the range to be cut out by the window function, and the standard deviation value calculated in the time direction for the frequency value at each time is used in the transition state.
  • a frequency having a large standard deviation value may be selected and summed.
  • the state change feature quantity calculation unit 101-3 outputs the sum of the intensity of the frequency spectrum other than the odd-order harmonic components as the state change feature quantity (step S113).
  • the state change feature value represents a feature value that has a small value in the steady state and a large value when the state changes.
  • the feature amount is not limited to the above example, and may be another feature amount.
  • FIG. 6A is a diagram illustrating the configuration of the transition state extraction means (transition state extraction unit) 102 in FIGS. 1 and 3.
  • the transition state extraction unit 102 includes a state change feature amount input unit 102-1 for inputting a state change feature amount, and the input state change feature amount and a threshold value stored in the storage device 102-4.
  • a determination unit 102-2 for comparing and determining, a state output unit 102-3 for outputting a state based on the determination result of the determination unit 102-2, and storage devices 102-4 and 102-5.
  • the display device 102-6 may be a display device of a computer constituting the state change detection device 100.
  • FIG. 6B is a flowchart for explaining the processing in step S12 in FIGS. 2 and 4 by the transition state extraction unit 102 in FIG. 6A.
  • the state change feature amount input unit 102-1 of the transition state extraction unit 102 inputs time-series data of state change feature amounts (step S120).
  • the determination unit 102-2 of the transition state extraction unit 102 determines whether or not the size of the state change feature value exceeds the threshold held in the storage device 102-4 for each piece of time-series data of the state change feature value. Determination is made (step S121).
  • the state output unit 102-3 of the transition state extraction unit 102 sets the section of the data of the time series data of the state change feature value as “transition state”. (Step S122), and if the state change feature quantity is equal to or smaller than the threshold (No branch in step S121), the section of the data is output as “steady state” (step S123).
  • the transition state extraction unit 102 may store time series information of a state (steady state, transition state) as a determination result in the storage device 102-5. Alternatively, the transition state extraction unit 102 may display time series information of the state (steady state, transition state) as a determination result on the display device 102-6.
  • the state (steady state, transition state) may be displayed in correspondence with the current waveform data.
  • the threshold value stored in the storage device 102-4 is set in advance by a user (electric power consumer), a device designer, a system administrator (maintenance personnel), or the like from a terminal (not shown) or the like, and the storage device 102 -4 may be stored.
  • a configuration may be adopted in which state change feature values relating to past waveform data are learned by machine learning using the state variable as an explanatory variable and the result of the state transition as an objective variable, and the threshold value stored in the storage device 102-4 is updated.
  • FIG. 7A is a diagram illustrating another configuration of the transition state extraction means (transition state extraction unit) 102 in FIGS. 1 and 3.
  • the transition state extraction unit 102 performs the statistical analysis on the state change feature quantity input unit 102-1 for inputting the state change feature quantity and the state change feature quantity, thereby obtaining an outlier.
  • An outlier detection unit 102-7 to detect, a state output unit 102-3 for outputting a state based on an outlier detection result in the outlier detection unit 102-7, and a storage device 102-5 are provided.
  • FIG. 7B is a flowchart for explaining the processing in step S12 of FIGS. 2 and 4 by the transition state extraction means (transition state extraction unit) 102 of FIG. 7A.
  • the state change feature amount input unit 102-1 of the transition state extraction unit 102 inputs time-series data of state change feature amounts (step S120).
  • the outlier detection unit 102-7 of the transition state extraction unit 102 uses the time-series data of the state change feature value so that the frequency of the steady state is extremely high in the time-series data of the acquired current waveform compared to the number of transition states.
  • the transition state is detected as an outlier using a statistical outlier detection method (step S124).
  • the advantage of using time-series data of state change feature amounts is that a plurality of data is used, so that it is possible to learn from outliers and set them automatically without setting a threshold value arbitrarily.
  • the state output unit 102-3 of the transition state extraction unit 102 sets the data section as a transition state (step S126). If no outlier is detected (No branch in step S125), the section of the data is set to a steady state (step S127).
  • the transition state extraction unit 102 may store time series information of a state (steady state, transition state) as a determination result in the storage device 102-5. Alternatively, the transition state extraction unit 102 may display time series information of the state (steady state, transition state) as a determination result on the display device 102-6. At that time, the state (steady state, transition state) may be displayed in correspondence with the current waveform data.
  • the method for detecting outliers is, for example, ⁇ Method using standard deviation and Mahalanobis distance
  • a method such as the Smirnov-Grubbs test (whether or not to reject an abnormal value is also referred to as “Grubbs-Smirnov rejection test”) may be used.
  • FIG. 8A shows the power supply current waveform data of the electric equipment including the time section of “transition state” and the time section of “steady state”, and 301 and 302 in FIG. 8B denote “transition state” and “ It is a figure which shows the frequency spectrum (intensity
  • the frequency spectrums of the transition state 301 and the steady state 302 in FIG. 8B are compared, in the transition state 301, intensities other than the odd-order harmonic components of the commercial power supply frequency (50 Hz) are larger than in the steady state.
  • odd-order harmonic components such as third-order harmonic components (150 Hz) and fifth-order harmonic components (250 Hz) are conspicuous.
  • transition state 301 in addition to odd-order harmonic components, the intensity of even-order harmonic components such as DC (Direct Current) component, second-order harmonic component (100 Hz), and fourth-order harmonic component (200 Hz) are large, The intensity of higher-order harmonic components is also larger than in the steady state.
  • DC Direct Current
  • second-order harmonic component 100 Hz
  • fourth-order harmonic component 200 Hz
  • FIG. 9 is a diagram showing an example of extracting the transition state when the task light is turned on / off as an application example of the state change detection devices 100 and 100A of the first and second embodiments described above.
  • a waveform 311 shows power supply current waveform data of task write.
  • a waveform 312 represents a time transition of the state change feature amount extracted by Fourier transform (FFT) for each cycle (20 ms) of the commercial power supply frequency with respect to the power supply current waveform data 311.
  • a waveform 313 indicates a time transition of the state change feature amount extracted by shifting the time with respect to the current waveform 311 by short-time Fourier transform.
  • Reference numeral 314 denotes a transition state (a time transition of the transition state) detected using the state change feature amount.
  • the time axes of 311, 312, 313, and 314 are the same.
  • the value of the state change feature value increases.
  • the state change feature value is a constant value during one cycle (20 ms) of the power supply frequency (therefore, the time resolution is 20 ms).
  • the state of the state change feature amount with respect to time can be extracted with high accuracy.
  • the state change feature value is a constant value for one period (20 ms) of the commercial power supply frequency, and therefore a time change near the peak of the state change feature value 313 is not detected.
  • the transition state extraction means 102 of the state change detection device 100 of the first and second embodiments compares the magnitude of the state change feature quantity 313 based on, for example, the short-time Fourier transform with a threshold value, and changes the state.
  • the magnitude of the feature quantity is equal to or smaller than the threshold, it is determined as a steady state, and when the magnitude of the state change feature quantity exceeds the threshold, it is determined as a transition state.
  • the state changes from the steady state to the transition state at the time of 20 ms, and the state changes from the transition state to the steady state at the time of 60 ms.
  • transition state is detected in the same section for the state change feature amounts 312 and 313 having different time resolutions. This is because the current waveform 311 happens to have such a pattern. Generally, if the time resolution of the state change feature value is different, the time transition pattern of the transition state detection result also changes.
  • 321 in FIG. 10 is an example of power supply current waveform data (same as FIG. 8A), 322 in FIG. 10 is an example of a state change feature, and 323 in FIG. 10 is an example of a transition state.
  • Reference numeral 322 denotes a time transition (time-series data) of a state change feature obtained by frequency analysis by short-time Fourier transform in which a window function (window) to be applied to the current waveform data 321 is 20 ms (one cycle of commercial power supply frequency). Show.
  • Reference numeral 323 denotes a time transition of the steady state and the transition state calculated by comparing the time series data of the state change feature quantity with the threshold value.
  • FIG. 11A shows power supply current waveform data of an electric device.
  • Reference numeral 332 in FIG. 11B indicates the frequency spectrum of the “steady state” in FIG. 11A (a time interval corresponding to two cycles of the power supply frequency).
  • T the length of the window function
  • fs the sampling frequency
  • N is the number of samplings.
  • 341 in FIG. 12A is power supply current waveform data (same as 321 in FIG. 10A) of the electrical equipment.
  • 342 in FIG. 12B shows the state change feature value obtained by frequency analysis by short-time Fourier transform in which the length of the window function applied to the power supply current waveform data 341 is 40 ms (2 cycles) and the window function is shifted to perform FFT.
  • Time series data is shown.
  • 343 in FIG. 12 indicates time transitions of the steady state and the transition state calculated by comparing the state change feature quantity with the threshold value.
  • the state change feature amount falls below the threshold value for a short time (several ms) between 40 ms and 50 ms, then exceeds the threshold value, and again falls below the falling threshold value at a time point before 60 ms.
  • the state change feature amount always exceeds the threshold from 20 ms to just before 70 ms, and falls below the falling threshold at the time before 70 ms.
  • a thin whisker-like pulse between 40 ms and 50 ms (instantaneous steady state during the transition state) detected at 323 in FIG. 10 is not detected at 343 in FIG. 12 and is always detected from 20 ms to a time before 70 ms. Transition state.
  • the transition state 343 in FIG. 12 corresponds to one obtained by connecting two adjacent transition states in 323 in FIG.
  • 26 is a diagram illustrating a configuration in which the state change detection device 100 of FIG. 1 or the state change detection device 100A of FIG.
  • the computer device 110 includes a CPU (Central Processing Unit) 111, a memory (storage device) 112, an input / output (IO) interface 113, and a communication interface 114.
  • CPU Central Processing Unit
  • memory storage device
  • IO input / output
  • the storage device 112 includes a hard disk drive (HDD), a semiconductor memory (for example, a solid state drive (SSD), a dynamic random access memory (DRAM), a static random access memory (SRAM), a read only read only memory (ROM), an electric Program that is configured by any one of a read-only memory (Electrically Erasable Programmable Read-Only Memory), a compact disc (CD), a digital versatile disc (DVD), etc., or a combination thereof and executed by the CPU 111
  • the CPU 111 is stored in the storage device 112 and executes a program, whereby the state change feature amount extraction unit 1 in FIG.
  • the transition state extraction unit 101 is connected via the IO interface 113.
  • the state transition extraction result may be output to the output device, and the waveform acquisition unit 103 in Fig. 3 acquires a current waveform from a measuring instrument or the like via the communication interface 114, and stores the storage device 112 (a writable HDD, SSD,
  • the communication interface 114 corresponds to the communication unit 103-1 in Fig. 24A and Fig. 25A
  • the storage device 112 is the storage device in Fig. 24A and Fig. 25A.
  • FIG. 5A the storage devices 102-4 and 102-5 in Fig. 6A, and the storage in Fig. 7A may be used.
  • Location 102-5, FIG. 24A, along with storage unit 103-4 in FIG. 25A, may be combined in the storage device 112 of the computer device 110.
  • state change feature values are calculated by extracting harmonic components other than odd-order harmonic components from current waveform data, and the state change feature values are calculated. A state transition is detected based on the size. For this reason, the state transition can be detected with high accuracy.
  • the power supply current waveform in FIG. 8A, FIG. 10A, etc. may not be possible to determine whether the power supply current waveform in FIG. 8A, FIG. 10A, etc. is in a transition state or a steady state simply by observing whether or not there is a spike.
  • the power supply current waveform may not change abruptly. For example, when the switch is switched from ON to OFF at the timing when the power supply current waveform crosses zero, the power supply current waveform does not change abruptly. For this reason, it is necessary to constantly monitor the power supply current waveform.
  • whether the state is the transition state or the steady state is detected based on the magnitude (non-negative value) of the state change feature amount of the power supply current waveform. be able to.
  • FIG. 13 is a diagram illustrating the configuration of an exemplary third embodiment of the present invention.
  • a state change detection device 100B includes a waveform acquisition unit (waveform acquisition unit) 103, a phase adjustment waveform connection unit (phase adjustment waveform connection unit) 104, and a state change feature quantity extraction.
  • Means (state change feature quantity extraction unit) 101 and transition state extraction means (transition state extraction unit) 102 are provided.
  • a state change feature quantity extraction unit 101 and a transition state extraction unit 102 detect a transition state in the same manner as in the first and second embodiments.
  • the waveform acquisition unit 103 acquires, for example, a current waveform and a voltage waveform with one cycle of the commercial power supply frequency.
  • the phase adjustment waveform connecting means 104 adjusts the phase of the instantaneous waveforms at a plurality of measurement points or the instantaneous power waveforms at a plurality of measurement points with a time difference of one cycle or more of the commercial power supply frequency.
  • the state change feature quantity extraction unit 101 performs Fourier transform on the connected current instantaneous waveform or power instantaneous waveform, and outputs the sum of the intensities of frequency components other than the odd harmonic components of the commercial power supply frequency as the state change feature quantity. .
  • FIG. 14A is a diagram illustrating the configuration of the phase adjustment waveform connecting means 104.
  • FIG. 14B is a flowchart for explaining the operation of the phase adjustment waveform connecting means 104.
  • the operations of the waveform acquisition unit 103, the state change feature quantity extraction unit 101, and the transition state extraction unit 102 are the same as the operations described in the first embodiment, and a description thereof will be omitted.
  • the phase adjustment waveform connecting means 104 is a waveform input unit 104-1 for inputting one waveform of current waveform and voltage waveform data for two waveforms.
  • a phase adjustment unit 104-2 for connecting the current waveforms
  • a waveform connection unit 104-3 for connecting the phase-adjusted current waveform.
  • the waveform input unit 104-1 of the phase adjustment waveform connecting unit 104 includes, for example, a plurality of data measured in a plurality of data acquisition periods from the current waveform data and voltage waveform data acquired by the waveform acquisition unit 103.
  • About voltage waveform data and current waveform data, current waveform data and voltage waveform data for one period at two data acquisition timings adjacent in time series are input (step S40).
  • the phase adjustment unit 104-2 of the phase adjustment waveform connecting means 104 performs phase adjustment when the phases of the two input power supply current waveform data are not aligned (and therefore phase alignment is necessary) (step S41).
  • phase adjustment in the phase adjustment unit 104-2 As one method of phase adjustment in the phase adjustment unit 104-2, the phase of the reference waveform (fundamental wave) of the commercial power supply frequency is extracted from the voltage waveform by Fourier transform, and the phase of the current waveform is extracted using the phase of the reference wave. Adjust.
  • a method of detecting a zero cross point of the voltage waveform may be used. Based on the information on how many times the first zero-cross point of the voltage waveform is from the sampling start point of the voltage waveform data and the value of the number of data points to the next zero-cross point of the detected zero-cross point of the voltage waveform, You may make it extract phase information.
  • the first zero cross point is mth from the sampling start point and the number of data points to the next zero cross point after the zero cross point is n (the phase between the zero cross points is 180 degrees), the phase is 180 ⁇ m. / N.
  • the phase adjustment unit 104-2 may adjust the phase of the power supply current waveform data by performing phase rotation after converting the power supply current waveform data into the frequency domain (Frequency-domain) by Fourier transform.
  • the extracted phase may be converted into the length of one cycle (360 degrees) of the commercial power supply frequency, and the current waveform data may be shifted by the amount corresponding to the phase in the time domain.
  • the phase of the power supply current waveform data is adjusted by adjusting the start point of the power supply current waveform using the value of the zero cross point of the voltage and the trigger timing.
  • the waveform input unit 104-1 of the phase adjustment waveform connecting means 104 may not input a voltage waveform.
  • the waveform acquisition unit 103 may acquire the power supply current waveform data.
  • the waveform connection unit 104-3 of the phase adjustment waveform connection unit 104 converts two phase-adjusted current waveform data obtained in the phase adjustment unit 104-2 in time series into continuous values in time series. Connect and output (step S42).
  • the state transition is detected by the same method as in the first and second embodiments.
  • the state change feature quantity extraction unit 101 uses a current waveform (for example, 40 ms in length) connected to the two current waveforms output from the phase adjustment waveform connection unit 104 in the same manner as in the first embodiment.
  • the state change feature quantity is extracted by adding the intensities of the frequency components other than the odd harmonic components of the power frequency reference wave (for example, 50 Hz).
  • the transition state extraction unit 102 may detect the transition state by comparison with a threshold based on the state change feature amount.
  • the transition state extraction unit 102 may detect the transition state by detecting an outlier by a statistical method.
  • connection method of the two current waveform data is not limited to the above-described method.
  • the first half cycle of the previous current waveform and the second half cycle of the subsequent current waveform in time series may be connected to create a current waveform of one cycle as a whole.
  • the number of current waveforms to be connected is not limited to two, and three or more current waveforms are arranged in phase and then Fourier transformed. You may obtain
  • the waveform connection unit 104-3 of the phase adjustment waveform connection means 104 As another connection method in the waveform connection unit 104-3 of the phase adjustment waveform connection means 104, two current waveforms having the same phase are alternately arranged in time series, and a current waveform of one cycle is created as a whole. Also good.
  • the generated current waveform of one cycle is Fourier-transformed, harmonics other than the odd-order harmonic components of the commercial power supply frequency do not appear, but when the two current waveforms before and after are different in time series, The high-frequency side intensity of the second harmonic component is increased. Therefore, the transition state may be detected by providing a threshold for the intensity of the odd-order harmonics on the high frequency side.
  • connection method in the waveform connection section 104-3 of the phase adjustment waveform connection means 104 current instantaneous values of two current waveforms having the same period are randomly selected and arranged to create a new one-cycle current waveform. May be.
  • the current waveform obtained here is Fourier transformed, if there is no change in the two current waveforms, only odd-order harmonics are obtained, and if there are changes in the two current waveforms, other than odd-order harmonic components
  • the value of the sum of the higher harmonics or the value of the higher-order harmonics of the odd-numbered order becomes larger.
  • the transition state may be detected by providing threshold values for these values.
  • phase adjustment waveform connecting means 104 uses the sampling value of the waveform data already held, the existing waveform can be obtained without shortening the acquisition interval (sampling time) and acquiring the waveform data at a high sampling rate.
  • a deficiency in data for example, waveform data in a period without measurement
  • state estimation can be performed with high accuracy.
  • FIG. 15 schematically shows voltage waveforms (351-1 to 351-4) after phase adjustment and current waveforms (352-1 to 352-4) arranged in the order of measurement.
  • there are four acquisition periods of voltage waveform and current waveform data ((351-1, 352-1) to (351-4, 352-4)) (data acquisition periods 1 to 4 (353-1 to 353-1). 353-4)), and there is a “no measurement period” between them.
  • 354-1, 354-2, and 354-3 are two waveforms of current waveform 1 and current waveform 2 after phase adjustment, two waveforms of current waveform 2 and current waveform 3, and current waveform 3 and current. A state where two waveforms of waveform 4 are connected to each other is shown.
  • reference numeral 355 denotes a length of 40 ms (two cycles of the power supply frequency) for the two connection waveforms of the current waveform 1 and the current waveform 2, the current waveform 2 and the current waveform 3, and the current waveform 3 and the current waveform 4.
  • the time change of the state change feature amount obtained by the short-time Fourier transform performed by gradually shifting the cut-out range where the Fourier transform is performed by multiplying the window function by (min) is shown.
  • Waveform 1 AAAAA AAAAA Waveform 2: BBBBB BBBBB
  • a waveform of one cycle is created with a pattern in which the first half of one cycle is waveform 1 and the second half of one cycle is waveform 2.
  • Data point 1 is waveform 1
  • data point 2 is waveform 2
  • data point 3 is waveform 1
  • Odd-numbered data points are arranged as A
  • even-numbered data points are arranged as B.
  • the even number or odd number may be reversed. In this case, only the odd-order harmonic components are output, but the intensity of the high frequency is increased when there is a change.
  • FIG. 16 is a diagram illustrating how to connect two current waveforms in one cycle (20 ms) after phase adjustment.
  • 361 is waveform 1
  • 362 is waveform 2.
  • Waveform 1 Data of A1 to A10 are arranged in this order.
  • Waveform 2 Data of B1 to B10 are arranged in this order.
  • reference numeral 363 denotes an example of creating a two-cycle waveform in which one cycle in the first half is waveform 1 (361) and one cycle in the second half is waveform 2 (362). This corresponds to the way of connecting the two waveforms (354-1 to 354-3) in FIG.
  • reference numeral 364 shows an example of creating a waveform of one cycle with the first half of one cycle as waveform 1 and the second half as waveform 2.
  • the first half of the waveform is A1 to A5 (361-1) of the waveform 1 in the first half
  • the second half of the waveform is B6 to B10 (362-2) of the waveform 2
  • the second half of the waveform is the first half of the waveform 1.
  • A6 to A10 (361-2) and the second half are B1 to B5 (362-1) of waveform 2.
  • each means in the state change detection device 100B is realized by a program executed by a computer, as in the first embodiment described with reference to FIG. Of course, it is also good.
  • two current waveforms that are adjacent in time series can be compared in the same manner as in the first embodiment, so that data is continuous for reasons such as device performance. Even if it cannot be measured, the state transition can be detected using harmonics other than the odd harmonic components.
  • the sampling period of the power supply current in the HEMS is 100 msec (a time section corresponding to 5 cycles of the commercial power supply frequency), and measurement is performed once every 10 seconds. In this case, according to the second embodiment, it is possible to estimate the transition state even if the steady state is switched to the transition state in a period without measurement.
  • the waveform input unit 104-1 of the phase adjustment waveform connecting means 104 includes a plurality of voltage waveform data measured in a plurality of data acquisition periods stored in advance in a storage device inside or outside the state change detection device 100B. From the current waveform data (for example, (voltage waveform 1, current waveform 1) to (voltage waveform 4, current waveform 4) in FIG. 15), the current waveform for one period at two data acquisition timings adjacent in time series. When data and voltage waveform data are input, the state change detection device 100B may not include the waveform acquisition unit 103.
  • FIG. 17 is a diagram illustrating the configuration of the fourth embodiment.
  • the state change detection device 100C according to the fourth embodiment includes a waveform acquisition unit (waveform acquisition unit) 103 and a state change feature amount extraction unit (state change feature amount extraction unit) according to the second embodiment.
  • 101 transition state extraction means (transition state extraction section) 102, state change point storage means (state change point storage section) 105, steady state separation extraction storage means (steady state separation extraction storage section) 106, equipment It further includes a unique state extraction means (device unique state extraction unit) 107.
  • the waveform acquisition means 103 may be connected to the measuring device 200 as described with reference to FIG. 24A, or may include a measuring device, or may be configured as described with reference to FIG. 25A.
  • the waveform of the power supply current flowing through multiple electrical devices and the power supply current waveform measured by a smart meter, measured by a current sensor connected to the main breaker or branch breaker of the panel, are separated using device separation technology. May be.
  • the state change feature quantity extraction unit 101 and the transition state extraction unit 102 are the same as those described in the first and second embodiments.
  • FIG. 18 is a diagram for explaining the operation of the fourth exemplary embodiment.
  • steps S10 and S11 are the same as steps S10 and S11 of FIG.
  • step S12 of FIG. 18 as in step S12 of FIG. 4, the transition state extraction unit 102 is in a steady state or in a transition state based on the magnitude of the state change feature amount in the current waveform data section. Whether or not and outputs time-series data of the steady state and the transition state.
  • the state change point storage unit 105 receives the time series data of the state (steady state, transition state) extracted by the transition state extraction unit 102 and receives state change point information (from the steady state to the transition state, or , The transition point from the transition state to the steady state) is acquired and sequentially stored in the storage device (105-4 in FIG. 19A) (step S13).
  • the steady state separation extraction storage means 106 classifies (clusters) the current waveform data (time series) using the state change point information stored in the storage device 105-4 by the state change point storage means 105 (step S14). .
  • the clustering method is not particularly limited, and a hierarchical method such as a shortest distance method (hierarchical method) or a non-hierarchical method such as a k-means method ( Any method such as non-hierarchical method) is used.
  • the device unique state extraction unit 107 takes the difference of feature amounts of the steady state, for example, in the order of time series for each steady state before and after the state change point separated and extracted by the steady state separation extraction storage unit 106. A unique feature amount is extracted (step S15).
  • the present embodiment it is possible to automatically acquire a device-specific waveform used for waveform analysis such as device separation.
  • the fourth embodiment will be described focusing on the state change point storage means 105, the steady state separation extraction storage means 106, and the device specific state extraction means 107, which are the differences from the first embodiment. .
  • FIG. 19A is a diagram illustrating a configuration example of the state change point storage unit 105 of FIG.
  • the state change point storage unit 105 includes a state information input unit 105-1 that inputs state information, a state change point information acquisition unit 105-2 that acquires state change point information, and a state change point information storage device 105-4. Is provided with a state change point information storage unit 105-3.
  • FIG. 19B is a flowchart for explaining the operation of the state change point storage unit 105 in FIG. 19A.
  • the state information input unit 105-1 receives time-series data of the states (steady state and time-series of transition states) extracted by the transition state extraction unit 102 (step S50).
  • the state change point information acquisition unit 105-2 acquires state change point information from time series data of states (steady state, transition state time series) (step S51).
  • the state change point may include information regarding the time of change and the type of change (whether it is a change from a steady state to a transition state, a change from a transition state to a steady state, or the like).
  • the state change point information storage unit 105-3 stores the state change point information in the storage device 105-4 (step S52).
  • the state change point information may be the state change feature value itself used for the transition state extraction unit 102 to determine whether the state is the transition state or the steady state.
  • the state change point information storage unit 105-3 does not store the current waveform data at the state change point, but stores the current waveform data in the time interval determined before and after the state change point as time series data as the time series data. 4 may be stored.
  • FIG. 20A is a diagram illustrating a configuration example of the steady state separation extraction storage unit 106 of FIG.
  • the steady state separation extraction storage unit 106 includes a state change point information input unit 106-1 for inputting state change point information, a current waveform input unit 106-2 for inputting current waveform data, and a steady state current.
  • a steady-state separation / extraction unit 106-3 for classifying waveforms and a steady-state storage unit 106-4 for storing a steady-state current waveform (feature) in the storage device 106-5 are provided.
  • FIG. 20B is a flowchart for explaining the operation of the steady state separation extraction storage means 106 of FIG. 20A.
  • the state change point information input unit 106-1 inputs the state change point information stored in the storage device 105-4 by the state change point storage unit 105 (step S60).
  • the current waveform input unit 106-2 inputs the current waveform data acquired by the waveform acquisition unit 103 (step S61).
  • the steady state separation and extraction unit 106-3 classifies the steady state current waveform data (time series) based on the state change point information. For example, the steady state separation / extraction unit 106-3 separates and extracts the steady state based on the steady state feature amount of the current waveform data (or power waveform) before and after the state change point (step S62).
  • the steady-state separation / extraction unit 106-3 extracts the feature amount of the steady-state current waveform data from the steady-state current waveform data before and after the state change point, and the distribution of the extracted feature amount of the steady-state current waveform data Or an average value etc. are extracted.
  • the feature quantity in the steady state may be the current waveform data itself.
  • the steady state separation / extraction unit 106-3 may use a feature quantity in the frequency domain obtained by Fourier transforming the current waveform data as the feature quantity in the steady state.
  • the state-change feature quantity may be used, or the sum or square sum of the frequency components of the odd-order harmonic components of the commercial power supply frequency may be used as the steady-state feature quantity.
  • the steady state storage unit 106-4 stores the separated steady state current waveform data (features) in the storage device 106-5 (step S63).
  • FIG. 21A is a diagram exemplifying a configuration example of the device specific state extraction unit 107 of FIG.
  • the device-specific state extraction means 107 is a steady-state current waveform input unit 107-1 for inputting a steady-state current waveform (feature amount), and the device-specific current waveform (feature amount) from the steady-state current waveform.
  • FIG. 21B is a flowchart for explaining the operation of the device specific state extraction unit 107 of FIG. 21A.
  • the steady-state current waveform input unit 107-1 inputs time-series current waveform data of each steady state before and after the state change point separated and extracted by the steady-state separation extraction and storage means 106 (step). S70).
  • the device-specific waveform (feature amount) acquisition unit 107-2 extracts a device-specific waveform (feature amount) by, for example, taking the difference between the feature amounts in the steady state before and after the state change point (step S71). This is because when the current waveform before the state change point changes from the steady state to the transition state and then changes again to the steady state, the change in the feature amount of the current waveform before and after that changes to the feature amount unique to the electrical device. It corresponds.
  • the device-specific waveform (feature quantity) acquisition unit 107-2 performs the steady-state current waveform data obtained by the steady-state separation extraction storage unit 106.
  • the characteristic waveform of the electric device alone may be extracted by taking the difference between the steady-state current waveform data before and after the state change point. That is, when the current waveform in the first stable state before the state change point transitions to the current waveform in the second stable state after the state change point through the current waveform in the transition state that is the state change point,
  • the differential waveform that is the difference between the current waveform in the second stable state and the current waveform in the first stable state is a waveform unique to the electrical device.
  • the device-specific waveform (or feature value of the waveform) extracted by the device-specific waveform (feature value) storage unit 107-2 is stored in the storage device 107-4 (step S72).
  • the storage device 107-4 may be a waveform database or the like for collation such as waveform analysis described in Non-Patent Document 2, for example.
  • a specific waveform (feature amount) of a single electric device by taking a difference between current waveform data (or feature amounts) in a steady state before and after the state change point, for example, a current waveform 311 in FIG.
  • the first steady state (0 to 20 ms)
  • the transition state (20 ms to 60 ms)
  • the second steady state 60 ms to 100 ms
  • the difference between the current waveforms (or their feature values) between the first steady state (0 to 20 ms) and the second steady state (60 to 100 ms) is obtained as the unique waveform of the electric device alone. (Feature amount) may be used.
  • the device-specific waveform (feature amount) acquisition unit 107-2 After performing preprocessing such as aligning the scores, for example, a principal component analysis may be performed to extract a characteristic waveform.
  • the device-specific waveform (feature value) acquisition unit 107-2 reduces the number of data points of the current waveform data with the larger number of data points, or the data for the steady-state current waveform data before and after the state change point.
  • the number of points of the current waveform data in the steady state before and after the state change point may be made uniform by increasing the smaller number using a random number or the like of the obtained distribution.
  • the device unique state extraction unit 107 extracts a unique waveform of a single device.
  • each unit in the state change detection device 100C may be realized by a program executed by a computer, as in the first embodiment described with reference to FIG. Of course.
  • the state change feature amount extraction unit 101 calculates the state change feature amount based on current waveform data stored and held in advance in a storage device inside or outside the state change detection device 100C.
  • the waveform acquisition unit 103 in FIG. 17 may not be used.
  • FIG. 22 is a diagram illustrating a first modification.
  • the state change detection device 100 ⁇ / b> D of the first modification includes a device operation state estimation unit 108 instead of the device specific state extraction unit 107 of FIG. 17.
  • the waveform acquisition means 103 acquires the power supply current waveform data of one electric apparatus.
  • the waveform acquisition unit 103 may acquire power supply current waveform data from the measuring instrument 200 described with reference to FIG. 24A.
  • the power source current waveform from the current sensor 23 or smart meter 25 connected to the main breaker or branch breaker of the distribution board is separated by the waveform separation unit 103-3, and one unit is separated. You may make it acquire the power supply current waveform data of an electric equipment.
  • the state change point storage unit 105 and the steady state separation extraction storage unit 106 are the same as those in the fourth embodiment.
  • the operating state estimating unit 108 estimates the operating pattern (operating state) of the electric device by extracting the time series order of the feature values of the steady state current waveform data obtained by the steady state separation extraction and storage unit 106.
  • an operating state on / off of an electric device, an operating pattern, power consumption, and the like can be estimated.
  • a steady-state feature quantity is converted into a feature quantity in the frequency domain obtained by Fourier transforming current waveform data (for example, the state change feature quantity in the first embodiment or the frequency component of the odd harmonic component of the commercial power supply frequency). It is also possible to obtain a steady-state pattern from the temporal transition of this feature value and store it in the storage device 108-1 as the device operation pattern.
  • the state change feature quantity extraction unit 101 stores the current stored and held in advance in the storage device inside or outside the state change detection device 100D, as in the first embodiment.
  • a configuration may be used in which the state change feature quantity is calculated based on the waveform data, and the waveform acquisition unit 103 in FIG. 17 is not used.
  • FIG. 23 is a diagram illustrating a configuration of a second modification of the fourth embodiment of the present invention.
  • the state change detection device 100E according to the second modification includes the third feature between the waveform acquisition unit 103 and the state change feature amount extraction unit 101 in the fourth embodiment described with reference to FIG.
  • the phase adjustment waveform connecting means 104 of the embodiment is provided.
  • harmonics other than the odd-order harmonic components State transitions can be detected using waves.
  • phase of the third embodiment is interposed between the waveform acquisition unit 103 and the state change feature quantity extraction unit 101 in the first modification of the fourth embodiment described with reference to FIG. It is good also as a structure provided with the adjustment waveform connection means 104.
  • Patent Documents 1-6 and Non-Patent Documents 1 and 2 above are incorporated herein by reference.
  • the embodiments and examples can be changed and adjusted based on the basic technical concept.
  • Various combinations or selections of various disclosed elements are possible within the scope of the claims of the present invention. . That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
  • a state change detection device comprising:
  • the state change feature amount extraction means calculates each intensity of frequency components other than odd-order harmonic components of the power supply frequency in the frequency domain of the waveform data of the power supply current, The state change detection device according to appendix 1, wherein the state change feature amount is calculated based on the sum of the respective intensities or the nth power sum (n is an integer of 2 or more).
  • the state change feature quantity extracting unit extracts the state change feature quantity from the waveform data of the power supply current having a predetermined length within one cycle of the power supply frequency or the waveform data of the power supply current having a plurality of cycles of the power supply frequency.
  • the state change detection device according to appendix 1 or 2, characterized by the above.
  • the phase of the waveform data that needs to be phase-matched to other waveform data with respect to a plurality of waveform data within one cycle that differs by one cycle or more of the power supply frequency Is further provided with phase adjustment waveform connecting means for connecting a plurality of the waveform data within one cycle
  • the state change feature quantity extraction unit calculates the state change feature quantity for a plurality of waveform data within one cycle connected by the phase adjustment waveform connection unit.
  • the transition state extracting means includes When the size of the state change feature amount exceeds a predetermined threshold, the waveform data section is determined as a transition state, The state according to any one of appendices 1 to 4, wherein when the magnitude of the state change feature amount is equal to or less than the threshold value, the waveform data section is determined as a steady state and a determination result is output. Change detection device.
  • State change point storage means for inputting the time series information of the steady state and the transition state detected by the transition state extraction means, and storing the state change point;
  • Steady state separation extraction storage means for separating and extracting the waveform data in the steady state before and after the state change point;
  • a device-specific state extraction means for extracting a waveform or a characteristic amount specific to an electric device based on the separated and extracted steady state;
  • State change point storage means for inputting the time series information of the steady state and the transition state detected by the transition state extraction means, and storing the state change point; Steady state separation extraction storage means for separating and extracting the waveform data in the steady state before and after the state change point;
  • An operation state estimation unit that learns a feature amount of the extracted waveform data in the steady state that is separated and extracted, and that estimates an operation state of the electric device based on the learned steady state feature amount;
  • a method for detecting a change in state of an electrical device by a computer A state change feature amount extraction step for extracting a state change feature amount related to the waveform data of the power supply current; A transition state extraction step for detecting a transition state based on the size of the state change feature value extracted for the section of the waveform data;
  • the state change detection method characterized by including.
  • the state change feature amount extraction step calculates each intensity of frequency components other than the odd-order harmonic components of the power supply frequency in the frequency domain of the waveform data of the power supply current, The state change detection method according to claim 8, wherein the state change feature amount is calculated based on an integer of 2 or more.
  • the state change feature quantity extracting step extracts the state change feature quantity from the waveform data of the power supply current having a predetermined length within one cycle of the power supply frequency or the waveform data of the power supply current having a plurality of cycles of the power supply frequency.
  • the state change feature quantity extraction step calculates the state change feature quantity for a plurality of the waveform data within one cycle connected in the phase adjustment waveform connection step.
  • the transition state extraction step includes: When the size of the state change feature amount exceeds a predetermined threshold, the waveform data section is determined as a transition state, The state according to any one of appendices 8 to 11, wherein when the magnitude of the state change feature amount is equal to or less than the threshold value, the waveform data section is determined as a steady state and a determination result is output. Change detection method.
  • a state change point storage step for inputting time series information of the steady state and the transition state detected by the transition state extraction step, and storing a state change point;
  • a steady state separation and extraction step for separating and extracting the waveform data in the steady state before and after the state change point;
  • a device specific state extraction step for extracting a waveform or a characteristic amount specific to the electric device with respect to the separated and extracted steady state;
  • a state change point storage step for inputting time series information of the steady state and the transition state detected by the transition state extraction step, and storing a state change point;
  • a steady state separation and extraction step for separating and extracting the waveform data in the steady state before and after the state change point;
  • Supplementary note 12 further comprising an operation state estimation step of learning the feature amount of the separated steady state waveform data and estimating the operation state of the electrical device based on the learned steady state feature amount.
  • State change feature amount extraction processing for extracting state change feature amounts relating to waveform data of power supply current; Transition state extraction processing for detecting a transition state based on the size of the state change feature value extracted for the section of the waveform data;
  • the state change feature amount extraction processing calculates each intensity of frequency components other than the odd-order harmonic components of the power supply frequency in the frequency domain of the waveform data of the power supply current, The program according to claim 15, wherein the state change feature amount is calculated based on an integer of 2 or more.
  • the state change feature quantity is extracted from the waveform data of the power supply current having a predetermined length within one cycle of the power supply frequency or the waveform data of the power supply current having a plurality of cycles of the power supply frequency.
  • the state change feature quantity extraction processing calculates the state change feature quantity for a plurality of the waveform data within one cycle connected in the phase adjustment waveform connection processing.
  • the transition state extraction process determines a transition state when the magnitude of the state change feature quantity exceeds a predetermined threshold, and a steady state when the magnitude of the state change feature quantity is equal to or less than the threshold.
  • the program according to any one of appendices 15 to 18, wherein the determination result is output.
  • Appendix 20 A state change point storage process that inputs time series information of a steady state and a transition state detected by the transition state extraction process, and stores a state change point; Steady state separation and extraction processing for separating and extracting the waveform data in the steady state before and after the state change point; A device-specific state extraction process for extracting a waveform or feature value specific to an electric device for the steady state; The program according to appendix 19, wherein the program is further executed by the computer.
  • (Appendix 21) A state change point storage process that inputs time series information of a steady state and a transition state detected by the transition state extraction process, and stores a state change point; Steady state separation and extraction processing for separating and extracting the waveform data in the steady state before and after the state change point; An operation state estimation process for learning the feature amount of the extracted waveform data in the steady state, and estimating the operation state of the electrical device based on the learned steady state feature amount; The program according to appendix 19, wherein the program is further executed by the computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本発明の目的は、瞬時波形から、直接的に、状態遷移の情報を得ることを可能とすることである。電源電流の波形データに関する状態変化特徴量を抽出し、前記波形データの区間に対して、抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する。

Description

状態変化検知装置、方法及びプログラム
(関連出願についての記載)
 本発明は、日本国特許出願:特願2016-161985号(2016年8月22日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、電気機器の状態変化を検知する装置、方法及びプログラムに関する。
 家庭や店舗あるいは工場等において屋内、屋外等に配備された各電気機器(「電気設備」とも称せられる)に個別に測定器を設置し、個々の測定器での測定データから各電気機器の動作状態を判断するシステムの場合、対象機器全てに測定器を設置する必要があることから、作業に手間がかかり、使用者に負担を強いるという問題やコスト面で問題がある。
 一方、建物の引込線口付近に設置した測定器で得られる情報から下流に接続されている電気機器の個別の動作状態を推定する非侵入型モニタリングシステム(nonintrusive load monitoring:NILM)では、各電気機器に測定器を設置する必要がなく、上記コスト面の問題を克服している。例えば分電盤の主幹等に流れる電流波形を観測して通信網を介してクラウドサーバに転送し、クラウドサーバ上で機械学習等によって学習した分離器により機器毎に電流波形を分離し、機器毎の消費電力量や、機器毎のオン、オフ等を推定する機器分離技術が開示されている(非特許文献1)。
 また、電力波形に基づき電気機器の状態を判別する関連技術として、例えば非特許文献2には、分電盤に取り付けた電流センサを用いて基幹線に流れている電流波形(1周期分の瞬時波形)を取得し、各機器固有の電流波形情報を備えた波形データベースに照らして、波形解析することにより、機器ごとの消費電力を推定し、機器のオン、オフ等、機器の状態を判別することが記載されている。
 よく知られているように、コンデンサインプット型整流回路(整流回路と平滑コンデンサ)を含むインバータ機器(例えばインバータエアコン、パソコン、電子レンジ、インバータ照明器具等)の場合、入力交流電流に歪みが生じ、電源電流に高調波(商用電源周波数の整数倍の周波数成分)が発生する。電源ラインに高調波電流が流れると、該電源ラインのインピーダンスにより電圧降下が生じ、電源電圧波形も高調波を含んだ波形となり、電気機器や配線設備等に悪影響を及ぼす。図27の271、272は、コンデンサインプット型整流回路を備えた電気機器の電源電圧、電流波形の1周期を模式的に例示している。電気機器の電源入力電流は電源電圧(正弦波)のピーク値付近だけ電流が流れるような波形となり、電源電流は高調波成分を多く含むことになる。図27の273、274は3次高調波、4次高調波の電流波形をそれぞれ例示している。図27の275、276は、基本波+3次高調波、基本波+4次高調波の電流波形をそれぞれ例示している。
 半サイクル前と半サイクル先が対称(上下対称)の波形は、直流成分や偶数次高調波は含まれず、奇数次高調波成分だけが含まれる。基本波+3次高調波の電流波形275は、これに該当する。この点について簡単に説明しておく。例えば図27の277に示す三角波形(g(ωt)(ただし、ωはf×2π、fは商用電源周波数(基本波周波数)であり、例えば50Hz)は、半サイクル前と半サイクル先が上下対称の波形である。この三角波をフーリエ(Fourier)級数展開すると、次式(1)のように、直流成分と偶数次高調波成分は含まれず、奇数次高調波成分(基本波(ω)、3次(3ω)、5次(5ω)、7次(7ω)、・・・等)の項のみとなっている(半サイクル前と半サイクル先が上下対称の矩形波のフーリエ級数展開についても奇数次高調波成分の項のみからなる)。

Figure JPOXMLDOC01-appb-I000001
                    ・・・(1)
 一方、偶数次高調波(4次高調波)を含む場合、図27の276に示すように、半サイクル前と半サイクル先が上下非対称の波形となる。
 電源電流に重畳される高調波成分を分析することにより、電気機器の動作状態の推定が行われる。関連技術として、例えば特許文献1には、インバータ機器を含んだ電気機器の動作状態を非侵入的な方法で推定可能とする電気機器モニタリングシステムとして、電力需要家の給電線引込口付近に設置した測定センサで検出した測定データから、基本波並びに高調波の電流とそれらの電圧に対する位相に関するデータを取り出すデータ抽出手段と、前記データ抽出手段からの基本波並びに高調波の電流とそれらの電圧に対する位相に関するデータを基に、当該電力需要家が使用している電気機器の動作状態を推定するパターン認識手段と、を備えた電気機器モニタリングシステムが開示されている。このシステムでは、複数の電気機器の種々の組み合わせと、それらの電気機器の種々の動作状態の組み合わせについて、あらかじめ測定したいくつかの基本波並びに高調波の電流とそれらの電圧に対する位相に関するデータと、その時の解答である電気機器の動作状態を教師データとしてあらかじめ与えて学習することで、前記測定センサで測定する基本波並びに高調波の電流とそれらの電圧に対する位相に関するデータから前記電力需要家の使用している複数の電気機器の動作状態をパターン認識によって推定する。
 特許文献1では、電気機器の各動作状態の電流波形(教師データ)を予め用意しておく必要がある。これに対して、教師データを予め用意しなくても、装置が自動で教師データを収集し、各機器の稼働状況を推定する方法が、例えば特許文献2や特許文献3等に開示されている。
 特許文献2には、非侵入型電気器具負荷監視(NILM)において、回路における電力または電流測定値の時系列を分析し、電気機器が定常状態にあるか遷移状態にあるかを、前記時系列の平均と分散を用いることで、教師データがない状態で機器の稼働状況推定を行う方法が開示されている。
 特許文献3には、電源の電力消費特徴を測定し、電力を複数の電気機器に供給する測定モジュールと、前記測定モジュールに結合され、前記電力消費特徴の変化を検出および計算する変化検出およびサーチモジュールならびに電気機器シグネチャデータベースと、を含み、前記変化検出およびサーチモジュールは、前記変化が検出されると、前記変化によって、前記電気機器シグネチャデータベースをサーチして、前記変化に類似する1つ又はそれ以上の候補電気機器と前記候補電気機器の状態または複数の候補電気機器の状態の組み合わせとを得る電力監視装置が開示されている。前記変化検出およびサーチモジュールは、前記電気機器シグネチャデータベースを格納するメモリーユニットと、前記メモリーユニットに結合され、前記電力消費特徴の前記特性パラメーターリストおよび前記電力消費特徴の以前の前記特性パラメーターリストによって、前記変化の変化特性パラメーターリストを検出かつ計算するサーチユニットと、を含み、前記変化特性パラメーターリストは、変化電流波、過渡電流波、電圧二乗平均平方根値、電流二乗平均平方根値、有効電力(active power)、および無効電力(reactive power)を含む。変化特性パラメータの「時系列変化」に対して、閾値を設けることにより、教師データがない状態で各機器の稼働状態の推定を行う構成が開示されている。
 特許文献4には、高調波電流信号をサンプリングし、ディジタル化し、周波数分析して、次数ごとに監視値と警報時限を設定し、超過時に警報接点を出力し、中央監視装置では、受信したデータをもとに高調波潮流の方向判定と高調波発生源の特定を行う構成が開示されている。特許文献4には、第3次、5次、7次等の奇数次高調波ごとの含有率と当該次数に対する監視値の設定例が開示されている。なお、特許文献4では、変動の緩やかな準定常高調波を主たる対象としており、例えば瞬時波形に現れる突発性高調波は対象としていない。
 特許文献5には、複数の需要家機器が接続可能な電気系統へ供給される電力及び電流についての測定情報を取得し、前記電力の高調波成分である第1の高調波成分と、前記電流の高調波成分である第2の高調波成分とを計算する高調波成分計算部と、前記複数の需要家機器がそれぞれ必要とする電力の高調波含有率を記録可能であるデータベースと、前記第1の高調波成分を、前記需要家機器の有効電力及び前記高調波含有率から求められる第1の電力と、前記電気系統における抵抗値及び前記第2の高調波成分から求められる第2の電力とにより表すことで、前記需要家機器の有効電力及び前記電気系統における抵抗値を推定する状態推定部を備えた状態推定装置が開示されている。
 特許文献6には、複数の機器の各々の電流波形を参照波形として記憶するデータベースと、電源線に流れる電流波形を電源周波数1サイクルごとに測定する電流波形測定手段と、前記電流波形の1サイクルごとの変化量が所定の閾値を超える場合に過渡状態と判別するとともに、前記変化量が前記閾値を超えない場合に定常状態と判別する定常状態判別手段と、第1の定常状態から過渡状態を経て第2の定常状態に遷移した場合に、第2の定常状態で測定した電流波形と、第1の定常状態で測定した電流波形との差分である差分波形を算出する差分波形算出手段と、前記差分波形と、前記データベースの各参照波形とを比較し、前記差分波形に最も類似する参照波形を選択し、選択した参照波形に対応する機器が前記過渡状態において動作状態の変化があった機器であると識別する識別手段と、を備える電流波形識別装置が開示されている。特許文献6では、測定した電流波形と、1サイクル前の電流波形とを比較している。
特許第3403368号公報 特表2014-511096号公報 特許第5295322号公報 特開平09-229981号公報 特開2014-171373号公報 特開2013-150508号公報
"機器分離技術を活用したサービスの東京電力との共同実証について"、インフォメティス株式会社、[平成28年5月01日検索]インターネット(URL:http://prtimes.jp/main/html/rd/p/000000001.000012366.html) 河本滋、戸泉貴裕、實吉永典、"1つのセンサーで複数機器の消費電力や利用状況を見える化する電力指紋分析技術"、NEC技報/Vol.68 No.2/ICTが拓くスマートエネルギーソリューション特集
 以下に関連技術の分析を与える。
 上記特許文献2、3等に開示されている構成では、各瞬時波形が持っている特徴量を各波形に対して個別に抽出し、抽出された特徴量の時系列データに対して、差分や標準偏差を利用することで、時系列変化を検知している。
 すなわち、瞬時波形から、直接的に、状態変化の情報を得ることを可能とする手法は開示されていない。
 したがって、本発明は、上記課題の認識に基づき創案されたものであって、その目的の一つは、瞬時波形から、直接的に、状態変化の情報を得ることを可能とする装置、方法、プログラムを提供することにある。
 本発明の一つの側面によれば、電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出手段と、
 前記波形データの区間に対して、抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出手段とを備えた状態変化検知装置が提供される。
 本発明の他の側面によれば、コンピュータによる電気機器の状態変化検知方法であって、
 電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出ステップと、
 前記波形データの区間に対して抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出ステップと、を含む状態変化検知方法が提供される。
 本発明の他の側面によれば、電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出処理と、
 前記波形データの区間に対して抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出処理と、をコンピュータに実行させるプログラムが提供される。本発明によれば、上記プログラムを記憶したコンピュータ読み出し可能な記録媒体(例えば磁気・光記録媒体、半導体ストレージデバイス等のnon-transitory computer readable recording medium)が提供される。
 本発明によれば、瞬時波形から、直接的に、状態変化の情報を得ることができる。
本発明の第1の実施形態の構成を例示する図である。 本発明の第1の実施形態の全体の動作を説明するための流れ図である。 本発明の第2の実施形態の構成を例示する図である。 本発明の第2の実施形態の全体の動作を説明するための流れ図である。 本発明の第2の実施形態の状態変化特徴量抽出手段(部)の構成を例示する図である。 本発明の第2の実施形態の状態変化特徴量抽出手段(部)の動作を説明する流れ図である。 本発明の第2の実施形態の遷移状態検出手段(部)の構成の一例を例示する図である。 本発明の第2の実施形態の遷移状態検出手段(部)の動作を説明する流れ図である。 本発明の第2の実施形態の遷移状態検出手段(部)の構成の別の例を例示する図である。 本発明の第2の実施形態の別の例の遷移状態検出手段(部)の動作を説明する流れ図である。 電流波形の一例を示す図である。 図8Aの1サイクル(遷移状態)の周波数スペクトルと1サイクル(定常状態)の周波数スペクトルを示す図である。 電流波形、1サイクル(20ms)毎のフーリエ変換による状態変化特徴量の推移、短時間フーリエ変換による状態変化特徴量の推移、遷移状態検出結果の対応関係を示す図である。 電流波形、状態変化特徴量の推移、遷移状態検出結果を示す図である。 電流波形を例示する図である。 図11Aの2サイクル分(遷移状態)の周波数スペクトルと2サイクル分(定常状態)の周波数スペクトルを示す図である。 電流波形、状態変化特徴量の推移、遷移状態検出結果を示す図である(2周期)。 本発明の第3の実施形態の構成を例示する図である。 本発明の第3の実施形態の位相調整波形接続手段(部)の構成の一例を例示する図である。 本発明の第3の実施形態の位相調整波形接続手段(部)の動作を説明するための流れ図である。 本発明の第3の実施形態において、電圧波形、電流波形、データ取得期間、位相調整波形接続手段で位相調整され接続された2つの波形の接続例、状態変化特徴量の時間推移を示す図である。 本発明の第3の実施形態において2つの波形の接続例を説明する図である。 本発明の第4の実施形態の構成を例示する図である。 本発明の第4の実施形態の動作を説明する図である 本発明の第4の実施形態の状態変化点保存手段(部)の構成の一例を例示する図である。 本発明の第4の実施形態の状態変化点保存手段の動作を説明するための流れ図である。 本発明の第4の実施形態の定常状態分離抽出保存手段の構成の一例を例示する図である。 本発明の第4の実施形態の定常状態分離抽出保存手段の動作を説明するための流れ図である。 本発明の第4の実施形態の機器固有状態抽出手段の構成の一例を例示する図である。 本発明の第4の実施形態の機器固有状態抽出手段の動作を説明するための流れ図である。 本発明の第4の実施形態の変形例1を例示する図である。 本発明の第4の実施形態の変形例2を例示する図である。 本発明の第2の実施形態を説明する図であり、測定器の一例と波形取得手段の構成を例示する図である。 図24Aの電流計、電圧計の接続を例示する図である。 本発明の第2の実施形態を説明する図である。 図25Aにおける合成波形と分離波形を例示する図である。 状態変化検知装置をコンピュータに実装した構成を例示する図である。 電源電流の高調波を説明する図である。
<第1の実施の形態>
 次に、本発明の例示的な実施形態について図面を参照して詳細に説明する。図1は、本発明の例示的な第1の実施の形態の構成を例示する図である。
 図1を参照すると、状態変化検知装置100は、電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出手段(状態変化特徴量抽出部)101と、前記波形データの区間に対して抽出した状態変化特徴量の大きさに基づき、遷移状態を検知する遷移状態抽出手段(遷移状態抽出部)102を備えている。状態変化検知装置100の各手段101、102は、一つの装置(匡体)内に一体で組み込む構成としてもよいし、異なったノードに分散配置し通信手段で相互に接続する構成としてもよい。
 状態変化特徴量抽出手段101は、電源電流波形について、フーリエ変換(例えばFFT(Fast Fourier Transform:高速フーリエ変換)又はDFT(Discrete Fourier Transform:離散フーリエ変換)等)を行う。
 サンプリングポイント数=N(例えば2の冪乗)の電源電流波形(離散時間信号波形)g(i)(i=0,…N-1)に対して離散フーリエ変換を行うとG(n)(n=0~N-1)が得られる。

Figure JPOXMLDOC01-appb-I000002
                    ・・・(2)
 G(0)は直流成分である。ナイキスト(Nyquist)周波数(G(N/2))を中心に、周波数範囲の前半(G(1)からG(N/2-1))に対して、残りの半分(G(N/2+1)からG(N-1))は鏡映対称となる。周波数スペクトルG(j)の強度(振幅成分)I(j)は、以下のように、実部Re(G(j))と虚部Im(G(j))の2乗の和の平方根で与えられる。

Figure JPOXMLDOC01-appb-I000003
                 ・・・(3)
 上記周波数成分のうち、例えば商用電源周波数の奇数次高調波成分以外の周波数成分の強度(振幅成分)I(j)の和を状態変化特徴量(feature value)FVとする。

Figure JPOXMLDOC01-appb-I000004
                   ・・・(4)
 上式(4)において、強度I(j)の総和Σをとるインデックスj(集合E)は、0~N/2(周波数スペクトル(G(0)~G(N/2)に対応)の整数のうち、商用電源周波数の奇数次高調波成分以外の周波数成分の次数であって0を含む。
 周波数成分のうち例えば商用電源周波数の奇数次高調波成分以外の周波数成分の強度(振幅成分)I(j)のn乗和を状態変化特徴量(feature value)FVとしてもよい。

Figure JPOXMLDOC01-appb-I000005
                   ・・・(5)
 ただし、上式(5)において、nは例えば2、あるいは3以上の整数である。
 状態変化特徴量抽出手段101は、状態変化検知装置100の記憶装置(不図示)に予め記憶保持されている電気機器の電源電流波形データに基づき、当該電源電流波形データに関する状態変化特徴量を計算するようにしてもよい。この記憶装置は、状態変化検知装置100外部に接続される記憶装置であって状態変化検知装置100の状態変化特徴量抽出手段101がネットワーク等の通信手段を介してアクセス可能なデータベース装置等であってもよい。
 遷移状態抽出手段102は、状態変化特徴量抽出手段101で算出された状態変化特徴量と、予め設定された閾値との大小比較を行い、フーリエ変換された電流波形データの区間(長さは、例えば商用電源周波数1周期(1サイクル)以内の区間)が、
 電気機器のオン・オフや電気機器の内部制御等の遷移状態に対応するか、あるいは、
 電気機器の定常状態であるか、を判定する。
 遷移状態抽出手段102は、例えば、
 電流波形データの区間の状態変化特徴量の大きさが閾値以下であれば、当該区間は定常状態であると判定し、
 電流波形データの区間の状態変化特徴量の大きさが閾値を超える場合には、当該区間は遷移状態であると判定する、構成としてもよい。
 状態変化特徴量抽出手段101において、窓関数をかけてフーリエ変換を行う処理で切り出す電流波形の時間区間の開始端を少しずつ(時間Δtずつ)ずらしながら行う短時間フーリエ変換(窓関数の長さは一定)により、電流波形から状態変化特徴量の時間推移(時系列データ)を求め、遷移状態抽出手段102では、定常状態であるか又は遷移状態であるかの判定を、時間Δt(<20ms(millisecond):商用電源周波数の1周期の長さ)ごとに行うようにしてもよい。この場合、遷移状態の判定の時間分解能はΔtで与えられる。
 図2は、第1の実施形態の全体の動作を説明する流れ図である。図2を参照すると、状態変化特徴量抽出手段101は、電源電流の波形データに基づき、状態変化特徴量を計算する(ステップS11)。
 次に、遷移状態抽出手段102は、電流波形データの区間に対して抽出された状態変化特徴量の大きさに基づいて、当該区間が定常状態であるか遷移状態であるかを検出する(ステップS12)。遷移状態抽出手段102は、状態変化特徴量の時系列データに基づき、状態変化点(定常状態から遷移状態への変化点、又は遷移状態から定常状態への変化点)を抽出するようにしてもよい。
<第2の実施の形態>
 図3は、本発明の例示的な第2の実施の形態の構成を例示する図である。図3を参照すると、第2の実施の形態の状態変化検知装置100Aは、図1の状態変化検知装置100の構成に加えて、波形取得手段(波形取得部)103を備えている。波形取得手段103は、例えば、
・電気機器に設置された測定器、
・スマートメータ、あるいは、
・HEMS(Home Energy Management System)、BEMS(Building Energy Management System)、FEMS(Factory Energy Management System)等のコントローラ(ゲートウェイ)等の
少なくとも一つから、電流波形データ(あるいは電流波形データと電圧波形データ、あるいは、電流波形データと瞬時電力波形データ)を取得するようにしてもよい。
 波形取得手段103は、電気機器の電源電流を測定する測定器を含む構成としてもよいし、あるいは、電気機器の電源電流を測定する測定器で取得した波形データを、通信手段等を介して取得する構成としてもよい。
 図24Aは、図1の波形取得手段103が通信接続する測定器200の構成の一例を模式的に示す図である。なお、図24Aでは、簡単のため、単相2線式交流が例示されているが、三相3線式の交流の場合も、例えば三台の単相電力計を用いて測定できる。あるいは、電力について2電力計法に基づく測定を行うようにしてもよい。図24Aにおいて、測定器200は、図24Bの負荷210の端子間電圧を測定する電圧計201(図24BのU)と、図24Bの負荷210に流れる電流を測定する電流計204(図24BのI)を備えた構成としてもよい。電圧計201は、負荷210の端子間電圧を降圧する降圧回路202と、降圧回路202のアナログ出力電圧をデジタル信号に変換するアナログデジタル変換器203を備えた構成としてもよい。電流計204は、電源ライン(負荷210)に流れる電流を検知する電流検知回路205と、電流検知回路205のアナログ出力電圧をデジタル信号に変換するアナログデジタル変換器206を備えた構成としてもよい。電流検知回路205は、例えば電源ラインに挿入されたシャント抵抗(不図示)の端子間電圧を計測する構成としてもよいし、あるいは、磁気コア等にコイルを巻いた変流器構造をとり電流測定対象のケーブルを挟み込み、磁気コア中に流れる磁束の検知値から換算することにより電流を検知するCT(Current Transformer)センサ等で構成してもよい。
 電圧計201のアナログデジタル変換器203からの電圧波形データと、電流計204のアナログデジタル変換器206からの電力波形データは、例えば乗算器207で乗算され、瞬時電力波形が得られる。瞬時電力波形は、有効電力算出部208で平滑化され、有効電力値が算出される。電圧波形データ、電力波形データ、瞬時電力波形、有効電力値は、通信部209に入力され、図3の状態変化検知装置100の波形取得手段103に送信される。なお、アナログデジタル変換器203、206、乗算器207、有効電力算出部208、通信部209には、商用交流電源を直流電源に変換するAC(Alternate Current)-DC(Direct Current)コンバータ(不図示)と、該AC-DCコンバータの出力直流電圧を別の直流電圧に変換するDC-DCコンバータを介して、所定の直流電源電圧を供給する構成としてもよい。
 図24Aに例示するように、状態変化検知装置100の波形取得手段103は、例えば通信部103-1、波形抽出部103-2、記憶装置103-4を備えた構成としてもよい。通信部103-1は、測定器200の通信部209とネットワーク等を介して通信し、電流波形データ、電圧波形データ、瞬時電力波形等のうち必要な波形データを受信し、受信した波形データを記憶装置103-4に格納する。通信部103-1は、測定器200から受信した電流波形データについて、測定器200の識別番号(識別名)(Identity:ID)(あるいは、被測定電気機器のID)と電源電流波形データのサンプル時刻等の情報を記憶装置103-4に格納するようにしてもよい。波形抽出部103-2は記憶装置103-4に格納された波形データ(例えば電流波形データ)について必要な長さ(例えば1周期)の波形データを抽出する。
 図3において、波形取得手段103は、測定器に接続するか、これを含む構成以外に、スマートメータや、電流センサ等から取得した消費電力、電流波形から、波形分離して、電気機器の電源電流波形(長さは、例えば商用電源周波数の1周期以内)を取得するようにしてもよい。
 図25Aは、図3の波形取得手段103が電源電流波形から機器分離を行う例を模式的に説明する図である。図25Aを参照すると、電力需要家の建屋20内において、通信装置21をHEMS/BEMS/FEMS等のコントローラで構成し、スマートメータ25の検針データ(消費電力、電流値等)を例えばBルートから取得する。コントローラがスマートメータ25からBルートで取得する検針データ(消費電力、電流値等)は、建屋全体の消費電力に関する情報を含む。また、分電盤22の基幹電力線が接続されている主ブレーカ(不図示)および分岐ブレーカ(不図示)のうち少なくとも1つのブレーカ(不図示)に、当該ブレーカに流れる電流を検出する電流センサ23を備え、電流センサ23から、通信装置21に無線伝送等で電流波形データを送信するようにしてもよい。電流センサ23は、CT(Current Transformer)(例えば零相変流器(Zero-phase-sequence Current Transformer:ZCT))やホール素子等で構成してもよい。電流センサ23は、不図示のアナログデジタル変換器で電流波形(アナログ信号)をサンプリングしデジタル信号に変換し、不図示の符号化器で圧縮符号化した上で通信装置21に、Wi-SUN(Wireless Smart Utility Network)等により無線伝送するようにしてもよい。
 さらに図25Aを参照すると、状態変化検知装置100の波形取得手段103は、通信部103-1、波形抽出部103-2、波形分離部103-3、記憶装置103-4を備えている。通信部103-1は、ネットワーク等を介して通信装置21と通信し、電流センサ23やスマートメータ25等で取得した電源電流波形を取得し、記憶装置103-4に格納する。図25Bの371は、図25Aの分電盤22の不図示の主ブレーカ又は分岐ブレーカに接続された電流センサ23又はスマートメータ25で取得された電流波形(商用電源の1サイクル分)を模式的に例示している。波形分離部103-3は、図25Bの電流波形データ371から、例えば非特許文献1、2等の手法を用いて、分電盤22の主ブレーカ又は分岐ブレーカに接続する電気機器24A~24Cの各機器の電源電流波形に分離し、記憶装置103-4に格納する。波形分離部103-3は、分離した電源電流波形データに対応する電気機器のIDと当該電源電流波形データのサンプル時刻等の情報を記憶装置103-4に格納するようにしてもよい。図25Bにおいて、372、373、374は、図25Aの電気機器24A、24B、24Cの各々について、機器毎に分離された電流波形を表している。波形分離部103-3は、スマートメータ25からBルートで取得した検針データ(消費電力、電流値等)から、電気機器24A~電気機器24Cの電源電流波形データを取得してもよい。例えば、スマートメータ25の検針データのうち、電流値の時系列変化のデータを機械学習や信号処理技術等の分析手段を用いて分析することにより、各機器の電源電流波形データを取得するようにしてもよい。
 図25Aにおいて、波形抽出部103-2は、記憶装置103-4に格納された各電気機器の波形データ(例えば電流波形データ)のうち対象電気機器の電流波形データについて必要な長さ(例えば1周期)の波形データを抽出する。
 図3を参照すると、状態変化特徴量抽出手段101は、波形取得手段103で取得された電流波形データについて、前記第1の実施形態と同様、フーリエ変換(例えばFFT又はDFT)を行い、周波数成分のうち、例えば商用電源周波数の奇数次高調波成分以外の周波数成分の強度の和(又はn乗和)(上式(4)又は(5))を状態変化特徴量(feature value)FVとする。
 なお、状態変化特徴量抽出手段101は、状態変化検知装置100の記憶装置に予め記憶保持されている電流波形データに基づき、当該電流波形データに関する状態変化特徴量を計算するようにしてもよい。この記憶装置は、例えば図24A又は図25Aの波形取得手段103の記憶装置103-4であってもよいし、状態変化検知装置100内部の記憶装置(例えば後述される図26の記憶装置112等)、あるいは、状態変化検知装置100外部に接続される記憶装置であって状態変化検知装置100の状態変化特徴量抽出手段101がネットワーク等の通信手段を介してアクセス可能なデータベース装置等であってもよい。
 図3において、遷移状態抽出手段102は、前記第1の実施形態と同様、状態変化特徴量抽出手段101で算出された状態変化特徴量と、予め設定された閾値との大小比較を行い、フーリエ変換された電流波形データの区間(長さは例えば商用電源周波数の1周期以内の区間)が、電気機器のオン・オフや機器の内部制御等の遷移状態に対応するか、あるいは、定常状態であるかを判定する。遷移状態抽出手段102は、例えば電流波形データの区間の状態変化特徴量の大きさが閾値以下であれば、電流波形データの当該区間は、定常状態であると判定し、状態変化特徴量の大きさが閾値を超える場合には、電流波形データの当該区間は、遷移状態である、と判定する構成としてもよい。
 状態変化特徴量抽出手段101において、前記第1の実施形態と同様、窓関数をかけて切り出す電流波形の時間範囲を少しずつ(時間Δtずつ)ずらしながら行う短時間フーリエ変換により、電流波形から状態変化特徴量の時間推移(時系列データ)を求め、遷移状態抽出手段102では、定常状態であるか又は遷移状態であるかの判定を、時間Δt(<20ms)ごとに行うようにしてもよい。
 図4は、本発明の第2の実施形態の全体の動作を説明する流れ図である。図4を参照すると、図3の波形取得手段103が、商用電源周波数1周期分の電源電流波形を取得する(ステップS10)。このステップS10において、波形取得手段103は、図24Aを参照して説明したように、電気機器(負荷210)に接続された測定器200から電気機器の電源電流波形、瞬時電力波形を取得するようにしてもよい。あるいは、波形取得手段103は、図25A、図25Bを参照して説明したように、分電盤の主ブレーカや分岐ブレーカに接続された電流センサ(図25Aの電流センサ23)から、又は、スマートメータ(図25Aの25)から電源電流波形を取得し、波形分離部(図25Aの103-3)により、機器分離技術(disaggregation technology)等を用いて、個々の電気機器の電源電流、瞬時電力波形に分離するようにしてもよい。
 次に、状態変化特徴量抽出手段101は、波形取得手段103で取得した波形データに基づき、状態変化特徴量を計算する(ステップS11)。
 次に、遷移状態抽出手段102は、電源電流波形データの区間に対して抽出された状態変化特徴量の大きさに基づいて、当該区間が定常状態であるか遷移状態であるかを検出する(ステップS12)。遷移状態抽出手段102は、状態変化特徴量の時系列データに基づき、状態変化点(定常状態から遷移状態への変化点、又は遷移状態から定常状態への変化点)を抽出するようにしてもよい。
 図5Aは、図1、及び図3の状態変化特徴量抽出手段(状態変化特徴量抽出部)101の構成を例示する図である。図5Aを参照すると、状態変化特徴量抽出手段101は、電流波形データを入力する波形入力部101-1と、電流波形データ(離散時間データの系列)に対してFFT又はDFT等のフーリエ変換を行い周波数領域に変換するフーリエ変換部101-2と、フーリエ変換の結果(周波数スペクトル)から状態変化特徴量を計算する状態変化特徴量計算部101-3を備えている。
 図5Bは、図5Aの状態変化特徴量抽出手段101による図2のステップS11の処理を説明する図である。図5Bを参照すると、状態変化特徴量抽出手段101の波形入力部101-1は、例えば商用電源周波数1周期分の電流波形データを入力する(ステップS110)。波形入力部101-1は、状態変化特徴量抽出手段101内に備えた記憶装置、又は、状態変化検知装置100の外部の記憶装置等に記憶保持されている電流波形データを入力するようにしてもよい。あるいは、波形入力部101-1は、例えば図24A又は図25Aの波形取得手段103の記憶装置103-4に記憶保持されている電流波形データを入力するようにしてもよい。あるいは、波形入力部101-1は、図3の波形取得手段103から電流波形データを直接受け取る構成としてもよい。
 なお、波形入力部101-1が入力するデータは、商用電源周波数1周期以上であってもよい。あるいは、商用電源周波数1周期未満であっても、商用電源周波数成分(例えば50Hz)の奇数次高調波成分(3次、5次、7次、・・・:150Hz、250Hz、350Hz、・・・)以外の周波数成分を抽出できる長さであればよい。例えば、4次高調波成分を抽出するには、商用電源周波数1周期の4分の1の長さの波形データであってよい。
 次に、状態変化特徴量抽出手段101のフーリエ変換部101-2は、入力した電流波形データ(時間領域のデータ)を、例えばFFT等により、周波数領域に変換する(ステップS111)。フーリエ変換部101-2では、各周波数成分に対する強度と位相の値を抽出してもよい。あるいは、商用電源周波数の奇数次高調波成分以外の特定の周波数について、強度と位相の値を抽出してもよい。奇数次高調波成分以外の特定の周波数は、商用電源周波数の奇数次高調波成分以外の周波数成分を少なくとも1個以上含むものであってもよい。なお、波形取得手段103が取得する電流波形データのサンプリング周波数fsは、解析対象の次数の高調波成分がナイキスト周波数(fs/2)以下となる周波数とする。例えばナイキスト周波数を42次高調波成分(2100Hz)とする場合、測定器(例えば図24Aのアナログデジタル変換器(ADC)203、206)でのサンプリング周波数は4.2kHzとなる。
 状態変化特徴量抽出手段101の状態変化特徴量計算部101-3は、抽出した商用電源周波数の奇数次高調波成分以外の周波数スペクトルの強度の和(上式(4))をとる(ステップS112)。状態変化特徴量計算部101-3は、周波数スペクトルの強度のn乗和(上式(5))を求めるようにしてもよい。
 状態変化特徴量計算部101-3は、強度の和をとるための商用周波数の奇数次高調波以外の周波数成分は、標準偏差などを用いて、標準偏差の値が大きいものを選択して和をとってもよい。
 例えば時系列電流波形データを窓関数で切り出す範囲をずらしながらフーリエ変換する短時間フーリエ変換を行い、各時刻における周波数の値について時刻方向に計算した標準偏差の値を用いて、遷移状態の中で標準偏差の値が大きい周波数を選択して和をとってもよい。
 状態変化特徴量計算部101-3は、奇数次高調波成分以外の周波数スペクトルの強度の和を状態変化特徴量として出力する(ステップS113)。状態変化特徴量は、定常状態では、値が小さく、状態変化時に、値が大きくなる特徴量のことを表す。この特徴をもった特徴量であれば、上記の例に限定されるものでなく、他の特徴量であってもよいことは勿論である。
 図6Aは、図1、及び図3の遷移状態抽出手段(遷移状態抽出部)102の構成を例示する図である。図6Aに示すように、遷移状態抽出手段102は、状態変化特徴量を入力する状態変化特徴量入力部102-1と、入力された状態変化特徴量と記憶装置102-4に格納された閾値を比較判定する判定部102-2と、判定部102-2の判定結果に基づき、状態を出力する状態出力部102-3と、記憶装置102-4、102-5を備えている。なお、表示装置102-6は、状態変化検知装置100を構成するコンピュータの表示装置等であってもよい。
 図6Bは、図6Aの遷移状態抽出手段102による図2、図4のステップS12の処理を説明する流れ図である。図6Bを参照すると、遷移状態抽出手段102の状態変化特徴量入力部102-1は、状態変化特徴量の時系列データを入力する(ステップS120)。
 遷移状態抽出手段102の判定部102-2は、状態変化特徴量の時系列データの各データについて、状態変化特徴量の大きさが、記憶装置102-4に保持された閾値を超えるか否か判定する(ステップS121)。
 遷移状態抽出手段102の状態出力部102-3は、状態変化特徴量が閾値を超える場合に(ステップS121のYes分岐)、状態変化特徴量の時系列データの当該データの区間を「遷移状態」として出力し(ステップS122)、状態変化特徴量が閾値以下の場合(ステップS121のNo分岐)、当該データの区間を「定常状態」として出力する(ステップS123)。遷移状態抽出手段102は、判定結果である状態(定常状態、遷移状態)の時系列情報を記憶装置102-5に格納するようにしてもよい。あるいは、遷移状態抽出手段102は、判定結果である状態(定常状態、遷移状態)の時系列情報を表示装置102-6に表示するようにしてもよい。その際、電流波形データに対応させて状態(定常状態、遷移状態)を表示するようにしてもよい。なお、記憶装置102-4に格納されている閾値は例えば利用者(電力需要家)、装置設計者あるいはシステムの管理者(保守者)等が不図示の端末等から予め設定し、記憶装置102-4に格納するようにしてもよい。あるいは、過去の波形データに関する状態変化特徴量を説明変数、状態遷移の結果を目的変数として機械学習により学習し、記憶装置102-4に格納されている閾値の値を更新する構成としてもよい。
 図7Aは、図1、及び図3の遷移状態抽出手段(遷移状態抽出部)102の別の構成を例示する図である。図7Aに示すように、遷移状態抽出手段102は、状態変化特徴量を入力する状態変化特徴量入力部102-1と、状態変化特徴量に対して統計的解析を行うことで、外れ値を検出する外れ値検出部102-7と、外れ値検出部102-7での外れ値検出結果に基づき、状態を出力する状態出力部102-3と、記憶装置102-5を備えている。
 図7Bは、図7Aの遷移状態抽出手段(遷移状態抽部)102による図2、図4のステップS12の処理を説明する流れ図である。図7Bを参照すると、遷移状態抽出手段102の状態変化特徴量入力部102-1は、状態変化特徴量の時系列データを入力する(ステップS120)。
 遷移状態抽出手段102の外れ値検出部102-7は、状態変化特徴量の時系列データにおいて、取得した電流波形の時系列データについて、遷移状態の個数に比べて、定常状態の頻度が極端に多い場合、統計的な外れ値検知の手法を用いて、遷移状態は、外れ値であると検出する(ステップS124)。状態変化特徴量の時系列データを用いることを利点として、複数のデータを用いるため、閾値を任意に設定しなくとも、外れ値から学習して自動で設定することができる。
 遷移状態抽出手段102の状態出力部102-3は、外れ値検出部102-7で外れ値が検出された場合に(ステップS125のYes分岐)、当該データの区間を遷移状態とし(ステップS126)、外れ値が検出されない場合(ステップS125のNo分岐)、当該データの区間を定常状態とする(ステップS127)。遷移状態抽出手段102は、判定結果である状態(定常状態、遷移状態)の時系列情報を記憶装置102-5に格納するようにしてもよい。あるいは、遷移状態抽出手段102は、判定結果である状態(定常状態、遷移状態)の時系列情報を表示装置102-6に表示するようにしてもよい。その際、電流波形データに対応させて状態(定常状態、遷移状態)を表示するようにしてもよい。
 特に制限されるものではないが、外れ値検知の方法は、例えば、
・標準偏差やマハラノビス距離を用いた方法や、
・Smirnov‐Grubbs検定(異常値を棄却するかどうかを検定する。「グラブス・スミルノフ棄却検定」とも称される)などの方法を用いてもよい。
 なお、図7A、図7Bの手法は、電流波形の測定区間が長く測定条件を満たさない、あるいは遷移状態が多くなる等により、定常状態の頻度が極端に多いという条件が成立しない場合、外れ値検知による遷移状態の検出は適用できなくなる。
 図8Aは、「遷移状態」の時間区間と「定常状態」の時間区間を含む電気機器の電源電流波形データ、図8Bの301、302は、図8Aの電流波形データの「遷移状態」と「定常状態」の商用電源周波数1周期分の周波数スペクトル(強度)を示す図である。図8Bの遷移状態301と定常状態302の周波数スペクトルを対比すると、遷移状態301では定常状態に比べて、商用電源周波数(50Hz)の奇数次高調波成分以外の強度が大きくなる。定常状態302では、3次高調波成分(150Hz)、5次高調波成分(250Hz)等の奇数次高調波成分が目立つ。遷移状態301では、奇数次高調波成分以外にも、DC(Direct Current)成分、2次高調波成分(100Hz)、4次高調波成分(200Hz)等の偶数次高調波成分の強度も大きく、高次の高調波成分の強度も、定常状態に比べて大きい。
 図9は、上記した第1、第2の実施形態の状態変化検知装置100、100Aの適用例として、タスクライトのオン・オフ時の遷移状態を抽出した例を示す図である。図9において、波形311は、タスクライトの電源電流波形データを示す。波形312は、電源電流波形データ311に対して商用電源周波数1周期(20ms)毎に、フーリエ変換(FFT)により抽出した状態変化特徴量の時間推移を示す。波形313は、電流波形311に対して短時間フーリエ変換により時間をずらして抽出した状態変化特徴量の時間推移を示す。314は、状態変化特徴量を用いて検出した遷移状態(遷移状態の時間推移)を表す。図9において、311、312、313、314の時間軸は同一である。測定した電流波形が、例えば半サイクル前と半サイクル後で大きく変化しているときに、状態変化特徴量の値は大きくなる。状態変化特徴量の値に閾値を設けることによって、遷移状態を検知することができる。
 図9において、312では、状態変化特徴量は、電源周波数の1周期(20ms)の間、一定値となる(したがって、時間分解能は20ms)。
 図9において、313では、窓関数(長さ=20ms)により切り出す範囲の開始時点を例えばΔt(例えば1ms)ずつずらして短時間フーリエ変換を行っており、状態変化特徴量の時間分解能はΔt(=1ms)となる(単位幅が1msの階段波形となる)。このため、313では、状態変化特徴量の時間変化の様子を高精度に抽出することができる。これに対して、312では、状態変化特徴量は商用電源周波数1周期(20ms)の間一定値となるため、313の状態変化特徴量のピーク付近の時間変化は検出されない。
 図9において、前記第1、第2の実施形態の状態変化検知装置100の遷移状態抽出手段102が、例えば短時間フーリエ変換に基づく状態変化特徴量313の大きさを閾値と比較し、状態変化特徴量の大きさが閾値以下では、定常状態と判定し、状態変化特徴量の大きさが閾値を超えると、遷移状態と判定している。電流波形データ311に対して、状態変化特徴量の大きさが閾値以下の区間(時間窓長=20ms)は、定常状態、状態変化特徴量の大きさが閾値を超える区間は遷移状態と判定される。図9の314の例では、20msの時点で定常状態から遷移状態に状態が変化し、60msの時点で遷移状態から定常状態に状態が変化している。
 なお、図9の314の例では、時間分解能が異なる状態変化特徴量312、313に対して同一区間で「遷移状態」が検出されている。これは、たまたま電流波形311が、そのようなパターンであったことによるものであり、一般に、状態変化特徴量の時間分解能が異なれば、遷移状態の検出結果の時間推移パターンも変化する。
 図10の321は、電気機器の電源電流波形データ(図8Aと同一)、図10の322は、状態変化特徴量、図10の323は、遷移状態の一例を示している。322は、電流波形データ321に掛ける窓関数(ウインドウ)を20ms(商用電源周波数の1周期)とする短時間フーリエ変換で周波数分析して得た状態変化特徴量の時間推移(時系列データ)を示している。323は、状態変化特徴量の時系列データを閾値と比較して算出した定常状態、遷移状態の時間推移を示している。
 図11Aは、電気機器の電源電流波形データを示している。図11Bの331は図11Aの「遷移状態」(電源周波数2周期分の時間区間=40ms)の周波数スペクトルである。図11Bの332は、図11Aの「定常状態」(電源周波数の2周期分の時間区間)の周波数スペクトルを示している。図11Bの周波数スペクトルにおいて、周波数分解能Δfは、
 Δf=1/T=fs/N ・・・(6)
(ただし、Tは窓関数の長さ、fsはサンプリング周波数、Nはサンプリング数)で与えられる。図11Aの窓関数の長さ(=40ms)は、図8Aの窓関数の長さ(=20ms)の2倍であり、サンプリング周波数を同一とすると、図11Aのサンプリング数は図8Aのサンプリング数の2倍となっている。このため、図11Bの331、332に示すように、FFTによる周波数分解能は、図8Bのの301、302の2倍となる。
 図12Aの341は、電気機器の電源電流波形データ(図10Aの321と同一)である。図12Bの342は、電源電流波形データ341に掛ける窓関数の長さを40ms(2周期)とし、窓関数をずらしてFFTを行う短時間フーリエ変換で周波数分析して得た状態変化特徴量の時系列データを示している。図12の343は、状態変化特徴量を閾値と比較して算出した定常状態、遷移状態の時間推移を示している。
 図12の342に示すように、商用電源周波数の2周期分の区間(窓関数の長さ=40ms)の電流波形データに対して求めた状態変化特徴量の時間推移は、商用電源周波数の1周期の区間(窓関数の長さ=20ms)の電流波形データに対して求めた状態変化特徴量の時間推移(図10の322)と若干相違している。図10の322では、状態変化特徴量は、40msと50msの間で短時間(数ms)閾値を下回った後、閾値を超え、60msよりも前の時点で再び立ち下がり閾値を下回っている。図12の342では、状態変化特徴量は、20msから70msの手前まで閾値を常に上回っており、70msの手前の時点で立ち下がり閾値を下回っている。図10の323で検出された40msと50msの間の細いひげ状のパルス(遷移状態の間の瞬時の定常状態)は、図12の343では検出されず、20msから70msの手前の時点まで常に遷移状態とされる。図12の343の遷移状態は、図10の323における相隣る2つの遷移状態をつないで1つとしたものに対応している。
 なお、図1の状態変化特徴量抽出手段101、遷移状態抽出手段102、図3の波形取得手段103、状態変化特徴量抽出手段101、遷移状態抽出手段102は、コンピュータで実行されるプログラムでその処理、機能を実現するようにしてもよい。図26は、図1の状態変化検知装置100あるいは図3の状態変化検知装置100Aを、コンピュータ装置110で実現した構成を例示する図である。図26を参照すると、コンピュータ装置110は、CPU(Central Processing Unit)111、メモリ(記憶装置)112、入出力(Input・Output:IO)インタフェース113、通信インタフェース114を備える。記憶装置112は、ハードディスクドライブ(HDD)、半導体メモリ(例えば、ソリッドステートドライブ(SSD)、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、読み出し専用のリードオンリメモリ(ROM)、電気的に消去プログラム可能なリードオンリメモリ(Electrically Erasable Programmable Read-Only Memory)、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)等のいずれか、または複数の組み合わせから構成され、CPU111で実行されるプログラムを格納する。CPU111は、記憶装置112に格納されてプログラムを実行することで、図1の状態変化特徴量抽出手段101、遷移状態抽出手段102、あるいは、図3の波形取得手段103、状態変化特徴量抽出手段101、遷移状態抽出手段102の機能を実現する。遷移状態抽出手段101は、IOインタフェース113を介して出力装置に状態遷移抽出結果を出力してもよい。図3の波形取得手段103は、通信インタフェース114を介して測定器等から電流波形を取得し、記憶装置112(書込み可能なHDD、SSD、DRAM等を含む)に格納するようにしてもよい。この場合、通信インタフェース114は、図24A、図25Aの通信部103-1に対応する。記憶装置112は、図24A、図25Aの記憶装置103-4に対応させてもよい。なお、図5Aの記憶装置101-4、図6Aの記憶装置102-4、102-5、図7Aの記憶装置102-5は、図24A、図25Aの記憶装置103-4とともに、コンピュータ装置110の記憶装置112にまとめてもよい。
 上記した例示的な第1、第2の実施形態によれば、電流波形データから、奇数次高調波成分以外の高調波成分を抽出して状態変化特徴量を算出し、該状態変化特徴量の大きさに基づき、状態遷移を検知している。このため、状態遷移を精度よく検知することができる。
 なお、図8A、図10A等の電源電流波形について、スパイクがあるか否かを観察しているだけでは、遷移状態であるか定常状態であるかを判断できない場合ある。電気機器のスイッチが切り替わるタイミングによっては、電源電流波形は急激に変化しない場合がある。例えば電源電流波形がゼロクロスするタイミングで、スイッチがオンからオフに切り替わった場合、電源電流波形は急激に変化しない。このため、電源電流波形を常にモニタリングする必要がある。これに対して、第1、第2の実施形態によれば、電源電流波形の状態変化特徴量の大きさ(非負値)に基づいて、遷移状態であるか、定常状態であるかを検知することができる。
<第3の実施の形態>
 次に、本発明の例示的な第3の実施形態について図面を参照して詳細に説明する。第3の実施形態では、商用電源周波数1周期(サイクル)分の電源電流波形データを複数接続して得られる接続波形を周波数領域に変換し、奇数次高調波成分以外の周波数成分の強度の和(又はn状和)を状態変化特徴量としている。図13は、本発明の例示的な第3の実施形態の構成を例示する図である。
 図13を参照すると、第3の実施形態の状態変化検知装置100Bは、波形取得手段(波形取得部)103と、位相調整波形接続手段(位相調整波形接続部)104と、状態変化特徴量抽出手段(状態変化特徴量抽出部)101と、遷移状態抽出手段(遷移状態抽出部)102を備えている。
 図13において、状態変化特徴量抽出手段101、遷移状態抽出手段102は、前記第1、第2の実施形態と同様にして、遷移状態の検知を行う。
 波形取得手段103は、例えば商用電源周波数1周期の電流波形と電圧波形を取得する。位相調整波形接続手段104は、商用電源周波数1周期以上の時間差の開いた複数の測定点における電流瞬時波形または電力瞬時波形について、これらの複数の測定点における瞬時波形を位相調整して接続する。
 状態変化特徴量抽出手段101は、接続された電流瞬時波形または電力瞬時波形を、フーリエ変換し、商用電源周波数の奇数次高調波成分以外の周波数成分の強度の和を状態変化特徴量として出力する。
 図14Aは、位相調整波形接続手段104の構成を例示する図である。図14Bは、位相調整波形接続手段104の動作を説明するための流れ図である。なお、波形取得手段103、状態変化特徴量抽出手段101、遷移状態抽出手段102の動作は、前記第1の実施の形態に示した動作と同様であるため、説明は省略する。
 図14Aを参照すると、位相調整波形接続手段104は、1周期の電流波形と電圧波形データを2波形分入力する波形入力部104-1、電流波形データに対して位相調整を行い2波形の位相を合せる位相調整部104-2、位相調整された電流波形を接続する波形接続部104-3を備えている。
 図14Bを参照すると、位相調整波形接続手段104の波形入力部104-1は、例えば、波形取得手段103で取得した電流波形データと電圧波形データから、複数のデータ取得期間に測定された複数の電圧波形データと電流波形データについて、時系列的に隣り合った2つのデータ取得タイミングにおける1周期分の電流波形データと電圧波形データをそれぞれ入力する(ステップS40)。
 位相調整波形接続手段104の位相調整部104-2は、入力された2つの電源電流波形データについて、位相が揃っていない場合(したがって位相合わせが必要な場合)には、位相調整を行う(ステップS41)。
 位相調整部104-2での位相調整の一つの方法として、電圧波形からフーリエ変換で商用電源周波数の基準波(基本波)の位相を抽出し、基準波の位相を用いて、電流波形の位相を調整する。
 位相調整部104-2において、電圧波形から位相情報を抽出する別の方法として、電圧波形のゼロクロス点を検知する方法を用いてもよい。電圧波形の最初のゼロクロス点が電圧波形データのサンプリングの開始点から何番目にあるかという情報と、検知した電圧波形のゼロクロス点の次のゼロクロス点までのデータ点数の値に基づき、電圧波形の位相情報を抽出するようにしてもよい。最初のゼロクロス点がサンプリング開始点からm番目であり、当該ゼロクロス点の次のゼロクロス点までのデータ点数をn個(ゼロクロス点間の位相は180度である)である場合、位相は180×m/nで与えられる。
 位相調整部104-2において、電源電流波形データの位相調整は、電源電流波形データをフーリエ変換で周波数領域(frequency-domain)に変換後に、位相回転を行うようにしてもよい。あるいは、抽出した位相を商用電源周波数の1周期(360度)の長さに変換して、電流波形データを時間領域(time domain)で位相相当分、シフトしてもよい。
 なお、電源電圧、電源電流の測定時に、測定器内部で、電圧のゼロクロス点の値やトリガタイミングなどを用いて、電源電流波形の開始点を調整するなどして、電源電流波形データの位相が合わせられている場合は、位相調整波形接続手段104の波形入力部104-1は、電圧波形を入力しなくてもよい。この場合、位相調整波形接続手段104では、電圧波形は利用されないため、波形取得手段103は、電源電流波形データを取得すればよい。
 位相調整波形接続手段104の波形接続部104-3は、位相調整部104-2において得られた時系列的に隣合った2つの位相調整された電流波形データを、時系列的に連続値として接続して出力する(ステップS42)。
 第3の実施形態においても、前記第1、第2の実施形態と同様の方法で状態遷移を検知する。状態変化特徴量抽出手段101は、位相調整波形接続手段104から出力された2つの電流波形が接続された電流波形(例えば長さ40ms)から、前記第1の実施形態と同様の方法で、商用電源周波数基準波(例えば50Hz)の奇数次高調波成分以外の周波数成分の強度を足し合わせることで、状態変化特徴量を抽出する。遷移状態抽出手段102は、図6を参照して説明したように、状態変化特徴量に基づき閾値との比較により、遷移状態を検出してもよい。あるいは、遷移状態抽出手段102は、図7を参照して説明したように、統計的手法による外れ値の検出により、遷移状態を検出するようにしてもよい。
 図14Aの位相調整波形接続手段104の波形接続部104-3において、2つの電流波形データの接続の仕方は、上記した方法に限定されるものでないことは勿論である。例えば、時系列的に、前の電流波形の前半半周期と、時系列的に後の電流波形の後半半周期を接続させ、全体で1周期の電流波形を作成してもよい。
 また、位相調整波形接続手段104の波形接続部104-3において、接続する電流波形の数は2つに限らず、3つ以上の電流波形について、位相を合せて並べてから、フーリエ変換して、奇数次高調波成分以外の周波数成分の強度の和を求めてもよい。
 また、位相調整波形接続手段104の波形接続部104-3におけるその他の接続方法として、位相を合わせた2つの電流波形を時系列的に交互に並べ、全体で1周期の電流波形を作成してもよい。この場合、作成された1周期の電流波形をフーリエ変換すると、商用電源周波数の奇数次高調波成分以外の高調波は現れないが、時系列的に前後の2つの電流波形が異なる場合に、奇数次高調波成分の高周波側の強度が大きくなる。したがって、高周波側の奇数次高調波の強度に閾値を設けることによって、遷移状態を検出してもよい。
 さらに位相調整波形接続手段104の波形接続部104-3における別の接続方法として、周期を合わせた2つの電流波形の電流瞬時値を、ランダムに選択して並べて、新しい1周期の電流波形を作成してもよい。ここで得られた電流波形をフーリエ変換すると、2つの電流波形に変化がない場合は、奇数次のみの高調波が得られ、2つの電流波形に変化がある場合は、奇数次高調波成分以外の高調波の和の値、もしくは、奇数次の高周波の高調波の値が大きくなる。これらの値に閾値を設けることによって、遷移状態を検出してもよい。位相調整波形接続手段104では、既に保持している波形データのサンプリング値を用いるため、取得間隔(サンプリング時間)を短くして、高速なサンプリングレートで波形データを取得しなくても、既存の波形データにおいて不足している(例えば測定無しの期間の波形データ)を補完することができる。このため、高精度に状態推定を行うことができる。
 図15には、位相調整後の電圧波形(351-1~351-4)と、電流波形(352-1~352-4)を、それぞれ測定の順に並べて模式的に示されている。図15において、電圧波形、電流波形データ((351-1、352-1)~(351-4、352-4))の取得期間は4つあり(データ取得期間1~4(353-1~353-4))、それぞれの間に「測定無しの期間」がある。
 図15において、データ取得期間1~4(353-1~353-4)では、それぞれ、例えば1周期分の電圧波形と電流波形((電圧波形1、電流波形1)~(電圧波形4、電流波形4))を取得する。
 図15において、354-1、354-2、354-3は、位相調整後の電流波形1と電流波形2の2つの波形、電流波形2と電流波形3の2つの波形、電流波形3と電流波形4の2つの波形をそれぞれ接続した状態を示している。
 図15において、355は、電流波形1と電流波形2、電流波形2と電流波形3、電流波形3と電流波形4のそれぞれの2つの接続波形に対して、長さ40ms(電源周波数の2周期分)の窓関数を掛けてフーリエ変換を行う切り出し範囲を少しずつずらして行う短時間フーリエ変換で求めた状態変化特徴量の時間推移を示している。
 位相調整後の1周期の2つの電流波形の接続例について以下に説明する。位相調整後の1周期の2つの電流波形(波形1、2)が以下のデータとして並んでいるものとする。
波形1:AAAAA AAAAA
波形2:BBBBB BBBBB
(1)2つの波形を周期を合わせて接続する。
前半を波形1、後半を波形2とするパターンで2周期の波形を作成する。
例:AAAAA AAAAA BBBBB BBBBB
(2)2つの波形を周期を合わせて、半周期ごとに接続する。
 1周期の前半を波形1、1周期の後半を波形2とするパターンで1周期の波形を作成する。
例:AAAAA BBBBB
(3)2つの波形を周期を合わせて、交互に並べる。
 データ点1を波形1、データ点2を波形2、データ点3を波形1、・・・というように奇数番目のデータ点をA、偶数番目のデータ点をBという並び方にする。偶数番目か奇数番目かは逆でもよい。この場合、奇数次高調波成分以外は出ないが、変化がある場合に高周波の強度が大きくなる。
例:ABABA BABAB ABABA BABAB
(4)2つの波形を周期を合わせて、ランダムに並べる。
 1周期波形の全データ数の半分をA、その他半分をBとし、
波形データAを選択するか、波形データBを選択するかを、ランダムに決める。
例:AABAB BABBA
 図16は、位相調整後の1周期(20ms)の2つの電流波形の接続の仕方を例示する図である。図16の361は波形1、362は波形2である。
波形1:A1~A10のデータがこの順で並んでいる。
波形2:B1~B10のデータがこの順で並んでいる。
 図16において、363は、前半の1周期を波形1(361)、後半の1周期を波形2(362)とする2周期の波形を作成する例を示している。これは、図15の2つの波形の接続(354―1~354―3)の仕方に対応している。
 図16において、364は、1周期の前半を波形1、後半を波形2として1周期の波形を作成する例を示している。364において、1周期目の波形は、前半が波形1のA1~A5(361-1)、後半は波形2のB6~B10(362-2)、2周期目の波形は、前半が波形1のA6~A10(361-2)、後半は波形2のB1~B5(362-1)となる。
 例示的な第3の実施形態においても、状態変化検知装置100Bにおける各手段は、図26を参照して説明した前記第1の実施形態と同様、コンピュータで実行されるプログラムで実現するようにしてもよいことは勿論である。
 例示的な第3の実施形態によれば、時系列的に隣り合った2つの電流波形を、第1の実施の形態と同じ方法で比較できるため、装置の性能等の理由でデータが連続的に測定できない場合であっても、奇数次高調波成分以外の高調波を用いて状態遷移を検知することができる。HEMSでの電源電流のサンプリング期間は100msec(商用電源周波数5周期分の時間区間)であり、10秒に1回の測定となる。この場合、測定無しの期間で定常状態から遷移状態に切り替わっていても、第2の実施形態によれば、遷移状態を推定することができる。
 なお、位相調整波形接続手段104の波形入力部104-1が、状態変化検知装置100B内部又は外部の記憶装置に予め記憶されている、複数のデータ取得期間に測定された複数の電圧波形データと電流波形データ(例えば図15の(電圧波形1、電流波形1)~(電圧波形4、電流波形4)等)から、時系列的に隣り合った2つのデータ取得タイミングにおける1周期分の電流波形データと電圧波形データをそれぞれ入力する場合、状態変化検知装置100Bに波形取得手段103を含めない構成としてもよい。
<第4の実施の形態> 
 次に、本発明の例示的な第4の実施形態について説明する。図17は、第4の実施形態の構成を例示する図である。図17を参照すると、第4の実施形態の状態変化検知装置100Cは、前記第2の実施形態の波形取得手段(波形取得部)103、状態変化特徴量抽出手段(状態変化特徴量抽出部)101、遷移状態抽出手段(遷移状態抽出部)102に加えて、状態変化点保存手段(状態変化点保存部)105と、定常状態分離抽出保存手段(定常状態分離抽出保存部)106と、機器固有状態抽出手段(機器固有状態抽出部)107をさらに備えている。
 波形取得手段103は、図24Aを参照して説明したように測定器200に接続されるか、又は測定器を含む構成としてもよいし、あるいは図25Aを参照して説明したように、分電盤の主ブレーカ又は分岐ブレーカ等に接続された電流センサで測定された、複数の電気機器に流れる電源電流波形やスマートメータで測定された電源電流波形を機器分離技術等で波形分離したものであってもよい。状態変化特徴量抽出手段101、遷移状態抽出手段102は、前記第1、第2の実施形態で説明したものと同一である。
 図18は、例示的な第4の実施形態の動作を説明する図である。図18において、ステップS10、S11は、図4のステップS10、S11と同じである。図18のステップS12では、図4のステップS12と同じく、遷移状態抽出手段102が、電流波形データの区間の状態変化特徴量の大きさに基づき、当該区間が定常状態であるか遷移状態であるか判定し、定常状態と遷移状態の時系列データを出力する。図18を参照すると、状態変化点保存手段105は、遷移状態抽出手段102で抽出された状態(定常状態、遷移状態)の時系列データを受け取り、状態変化点情報(定常状態から遷移状態、あるいは、遷移状態から定常状態への変化時点)を取得して記憶装置(図19Aの105-4)に逐次保存する(ステップS13)。
 定常状態分離抽出保存手段106は、状態変化点保存手段105によって記憶装置105-4に保存された状態変化点情報を用いて、電流波形データ(時系列)を分類(クラスタリング)する(ステップS14)。なお、電流波形データ(時系列)のクラスタリングにおいて、クラスタリングの手法は特に制限されるものでなく、最短距離法などの階層的手法(hierarchical method)や、k-means法などの非階層的手法(non-hierarchical method)など任意の手法が用いられる。
 機器固有状態抽出手段107は、定常状態分離抽出保存手段106によって分離抽出された状態変化点の前後の各定常状態について、時系列の順に、例えば定常状態の特徴量の差分をとることで、機器固有の特徴量を抽出する(ステップS15)
 本実施形態によれば、機器分離等の波形解析に利用される機器固有の波形を自動で取得可能としている。
 以下では、第4の実施形態について、前記第1の実施形態との相違点である状態変化点保存手段105と、定常状態分離抽出保存手段106と、機器固有状態抽出手段107を中心に説明する。
 図19Aは、図17の状態変化点保存手段105の構成例を例示する図である。状態変化点保存手段105は、状態情報を入力する状態情報入力部105-1、状態変化点の情報を取得する状態変化点情報取得部105-2、状態変化点の情報を記憶装置105-4に保存する状態変化点情報保存部105-3を備えている。
 図19Bは、図19Aの状態変化点保存手段105の動作を説明する流れ図である。図19Bを参照すると、状態情報入力部105-1は、遷移状態抽出手段102で抽出された状態(定常状態、遷移状態の時系列)の時系列データを受け取る(ステップS50)。
 状態変化点情報取得部105-2は、状態(定常状態、遷移状態の時系列)の時系列データから状態変化点情報を取得する(ステップS51)。状態変化点は、変化の時点に関する情報と変化の種別(定常状態から遷移状態への変化であるか、遷移状態から定常状態への変化であるか等)を含むようにしてもよい。
 状態変化点情報保存部105-3は、状態変化点情報を記憶装置105-4に保存する(ステップS52)。
 状態変化点の情報は、状態が変化した時刻情報と、変化した先が遷移状態であるか定常状態であるかを1又は0で表した2値であってもよい(状態変化点情報=(時刻情報)+(2値情報))。
 あるいは、状態変化点の情報は、遷移状態抽出手段102において遷移状態であるか定常状態であるかの判定に用いる状態変化特徴量そのものでもよい。
 状態変化点情報保存部105-3は、状態変化点での電流波形データは保存せず、状態変化点前後の定常状態と判定された時間区間の電流波形データを時系列データとして記憶装置105-4に保存するようにしてもよい。
 図20Aは、図17の定常状態分離抽出保存手段106の構成例を例示する図である。図20Aを参照すると、定常状態分離抽出保存手段106は、状態変化点情報を入力する状態変化点情報入力部106-1、電流波形データを入力する電流波形入力部106-2、定常状態の電流波形を分類する定常状態分離抽出部106-3、定常状態の電流波形(特徴量)を記憶装置106-5に保存する定常状態保存部106-4を備えている。
 図20Bは、図20Aの定常状態分離抽出保存手段106の動作を説明する流れ図である。図20Bを参照すると、状態変化点情報入力部106-1は、状態変化点保存手段105によって記憶装置105-4に保存された状態変化点情報を入力する(ステップS60)。
 電流波形入力部106-2は、波形取得手段103で取得した電流波形データを入力する(ステップS61)。
 定常状態分離抽出部106-3は、状態変化点情報に基づき、定常状態の電流波形データ(時系列)を分類する。例えば定常状態分離抽出部106-3は、状態変化点の前後の電流波形データ(もしくは電力波形であってもよい)の定常状態の特徴量に基づき、定常状態を分離抽出する(ステップS62)。
 定常状態分離抽出部106-3は、状態変化点前後の定常状態の電流波形データから、当該定常状態の電流波形データの特徴量を抽出し、抽出した定常状態の電流波形データの特徴量の分布もしくは平均値等を抽出する。
 ここで、定常状態の特徴量は、電流波形データそのものであってもよい。
 あるいは、定常状態分離抽出部106-3は、定常状態の特徴量として、電流波形データをフーリエ変換した周波数領域での特徴量を用いてもよい。定常状態の特徴量は、状態変化特徴量を用いてもよいし、あるいは、商用電源周波数の奇数次高調波成分の周波数成分の強度の和又は2乗和等を定常状態の特徴量としてもよい。
 定常状態保存部106-4は、分離抽出された定常状態の電流波形データ(特徴量)を記憶装置106-5に保存する(ステップS63)。
 図21Aは、図17の機器固有状態抽出手段107の構成例を例示する図である。図21Aを参照すると、機器固有状態抽出手段107は、定常状態の電流波形(特徴量)を入力する定常状態電流波形入力部107-1、定常状態の電流波形から機器固有の電流波形(特徴量)を取得する機器固有波形(特徴量)取得部107-2、機器固有波形を記憶装置107-4に保存する機器固有波形(特徴量)保存部107-3を備えている。
 図21Bは、図21Aの機器固有状態抽出手段107の動作を説明する流れ図である。図21Bを参照すると、定常状態電流波形入力部107-1は、定常状態分離抽出保存手段106によって分離抽出された状態変化点の前後の各定常状態の時系列の電流波形データを入力する(ステップS70)。
 機器固有波形(特徴量)取得部107-2は、例えば状態変化点の前後の定常状態の特徴量の差分をとることで、機器固有の波形(特徴量)を抽出する(ステップS71)。これは、状態変化点の前の電流波形が定常状態から遷移状態に変化し、再び定常状態に変化した場合、その前後での電流波形の特徴量の変化分が、電気機器固有の特徴量に対応している。
 定常状態の特徴量が定常状態の電流波形データそのものである場合、機器固有波形(特徴量)取得部107-2は、定常状態分離抽出保存手段106によって得られた各定常状態の電流波形データについて、状態変化点前後の定常状態の電流波形データの差分をとることで、電気機器単体の固有波形を抽出するようにしてもよい。すなわち、状態変化点前の第1の安定状態の電流波形が、状態変化点である遷移状態の電流波形を経て、状態変化点後の第2の安定状態の電流波形に遷移した場合に、第2の安定状態の電流波形と、第1の安定状態の電流波形との差分である差分波形を電気機器固有の波形とする。
 機器固有波形(特徴量)保存部107-2で抽出された機器固有波形(又はその波形の特徴量)を、記憶装置107-4に保存する(ステップS72)。記憶装置107-4は、例えば非特許文献2に記載された波形解析等の照合用に波形データベース等であってもよい。
 状態変化点前後の定常状態の電流波形データ(又はその特徴量)の差分を取ることによって電気機器単体の固有波形(特徴量)を抽出する例として、例えば図9の電流波形311について、図9の状態(遷移状態、定常状態)の時間推移314に示すように、第1の定常状態(0~20ms)、遷移状態(20ms~60ms)、第2の定常状態(60ms~100ms)と時間推移している。この場合、機器固有状態抽出手段107において、第1の定常状態(0~20ms)と第2の定常状態(60~100ms)の電流波形(又はその特徴量)の差分を電気機器単体の固有波形(特徴量)としてもよい。
 また、機器固有波形(特徴量)取得部107-2は、状態変化点前後のそれぞれの電流波形データに関して、分布の比較を行う場合、状態変化点前後のそれぞれの定常状態の電流波形データのデータ点数を揃えるなどの前処理を施してから、例えば、主成分分析を行い、固有波形を抽出するようにしてもよい。
 例えば、機器固有波形(特徴量)取得部107-2は、状態変化点前後のそれぞれの定常状態の電流波形データに関して、データ点数の多い方の電流波形データのデータ点数を減らすか、もしくは、データ点数の少ない方を、得られた分布の乱数などを用いて増やす、などして、状態変化点前後それぞれの定常状態の電流波形データのデータ点数を揃えるようにしてもよい。上記のようにして、機器固有状態抽出手段107は、機器単体の固有波形を抽出する。
 第4の実施形態においても、状態変化検知装置100Cにおける各手段は、図26を参照して説明した前記第1の実施形態と同様、コンピュータで実行されるプログラムで実現するようにしてもよいことは勿論である。
 第4の実施形態によれば、電気機器の稼働状況を表す電源電流波形データから遷移状態を自動で検知し、定常状態を自動で分類し、電気機器固有の電流波形を自動で抽出することができるので、電気機器単体の固有電流波形と電力を自動で抽出して学習することができる。なお、第4の実施形態において、状態変化特徴量抽出手段101が、状態変化検知装置100C内部又は外部の記憶装置に予め記憶保持されている電流波形データに基づき、状態変化特徴量を計算する構成とし、図17の波形取得手段103を用いない構成としてもよい。
<第4の実施形態の変形例1>
 次に、本発明の例示的な第4の実施形態の変形例1について説明する。図22は、変形例1を例示する図である。
 図22に示すように、変形例1の状態変化検知装置100Dは、図17の機器固有状態抽出手段107の代わりに、機器の稼働状態推定手段108を備えている。また、波形取得手段103は、1台の電気機器の電源電流波形データを取得する。波形取得手段103は、図24Aを参照して説明した測定器200から電源電流波形データを取得する構成としてもよい。あるいは、図25Aに示すように、分電盤の主ブレーカ又は分岐ブレーカ等に接続された電流センサ23又はスマートメータ25からの電源電流波形を波形分離部103-3で機器分離し、1台の電気機器の電源電流波形データを取得するようにしてもよい。図22において、状態変化特徴量抽出手段101、遷移状態抽出手段102に加えて、状態変化点保存手段105と、定常状態分離抽出保存手段106は、前記第4の実施形態と同一である。
 稼働状態推定手段108は、定常状態分離抽出保存手段106によって得られた定常状態の電流波形データの特徴量の時系列順序を抽出することによって、電気機器の稼働パターン(稼働状態)を推定する。稼働状態として、電気機器のオン、オフや、稼働パターン、消費電力等を推定することができる。例えば定常状態の特徴量を、電流波形データをフーリエ変換した周波数領域での特徴量(例えば前記第1の実施形態の状態変化特徴量、あるいは、商用電源周波数の奇数次高調波成分の周波数成分の強度の和又はn乗和等)とし、この特徴量の時間推移から定常状態のパターンを取得し、これを機器の稼働パターンとして記憶装置108-1に保存するようにしてもよい。
 変形例1によれば、稼働状態推定手段108で取得した稼働パターンから電気機器の動作状況の時間推移を把握、解析することができる。変形例1によれば、特定の機器の各動作モードへの電流波形の遷移パターンを自動で学習することが可能とされている。このため、機器の稼働パターンを抽出することも可能である。なお、第4の実施形態の変形例1において、状態変化特徴量抽出手段101が、前記第1の実施形態と同様、状態変化検知装置100D内部又は外部の記憶装置に予め記憶保持されている電流波形データに基づき、状態変化特徴量を計算する構成とし、図17の波形取得手段103を用いない構成としてもよい。
<第4の実施形態の変形例2>
 次に、本発明の例示的な第4の実施形態の変形例2について説明する。図23は、本発明の第4の実施形態の変形例2の構成を例示する図である。図23を参照すると、変形例2の状態変化検知装置100Eは、図17を参照して説明した第4の実施形態における波形取得手段103と状態変化特徴量抽出手段101の間に、前記第3の実施形態の位相調整波形接続手段104を備えている。
 変形例2によれば、前記例示的な第4の実施形態の作用効果に加え、装置の性能等の理由でデータが連続的に測定できない場合であっても、奇数次高調波成分以外の高調波を用いて状態遷移を検知することができる。
 さらなる変形例として、図22を参照して説明した例示的な第4の実施形態の変形例1における波形取得手段103と状態変化特徴量抽出手段101の間に、前記第3の実施形態の位相調整波形接続手段104を備えた構成としてもよい。
 なお、上記の特許文献1-6、非特許文献1、2の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 上記した実施形態は以下のように付記される(ただし、以下に制限されない)。
(付記1)
 電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出手段と、
 前記波形データの区間に対して、抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出手段と、
 を備えたことを特徴とする状態変化検知装置。
(付記2)
 前記状態変化特徴量抽出手段は、前記電源電流の波形データの周波数領域において電源周波数の奇数次高調波成分以外の周波数成分の各強度を計算し、
 前記各強度の和又はn乗和(nは2以上の整数)に基づき、前記状態変化特徴量を算出する、ことを特徴とする付記1に記載の状態変化検知装置。
(付記3)
 前記状態変化特徴量抽出手段は、電源周波数の1周期以内の所定の長さの前記電源電流の波形データ又は電源周波数の複数周期の前記電源電流の波形データから、前記状態変化特徴量を抽出する、ことを特徴とする付記1又は2に記載の状態変化検知装置。
(付記4)
 波形取得手段で取得した前記電源電流の波形データのうち、電源周波数の1周期以上異なる1周期以内の複数の前記波形データに対して、他の波形データに対する位相合わせが必要な前記波形データの位相を調整した上で、1周期以内の複数の前記波形データを接続する位相調整波形接続手段をさらに備え、
 前記状態変化特徴量抽出手段は、前記位相調整波形接続手段で接続された複数の1周期以内の前記波形データに対して、前記状態変化特徴量を算出する、ことを特徴とする付記1乃至3のいずれか一に記載の状態変化検知装置。
(付記5)
 前記遷移状態抽出手段は、
 前記状態変化特徴量の大きさが予め定められた閾値を超えている場合、前記波形データの区間を遷移状態と判定し、
 前記状態変化特徴量の大きさが前記閾値以下の場合、前記波形データの区間を定常状態と判定し、判定結果を出力する、ことを特徴とする付記1乃至4のいずれか一に記載の状態変化検知装置。
(付記6)
 前記遷移状態抽出手段によって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存手段と、
 前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出保存手段と、
 分離抽出された前記定常状態に基づき、電気機器に固有の波形又は特徴量を抽出する機器固有状態抽出手段と、
 をさらに含む、ことを特徴とする付記5に記載の状態変化検知装置。
(付記7)
 前記遷移状態抽出手段によって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存手段と、
 前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出保存手段と、
 分離抽出された前記定常状態の波形データの特徴量を学習し、学習した定常状態の特徴量に基づき、電気機器の稼動状態を推定する稼動状態推定手段と、
 をさらに含む、ことを特徴とする付記5に記載の状態変化検知装置。
(付記8)
 コンピュータによる電気機器の状態変化検知方法であって、
 電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出ステップと、
 前記波形データの区間に対して抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出ステップと、
 を含むことを特徴とする状態変化検知方法。
(付記9)
 前記状態変化特徴量抽出ステップは、前記電源電流の波形データの周波数領域において電源周波数の奇数次高調波成分以外の周波数成分の各強度を計算し、前記各強度の和又はn乗和(nは2以上の整数)に基づき、前記状態変化特徴量を算出する、ことを特徴とする付記8記載の状態変化検知方法。
(付記10)
 前記状態変化特徴量抽出ステップは、電源周波数の1周期以内の所定の長さの前記電源電流の波形データ又は電源周波数の複数周期の前記電源電流の波形データから、前記状態変化特徴量を抽出する、ことを特徴とする付記8又は9に記載の状態変化検知方法。
(付記11)
 前記波形取得ステップで取得した前記電源電流の波形データのうち、電源周波数の1周期以上異なる1周期以内の複数の前記波形データに対して、他の波形データに対する位相合わせが必要な前記波形データの位相を調整した上で、1周期以内の複数の前記波形データを接続する位相調整波形接続ステップをさらに含み、
 前記状態変化特徴量抽出ステップは、前記位相調整波形接続ステップで接続された複数の1周期以内の前記波形データに対して前記状態変化特徴量を算出する、ことを特徴とする付記8乃至10のいずれか一に記載の状態変化検知方法。
(付記12)
 前記遷移状態抽出ステップは、
 前記状態変化特徴量の大きさが予め定められた閾値を超えている場合、前記波形データの区間を遷移状態と判定し、
 前記状態変化特徴量の大きさが前記閾値以下の場合、前記波形データの区間を定常状態と判定し、判定結果を出力する、ことを特徴とする付記8乃至11のいずれか一に記載の状態変化検知方法。
(付記13)
 前記遷移状態抽出ステップによって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存ステップと、
 前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出ステップと、
 分離抽出された前記定常状態について電気機器に固有の波形又は特徴量を抽出する機器固有状態抽出ステップと、
 をさらに含む、ことを特徴とする付記12に記載の状態変化検知方法。
(付記14)
 前記遷移状態抽出ステップによって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存ステップと、
 前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出ステップと、
 分離抽出された前記定常状態の波形データの特徴量を学習し、学習した定常状態の特徴量に基づき、電気機器の稼動状態を推定する稼動状態推定ステップをさらに含む、ことを特徴とする付記12に記載の状態変化検知方法。
(付記15)
 コンピュータに、
 電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出処理と、
 前記波形データの区間に対して抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出処理と、
 を実行させるプログラム。
(付記16)
 前記状態変化特徴量抽出処理は、前記電源電流の波形データの周波数領域において電源周波数の奇数次高調波成分以外の周波数成分の各強度を計算し、前記各強度の和又はn乗和(nは2以上の整数)に基づき、前記状態変化特徴量を算出する、ことを特徴とする付記15に記載のプログラム。
(付記17)
 前記状態変化特徴量抽出処理は、電源周波数の1周期以内の所定の長さの前記電源電流の波形データ又は電源周波数の複数周期の前記電源電流の波形データから、前記状態変化特徴量を抽出する、ことを特徴とする付記15又は16に記載のプログラム。
(付記18)
 前記波形取得処理で取得した前記電源電流の波形データのうち、電源周波数の1周期以上異なる1周期以内の複数の前記波形データに対して、他の波形データに対する位相合わせが必要な前記波形データの位相を調整した上で、1周期以内の複数の前記波形データを接続する位相調整波形接続処理をさらに含み、
 前記状態変化特徴量抽出処理は、前記位相調整波形接続処理で接続された複数の1周期以内の前記波形データに対して前記状態変化特徴量を算出する、ことを特徴とする付記15乃至17のいずれか一に記載のプログラム。
(付記19)
 前記遷移状態抽出処理は、前記状態変化特徴量の大きさが予め定められた閾値を超えている場合に遷移状態、前記状態変化特徴量の大きさが前記閾値以下の場合に定常状態と判定し、判定結果を出力する、ことを特徴とする付記15乃至18のいずれか一に記載のプログラム。
(付記20)
 前記遷移状態抽出処理によって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存処理と、
 前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出処理と、
 前記定常状態について電気機器に固有の波形又は特徴量を抽出する機器固有状態抽出処理と、
 をさらに前記コンピュータに実行させる、付記19に記載のプログラム。
(付記21)
 前記遷移状態抽出処理によって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存処理と、
 前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出処理と、
 分離抽出された前記定常状態の波形データの特徴量を学習し、学習した定常状態の特徴量に基づき、電気機器の稼動状態を推定する稼動状態推定処理と、
 をさら前記コンピュータに実行させる、付記19に記載のプログラム。
20 建屋(家屋、店舗、工場等)
21 通信装置(HEMS/BEMS/FEMSコントローラ)
22 分電盤
23 電流センサ
24A~24C 電気機器
25 スマートメータ
100、100A、100B、100C、100D、100E 状態変化検知装置
101 状態変化特徴量抽出手段(状態変化特徴量抽出部)
101-1 波形入力部
101-2 フーリエ変換部
101-3 状態変化特徴量計算部
101-4 記憶装置
102 遷移状態抽出手段(遷移状態抽出部)
102-1 状態変化特徴量入力部
102-2 判定部
102-3 状態出力部
102-4、102-5 記憶装置
102-6 表示装置
102-7 外れ値検出部
103 波形取得手段(波形取得部)
103-1 通信部
103-2 波形抽出部
103-3 波形分離部
103-4 記憶装置
104 位相調整波形接続手段(位相調整波形接続部)
104-1 波形入力部
104-2 位相調整部
104-3 波形接続部
105 状態変化点保存手段
105-1 状態情報入力部
105-2 状態変化点情報取得部
105-3 状態変化点情報保存部
105-4 記憶装置
106 定常状態分離抽出保存手段(定常状態分離抽出保存部)
106-1 状態変化点情報入力部
106-2 電流波形入力部
106-3 定常状態分離抽出部
106-4 定常状態保存部
106-5 記憶装置
107 機器固有状態抽出手段(機器固有状態抽出部)
107-1 定常電流波形入力部
107-2 機器固有波形(特徴量)取得部
107-3 機器固有波形(特徴量)保存部
107-4 記憶装置
108 稼働状態推定手段(稼働状態推定部)
108-1 記憶装置
110 コンピュータ装置
111 CPU
112 記憶装置
113 IOインタフェース
114 通信インタフェース
200 測定器
201 電圧計
202 降圧回路
203、206 アナログデジタル変換器(ADC)
204 電流計
205 電流検知回路
207 乗算器
208 有効電力算出部
209 通信部
210 負荷
271~277 波形
311、321、341 電流波形データ
312、313、322、342 状態変化特徴量
314、323、343 遷移状態検出結果の時間推移
331 周波数スペクトル(遷移状態)
332 周波数スペクトル(定常状態)
351-1~351-4 電圧波形
352-1~352-4 電流波形
353-1~353-4 データ取得期間
354-1~354-3 波形の接続
355 状態変化特徴量
361 波形1
361-1、361-2 波形1の部分波形
362 波形2
362-1、362-2 波形2の部分波形
363 波形の接続
364 波形の接続
371  電流波形(合成波形)
372~374 電流波形(分離波形)

Claims (9)

  1.  電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出手段と、
     前記波形データの区間に対して、抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出手段と、
     を備えたことを特徴とする状態変化検知装置。
  2.  前記状態変化特徴量抽出手段は、前記電源電流の波形データの周波数領域において電源周波数の奇数次高調波成分以外の周波数成分の各強度を計算し、
     前記各強度の和又はn乗和(nは2以上の整数)に基づき、前記状態変化特徴量を算出する、ことを特徴とする請求項1記載の状態変化検知装置。
  3.  前記状態変化特徴量抽出手段は、電源周波数の1周期以内の所定の長さの前記電源電流の波形データ又は電源周波数の複数周期の前記電源電流の波形データから、前記状態変化特徴量を抽出する、ことを特徴とする請求項1又は2に記載の状態変化検知装置。
  4.  前記電源電流の波形データのうち、電源周波数の1周期以上異なる1周期以内の複数の前記波形データに対して、他の波形データに対する位相合わせが必要な前記波形データの位相を調整した上で、1周期以内の複数の前記波形データを接続する位相調整波形接続手段をさらに備え、
     前記状態変化特徴量抽出手段は、前記位相調整波形接続手段で接続された複数の1周期以内の前記波形データに対して、前記状態変化特徴量を算出する、ことを特徴とする請求項1乃至3のいずれか1項に記載の状態変化検知装置。
  5.  前記遷移状態抽出手段は、
     前記状態変化特徴量の大きさが予め定められた閾値を超えている場合、前記波形データの区間を遷移状態と判定し、
     前記状態変化特徴量の大きさが前記閾値以下の場合、前記波形データの区間を定常状態と判定し、判定結果を出力する、ことを特徴とする請求項1乃至4のいずれか1項に記載の状態変化検知装置。
  6.  前記遷移状態抽出手段によって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存手段と、
     前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出保存手段と、
     分離抽出された前記定常状態に基づき、電気機器に固有の波形又は特徴量を抽出する機器固有状態抽出手段と、
     をさらに含む、ことを特徴とする請求項5に記載の状態変化検知装置。
  7.  前記遷移状態抽出手段によって検知された定常状態と遷移状態の時系列情報を入力し、状態の変化点を保存する状態変化点保存手段と、
     前記状態変化点の前後の定常状態の前記波形データを分離抽出する定常状態分離抽出保存手段と、
     分離抽出された前記定常状態の波形データの特徴量を学習し、学習した定常状態の特徴量に基づき、電気機器の稼動状態を推定する稼動状態推定手段と、
     をさらに含む、ことを特徴とする請求項5に記載の状態変化検知装置。
  8.  コンピュータによる電気機器の状態変化検知方法であって、
     電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出ステップと、
     前記波形データの区間に対して抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出ステップと、
     を含むことを特徴とする状態変化検知方法。
  9.  コンピュータに、
     電源電流の波形データに関する状態変化特徴量を抽出する状態変化特徴量抽出処理と、
     前記波形データの区間に対して抽出した状態変化特徴量の大きさに基づいて、遷移状態を検知する遷移状態抽出処理と、
     を実行させるプログラム。
PCT/JP2017/029563 2016-08-22 2017-08-17 状態変化検知装置、方法及びプログラム WO2018038000A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018535632A JP7003922B2 (ja) 2016-08-22 2017-08-17 状態変化検知装置、方法及びプログラム
US16/326,963 US11237584B2 (en) 2016-08-22 2017-08-17 State change detection apparatus, method, and non-transitory medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-161985 2016-08-22
JP2016161985 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018038000A1 true WO2018038000A1 (ja) 2018-03-01

Family

ID=61246586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029563 WO2018038000A1 (ja) 2016-08-22 2017-08-17 状態変化検知装置、方法及びプログラム

Country Status (3)

Country Link
US (1) US11237584B2 (ja)
JP (1) JP7003922B2 (ja)
WO (1) WO2018038000A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009258A (zh) * 2021-03-01 2021-06-22 上海电气集团数字科技有限公司 一种设备工作状态监测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6677197B2 (ja) * 2017-03-15 2020-04-08 オムロン株式会社 高調波検出システム
JP6680251B2 (ja) 2017-03-15 2020-04-15 オムロン株式会社 配電網モニタリングシステム
CN110574251B (zh) * 2017-04-28 2023-07-28 大金工业株式会社 电源功率因数控制系统、调相装置以及有源滤波器装置
WO2020234961A1 (ja) * 2019-05-20 2020-11-26 三菱電機株式会社 状態推定装置および状態推定方法
ES2944182A1 (es) * 2021-12-15 2023-06-19 Univ Salamanca Pontificia Procedimiento y sistema para la detección de patrones de consumo eléctrico de una vivienda indicativos de problemas de salud

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120016608A1 (en) * 2010-07-16 2012-01-19 Industrial Technology Research Institute Method and system for monitoring residential appliances
JP2013150508A (ja) * 2012-01-23 2013-08-01 Nippon Telegr & Teleph Corp <Ntt> 電流波形識別装置
JP2014075923A (ja) * 2012-10-04 2014-04-24 Toshiba Corp 状態推定装置、状態推定方法およびプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229981A (ja) 1996-02-21 1997-09-05 Hitachi Ltd 高調波の監視に用いる監視装置および高調波監視システム
JP3403368B2 (ja) 1999-02-01 2003-05-06 財団法人電力中央研究所 電気機器モニタリングシステム及び動作異常警報システム
TWI423549B (zh) 2010-07-02 2014-01-11 Univ Nat Chiao Tung 辨識電器狀態的電力監測裝置及其電力監測方法
EP2668604A2 (en) 2011-01-28 2013-12-04 The Board Of Regents Of The Nevada System Of Higher Education Of The Desert Research Institute Signal identification methods and systems
US9638723B2 (en) 2012-10-04 2017-05-02 Kabushiki Kaisha Toshiba Status estimation apparatus, status estimation method
DE112013005699B4 (de) * 2012-11-29 2023-03-23 Mitsubishi Electric Corporation Schätzvorrichtung für einen internen Zustand einer Batterie
JP5957397B2 (ja) 2013-03-05 2016-07-27 株式会社東芝 状態推定装置、状態推定方法及び状態推定プログラム
US9563530B2 (en) * 2013-12-03 2017-02-07 Kabushiki Kaisha Toshiba Device state estimation apparatus, device power consumption estimation apparatus, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120016608A1 (en) * 2010-07-16 2012-01-19 Industrial Technology Research Institute Method and system for monitoring residential appliances
JP2013150508A (ja) * 2012-01-23 2013-08-01 Nippon Telegr & Teleph Corp <Ntt> 電流波形識別装置
JP2014075923A (ja) * 2012-10-04 2014-04-24 Toshiba Corp 状態推定装置、状態推定方法およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009258A (zh) * 2021-03-01 2021-06-22 上海电气集团数字科技有限公司 一种设备工作状态监测方法
CN113009258B (zh) * 2021-03-01 2023-10-10 上海电气集团数字科技有限公司 一种设备工作状态监测方法

Also Published As

Publication number Publication date
JP7003922B2 (ja) 2022-01-21
JPWO2018038000A1 (ja) 2019-06-20
US11237584B2 (en) 2022-02-01
US20190187736A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2018038000A1 (ja) 状態変化検知装置、方法及びプログラム
US8988062B2 (en) Branch circuit monitor
US11366145B2 (en) Intelligent electronic device with enhanced power quality monitoring and communications capability
US7920976B2 (en) Averaging in an intelligent electronic device
JP5010011B2 (ja) 消費電力測定システム及び消費電力測定方法
CN104091056B (zh) 一种实验室设备使用寿命预测系统和方法
Benyoucef et al. Smart Meter with non-intrusive load monitoring for use in Smart Homes
Gerber et al. Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings
WO2018101363A1 (ja) 状態推定装置と方法とプログラム
JP2015180185A (ja) メーターデータを使用した配電システム解析
CN107817382B (zh) 智能电表、电器识别方法以及具有该电表的智能公寓系统
Singh et al. Residential load signature analysis for their segregation using wavelet—SVM
JP2008061448A (ja) 電力品質監視システムと方法
Cuñado et al. A supervised learning approach to appliance classification based on power consumption traces analysis
Despa et al. Multi-Area Smart Monitoring of Electrical Quantities Based on Mini Single Board Computer BCM 2835
JP6782442B2 (ja) 計測装置、計測システム及びコンピュータシステム
Jonetzko et al. High frequency non-intrusive electric device detection and diagnosis
JP6454242B2 (ja) 負荷電流計測方法およびその装置
Buchhop et al. Residential load identification based on load profile using artificial neural network (ANN)
Jimenez et al. Steady state signatures in the time domain for nonintrusive appliance identification
WO2018198210A1 (ja) 異常機器判別装置、方法、プログラム
Bravo et al. Development of a smart wavelet-based power quality monitoring system
Klein et al. Analysis of fingerprints of electric appliances as starting point for an appliance characteristics catalog
Pezeshkfar Low cost framework for non-intrusive load monitoring (NILM) to monitor human behavioral pattern
Ali Taher et al. Conceptual Design System for Monitoring Electrical Loads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843482

Country of ref document: EP

Kind code of ref document: A1